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CIWA

A WEB-BASED TOOL FOR AUTOMATED IRRIGATION MANAGEMENT USING

INTELLIGENT PLANT CANOPY TEMPERATURE IDENTIFICATION TECHNIQUES

Abstract

by Minas Pantelidakis, Electrical and Computer Engineering, Integrated Masters
Technical University of Crete

TBD 2020

Supervisor: Georgios Chalkiadakis

Canopy temperature has been recognized as a crop water stress indicator, since it reflects the

interaction of crops with soil and the atmosphere. Even though there are several methods

to estimate canopy temperature, most of them are time consuming, expensive, inaccurate,

or require considerable human input. This work mobilizes Convolutional Neural Networks

(CNNs) to identify sunlit leaves and in conjuction with thermal imagery, find the underlying

leaf temperatures and calculate the Crop Water Stress Index (CWSI). The results of two

different CNN architectures (FRRN, DeepLabV3) have been compared with two minimum

input, state of the art methods, namely temperature Histogram Gradient Thresholding and

Gaussian Mixture Models. We evaluate our approaches against this baseline using our own

dataset of 1432 image-label pairs of pistachio trees. Results indicate that CNNs outperform

existing methods. Our dataset is released for the scientific community to use. Finally, a web

application was developed, so that researchers/growers can calculate the CWSI in real time,

using pictures captured with a thermal camera.

iv



TABLE OF CONTENTS

Page

ACKNOWLEDGMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

CHAPTER

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

CHAPTER

2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1 Agricultural background . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 FAO Irrigation Scheduling Method . . . . . . . . . . . . . . . . . . 7
2.1.2 Crop Water Stress Index . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.3 CWSI and Energy Balance Considerations . . . . . . . . . . . . . 10
2.1.4 CWSI and Ks Relationship . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Computer Science background . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.1 Gaussian Mixture Models (GMMs) . . . . . . . . . . . . . . . . . 15
2.2.2 Convolutional Neural Networks (CNNs) . . . . . . . . . . . . . . . 22
2.2.3 Semantic Image Segmentation . . . . . . . . . . . . . . . . . . . . 24

2.3 Web Development background . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3.1 Microservices Vs. Monoliths . . . . . . . . . . . . . . . . . . . . . 26
2.3.2 Docker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3.3 Client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3.4 Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

v



2.3.5 Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.3.6 Reverse Proxy & File Server . . . . . . . . . . . . . . . . . . . . . 31

CHAPTER

3 Our approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.1 Convolutional Neural Netowkrs (CNNs) . . . . . . . . . . . . . . . . . . . 34

3.1.1 Full-Resolution Residual Network (FRRN) . . . . . . . . . . . . . 34
3.1.2 DeepLabV3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Sunlit Leaves identification baseline methods . . . . . . . . . . . . . . . . 38
3.2.1 Histogram Gradient Thresholding (HGT) . . . . . . . . . . . . . . 38
3.2.2 Gaussian Mixture Models (GMMs) . . . . . . . . . . . . . . . . . 39

3.3 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3.1 Data acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3.2 Annotation Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

CHAPTER

4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.1 Hamming Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2 Intersection over Union (IoU) . . . . . . . . . . . . . . . . . . . . . . . . 53
4.3 Pixel accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.4 CNN training complete results . . . . . . . . . . . . . . . . . . . . . . . . 57

4.4.1 DeepLabV3 results . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.4.2 FRRN results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

CHAPTER

5 CIWA Web App . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.2 Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

CHAPTER

6 Conclusion & Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.1 Limitations of our approach . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

vi



LIST OF TABLES

3.1 Flir Image Metadata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.1 Pixel accuracy reference confusion matrix. . . . . . . . . . . . . . . . . . . . 55

4.2 Normalized mean pixel accuracy confusion matrix of FRRN. . . . . . . . . . 55

4.3 Normalized mean pixel accuracy confusion matrix of DeepLabV3. . . . . . . 55

4.4 Normalized mean pixel accuracy confusion matrix of HGT. . . . . . . . . . . 56

4.5 Normalized mean pixel accuracy confusion matrix of GMMs. . . . . . . . . . 56

4.6 DeepLabV3 Experiment 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.7 DeepLabV3 Experiment 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.8 FRRN Experiment 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.9 FRRN Experiment 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

vii



LIST OF FIGURES

1.1 Methods used in deciding when to irrigate in the U.S.A. . . . . . . . . . . . 3

2.1 Schematic showing primary components of the energy balance. . . . . . . . . 10

2.2 Graphical representation of lower and upper baselines, CWSI = YZ/XZ . . . 13

2.3 Gaussian Mixture with K = 3. . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Typical CNN architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5 Fully Connected Layers in a CNN . . . . . . . . . . . . . . . . . . . . . . . . 24

2.6 Semantic Image Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.7 Monolithic vs Microservice architecture . . . . . . . . . . . . . . . . . . . . . 27

2.8 VMs vs Containers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.9 Forward proxy vs Reverse proxy . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1 Full-Resolution Residual Neural Network . . . . . . . . . . . . . . . . . . . . 35

3.2 Cascaded modules without and with atrous convolution. . . . . . . . . . . . 36

3.3 Atrous convolution with different stride rates in a 3x3 kernel. . . . . . . . . . 37

3.4 Parallel modules with atrous convolution (ASPP), augmented with image-

level features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.5 Histogram gradient thresholding . . . . . . . . . . . . . . . . . . . . . . . . . 39

viii



3.6 (left) RGB image, (right) Image segmented using histogram gradient thresh-

olding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.7 (left) RGB image, (right) Image segmented using gaussian mixture models . 41

3.8 Dataset generation pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.9 Flir AX8 thermal imaging camera . . . . . . . . . . . . . . . . . . . . . . . . 45

3.10 Custom made camera mount. . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.11 Thermal images captured with FLIR AX8 . . . . . . . . . . . . . . . . . . . 47

3.12 Visible spectrum images encoded in the metadata of the thermal images cap-

tured with FLIR AX8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.13 Human-generated labels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.14 Image segmented with Slic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.15 Annotated image and generated label . . . . . . . . . . . . . . . . . . . . . . 49

4.1 Predictions of tested methods overlaid on top of the visible spectrum image. 51

4.2 Predictions of tested methods overlaid on top of the visible spectrum image. 52

4.3 Hamming Distance of tested methods, lower is better. . . . . . . . . . . . . . 53

4.4 Pixel Intersection over Union (IoU) of tested methods, higher is better. . . . 54

4.5 Pixel Accuracy of the tested methods. . . . . . . . . . . . . . . . . . . . . . . 56

4.6 DeepLabV3 150 epochs training monitoring. Top Left: Avarage validation

accuracy vs epochs, Top Right: Average IoU vs epochs, Bottom: Average loss

vs epochs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.7 DeepLabV3 150 epochs results on the test set. . . . . . . . . . . . . . . . . . 59

ix



4.8 DeepLabV3 350 epochs training monitoring. Top Left: Avarage validation

accuracy vs epochs, Top Right: Average IoU vs epochs, Bottom: Average loss

vs epochs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.9 DeepLabV3 350 epochs results on the test set. . . . . . . . . . . . . . . . . . 61

4.10 FRRN 150 epochs training monitoring. Top Left: Avarage validation accuracy

vs epochs, Top Right: Average IoU vs epochs, Bottom: Average loss vs epochs. 62

4.11 FRRN 150 epochs results on the test set. . . . . . . . . . . . . . . . . . . . . 63

4.12 FRRN 300 epochs training monitoring. Top Left: Avarage validation accuracy

vs epochs, Top Right: Average IoU vs epochs, Bottom: Average loss vs epochs. 64

4.13 FRRN 300 epochs results on the test set. . . . . . . . . . . . . . . . . . . . . 65

5.1 CIWA architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.2 Components of the CIWA web app. Top Left: Home page, Top Right: Image

upload screen, Bottom Left: Uploaded Image Gallery, Bottom Right: Tem-

perature histogram, canopy temperature and crop water stress index, Middle:

Metadata and FRRN generated mask of sunlit leaves. . . . . . . . . . . . . . 68

6.1 Flir AX8 bug example. Left: Thermal Image, Right: Visible spectrum image

encoded into the thermal image metadata. . . . . . . . . . . . . . . . . . . . 70

x



Dedication

This work is dedicated to my parents, Eugenia Theodoridou and Nikolaos Pantelidakis and

to my sister, Fay Pantelidaki, who selflessly provided me with both financial resources and

emotional support during my studies. I would like to thank the faculty and personnel of

the Technical University of Crete and especially my supervisor Dr. Georgios Chalkiadakis.

Special thanks to my co-supervisor Dr. Athanasions A. Panagopoulos for his tireless and

insightful guidance throughout the implementation. Finally I would like to thank the

Hellenic Airforce and specifically Squadron Leader Evangelos Papakostas for providing me

with resources vital to the completion of this work.

xi



Chapter One

Introduction

The San Joaquin Valley is a major agricultural production region in California. Nevertheless,

water supplies can become increasingly limited in this region, due to prolonged droughts.

