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Abstract

Cooperative game theory studies how self rational agents interact with each other in order
to form coalitions and achieve a common goal by collaborating, while maximising their
own profits. Representing the collaborations efficiently is key for supporting coalition
formation decisions and achieving tractable computation in cooperative game settings.
Moreover, research in cooperative games often assumes that there is no uncertainty in the
settings of the game, or that agents cannot participate in many coalitions simultaneously.

In this thesis, we focus on a well-known coalitional representation scheme, the MC-nets
representation, and extend it to settings where we remove the aforementioned unrealistic
assumptions, namely having complete information and no-overlaps.

We begin by extending the Relational Rules representation, a scheme that itself ex-
tends MC-nets to cooperative games with overlapping coalitions, so that it now includes
both positive and negative literals. Our proposed representation reduces to the classic
MC nets representation for non-overlapping environments.

We then introduce a novel succinct representation scheme for cooperative games under
uncertainty, the e-MC nets. The proposed representation is discussed first in the context
of transferable utility games, and exploits estimates over marginal contributions to form
compact rules representing collaboration patterns with potentially uncertain value.

In more detail, given a set of MC-nets rules that use prior beliefs over values instead
of the actual ones, we provide a polynomial algorithm for reaching the proposed succinct
representation. We provide theoretical results regarding the information loss (regarding
the perceived value of the agent collaboration patterns) after the compression of the
original representation of the set. We show that the loss from compressing the set is
bounded by a value directly proportional to e, which represents an error regarding the
believed value of an original rule which we are willing to accept in order to compress the
representation.

We then extend our algorithm to exploit equivalence classes of agents. This allows
us to obtain an even more compact representation, and to derive new, previously unheld
beliefs over the value of unobserved agent collaboration patterns. Moreover, we show
that our approach extends naturally to non-transferable utility games.

We conduct a systematic experimental evaluation of our algorithm’s variants, studying
its behaviour in various realistic settings, and provide results on the compression achieved
in each evaluated setting. Our experimental results confirm the effectiveness of our

approach.
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Abstract in Greek

H ocuvepyotin Yewplor mouyviwy pehetd nwe optoloyixol mpdxtopec ahhnhemdpoly UeTo-
&0 TOUG TPOXEWEVOU VoL ONULOVRYHOOLY CUVAOTLONOUS WOTE GUVERYALOUEVOL Vol TETOYOUY
AATOLO XOWO GTOYO, EVE TURIAANAN UEYICTOTO0V TIC aTopxeg Toug amoraf3éc. H amodoti-
%) AVATAEAOC TAGT] TWV CUVERYACUMY 0T TAAOLO EVOS GUVAOTIGUOU, €Vl ONUAVTIXT Yiol THY
UTOC TARLEN AAPNC ATOPAOEWY OYETIXG UE TN ONULOLEYIN TWV GUVIOTICUMOY, X0l YEVIXOTERX
Yioe TNV €TTEVEY UTOAOYIOUOY OE GUVERYATIXG Tafyvia. Emimhéov, otny oyeTinr ue cuvepyo-
Tid Taky vio EEUVAL, YENOLLOTIOLOLYTOL GUY VS OL TopadOYES OTL OEV LUTdEYEL aefondTnTa OTIg
puduioelc Tou Taryvidtol ¥/xat 6Tt oL TEEXTOPES BEV UTOPOUY VoL GUUUETEYOUY GE TOMOUC
CUVOOTIOHOUE TUUTOY POV

LTV TpoUcH DITAWUATIXY EQYACTN, ETXEVIPWVOUACTE OE €Va amd Ta TAEOV YVOO T
OYAUATO AVATUEACTAONG CUVERYUTIXWY TokyViewy, TNy avarapdotacn MC-nets, xou To e-
TEXTEVOUUE DOTE VoL aPatp€COLNE TIC Tpoovapepeioes un-pealioixéc mapodoyés (Sniad,
QUTH TNS TAAEOUC TANEOYOENONEC Xt TNG W UTtapéng emxolbdewy).

H mpwtn poag ouvelsgopd cuvicTatar otny emextaoct tng avamapdotaorng Relational
Rules, evoc mpdopota SLATUTOUEVOL OYHUATOS AVATAEACTUCTC TOU EMEXTEVE EV UEQEL TA
MC-nets oe cuvepyaTnd Taly Vi UE ETXAAUTTOUEVOUS CUVICTIOUOUS YENOWOTOLWYTS Ao-
Yixég mpotdoelg pe Vetind uévo hextixd. H npotetvouevn otny napolco SITAWUATIX ETEXTO-
o1, xatop¥vel va emextelvel TAfowe To MC-nets, yonoWoToWmVTAS Yiot THY oVITaedo TaoT
CLUVERYAOUWY AOYIXES TPOTACELS oL UTopel var tepthaBdvouy 1600 Yetnd 600 xan apvnTi-
%4 hextind. H mpotewduevn avamopdo taon, aviiototyel enaxpB3ng otny xhaowry MC-nets
OVATUEAO TAUOT) OE TEPYBAANOVTAL UE 1] EMLXAAUTITOUEVOUC GUVACTILOUOUC.

X1n oLVEYELR, TEOTEIVOUUE €val VEO, TEQLEXTIXG Gy A OVAUTURIC TACTC YLoL CUVEQYUTL-
%3 madyvio pe of3eBondtna, 1o omolo xoholpe e-MC nets. H mpotevéuevn avamapdotaon
optletan apyixd 010 Thaiolo Twv Ty viwy pe yetaPBBdowun alla (transferable utility), xou ex-
UETOAAEDETOL EXTIUAOELS TEQIMPIKY GUVEIGPORHOY TEUXTOPWY Yo Vo oy Nuatiost cuunayeic
AAVOVES aVOTAPLO TOVTOS HoTiBo cuvepyasiag ue evdeyouévne aféBan alla.

o cuyxexpuéva, dedouévou evoc oet and MC-nets xavoveg Tou yenowonotody TedTe-
PEC EXTWNOELS a€l0Ig CUVERYOOLMY, TAUREY OUUE EVOY TOAUWVULXOG ohYORLIUO TTOU ETLITUY YAVEL
TNV TROTEWOUEYY] CUMTAYT) avanopdoTtaon. Emmpooiitwg, nopéyouue Yewentind amote-
Méopata OYETXd PE TNV anwAela TAnpooplac (6c0v agopd Tic exhouBavoueves o&ieg Twyv
uotiBwyv cuvepyasiog npaxrépwv) METE T1 CUUTEDT) TNG AEYIXTG AVUTUEAOC TAOTS YL TO OET
AAVOVOY, OElYVOVTAS OTL QEACOETOL amd Lo TLT) EVIEWMS aVIAOYT UE TO AMOBEXTO TEPLIWELO
anoctaong and Ty olio evog apyixod MC-net xavovo.

Katémy, enexteivouue tov ahyoprduod uag OOTE Vo EXPETOAAEVETAL TNV UTopE N XAJOEWY



LOOBLVAULOY TV TEOXTOPMY. AUTO JoC ETITEETEL VoL ATOXTHOOUUE [Lal UXOUOL TILO CUUTAYN
AVATUEEOTAOT), HOWMS XL VO TTUEEYOUNE VEES, TRONYOUUEVLS AVUTIUEXTES TETOWNOELS Yia
Tic okieg un-topatnerowny potifunv cuvepyaciog Teaxtépwy. Emimiéov, deixviouue 6Tt 1)
TEOGEYYION Wag umopel vo emextadel xan o cuvepyaTd malyvia ue i) petoPiBdowun ol
(non-transferable utility games).

Téhog, BledyOuUE Uiot GLUC TNUATIXY TELROUATIXT ACLOAOYTOT) TWV TUPUAAAY DY TOU OAYO-
olduou Yog, UEAETOVTUC T CUPTEELPORY TOUG HECE TEOCOUOLWOENY OE TOtAd PEAMOTIXS
TEPUBAANOVTA, X0 TIOPEY OUUE UTOTEAECHUATA OYETXE UE TNV CUUTIEST) TTOU ETULTUYYAVETOL OF
x&ie mepintwon. To nepapatind pog anoteAéopota ETBELUMVOUY TNV ATOTEAECUATIXOTNTA

NG TPOCEYYIONG MAC.
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Chapter 1

Introduction

Multiagent systems [1] or simply MAS, constitutes a well-studied field of artificial intelli-
gence, and aims to provide solutions to problems that are difficult or even impossible for
an individual agent. MAS research captures many real life scenarios as online trading,
disaster response, logistics, smart grids etc; often modeling them using game theoretic
paradigms. Cooperative game theory [2] in particular, has attracted the interest of many
MAS researchers, since it provides a rich framework for the coordination of the actions of
self-interested agents in strategic settings. In general, cooperative or coalitional games [2]
capture settings where individuals need to form coalitions in order to fulfil some compli-
cated task, which they would not be able to accomplish on their own or they can achieve
better outcomes.

In order to capture coalitional games and perform any kind of computation, we need
to find an efficient way to represent such games. The naive representation, lists every
coalition together with its value, requiring space exponential in the number of agents
in the game. As such, it is critical to find more succinct representation schemes for
coalitional games. In the past, many researchers focused their interest to find efficient
ways to represent coalitional games [3, 4, 5]. leong and Shoham [3], introduced the
MC-nets representation, a complete representation language for characteristc function
games. The main idea is to decompose the game into a set of rules that assign marginal
contributions to groups of agents.

Now, a common assumption in cooperative game theory is that coalitions have to be

disjoint—i.e., an agent participates in exactly one coalition at the time. Nevertheless,
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1. INTRODUCTION

such an assumption can be considered extremely restrictive, since in many real-life sce-
narios an agent can be a member of many coalitions at the same time. Supposing that
each coalition is associated with tasks to be performed by its members, many agents may
be involved with more than one task. In that case, agents may need to distribute their
resources among different coalitions, in an efficient way, in order to fulfil their goals. For
example, consider online trading agents representing individuals, and facing the challenge
of allocating their owners’ capital to a variety of projects (each funded by a coalition of
investors) at the same time [2]. Therefore, it is natural to consider that each agent holds
an amount of divisible resources (i.e., money, computational power etc.), which can invest
into different coalitions simultaneously in order to achieve his goals and to maximise his
profits. Such a scenario results in coalition structure with overlapping coalitions [6, 7).

In [8], the authors inspired by [3], introduced the Relational Rules (RRs), a repre-
sentation scheme for overlapping coalitions. Similarly to [3], a game is described by a
set of rules, while the utility of a coalition C' can be computed, by summing the values
of rules that apply to C. In addition with the classic MC nets, the values of rules are
not standard, since affected by the portions of agents that participate in C'. As such,
we provide an extension of RRs, that includes both positive and negative literals, that
reduces (like [8]) to MC nets for non-overlapping environments.

Another interest line of research, is to find schemes for representing large coalitional
games in an efficient way. Specifically, as the number of individuals scales up, the number
of different possible coalitions one may participate in rises exponentially. Moreover, in
large open multiagent systems, we may have hundreds or even thousands of agents which
form coalitions in order to perform complex tasks. In such large settings, it is unrealistic
to assume that we can have complete knowledge over every possible collaboration pattern
between the agents. As such, it is natural to assume that we are in a partially observed
environment, and therefore we have beliefs (estimates) over the value of potential collab-
oration patterns. Fully representing such multiagent systems can be extremely inefficient
as the number of agents rises, and such taking into consideration that the environment
is not fully observable.

In this light, here we provide a novel representation that encodes the prior beliefs of
the agents over the value of some observed collaboration patterns in a succinct way. In
order to do so, we exploit similarities on agents’ behaviour when they work with each

other, retaining the uncertainty over our beliefs within acceptable limits, with ¢ € R,
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1.1 Contributions

signifying how far away from our perceived value of a collaboration pattern we are willing
to deviate in order to compress an original representation. Our proposed representation,
the e—MC nets, uses the ideas above while building on the classic MC-nets representation,
in order to capture collaboration patterns with similar values among similar agents, and

encode them into compact rules.

