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Abstract

Cooperative game theory studies how self rational agents interact with each other in order

to form coalitions and achieve a common goal by collaborating, while maximising their

own profits. Representing the collaborations efficiently is key for supporting coalition

formation decisions and achieving tractable computation in cooperative game settings.

Moreover, research in cooperative games often assumes that there is no uncertainty in the

settings of the game, or that agents cannot participate in many coalitions simultaneously.

In this thesis, we focus on a well-known coalitional representation scheme, the MC-nets

representation, and extend it to settings where we remove the aforementioned unrealistic

assumptions, namely having complete information and no-overlaps.

We begin by extending the Relational Rules representation, a scheme that itself ex-

tends MC-nets to cooperative games with overlapping coalitions, so that it now includes

both positive and negative literals. Our proposed representation reduces to the classic

MC nets representation for non-overlapping environments.

We then introduce a novel succinct representation scheme for cooperative games under

uncertainty, the ε-MC nets. The proposed representation is discussed first in the context

of transferable utility games, and exploits estimates over marginal contributions to form

compact rules representing collaboration patterns with potentially uncertain value.

In more detail, given a set of MC-nets rules that use prior beliefs over values instead

of the actual ones, we provide a polynomial algorithm for reaching the proposed succinct

representation. We provide theoretical results regarding the information loss (regarding

the perceived value of the agent collaboration patterns) after the compression of the

original representation of the set. We show that the loss from compressing the set is

bounded by a value directly proportional to ε, which represents an error regarding the

believed value of an original rule which we are willing to accept in order to compress the

representation.

We then extend our algorithm to exploit equivalence classes of agents. This allows

us to obtain an even more compact representation, and to derive new, previously unheld

beliefs over the value of unobserved agent collaboration patterns. Moreover, we show

that our approach extends naturally to non-transferable utility games.

We conduct a systematic experimental evaluation of our algorithm’s variants, studying

its behaviour in various realistic settings, and provide results on the compression achieved

in each evaluated setting. Our experimental results confirm the effectiveness of our

approach.
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Abstract in Greek

Η συνεργατική θεωρία παιγνίων μελετά πως ορθολογικοί πράκτορες αλληλεπιδρούν μετα-

ξύ τους προκειμένου να δημιουργήσουν συνασπισμούς ώστε συνεργαζόμενοι να πετύχουν

κάποιο κοινό στόχο, ενώ παράλληλα μεγιστοποιούν τις ατομικές τους απολαβές. Η αποδοτι-

κή αναπαράσταση των συνεργασιών στα πλαίσια ενός συνασπισμού, είναι σημαντική για την

υποστήριξη λήψης αποφάσεων σχετικά με τη δημιουργία των συνασπισμών, και γενικότερα

για την επίτευξη υπολογισμών σε συνεργατικά παίγνια. Επιπλέον, στην σχετική με συνεργα-

τικά παίγνια έρευνα, χρησιμοποιούνται συχνά οι παραδοχές ότι δεν υπάρχει αβεβαιότητα στις

ρυθμίσεις του παιχνιδιού ή/και ότι οι πράκτορες δεν μπορούν να συμμετέχουν σε πολλούς

συνασπισμούς ταυτόχρονα.

Στην παρούσα διπλωματική εργασία, επικεντρωνόμαστε σε ένα από τα πλέον γνωστά

σχήματα αναπαράστασης συνεργατικών παιγνίων, την αναπαράσταση MC-nets, και το ε-

πεκτείνουμε ώστε να αφαιρέσουμε τις προαναφερθείσες μη-ρεαλιστικές παραδοχές (δηλαδή,

αυτή της πλήρους πληροφόρησης και της μη ύπαρξης επικαλύψεων).

Η πρώτη μας συνεισφορά συνίσταται στην επέκταση της αναπαράστασης Relational

Rules, ενός πρόσφατα διατυπωμένου σχήματος αναπαράστασης που επέκτεινε εν μέρει τα

MC-nets σε συνεργατικά παίγνια με επικαλυπτόμενους συνασπισμούς χρησιμοποιώντας λο-

γικές προτάσεις με θετικά μόνο λεκτικά. Η προτεινόμενη στην παρούσα διπλωματική επέκτα-

ση, κατορθώνει να επεκτείνει πλήρως τα MC-nets, χρησιμοποιώντας για την αναπαράσταση

συνεργασιών λογικές προτάσεις που μπορεί να περιλαμβάνουν τόσο θετικά όσο και αρνητι-

κά λεκτικά. Η προτεινόμενη αναπαράσταση, αντιστοιχεί επακριβώς στην κλασική MC-nets

αναπαράσταση σε περιβάλλοντα με μη επικαλυπτόμενους συνασπισμούς.

Στη συνέχεια, προτείνουμε ένα νέο, περιεκτικό σχήμα αναπαράστασης για συνεργατι-

κά παίγνια με αβεβαιότητα, το οποίο καλούμε ε-MC nets. Η προτεινόμενη αναπαράσταση

ορίζεται αρχικά στο πλαίσιο των παιγνίων με μεταβιβάσιμη αξία (transferable utility), και εκ-

μεταλλεύεται εκτιμήσεις περιθωρίων συνεισφορών πρακτόρων για να σχηματίσει συμπαγείς

κανόνες αναπαριστώντας μοτίβα συνεργασίας με ενδεχομένως αβέβαιη αξία.

Πιο συγκεκριμένα, δεδομένου ενός σετ απόMC-nets κανόνες που χρησιμοποιούν πρότε-

ρες εκτιμήσεις αξίας συνεργασιών, παρέχουμε έναν πολυωνυμικό αλγόριθμο που επιτυγχάνει

την προτεινόμενη συμπαγή αναπαράσταση. Επιπροσθέτως, παρέχουμε θεωρητικά αποτε-

λέσματα σχετικά με την απώλεια πληροφορίας (όσον αφορά τις εκλαμβανόμενες αξίες των

μοτίβων συνεργασίας πρακτόρων) μετά τη συμπίεση της αρχικής αναπαράστασης για το σετ

κανόνων, δείχνοντας ότι φράσσεται από μια τιμή ευθέως ανάλογη με το αποδεκτό περιθώριο

απόστασης από την αξία ενός αρχικού MC-net κανόνα.

Κατόπιν, επεκτείνουμε τον αλγόριθμό μας ώστε να εκμεταλλεύεται την ύπαρξη κλάσεων



ισοδυναμιών των πρακτόρων. Αυτό μας επιτρέπει να αποκτήσουμε μια ακόμα πιο συμπαγή

αναπαράσταση, καθώς και να παράγουμε νέες, προηγουμένως ανύπαρκτες πεποιθήσεις για

τις αξίες μη-παρατηρήσιμων μοτίβων συνεργασίας πρακτόρων. Επιπλέον, δεικνύουμε ότι η

προσέγγιση μας μπορεί να επεκταθεί και σε συνεργατικά παίγνια με μή μεταβιβάσιμη αξία

(non-transferable utility games).

Τέλος, διεξάγουμε μια συστηματική πειραματική αξιολόγηση των παραλλαγών του αλγο-

ρίθμου μας, μελετώντας τη συμπεριφορά τους μέσω προσομοιώσεων σε ποικίλα ρεαλιστικά

περιβάλλοντα, και παρέχουμε αποτελέσματα σχετικά με την συμπίεση που επιτυγχάνεται σε

κάθε περίπτωση. Τα πειραματικά μας αποτελέσματα επιβεβαιώνουν την αποτελεσματικότητα

της προσέγγισής μας.
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Chapter 1

Introduction

Multiagent systems [1] or simply MAS, constitutes a well-studied field of artificial intelli-

gence, and aims to provide solutions to problems that are difficult or even impossible for

an individual agent. MAS research captures many real life scenarios as online trading,

disaster response, logistics, smart grids etc; often modeling them using game theoretic

paradigms. Cooperative game theory [2] in particular, has attracted the interest of many

MAS researchers, since it provides a rich framework for the coordination of the actions of

self-interested agents in strategic settings. In general, cooperative or coalitional games [2]

capture settings where individuals need to form coalitions in order to fulfil some compli-

cated task, which they would not be able to accomplish on their own or they can achieve

better outcomes.

In order to capture coalitional games and perform any kind of computation, we need

to find an efficient way to represent such games. The naive representation, lists every

coalition together with its value, requiring space exponential in the number of agents

in the game. As such, it is critical to find more succinct representation schemes for

coalitional games. In the past, many researchers focused their interest to find efficient

ways to represent coalitional games [3, 4, 5]. Ieong and Shoham [3], introduced the

MC-nets representation, a complete representation language for characteristc function

games. The main idea is to decompose the game into a set of rules that assign marginal

contributions to groups of agents.

Now, a common assumption in cooperative game theory is that coalitions have to be

disjoint—i.e., an agent participates in exactly one coalition at the time. Nevertheless,
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1. INTRODUCTION

such an assumption can be considered extremely restrictive, since in many real-life sce-

narios an agent can be a member of many coalitions at the same time. Supposing that

each coalition is associated with tasks to be performed by its members, many agents may

be involved with more than one task. In that case, agents may need to distribute their

resources among different coalitions, in an efficient way, in order to fulfil their goals. For

example, consider online trading agents representing individuals, and facing the challenge

of allocating their owners’ capital to a variety of projects (each funded by a coalition of

investors) at the same time [2]. Therefore, it is natural to consider that each agent holds

an amount of divisible resources (i.e., money, computational power etc.), which can invest

into different coalitions simultaneously in order to achieve his goals and to maximise his

profits. Such a scenario results in coalition structure with overlapping coalitions [6, 7].

In [8], the authors inspired by [3], introduced the Relational Rules (RRs), a repre-

sentation scheme for overlapping coalitions. Similarly to [3], a game is described by a

set of rules, while the utility of a coalition C can be computed, by summing the values

of rules that apply to C. In addition with the classic MC nets, the values of rules are

not standard, since affected by the portions of agents that participate in C. As such,

we provide an extension of RRs, that includes both positive and negative literals, that

reduces (like [8]) to MC nets for non-overlapping environments.

Another interest line of research, is to find schemes for representing large coalitional

games in an efficient way. Specifically, as the number of individuals scales up, the number

of different possible coalitions one may participate in rises exponentially. Moreover, in

large open multiagent systems, we may have hundreds or even thousands of agents which

form coalitions in order to perform complex tasks. In such large settings, it is unrealistic

to assume that we can have complete knowledge over every possible collaboration pattern

between the agents. As such, it is natural to assume that we are in a partially observed

environment, and therefore we have beliefs (estimates) over the value of potential collab-

oration patterns. Fully representing such multiagent systems can be extremely inefficient

as the number of agents rises, and such taking into consideration that the environment

is not fully observable.

In this light, here we provide a novel representation that encodes the prior beliefs of

the agents over the value of some observed collaboration patterns in a succinct way. In

order to do so, we exploit similarities on agents’ behaviour when they work with each

other, retaining the uncertainty over our beliefs within acceptable limits, with ε ∈ R+
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1.1 Contributions

signifying how far away from our perceived value of a collaboration pattern we are willing

to deviate in order to compress an original representation. Our proposed representation,

the ε−MC nets, uses the ideas above while building on the classic MC-nets representation,

in order to capture collaboration patterns with similar values among similar agents, and

encode them into compact rules.

1.1 Contributions

Our contributions in this paper are as follows. First, we generalize the proposed repre-

sentation scheme of [8], for cooperative games with overlapping coalitions. Specifically we

extend this representation scheme, which is build on the idea of well-known MC-nets [3],

in a way that includes both positive and negative literals in the patterns of the rules. At

the same time, our proposed extension, achieves the desirable reduction to classic MC

nets representation for non-overlapping settings.

Following that, we propose a novel representation for cooperative games under the

form of uncertainty we described earlier. We study the complexity of the algorithm, and

provide theoretical results regarding the information loss (regarding the perceived value

of agent collaboration patterns) after the representation’s compression, showing that it

is bounded by a value directly proportional to ε. We then extend this algorithm in a way

that exploits “equivalence classes” of agents, in order to produce an even more compact

representation of the game. This variant of the algorithm can also produce new, previously

unknown, collaboration patterns among agents. Our approach extends naturally to non-

transferable utility games. Finally, we conduct a systematic evaluation of the algorithm,

studying its behaviour in various realistic settings, and provide experimental results on

the percentage of reduction in each evaluated setting. Our experimental results confirm

the effectiveness of our approach in environments with this particular form of uncertainty.