The Valley is already in a water crisis and the primary challenge is to reduce consumption

to restore the water balance between demand and renewable water supply. Farmers in the

San Joaquin Valley are well aware of the water shortage problems and are actively looking

for solutions to conserve water while maintaining production.

However, this phenomenon is not only observed in California. Freshwater scarcity is a

universal issue threatening the growing world population and consequently the global food

demand. Irrigated agriculture is the largest freshwater consumer, accounting for about 70

percent of freshwater withdrawals worldwide. Agricultural crop yields are higher in irrigated

than in rain-fed farms, with the former being expected to increase in the future. Therefore,

water scarcity is projected to impose an even greater threat in the years to come. Similarly,

in Greece, the area actually irrigated increased from 932,980 hectares in 1990 to 1,142,180

hectares in 1995 and 1,294,400 hectares in 2003 [3].

Improved water management in irrigated farms is required to combat water scarcity. In

general, irrigation water management can be improved through water application methods

and irrigation scheduling. Water application methods include surface or gravity systems such

as furrow and border irrigation, and pressurized irrigation systems, which include sprinkler

1



and drip (trickle) irrigation systems. Surface irrigation is by far the primary irrigation

method worldwide. However, farmers have been changing their irrigation systems from the

low-efficiency surface methods to the high-efficiency pressurized systems during the last few

decades. Changing from the traditional surface to advanced pressurized irrigation systems

is relatively costly, but it is a straightforward conversion for farmers to conserve water.

On the other hand, changing from traditional irrigation scheduling to advanced irrigation

scheduling methods is not an easy task for most farmers worldwide. Irrigation scheduling is

the most vital component of irrigation water management, and involves tasks like ‘deciding

when to irrigate’ and ‘how much water to apply’ [27, 29]. Traditional irrigation scheduling

methods are based on the condition of the crop, feel of soil, personal calendar, and when

the neighbors begin to irrigate. Advanced or scientific irrigation scheduling methods include

soil-based, plant-based, weather-based and model-based approaches.

A weather-based method typically uses weather data (e.g., solar radiation, air tempera-

ture, relative humidity, and wind speed) to estimate the evaporative demand of the atmo-

sphere (reference evapotranspiration), combined with the related plant characteristics (crop

coefficients) to estimate the water requirements of non-stressed plants. A soil-based method

measures soil water content or potential and provides information on how much irrigation

water would be required to recharge the soil profile. Weather and soil-based methods are

being used for irrigation scheduling while making some assumptions for variables that are

difficult to measure precisely in field conditions, such as stages of growth and related crop

coefficients which vary between different crop species, growing conditions, depths of root

area, physical texture in different soil layers and soil readily available water levels.

Plant-based methods, on the other hand, measure plant water status directly and pro-

vide information on the timing of irrigation. Plant-based methods have the potential to be

more sensitive and accurate than weather- and soil-based methods and are more suitable for

precision and regulated deficit irrigation practices. Existing data indicate that farmers, even

in advanced countries such as the United States of America (U.S.), are still using traditional

2



Figure 1.1 Methods used in deciding when to irrigate in the U.S.A.

methods to schedule irrigation [24]. As shown in Figure 1.1, farmers in the U.S. are mostly

using the condition of the crop, feel of soil, and personal calendar to decide ‘when to irrigate’.

Switching from low-efficiency traditional methods to high-efficiency scientific irrigation

scheduling methods would result in substantial benefits worldwide, such as conserving fresh-

water supplies and improving crop yield and quality. Additionally, the scientific irrigation

scheduling methods contribute to reduced water application, thus resulting in less leaching

of synthetic fertilizer and contamination of groundwater supplies.

Precision and deficit irrigation scheduling create great opportunities for water saving

applications. The main objective of this work is to use the problem-solving power of Artificial

Intelligence (AI) and machine learning principles to develop an automated and easy-to-use
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plant-based canopy temperature method with minimal human intervention for monitoring

water stress in seed trees.

In nature, all objects emit infrared energy as a function of their surface temperature.

Canopy temperature has long been recognized as an indicator of plant water status [36,

52], and numerous studies have shown the suitability of canopy temperature to detect plant

water stress [23, 25, 22, 32, 33, 31]. When water is limited, plant transpiration decreases,

and plant temperature increases due to the decreased cooling mechanism. Plant temperature

technology had not advanced enough in the past due to (1) lack of suitable and affordable in-

frared cameras to measure the plant temperature, and (2) difficulty to capture representative

images for plant water status, as infrared cameras will give the average of everything within

their field of view (sunlit leaves, shaded leaves, tree trunk, voids in canopy). Today, with

low-cost wireless infrared thermometers available, plant temperature technology is within

reach for commercial applications. One of the tasks of this work is to address the second

drawback of plant temperature technology: to develop a method that automatically identifies

candidate (healthy sunlit) leaves for plant temperature estimation.

Many approaches have been proposed to automate the identification of canopy temper-

ature in plants e.g. [54, 53, 34]. In particular, the work of [54] developed a method for

aligning infrared (IR) thermography images with regular images in grapevines. The method

is motivated by and suitable for extracting the canopy temperature from the aligned images.

Nevertheless, an algorithm is not proposed to this end. On the same line of research, the work

of [53] proposes a system that builds on top of [54] and utilizes the aligned images to identify

the canopy temperature of leaves. The work relies on simple color identification techniques

and Gaussian mixture distribution extraction techniques to identify the leaves and extract

the canopy temperature, respectively. The method is “successful when the underlying leaf

area in the IR image can be reasonably identified” [54].

Recently, solutions based on advanced image recognition techniques have also been emerg-

ing. Image recognition preoccupies itself with recognizing patterns in digital images with
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minimum to zero human intervention. It is an interdisciplinary subfield of machine vision

and artificial intelligence, and brings together statistical, machine learning, pattern recogni-

tion, and image processing techniques. In recent years, advancements in image recognition

and, most importantly in deep convolutional neural networks and the corresponding imple-

mentations for image recognition tasks, have led to inspiring results in the field [49]. In this

context, such approaches are actively being investigated for tasks involving leaf recognition

for agricultural and related activities [35]. For instance, the work of [55] proposes a con-

volutional neural network architecture and data pre-processing techniques to classify leaves

according to the tree they originate from.

Similarly, the work of [57] proposes a technique for plant leaf identification via a growing

convolutional neural networks with progressive sample learning [6]. However, all these works

do not focus on canopy temperature identification. In addition, most of these works consider

single leaves in isolation and, hence, do not deal with the challenges of detecting multiple

leaves in an image and identifying the sunlit ones. Estimating the canopy temperature from

images requires to first detect the sunlit leaves and separate them from the leaves below

as well as the ground, branches and other potential objects, such as animals and human

artifacts. Such a complex task of detecting multiple objects in noisy images is an active area

of research in image recognition and a profound challenge [19]. In this respect, the work

most relevant to ours is the work of [48], which preoccupies itself with identifying multiple

overlapping leaves. Although the approach does not generalize to purely illuminated or noisy

images (for instance, ones that also include branches and land), it illustrates the potential

of convolutional neural networks and standard edge detection.

Against this background, we propose a Convolutional Neural Network (CNN) method

to identify candidate (healthy sunlit) leaves for plant canopy temperature estimation and

calculate the Crop Water Stress Index (CWSI). The proposed method is non-intrusive, re-

quires minimum user input, performs in almost real time and achieves better results than

previously used methods. The chosen CNN architectures are Full-Resolution Residual Net-
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work (FRRN) and DeepLabV3. Both these CNN implementations perform well on the task

of semantic image segmentation. The case study of the mentioned method is pistachio. We

created our own dataset of pistachio tree images to test the proposed and baseline methods

against. Finally we developed a web application for precision irrigation.

In a nutshell, our main contributions are:

• The utilization and testing of two semantic-segmentation-capable CNN architectures

for sunlit leaf identification in noisy images.

• The collection, labeling, and release of the first semantic image segmentation dataset of

pistachio sunlit leaves (1432 image-label pairs of metadata-enriched visible and infrared

spectrum pistachio images)

• The development of a modern, easy-to-use, responsive web application for precision

irrigation.