1.1 Contributions

Our contributions in this paper are as follows. First, we generalize the proposed repre-
sentation scheme of [8], for cooperative games with overlapping coalitions. Specifically we
extend this representation scheme, which is build on the idea of well-known MC-nets [3],
in a way that includes both positive and negative literals in the patterns of the rules. At
the same time, our proposed extension, achieves the desirable reduction to classic MC
nets representation for non-overlapping settings.

Following that, we propose a novel representation for cooperative games under the
form of uncertainty we described earlier. We study the complexity of the algorithm, and
provide theoretical results regarding the information loss (regarding the perceived value
of agent collaboration patterns) after the representation’s compression, showing that it
is bounded by a value directly proportional to e. We then extend this algorithm in a way
that exploits “equivalence classes” of agents, in order to produce an even more compact
representation of the game. This variant of the algorithm can also produce new, previously
unknown, collaboration patterns among agents. Our approach extends naturally to non-
transferable utility games. Finally, we conduct a systematic evaluation of the algorithm,
studying its behaviour in various realistic settings, and provide experimental results on
the percentage of reduction in each evaluated setting. Our experimental results confirm

the effectiveness of our approach in environments with this particular form of uncertainty.

1.2 Outline

In Chapter 2 we present all the necessary theoretical background for this thesis. We
present the basic aspects of cooperative game theory and the overlapping coalitions,
present various representation schemes , like MC nets, and discuss their use in vari-

ous settings. In Chapter 3 we extend the Relational Rules (RRs) [8] representation in

Errikos Streviniotis 3 November 2020



1. INTRODUCTION

a way that considers both positive and negative literals, while preserving the desirable
characteristics of the RRs representation (including their reduction to classic MC nets for
non-overlapping settings). In Chapter 4 we introduce our novel representation scheme
for cooperative games under uncertainty. We design an algorithm that reaches such rep-
resentations, and we provide theoretical results regarding the information loss that this
representation may have. We then extend this algorithm, so that it exploits equivalence
classes of agents. In Chapter 5 we evaluate the performance of our proposed algorithms
concerning the reduction percentage (i.e., the number of rules comprising the new rep-
resentation compared to the number of the initial representation) that they achieve.
Chapter 6 acts as an epilogue for this thesis, presenting our conclusions along with future
directions of work. Finally, in Chapter 7 we extend the classic MC nets representation to
NTU environments and more specifically to Hedonic Games, while we discuss the kernel

stability concept.
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Chapter 2

Theoretical Background

In this chapter we discuss the theoretical background required for this thesis.

2.1 Cooperative Games

Game theory provides a mathematical framework for the analysis of self-interested com-
putational entities interactions. In cooperative (or coalitional) games, agents cooperate
with each other in order to achieve a specific goal and maximise their profits. By this
collaboration agents may be able to achieve goals that were impossible if they acted
individually. It is also usual that agents can gain more by cooperating with other agents.

As such, in cooperative game theory agents form some groups, which are called coali-
tions. Every coalition consists of a set of agents, that make decisions and act as a whole.
More formally, for a non-empty set of agents N = {1,--- ,n}, a coalition C is any subset
of N (C C N). It is natural to say that in cooperative games, actions are taken by group
of agents. If a group consists of all the agents then it is called the grand coalition, while

if it consists of only one agent it is called a singleton.

2.1.1 Characteristic Function Games

Characteristic function game (CFG) is a widely-studied subclass of cooperative games.
Such games are populated by a non-empty set N of agents. Moreover any CFG has a
characteristic function, known as utility function, which assigns a numeric value to every

possible coalition.
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2. THEORETICAL BACKGROUND

Figure 2.1: Classes of Cooperative Games.

Formally we define a characteristic function game as:

Definition 1 ([2]) A characteristic function game G is given by a pair (N,v), where
N = {1,...,n} is a finite, non-empty set of agents and v : 2¥ — R is a characteristic
function, which maps each coalition C C N to a real number v(C). The number v(C) is

usually referred to as the value of the coalition C'.

Usually in characteristic function games we consider that the coalition value v(C)
can be divided among the members that participate in C' in any way. Games with such
property are said to be transferable utility games (TU games). As such, the outcome of a
TU game, is a pair (C'S,x), where C'S is a coalition structure, i.e., a partition of N into

coalitions, and x is a payoff vector which distributes the value among agents.

Definition 2 ([2]) Given a characteristic function game G = (N,v), a coalition struc-

ture over N is a collection of non-empty subsets C'S = {C*,...,C*} such that
o Ule C7 =N, and
e C'NCI =0, for any i,7 € {1,....,k} such thati # j.

A wvectorx = (x4, ..., 1,) € R"™ is a payoff vector for a coalition structure CS = {C*, ..., C*}
over N ={1,...,n} if

e 1; >0 foralli e N, and

® > icci i < v(C7) forany j € {1, ..., k}.

An outcome of G is a pair (CS,z), where CS is a coalition structure over G and x is a
payoff vector for CS.
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2.1 Cooperative Games

2.1.2 Non-Transferable Utility Games

Another interesting setting of cooperative games, are the instances where the utility
cannot be transferred among the agents who collaborate, but intuitively it is assigned
to each member directly following a coalitional action. Those games are known as non-
transferable utility games (NTU games).

Formally, in such games, every coalition has a set of choices or consequences A =
{A1, Ag, ...} and the agents have preferences over these choices, captured by preference

relations. As such each agent ¢ € N is associated with a preference relation >;.

Definition 3 ([2]) A preference relation on A is a binary relation = C A x A, which is

required to satisfy the following properties:
e Completeness: For every {\,N'} C A, we have A = X or X = X;
o Reflexivity: For every A € A, we have A\ = \; and

o Transitivity: For every {\1, Ao, A3} C A, if Ay = Ao and Ag = A3 then A\ = As3.

We say that a choice \ is preferred at least as much as choice A if and only if A > ).

That is, a non-transferable utility game can be defined as:

Definition 4 ([2]) A non-transferable utility game (NTU game) is given by a structure
G = (N,A, =1, , =), where N = {1,--- ,n} is a non-empty set of players, A =
{X\, A1, -+ } is a non-empty set of choices, v : 2" — 2% is the characteristic function of G,
which for every coalition C' defines the choices v(C) available to C, and, for each player
1 €N, =; €A XA is a preference relation on A.

2.1.3 Partition Function Games

In many real life scenarios, the choices that a coalition C' can make (or, in TU settings,
the payoff that C' can earn) may depend on the coalition structure formed by all agents
in NV, that is, the set of all coalitions that form a partition 7 of the game. Such scenarios
are modeled by partition function games or games with externalities.

A partition (or coalition structure) is a set of coalitions 7 = {C},--- , C},} such that

for every i,j = {1,--- ,m} the following conditions must be satisfied:

° ClﬁC]:@,Whenz#j
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2. THEORETICAL BACKGROUND

i Ui€1,~--,m C;=N.

In these games, the value of a coalition depends on the coalition structure that it appears

in. As such, in [2], authors define an embedded coalition as:

Definition 5 ([2]) An embedded coalition over N is a pair of the form (C,CS), where
CS is a coalition structure over N, and C € CS.

The set of all embedded coalitions over N is denoted with &€y, while the set of the
embedded coalitions that contain agent ¢ is denoted with & ().
Partition function games can be defined for both transferable and non-transferable

utility settings.

Definition 6 ([2]) A partition function game G is given by a pair (N,u), where N =
{1,---,n} is a finite non-empty set of agents and u : Ex — R is a mapping that assigns
a real number u(C,CS) to each embedded coalition (C,CS).

Definition 7 ([9]) A coalitional game in partition function form (PFF) with non-transferable
utility (NTU) is defined by a pair (N, V'), where N is the set of players, and V' is a map-
ping such that for every m € Il and every coalition C C N, C € w, V(C,x) is a closed
convex subset of RIC! that contains the payoff vector that players in S can achieve. Alter-
natively, if we consider a payoff vector in R™ for every coalition C' C N (let for any i & C
the corresponding payoff be 0 or —o0), then V' can be viewed as a mapping V : Exy — R

that assigns to n-vector of real numbers to each embedded coalition (C, ).

2.1.4 Hedonic Games

Hedonic games [10] form a subclass of NTU games in which agents have preferences over
the coalitions in which they can participate. Essentially each agent has preferences over
her collaboration with the others. As such, the payoff of each agent, corresponds to their
satisfaction from the collaboration itself, while the outcome of such games is a coalition

structure. More formally, we define a hedonic game as:

Definition 8 ([11]) Let N be a finite set of agents. A coalition is a non-empty subset
of N. Let N; = {S C N :i € S} be the set of all coalitions (subsets of N ) that include
agent 1 € N. A coalition structure is a partition w of agents N into disjoint coalitions.

A hedonic coalition formation game is a pair (N, >), where = is a preference profile that
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2.2 Overlapping Coalition Formation

specifies for every agent i € N a reflexive, complete, and transitive binary relation >=; on

N;. We call =; a preference relation.

In [12] authors provide the following definition for hedonic games in partition function

form.

Definition 9 ([12]) A hedonic game (HG) in partition function form (PFF) is defined
by a pair (N, =), where N is the set of players, and == {=™, ..., ="} with |II| = m;
and for all m; € I ="i= {=7", ..., =’}, and each ="C N; x N; is a complete, reflexive
and transitive preference relation describing agent i’s preferences over coalitions it can

participate in when m; is in place.

2.2 Overlapping Coalition Formation

Overlapping coalition formation possibly first appeared as a term in [13]. The model
assumes that agents have specific goals and capabilities and agents have to form coali-
tions in order to achieve the goals. Each agent contribute some of his capabilities in
each coalition that he participates. Dang et al. [6] presented a work that uses a greedy
algorithm for overlapping coalition formation in a multi-sensor network.

In [7], Chalkiadakis et. al. provide a model, where an agent holds some resources
that can distribute among different coalitions simultaneously. Their work extended the
classic cooperative games to cooperative games with overlapping coalitions—or overlap-
ping coalition formation games. In such model, the value of any coalition depends not
only on the agents that are its members, but also to the amount of their resources that
they contribute to it.

Formally they define an overlapping coalition formation game (OCF game) as:

Definition 10 ([7]) An OCF-game G with player set N = {1,--- ,n} is given by a
function v : [0,1]" — R, where v(0") = 0.

“This function v is defined on partial coalitions, i.e., vectors of the form r = (ry,--- ,1,),
where r; is the fraction of agent i’s resources contributed to this coalition; function v
maps any such coalition r to a corresponding payoff” [2].

Chalkiadakis et. al. [7] also studied the stability of their model. Specifically, they

define three stability concepts for such games—the conservative core, the refined core
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and the optimistic core, which generalize the classic rationality solution concept of the
core [14] to overlapping settings. Finally in [15], authors proposed the arbitrated core, a

notion that encodes the three types of core of [7].

2.3 Representation schemes

The naive solution in order to represent a coalitional game is to enumerate the payoffs to
each set of agents. As such, the required space rises exponentially to the number of agents,
making such an approach impractical for many real-world scenarios. Due to this problem,
many researchers focused their efforts on finding efficient ways to represent coalitional

games. In what follows, we briefly describe the most celebrated of those representations.

2.3.1 Induced Subgraph games

This representation was introduced by Deng and Papadimitriou [4] and uses a weighted
undirected graph in order to represent a game. Formally, a game is described by a
weighted undirected graph G = (N, E), where each node represent an agent ¢ € N. Each

edge between two nodes ¢ and j is denoted as w; ;. The value of coalition C', denoted as

u(@ = > wy

{i,j}eCNE

u(C) can be computed as:

The representation includes self-loops, since the value of any singleton can be non-zero.