1.2 Outline

In Chapter 2 we present all the necessary theoretical background for this thesis. We

present the basic aspects of cooperative game theory and the overlapping coalitions,

present various representation schemes , like MC nets, and discuss their use in vari-

ous settings. In Chapter 3 we extend the Relational Rules (RRs) [8] representation in
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1. INTRODUCTION

a way that considers both positive and negative literals, while preserving the desirable

characteristics of the RRs representation (including their reduction to classic MC nets for

non-overlapping settings). In Chapter 4 we introduce our novel representation scheme

for cooperative games under uncertainty. We design an algorithm that reaches such rep-

resentations, and we provide theoretical results regarding the information loss that this

representation may have. We then extend this algorithm, so that it exploits equivalence

classes of agents. In Chapter 5 we evaluate the performance of our proposed algorithms

concerning the reduction percentage (i.e., the number of rules comprising the new rep-

resentation compared to the number of the initial representation) that they achieve.

Chapter 6 acts as an epilogue for this thesis, presenting our conclusions along with future

directions of work. Finally, in Chapter 7 we extend the classic MC nets representation to

NTU environments and more specifically to Hedonic Games, while we discuss the kernel

stability concept.
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Chapter 2

Theoretical Background

In this chapter we discuss the theoretical background required for this thesis.

2.1 Cooperative Games

Game theory provides a mathematical framework for the analysis of self-interested com-

putational entities interactions. In cooperative (or coalitional) games, agents cooperate

with each other in order to achieve a specific goal and maximise their profits. By this

collaboration agents may be able to achieve goals that were impossible if they acted

individually. It is also usual that agents can gain more by cooperating with other agents.

As such, in cooperative game theory agents form some groups, which are called coali-

tions. Every coalition consists of a set of agents, that make decisions and act as a whole.

More formally, for a non-empty set of agents N = {1, · · · , n}, a coalition C is any subset

of N (C ⊆ N). It is natural to say that in cooperative games, actions are taken by group

of agents. If a group consists of all the agents then it is called the grand coalition, while

if it consists of only one agent it is called a singleton.

2.1.1 Characteristic Function Games

Characteristic function game (CFG) is a widely-studied subclass of cooperative games.

Such games are populated by a non-empty set N of agents. Moreover any CFG has a

characteristic function, known as utility function, which assigns a numeric value to every

possible coalition.
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2. THEORETICAL BACKGROUND

Figure 2.1: Classes of Cooperative Games.

Formally we define a characteristic function game as:

Definition 1 ([2]) A characteristic function game G is given by a pair (N, v), where

N = {1, ..., n} is a finite, non-empty set of agents and v : 2N → R is a characteristic

function, which maps each coalition C ⊆ N to a real number v(C). The number v(C) is

usually referred to as the value of the coalition C.

Usually in characteristic function games we consider that the coalition value v(C)

can be divided among the members that participate in C in any way. Games with such

property are said to be transferable utility games (TU games). As such, the outcome of a

TU game, is a pair 〈CS, x〉, where CS is a coalition structure, i.e., a partition of N into

coalitions, and x is a payoff vector which distributes the value among agents.

Definition 2 ([2]) Given a characteristic function game G = (N, v), a coalition struc-

ture over N is a collection of non-empty subsets CS = {C1, ..., Ck} such that

•
⋃k
j=1C

j = N , and

• Ci ∩ Cj = ∅, for any i, j ∈ {1, ..., k} such that i 6= j.

A vector x = (x1, ..., xn) ∈ Rn is a payoff vector for a coalition structure CS = {C1, ..., Ck}
over N = {1, ..., n} if

• xi ≥ 0 for all i ∈ N , and

•
∑

i∈Cj xi ≤ v(Cj) for any j ∈ {1, ..., k}.

An outcome of G is a pair (CS, x), where CS is a coalition structure over G and x is a

payoff vector for CS.
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2.1 Cooperative Games

2.1.2 Non-Transferable Utility Games

Another interesting setting of cooperative games, are the instances where the utility

cannot be transferred among the agents who collaborate, but intuitively it is assigned

to each member directly following a coalitional action. Those games are known as non-

transferable utility games (NTU games).

Formally, in such games, every coalition has a set of choices or consequences Λ =

{λ1, λ2, ...} and the agents have preferences over these choices, captured by preference

relations. As such each agent i ∈ N is associated with a preference relation �i.

Definition 3 ([2]) A preference relation on Λ is a binary relation � ⊆ Λ×Λ, which is

required to satisfy the following properties:

• Completeness: For every {λ, λ′} ⊆ Λ, we have λ � λ′ or λ′ � λ;

• Reflexivity: For every λ ∈ Λ, we have λ � λ; and

• Transitivity: For every {λ1, λ2, λ3} ⊆ Λ, if λ1 � λ2 and λ2 � λ3 then λ1 � λ3.

We say that a choice λ is preferred at least as much as choice λ′ if and only if λ � λ′.

That is, a non-transferable utility game can be defined as:

Definition 4 ([2]) A non-transferable utility game (NTU game) is given by a structure

G = (N,Λ,�1, · · · ,�n), where N = {1, · · · , n} is a non-empty set of players, Λ =

{λ, λ1, · · · } is a non-empty set of choices, v : 2n → 2Λ is the characteristic function of G,

which for every coalition C defines the choices v(C) available to C, and, for each player

i ∈ N , �i ⊆ Λ× Λ is a preference relation on Λ.

2.1.3 Partition Function Games

In many real life scenarios, the choices that a coalition C can make (or, in TU settings,

the payoff that C can earn) may depend on the coalition structure formed by all agents

in N , that is, the set of all coalitions that form a partition π of the game. Such scenarios

are modeled by partition function games or games with externalities.

A partition (or coalition structure) is a set of coalitions π = {C1, · · · , Cm} such that

for every i, j = {1, · · · ,m} the following conditions must be satisfied:

• Ci ∩ Cj = ∅, when i 6= j.
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2. THEORETICAL BACKGROUND

•
⋃
i∈1,··· ,mCi = N .

In these games, the value of a coalition depends on the coalition structure that it appears

in. As such, in [2], authors define an embedded coalition as:

Definition 5 ([2]) An embedded coalition over N is a pair of the form (C,CS), where

CS is a coalition structure over N, and C ∈ CS.

The set of all embedded coalitions over N is denoted with EN , while the set of the

embedded coalitions that contain agent i is denoted with EN(i).

Partition function games can be defined for both transferable and non-transferable

utility settings.

Definition 6 ([2]) A partition function game G is given by a pair (N,u), where N =

{1, · · · , n} is a finite non-empty set of agents and u : EN → R is a mapping that assigns

a real number u(C,CS) to each embedded coalition (C,CS).

Definition 7 ([9]) A coalitional game in partition function form (PFF) with non-transferable

utility (NTU) is defined by a pair 〈N, V 〉, where N is the set of players, and V is a map-

ping such that for every π ∈ Π and every coalition C ⊆ N , C ∈ π, V (C, π) is a closed

convex subset of R|C| that contains the payoff vector that players in S can achieve. Alter-

natively, if we consider a payoff vector in Rn for every coalition C ⊆ N (let for any i 6∈ C
the corresponding payoff be 0 or −∞), then V can be viewed as a mapping V : EN → Rn

that assigns to n-vector of real numbers to each embedded coalition (C, π).

2.1.4 Hedonic Games

Hedonic games [10] form a subclass of NTU games in which agents have preferences over

the coalitions in which they can participate. Essentially each agent has preferences over

her collaboration with the others. As such, the payoff of each agent, corresponds to their

satisfaction from the collaboration itself, while the outcome of such games is a coalition

structure. More formally, we define a hedonic game as:

Definition 8 ([11]) Let N be a finite set of agents. A coalition is a non-empty subset

of N . Let Ni = {S ⊆ N : i ∈ S} be the set of all coalitions (subsets of N) that include

agent i ∈ N . A coalition structure is a partition π of agents N into disjoint coalitions.

A hedonic coalition formation game is a pair (N,�), where � is a preference profile that
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specifies for every agent i ∈ N a reflexive, complete, and transitive binary relation �i on

Ni. We call �i a preference relation.

In [12] authors provide the following definition for hedonic games in partition function

form.

Definition 9 ([12]) A hedonic game (HG) in partition function form (PFF) is defined

by a pair 〈N,�〉, where N is the set of players, and �= {�π1 , ...,�πm} with |Π| = m;

and for all πj ∈ Π �πj= {�πj1 , ...,�
πj
n }, and each �πji ⊆ Ni × Ni is a complete, reflexive

and transitive preference relation describing agent i’s preferences over coalitions it can

participate in when πj is in place.

2.2 Overlapping Coalition Formation

Overlapping coalition formation possibly first appeared as a term in [13]. The model

assumes that agents have specific goals and capabilities and agents have to form coali-

tions in order to achieve the goals. Each agent contribute some of his capabilities in

each coalition that he participates. Dang et al. [6] presented a work that uses a greedy

algorithm for overlapping coalition formation in a multi-sensor network.

In [7], Chalkiadakis et. al. provide a model, where an agent holds some resources

that can distribute among different coalitions simultaneously. Their work extended the

classic cooperative games to cooperative games with overlapping coalitions—or overlap-

ping coalition formation games. In such model, the value of any coalition depends not

only on the agents that are its members, but also to the amount of their resources that

they contribute to it.

Formally they define an overlapping coalition formation game (OCF game) as:

Definition 10 ([7]) An OCF-game G with player set N = {1, · · · , n} is given by a

function v : [0, 1]n → R, where v(0n) = 0.

“This function v is defined on partial coalitions, i.e., vectors of the form r = (r1, · · · , rn),

where ri is the fraction of agent i’s resources contributed to this coalition; function v

maps any such coalition r to a corresponding payoff” [2].

Chalkiadakis et. al. [7] also studied the stability of their model. Specifically, they

define three stability concepts for such games—the conservative core, the refined core

Errikos Streviniotis 9 November 2020



2. THEORETICAL BACKGROUND

and the optimistic core, which generalize the classic rationality solution concept of the

core [14] to overlapping settings. Finally in [15], authors proposed the arbitrated core, a

notion that encodes the three types of core of [7].

2.3 Representation schemes

The naive solution in order to represent a coalitional game is to enumerate the payoffs to

each set of agents. As such, the required space rises exponentially to the number of agents,

making such an approach impractical for many real-world scenarios. Due to this problem,

many researchers focused their efforts on finding efficient ways to represent coalitional

games. In what follows, we briefly describe the most celebrated of those representations.

2.3.1 Induced Subgraph games

This representation was introduced by Deng and Papadimitriou [4] and uses a weighted

undirected graph in order to represent a game. Formally, a game is described by a

weighted undirected graph G = (N,E), where each node represent an agent i ∈ N . Each

edge between two nodes i and j is denoted as wi,j. The value of coalition C, denoted as

u(C) can be computed as:

u(C) =
∑

{i,j}∈C∩E

wi,j

The representation includes self-loops, since the value of any singleton can be non-zero.

Example 1 Given an induced subgraph game (Figure 2.2) with N = {1, 2, 3, 4} the value

of coalitions C1 = {1, 3, 4}, C2 = {1, 2, 3} and C3 = {1, 2, 3, 4} can be computed as:

• C1 = 5 + 7 = 12.

• C2 = 5 + 1 + 2 = 8.

• C3 = 1 + 2 + 5 + 7 = 15.
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Figure 2.2: Induced subgraph representation of Example 1.

However the Induced Subgraph representation is not a complete representation scheme,

since in the general case the value of any coalition is not determined exclusively by pairs

of agents and cannot be represented by such a graph.

2.3.2 Marginal Contribution Nets

Marginal Contribution Nets, or simply MC nets, were introduced by Ieong and Shoham

in [3] and constitute a complete representation scheme for coalitional games with trans-

ferable utility. It is widely used because of their simplicity and their ability to be fully

expressive. The basic idea of MC nets is to represent a coalitional game by a set of rules.

Every rule has the following form:

Pattern −→ V alue

where Pattern is a Boolean expression that consists only conjuctions of agents and Value

is a real number.

A rule r : p1 ∧ p2 ∧ · · · ∧ px ∧ ¬n1 ∧ ¬n2 ∧ · · · ∧ ¬ny → valr is said to apply on a

coalition C ⊆ N , denoted by r |= C, if and only if each positive literal pi exists in C, i.e,

pi ∈ C for i = 1, . . . , x, and no negative literal nj exists in C, i.e, nj 6∈ C for j = 1, . . . , y.