The rest of this thesis is structured as follows: In Chapter 2 we discuss the crop wa-

ter stress index, gaussian mixture models, convolutional neural networks, semantic image

segmentation and provide some background on web development basics. In Chapter 3 we

discuss our approach; we examine FRRN and DeepLabV3 in more detail, present the selected

baseline methods, and elaborate on the data acquisition process, equipment and labeling pro-

cess. In Chapter 4 we compare against the tested methods and showcase the effectiveness of

our approach. In Chapter 5 we present the implemented web application and illustrate its

functionality. In Chapter 6 we conclude this work, discussing the limitations of our approach

and future work.
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Chapter Two

Related Work

2.1 Agricultural background

2.1.1 FAO Irrigation Scheduling Method

One of the scientific irrigation scheduling methods is presented by the Food and Agricultural

Organization of the United Nations (FAO) in 1998 [2]. This FAO guideline, which is a

global standard and has been utilized by countless researchers worldwide, is based on crop

evapotranspiration (ETc) and soil water balance as follows:

Dr,i = Dr,i−1 − (P −RO)i − Ii − CRi + ETcact,i +DPi (2.1)

where:

Dr,i Root zone depletion at the end of day i[mm]

Dr,i−1 Water content in the root zone at the end of the previous day i− 1[mm]

Pi Precipitation on day i[mm]

ROi Runoff from the soil surface on day i[mm]

Ii Net irrigation depth on day i that infiltrates the soil[mm]

CRi Capillary rise from the groundwater table on day i[mm]

ETcact,i Actual crop evapotranspiration on day i[mm]

DPi Water loss out of the root zone by deep percolation on day i[mm]
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Crop evapotranspiration is the sum of transpiration and evaporation from plant and soil

surfaces. When soil water is adequate, ETc occurs at potential rates. In nature and irrigated

farms, however, soil water is not always adequately available. In that case, actual ETc rates

are less than potential rates. Actual Etc rates occur under real field conditions and are very

difficult to estimate accurately. The actual ETc is the most critical unknown in the soil

water balance study or any hydrological water balance studies for that matter. When the

soil water content is not adequate, the adjusted ETc can be estimated as follows[2, 28]:

ETcactual = (Ks×Kcb+Ke)× ETo (2.2)

where ETo is reference evapotranspiration and represents the atmospheric water demand;

Kcb is the basal crop coefficient, representing the crop type and stage of growth; Ke is the

soil evaporation coefficient, representing the surface wetness of the soil; and Ks is the crop

water stress coefficient, which is a dimensionless transpiration reduction factor. Where soil

water is in limiting conditions, Ks < 1, and where soil water is adequate, Ks=1.

Equation 2.2 is very popular in irrigation research communities and industries, and many

countries, local governments and research institutes publish the daily ETo values through

their weather monitoring networks. However, one of the challenges equation 2.2 imposes is

the accurate estimation of the crop water stress coefficient. In FAO 56 [2], Ks is given as:

Ks =
TAW −Dr
TAW −RAW

=
TAW −Dr

(1− p)×RAW
(2.3)

where TAW is the total depth of available soil water in the root zone (mm), Dr is the root

zone depletion (mm), RAW is the depth of readily available water in the root zone (mm),

and p is the fraction of TAW that a crop can extract from the root zone without suffering

water stress. When soil water depletion (Dr) is less than or equal to the readily available

water (RAW), there is no crop water stress and Ks=1.0. The determination of the crop water

stress coefficient (Ks) is crucial in precision irrigation scheduling to conserve water and at the
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same time avoid any crop yield and quality losses. However, the soil-based Ks is complicated

to determine in commercial farms due to the spatial variability of soil characteristics such as

soil type, texture and salinity, and variations of TAW, Dr and p over the growing season. In

general, plant-based stress coefficients or parameters provide a direct and better indication

of crop water stress.

2.1.2 Crop Water Stress Index

Plant water stress is a condition that plants are subject to when soil water is limiting, and

transpiration and photosynthesis fall below the potential rates, thus inhibiting plant growth

and production. There are several plant water stress indices in irrigation research communi-

ties [9, 11], but the Crop Water Stress Index (CWSI) has received the most attention. Crops

with adequate soil water transpire at the potential rate for the prevailing environmental

conditions. As the soil water becomes limiting, the actual transpiration will be less than

the potential rate. The CWSI is a measure of the ratio of actual to potential transpiration.

Plant canopy temperature is a direct indication of plant water status and can be directly used

to detect crop water stress for irrigation scheduling purposes. Transpiration is the primary

cooling mechanism in plants. When soil water is limiting, the transpiration rate decreases,

the available energy is converted to sensible heat and leaf temperature increases. Irrigation

management using remotely sensed canopy temperature is becoming more common using

satellite, aerial, and ground-based platforms.

Jackson et al.[26] and Idso et al.[23] introduced, respectively, the theoretical and empirical

CWSI. The general CWSI equation can be shown as:

CWSI =
(Tc − Ta)M −D1

D2 −D1

(2.4)

where Tc is the crop canopy temperature (◦ C), Ta is the air temperature (◦ C), and subscript

M denotes "measured". D1 is the no-stressed lower level (Tc − Ta)LL and D2 is a complete
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Figure 2.1 Schematic showing primary components of the energy balance.

stress upper level (Tc − Ta)UL. The CWSI concept has been used for irrigation scheduling

and water management by numerous researchers worldwide [40, 51, 4, 18, 39, 50, 17].

2.1.3 CWSI and Energy Balance Considerations

The CWSI is based on the crop energy balance and the determinations of baselines D1 and

D2 in Equation 2.4 are crucial to computing CWSI. The energy balance for a crop canopy

is illustrated in Figure 2.1 [28] and can be expressed as follows:

Rn = λE +H +G (2.5)

where Rn is net radiation (MJm−2d−1), λE is latent heat flux (MJm−2d−1), E is evotranspi-

ration, λ is the latent heat of vaporization (MJkg−1), H is sensible heat flux (MJm−2d−1)

and G is soil heat flux (MJm−2d−1).

The soil heat flux is usually small and can be ignored. The latent heat flux and sensible
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heat flux can be computed as:

λE =
ρacp(es − ea)
γ(rav + rs)

(2.6)

H =
ρacp(To − Ta)

rah
(2.7)

where ρa is the air density (kgm−3), cp is the specific heat capacity of air (kJkg−1◦C−1), es

is saturation vapor pressure (kPa), ea is actual vapor pressure (kPa), γ is the psychrometric

constant (kPaC−1), rav is aerodynamic resistance to turbulent vapor transfer (sm−1), rs

is bulk canopy resistance to vapor flow (sm−1) and rah is the aerodynamic resistance for

sensible heat flux.

Equations 2.5,2.6,2.7 are the foundation of the well-known Penman-Monteith equation

[28], which is used to estimate ETc. Penman-Monteith equation is recommended by the

FAO [2] and used as standard for ETo estimation worldwide. As introduced by Jackson et

al. [26], combining equations 2.5,2.6 and 2.7, defining ∆ as the slope of saturation vapor

pressure vs. temperature, ∆ = es−ea
Tc−Ta in units of kPaC−1 and solving for Tc − Ta yields:

Tc − Ta = [
ra(Rn −G)

ρacp
][

γ(1 + rc
ra

)

∆ + γ(1 + rc
ra

)
]− [

es − ea
∆ + γ(1 + rc

ra
)
] (2.8)

The lower limit of (Tc − Ta), or D1 can be found from equation 2.8 when soil water is freely

available and crop resistance approaches zero:

D1 = (Tc − Ta)LL = [
ra(Rn −G)

ρacp
][

γ

∆ + γ
]− [

es − ea
∆ + γ

] (2.9)

The upper limit of (Tc−Ta), or D2 can be found from equation 2.8 when soil water is severely

limited and crop resistance approaches infinity (rc →∞):

D2 = (Tc − Ta)UL = [
ra(Rn −G)

ρacp
] (2.10)
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The theoretical CWSI [26] requires measurements of canopy temperature (Tc), air temper-

ature (Tair), relative humidity (RH), net radiation, soil heat flux and aerodynamic resistance.

Such measurements are complicated to obtain in commercial farms. The theoritical CWSI is

suitable for research projects, but not for farm applications, due to the fact that it requires

extensive measurements. Idso et al. [23] conducted several experiments on different crops

at different locations and collected crop foilage temperature, air temperature and humidity

data. They showed that plots of Tc − Ta vs. vapor pressure deficit (VPD) of well-watered

plants, transpiring at potential rate, yield linear relationships under clear sky during day-

time. They developed an empirical CWSI that is reasonably independent of environmental

variability.

The empirical CWSI is suitable for farm applications, as it only requires canopy temper-

ature (Tc), air temperature (Tair), relative humidity (RH). The empirical CWSI has been

employed by numerous researchers for irrigation scheduling and water management [40, 51,

4, 18, 39, 50, 17].

The CWSI formulation (Equation 2.4) is shown in Figure 2.2 for graphical calculations.

When soil water is limited and crop ET falls below the potential rate, crop canopy tem-

perature increases and the Tc − Ta vs. VPD data point will be located somewhere above

the non-water stress baseline X in Figure 2.2, for example. Thus, as the ratio of actual

transpiration to potential transpiration goes from 1 to 0, the CWSI goes from 0 to 1 [9, 23].