Example 1 Given an induced subgraph game (Figure 2.2) with N = {1,2,3,4} the value
of coalitions Cy = {1,3,4}, Cy = {1,2,3} and C3 = {1,2,3,4} can be computed as:

e O, =5+7=12.

e O5=1+2+5+7=15.
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Figure 2.2: Induced subgraph representation of Example 1.

However the Induced Subgraph representation is not a complete representation scheme,
since in the general case the value of any coalition is not determined exclusively by pairs

of agents and cannot be represented by such a graph.

2.3.2 Marginal Contribution Nets

Marginal Contribution Nets, or simply MC nets, were introduced by leong and Shoham
in [3] and constitute a complete representation scheme for coalitional games with trans-
ferable utility. It is widely used because of their simplicity and their ability to be fully
expressive. The basic idea of MC nets is to represent a coalitional game by a set of rules.

Every rule has the following form:
Pattern — Value

where Pattern is a Boolean expression that consists only conjuctions of agents and Value
is a real number.

Arule r : pr Apa Ao Apy A—ng A —ng A -+ A —n, — val, is said to apply on a
coalition C' C N, denoted by r |= C, if and only if each positive literal p; exists in C i.e,
pi € C fori=1,...,x, and no negative literal n; exists in C, i.e,n;  C for j =1,...,v.
For example, a rule 7 : 1 A 2 A =3 — wal, would apply to coalitions {1,2} and {1,2,4},
but not to the coalitions {1,2,3} and {1,4}.
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Given a coalition C, we can compute C’s utility by summing up the values of all the
rules that apply to C"

v(C) = Z val,

re=C

Any characteristic function game can be represented by a set of such rules [3].

2.3.2.1 Embedded MC-nets

Michalak et al. in [16] proposed an extension of the above representation scheme, the
Embedded MC-nets. The embedded MC-nets are used to represent coalitional games with
externalities—i.e., in partition function form. In that work the rules refer to embedded
coalition into partitions; that is, the values of the pattern, and therefore the utility of
a coalition, depends not only on the members in the coalitions, but also on the overall
partitioning of the agents into coalitions.

The form of an embedded MC-net rule is: Py|P;... P, — Value, where P;, for
1 = 0,...,k, is a pattern and Value is a real value. An embedded MC-net rule r :
Py|Py ... P, — Value is applied on an embedded coalition (C, ) if and only if Py = C
and for every P;, for i = 1,...k, there is at least one coalition C’ € 7\ C such that
P, = C’. The utility of an embedded coalition is computed by summing all rules that

apply on i: v(C,7) = Zr|=(c,7r) T.

2.3.2.2 Weighted MC-nets

Another extension, the Weighted MC-nets, was proposed in [17] by Michalak et al., and
also conceives a representation of coalitional games with externalities. In the weighted
MC-nets, the rules take the following form: (P{;v1)...(PL;vp)| ... |[(Pf05) ... (P5;08),
where Pl-j is a pattern containing at least one positive literal, and vf is its corresponding
value. A partition 7 applies on a weighted MC-net rule r if 7 can be partitioned into s
disjoint non-empty sets of coalitions such that m U --- U 7wy = 7; and for every pattern
Pl withl=1,...,s and k = 1,... 7, there is at least one coalition in 7; that satisfies

pattern P}.

Errikos Streviniotis 12 November 2020



2.3 Representation schemes

2.3.2.3 Relational Rules

Finally, Mamakos and Chalkiadakis [8] proposed Relational Rules (RRs), an MC-nets

extension for representing overlapping coalitions. In that work, the rules are of the form:

A— % -value (2.1)

where A is a subset of agents (corresponding to positive literals), C' is a coalition such

that A C C, and 7, ¢ is the portion of the resource that agent ¢ has invested in C—i.e.,

resource; ¢

Tic = where resource; is the total resource quantity (continues or discrete)

resource; ’
that ¢ holds and resource; ¢ is the amount she has invested in C'. A relational rule r
applies to a coalition C'if and only if A C C'; while the value of a coalition is computed by
summing the rules that apply to coalition C'. Finally the Relational Rules representation
reduce to classic MC nets [3] for non-overlapping settings since it holds that % =1.
However, this reduction is possible only when the set or rules is assumed to not contain

negative literals.

Example 2 Let N = {1,2,3}, resource; = 6, resources; = 10, resources = 3, and let

the Relational Rules of the game be:

(7”1) N {2} — To.C - 2
(r2) : {1,2) » Tegme g
(r9) + {1,3) - e

cy . . resource
Then, assume coalition Cy = {1,2} forms, with resource; ¢, = 6 (M0, = — oot =
6

8 =1) and resourcesc, = 2 (T, = 15 = 0.2). Applying rule (r1) to Cy will result a

mL,ctmc  E
2 5=

% -5 = 3. Rule (r3) does not apply in Cy, since agent 3 ¢ Cy. As such, the value of

value mo o -2 =1-2 =2 and applying rule (ry) to Cy will result a value of

coalition C1 is equal to 2+ 3 = 5.
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Chapter 3

MC nets in overlapping

environments

In this chapter we present an extension of the MC-nets representation for overlapping

settings, holding on the RRs concept.

3.1 RZRs reduction to classic MC nets

As described in section 2.3.2.3, the authors in [8] introduced the Relational Rules, a rep-
resentation scheme for cooperative games with overlapping coalitions. Relational Rules,
like MC nets, use a set of rules in order to represent a coalitional game. The form of
these rules permit the reduction of Relational Rules representation to a classical MC nets
representation for non-overlapping settings, since it holds that % = 1. However,
this desirable property holds without the existence of negative literals, i.e, only positive
literals.

We now extend Relational Rules in order to achieve the desired reduction in non-
overlapping settings even when negative literals are allowed. Considering a rule r and
A C N be the set of agents of r, we define the subset A", that consist of all the positive
literals of A, and a subset A~ that consist of all the negative literals. Obviously it holds
that ATN A~ =0 and ATUA™ = A

As such, a Relational Rule r, that contains both positive and negative literals, can be
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defined as:

> icatr Tic +|AT] - overlap()

CA=ATUA —
' A+ [A]

-value = valuey,y (3.1)

where AT is the set of positive literals, A~ is the set of negative literals, m; ¢ is the portion

resource; ¢

of its resource that some ¢ € A" has invested in coalition C—i.e., m; ¢ = where

resource;

resource; is the total resource quantity (continues or discrete) that ¢ holds and resource; ¢

is the amount she has invested in C'. The overlap function is defined as:

. ZieA+ 5,C +
overlap() = 0, if =<4T=#0 and AT #0. (3.2)
1, else.
The presence of % in the conditions, captures the “pathological scenario”, in

which every agent ¢ that participates in some coalition C', has zero contributions in C.
In such a case, from Equation 3.2 we get that overlap() = 1 (since % = 0) and
from Equation 3.1 we get that:
0+ A -1 | A~
-value =

A + A A A vehee

That is, if all positive literals of a rule r have zero contributions for a coalition C (i.e.,
mic = 0,Yi € A'), then r applies to C' but its value depends on the ratio %
only. Intuitively, we have a “discount factor” for the value of rule r that depends on the
number of positive literals (with zero contributions). In such case, if a rule consists of
many negative literals and the number of positive literals is small, then the “discount
factor” is small as well. As the number of positive literals (with zero contributions) raises,
the “discount factor” raises too.
If a rule r consists of only negative literals (i.e, |AT| = (}), then from Equation 3.2 we
get that overlap() =1 (since |AT| = ()) and from Equation 3.1 we get that:
0+]A|-1

0+ [A] -value = value

That is, the value of a rule that does not consist of any positive literals, does not decrease
since we are only interested on the non-existence of the negative literals.

Finally, if a rule r consist of only positive literals (i.e, |A~| = (), then this extension
transforms to Equation 2.1 (proposed in [8]).

We say that, a rule r applies to coalition C, denoted as r |= C, if and only if:
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o Vx c AT,z € C; and
o Vyc A y¢ C.
In that case, value,,; is added to the coalition value of C.

Example 3 Assume that N = {1,2,3,4}, resource; = 10, resource; = 8, resources =

8, resourcey = 2, and the Relational Rules of the game are:

(r1) : {1,2, -4} — Tuetmotloerlon)
(r2) ¢ {13} > Beyme 5

(rg) : {4} = mac - 2

Let coalition C' = {1,2,3} form, with resource; c = b, resourcesc = 8, resources = 2.

m1,c+m2,c+1-overlap() __ 0.54+1+41-0 _
! 10 = 030 10 = 5,

Similarly, applying rule (r9) to C will result a value of

Applying rule (r1) to C' will result a value of

m,ctm3,c g _ 054025 & __
et | 5 = 054055 5 — 1 88,

Rule (r3) does not apply in C, since agent 4 ¢ C. As such, the value of coalition C' is
equal to 5+ 1.88 = 6.88.

Lemma 1 ([8]) In non-overlapping games, Relational Rules reduce to MC-nets rules

without negative literals.

Proof. Let N be a non-empty set of agents in a non-overlapping game. For each agent
¢ € N holds that m; ¢ = 1, since there are no overlaps and every agent participates in
exactly one coalition C. As such, for every rule r (that consist only positive literals),

using Equation 2.1, it holds that:

> ieaTiC Dical Al
A — =AY palue = ZEA  palue = — - value = value
A |4 Al
That is, RRs reduce to classic MC-nets rules in non-overlapping games. O

Theorem 1 The Relational Rules representation reduce to classic MC' nets representa-

tion for non-overlapping settings.
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Proof. Firstly, we consider that there are only positive literals, i.e., A~ = (). That is,

Equation 3.1 is equal to:

Z- Ti,C
A:A+_> €A,
|Al

-value = valueyy (3.3)

Equation 3.3 is the same that introduced in [8]. As such, from Lemma 1 we know that
Relational Rules reduces to classic MC nets .
On the other hand, considering that there are only negative literals, i.e., AT = 0,

Equation 3.1 transforms to:

|A~| - overlap()

A=A — -value =
|A-]
N |A-] -1
AT — -value =
| A~
A = value = value,yy, (3.4)

As such, Relational Rules reduces to classic MC nets in that case too.
Finally, we consider that there are both positive and negative literals, i.e., AT # ()

and A~ # (). For non-overlapping coalitions it holds that:

Y ica+ Tic + |AT| - overlap()
|AT] + [A]

ZieA+ 1+ ‘A_| -1
| AT+ [A]
|AT] + A7
| A+ + [A]
AT U A — value = valueyy (3.5)

A=ATUA —

-value =

ATUA — -value =

ATUA — -value =
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Chapter 4

e-MC nets

In this chapter we describe the e—MC nets representation scheme. First we discuss
environments for e—MC nets, i.e., large open multiagent systems with uncertainty. Then
we present the form of e—MC nets rules along with an algorithm that constructs the
£—MC nets representation. We propose a variant of the algorithm that exploits prior
knowledge over the agents in order to exploit their perceived similarities and achieve an
even more compact representation. To do so, we also define a notion of agent equivalence
in the process. This variant of the algorithm can also produce new, previously unknown,
collaboration patterns among agents. Finally, our approach extends naturally to non-

transferable utility games.

4.1 Multiagent Environments with Uncertainty

In multiagent environments where we have a large number of agents, it is unrealistic to
assume perfect and complete information. That is, the number of different coalitions
rises exponentially, and a prevalent assumption that we are aware of the utility of each
one of these coalitions cannot stand.