For example, a rule r : 1 ∧ 2 ∧ ¬3 → valr would apply to coalitions {1, 2} and {1, 2, 4},
but not to the coalitions {1, 2, 3} and {1, 4}.
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Given a coalition C, we can compute C’s utility by summing up the values of all the

rules that apply to C:

v(C) ≡
∑
r|=C

valr

Any characteristic function game can be represented by a set of such rules [3].

2.3.2.1 Embedded MC-nets

Michalak et al. in [16] proposed an extension of the above representation scheme, the

Embedded MC-nets. The embedded MC-nets are used to represent coalitional games with

externalities—i.e., in partition function form. In that work the rules refer to embedded

coalition into partitions; that is, the values of the pattern, and therefore the utility of

a coalition, depends not only on the members in the coalitions, but also on the overall

partitioning of the agents into coalitions.

The form of an embedded MC-net rule is: P0|P1 . . . Pk → V alue, where Pi, for

i = 0, . . . , k, is a pattern and V alue is a real value. An embedded MC-net rule r :

P0|P1 . . . Pk → V alue is applied on an embedded coalition (C, π) if and only if P0 |= C

and for every Pi, for i = 1, . . . k, there is at least one coalition C ′ ∈ π \ C such that

Pi |= C ′. The utility of an embedded coalition is computed by summing all rules that

apply on i: v(C, π) =
∑

r|=(C,π) r.

2.3.2.2 Weighted MC-nets

Another extension, the Weighted MC-nets, was proposed in [17] by Michalak et al., and

also conceives a representation of coalitional games with externalities. In the weighted

MC-nets, the rules take the following form: (P 1
1 ; v1

1) . . . (P 1
r1

; v1
r1

)| . . . |(P s
1 ; vs1) . . . (P s

rs ; v
s
rs),

where P j
i is a pattern containing at least one positive literal, and vji is its corresponding

value. A partition π applies on a weighted MC-net rule r if π can be partitioned into s

disjoint non-empty sets of coalitions such that π1 ∪ · · · ∪ πs = π; and for every pattern

P l
k, with l = 1, . . . , s and k = 1, . . . , rl, there is at least one coalition in πl that satisfies

pattern P l
k.
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2.3.2.3 Relational Rules

Finally, Mamakos and Chalkiadakis [8] proposed Relational Rules (RRs), an MC-nets

extension for representing overlapping coalitions. In that work, the rules are of the form:

A→
∑

i∈A πi,C

|A|
· value (2.1)

where A is a subset of agents (corresponding to positive literals), C is a coalition such

that A ⊆ C, and πi,C is the portion of the resource that agent i has invested in C—i.e.,

πi,C =
resourcei,C
resourcei

, where resourcei is the total resource quantity (continues or discrete)

that i holds and resourcei,C is the amount she has invested in C. A relational rule r

applies to a coalition C if and only if A ⊆ C; while the value of a coalition is computed by

summing the rules that apply to coalition C. Finally the Relational Rules representation

reduce to classic MC nets [3] for non-overlapping settings since it holds that
∑
i∈A πi,C
|A| = 1.

However, this reduction is possible only when the set or rules is assumed to not contain

negative literals.

Example 2 Let N = {1, 2, 3}, resource1 = 6, resource2 = 10, resource3 = 3, and let

the Relational Rules of the game be:

(r1) : {2} → π2,C · 2

(r2) : {1, 2} → π1,C+π2,C
2

· 5

(r3) : {1, 3} → π1,C+π3,C
2

· 3

Then, assume coalition C1 = {1, 2} forms, with resource1,C1 = 6 (π1,C1 =
resource1,C1

resource1
=

6
6

= 1) and resource2,C1 = 2 (π2,C1 = 2
10

= 0.2). Applying rule (r1) to C1 will result a

value π2,C · 2 = 1 · 2 = 2 and applying rule (r2) to C1 will result a value of
π1,C+π2,C

2
· 5 =

1+0.2
2
· 5 = 3. Rule (r3) does not apply in C1, since agent 3 6∈ C1. As such, the value of

coalition C1 is equal to 2 + 3 = 5.
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Chapter 3

MC nets in overlapping

environments

In this chapter we present an extension of the MC-nets representation for overlapping

settings, holding on the RRs concept.

3.1 RRs reduction to classic MC nets

As described in section 2.3.2.3, the authors in [8] introduced the Relational Rules, a rep-

resentation scheme for cooperative games with overlapping coalitions. Relational Rules,

like MC nets, use a set of rules in order to represent a coalitional game. The form of

these rules permit the reduction of Relational Rules representation to a classical MC nets

representation for non-overlapping settings, since it holds that
∑
i∈A πi,C
|A| = 1. However,

this desirable property holds without the existence of negative literals, i.e, only positive

literals.

We now extend Relational Rules in order to achieve the desired reduction in non-

overlapping settings even when negative literals are allowed. Considering a rule r and

A ⊆ N be the set of agents of r, we define the subset A+, that consist of all the positive

literals of A, and a subset A− that consist of all the negative literals. Obviously it holds

that A+ ∩ A− = ∅ and A+ ∪ A− = A.

As such, a Relational Rule r, that contains both positive and negative literals, can be
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defined as:

r : A = A+ ∪ A− −→
∑

i∈A+ πi,C + |A−| · overlap()
|A+|+ |A−|

· value = valueovl (3.1)

where A+ is the set of positive literals, A− is the set of negative literals, πi,C is the portion

of its resource that some i ∈ A+ has invested in coalition C—i.e., πi,C =
resourcei,C
resourcei

, where

resourcei is the total resource quantity (continues or discrete) that i holds and resourcei,C

is the amount she has invested in C. The overlap function is defined as:

overlap() =

{
0, if

∑
i∈A+ πi,C
|A+| 6= 0 and A+ 6= ∅.

1, else.
(3.2)

The presence of
∑
i∈A+ πi,C
|A+| in the conditions, captures the “pathological scenario”, in

which every agent i that participates in some coalition C, has zero contributions in C.

In such a case, from Equation 3.2 we get that overlap() = 1 (since
∑
i∈A+ πi,C
|A+| = 0) and

from Equation 3.1 we get that:

0 + |A−| · 1
|A+|+ |A−|

· value =
|A−|

|A+|+ |A−|
· value

That is, if all positive literals of a rule r have zero contributions for a coalition C (i.e.,

πi,C = 0,∀i ∈ A+), then r applies to C but its value depends on the ratio |A−|
|A+|+|A−|

only. Intuitively, we have a “discount factor” for the value of rule r that depends on the

number of positive literals (with zero contributions). In such case, if a rule consists of

many negative literals and the number of positive literals is small, then the “discount

factor” is small as well. As the number of positive literals (with zero contributions) raises,

the “discount factor” raises too.

If a rule r consists of only negative literals (i.e, |A+| = ∅), then from Equation 3.2 we

get that overlap() = 1 (since |A+| = ∅) and from Equation 3.1 we get that:

0 + |A−| · 1
0 + |A−|

· value = value

That is, the value of a rule that does not consist of any positive literals, does not decrease

since we are only interested on the non-existence of the negative literals.

Finally, if a rule r consist of only positive literals (i.e, |A−| = ∅), then this extension

transforms to Equation 2.1 (proposed in [8]).

We say that, a rule r applies to coalition C, denoted as r |= C, if and only if:
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• ∀x ∈ A+, x ∈ C; and

• ∀y ∈ A−, y /∈ C.

In that case, valueovl is added to the coalition value of C.

Example 3 Assume that N = {1, 2, 3, 4}, resource1 = 10, resource2 = 8, resource3 =

8, resource4 = 2, and the Relational Rules of the game are:

(r1) : {1, 2,¬4} → π1,C+π2,C+1·overlap()
3

· 10

(r2) : {1, 3} → π1,C+π3,C
2

· 5

(r3) : {4} → π4,C · 2

Let coalition C = {1, 2, 3} form, with resource1,C = 5, resource2,C = 8, resource3 = 2.

Applying rule (r1) to C will result a value of
π1,C+π2,C+1·overlap()

3
· 10 = 0.5+1+1·0

3
· 10 = 5.

Similarly, applying rule (r2) to C will result a value of
π1,C+π3,C

2
· 5 = 0.5+0.25

2
· 5 = 1.88.

Rule (r3) does not apply in C, since agent 4 6∈ C. As such, the value of coalition C is

equal to 5 + 1.88 = 6.88.

Lemma 1 ([8]) In non-overlapping games, Relational Rules reduce to MC-nets rules

without negative literals.

Proof. Let N be a non-empty set of agents in a non-overlapping game. For each agent

i ∈ N holds that πi,C = 1, since there are no overlaps and every agent participates in

exactly one coalition C. As such, for every rule r (that consist only positive literals),

using Equation 2.1, it holds that:

A→
∑

i∈A πi,C

|A|
· value =

∑
i∈A 1

|A|
· value =

|A|
|A|
· value = value

That is, RRs reduce to classic MC-nets rules in non-overlapping games.

Theorem 1 The Relational Rules representation reduce to classic MC nets representa-

tion for non-overlapping settings.
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Proof. Firstly, we consider that there are only positive literals, i.e., A− = ∅. That is,

Equation 3.1 is equal to:

A = A+ →
∑

i∈A πi,C

|A|
· value = valueovl (3.3)

Equation 3.3 is the same that introduced in [8]. As such, from Lemma 1 we know that

Relational Rules reduces to classic MC nets .

On the other hand, considering that there are only negative literals, i.e., A+ = ∅,
Equation 3.1 transforms to:

A =A− → |A
−| · overlap()
|A−|

· value⇒

A− → |A
−| · 1
|A−|

· value⇒

A− → value = valueovl (3.4)

As such, Relational Rules reduces to classic MC nets in that case too.

Finally, we consider that there are both positive and negative literals, i.e., A+ 6= ∅
and A− 6= ∅. For non-overlapping coalitions it holds that:

A =A+ ∪ A− −→
∑

i∈A+ πi,C + |A−| · overlap()
|A+|+ |A−|

· value⇒

A+ ∪ A− −→
∑

i∈A+ 1 + |A−| · 1
|A+|+ |A−|

· value⇒

A+ ∪ A− −→ |A
+|+ |A−|

|A+|+ |A−|
· value⇒

A+ ∪ A− −→ value = valueovl (3.5)
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ε-MC nets

In this chapter we describe the ε−MC nets representation scheme. First we discuss

environments for ε−MC nets, i.e., large open multiagent systems with uncertainty. Then

we present the form of ε−MC nets rules along with an algorithm that constructs the

ε−MC nets representation. We propose a variant of the algorithm that exploits prior

knowledge over the agents in order to exploit their perceived similarities and achieve an

even more compact representation. To do so, we also define a notion of agent equivalence

in the process. This variant of the algorithm can also produce new, previously unknown,

collaboration patterns among agents. Finally, our approach extends naturally to non-

transferable utility games.

4.1 Multiagent Environments with Uncertainty

In multiagent environments where we have a large number of agents, it is unrealistic to

assume perfect and complete information. That is, the number of different coalitions

rises exponentially, and a prevalent assumption that we are aware of the utility of each

one of these coalitions cannot stand.

The issue of uncertainty has gained a lot of attention in the game theory community,

and there is a host of research papers tackling the problem. For instance, [18] proposes

a class of cooperative games where agents are uncertain about their partners’ type, and

express beliefs over the type of other agents. The authors in [19] study a series of strategies

and protocols for coalition formation under uncertainty; while [20] provides a definition

of Transferable Utility Games with Uncertainty (TUU). According to this definition a
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TUU G is a tuple 〈N, S, v, u〉, where N is a set of agents; S is a finite set of states; vs is a

characteristic function for state s ∈ S; and ui assigns to every profile of payoffs a utility

level.

In our work we consider environments with uncertainty over the utility of coalitions.

Let N be a non-empty set of agents, and v be an underlying characteristic function of

some TU game. Function v is hidden to the whole system, however we have in our

disposal a function that comprises beliefs over coalitions’ utility.

Definition 11 (Believed Characteristic Function) Given a TU game G = 〈N, v〉
where v is an unknown characteristic function, a function ṽ : A → R, where A ⊆
2N , constitutes a believed characteristic function estimating the underlying characteristic

function v.