In the empirical CWSI, the relationship between Tc − Ta and VPD — during the day,

around solar noon and under clear sky — is used to establish a non-water-stressed baseline

(D1) for different crops. The vapor pressure deficit is the difference between vapor pressure at

saturation (the maximum water vapor the air can hold) and actual vapor pressure and repre-

sents the atmospheric water demand for vegetation. Thus, a VPD of zero indicates no water

demand and corresponds to 100% RH. The severely-stressed baseline (D2) is estimated as

the difference between saturated vapor pressure at air temperature (es) and saturation vapor

pressure at air temperature plus the intercept value, as shown in the following equations:
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Figure 2.2 Graphical representation of lower and upper baselines, CWSI = YZ/XZ
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D1 = m× V PD + b (2.11)

D2 = m× V PG+ b (2.12)

V PD = es − ea (2.13)

V PG = e(TA)− e(TA + b) (2.14)

where b, m, VPD and VPG are, respectively, intercept, slope, vapor pressure deficit (kPa),

and vapor pressure gradient (kPa). Furthermore, es is saturation vapor pressure at air

temperature (kPa), ea is the actual vapor pressure of air (kPa), i.e, ea = es ×RH.

2.1.4 CWSI and Ks Relationship

Potential or standard transpiration of crops can be estimated using available guidelines and

data [2, 28]. Actual transpiration, however, is difficult to estimate under field conditions.

The CWSI can be used to estimate the actual transpiration [26].

Actual Transpiration = (1− CWSI)× Standard Transpiration (2.15)

As mentioned previously, the determination of Ks of the FAO’s equation 2.2 is problematic

in commercial farms. The CWSI concept can be used to determine real-time Ks under actual

field conditions:

Ks = 1− CWSI (2.16)

When soil water is adequate and there is no water stress, CWSI approaches zero. For

severely-stressed crops, CWSI approaches unity. The FAO’s equation 2.2 can be expressed

in terms of CWSI as:

ETcactual = [(1− CWSI)Kcb+Ke]ETo (2.17)
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Equation 2.17 can be used with local ETo values to estimate actual crop evotranspiration,

which is required in precision irrigation scheduling.

2.2 Computer Science background

2.2.1 Gaussian Mixture Models (GMMs)

Gaussian Mixture Models, conceived by Richard Duda and Peter Hart [12], is a soft clustering

method, meaning that apart from a description of the clusters themselves, it also provides

an uncertainty measure or probability that indicates how much a data point is associated

with a particular cluster.

As Gaussian Mixture (Figure 2.3) we define a function that is comprised of multiple

Gaussians, each identified by c ∈ {1, . . . , C}, where C is the number of components (clusters)

of the dataset. Each Gaussian c of a mixture is specified by the following parameters:

• A mean µ that defines its centre.

• A covariance Σ that defines its width.

• A mixing probability π that defines the size of the Gaussian function.

The following explanation of Gaussian Mixture models is heavily influenced by https://

towardsdatascience.com/gaussian-mixture-models-explained-6986aaf5a95, which provides an

excellent description of the method.

The mixing coefficients of the Gaussians are probabilities and must meet the following con-

dition:

K∑
k=1

πk = 1 (2.18)

To determine the optimal values for these parameters we calculate the maximum likeli-

hood[38]. The multivariate Gaussian density function is given by:
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Figure 2.3 Gaussian Mixture with K = 3.

N(x|µ,Σ) =
1

(2π)D/2|Σ|1/2
exp (−1

2
(x− µ)TΣ−1(x− µ)) (2.19)

For x data point with D dimensions. µ and Σ represent the mean and covariance of the

distribution. It is also useful to take the log of this equation, which is given by:

lnN(x|µ,Σ) = −D
2

ln 2π − 1

2
ln Σ− 1

2
(x− µ)TΣ−1(x− µ) (2.20)

Differentiating equation 2.20 with respect to µ and Σ and then equating to zero, one is

able to find the optimal values for these parameters. The solutions will correspond to the

Maximum Likelihood Estimates (MLE). However, we need to find the parameters for the

whole mixture, and not just one Gaussian.

The probability that a data point xn comes from some Gaussian k is expressed as:
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p(znk = 1|xn) (2.21)

where z is a latent(hidden) variable with two possible values. It is equal to one if x comes

from Gaussian k, and zero otherwise. Likewise one can state the following:

πk = p(zk = 1) (2.22)

Meaning that the probability of observation for a data point that belongs to Gaussian dis-

tribution k is equivalent to the mixing coefficient for k. Now let z be the set of all possible

latent variables z, hence:

z = {z1, . . . , zK} (2.23)

It is known that each z is independent of others and it can only be equal to one when k is

equal to the cluster the point comes from. Therefore:

p(z) = p(z1 = 1)z1p(z2 = 1)z2 . . . p(zK = 1)zK =
K∏
k=1

πzkk (2.24)

The probability of observing our data given that it came from Gaussian k is the Gaussian

function itself. Following the same logic we used to define p(z), we can state:

p(xn|z) =
K∏
k=1

N (xn|µk,Σk)
zk (2.25)

The equations we have just derived, along with the Bayes rule, will help us determine the

probability of z given our observation x. From the product rule of probabilities, we know

that
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p(xn, z) = p(xn|z)p(z) (2.26)

The operands on the right are what we have just found. However, before we use the Bayes

rule we will need to find p(xn), not p(xn, z). To get rid of z we just need to sum up the

terms on z (marginalization), hence:

p(xn) =
K∑
k=1

p(xn|z)p(z) =
K∑
k=1

πkN (xn|µk,Σk) (2.27)

This is the equation that defines a Gaussian Mixture. To determine the optimal values for

its parameters, we need to determine the maximum likelihood of the model. We can find

the likelihood as the joint probability of all observations xn, defined by:

p(X) =
N∏
n=1

p(xn) =
N∏
n=1

K∑
k=1

πkN (xn|µk,Σk) (2.28)

Applying the log to each side of the equation we get:

ln p(X) =
N∑
n=1

ln
K∑
k=1

πkN (xn|µk,Σk) (2.29)

From Bayes rule, we know that:

p(zk = 1|xn) =
p(xn|zk = 1)p(zk = 1)∑K
j=1 p(xn|zj = 1)p(zj = 1)

(2.30)

From our earlier derivations we learned that:

p(zk = 1) = πk,

p(xn|zk = 1) = N (xn|µk,Σk)
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Replacing the above in equation 2.30 we get:

p(zk = 1|xn) =
πkN (xn|µk,Σk)∑K
j=1 πjN (xn|µj,Σj)

= γ(znk) (2.31)

That γ(znk) is sometimes referred to as a responsibility value, since it measures the proba-

bility that a data point xn belongs to cluster k.

On the right side of equation 2.29 there is a logarithm that makes calculating the derivative

of the expression hard. To estimate the parameters for the Gaussian Mixture we use an

iterative method called Expectation Maximization (EM).

The Expectation - Maximization (EM) algorithm

Expectation - Maximization (EM) is widely used for optimization problems. It can be

mobilized as an alternative to gradient descent with the advantage that, frequently, the

updates can be computed analytically.

Let the parameters of our model be:

θ = {π, µ,Σ}

Given the above model, the EM algorithm would perform the following steps [5]:

Step 1: Initialise θ. The initialization could be random, or the result of another model.

Step 2 (Expectation step):

Q(θ∗, θ) = E[ln p(X,Z|θ∗)] =
∑
Z

p(Z|X, θ) ln p(X,Z|θ∗) (2.32)

The p(Z|X, θ) of equation 2.32 is γ(znk) of equation 2.31, so after substitution we get:

Q(θ∗, θ) =
∑
Z

γ(znk) ln p(X,Z|θ∗) (2.33)
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We are still missing p(X,Z|θ∗), which is the complete likelihood of the model, including

both X and Z. We can find it by using the following expression:

p(X,Z|θ∗) =
N∏
n=1

K∏
k=1

πznkN (xn|µk,Σk)
znk (2.34)

Which is the result of calculating the joint probability of all observations and latent variables

and is an extension of our initial derivations for p(x). The log of this expression is given by:

ln p(X,Z|θ∗) =
N∏
n=1

K∏
k=1

znk[lnπk + lnN (xn|µk,Σk)] (2.35)

We can replace 2.35 in 2.33 to get:

Q(θ∗, θ) =
N∑
n=1

K∑
k=1

γ(znk)[lnπk + lnN (xn|µk,Σk)] (2.36)

In the maximization step, we will find the revised parameters of the mixture. For this pur-

pose, we will need to make Q a restricted maximization problem and thus we will add a

Lagrange multiplier to equation 2.36.