The issue of uncertainty has gained a lot of attention in the game theory community,
and there is a host of research papers tackling the problem. For instance, [18] proposes
a class of cooperative games where agents are uncertain about their partners’ type, and
express beliefs over the type of other agents. The authors in [19] study a series of strategies
and protocols for coalition formation under uncertainty; while [20] provides a definition
of Transferable Utility Games with Uncertainty (TUU). According to this definition a
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TUU G is a tuple (N, 8,v,u), where N is a set of agents; 8 is a finite set of states; v; is a
characteristic function for state s € 8; and u’ assigns to every profile of payoffs a utility
level.

In our work we consider environments with uncertainty over the utility of coalitions.
Let N be a non-empty set of agents, and v be an underlying characteristic function of
some TU game. Function v is hidden to the whole system, however we have in our

disposal a function that comprises beliefs over coalitions’ utility.

Definition 11 (Believed Characteristic Function) Given a TU game G = (N,v)
where v is an unknown characteristic function, a function v : A — R, where A C
2N | constitutes a believed characteristic function estimating the underlying characteristic

function v.

That is, 9(C') corresponds to an estimate of the utility of coalition C' (e.g., inferred by

past observations), rather than to the actual v(C).

4.1.1 &-MC nets Rules

Given a set of agents /N, assume we have estimates on collaborations between pairs of
agents, i.e., we have rules of the form i A j — val, where ¢ and j refers to an agent a; € N
and a; € N respectively, either as a positive (i = @;) or a negative literal (i = —a;); and
val is our estimate about collaboration pattern ¢ A j. Intuitively, pairwise collaborations
can be considered as the basis for estimating the utility of collaboration with many agents.
This concept suggests that larger collaboration patterns follow an additive behaviour. We

will refer to such rules as “MC-net-like” rules.

Definition 12 (MC-net-like Rules) An MC-net-like rule r is of the form Pattern —
val, where Pattern is restricted to pairs of agents, where an agent is represented by either
a positive or a negative literal; and val is an estimate about the utility that portrays the
collaboration between the agents indicated by the pattern, where val is provided by a

believed characteristic function v.

Having a set of MC-net-like rules at hand, we can build a ¥ : A — R such that A =
{CCN:3rst.r=CY and 0(C) = 3, o val;, where 0 is the believed characteristic
function, and val; is the value of the i MC-net-like rule that applies to C. In the e—MC

net representation we propose a compact set of rules originating from a set of MC-net-like
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rules, by merging patterns and regulating the value correspondingly. Now we are ready
to define the e—MC net rules.

Definition 13 (¢—MC net Rule) An e—MC net rule is of the form ¢ A CG — val,
where ¢ € N is called the reference agent, CG C N is a subset of agents called its collab-
orators group, and val € R expresses the estimate! we have on the value of collaboration

pattern between agent 7 and any agent j € CG.

Intuitively, the reference agent corresponds to the “common agent” for all agents in the
collaborating group, such that by establishing a collaboration between ¢ and any agent
7 in CG, has an expected value val provided by the believed characteristic function; and
e € Ry signifies how far from the v value, according to the MC-net-like rules at hand,
we are willing to depart in order to compress an original MC-net-like representation. In
other words, ¢ represents the margin of information loss we are willing to accept in order
to compress the representation. Naturally, the larger the ¢, the wider these margins are,
and therefore the more compact the representation will be.

In the process of compressing the initial MC-net-like rules to a final set of e—MC nets
rules, we distinguish two types of merging: (a) the full-merge, and (b) the half-merge.
The full merge describes the merge of two MC-net-like rules that produces a new e—MC
net rule. A full merge can occur if there is a mutual agent between the rules, and if the
values of the two rules differ by at most e, where ¢ is the margin of information loss
that we are willing to accept. Formally, two MC-net-like rules r : ¢ A j — wal;; and

r" kANl — valy,; can be full-merged iff:

(I) i=kori=lorj=korj=I[ Remember that ijk and | are positive or negative
literals, thus if it stands for example that ¢ = k it means that they are both referring

to the same agent, and they are both positive or both negative; and

(II) |val;; — valg,| < e .

Uali7j+valk7l
2

the mutual agent, and CG contains the non-mutual agents. The second type of merges,

The resulting e—=MC net rule is Tpmerged @ @mutua N CG — , where a,,utual 18

the half-merge, describes a merge of an MC-net-like rule r to an e—MC net rule /. A

half-merge rule can occur if the reference agent of the e—MC net exists in the pattern

!'Nothing in our model precludes val from being the actual value of i A CG.
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of the MC-net-like rule; if the values of the two rules differ by at most e, similarly to
full-merge; and if the value of the soon-to-be-produced e—MC net rule is bounded by
the maximum and the minimum value of the rules merged to r’ so far. Formally, let an
e—MC net rule r : i A CG — valcg, with valgg the value of rule r. Also let Vog be the
set containing all the values of the rules merged so far to produce r. Consider now an

MC-net-like rule " : j A k — val; ;. Then, ' can be merged with r if and only if:

(IIT) ¢ = j or i = k, where two literals are identical if they refer to the same agent, and

they are both positive or both negative; and

(IV) walcg — € < waljx < valcg + €; and

G'|VCG|+'UQZT/

valc .
(V) maxyeyo v —€ < ool < mingey v + €.

The newly merged rule is denoted as:

UCLlCG . |Vcc;| + Ualjk

Tmeraed - ¢ N\ Cca' —
g ’VC(;| +1

)

where CG’ = CG U {@non—mutual } > Gnon—mutuar cOTTEsponds to agent j if i = k or to agent
kif i = 7.

Algorithm 1 performs a series of such merges, compressing the initial set of rules R to a
succinct representation captured in a generated set R’ of e—MC nets rules. Its complexity
is quadratic to the number of the initial MC-net-like rules. Going through Algorithm 1,
we see that the outer loop in line 3 needs exactly m iterations, where m is the size of the
initial set of MC-net-like rules. The inner loop in lines 11-23 needs at most m iterations;
while the condition in lines 12 is trivial—specifically in the case of full-merge we need 4
comparisons for detecting the reference agent, and 2 comparisons for the value condition;
while in the case of half-merge we need 2 comparisons for detecting the reference agent,
and 4 comparisons for the two value conditions. As such the complexity of the algorithm
is O(6 - m?), where m is the total number of the initial MC-net-like rules (i.e., the size of
the R set). According to the algorithm, a final e—MC net rule is derived from x merges,
that is (7) a single full-merge, and (7i) k — 1 half-merges, with K = 1,2,.... Example 4

illustrates Algorithm 1’s functionality.

Errikos Streviniotis 22 November 2020



4.1 Multiagent Environments with Uncertainty

Algorithm 1 Merging MC-net-like Rules

1: R < initial set of MC-net-like rules of size m;
2: R« (Z);
3: for r € R do

4: CG @;

5 K+ 0;

6 Vea < valr;

7. min < miney, {v};

8  max ¢ MaXyevo{V};

9: avg < val,;

10:  remove r from R;

11: for " € R do

12: if CANFULLMERGE(r, ") OR CANHALFMERGE(r, ') then
13: add val,» in Vg

14: add non mutual agents in CG;
15: min <— mingyey,{v};

16: max <— MaXyeveo{v};

17: avg < %;

18: K+ K+ 1;

19: Tnew < Gmutual N CG — avg; {# intermediate rule}
20: T < Thew;
21: remove r’ from R;
22: end if
23:  end for
24: add r in R/;
25: end for

26: return R’

Algorithm 2 CANFULLMERGE(r, 1)

1
2
3:
4

: return False;

. if 7 and 7’ satisfy Cond. (I) AND (II) then

return True;
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Example 4 Consider a set of 5 agents N = {1,2,3,4,5}, and the following initial MC-

net-like rules in R:
(ri) : 1AN2—=5
(re) : 3AN4—6
(rs) : LN4—T7
(r;)) : 3N2—16

(7’5) R AN

Moreover, we let € (the accepted information loss) be equal to 1. Employing Algo-
rithm 1 on the above set of rules we get the following result. We begin with rule r1, and
we set the variables max = 5, min = 5, avg = 5. The rules that share mutual agents with
r1 are r3 and ry; however, none of the two can be full-merged with r1 since the condi-
tion (1I) does not hold for any of the two rules. Rule r1 remains intact, we move to rule
ro, and set the variables to max = 6, min = 6,avg = 6. Rule ro shares a mutual agent
with rules r3,r4 and r5. Rules ro and r3 can be full-merged since 6 — 1 < 7 < 6+ 1
(condition (I1)); so we add 1 and 3 in CG, we set Vo = {6,7}, we update the vari-
ables max = max,ecv.{v} = 7,min = min,ey{v} = 6,avg = 6.5, we generate a new
rule r¢ : 4 A\ {1,3}, and replace ro with r¢ as well as remove r3 from R. Now instead
of looking for rules with mutual agents with rule ro, we use rule rg, and specifically we
are looking for rules containing the reference agent 4. The pattern of rule ry does not
contain the reference agent of rg, while rule r5 does. Rule r5 can be half-merged to rule
re since 6.5 —1 < 7 < 6.5+ 1 (condition (IV)) and 7—1 < % < 6+ 1 (condi-
tion (V)). Now we add agent 5 in CG, we set Vog = {6,7,7}, we update the variables
max = MaXyevo{V} = 7, min = minyey.{v} = 6,avg = 6.667, we generate a new rule
r7 4 N{1,3,5}, and replace r¢ with r; as well as remove r5 from R.

At the end of this process, we have a new, more compact representation with the

following rules:
(ri): 1TAN2—=5
(r;): 3A2— 16

(r7) : 47 {1,3,5} — 6.667
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Algorithm 3 CANHALFMERGE(r, 1)
. if 7 and 7’ satisfy Cond. (III) AND (IV) AND (V) then

1

2 return True;
3: end if
4

: return False;

Intuitively, the e-MC nets representation detects similar collaboration patterns. For
instance, in a setting where agents acquire skills, a rule i A\CG — wal could be interpreted
as: if we combine the skills of agent i with the skills of any agent in CG we observe a
similar change in the utility of the coalition; that is, agents in CG have similar skill-sets
that impact the outcome similarly.

We have to mention that the (final) set of rules R’ that our algorithm will produce,
depends on the sequence of merges that will take place, i.e., for the same initial set of
rules, R, if we change the order of the initial rules, then our algorithm will produce a

different representation R'.!

4.1.1.1 Bounds on the values of e—MC nets rules

Next in Theorem 4, we show that our estimate of the value of any collaboration pair
given by an e—MC net rule, lies in a distance of at most x - € from our initial estimate
on the values of the rules merged in order to reach the e—MC net rule. As such, we
provide a bound on the maximum information loss incurred by using our “compressed”

representation instead of an MC-net-like one.

Lemma 2 For any half-merge between an MC-net-like rule v, and e—=MC net rule r,

producing a new e—MC net rule r,, it holds that: |val, — val,| < e.

Proof. Let v, : i A j — val, be an MC-net-like rule, and r, : ¢ A CG — val, be an e—=MC
net rule with Vg containing all the values of the rules that have been merged in 7,
so far. We assume that 7, can be half-merged with r, (i.e., the conditions (III), (IV),
and (V) are satisfied), producing a new e—MC net rule r, : i A (CGU{j}) — val,. From
half-merge condition (IV) we have that:

val, — e <wal, <wval, + ¢ (4.1)

IThis opens the possibility for a variant of our algorithm that employs randomized sequences of the
initial set of rules
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Moreover due to the way we construct the new e—MC net rule r,, it holds that

valy - |Vog| + val,
|VC(;| +1

Combining Equations (4.1) and (4.2) we have that:

val, = (|Vog| + 1) - val, — |Veg| - val, (4.2)

val, =

val, —e < (|Vea| + 1) - val, — |Veg| - val, < wval, + ¢ =
\Vea| - valy, +valy, — e < (|Veg| + 1) - val, < |Vegl - valy, + val, + ¢ =

<(
(IVeel +1) -valy —e < (|Veg| + 1) - val, < (|Vee| +1) -val, + ¢ =
€
‘VC(;| +1

IN

val, — val, < __c =
‘Vc(;| +1

val, —val,| < <e=
| y

&
|Vcc,| +1

lval, —val,| < e
O

Lemma 3 For any half-merge between an MC-net-like rule r, and e—MC net rule r,

producing a new e—MC net rule 7., it holds that: |val, —val,| < e.