That is, ṽ(C) corresponds to an estimate of the utility of coalition C (e.g., inferred by

past observations), rather than to the actual v(C).

4.1.1 ε-MC nets Rules

Given a set of agents N , assume we have estimates on collaborations between pairs of

agents, i.e., we have rules of the form i∧ j → val, where i and j refers to an agent ai ∈ N
and aj ∈ N respectively, either as a positive (i ≡ ai) or a negative literal (i ≡ ¬ai); and

val is our estimate about collaboration pattern i ∧ j. Intuitively, pairwise collaborations

can be considered as the basis for estimating the utility of collaboration with many agents.

This concept suggests that larger collaboration patterns follow an additive behaviour. We

will refer to such rules as “MC-net-like” rules.

Definition 12 (MC-net-like Rules) An MC-net-like rule r is of the form Pattern→
val, where Pattern is restricted to pairs of agents, where an agent is represented by either

a positive or a negative literal; and val is an estimate about the utility that portrays the

collaboration between the agents indicated by the pattern, where val is provided by a

believed characteristic function ṽ.

Having a set of MC-net-like rules at hand, we can build a ṽ : A → R such that A =

{C ⊆ N : ∃ri s.t. ri |= C}, and ṽ(C) =
∑

ri|=C vali, where ṽ is the believed characteristic

function, and vali is the value of the ith MC-net-like rule that applies to C. In the ε−MC

net representation we propose a compact set of rules originating from a set of MC-net-like
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rules, by merging patterns and regulating the value correspondingly. Now we are ready

to define the ε−MC net rules.

Definition 13 (ε−MC net Rule) An ε−MC net rule is of the form i ∧ CG → val,

where i ∈ N is called the reference agent, CG ⊆ N is a subset of agents called its collab-

orators group, and val ∈ R expresses the estimate1 we have on the value of collaboration

pattern between agent i and any agent j ∈ CG.

Intuitively, the reference agent corresponds to the “common agent” for all agents in the

collaborating group, such that by establishing a collaboration between i and any agent

j in CG, has an expected value val provided by the believed characteristic function; and

ε ∈ R+ signifies how far from the ṽ value, according to the MC-net-like rules at hand,

we are willing to depart in order to compress an original MC-net-like representation. In

other words, ε represents the margin of information loss we are willing to accept in order

to compress the representation. Naturally, the larger the ε, the wider these margins are,

and therefore the more compact the representation will be.

In the process of compressing the initial MC-net-like rules to a final set of ε−MC nets

rules, we distinguish two types of merging: (a) the full-merge, and (b) the half-merge.

The full merge describes the merge of two MC-net-like rules that produces a new ε−MC

net rule. A full merge can occur if there is a mutual agent between the rules, and if the

values of the two rules differ by at most ε, where ε is the margin of information loss

that we are willing to accept. Formally, two MC-net-like rules r : i ∧ j → vali,j and

r′ : k ∧ l→ valk,l can be full-merged iff:

(I) i ≡ k or i ≡ l or j ≡ k or j ≡ l. Remember that i,j,k and l are positive or negative

literals, thus if it stands for example that i ≡ k it means that they are both referring

to the same agent, and they are both positive or both negative; and

(II) |vali,j − valk,l| ≤ ε .

The resulting ε−MC net rule is rmerged : amutual ∧ CG → vali,j+valk,l
2

, where amutual is

the mutual agent, and CG contains the non-mutual agents. The second type of merges,

the half-merge, describes a merge of an MC-net-like rule r to an ε−MC net rule r′. A

half-merge rule can occur if the reference agent of the ε−MC net exists in the pattern

1Nothing in our model precludes val from being the actual value of i ∧ CG.
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of the MC-net-like rule; if the values of the two rules differ by at most ε, similarly to

full-merge; and if the value of the soon-to-be-produced ε−MC net rule is bounded by

the maximum and the minimum value of the rules merged to r′ so far. Formally, let an

ε−MC net rule r : i ∧ CG→ valCG, with valCG the value of rule r. Also let VCG be the

set containing all the values of the rules merged so far to produce r. Consider now an

MC-net-like rule r′ : j ∧ k → valj,k. Then, r′ can be merged with r if and only if:

(III) i ≡ j or i ≡ k, where two literals are identical if they refer to the same agent, and

they are both positive or both negative; and

(IV) valCG − ε ≤ valj,k ≤ valCG + ε; and

(V) maxv∈VCG
v − ε ≤ valCG·|VCG|+valr′

|VCG|+1
≤ minv∈VCG

v + ε.

The newly merged rule is denoted as:

rmerged : i ∧ CG′ → valCG · |VCG|+ valj,k
|VCG|+ 1

,

where CG′ ≡ CG ∪ {anon−mutual}, anon−mutual corresponds to agent j if i ≡ k or to agent

k if i ≡ j.

Algorithm 1 performs a series of such merges, compressing the initial set of rules R to a

succinct representation captured in a generated set R′ of ε−MC nets rules. Its complexity

is quadratic to the number of the initial MC-net-like rules. Going through Algorithm 1,

we see that the outer loop in line 3 needs exactly m iterations, where m is the size of the

initial set of MC-net-like rules. The inner loop in lines 11-23 needs at most m iterations;

while the condition in lines 12 is trivial—specifically in the case of full-merge we need 4

comparisons for detecting the reference agent, and 2 comparisons for the value condition;

while in the case of half-merge we need 2 comparisons for detecting the reference agent,

and 4 comparisons for the two value conditions. As such the complexity of the algorithm

is O(6 ·m2), where m is the total number of the initial MC-net-like rules (i.e., the size of

the R set). According to the algorithm, a final ε−MC net rule is derived from κ merges,

that is (i) a single full-merge, and (ii) κ − 1 half-merges, with κ = 1, 2, . . . . Example 4

illustrates Algorithm 1’s functionality.

Errikos Streviniotis 22 November 2020



4.1 Multiagent Environments with Uncertainty

Algorithm 1 Merging MC-net-like Rules

1: R← initial set of MC-net-like rules of size m;

2: R′ ← ∅;
3: for r ∈ R do

4: CG← ∅;
5: κ← 0;

6: VCG ← valr;

7: min← minv∈VCG
{v};

8: max← maxv∈VCG
{v};

9: avg← valr;

10: remove r from R;

11: for r′ ∈ R do

12: if CanFullMerge(r, r′) OR CanHalfMerge(r, r′) then

13: add valr′ in VCG;

14: add non mutual agents in CG;

15: min← minv∈VCG
{v};

16: max← maxv∈VCG
{v};

17: avg← avg ·|VCG|+valr′
|VCG|+1

;

18: κ← κ+ 1;

19: rnew ← amutual ∧ CG→ avg; {# intermediate rule}
20: r ← rnew;

21: remove r′ from R;

22: end if

23: end for

24: add r in R′;

25: end for

26: return R′;

Algorithm 2 CanFullMerge(r, r′)

1: if r and r′ satisfy Cond. (I) AND (II) then

2: return True;

3: end if

4: return False;
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Example 4 Consider a set of 5 agents N = {1, 2, 3, 4, 5}, and the following initial MC-

net-like rules in R:

(r1) : 1 ∧ 2→ 5

(r2) : 3 ∧ 4→ 6

(r3) : 1 ∧ 4→ 7

(r4) : 3 ∧ 2→ 16

(r5) : 4 ∧ 5→ 7

Moreover, we let ε (the accepted information loss) be equal to 1. Employing Algo-

rithm 1 on the above set of rules we get the following result. We begin with rule r1, and

we set the variables max = 5,min = 5, avg = 5. The rules that share mutual agents with

r1 are r3 and r4; however, none of the two can be full-merged with r1 since the condi-

tion (II) does not hold for any of the two rules. Rule r1 remains intact, we move to rule

r2, and set the variables to max = 6,min = 6, avg = 6. Rule r2 shares a mutual agent

with rules r3, r4 and r5. Rules r2 and r3 can be full-merged since 6 − 1 ≤ 7 ≤ 6 + 1

(condition (II)); so we add 1 and 3 in CG, we set VCG = {6, 7}, we update the vari-

ables max = maxv∈VCG
{v} = 7,min = minv∈VCG

{v} = 6, avg = 6.5, we generate a new

rule r6 : 4 ∧ {1, 3}, and replace r2 with r6 as well as remove r3 from R. Now instead

of looking for rules with mutual agents with rule r2, we use rule r6, and specifically we

are looking for rules containing the reference agent 4. The pattern of rule r4 does not

contain the reference agent of r6, while rule r5 does. Rule r5 can be half-merged to rule

r6 since 6.5 − 1 ≤ 7 ≤ 6.5 + 1 (condition (IV)) and 7 − 1 ≤ 6.5·2+7
2+1

≤ 6 + 1 (condi-

tion (V)). Now we add agent 5 in CG, we set VCG = {6, 7, 7}, we update the variables

max = maxv∈VCG
{v} = 7,min = minv∈VCG

{v} = 6, avg = 6.667, we generate a new rule

r7 : 4 ∧ {1, 3, 5}, and replace r6 with r7 as well as remove r5 from R.

At the end of this process, we have a new, more compact representation with the

following rules:

(r1) : 1 ∧ 2→ 5

(r4) : 3 ∧ 2→ 16

(r7) : 4 ∧ {1, 3, 5} → 6.667
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Algorithm 3 CanHalfMerge(r, r′)

1: if r and r′ satisfy Cond. (III) AND (IV) AND (V) then

2: return True;

3: end if

4: return False;

Intuitively, the ε-MC nets representation detects similar collaboration patterns. For

instance, in a setting where agents acquire skills, a rule i∧CG→ val could be interpreted

as: if we combine the skills of agent i with the skills of any agent in CG we observe a

similar change in the utility of the coalition; that is, agents in CG have similar skill-sets

that impact the outcome similarly.

We have to mention that the (final) set of rules R′ that our algorithm will produce,

depends on the sequence of merges that will take place, i.e., for the same initial set of

rules, R, if we change the order of the initial rules, then our algorithm will produce a

different representation R′.1

4.1.1.1 Bounds on the values of ε−MC nets rules

Next in Theorem 4, we show that our estimate of the value of any collaboration pair

given by an ε−MC net rule, lies in a distance of at most κ · ε from our initial estimate

on the values of the rules merged in order to reach the ε−MC net rule. As such, we

provide a bound on the maximum information loss incurred by using our “compressed”

representation instead of an MC-net-like one.

Lemma 2 For any half-merge between an MC-net-like rule rx and ε−MC net rule ry

producing a new ε−MC net rule rz, it holds that: |valz − valy| ≤ ε.

Proof. Let rx : i∧ j → valx be an MC-net-like rule, and ry : i∧CG→ valy be an ε−MC

net rule with VCG containing all the values of the rules that have been merged in ry,

so far. We assume that rx can be half-merged with ry (i.e., the conditions (III), (IV),

and (V) are satisfied), producing a new ε−MC net rule rz : i∧ (CG∪{j})→ valz. From

half-merge condition (IV) we have that:

valy − ε ≤ valx ≤ valy + ε (4.1)

1This opens the possibility for a variant of our algorithm that employs randomized sequences of the

initial set of rules
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Moreover due to the way we construct the new ε−MC net rule rz, it holds that

valz =
valy · |VCG|+ valx
|VCG|+ 1

⇒ valx = (|VCG|+ 1) · valz − |VCG| · valy (4.2)

Combining Equations (4.1) and (4.2) we have that:

valy − ε ≤ (|VCG|+ 1) · valz − |VCG| · valy ≤ valy + ε⇒
|VCG| · valy + valy − ε ≤ (|VCG|+ 1) · valz ≤ |VCG| · valy + valy + ε⇒
(|VCG|+ 1) · valy − ε ≤ (|VCG|+ 1) · valz ≤ (|VCG|+ 1) · valy + ε⇒

− ε

|VCG|+ 1
≤ valz − valy ≤

ε

|VCG|+ 1
⇒

|valz − valy| ≤
ε

|VCG|+ 1
≤ ε⇒

|valz − valy| ≤ ε

Lemma 3 For any half-merge between an MC-net-like rule rx and ε−MC net rule ry

producing a new ε−MC net rule rz, it holds that: |valz − valx| ≤ ε.