Step 3 (Maximization step): Find the revised parameters θ∗ using:

θ∗ = argmaxθQ(θ∗, θ)

Where Q(θ∗, θ) is described by equation 2.36. However, Q should also take into account the

restriction that all π values should sum up to one. To do so, we will need to add a suitable

Lagrange multiplier. Therefore, we should rewrite Equation 2.36 in this way:

Q(θ∗, θ) =
N∑
n=1

K∑
k=1

γ(znk)[lnπk + lnN (xn|µk,Σk)]− λ

(
K∑
k=1

πk − 1

)
(2.37)
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And now we can easily determine the parameters by using maximum likelihood. Let’s now

take the derivative of Q with respect to π and set it equal to zero:

∂Q(θ∗, θ)

∂πk
=

N∑
n=1

γ(znk)

πk
− λ = 0 (2.38)

Then, by rearranging the terms and applying a summation over k to both sides of the

equation, we obtain:

N∑
n=1

γ(znk) = πkλ⇒
K∑
k=1

N∑
n=1

γ(znk) =
K∑
k=1

πkλ (2.39)

From 2.18, we know that the sum of all mixing coefficients π equals to one. In addition, we

know that summing up the probabilities γ over k will also give us one. Thus we get λ = N .

We then can solve for π:

πk =

∑N
n=1 γ(znk)

N
(2.40)

Similarly, if we differentiate Q with respect to µ and Σ, equate the derivative to zero and

solve for the parameters using the log-likelihood equation 2.20, we get:

µ∗
k =

∑N
n=1 γ(znk)xn∑N
n=1 γ(znk)

(2.41)

Σ∗
k =

ΣN
n=1γ(znk)(xn − µk)(xn − µk)T∑N

n=1 γ(znk)
(2.42)

These revised values will be used to calculate γ in the following EM iteration and so forth

until the likelihood value converges.
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Figure 2.4 Typical CNN architecture.

2.2.2 Convolutional Neural Networks (CNNs)

A Convolutional Neural Network (CNN) is an artificial neural network that has been popu-

larly used for image analysis, but can also be used for other data analysis and classification

tasks. One can think of a CNN as an artificial neural network that has some kind of spe-

cialization, enabling it to pick out or detect patterns and make sense of them. The full

architecture of a typical CNN can be seen in Figure 2.4.

Convolutional layers and feature extraction

A CNN also has convolutional layers, which are hidden. Apart from convolutional layers,

CNNs typically have non-convolutional layers as well, but their name is given after the con-

volutional layers. A convolutional layer accepts input, performs some kind of convolutional

operation on it and forwards the output to the next layer. Convolutional layers are used

for pattern detection and have a set number of filters (kernels) specified. Kernels are what

actually identifies different patterns.

Kernels can be imagined as small matrices with predefined number of columns and rows.

The filter convolves (slides) across the input, with the output being the dot product of the

input-filter combination. Filters could detect multiple edges, shapes, textures, objects etc.

For example, if a filter detects edges, it’s called an edge detector. Some filters might detect
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particular shapes like squares, corners, circles. etc. This kind of filters (geometric filters)

are typically encountered at the early layers of the network. As the network goes deeper,

these filters become more elaborate. In deeper layers, kernels might be able to detect specific

shapes and simple objects. In even deeper layers kernels are capable of detecting even more

complex entities like full animals, cars, humans etc. This process generates feature maps,

since certain features of the input are extracted by the convolution filters.

Pooling layers

Feature maps are susceptible to localization issues, while ideally, features should be location

agnostic. To prevent these kind of issues, several techniques are employed. One technique is

feature map down-sampling. This technique achieves more adaptive feature maps, that are

not confused by a possible feature transformation (position, scale, rotation) in an image.

This down-sampling is performed by feeding the feature maps into pooling layers. Pooling

layers summarize the feature by highlighting its key elements. Two commonly employed

pooling methods are max-pooling and average-pooling, that descriptively summarize the

most dominant and the average presence of a feature respectively.

Adding pooling layers after convolutional layers is a common practice used in CNNs.

There might be multiple pooling layers in a CNN. Pooling layers output the same number

of feature maps that are fed into them.

Fully Connected Layers

The output of the convolution - pooling combination, is flattened into an 1-dimensional

vector and fed into a fully-connected unit that determines the classification decision. Each

value of this vector represents the probability that a given feature corresponds to a label.

Figure 2.5 depicts the way inputs are fed into the first layer, where they are multiplied by

weights and pass through an activation function (usually Rectified Linear Unit (ReLu) [16]).

They then pass forward to the output layer. Each neuron of the output layer represents a
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Figure 2.5 Fully Connected Layers in a CNN

classification label.

The fully-connected section of the CNN performs its own back-propagation to estimate

the optimal weight values. The weights that reach each neuron prioritize the best candidate

label. The final classification decision emerges after a voting process that takes place among

the neurons.

2.2.3 Semantic Image Segmentation

Semantic image segmentation [30, 13, 37, 10, 56, 7] is a computer vision problem in which

certain parts of an image are being classified, with respect to the image’s visible information.

In more detail, semantic image segmentation considers the annotation of each pixel with the

representative class, as shown in Figure 2.6. It is note-worthy that there is no distinction

between different occurrences of the same entity, since the model only considers the category
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Figure 2.6 Semantic Image Segmentation

Source: [30]

a pixel belongs to. In case there are multiple occurrences of a given object in the image,

the segmentation map does not identify these as separate objects, at least inherently. There

is a different kind of models, called instance segmentation models, which identify distinct

entities of the same class. Over the last years, the most promising semantic segmentation

applications have been utilizing CNNs.
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2.3 Web Development background

In this section we are going to discuss modern web development practices, the chosen tech-

nologies for each app component, and some of their advantages. Some basic concepts of the

fundamental building blocks of web apps will also be explained, in an attempt to familiarize

the reader with the process.

2.3.1 Microservices Vs. Monoliths

We designed the web app using microservices architecture. More and more web app develop-

ers choose the microservices approach, instead of the Monolithic one (Figure 2.7), at least in

the context of large scale applications, since microservices offer much greater utility. On the

downside, a microservices architecture costs a lot more to host. A microservices approach

was by no means necessary for our app; however, it provided the opportunity to showcase

modern web development methods.

Benefits of Microservices:

• Modularity

• Encapsulation

• Horizontally scaling

• Workload partitioning

• Automated operations

• On demand provisioning

2.3.2 Docker

Docker is emerging containerization technology for creating and managing Linux containers.

Benefits of Docker:

• Reproducibility

A Docker container is Operating System (OS) agnostic. If Docker is installed, the
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Figure 2.7 Monolithic vs Microservice architecture
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container will run identically. A thorough description of the container configuration

is stored inside that container’s Dockerfile. As a result, having just the Dockerfile

guarantees that the generated docker image for a container will be exactly the same

across different builds. Changes on the configuration of the container can be managed

through modification of this file, and are easy to document.

• Isolation

All installed libraries for a given container affect that container only. By isolating

the environment where each container operates, there are no dependency conflicts. A

server can house multiple projects, each having a plethora of containers, with different

versions of the same library or framework, without any issues.

• Security

Building the different modules of a project into different containers has security ad-

vantages. For example, if the security of a container is breached, others containers are

not affected.

• Docker Hub

Similar to Github, Dockerhub serves as a storing, maintenance and distribution and

version control platform for docker images. On Dockerhub, a developer can find in-

formation regarding the installation process, bug fixes and latest features of popular

well-maintained docker images. Such images give developers the ability to kick-start

their project, with pre-configured popular workflow stacks, such as LAMP stack (Linux,

Apache, MySQL, PHP/Perl/Python).

• Continuous Integration

Docker can be easily integrated into modern industry-standard production pipelines,

with every update of a project automatically being stored as a new docker image and

uploaded to Dockerhub before it is pushed to production.

Comparing Containers to Virtual Machines
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Figure 2.8 VMs vs Containers

Source: https://rb.gy/pcgmrb

Virtual machines (VMs) and containers (Figure 2.8) have many similarities in the context

of resource allocation and isolation, but also fundamental differences. Containers virtualize

the OS, while Vms virtualize the hardware directly.

Each container runs in a single process in user space, where dependencies are packed

together, and leaves the rest of the environment unaffected. Containers share the operating

system’s kernel, and access a pre-defined portion of the machine’s resources. They occupy

less space than virtual machines, usually in the scale of megabytes.

Virtual Machines (VMs) are orchestrated by a hypervisor and virtualize the hardware

directly. Each server can run multiple Vms, and be effectively converted into multiple servers.

Each virtual machine has its own OS, dependencies, drivers, etc., thus it takes up multiple

gigabytes of space in the ROM.
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2.3.3 Client

The entirety of the client was built using React. React is an open-source JavaScript library

for building component-based clients with highly customizable and responsive UIs. It is

developed & maintained by Facebook and a broad group of individuals and companies.

Benefits of React:

• Declarative

React gives developers the ability to pre-define views of the client for each state of

the application, making debugging easy. Partial rendering of components, and asyn-

chronous code batching guarantee high app performance and robustness.