Proof. Let ry :i A j — val, be an MC-net-like rule, and r, : ¢ A CG — val, be an e-MC
net rule with |Veg| containing all the values of the rules that have been merged in r,,
so far. We assume that 7, can be half-merged with r, (i.e., the conditions (III), (IV),
and (V) are satisfied), producing a new e—MC net rule 7, : i A (CG U {j}) — val,. Due

to the way we construct the new e—MC net rule r,, it holds:

Vel - valy, + val,

val, = =
|Vcc;| +1
-val )
val, —val, = Ve - valy + val, — val, =
|VC(;| +1
) _ 1) -
val, — val, = |Vea| - valy +val, — (|Vee| + 1) - val, N
|VC(;| +1
Vel - val, — |Veg| - val,
val, —val, = Ve - valy = [Veg| - va =
’VC(;,‘ +1
val, — val, = M - (val, —valy) (4.4)
|VC(;’ +1
From half-merge condition (IV) we have that:
val, — e <wval, <wval, + ¢ =
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—¢e <wal, —val, <¢ =
[Veal [Veal [Vee
— e < (val, —valy) < ————— . ¢ =
|Vcc;|+1 |Vcc;|+1 ( Y ) ‘VCG|+1
[Veal
- — . l, —valy) < 4.5
€_|VCG|+1 (val, —wval,) < ¢ (4.5)

Combining Equations (4.4) and (4.5) we have that:
—e <wal, —val, < e = |val, —val,| <e. O

Theorem 2 For every e—MC net rule 7pergea derived by one full-merge and k — 1 half-
merges, and for the two MC-net-like rules v, and r, (with estimates val, and val,) that
participate in the full-merge, it holds that: |valyergea—valy| < k-€ and [valperged—valy| <

K-E.

Proof. Let an e—MC net rule rmerged @ ¢ A CG — valpergea produced by x merges (1
full-merge and x — 1 half-merges); and let r, : i A j — val, and r, : i A k — val, be the
two initial MC-net-like rules participating in the full-merge (first merge) in progress of
reaching final 7yerged 1 @ A CG — Valmerged-

Base Case: Rules 7, and 7, can be full-merged and produce an e—MC net ry : iA{j, k} —
valy, with {j,k} C CG, and val; = % As such at step 1, from condition (II) we
have that:

2-val, —e  wval, +val 2-wval, + ¢
- +valy _ +
2 2 2
€ € €
—3 <waly —val, < 3 = |val; — val,| < 3 <e (4.6)

—e <waly, —val, <e=

Induction step: After k — 1 merges (1 full-merge and x — 2 half-merges), we have
produced an e—MC net rule r,_; : iANCG,_1 — val,_1, where CG,_1 = {j, k,[,...} C CG
contains x agents. Our hypothesis is that it holds:

lval,_1 —val,| < (k—1)-¢ (4.7)

In step x we have a half-merge of r, : ¢ Am — wal, to r._1, and produce a rule
re 11 A (CGgg U{m}) — wval,, where CG,_; U {m} = CG,, and valyerged = val, =

”“lﬁfl'(”‘ﬁ_lwmlz. From Lemma 2 it holds that:

lval, —val,—1| < e (4.8)
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Summing (4.7) and (4.8) we have:

—(k—1)-e—e<wal, —val,_1 +val,_1 —val, < (k—1)-e+e=

k-e <wal, —val, < k- e = |val, —val,| <k-¢e (4.9)

Similarly we can show that the same holds for val, of r,, thus two MC-net-like rules
composing the full-merge it holds that after x merges we have |val, — val,| < k- e and

lval, —valy| < k- €. O

Theorem 3 For any MC-net-like rule r, that is half-merged to the intermediate rule
e—MC net at step N when producing a final e—=MC net rule Tmergea after k merges, it
holds |valyergeq — val,| < (kK —A+1)-¢.

Proof. Let an e—MC net rule rperged @ @ A CG — valpergea produced by x merges (1
full-merge and x — 1 half-merges); and r, is an MC-net-like rule that is half-merged at
step A (with 2 < A\ < k) with intermediate rule ry with value valy, in progress of reaching
final rmerged @ ¢ A CG = valmerged-

Base Case From Lemma 3 we know that |valy, — val,| < e.

Induction step Our hypothesis is that at step x — 1 (after 1 full-merge and x — 1 half-
merges) it holds |val,—; —val,| < (k—1—AX+1)-e. At step x Equation (4.8) stands, so

by summation we have:

—(k=A)-e—e<wal, —val,_1 +val,_1 —val, < (k—\)-e+e=
—(k=A+1)-e<wal, —val, < (k—A+1)-e=

Thus we have that |val, — val,| < (k — X+ 1), where val,, = valyerged- O

Theorem 4 For any MC-net-like Tule r : i A j — wval that is merged (either full- or
half-merged) in the process of reaching an e—MC net rule 7 mergea after k merges, it holds

|valmergea — val] < k- €.

Proof. From Theorem 2 we have that for the two rules r, and r, participating in the
full-merge it holds |valmerged — val;| < k- and |valmerged — valy| < k-¢. From Theorem 3
we have that for any rule r, being half-merges at any step A (with 2 < A < &) it holds
that |valmergea —val,| < (k—A4+1)-¢ 2ASH

1See line 19 of Algorithm 1.

|valmergea — val,| < k - €. O
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4.1.1.2 Bounding the number of merges per e-MC net rule

Note that we can easily adapt Algorithm 1 so that the resulting succinct representation
consists of a set of e-MC nets rules, where for each such rule r it holds that the value
of r, i.e. val,, is at most K,,q - € away from our initial MC-net-like estimates. That is,
we can define an upper bound K4, on the number of merges that we allow per e-MC
net rule. As such, we introduce Algorithm 4 that permits k,,,, number of merges for
every e-MC net rule. Compared to Algorithm 1, in Algorithm 4 we need to check the
additional condition (line 13) whether the total number of merges (for a specific e-MC
net rule) is greater than k... The complexity of Algorithm 4 remains O(m?), where m

is the size of the R set of rules, since checking the new condition is trivial.

4.1.1.3 Rules with larger collaborative patterns

Our work so far considers MC-net-like rules containing only collaborative pairs. However,
with a slight change on Algorithm 1 we can consider initial rules with patterns containing

more than two literals. In this variant the e—MC nets rules will be of the form:
1A CG — val

where CG now is a set of sub-patterns, e.g., CG = {{j Ak} V{IAoAp}V{q}}, which is
produced by merging rules 1 : iAJAk — valy, 19 : iAIAOAP — wvaly, and r3 : 1Aq — vals.

In this case, again, we distinguish the same two types of merging (full-merge and
half-merge). However, the conditions that need to stand true must be slightly changed.
Specifically, two rules r; : Pattern; — val, and ry : Patterny — vals, where Pattern,

and Patterny are a conjunction of g agents (2 < g < |NJ), can be full-merged iff:

(VI) i = j, where i is any agent in Pattern; and j represents the same agent, in Patterns.
Remember that i and j denote positive or negative literals, thus if it holds for
example that ¢+ = j, it means that they are both referring to the same agent, and

they are both positive or both negative; and

(VII) |valy —valy] < e .
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Algorithm 4 Bounded number of merges per e-MC net rule

1: R < initial set of MC-net-like rules of size m;
2: R« (Z);
3: for r € R do

4: CG « 0;

5 K+ 0;

6 Vea < valr;

7. min < miney, {v};

8  max ¢ MaXyevo{V};

9: avg < val,;
10:  Kpaee ¢ maximum number of merges;
11:  remove r from R;
12:  for v € R do
13: if K00 < Kk then
14: break;
15: end if
16: if CANFULLMERGE(r, ") OR CANHALFMERGE(r, ') then
17: add val,» in Vog;

18: add non mutual agents in CG;
19: min <— mingey,{v};
20: max <— MaXyeveo{v};
21: avg %;
22: K4 K+ 1;
23: Tnew — Umutual N CG — avg;
24: T < Thew;
25: remove r’ from R;
26: end if
27:  end for
28: add rin R’;
29: end for

30: return R;
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W, where @yt is the

The resulting e—=MC net rule is 7perged : Gmutuat ACG —
mutual agent, and CG = {Pattern/, Pattern}}, where Pattern]} = Pattern;\{:} and
Patternl, = Patterny\{j}.

Similarly, given an e-MC net rule r : i A CG — valcg, where CG is a set of sub-
patterns and Vg is the set containing all the values of the rules merged so far to produce

r; and a rule r3 : Patterns — wvalz, we say that r3 can be merged with r iff:

(VIII) i = j, where j € Patterns. The two literals are identical if they refer to the same

agent, and they are both positive or both negative; and

(IX) wvalgg — e < walz < valcg + €; and

a:|Vog|+vals

valc .
(X) maxyeyo, v —e < Vool < Milyergg 0 + €.

The newly merged rule is denoted as:

UCLZCG : |VCG| + val3
|ch| +1

Tmerged * & N\ CG' —

Y

where CG' = CG U { Pattern}} and Pattern}y = Patterns\{j}.

We can easily show that the Theorems and Lemmas presented in Section 4.1.1.1, hold
as well in this scenario, using the notion of auxiliary agents. Essentially, we will substitute

each additional collaboration pattern that is presented in the rule for an auxiliary agent.

Proposition 1 Lemmas 2, 3 and Theorems 2, 3, 4 hold for larger collaborative patterns

as well.
Proof. Let N = {i,7,k,m,n,q,0,w} be a set of agents and we have the following rules:
(r1) : i ANJ Ak — valy
(r2) : it AmAnNnAq— valy

(r3) : i ANw Ao — vals
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which constitute a game G. Considering that r; and 75 can full-merged—i.e., the condi-
tions (VI) and (VII) are satisfied—we get the new e-MC net rule:

ry i N{{gANE},{m AnAq}} — valy

where valy, = %ﬂ Then, considering that r3 and r, can half-merged—i.e., the

conditions (VIII), (IX) and (X) are satisfied—we get:

rs i A{{JAE}{m AnAq} {wAo}} — vals

where valy = veltvalatvals

Let x be an auziliary agent, that represents the pattern p; = j A k. Similarly, the
auxiliary agents y and z represents the patterns po = mAnAq and p3 = wAo respectively.
Note that here we abuse the term of an agent since our new agents x, y and z are in
fact patterns of agents. Then, we can build a new game G’ with N’ = {3, z,y, 2z} and the

rules:
(r'1) i Ax — valy
(r'y) + i ANy — valy
(r'3) : i Az — vals

In such game, the Theorems and Lemmas (from Section 4.1.1.1) hold. Considering that
ry and ) can full-merged—i.e., the conditions (I) and (II) are satisfied—we get the new
e-MC net rule:

ry i Az, y} — valy

where val, = 21£v - Ag guch, from Lemma 2 we have that |valy —vali| < e and |valy, —

valy| < e. Then, considering that r4 and )y can half-merged—i.e., the conditions (III),
(IV) and (V) are satisfied—we get:

re i AN, y, 2} — vals

where vals = w As such, from Lemma 3 we have that |vals — vals| < e. With
Lemma 2 and 3 at hand, Theorems 2 and 3 hold in game G’, and therefore Theorem 4

give us the following result:

o |vals —valy| < k- e, where k = 2.
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e |vals —valy| < Kk - e, where k = 2.
o |vals — vals| < k- ¢, where kK = 2.