Proof. Let rx : i∧ j → valx be an MC-net-like rule, and ry : i∧CG→ valy be an ε−MC

net rule with |VCG| containing all the values of the rules that have been merged in ry,

so far. We assume that rx can be half-merged with ry (i.e., the conditions (III), (IV),

and (V) are satisfied), producing a new ε−MC net rule rz : i ∧ (CG ∪ {j})→ valz. Due

to the way we construct the new ε−MC net rule rz, it holds:

valz =
|VCG| · valy + valx
|VCG|+ 1

⇒

valz − valx =
|VCG| · valy + valx
|VCG|+ 1

− valx ⇒

valz − valx =
|VCG| · valy + valx − (|VCG|+ 1) · valx

|VCG|+ 1
⇒

valz − valx =
|VCG| · valy − |VCG| · valx

|VCG|+ 1
⇒

valz − valx =
|VCG|
|VCG|+ 1

· (valy − valx) (4.4)

From half-merge condition (IV) we have that:

valy − ε ≤ valx ≤ valy + ε ⇒
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− ε ≤ valy − valx ≤ ε ⇒

− |VCG|
|VCG|+ 1

· ε ≤ |VCG|
|VCG|+ 1

· (valy − valx) ≤
|VCG|
|VCG|+ 1

· ε ⇒

− ε ≤ |VCG|
|VCG|+ 1

· (valy − valx) ≤ ε (4.5)

Combining Equations (4.4) and (4.5) we have that:

−ε ≤ valz − valx ≤ ε⇒ |valz − valx| ≤ ε.

Theorem 2 For every ε−MC net rule rmerged derived by one full-merge and κ− 1 half-

merges, and for the two MC-net-like rules rx and ry (with estimates valx and valy) that

participate in the full-merge, it holds that: |valmerged−valx| ≤ κ ·ε and |valmerged−valy| ≤
κ · ε.

Proof. Let an ε−MC net rule rmerged : i ∧ CG → valmerged produced by κ merges (1

full-merge and κ− 1 half-merges); and let rx : i ∧ j → valx and ry : i ∧ k → valy be the

two initial MC-net-like rules participating in the full-merge (first merge) in progress of

reaching final rmerged : i ∧ CG→ valmerged.

Base Case: Rules rx and ry can be full-merged and produce an ε−MC net r1 : i∧{j, k} →
val1, with {j, k} ⊂ CG, and val1 = valx+valy

2
. As such at step 1, from condition (II) we

have that:

−ε ≤ valy − valx ≤ ε⇒ 2 · valx − ε
2

≤ valx + valy
2

≤ 2 · valx + ε

2

−ε
2
≤ val1 − valx ≤

ε

2
⇒ |val1 − valx| ≤

ε

2
≤ ε (4.6)

Induction step: After κ − 1 merges (1 full-merge and κ − 2 half-merges), we have

produced an ε−MC net rule rκ−1 : i∧CGκ−1 → valκ−1, where CGκ−1 = {j, k, l, . . . } ⊂ CG

contains κ agents. Our hypothesis is that it holds:

|valκ−1 − valx| ≤ (κ− 1) · ε (4.7)

In step κ we have a half-merge of rz : i ∧ m → valz to rκ−1, and produce a rule

rκ : i ∧ (CGκ−1 ∪ {m}) → valκ, where CGκ−1 ∪ {m} ≡ CGκ, and valmerged ≡ valκ =
valκ−1·(κ−1)+valz

κ
. From Lemma 2 it holds that:

|valκ − valκ−1| ≤ ε (4.8)
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Summing (4.7) and (4.8) we have:

− (κ− 1) · ε− ε ≤ valκ − valκ−1 + valκ−1 − valx ≤ (κ− 1) · ε+ ε⇒
κ · ε ≤ valκ − valx ≤ κ · ε⇒ |valκ − valx| ≤ κ · ε (4.9)

Similarly we can show that the same holds for valy of ry, thus two MC-net-like rules

composing the full-merge it holds that after κ merges we have |valκ − valx| ≤ κ · ε and

|valκ − valy| ≤ κ · ε.

Theorem 3 For any MC-net-like rule rz that is half-merged to the intermediate1 rule

ε−MC net at step λ when producing a final ε−MC net rule rmerged after κ merges, it

holds |valmerged − valz| ≤ (κ− λ+ 1) · ε.

Proof. Let an ε−MC net rule rmerged : i ∧ CG → valmerged produced by κ merges (1

full-merge and κ − 1 half-merges); and rz is an MC-net-like rule that is half-merged at

step λ (with 2 ≤ λ ≤ κ) with intermediate rule rλ with value valλ, in progress of reaching

final rmerged : i ∧ CG→ valmerged.

Base Case From Lemma 3 we know that |valλ − valz| ≤ ε.

Induction step Our hypothesis is that at step κ− 1 (after 1 full-merge and κ− 1 half-

merges) it holds |valκ−1− valz| ≤ (κ− 1− λ+ 1) · ε. At step κ Equation (4.8) stands, so

by summation we have:

− (κ− λ) · ε− ε ≤ valκ − valκ−1 + valκ−1 − valz ≤ (κ− λ) · ε+ ε⇒
− (κ− λ+ 1) · ε ≤ valκ − valz ≤ (κ− λ+ 1) · ε⇒

Thus we have that |valκ − valz| ≤ (κ− λ+ 1), where valκ ≡ valmerged.

Theorem 4 For any MC-net-like rule r : i ∧ j → val that is merged (either full- or

half-merged) in the process of reaching an ε−MC net rule rmerged after κ merges, it holds

|valmerged − val| ≤ κ · ε.

Proof. From Theorem 2 we have that for the two rules rx and ry participating in the

full-merge it holds |valmerged−valx| ≤ κ · ε and |valmerged−valy| ≤ κ · ε. From Theorem 3

we have that for any rule rz being half-merges at any step λ (with 2 ≤ λ ≤ κ) it holds

that |valmerged − valz| ≤ (κ− λ+ 1) · ε 2≤λ≤κ⇒ |valmerged − valz| ≤ κ · ε.
1See line 19 of Algorithm 1.
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4.1.1.2 Bounding the number of merges per ε-MC net rule

Note that we can easily adapt Algorithm 1 so that the resulting succinct representation

consists of a set of ε-MC nets rules, where for each such rule r it holds that the value

of r, i.e. valr, is at most κmax · ε away from our initial MC-net-like estimates. That is,

we can define an upper bound κmax on the number of merges that we allow per ε-MC

net rule. As such, we introduce Algorithm 4 that permits κmax number of merges for

every ε-MC net rule. Compared to Algorithm 1, in Algorithm 4 we need to check the

additional condition (line 13) whether the total number of merges (for a specific ε-MC

net rule) is greater than κmax. The complexity of Algorithm 4 remains O(m2), where m

is the size of the R set of rules, since checking the new condition is trivial.

4.1.1.3 Rules with larger collaborative patterns

Our work so far considers MC-net-like rules containing only collaborative pairs. However,

with a slight change on Algorithm 1 we can consider initial rules with patterns containing

more than two literals. In this variant the ε−MC nets rules will be of the form:

i ∧ CG→ val

where CG now is a set of sub-patterns, e.g., CG =
{
{j ∧ k}∨ {l∧ o∧ p}∨ {q}

}
, which is

produced by merging rules r1 : i∧j∧k → val1, r2 : i∧l∧o∧p→ val2, and r3 : i∧q → val3.

In this case, again, we distinguish the same two types of merging (full-merge and

half-merge). However, the conditions that need to stand true must be slightly changed.

Specifically, two rules r1 : Pattern1 → val1 and r2 : Pattern2 → val2, where Pattern1

and Pattern2 are a conjunction of g agents (2 ≤ g ≤ |N |), can be full-merged iff:

(VI) i ≡ j, where i is any agent in Pattern1 and j represents the same agent, in Pattern2.

Remember that i and j denote positive or negative literals, thus if it holds for

example that i ≡ j, it means that they are both referring to the same agent, and

they are both positive or both negative; and

(VII) |val1 − val2| ≤ ε .
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Algorithm 4 Bounded number of merges per ε-MC net rule

1: R← initial set of MC-net-like rules of size m;

2: R′ ← ∅;
3: for r ∈ R do

4: CG← ∅;
5: κ← 0;

6: VCG ← valr;

7: min← minv∈VCG
{v};

8: max← maxv∈VCG
{v};

9: avg← valr;

10: κmax ← maximum number of merges;

11: remove r from R;

12: for r′ ∈ R do

13: if κmax < κ then

14: break;

15: end if

16: if CanFullMerge(r, r′) OR CanHalfMerge(r, r′) then

17: add valr′ in VCG;

18: add non mutual agents in CG;

19: min← minv∈VCG
{v};

20: max← maxv∈VCG
{v};

21: avg← avg ·|VCG|+valr′
|VCG|+1

;

22: κ← κ+ 1;

23: rnew ← amutual ∧ CG→ avg;

24: r ← rnew;

25: remove r′ from R;

26: end if

27: end for

28: add r in R′;

29: end for

30: return R′;
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The resulting ε−MC net rule is rmerged : amutual∧CG→ val1+val2
2

, where amutual is the

mutual agent, and CG = {Pattern′1, Pattern′2}, where Pattern′1 = Pattern1\{i} and

Pattern′2 = Pattern2\{j}.
Similarly, given an ε-MC net rule r : i ∧ CG → valCG, where CG is a set of sub-

patterns and VCG is the set containing all the values of the rules merged so far to produce

r; and a rule r3 : Pattern3 → val3, we say that r3 can be merged with r iff:

(VIII) i ≡ j, where j ∈ Pattern3. The two literals are identical if they refer to the same

agent, and they are both positive or both negative; and

(IX) valCG − ε ≤ val3 ≤ valCG + ε; and

(X) maxv∈VCG
v − ε ≤ valCG·|VCG|+val3

|VCG|+1
≤ minv∈VCG

v + ε.

The newly merged rule is denoted as:

rmerged : i ∧ CG′ → valCG · |VCG|+ val3
|VCG|+ 1

,

where CG′ ≡ CG ∪ {Pattern′3} and Pattern′3 = Pattern3\{j}.
We can easily show that the Theorems and Lemmas presented in Section 4.1.1.1, hold

as well in this scenario, using the notion of auxiliary agents. Essentially, we will substitute

each additional collaboration pattern that is presented in the rule for an auxiliary agent.

Proposition 1 Lemmas 2, 3 and Theorems 2, 3, 4 hold for larger collaborative patterns

as well.

Proof. Let N = {i, j, k,m, n, q, o, w} be a set of agents and we have the following rules:

(r1) : i ∧ j ∧ k → val1

(r2) : i ∧m ∧ n ∧ q → val2

(r3) : i ∧ w ∧ o→ val3
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which constitute a game G. Considering that r1 and r2 can full-merged—i.e., the condi-

tions (VI) and (VII) are satisfied—we get the new ε-MC net rule:

r4 : i ∧ {{j ∧ k}, {m ∧ n ∧ q}} → val4

where val4 = val1+val2
2

. Then, considering that r3 and r4 can half-merged—i.e., the

conditions (VIII), (IX) and (X) are satisfied—we get:

r5 : i ∧ {{j ∧ k}, {m ∧ n ∧ q}, {w ∧ o}} → val5

where val5 = val1+val2+val3
3

.

Let x be an auxiliary agent, that represents the pattern p1 = j ∧ k. Similarly, the

auxiliary agents y and z represents the patterns p2 = m∧n∧q and p3 = w∧o respectively.

Note that here we abuse the term of an agent since our new agents x, y and z are in

fact patterns of agents. Then, we can build a new game G′ with N ′ = {i, x, y, z} and the

rules:

(r′1) : i ∧ x→ val1

(r′2) : i ∧ y → val2

(r′3) : i ∧ z → val3

In such game, the Theorems and Lemmas (from Section 4.1.1.1) hold. Considering that

r′1 and r′2 can full-merged—i.e., the conditions (I) and (II) are satisfied—we get the new

ε-MC net rule:

r′4 : i ∧ {x, y} → val4

where val4 = val1+val2
2

. As such, from Lemma 2 we have that |val4−val1| ≤ ε and |val4−
val2| ≤ ε. Then, considering that r′3 and r′4 can half-merged—i.e., the conditions (III),

(IV) and (V) are satisfied—we get:

r′5 : i ∧ {x, y, z} → val5

where val5 = val1+val2+val3
3

. As such, from Lemma 3 we have that |val5− val3| ≤ ε. With

Lemma 2 and 3 at hand, Theorems 2 and 3 hold in game G′, and therefore Theorem 4

give us the following result:

• |val5 − val1| ≤ κ · ε, where κ = 2.
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• |val5 − val2| ≤ κ · ε, where κ = 2.