• Component-Based

Components can be abstractly grouped into stateful and stateless. Stateless compo-

nents do not need to keep track of the current state of the application, and their

functionality is not reliant on such information. Stateful components, on the other

hand, need to keep track of the application’s state and dynamically adjust their be-

havior. A developer can design these kind of modules from the ground up, starting

with simple building blocks and scale the design to elaborate modules. Data can be

directly passed from higher logic levels to low-level components.

• Plethora of Developer tools

One of React’s strong assets is rapid prototyping. This can be achieved using a wide

range of modules/plug-ins that individuals or companies develop, test, document and

maintain.

2.3.4 Server

For development a simple WSGI server was used, namely uWSGI, a project built for relia-

bility, performance, versatility and low resource utilization.
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Flask is a barebone WSGI web app framework, very popular among Python web devel-

opers. Flask provides all the essential tools needed to implement a back-end, with no excess

modules. Developers can modify the framework to their needs by including external tools

or libraries to the project.

2.3.5 Database

Regarding the database, we picked mongoDB, a document-oriented, distributed database

built to embrace the cloud era. MongoDB stores documents in JSON format, making it

ideal for storing the contents of an HTTP request or providing an HTTP response, with

minimum pre-processing.

2.3.6 Reverse Proxy & File Server

A reverse proxy is a server that intercepts requests before they reach the origin server. This

behavior resembles that of middleware. Reverse proxies are built in front of the actual server

and act as an extra node, making sure no request reaches a particular server without passing

through the proxy. Forward proxies, on the other hand, are built in front of clients and their

role is to handle a server’s response before it reaches the client (Figure 2.9).

Reverse proxies perform several operations after intercepting a request, and then com-

municate with the server. In return the server sends out a response to the reverse proxy, the

response is manipulated, and then transferred to the client.

Serving static files, including user-uploaded files via flask is acceptable in development,

but not in production, since it is extremely slow.

To satisfy the above needs, we mobilized Nginx, which acts both as a reverse proxy and

a file server (and possibly in the future as a load balancer).
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Figure 2.9 Forward proxy vs Reverse proxy

Source: https://rb.gy/mfuzqq

Benefits of a reverse proxy:

• Load balancing

A high-traffic domain employs several different origin servers to handle the workload.

The amount of load that each of these origin servers receives, and the order that

dictates when each server should be employed is determined by reverse proxies. When

a particular server gets over-loaded, incoming requests are re-routed to another server

via the reverse proxy.

• Protection

If a reverse proxy is built before the origin server, the latter’s IP address is hidden to

the public. Only the reverse proxy can communicate with the server. Aspiring, yet

malicious individuals will only be able to attack the proxy, which will feature higher

security protocols and employ more resources to encounter the attack.

• Global Server Load Balancing (GSLB)

In simpler terms, load balancing that considers the geographic location of a client, and

picks the closest server to handle that client’s request.

• Caching

Reverse proxies can store temporary response data and serve clients directly. In case

the origin server is located in a different continent, but the reverse proxy is in the same
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continent as the client, caching can drastically reduce communication time, and overall

user experience

• Encryption

Reverse proxies often alleviate the origin server from communication encryption, a

labor-intensive and resource-demanding task.
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Chapter Three

Our approach

In this chapter, we will discuss our semantic image segmentation method of choice and the

baseline methods chosen from published literature. To evaluate the mentioned methods, we

created our own dataset of sunlit Pistachio leaves. Regarding the dataset, we will elaborate

on the data acquisition process, present the used equipment and highlight the annotation

process.

3.1 Convolutional Neural Netowkrs (CNNs)

To implement semantic image segmentation, we mobilized two different CNN architectures,

Full-Resolution Residual Networks, and DeepLabV3.

3.1.1 Full-Resolution Residual Network (FRRN)

Full-Resolution Residual Network (FRRN)[42] is a multi-scale processing technique. It is

based on two streams. One stream goes through a sequence of pooling operations and is

responsible for understanding large-scale relationships of image elements; the other stream

maintains feature maps at the full image resolution, resulting in precise boundary adherence.

This idea is visualized in Figure 3.1, where the two processing streams are shown in blue

and red. The two streams are coupled using the Full Resolution Residual Units (FRRU).
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The residual stream is computed by adding successive residuals, while the features on the

other stream; the pooling stream, are the direct result of a sequence of convolution and

pooling operations applied to the input. Since its training uses an end-to-end network to

keep the two-stream connected, the FRRN performs joint processing of feature maps from

both streams and combines their results after each max pooling. The FRRN has a mean

IoU score of 71.8% when used with the Cityscapes dataset[10].

Figure 3.1 Full-Resolution Residual Neural Network

Source: [42]

3.1.2 DeepLabV3

DeepLabV3[8] employs the atrous convolution[21, 15, 47, 41] with upsampled filters to ex-

tract dense feature maps and to capture long range information. In more detail, to encode

multi-scale context, the cascaded module (Figure 3.2) gradually doubles the atrous rate while

the atrous spatial pyramid pooling module (Figure 3.4) probes the features with filters at

multiple sampling rates.

Standard convolution over feature map x, with the addition of atrous rate r:

y[i] =
∑
k

x[i+ r · k]w[k] (3.1)
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Figure 3.2 Cascaded modules without and with atrous convolution.

Source: [8]

Where the atrous rate r corresponds to the stride of the input signal sampling, which is

equivalent to convolving the input with upsampled filters produced by introducing r − 1

zeroes between two consecutive filter values along each dimension. Standard convolution is a

special use case for r = 1. Atrous convolution allows for adaptive modification of the filter’s

effective field-of-view by changing the r parameter. The effect of the atrous rate is illustrated

in figure Figure 3.3.

If we use low atrous rate, low/low-scale information can be processed. If we increase the

atrous rate, global/high-scale information can be processed. Thus, the DeepLabV3 model

uses the atrous convolutions with different atrous rates to capture multi-scale information.

DeepLabV3 has a mean IoU score of 81.3% when used with the Cityscapes dataset [10]. The

ImageNet-pretrained [43] ResNet [20] that is used is ResNet101 which is found to perform

better than ResNet50[8]. The pre-trained model has been trained on a subset of COCO

train2017, on the 20 categories that are present in the Pascal VOC dataset and has global

pixel wise accuracy of 92.7%.
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Figure 3.3 Atrous convolution with different stride rates in a 3x3 kernel.

Source: [8]

Figure 3.4 Parallel modules with atrous convolution (ASPP), augmented with
image-level features.

Source: [8]
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3.2 Sunlit Leaves identification baseline methods

In order to establish a comparison baseline for our CNN predictions, we implemented both

Histogram Gradient Thresholding (HGT) and Gaussian Mixture Models (GMMs).

3.2.1 Histogram Gradient Thresholding (HGT)

Histogram gradient thresholding is a non-referenced method based on the research work of

[45]. The research work also introduces two other methods to identify the canopy temper-

ature, one of them is a referenced method and other is a non-referenced method, namely

histogram thresholding at one or more standard deviation (SD) above and below the mean.

As per the research work, histogram gradient thresholding has been found to be more accu-

rate in defining canopy pixels and calculating canopy temperature from each thermal image

(shaded and sunlit) when compared to the standard reference temperature thresholding

method.

Histogram gradient thresholding was implemented in python and published under the

following Github repository: https://github.com/rajeswarice/HistogramGradient. Using the

temperature values obtained from the flir image metadata we constructed the temperature

histogram by re-organizing the temperatures into equal interval class bins (one degree Cel-

sius) and calculated the number of pixels as percentage of total number of pixels, for each

bin. To avoid over-fitting, one-degree bin interval is considered. Observing Figure 3.5, the

peak and main body of the histogram are the tree canopy pixels.

Our area of interest is the temperatures derived from the pixels of the tree canopy.

Therefore, we need to remove the lower tail, which corresponds to sky pixels and the upper

tail which represents pixels of non-leaf material. To determine the temperature limits, we

must calculate the Ratio pixel change (RPC) lower and upper values which will, in order,

give us the min and max temperatures. RPC is calculated as follows:
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Figure 3.5 Histogram gradient thresholding

RPC =
∆ pixel number %

Class bin interval
(3.2)

An iterative process is used to change the predefined gradient value symmetrically and

incrementally from 0 %/C (corresponding to the flat portions of the histogram tails) to the

maximum gradient. At each pair of RPC values, the value of Tc (Tc-predicted) is calculated

as the population average and compared to the actual Tc value (Tc-actual) obtained from

the manual annotation. Actual canopy temperature is calculated by finding the temperature

from the underlying leaf area of the manually annotated images getting the average. In our

case, we have used 10 images to calculate the actual average canopy temperature. The result

we obtain after the above process is as shown in Figure 3.6. Unfortunately, the generated

segmentation is insufficient to calculate the crop water stress, as it does not identify sunlit

leaves clearly.