Since 7] is equivalent to ry, 5 is equivalent to ro and 74 is equivalent to r3, the Lemmas
and Theorems that hold for r}, 7, and 74 (game G’) also hold for ry, 75 and 3 (game G).
Note that, conditions (I) and (II) for r} and 7% correspond to conditions (VI) and (VII) for
r1 and rq, respectively. Similarly, conditions (III), (IV) and (V) for r§ and ) correspond
to conditions (VIII), (IX) and (X) for r3 and 4, respectively. As such, for each game
G with larger collaborative patterns, all of the Lemmas and Theorems of Section 4.1.1.1
hold as well. O

As such, we propose Algorithm 5, that performs a series of such merges. Obviously,
Algorithm 1 consists a sub-case of Algorithm 5, since it operates with only pairwise rules
(i.e., g = 2). Asymptotically Algorithm 5 has a computational complexity of O(m?),
where m is the size of R set of rules.

Nevertheless, in the rest of this thesis we consider initial rules with collaborative pairs.
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Algorithm 5 Merging rules with larger collaborative patterns

1: R < initial set of MC-net-like rules of size m;
20 R+

3: for r € R do

4: CG « 0;

5 K+ 0;

6 Veg < val,;

7. min < miney, {v};
8  max ¢ MaXyevo{V};
9: avg < val,;

10:  remove r from R;

11: for " € R do

12: if CANFULLMERGEPETTERNS(r,7') OR CANHALFMERGEPATTERNS(r,7”)
then

13: add val, in Veg;

14: add the sub-patterns without the mutual agent in CG;

15: min < mingey,{v};

16: max <— maXyeyve.{v};

17: avg ¢+ Meloptd,

18: K4 k+1;

19: Tnew < mutual N CG — avg;

20: T 4 Thew;

21: remove 1’ from R;

22: end if

23: end for
24: add r in R/;
25: end for

26: return R’
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Algorithm 6 CANFULLMERGEPATTERNS(r,7”)
. if r and 7’ satisfy Cond. (VI) AND (VII) then

1

2 return True;
3: end if
4

: return False;

Algorithm 7 CANHALFMERGEPATTERNS(r, ')
. if r and 7’ satisfy Cond. (VIII) AND (IX) AND (X) then

1

2 return True;
3: end if
4

: return False;

4.1.2 Equivalent Agents

In this section we discuss a variant of the e-MC nets representation that exploits not only
mutual agents, but also equivalence classes of agents: agents belonging in the same class
may have similar behaviour, preferences or properties—for example, in a search & rescue
mission all firefighters comprise one equivalence class, while all nurses another. Consider-
ing equivalences among agents we manage to: (a) compress even more the representation
compared to the initial version; (b) extract underling patterns that were not observed in

the initial set of MC-net-like rules.

Definition 14 (Equivalent Agent) Given a set of agents N, and a similarity metric

s: N x N —[0,1], two agents i and j are equivalent if and only if s(i,7) > threshold.

The threshold denotes the minimum similarity degree for two agents in order for them to
be equivalent, and depends on the problem at hand. Note also that any similarity metric
s of choice can be used given a real-world scenario of interest. In Section 5.1.3 below we
demonstrate how to employ to this purpose specific correlation metrics that are used in
many real life scenarios.

Now, given Definition 14 above, we obtain a new version of e-MC nets representation,

where the rules take the form:

Qequiv A CG = val (4.11)
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where Qequiv is a set of equivalent agents and it replaces the reference agent of the initial
representation. In words, a rule Qequiv A CG — val is interpreted as: Our estimate of the
collaboration between any agent © € Ceguiy with any agent j € CG is equal to val.

In order to take advantage of equivalence classes, we need to modify Algorithm 1
slightly. Specifically we need to alter line 12 so it checks if the rules r and 7’ have agents
in the same equivalence class. We consider that for every agent ¢ € N, there is a list
FEquiv;, which contains all the agents that are equivalent with agent . It also natural
to assume that if j € Equiv; then it holds that ¢ € Equiv;. As such, considering two
MC-net-like rules r : @ A j — wval; ; and r' : k Al — valy,, for the full-merge, we have to

replace condition (I) with the following condition:

(XI) i € Equivg or i € Equiv, or j € Equivy, or j € Equiv;. Remember that i,j,k and
| are positive or negative literals, thus if it stands for example that i € Equiv; it

means that they are both positive or both negative;

Similarly, considering an e—=MC net rule 7 : Qequiv A CG — valcg and an MC-net-like
rule ' : 5 Ak — val;, for the half-merge, we have to replace the condition (III) with the

following condition:

(XII) For every z € Qequiv, J € Equiv, or k € Equiv,, where two literals are identical if
they are both positive or both negative;

As such, we introduce Algorithm 8 that exploits equivalence classes of agents.

This modification changes the complexity of the algorithm to O(n - m?), where n is
the number of agents in the system, and m is the size of the initial MC-net-like rules set.
That is, in each iteration, given two rules r : ¢ A j — val, and r’ : k Al — wval,., we need
to check if we can perform either full-merge (line 13). As such, we access the lists Equiv;,
Equivj, Equivy, and Equiv; (every list has a size of sizejs, where 1 < sizeq < n).
Similarly, we work for the half-merges. Due to these modifications, asymptotically the
complexity of Algorithm 8 is O(n - m?).

An important thing to mention here, is that the employment of Algorithm 8 that con-
siders equivalence classes, may result in ambiguous e—MC nets rules. That is, depending
on the way agents’ equivalence is determined, we may end up producing overlapping
rules, i.e., multiple e—MC nets rules may apply to the very same collaborative pair. To
overcome this ambiguity we consider that the post-merge estimate for a collaborative pair

1 A j equals the average value of the rules that apply to this pattern.
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Algorithm 8 Equivalent classes of agents

1: R < initial set of MC-net-like rules of size m;
20 R+

3: for r € R do

4: CG « 0;

5 Qequiv < 0;

6 K <+ 0;

7. Voag < val,;

8  min ¢+ min,ey, {v};
9:  max ¢ MaXyevyg{v};
10:  avg < val,;

11:  remove r from R;

12:  for " € R do

13: if CANFULLMERGEEQUIV(r,7") OR CANHALFMERGEEQUIV(r, ') then
14: add val, in Veg;

15: add equivalent agents in Qequiv;
16: add the rest of the agents in CG;
17: min <— mingey..{v};

18: max $— MaxXyey,,{v};

19: avg %;

20: K4 k+1;

21: Tnew < Slequiv A CG — avg;

22: T < Thew;

23: remove 1’ from R;

24: end if

25:  end for
26: add r in R/;
27: end for

28: return R’
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Algorithm 9 CANFULLMERGEEQUIV(7, 1)
. if 7 and 7’ satisfy Cond. (XI) AND (II) then

1

2 return True;
3: end if
4

: return False;

Algorithm 10 CANHALFMERGEEQUIV(r, ')
. if 7 and 7’ satisfy Cond. (XII) AND (IV) AND (V) then

1

2 return True;
3: end if
4

: return False;

We demonstrate this via an example:

Example 5 Consider a set of 4 agents N = {1,2,3,4}, and the following initial MC-

net-like rules:
(ri): 1AN3—=5
(ro) : 2N4—6
(rs) : 1N4—8

Moreover, we let ¢ = 1, while we also have the information that agents 1 and 2 are
equivalent. Employing Algorithm 8, with equivalent agents, we get the following result.
We begin with rule ry which can be merged with ro since agent 1 is equivalent to agent 2,
and 5—1 <6 < 5+1. Thus, we generate a new e—MC net rule ry : {1,2} A{3,4} — 218,
and we replace ry with r4. Rule ry has a mutual agent with r3, however it does not stand
55— 1 < 8 < 5.5+ 1, thus rule r3 is not merged with ry, and remains intact. As such

the final set of rules is:
(rs) : 1AN4—8
(r;) : {1,2} N{3,4} = 5.5

As we can see the collaboration pattern 1 A 4 satisfies both of the rules r3 and ry. So

_5-52+8 = 6.75. Moreover notice that in

the value of this collaboration pattern is equal to
the final e—MC nets representation there is information about the collaboration pattern

2 A3 — 5.5, which was previously unknown.
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4.1.3 Extension to NTU Games

The e-MC nets representation can also be used in non-transferable utility (NTU) games [2],
where each member of a coalition C' now derives an individual utility from participating
in C'. In such settings, every agent ¢ could have a personal ¢;, that would represent the
margins of information loss that agent 7 is willing to accept in order to produce a compact
representation. Therefore each agent i can execute its own instance of any algorithm that
has been described in the previous sections, using its personal ¢; and yield a represen-
tation regarding its personal estimates. In this extension, given an environment with n
agents, we would end up with n compact e—MC nets representations, where the i** rep-
resentation corresponds to agent’s ¢ estimates. However, in our experimental evaluation

(in Section 5 below) we consider only transferable utility environments.
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Chapter 5

Experimental Evaluation

In this section we evaluate the performance of our algorithms via simulations. All exper-
iments ran on an i5@2.2GHz processor PC with 8GB of RAM, and the framework was
coded in Python 3.8.

5.1 £—MC net with Mutual Agents

First we present a series of experiments performed to evaluate Algorithm 1 with mutual

agents, using synthetic data.

5.1.1 Dataset

We generated synthetic data with varying number of agents n and varying number of

rules m. Specifically, n takes the values 100, 200 and 300; while m varies depending

n
2

of agents randomly selected out of (g) possible unordered pairs; and the rule’s value

on n and takes the values 2, n, and 2 - n. In each dataset, every rule consist of a pair

is drawn from uniform distribution U(1,200). Finally, for each combination (n,m) we

generated 5 different datasets. As such, in total we use 45 different datasets.

5.1.2 Experimental Analysis

We ran our algorithm for each setting using different values of ¢, i.e., the margin of

information loss. The evaluation metric we used is the percentage of reduction, i.e., we
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REDUCTION OF RULES(AGENTS=100)
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Figure 5.1: Reduction of rules using Algorithm 1, when N = 100.

measured the compactness achieved in the e—MC nets representation by computing the
number of rules comprising the new representation compared to the number of the initial

MC-net-like rules. Formally, the reduction percentage (RP) is:

B #e-MC nets rules + #un-merged rules
#initial MC-net-like rules

rP = (1 ) - 100%

In Figures 5.1, 5.2 and 5.3 we illustrate graphically the results of our implementation
of Algorithm 1. The results represent the average reduction percentage achieved in each
setting (n,m), where the average is over 5 datasets within the same setting. As we can
observe, as the number of rules increases, with ¢ kept fixed across different settings, our
algorithm achieves greater reduction percentage. Such a result is expected, since when we
have more rules it is more likely to find MC-net-like rules that satisfy the conditions for
merging, and thus the algorithm produces more compact representations. Also, for the
same number of MC-net-like rules, as € increases, we observe that the achieved reduction
increases as well. This result is due to the fact that for greater values of €, the conditions
for merging are more relaxed, and thus easier to be met.

In Figures 5.4, 5.5 and 5.6 we compare the achieved reduction percentage between dif-
ferent settings with fixed ratio . Here we notice that the RPs exhibit similar behaviour,

regardless of the setting at hand.
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REDUCTION OF RULES(AGENTS=200)

75,00%

¥ 15,00% i Rules=400
=

=2 Rules=200
E Rules=100
2 10,009 —a— TP
o

o

uuuuu

2 4 6 B

Epsilon

Figure 5.2: Reduction of rules using Algorithm 1, when N = 200.

REDUCTION OF RULES(AGENTS=300)
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Figure 5.3: Reduction of rules using Algorithm 1, when N = 300.