• |val5 − val3| ≤ κ · ε, where κ = 2.

Since r′1 is equivalent to r1, r′2 is equivalent to r2 and r′3 is equivalent to r3, the Lemmas

and Theorems that hold for r′1, r′2 and r′3 (game G′) also hold for r1, r2 and r3 (game G).

Note that, conditions (I) and (II) for r′1 and r′2 correspond to conditions (VI) and (VII) for

r1 and r2, respectively. Similarly, conditions (III), (IV) and (V) for r′3 and r′4 correspond

to conditions (VIII), (IX) and (X) for r3 and r4, respectively. As such, for each game

G with larger collaborative patterns, all of the Lemmas and Theorems of Section 4.1.1.1

hold as well.

As such, we propose Algorithm 5, that performs a series of such merges. Obviously,

Algorithm 1 consists a sub-case of Algorithm 5, since it operates with only pairwise rules

(i.e., g = 2). Asymptotically Algorithm 5 has a computational complexity of O(m2),

where m is the size of R set of rules.

Nevertheless, in the rest of this thesis we consider initial rules with collaborative pairs.
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Algorithm 5 Merging rules with larger collaborative patterns

1: R← initial set of MC-net-like rules of size m;

2: R′ ← ∅;
3: for r ∈ R do

4: CG← ∅;
5: κ← 0;

6: VCG ← valr;

7: min← minv∈VCG
{v};

8: max← maxv∈VCG
{v};

9: avg← valr;

10: remove r from R;

11: for r′ ∈ R do

12: if CanFullMergePetterns(r, r′) OR CanHalfMergePatterns(r, r′)

then

13: add valr′ in VCG;

14: add the sub-patterns without the mutual agent in CG;

15: min← minv∈VCG
{v};

16: max← maxv∈VCG
{v};

17: avg← avg ·|VCG|+valr′
|VCG|+1

;

18: κ← κ+ 1;

19: rnew ← amutual ∧ CG→ avg;

20: r ← rnew;

21: remove r′ from R;

22: end if

23: end for

24: add r in R′;

25: end for

26: return R′;
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Algorithm 6 CanFullMergePatterns(r, r′)

1: if r and r′ satisfy Cond. (VI) AND (VII) then

2: return True;

3: end if

4: return False;

Algorithm 7 CanHalfMergePatterns(r, r′)

1: if r and r′ satisfy Cond. (VIII) AND (IX) AND (X) then

2: return True;

3: end if

4: return False;

4.1.2 Equivalent Agents

In this section we discuss a variant of the ε-MC nets representation that exploits not only

mutual agents, but also equivalence classes of agents: agents belonging in the same class

may have similar behaviour, preferences or properties—for example, in a search & rescue

mission all firefighters comprise one equivalence class, while all nurses another. Consider-

ing equivalences among agents we manage to: (a) compress even more the representation

compared to the initial version; (b) extract underling patterns that were not observed in

the initial set of MC-net-like rules.

Definition 14 (Equivalent Agent) Given a set of agents N , and a similarity metric

s : N ×N → [0, 1], two agents i and j are equivalent if and only if s(i, j) ≥ threshold.

The threshold denotes the minimum similarity degree for two agents in order for them to

be equivalent, and depends on the problem at hand. Note also that any similarity metric

s of choice can be used given a real-world scenario of interest. In Section 5.1.3 below we

demonstrate how to employ to this purpose specific correlation metrics that are used in

many real life scenarios.

Now, given Definition 14 above, we obtain a new version of ε-MC nets representation,

where the rules take the form:

Ωequiv ∧ CG→ val (4.11)

Errikos Streviniotis 35 November 2020



4. ε-MC NETS

where Ωequiv is a set of equivalent agents and it replaces the reference agent of the initial

representation. In words, a rule Ωequiv ∧CG→ val is interpreted as: Our estimate of the

collaboration between any agent i ∈ Ωequiv with any agent j ∈ CG is equal to val.

In order to take advantage of equivalence classes, we need to modify Algorithm 1

slightly. Specifically we need to alter line 12 so it checks if the rules r and r′ have agents

in the same equivalence class. We consider that for every agent i ∈ N , there is a list

Equivi, which contains all the agents that are equivalent with agent i. It also natural

to assume that if j ∈ Equivi then it holds that i ∈ Equivj. As such, considering two

MC-net-like rules r : i ∧ j → vali,j and r′ : k ∧ l → valk,l, for the full-merge, we have to

replace condition (I) with the following condition:

(XI) i ∈ Equivk or i ∈ Equivl or j ∈ Equivk or j ∈ Equivl. Remember that i,j,k and

l are positive or negative literals, thus if it stands for example that i ∈ Equivk it

means that they are both positive or both negative;

Similarly, considering an ε−MC net rule r : Ωequiv ∧ CG → valCG and an MC-net-like

rule r′ : j ∧ k → valj,k, for the half-merge, we have to replace the condition (III) with the

following condition:

(XII) For every z ∈ Ωequiv, j ∈ Equivz or k ∈ Equivz, where two literals are identical if

they are both positive or both negative;

As such, we introduce Algorithm 8 that exploits equivalence classes of agents.

This modification changes the complexity of the algorithm to O(n ·m2), where n is

the number of agents in the system, and m is the size of the initial MC-net-like rules set.

That is, in each iteration, given two rules r : i ∧ j → valr and r′ : k ∧ l→ valr′ , we need

to check if we can perform either full-merge (line 13). As such, we access the lists Equivi,

Equivj, Equivk, and Equivl (every list has a size of sizelist, where 1 ≤ sizelist ≤ n).

Similarly, we work for the half-merges. Due to these modifications, asymptotically the

complexity of Algorithm 8 is O(n ·m2).

An important thing to mention here, is that the employment of Algorithm 8 that con-

siders equivalence classes, may result in ambiguous ε−MC nets rules. That is, depending

on the way agents’ equivalence is determined, we may end up producing overlapping

rules, i.e., multiple ε−MC nets rules may apply to the very same collaborative pair. To

overcome this ambiguity we consider that the post-merge estimate for a collaborative pair

i ∧ j equals the average value of the rules that apply to this pattern.
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Algorithm 8 Equivalent classes of agents

1: R← initial set of MC-net-like rules of size m;

2: R′ ← ∅;
3: for r ∈ R do

4: CG← ∅;
5: Ωequiv ← ∅;
6: κ← 0;

7: VCG ← valr;

8: min← minv∈VCG
{v};

9: max← maxv∈VCG
{v};

10: avg← valr;

11: remove r from R;

12: for r′ ∈ R do

13: if CanFullMergeEquiv(r, r′) OR CanHalfMergeEquiv(r, r′) then

14: add valr′ in VCG;

15: add equivalent agents in Ωequiv;

16: add the rest of the agents in CG;

17: min← minv∈VCG
{v};

18: max← maxv∈VCG
{v};

19: avg← avg ·|VCG|+valr′
|VCG|+1

;

20: κ← κ+ 1;

21: rnew ← Ωequiv ∧ CG→ avg;

22: r ← rnew;

23: remove r′ from R;

24: end if

25: end for

26: add r in R′;

27: end for

28: return R′;
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Algorithm 9 CanFullMergeEquiv(r, r′)

1: if r and r′ satisfy Cond. (XI) AND (II) then

2: return True;

3: end if

4: return False;

Algorithm 10 CanHalfMergeEquiv(r, r′)

1: if r and r′ satisfy Cond. (XII) AND (IV) AND (V) then

2: return True;

3: end if

4: return False;

We demonstrate this via an example:

Example 5 Consider a set of 4 agents N = {1, 2, 3, 4}, and the following initial MC-

net-like rules:

(r1) : 1 ∧ 3→ 5

(r2) : 2 ∧ 4→ 6

(r3) : 1 ∧ 4→ 8

Moreover, we let ε = 1, while we also have the information that agents 1 and 2 are

equivalent. Employing Algorithm 8, with equivalent agents, we get the following result.

We begin with rule r1 which can be merged with r2 since agent 1 is equivalent to agent 2,

and 5−1 ≤ 6 ≤ 5+1. Thus, we generate a new ε−MC net rule r4 : {1, 2}∧{3, 4} → 5+6
2

,

and we replace r1 with r4. Rule r4 has a mutual agent with r3, however it does not stand

5.5 − 1 ≤ 8 ≤ 5.5 + 1, thus rule r3 is not merged with r4, and remains intact. As such

the final set of rules is:

(r3) : 1 ∧ 4→ 8

(r4) : {1, 2} ∧ {3, 4} → 5.5

As we can see the collaboration pattern 1 ∧ 4 satisfies both of the rules r3 and r4. So

the value of this collaboration pattern is equal to 5.5+8
2

= 6.75. Moreover notice that in

the final ε−MC nets representation there is information about the collaboration pattern

2 ∧ 3→ 5.5, which was previously unknown.
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4.1.3 Extension to NTU Games

The ε-MC nets representation can also be used in non-transferable utility (NTU) games [2],

where each member of a coalition C now derives an individual utility from participating

in C. In such settings, every agent i could have a personal εi, that would represent the

margins of information loss that agent i is willing to accept in order to produce a compact

representation. Therefore each agent i can execute its own instance of any algorithm that

has been described in the previous sections, using its personal εi and yield a represen-

tation regarding its personal estimates. In this extension, given an environment with n

agents, we would end up with n compact ε−MC nets representations, where the ith rep-

resentation corresponds to agent’s i estimates. However, in our experimental evaluation

(in Section 5 below) we consider only transferable utility environments.
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Chapter 5

Experimental Evaluation

In this section we evaluate the performance of our algorithms via simulations. All exper-

iments ran on an i5@2.2GHz processor PC with 8GB of RAM, and the framework was

coded in Python 3.8.

5.1 ε−MC net with Mutual Agents

First we present a series of experiments performed to evaluate Algorithm 1 with mutual

agents, using synthetic data.

5.1.1 Dataset

We generated synthetic data with varying number of agents n and varying number of

rules m. Specifically, n takes the values 100, 200 and 300; while m varies depending

on n and takes the values n
2
, n, and 2 · n. In each dataset, every rule consist of a pair

of agents randomly selected out of
(
n
2

)
possible unordered pairs; and the rule’s value

is drawn from uniform distribution U(1, 200). Finally, for each combination 〈n,m〉 we

generated 5 different datasets. As such, in total we use 45 different datasets.

5.1.2 Experimental Analysis

We ran our algorithm for each setting using different values of ε, i.e., the margin of

information loss. The evaluation metric we used is the percentage of reduction, i.e., we
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Figure 5.1: Reduction of rules using Algorithm 1, when N = 100.

measured the compactness achieved in the ε−MC nets representation by computing the

number of rules comprising the new representation compared to the number of the initial

MC-net-like rules. Formally, the reduction percentage (RP) is:

RP =
(

1− #ε-MC nets rules + #un-merged rules

#initial MC-net-like rules

)
· 100%

In Figures 5.1, 5.2 and 5.3 we illustrate graphically the results of our implementation

of Algorithm 1. The results represent the average reduction percentage achieved in each

setting 〈n,m〉, where the average is over 5 datasets within the same setting. As we can

observe, as the number of rules increases, with ε kept fixed across different settings, our

algorithm achieves greater reduction percentage. Such a result is expected, since when we

have more rules it is more likely to find MC-net-like rules that satisfy the conditions for

merging, and thus the algorithm produces more compact representations. Also, for the

same number of MC-net-like rules, as ε increases, we observe that the achieved reduction

increases as well. This result is due to the fact that for greater values of ε, the conditions

for merging are more relaxed, and thus easier to be met.

In Figures 5.4, 5.5 and 5.6 we compare the achieved reduction percentage between dif-

ferent settings with fixed ratio n
m

. Here we notice that the RPs exhibit similar behaviour,

regardless of the setting at hand.
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Figure 5.2: Reduction of rules using Algorithm 1, when N = 200.

Figure 5.3: Reduction of rules using Algorithm 1, when N = 300.

5.1.3 RP: Mutual vs Equivalent Agents

In this line of evaluation we compared the performance of Algorithm 1 against its variant,

Algorithm 8, that considers equivalent agents, in terms of percentage of reduction. Here

we generated 75 synthetic datasets following the process described in Sec. 5.1.1; now n

takes the values 50, 100, 200, 300 and 400, while m = n
2
, n and 2 · n; and again we gen-

erated different datasets for each 〈n,m〉 combination. In order to determine equivalence

Errikos Streviniotis 43 November 2020



5. EXPERIMENTAL EVALUATION

Figure 5.4: Reduction Percentage with fixed ratio n
m

= 2.