3.2.2 Gaussian Mixture Models (GMMs)

We used Gaussian mixture models as a color identification techinque, inspired by the research

work of [53]. The paper introduces leaf identification based on the mean and variance of the

RGB bands of visible spectrum images.
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Figure 3.6 (left) RGB image, (right) Image segmented using histogram gradient
thresholding

We, in turn, use the visible spectrum RGB image and the respective labeled image as

input for the Expectation Maximization (EM) algorithm, explained in section 2.2.1, to find

the parameters, namely the mean and covariance of the RGB color distribution in the sunlit

areas of the image. When training begins, the EM parameters, are initialized randomly. The

calculated parameters are stored and used to initialize the model and predict the segmenta-

tion masks for the test set. Figure 3.7 shows the result of the image segmentation using the

Gaussian mixture model approach.

The Gaussian mixture model yields a better result detecting the sunlit leaves compared

to histogram gradient thresholding. Despite being better, a drawback of this approach is

that not everything that is green or yellow color-wise is sunlit leaves. Our crop of focus is

pistachio, which is found in multiple shades of yellow. The Gaussian mixture model falsely

identifies pistachios as sunlit leaves. Thus, this technique is not the best approach to identify

sunlit leaves.

Gaussian mixture models were implemented in Python and published under the following

Github repository: https://github.com/rajeswarice/GMM.
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Figure 3.7 (left) RGB image, (right) Image segmented using gaussian mixture
models

3.3 Dataset

Our dataset consists of 1,432 images of pistachio trees in the visible and infrared spectrum

with their corresponding labels for sunlit leaf semantic segmentation. The complete process

can be seen in [Figure 3.8]. The images were collected during the summer of 2020 under clear

sky on sunny days. The images also contain weather meta-data encoded by the FLIR camera.

The dataset is released on kaggle under the following url: https://www.kaggle.com/datasets.

Sample images of the dataset are provided in [Figure 3.11, Figure 3.12, Figure 3.13]

3.3.1 Data acquisition

To capture images for our dataset we used FLIR AX8 thermal imaging cameras (Figure 3.9)

mounted on a custom made camera stand(Figure 3.10) for uniformity, stability and ease of

use. These cameras provide thermal images of 640x480 resolution (Figure 3.11), that are

compatible with the FLIR Tools+ (proprietary) software. These thermal images consist

mostly of virtually generated pixels, since the true resolution of the thermal cameras, hence

of useful information is just 60x80. The metadata contain a plethora of useful information

(Table 3.1), such as weather data, material data, calibration constants, and the original

visible spectrum image (640x480) (Figure 3.12) along with the raw thermal image (60x80)
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Figure 3.8 Dataset generation pipeline
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in the far infrared region of the spectrum.

Since our goal was to also develop a web app, we had to reverse engineer some of the FLIR

Tools+ functionality. To be specific, we developed a script that reads the image, extracts the

metadata using EXIFtool and reconstructs the visible spectrum image, the thermal image,

and the temperature array. This script along with various other utility scripts can be found

at https://github.com/Citywalk3r/thermal_data_modifier_windows_version. It is worth

noting that the original formula that calculates the temperature out of the parameters found

in the Flir image can be found at https://github.com/gtatters/Thermimage/blob/master/

R/raw2temp.R.

3.3.2 Annotation Tool

To annotate our images, we used a customized version of the open source software Pyno-

visao[46], a collection of tools, written in Python, easy to use via a friendly user interface.

As described in the official release repository, this collection of tools allows the user to select

an image (or folder) and realize numerous actions such as:

• Generate new Datasets and classes

• Segmentation of images

• Extract features from an image

• Extract frames from videos

• Train Machine Learning algorithms

• Classify using CNNs

• Experiment with data using Keras

• Create XML files from segments previously created

Regarding segmentation, the tool provides 3 unsupervised clustering algorithms (Slic[1],
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Flir image metadata

Weather-related data
Relative Humidity

Atmospheric Temperature

Material Parameters
Emissivity

Reflected Temperature

Encoded image data
Embedded Image (Binary)

Raw Thermal Image

(Binary)

Other

Object Distance

IR Window Temperature

IR Window Transmission

Planck R1

Planck R2

Planck B

Planck F

Planck O

Table 3.1 Flir Image Metadata
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Figure 3.9 Flir AX8 thermal imaging camera

Source: https://rb.gy/z2ufxv
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Figure 3.10 Custom made camera mount.
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Figure 3.11 Thermal images captured with FLIR AX8

Figure 3.12 Visible spectrum images encoded in the metadata of the thermal im-
ages captured with FLIR AX8
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Figure 3.13 Human-generated labels.

Felzenszwalb[14] and Quickshift[44]). We decided that Slic best serves our needs, so we

proceeded with it.

We classified each segment into two classes, Sunlit and Noise. The labeling process starts

with the user opening an image via the menu. When that happens, a label image (with

all pixels assigned to Noise) is created in a different folder. Then, the user executes the

clustering algorithm. In Figure 3.14 you can see what a visible spectrum image looks like

after Slic has been executed on it.

After the segmentation is performed, the user can click on the formed segments. When

a segment is clicked, all the pixels surrounded by the segment’s bounds are assigned the

selected class. After all the segments corresponding to sunlit leaves have been identified

and clicked, the generated label image is complete, as seen in Figure 3.15. Due to the fact

that segmentation is not pixel perfect, we established that if a segment is more than 70%

sunlit, the whole segment should be classified as sunlit.This process was performed for all

1432 images.
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Figure 3.14 Image segmented with Slic

Figure 3.15 Annotated image and generated label
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Chapter Four

Results

In this chapter we will discuss the results of the image segmentation techniques used in this

work, namely a temperature method, histogram gradient thresholding (HGT), a color iden-

tification method, Gaussian Mixture Model (GMM), and 2 Convolutional Neural Network

methods, Full-Resolution Residual Network (FRRN) and DeepLabV3. The performance is

measured in terms of Hamming Distance, Pixel Accuracy, and pixel Intersection-over-Union

(IoU). CNNs’ training data and results are collectively presented in section 4.4.

Figure 4.1 and Figure 4.2 illustrate a compilation of the predictions of the selected meth-

ods, along with the respective overlays on top of the visible spectrum image. The HGT

method gives the whole canopy, while the GMM finds most pixels of green-yellow color. The

CNN predictions are much closer to the ground truth, with the FRRN model successfully

excluding pistachio fruit from the sunlit leaves class, in spite of the color resemblance.

4.1 Hamming Distance

The Hamming distance between 1-D arrays u and v, is simply the proportion of disagreeing

components in u and v. It measures the minimum number of substitutions required to change

one string/vector into the other. Figure 4.3 shows a plot of the hamming distance obtained

from the utilized methods. Results are normalized between 0 and 1. DeepLabV3 and FRRN
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Figure 4.1 Predictions of tested methods overlaid on top of the visible spectrum
image.
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Figure 4.2 Predictions of tested methods overlaid on top of the visible spectrum
image.
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Figure 4.3 Hamming Distance of tested methods, lower is better.

achieve a low Hamming Distance of around 0.18, while Historgram Gradient Thresholding

produces the highest.

4.2 Intersection over Union (IoU)

The Intersection over Union (IoU) metric, also referred to as the Jaccard index, is essentially

a method to quantify the percent overlap between the target mask and our prediction output.

It is calculated by the below formula

IoU =
target ∩ prediction
target ∪ prediction

(4.1)
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Figure 4.4 Pixel Intersection over Union (IoU) of tested methods, higher is better.

If the prediction is completely correct, IoU = 1. The lower the IoU, the worse the

prediction result. Figure 4.4 shows a box plot of the IoU scores obtained from the different

methods. From the box plot we can see that histogram gradient thresholding achieves the

lowest mean IoU score of 0.28 and both CNN models, FRRN and DeepLabV3 have the

highest meanIoU score of 0.62 and 0.61, respectively, as shown in Table 4.7 and Table 4.9.

This indicates that DeepLabV3 and FRRN have identified sunlit leaves more accurately.

4.3 Pixel accuracy

Pixel accuracy will give us the percent of pixels in the image which are correctly classified.

54



Prediction

Sunlit Leaves Noise

Ground Truth
Sunlit Leaves TP FN

Noise FP TN

Table 4.1 Pixel accuracy reference confusion matrix.

Prediction

Sunlit Leaves Noise

Ground Truth
Sunlit Leaves 30.67% 9.74%

Noise 3.63% 55.96%

Table 4.2 Normalized mean pixel accuracy confusion matrix of FRRN.

Accuracy =
TP + TN

TP + TN + FP + FN
(4.2)

Where TP = True Positive, TN = True Negative, FP = False Positive, FN = False Negative,

determined as shown in Table 4.1. Figure 4.5 shows that histogram gradient thresholding

has the least pixel accuracy of 45.12% compared to the other models. Gaussian mixture

model segmentation has a pixel accuracy of 80.2%. Both DeepLabV3 and FRRN models

have similar pixel accuracy of 85.76% and 86.63% respectively, as shown in Table 4.7 and

Table 4.9. This indicates that CNNs have identified the sunlit leaves with the most accuracy.