5.1.3 RP: Mutual vs Equivalent Agents

In this line of evaluation we compared the performance of Algorithm 1 against its variant,
Algorithm 8, that considers equivalent agents, in terms of percentage of reduction. Here
we generated 75 synthetic datasets following the process described in Sec. 5.1.1; now n
takes the values 50,100,200, 300 and 400, while m = §,n and 2 - n; and again we gen-
erated different datasets for each (n,m) combination. In order to determine equivalence
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Figure 5.5: Reduction Percentage with fixed ratio - = 1.

among agents we adopted the following scenario: agents participate in a ridesharing set-
ting as drivers or commuters. First, to determine the payoffs of agents participating in
the ridesharing scenario, we ran the PK Algorithm (Algorithm 5) of work [21]," which
computes kernel-stable [2, 22] payments for such scenarios. Specifically, for each dataset
we run the PK algorithm for a number of partitions depending on the number of agents

in the dataset. Each such partition consisted of a randomly sampled coalition C' contain-

'We retrieved the PK implementation code from https://github.com/filippobistaffa/PK
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ing one driver,! at least 1 commuter, and at most 4 (commuters), while all other agents

where considered as singletons—i.e., 7 = {C'} U {{i} € N\ C}. The total number of
partitions used per dataset family is shown in Table 5.1.

Number of Agents 50 100 200 300 400
Number of Partitions 1150 3700 12000 25000 40000

Table 5.1: Number of partitions used in PK Algorithm per dataset family in Section 5.1.3.

As soon as we have the payoffs, for every pair of agents ¢, j we build two ranking lists
M; and M; as follows:

For the k™ sampled partitions 7 (with C € 7):
1. if {i,5} C C:
e add i’s payoff according 7 in the k'™ position of M;;
e add j’s payoff according 7 in the k™ position of M;.

2. else if 1 € C and 3 7’ such that
jeC and C\ {i} =C"\ {j} with C" € =":

'In all datasets we let 20% of the agents’ population be drivers, and 80% of the population be
commuters.
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e add i’s payoff according 7 in the k™" position of M;;

e add j’s payoff according 7’ in the k™ position of M;.

We then use the lists above to determine the equivalence between any two agents ¢ and
J, via combining two widely used correlation metrics, (a) the Kendall’s Tau ranking
distance [23], and (b) the Pearson Correlation Coefficient [24].

According to Kendall’s Tau, the ranking distance between two lists M; and M; de-
pends on the number of misalignments of any pair of elements between the two lists. That
is, let M;[k] and M;[l] denote the value in k" and I* position in list M;, respectively (sim-
ilarly for M;[k] and M;[l]); there is a misalignment between M; and M, if M;[k] > M,]l]
and M;[k] < M,[l] or M;[k] < M[l] and M;[k] > M;[l]. Thus, the Kendall’s Tau dis-
tance between M; and M, is defined as the summation of misalignements between any
unordered pair of positions k, [, normalized by the total number of unordered pairs of
positions.

Now, the Pearson Correlation Coefficient measures the linear correlation between two
LM Y) cgnsider-

VEZi(Xi=X)/3,(Yi-Y)

ing lists M; and M; as random variables, the PCC between agents ¢ and j is computed

random variables X and Y'; and is computed as rxy =

as

_ D p(Mi[k] — ave{M;}) - (M;[k] — ave{M,})
V2 (Mi[k] — avg{M;}) - /3, (M;[k] — ave{M;})

where the summation is over the positions in lists M; and M;.!

T M;,M;

With the Kendall’s Tau distance and the Pearson correlation coefficient at hand,
two agents ¢ and j are considered equivalent if it holds K(M;, M;) > threshold and
ru,m; > threshold. For these series of experimental analysis, we set threshold = 0.97.

Table 5.2 shows the results (average over 5 datasets with the same combination (n,m))
for every setting, when we employ the algorithm using equivalence classes of agents (de-
noted as “Equivalent”) against when employing the original version, using solely mutual
agents (denoted as “Mutual”). Here, we see that for every examined setting, the algo-
rithm that takes advantage of equivalences consistently achieves manyfold greater reduc-

tion than the algorithm with the mutual agents. Such a result is expected due to the use

INote that the Pearson Correlation Coefficient (PCC) measures correlation, as such its values lie
in [-1,1] where PCC — 1 indicates positive correlation, PCC' — 0 indicates no correlation, and
PCC — —1 indicates negative correlation.
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of equivalences, since in this version we exploit information which is not considered in

the version with only mutual agents.

Equivalent RP

Now considering the ratio p = we can observe that the maximum value of

Mutual RP
p is equal to p = 22 = 3.5 for the family with 50 agents, p = 3= = 8 for the family with
100 agents, p = 188 = 15.67 for the family with 200 agents p = 258 = 11.84 for the

family of 300 agents and finally p = 273 = 17.06 for the family with 400 agents. Note
that this peak is achieved in the settlng Wlth 5 initial MC-net-like rules for each family;
this result is due to the fact that with fewer rules, it is hard to find rules to satisfy
the merging constraints. Also the maximum reduction percentage for every family is
achieved in the setting with 2 - n rules. Once again, we can observe that as ¢ rises, the
reduction percentage rises in both algorithms’ variations as well, which is due to the
relaxed constraints for merging.

Finally our experiments confirm that the extra information on equivalences among
agents allows us not only to produce more succinct representations (as discussed above),

but also to learn new collaboration patterns. We show this through the NCP ratio:

New collaboration patterns

NCP = 100%,

Total number of collaboration patterns '

where Total number of collaboration patterns corresponds to the number of initial MC-
net-like rules plus the new collaborative pairs of agents that our algorithm produced,
exploiting equivalences among agents. Note that in case there are ambiguities, i.e., the
same collaboration pattern is expressed by more than one rule, we consider this rule only
once.

Table 5.3 shows the NCPs for every setting, when we employ the algorithm us-
ing equivalence classes of agents—the NCPs displayed are averages over the 5 different
datasets for each combination (n,m). As we can observe, the NCP is rising, for a given
n, as m rises. This is natural, since for larger m our algorithm is able to perform more
merges. As a result, new collaboration patterns are produced. Furthermore, for the same

reason, we observe a similar behaviour as the ¢ rises.
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€= €= £ =
_ o5 Mutual 1.6% 1 6%7 2 4}%7 ]
e Equivalent 4% 5.6%  7.2%
_ = _ 50 Mutual 2% 3.6% 6%
"= e Equivalent  6.8%  104%  15.8%
Mutual 5.8% 8% 10.2%
m=100 -~ - —- 22T
Equivalent — 12.8% 19% 23.6%
Mutual 1.2% 3.6% 3.6%
m = 50

Equivalent  9.6% 14.8%  18.8%
n=100 m=100 -- 71\{[1}&112}1 ,,,,, 3 % ,,,,, 5 ;4?0, _ ,7,'%%, ,
Equivalent  17.6% 25.8%  30.8%
Mutual 6.5% 9.4% 12.1%
Equivalent  27.5%  37.9%  43.3%
Mutual 1.2% 2.4% 4.4%
Equivalent  18.8% 25.2%  31.2%
n = 200 m = 200 - - 71\{[171’67112}17777%.9%777757(797 _ ,6;7,(79 .
Equivalent  26.3% 35.4%  41.2%
Mutual 5.5% 8.75%  11.15%
Equivalent 38.3%  47.75% 53.55%
Mutual 1.98% 2.8% 4.13%
Equivalent  23.46%  31.45%  38.4%
n=2300 m=2300 -- ,Ml,lt,uiﬂ, - ?,)'il%, - ,4;6%, _ ,6;4,6%, ,
Equivalent  34.46%  44.76%  50.4%
Mutual 5.62% 8.89%  11.32%
Equivalent  46.25%  56.13%  61.2%
Mutual 1.6% 3.2% 5%
Equivalent 27.3% 36.5% 43.5%

Mutual 2.9% 4.95% 6.2%
n=400 m=400 ---------- - - - -~

Equivalent  50.97%  60.82%  66.32%

Table 5.2: Reduction percentage per setting of Section 5.1.3.
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e=1 e=2 =3

m=25 6.7% 14.3% 18.3%

n=50 m=50 7.7% 16.3% 20%
m =100 16.9% 22.4% 27.1%

m=>50 14.3% 20% 29.9%

n=100 m =100 23% 33.4% 39%
m =200 32.7% 42.6% 47.2%

m =100 23.5% 35% 39%
n=200 m=200 372% 45.8% 52.8%
m =400 46.4% 56.6% 63.2%
m =150 34% 45.3% 51.2%

n=300 m =300 44.4% 552% 60%
m =600 57.2% 68% 73.1%

m =200 37.1% 49.5% 56%
n =400 m =400 522% 62.8% 67.7%
m =800 63.5% 73.3% 78.2%

Table 5.3: Percentage of new collaboration patterns.
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Chapter 6

Conclusion and Future work

In this thesis, we extended the classic MC nets representation scheme to cooperative
games with settings that contain either a specific type of uncertainty or overlaps among
the coalitions that agents can form.

First, we extended the Relational Rules [8], so that they describe games with over-
lapping coalitions that contain both positive and negative literals. Our proposed repre-
sentation, reduces to classic MC nets for non-overlapping settings.

Our second main contribution in this thesis, was introducing a novel succinct repre-
sentation for cooperative games under uncertainty. This representation extends the work
of [3] to allow for rules that include sets of agents, instead of just individuals; and can
be employed in open multiagent settings, possibly under uncertainty regarding the value
of collaboration patterns. We formally defined the concept of the e—=MC nets rules; the
types of merging that can occur between rules; and we proposed a polynomial algorithm
for constructing an e—MC nets representation. Moreover, we determined a theoretical
bound for the maximum information loss that our “compression process” may incur.
Then, motivated by the future work envisaged in [3], we considered equivalence classes
of agents, and put forward a variant of our algorithm which takes these into account. In
this variant it is possible to generate values for collaboration patterns that were initially
unknown to us.

We have to mention that the focus of this work is compressing the representation
of large coalitional games; however, these are, from a practical point of view, almost by
definition uncertain. Value/collaboration-related uncertainty is incorporated in the utility

function, but we do not explicitly handle it otherwise; e.g. we do not actively attempt
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to reduce it, though partly this can be “passively” achieved as a result of our scheme, as
explained in the paper (beginning of section 4.1.2 and example 5; and section 5.1.3, last
paragraph) and below. Moreover, we believe that the presence of uncertainty in large
settings, makes arguments in favor of compressing available information more compelling,
despite information loss; one would have been more reluctant to suffer information loss
if they knew information is accurate. Hence our approach is well-suited to uncertain
environments. In any case, the MC-net-like rules may be derived either from the believed
characteristic function or the actual one, if this is at hand (which is unlikely). Apart from
that, according to our assumption that we cannot fully observe the game, notice that
the exploitation of such equivalence classes can reveal the values of previously unknown
collaboration patterns.

Next, we conducted a systematic evaluation of our approach. First, we studied the
reduction percentage achieved by Algorithm 1 in various settings considering the combi-
nation of different number of agents, number of rules, and information loss margin (¢).
We compared the performance in terms of reduction percentage (RP) of the algorithm
considering solely mutual agents (Algorithm 1), against the one considering equivalent
agents (Algorithm 8) as well. Our results verified the effectiveness of our approach.
Specifically, they showed that the algorithm with mutual agents achieved an RP up to
12%, while the variant with equivalent agents achieved an RP up to 66%.

Finally, though we show it is polynomial, the complexity of the algorithm may be a
problem in wvery large settings where agents need to make decisions and form coalitions
“on-line”. However, in practice, even then compressing the representation using our
algorithm can prove to be extremely useful: e.g., Algorithm 1 can be employed “off-line”
only once for all agents originally in the setting, and then one can use the resulting
compact representation for merges of its content rules with rules involving newcomer
agents (in a batch-processing style). Moreover, note that in our larger experimental
settings, involving 400 agents and 800 rules, compression was achieved in less than a
minute on a simple laptop (15@2.2GHz).