Figure 5.5: Reduction Percentage with fixed ratio n
m

= 1.

among agents we adopted the following scenario: agents participate in a ridesharing set-

ting as drivers or commuters. First, to determine the payoffs of agents participating in

the ridesharing scenario, we ran the PK Algorithm (Algorithm 5) of work [21],1 which

computes kernel-stable [2, 22] payments for such scenarios. Specifically, for each dataset

we run the PK algorithm for a number of partitions depending on the number of agents

in the dataset. Each such partition consisted of a randomly sampled coalition C contain-

1We retrieved the PK implementation code from https://github.com/filippobistaffa/PK
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Figure 5.6: Reduction Percentage with fixed ratio n
m

= 0.5.

ing one driver,1 at least 1 commuter, and at most 4 (commuters), while all other agents

where considered as singletons—i.e., π = {C} ∪
{
{i} ∈ N \ C

}
. The total number of

partitions used per dataset family is shown in Table 5.1.

Number of Agents 50 100 200 300 400

Number of Partitions 1150 3700 12000 25000 40000

Table 5.1: Number of partitions used in PK Algorithm per dataset family in Section 5.1.3.

As soon as we have the payoffs, for every pair of agents i, j we build two ranking lists

Mi and Mj as follows:

For the kth sampled partitions π (with C ∈ π):

1. if {i, j} ⊆ C:

• add i’s payoff according π in the kth position of Mi;

• add j’s payoff according π in the kth position of Mj.

2. else if i ∈ C and ∃ π′ such that

j ∈ C ′ and C \ {i} ≡ C ′ \ {j} with C ′ ∈ π′:
1In all datasets we let 20% of the agents’ population be drivers, and 80% of the population be

commuters.
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• add i’s payoff according π in the kth position of Mi;

• add j’s payoff according π′ in the kth position of Mj.

We then use the lists above to determine the equivalence between any two agents i and

j, via combining two widely used correlation metrics, (a) the Kendall’s Tau ranking

distance [23], and (b) the Pearson Correlation Coefficient [24].

According to Kendall’s Tau, the ranking distance between two lists Mi and Mj de-

pends on the number of misalignments of any pair of elements between the two lists. That

is, let Mi[k] and Mi[l] denote the value in kth and lth position in list Mi, respectively (sim-

ilarly for Mj[k] and Mj[l]); there is a misalignment between Mi and Mj if Mi[k] ≥Mi[l]

and Mj[k] < Mj[l] or Mi[k] < Mi[l] and Mj[k] ≥ Mj[l]. Thus, the Kendall’s Tau dis-

tance between Mi and Mj is defined as the summation of misalignements between any

unordered pair of positions k, l, normalized by the total number of unordered pairs of

positions.

Now, the Pearson Correlation Coefficient measures the linear correlation between two

random variables X and Y ; and is computed as rX,Y =
∑
i(Xi−X̄)·(Yi−Ȳ )√∑

i(Xi−X̄)·
√∑

i(Yi−Ȳ )
. Consider-

ing lists Mi and Mj as random variables, the PCC between agents i and j is computed

as

rMi,Mj
=

∑
k(Mi[k]− avg{Mi}) · (Mj[k]− avg{Mj})√∑

k(Mi[k]− avg{Mi}) ·
√∑

k(Mj[k]− avg{Mj})

where the summation is over the positions in lists Mi and Mj.
1

With the Kendall’s Tau distance and the Pearson correlation coefficient at hand,

two agents i and j are considered equivalent if it holds K(Mi,Mj) ≥ threshold and

rMi,Mj
≥ threshold. For these series of experimental analysis, we set threshold = 0.97.

Table 5.2 shows the results (average over 5 datasets with the same combination 〈n,m〉)
for every setting, when we employ the algorithm using equivalence classes of agents (de-

noted as “Equivalent”) against when employing the original version, using solely mutual

agents (denoted as “Mutual”). Here, we see that for every examined setting, the algo-

rithm that takes advantage of equivalences consistently achieves manyfold greater reduc-

tion than the algorithm with the mutual agents. Such a result is expected due to the use

1Note that the Pearson Correlation Coefficient (PCC) measures correlation, as such its values lie

in [−1, 1] where PCC → 1 indicates positive correlation, PCC → 0 indicates no correlation, and

PCC → −1 indicates negative correlation.
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of equivalences, since in this version we exploit information which is not considered in

the version with only mutual agents.

Now considering the ratio ρ = Equivalent RP
Mutual RP

we can observe that the maximum value of

ρ is equal to ρ = 5.6
1.6

= 3.5 for the family with 50 agents, ρ = 9.6
1.2

= 8 for the family with

100 agents, ρ = 18.8
1.2

= 15.67 for the family with 200 agents, ρ = 23.46
1.98

= 11.84 for the

family of 300 agents, and finally ρ = 27.3
1.6

= 17.06 for the family with 400 agents. Note

that this peak is achieved in the setting with n
2

initial MC-net-like rules for each family;

this result is due to the fact that with fewer rules, it is hard to find rules to satisfy

the merging constraints. Also the maximum reduction percentage for every family is

achieved in the setting with 2 · n rules. Once again, we can observe that as ε rises, the

reduction percentage rises in both algorithms’ variations as well, which is due to the

relaxed constraints for merging.

Finally our experiments confirm that the extra information on equivalences among

agents allows us not only to produce more succinct representations (as discussed above),

but also to learn new collaboration patterns. We show this through the NCP ratio:

NCP =
New collaboration patterns

Total number of collaboration patterns
· 100%,

where Total number of collaboration patterns corresponds to the number of initial MC-

net-like rules plus the new collaborative pairs of agents that our algorithm produced,

exploiting equivalences among agents. Note that in case there are ambiguities, i.e., the

same collaboration pattern is expressed by more than one rule, we consider this rule only

once.

Table 5.3 shows the NCPs for every setting, when we employ the algorithm us-

ing equivalence classes of agents—the NCPs displayed are averages over the 5 different

datasets for each combination 〈n,m〉. As we can observe, the NCP is rising, for a given

n, as m rises. This is natural, since for larger m our algorithm is able to perform more

merges. As a result, new collaboration patterns are produced. Furthermore, for the same

reason, we observe a similar behaviour as the ε rises.
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ε = 1 ε = 2 ε = 3

n = 50

m = 25
Mutual 1.6% 1.6% 2.4%

Equivalent 4% 5.6% 7.2%

m = 50
Mutual 2% 3.6% 6%

Equivalent 6.8% 10.4% 15.8%

m = 100
Mutual 5.8% 8% 10.2%

Equivalent 12.8% 19% 23.6%

n = 100

m = 50
Mutual 1.2% 3.6% 3.6%

Equivalent 9.6% 14.8% 18.8%

m = 100
Mutual 3% 5.4% 7.2%

Equivalent 17.6% 25.8% 30.8%

m = 200
Mutual 6.5% 9.4% 12.1%

Equivalent 27.5% 37.9% 43.3%

n = 200

m = 100
Mutual 1.2% 2.4% 4.4%

Equivalent 18.8% 25.2% 31.2%

m = 200
Mutual 2.9% 5% 6.7%

Equivalent 26.3% 35.4% 41.2%

m = 400
Mutual 5.5% 8.75% 11.15%

Equivalent 38.3% 47.75% 53.55%

n = 300

m = 150
Mutual 1.98% 2.8% 4.13%

Equivalent 23.46% 31.45% 38.4%

m = 300
Mutual 3.4% 4.6% 6.46%

Equivalent 34.46% 44.76% 50.4%

m = 600
Mutual 5.62% 8.89% 11.32%

Equivalent 46.25% 56.13% 61.2%

n = 400

m = 200
Mutual 1.6% 3.2% 5%

Equivalent 27.3% 36.5% 43.5%

m = 400
Mutual 2.9% 4.95% 6.2%

Equivalent 39.85% 50.4% 56.4%

m = 800
Mutual 5.57% 8.92% 11.72%

Equivalent 50.97% 60.82% 66.32%

Table 5.2: Reduction percentage per setting of Section 5.1.3.
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ε = 1 ε = 2 ε = 3

n = 50

m = 25 6.7% 14.3% 18.3%

m = 50 7.7% 16.3% 20%

m = 100 16.9% 22.4% 27.1%

n = 100

m = 50 14.3% 20% 29.9%

m = 100 23% 33.4% 39%

m = 200 32.7% 42.6% 47.2%

n = 200

m = 100 23.5% 35% 39%

m = 200 37.2% 45.8% 52.8%

m = 400 46.4% 56.6% 63.2%

n = 300

m = 150 34% 45.3% 51.2%

m = 300 44.4% 55.2% 60%

m = 600 57.2% 68% 73.1%

n = 400

m = 200 37.1% 49.5% 56%

m = 400 52.2% 62.8% 67.7%

m = 800 63.5% 73.3% 78.2%

Table 5.3: Percentage of new collaboration patterns.
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Chapter 6

Conclusion and Future work

In this thesis, we extended the classic MC nets representation scheme to cooperative

games with settings that contain either a specific type of uncertainty or overlaps among

the coalitions that agents can form.

First, we extended the Relational Rules [8], so that they describe games with over-

lapping coalitions that contain both positive and negative literals. Our proposed repre-

sentation, reduces to classic MC nets for non-overlapping settings.

Our second main contribution in this thesis, was introducing a novel succinct repre-

sentation for cooperative games under uncertainty. This representation extends the work

of [3] to allow for rules that include sets of agents, instead of just individuals; and can

be employed in open multiagent settings, possibly under uncertainty regarding the value

of collaboration patterns. We formally defined the concept of the ε−MC nets rules; the

types of merging that can occur between rules; and we proposed a polynomial algorithm

for constructing an ε−MC nets representation. Moreover, we determined a theoretical

bound for the maximum information loss that our “compression process” may incur.

Then, motivated by the future work envisaged in [3], we considered equivalence classes

of agents, and put forward a variant of our algorithm which takes these into account. In

this variant it is possible to generate values for collaboration patterns that were initially

unknown to us.

We have to mention that the focus of this work is compressing the representation

of large coalitional games; however, these are, from a practical point of view, almost by

definition uncertain. Value/collaboration-related uncertainty is incorporated in the utility

function, but we do not explicitly handle it otherwise; e.g. we do not actively attempt
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to reduce it, though partly this can be “passively” achieved as a result of our scheme, as

explained in the paper (beginning of section 4.1.2 and example 5; and section 5.1.3, last

paragraph) and below. Moreover, we believe that the presence of uncertainty in large

settings, makes arguments in favor of compressing available information more compelling,

despite information loss; one would have been more reluctant to suffer information loss

if they knew information is accurate. Hence our approach is well-suited to uncertain

environments. In any case, the MC-net-like rules may be derived either from the believed

characteristic function or the actual one, if this is at hand (which is unlikely). Apart from

that, according to our assumption that we cannot fully observe the game, notice that

the exploitation of such equivalence classes can reveal the values of previously unknown

collaboration patterns.

Next, we conducted a systematic evaluation of our approach. First, we studied the

reduction percentage achieved by Algorithm 1 in various settings considering the combi-

nation of different number of agents, number of rules, and information loss margin (ε).

We compared the performance in terms of reduction percentage (RP) of the algorithm

considering solely mutual agents (Algorithm 1), against the one considering equivalent

agents (Algorithm 8) as well. Our results verified the effectiveness of our approach.

Specifically, they showed that the algorithm with mutual agents achieved an RP up to

12%, while the variant with equivalent agents achieved an RP up to 66%.

Finally, though we show it is polynomial, the complexity of the algorithm may be a

problem in very large settings where agents need to make decisions and form coalitions

“on-line”. However, in practice, even then compressing the representation using our

algorithm can prove to be extremely useful: e.g., Algorithm 1 can be employed “off-line”

only once for all agents originally in the setting, and then one can use the resulting

compact representation for merges of its content rules with rules involving newcomer

agents (in a batch-processing style). Moreover, note that in our larger experimental

settings, involving 400 agents and 800 rules, compression was achieved in less than a

minute on a simple laptop (i5@2.2GHz).