Prediction

Sunlit Leaves Noise

Ground Truth
Sunlit Leaves 29.24% 9.11%

Noise 5.13% 56.52%

Table 4.3 Normalized mean pixel accuracy confusion matrix of DeepLabV3.
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Prediction

Sunlit Leaves Noise

Ground Truth
Sunlit Leaves 31.04% 2.22%

Noise 52.66% 14.08%

Table 4.4 Normalized mean pixel accuracy confusion matrix of HGT.

Prediction

Sunlit Leaves Noise

Ground Truth
Sunlit Leaves 23.53% 16.5%

Noise 3.3% 56.67%

Table 4.5 Normalized mean pixel accuracy confusion matrix of GMMs.

Figure 4.5 Pixel Accuracy of the tested methods.
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4.4 CNN training complete results

We conducted several training trials on both FRRN and DeepLabV3, in order to obtain the

best results possible. Below we highlight some training trials, monitor the training process,

and present the results of the trained models on the test set:

4.4.1 DeepLabV3 results

Experiment 1: We used a training set of 592 images, 159 images as the validation set and

tested the trained network on 93 images.The epochs were set to 150. The training process

with the performance on the validation set is reflected in Figure 4.6. Table 4.6 shows the

results of the trained network on the test set. These results are also illustrated in Figure 4.7.

Experiment 2: We used a training set of 592 images, 159 images as the validation set and

tested the trained network on 93 images. The epochs were set to 350. The training process

with the performance on the validation set is reflected in Figure 4.8. Table 4.7 shows the

results of the trained network on the test set. These results are also illustrated in Figure 4.9.

4.4.2 FRRN results

Experiment 1: We used a training set of 592 images, 159 images as the validation set and

tested the trained network on 93 images.The epochs were set to 150. The training process

with the performance on the validation set is reflected in Figure 4.10. Table 4.8 shows the

results of the trained network on the test set. These results are also illustrated in Figure 4.11.

Experiment 2: We used a training set of 592 images, 159 images as the validation set and

tested the trained network on 93 images. The epochs were set to 300. The training process

with the performance on the validation set is reflected in Figure 4.12. Table 4.9 shows the

results of the trained network on the test set. These results are also illustrated in Figure 4.13.
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Figure 4.6 DeepLabV3 150 epochs training monitoring. Top Left: Avarage valida-
tion accuracy vs epochs, Top Right: Average IoU vs epochs, Bottom: Average loss
vs epochs.
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Figure 4.7 DeepLabV3 150 epochs results on the test set.

DeepLabV3 performance on the test set

Training Set 592

Validation Set 159

Test Set 93

No. of epochs 150

No. of val. images/epoch 25

Accuracy 0.857599290322581

Precision 0.907120612903226

Recall 0.857599290322581

F1 score 0.874592784946237

IoU 0.602642096774193

Table 4.6 DeepLabV3 Experi-
ment 1.

DeepLabV3 performance on the test set

Training Set 592

Validation Set 159

Test Set 93

No. of epochs 350

No. of val. images/epoch 40

Accuracy 0.857404827956989

Precision 0.906433655913978

Recall 0.857404827956989

F1 score 0.874216580645162

IoU 0.602772021505376

Table 4.7 DeepLabV3 Experi-
ment 2.
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Figure 4.8 DeepLabV3 350 epochs training monitoring. Top Left: Avarage valida-
tion accuracy vs epochs, Top Right: Average IoU vs epochs, Bottom: Average loss
vs epochs.
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Figure 4.9 DeepLabV3 350 epochs results on the test set.

FRRN performance on the test set

Training Set 592

Validation Set 159

Test Set 93

No. of epochs 150

No. of val. images/epoch 20

Accuracy 0.861114365591397

Precision 0.916946763440861

Recall 0.861114365591397

F1 score 0.879591666666667

IoU 0.607441677419355

Table 4.8 FRRN Experiment 1.

FRRN performance on the test set

Training Set 592

Validation Set 159

Test Set 93

No. of epochs 300

No. of val. images/epoch 40

Accuracy 0.866323129032258

Precision 0.910106559139785

Recall 0.866323129032258

F1 score 0.880692569892473

IoU 0.625619107526882

Table 4.9 FRRN Experiment 2.
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Figure 4.10 FRRN 150 epochs training monitoring. Top Left: Avarage validation
accuracy vs epochs, Top Right: Average IoU vs epochs, Bottom: Average loss vs
epochs.
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Figure 4.11 FRRN 150 epochs results on the test set.
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Figure 4.12 FRRN 300 epochs training monitoring. Top Left: Avarage validation
accuracy vs epochs, Top Right: Average IoU vs epochs, Bottom: Average loss vs
epochs.
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Figure 4.13 FRRN 300 epochs results on the test set.
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Chapter Five

CIWA Web App

5.1 Architecture

As discussed in section 2.3, we designed the web app using microservices architecture. For

the basic app functionality, we mobilized 4 containers, running React, nginx, Flask and

mongoDB respectively. The containers are orchestrated by Docker. A detailed flowchart of

our ecosystem can be found below [Figure 5.1].
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Figure 5.1 CIWA architecture
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Figure 5.2 Components of the CIWA web app. Top Left: Home page, Top Right:
Image upload screen, Bottom Left: Uploaded Image Gallery, Bottom Right: Tem-
perature histogram, canopy temperature and crop water stress index, Middle: Meta-
data and FRRN generated mask of sunlit leaves.

5.2 Functionality

A user can upload a thermal image (currently supporting only FLIR AX8), have its metadata

extracted and edited. After processing the metadata, the image is sent to the server and has

its visible spectrum counterpart and raw thermal image reconstructed, and the underlying

temperatures calculated. The trained FRRN model finds the sunlit leaves of the visible

spectrum image, the prediction mask is downscaled and overlaid on top of the thermal image,

and the mean sunlit leaf temperature and the Crop Water Stress Index are calculated. The

app offers direct comparison between the thermal and visible spectrum images, temperature

histograms, and the option to download temperature data in csv format. Some of the web

app’s components can be seen in Figure 5.2.
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Chapter Six

Conclusion & Future Work

In this work, we investigated a method which utilizes convolutional neural networks and

thermal imagery to identify sunlit leaves within images of trees, captured with a thermal

camera.

The CNN-based methods we tested in this thesis preformed better than published lit-

erature methods, namely Histogram Gradient Thresholding (HGT) and Gaussian Mixture

Models (GMMs). As shown in our experiments, HGT identifies most of the tree canopy,

without highlighting sunlit leaves, while GMMs can easily missclassify artifacts of color pro-

file similar to that of sunlit leaves. FRRN performed better than DeepLabV3, but also took

a longer time to train.

6.1 Limitations of our approach

As discussed in subsection 3.3.1, the FLIR AX8 camera produces Visible spectrum and

IR images that differ in resolution. Therefore, after sunlit leaves have been identified, the

prediction has to be downscaled in order to be overlaid on top of the temperature array.

This, inevitably, decreases the localization precision of our method.

We noticed that in about 1-3% of the captured thermal images, the FLIR AX8 camera

produces and attaches irrelevant visible spectrum images, as shown in Figure 6.1. The exact
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Figure 6.1 Flir AX8 bug example. Left: Thermal Image, Right: Visible spectrum
image encoded into the thermal image metadata.

conditions under which the bug occurs are still unclear. We need to further investigate to

be able to replicate this abnormal behavior. Nevertheless, these images have to be timely

identified and excluded, since they yield wrong results. In an even more automated pipeline

scenario, where the user does not get the chance to inspect the encoded visible spectrum

image, this bug could pose a more serious problem.

We decided that performing clustering on the images before labeling them would sig-

nificantly reduce the amount of time needed to generate a dataset of adequate size. Even

though this proved to be true, the annotation accuracy is not pixel perfect.

Finally, we estimate that an even bigger dataset would further improve the performance

of the CNNs.

6.2 Future work

We aim to deploy the implemented app to production via one of the cloud service providers

that support containerized app architectures. We also plan on changing the way that our

model is served from the backend, using Tensorflow serving.

A fast and straight-forward way to further enhance our dataset would be by utilizing the
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CIWA Web App. Specifically we plan to give the user the option to fine-tune the generated

mask and use the calibrated one as the new ground truth for the given image.

The current version of the developed application only supports the FLIR AX8 camera.

We opt to implement multiple camera support in the future.

Flir also produces cameras for smartphones. Although these cameras do not yield the

same level of temperature accuracy, they achieve promising performance. We are considering

developing an app for smartphones using React Native/ Ionic Framework.

Finally we plan on testing our method on other crops, such as almonds and tomatoes.

We are currently investigating the potential issues and challenges that these new crops would

introduce.

The results obtained from this research project will also be presented to the California

Pistachio Research Board and will be shared with University of California Farm Advisors,

and other extension specialists.
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