Regarding future work, we intend to extend Algorithm 8 to perform a back-tracking
technique. That is, merges that were rejected at some point, may become feasible (i.e.,
they can be performed) due to the entry of equivalent agents in the set Qequiy of an e-MC

net rule—i.e., a MC-net-like rule r may cannot half-merge to an e-MC net rule ' since
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there are not equivalent agents in Qequiy of 77/, but after some merges in 7, the Qequiv of
r’ may contains some new equivalent agents and r can now merge to 7.

Another interesting line of research is to set acceptable bounds on the maximum
uncertainty over a collaborative pair (depending on the number of merges), and devise
methods for optimally selecting the rules to be merged in order to maximise the reduction
percentage. Moreover, further experimentation in different real-world domains is in order.
Finally, since this work extends readily into NTU-games (as discussed in Section 4.1.3),

we aim to conduct a systematic evaluation in such settings.
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Chapter 7

Appendices

7.1 Appendix A

Here we discuss work in progress that extends the classic MC nets representation to NTU
environments and more specifically to Hedonic Games.

Inspired by MC nets representation [3], we introduce a representation scheme for non-
transferable utility games, called Rule by Agent. The main idea of such representation,

is to define the preferences of agents over all possible coalitions, using sets of rules.

7.1.1 Rule by Agent representation

Let N be a finite, non-empty set of players of size |N| = n. Rule by agent representation
uses sets of rules for every agent i € N. The set of rules of agent i is denoted as R'. Such

rules have the following syntactic form:
r . Pattern — val;

where Pattern is a conjunction of m agents, with m < |N|, and val; € R. A rule is said to
apply on a coalition C' C N, denoted by r |= C, if Pattern evaluates to true for coalition
C.

Given any coalition C', we can compute the utility of C' for agent i, denoted as u;(C),

by summing the values of the rules, r € R?, that apply to C":

u; (C) = Z val;

rE=C,reR?
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As such, for every agent i, it holds that Cy =; Cy if and only if u;(C7) > u;(Cy).

Example 6 Consider a game of 3 agents N = {1,2,3}, which is described by the fol-

lowing “Rule by Agent” representation:
R'={ri:1A2—=3,1r3:1A3—=2,r3:1A2A3 =5}

RP={ry:1A2—=2r5: 1A2A3 — 4}
RP={r¢:1A3—=3,r,:1A2A3— 6}

We want to compute the utility that agent 1 and 3 will receive from coalition C; = {1, 3}.
For agent 1 we sum up the rules from R that apply to C,, while for agent 8 we are
interested for the rules of R®. Thus, we get that ui(C1) = 2 and uz(Cy) = 3. Following
the same procedure, for coalition Cy = {1,2,3} we get that u1(Cy) =3+2+5 =10 and
ug(Cy) =3+6=9. As such it holds that Cy =1 Cy and Cy =3 C4.

In the course of this work, we realize that the Rule by agent representation is largely

equivalent with the work of Hedonic coalition nets [25].

7.1.2 Rule by Values representation

As an alternative to Rule by Agent representation, we introduce the Rule by Values
representation. In this representation scheme we use a set of rules R that pertains to

every agent ¢ € N. Formally a rule of such representation has the following form:
—
r: Pattern — Val

where Pattern is a conjunction of m agents, with m < |N|, and m is a vector of size
|N|, that contains the utilities for every agent i. A common assumption regarding the
utility of any agent i, is to be considered that if ¢ does not appear in a Pattern of rule
7, he receives a utility of zero (from rule 7). Although that kind of hypothesis does not
hold in every case (i.e., Section 7.1.3.1). As an example, consider that |N| = 3 and a rule
r:1A3— {2,0,5}, we get that agent 1 will receive a value equal to 2 when r applies
to a coalition. Similarly agent 2 will receive a value equal to 0 and agent 3 will receive a

value equal to 5.
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Finally, in order to compute the utility of coalition C for agent i, we sum up the

Valli] of every rule that apply to C":

wi(C) =Y Valli]
reC

Again, for any agent 4, it holds that Cy »=; Cy if and only if u;(C}) > u;(Cy).

Example 7 For the same settings as Fxample 6 the “Rule by Values” representation s

as follows:

m A2 < {3,2,0)
i 1A3 = {2,0,3)
rs: 1A2A3 — {5,4,6}

Regarding the utilities of agents there is no difference with Example 6.

7.1.3 Additively Separable Hedonic Games (ASHGs)

Additively Separable Hedonic Games (ASHGs) [25], is a class of hedonic games where
agents preferences over coalitions are lifted from preferences over agents. That is, each
agent ¢ € N assigns a value b{ € R to every other agent j € N, meaning that ¢ sets a
value bg from the fact that j participates in C'. Agent’s i preferences for a coalition C'

corresponds to the summation of the individual values bg , Vj € C. Formally, it holds

that:
wi(C) =Y vl
jeC
Generally ASHGs is more natural to be modelled as NTU games. Thus, we will use
the “Rule by Agent” representation in order to represent such games. For each agent
i € N we hold a set of rules R?, which consists pairwise rules between agent ¢ and every
7 € N. The value, val, of a rule r : ©« A 7 — wval, is equal to b{,l. Finally, the value of

coalition C' for agent i, u;(C), is defined as:

u; (C) = Z val;

reC,re R

!The agents assign a zero value to themselves, i.e., b = 0.
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Figure 7.1: Graphical representation of Rule by agent form.

This representation can easily be extended in a graphical way if we restrict the rules
to be about pairs of agents. Supposing that we are interested in computing the value
that agent 7 holds for a coalition C'. We generate a weighted directed graph, where the
node represented agent i has only outgoing edges, while the nodes represented the rest
of the agents in C have only incoming edges.

Every edge (i,7) has a weight b/, given by the rule 7 : i A j — b}, where r € R*. An
example of such representation shown in Figure 7.1. Again to compute ¢’s utility for a
coalition C, we sum the weights of every edge that connects agent ¢ with every agent
j € C. In [2] an ASHGs can be defined as:

Definition 15 A hedonic game G = (N, =1, -+ , =) is said to be additively separable if

there exists an |N| x |N| matriz of reals M (the value matriz) such that:

C(1 iz 02 Z[f ZjEC’1 M[Zaj] Z ZkeC2 M[Z7 k:]

where MTi, j| represents the value of agent i to agent j.
Theorem 5 The “Rule by Agent” constitutes a complete representation scheme for ASHGS.

Proof. Consider an |N| x |N| matrix of real values M. The M]i, j] represents the value
that agent i holds for agent j. For every i and j we generate a rule r : i A j — M]i, j].
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Consequently we add rule r to the set of rules R'. At the end of that procedure, we get
|N| sets of rules and each one of these sets consist | V| rules. As such, we need |N| X |N|
rules in order to fully describe the game. Clearly, that is exactly the same amount of

space that we need with the M matrix. O

Theorem 6 The “Rule by Values” constitutes a complete representation scheme for

ASHGS.

Proof. Similarly to the proof of Theorem 5 it can be shown that Rule by Values repre-

|N]x|N]
2

sentation needs exactly rules in order to fully describe the game. O

Generally, the “Rule by Values” consist a more compact representation scheme than
the “Rule by Agent”.

Finally, an ASHG is called symmetric if M[i,j] = M|j,i], Vi,j = 1,---n. Using
the “Rule by Agent” representation an ASHG is called symmetric if value;; = valuej;,
Vi,j =1,---n, where value;; is the value of rule r : i A j — value;;(r € R") and valuej;

is the value of rule ' : j Ai — valuej;(r' € R?).

7.1.3.1 Partition Function Form (PFF)

A partition (or coalition structure) is a set of coalitions 7 = {C4,--- ,Cp,} such that for

every i,j = {1,--- ,m} the following conditions must be satisfied:
° Ciij:(Z), Whenl#]
* Uict,. Ci = N.

In these games, the value of a coalition depends on the coalition structure that it appears
in.

Partition function games can be expressed either in transferable (TU) or non-transferable
(NTU) utility games. As mentioned before, hedonic games is a subclass of NTU games.

In [26], a coalitional game in PFF with non-transferable utility defined as:

Definition 16 A coalitional game in partition function form (PFF) with non-transferable
utility (NTU) is defined by a pair (N, V'), where N is the set of agents, and V is a map-
ping such that for every m € Il and every coalition C C N, C € w, V(C,m) is a closed

convex subset of RICl that contains the payoff vector that players in C can achieve.
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In [12], authors provide a definition for hedonic games in partition function form.

Definition 17 A hedonic game (HG) in partition function form (PFF) is defined by a
pair (N, >), where N is the set of players, and == {=™ --- =™} with |II| = m; and
for all m; € Tl =™i= {=77 - =3}, and each =’C N; x N; is a complete, reflezive
and transitive preference relation describing agent i’s preferences over coalitions it can

participate in when m; is in place.

Generalizing ASHGs to PFF, each agent ¢ € N assigns a value b{ () to any agent j

when partition 7 is formed, and the utility of an embedded coalition (C, ) is defined as:

wl(C,m) = S b(m)

jec

Finally, it holds that (Cy, ) =; (Cq, m2) if and only if u;(Cy, m1) > u;(Cy, ma).

7.1.4 Rule by agent representation for PFF

The “Rule by agent” representation can be fully expressive in hedonic games as described
before. We extend “Rule by agent” representation into PFF by modifying the form of
rules. Specifically each agent ¢ € N holds a set of rules R, containing pairwise rules of
the following form:

r:j ANk —wval;

where j, k € N and val; € R. Intuitively each agent evaluates the collaboration of every
two agents j, k € N with a value val; and the number of rules that each set R’ contains
is |[N|?, where N is the set of agents.

However, in partition function games the value of a coalition depends on the coalition
structure that it appears in. Thus, it is more natural to model such games with rules
that considers every time the formed coalition structure 7, i.e., if a collaboration pattern
between two agents is not part of the coalition that contains agent ¢, then the utility
of i (for that collaboration pattern) may be reduced. As such the “Rule by agent”
representation for agent 7 in PFF can be defined by a set of rules R’ of the following
form:

r:jNk— f(Cim)-val;

where j, k € N, val; € R, 7 is the formed partition, C; is the coalition that contains ¢
and f: Ex — [0,1].
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7.2 Appendix B

Here we discuss the main idea of Solution concepts of an outcome and we provide a

description of the kernel that we used in Section 5 of this thesis.

7.2.1 Solution concepts

Solution concepts in cooperative game theory, define a specific way to allocate the pay-
offs among each coalition. As described in Definition 1, the characteristic function, or
utility function, maps each coalition C' to a real number. However it does not specify
the payoff allocation among the members of C'. As such, we can evaluate an outcome
according to two sets of criteria: (1)fairness, i.e., how well each agent’s payoff reflects
his contribution; and (2)stability, i.e., what are the incentives for the agents to stay in
the coalition structure [2]. Some well-known solution concepts are: Shapley value, core,

kernel, nucleolus etc.

7.2.2 Kernel

This is the solution concept that we used for this thesis in Section 5. The kernel [27]
consists of all outcomes that no player can demand a fraction of another player’s payoff.
Formally, for any player ¢ we define his surplus over the player j with respect to a payoff

vector x as the quantity:
Sij(x) =maz{v(C)—z(C) | CCN,ieC,j¢C}

This is the amount that player ¢ can earn without the cooperation of player j, by asking
a set C'\{i} to join him in a deviation, and paying each player in C\{i} what it used to
be paid under x. Now, if S; ;(x) > S, ;(z), player ¢ should be able to demand a fraction
of player j’s payoff—unless player j already receives the smallest payments that satisfies

the individual rationality condition, i.e, v({j}) [2].
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