Regarding future work, we intend to extend Algorithm 8 to perform a back-tracking

technique. That is, merges that were rejected at some point, may become feasible (i.e.,

they can be performed) due to the entry of equivalent agents in the set Ωequiv of an ε-MC

net rule—i.e., a MC-net-like rule r may cannot half-merge to an ε-MC net rule r′ since
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there are not equivalent agents in Ωequiv of r′, but after some merges in r′, the Ωequiv of

r′ may contains some new equivalent agents and r can now merge to r′.

Another interesting line of research is to set acceptable bounds on the maximum

uncertainty over a collaborative pair (depending on the number of merges), and devise

methods for optimally selecting the rules to be merged in order to maximise the reduction

percentage. Moreover, further experimentation in different real-world domains is in order.

Finally, since this work extends readily into NTU-games (as discussed in Section 4.1.3),

we aim to conduct a systematic evaluation in such settings.
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Chapter 7

Appendices

7.1 Appendix A

Here we discuss work in progress that extends the classic MC nets representation to NTU

environments and more specifically to Hedonic Games.

Inspired by MC nets representation [3], we introduce a representation scheme for non-

transferable utility games, called Rule by Agent. The main idea of such representation,

is to define the preferences of agents over all possible coalitions, using sets of rules.

7.1.1 Rule by Agent representation

Let N be a finite, non-empty set of players of size |N | = n. Rule by agent representation

uses sets of rules for every agent i ∈ N . The set of rules of agent i is denoted as Ri. Such

rules have the following syntactic form:

r : Pattern→ vali

where Pattern is a conjunction of m agents, with m ≤ |N |, and vali ∈ R. A rule is said to

apply on a coalition C ⊆ N , denoted by r |= C, if Pattern evaluates to true for coalition

C.

Given any coalition C, we can compute the utility of C for agent i, denoted as ui(C),

by summing the values of the rules, r ∈ Ri, that apply to C:

ui(C) =
∑

r|=C,r∈Ri
vali
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As such, for every agent i, it holds that C1 �i C2 if and only if ui(C1) ≥ ui(C2).

Example 6 Consider a game of 3 agents N = {1, 2, 3}, which is described by the fol-

lowing “Rule by Agent” representation:

R1 = {r1 : 1 ∧ 2→ 3, r2 : 1 ∧ 3→ 2, r3 : 1 ∧ 2 ∧ 3→ 5}

R2 = {r4 : 1 ∧ 2→ 2, r5 : 1 ∧ 2 ∧ 3→ 4}

R3 = {r6 : 1 ∧ 3→ 3, r7 : 1 ∧ 2 ∧ 3→ 6}

We want to compute the utility that agent 1 and 3 will receive from coalition C1 = {1, 3}.
For agent 1 we sum up the rules from R1 that apply to C1, while for agent 3 we are

interested for the rules of R3. Thus, we get that u1(C1) = 2 and u3(C1) = 3. Following

the same procedure, for coalition C2 = {1, 2, 3} we get that u1(C2) = 3 + 2 + 5 = 10 and

u3(C2) = 3 + 6 = 9. As such it holds that C2 �1 C1 and C2 �3 C1.

In the course of this work, we realize that the Rule by agent representation is largely

equivalent with the work of Hedonic coalition nets [25].

7.1.2 Rule by Values representation

As an alternative to Rule by Agent representation, we introduce the Rule by Values

representation. In this representation scheme we use a set of rules R that pertains to

every agent i ∈ N . Formally a rule of such representation has the following form:

r : Pattern→
−−→
V al

where Pattern is a conjunction of m agents, with m ≤ |N |, and
−−→
V al is a vector of size

|N |, that contains the utilities for every agent i. A common assumption regarding the

utility of any agent i, is to be considered that if i does not appear in a Pattern of rule

r, he receives a utility of zero (from rule r). Although that kind of hypothesis does not

hold in every case (i.e., Section 7.1.3.1). As an example, consider that |N | = 3 and a rule

r : 1 ∧ 3 → {2, 0, 5}, we get that agent 1 will receive a value equal to 2 when r applies

to a coalition. Similarly agent 2 will receive a value equal to 0 and agent 3 will receive a

value equal to 5.
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Finally, in order to compute the utility of coalition C for agent i, we sum up the

V al[i] of every rule that apply to C:

ui(C) =
∑
r|=C

V al[i]

Again, for any agent i, it holds that C1 �i C2 if and only if ui(C1) ≥ ui(C2).

Example 7 For the same settings as Example 6 the “Rule by Values” representation is

as follows:

r1 : 1 ∧ 2→ {3, 2, 0}
r2 : 1 ∧ 3→ {2, 0, 3}

r3 : 1 ∧ 2 ∧ 3→ {5, 4, 6}

Regarding the utilities of agents there is no difference with Example 6.

7.1.3 Additively Separable Hedonic Games (ASHGs)

Additively Separable Hedonic Games (ASHGs) [25], is a class of hedonic games where

agents preferences over coalitions are lifted from preferences over agents. That is, each

agent i ∈ N assigns a value bji ∈ R to every other agent j ∈ N , meaning that i sets a

value bji from the fact that j participates in C. Agent’s i preferences for a coalition C

corresponds to the summation of the individual values bji , ∀j ∈ C. Formally, it holds

that:

ui(C) =
∑
j∈C

bji

Generally ASHGs is more natural to be modelled as NTU games. Thus, we will use

the “Rule by Agent” representation in order to represent such games. For each agent

i ∈ N we hold a set of rules Ri, which consists pairwise rules between agent i and every

j ∈ N . The value, val, of a rule r : i ∧ j → val, is equal to bji ,
1. Finally, the value of

coalition C for agent i, ui(C), is defined as:

ui(C) =
∑

r∈C,r∈Ri
vali

1The agents assign a zero value to themselves, i.e., bii = 0.
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Figure 7.1: Graphical representation of Rule by agent form.

This representation can easily be extended in a graphical way if we restrict the rules

to be about pairs of agents. Supposing that we are interested in computing the value

that agent i holds for a coalition C. We generate a weighted directed graph, where the

node represented agent i has only outgoing edges, while the nodes represented the rest

of the agents in C have only incoming edges.

Every edge (i, j) has a weight bji , given by the rule r : i ∧ j → bji , where r ∈ Ri. An

example of such representation shown in Figure 7.1. Again to compute i’s utility for a

coalition C, we sum the weights of every edge that connects agent i with every agent

j ∈ C. In [2] an ASHGs can be defined as:

Definition 15 A hedonic game G = (N,�1, · · · ,�n) is said to be additively separable if

there exists an |N | × |N | matrix of reals M (the value matrix) such that:

C1 �i C2 iff
∑

j∈C1
M [i, j] ≥

∑
k∈C2

M [i, k]

where M [i, j] represents the value of agent i to agent j.

Theorem 5 The “Rule by Agent” constitutes a complete representation scheme for ASHGs.

Proof. Consider an |N | × |N | matrix of real values M . The M [i, j] represents the value

that agent i holds for agent j. For every i and j we generate a rule r : i ∧ j → M [i, j].
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Consequently we add rule r to the set of rules Ri. At the end of that procedure, we get

|N | sets of rules and each one of these sets consist |N | rules. As such, we need |N | × |N |
rules in order to fully describe the game. Clearly, that is exactly the same amount of

space that we need with the M matrix.

Theorem 6 The “Rule by Values” constitutes a complete representation scheme for

ASHGs.

Proof. Similarly to the proof of Theorem 5 it can be shown that Rule by Values repre-

sentation needs exactly |N |×|N |
2

rules in order to fully describe the game.

Generally, the “Rule by Values” consist a more compact representation scheme than

the “Rule by Agent”.

Finally, an ASHG is called symmetric if M [i, j] = M [j, i], ∀i, j = 1, · · ·n. Using

the “Rule by Agent” representation an ASHG is called symmetric if valueij = valueji,

∀i, j = 1, · · ·n, where valueij is the value of rule r : i ∧ j → valueij(r ∈ Ri) and valueji

is the value of rule r′ : j ∧ i→ valueji(r
′ ∈ Rj).

7.1.3.1 Partition Function Form (PFF)

A partition (or coalition structure) is a set of coalitions π = {C1, · · · , Cm} such that for

every i, j = {1, · · · ,m} the following conditions must be satisfied:

• Ci ∩ Cj = ∅, when i 6= j.

•
⋃
i∈1,··· ,mCi = N .

In these games, the value of a coalition depends on the coalition structure that it appears

in.

Partition function games can be expressed either in transferable (TU) or non-transferable

(NTU) utility games. As mentioned before, hedonic games is a subclass of NTU games.

In [26], a coalitional game in PFF with non-transferable utility defined as:

Definition 16 A coalitional game in partition function form (PFF) with non-transferable

utility (NTU) is defined by a pair 〈N, V 〉, where N is the set of agents, and V is a map-

ping such that for every π ∈ Π and every coalition C ⊆ N , C ∈ π, V (C, π) is a closed

convex subset of R|C| that contains the payoff vector that players in C can achieve.

Errikos Streviniotis 63 November 2020



7. APPENDICES

In [12], authors provide a definition for hedonic games in partition function form.

Definition 17 A hedonic game (HG) in partition function form (PFF) is defined by a

pair 〈N,�〉, where N is the set of players, and �= {�π1 , · · · ,�πm} with |Π| = m; and

for all πj ∈ Π �πj= {�πj1 , · · · ,�
πj
n }, and each �πji ⊆ Ni × Ni is a complete, reflexive

and transitive preference relation describing agent i’s preferences over coalitions it can

participate in when πj is in place.

Generalizing ASHGs to PFF, each agent i ∈ N assigns a value bji (π) to any agent j

when partition π is formed, and the utility of an embedded coalition (C, π) is defined as:

ui(C, π) =
∑
j∈C

bji (π)

Finally, it holds that (C1, π1) �i (C2, π2) if and only if ui(C1, π1) ≥ ui(C2, π2).

7.1.4 Rule by agent representation for PFF

The “Rule by agent” representation can be fully expressive in hedonic games as described

before. We extend “Rule by agent” representation into PFF by modifying the form of

rules. Specifically each agent i ∈ N holds a set of rules Ri, containing pairwise rules of

the following form:

r : j ∧ k → vali

where j, k ∈ N and vali ∈ R. Intuitively each agent evaluates the collaboration of every

two agents j, k ∈ N with a value vali and the number of rules that each set Ri contains

is |N |3, where N is the set of agents.

However, in partition function games the value of a coalition depends on the coalition

structure that it appears in. Thus, it is more natural to model such games with rules

that considers every time the formed coalition structure π, i.e., if a collaboration pattern

between two agents is not part of the coalition that contains agent i, then the utility

of i (for that collaboration pattern) may be reduced. As such the “Rule by agent”

representation for agent i in PFF can be defined by a set of rules Ri of the following

form:

r : j ∧ k → f(Ci, π) · vali

where j, k ∈ N , vali ∈ R, π is the formed partition, Ci is the coalition that contains i

and f : EN → [0, 1].
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7.2 Appendix B

Here we discuss the main idea of Solution concepts of an outcome and we provide a

description of the kernel that we used in Section 5 of this thesis.

7.2.1 Solution concepts

Solution concepts in cooperative game theory, define a specific way to allocate the pay-

offs among each coalition. As described in Definition 1, the characteristic function, or

utility function, maps each coalition C to a real number. However it does not specify

the payoff allocation among the members of C. As such, we can evaluate an outcome

according to two sets of criteria: (1)fairness, i.e., how well each agent’s payoff reflects

his contribution; and (2)stability, i.e., what are the incentives for the agents to stay in

the coalition structure [2]. Some well-known solution concepts are: Shapley value, core,

kernel, nucleolus etc.

7.2.2 Kernel

This is the solution concept that we used for this thesis in Section 5. The kernel [27]

consists of all outcomes that no player can demand a fraction of another player’s payoff.

Formally, for any player i we define his surplus over the player j with respect to a payoff

vector x as the quantity:

Si,j(x) = max{v(C)− x(C) | C ⊆ N, i ∈ C, j /∈ C}

This is the amount that player i can earn without the cooperation of player j, by asking

a set C\{i} to join him in a deviation, and paying each player in C\{i} what it used to

be paid under x. Now, if Si,j(x) > Sj,i(x), player i should be able to demand a fraction

of player j’s payoff—unless player j already receives the smallest payments that satisfies

the individual rationality condition, i.e, v({j}) [2].
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