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Abstract

Linkage disequilibrium (LD) is the non-random association between alleles at different
loci. In the field of Genomics, due to several breakthroughs in DNA extraction and se-
quencing technologies, huge databanks of genomic data have been created, and continue
to grow every day. Along with said data, grows the need for a highly-performing solution
in analyzing them. The prevailing analysis method of calculation for the LD in genomes
uses single nucleotide polymorphisms (SNPs) to detect the absence and/or presence of
minor alleles. Most software implementations to-date are not yet capable to efficiently
manage the expected time and memory requirements of future large-scale genomic anal-
yses. To answer the need for fast, scalable genomic analysis, we engineered and created a
standalone software, qL.LD (quickLLD) (https: // github. com/ StrayLamb2/ qLD). qLD
relies on prior observations that a high-performance approach on LD can utilize general
matrix multiplications. Therefore, existing optimized computational kernels that cal-
culate LD are employed. Alongside the optimized kernels, qLD applies memory-aware
techniques to lower memory requirements and parallel execution using both CPU and
GPU to reduce execution times even more. LD in single-thread execution in the Aris
supercomputer, delivers up to 8x faster processing than the current state-of-the-art soft-
ware implementation when run on the same CPU and up to 44x when the computation
is offloaded to a GPU. When used in multi-threaded executions in an off-the shelf laptop,
we observed speedups of up to 50x against the same state-of-the-art software, employing
the same number of threads. LD also addresses a missing feature of state-of-the-art
tools, the ability to quantify allele associations between arbitrarily distant loci, thereby
facilitating the evaluation of long-range LD and the detection of co-evolved genes. We

showcase qLLD on the analysis of 22,554 complete SARS-CoV-2 genomes.


https://github.com/StrayLamb2/qLD

ITepiindn

H Avicoppomnia I'evetnric Lovdeong (LD) ebvan 1) un tuyaia ouoyétion yetalld ahinhouop-
YWV O BLAPOPETXONE TOTIOUE GTO YoVIdlwua. XTov Tousn Tng 'ovidiopatinic, Adyw Twy Te-
Aeutaiev avaxalbhewy otny TeYVoloyio eZaywyhc xou Tpocdlopiopol DNA, éyouv dnutove-
ynOel tepdoTieg TEATECES YOVIBIOUATIXGDY OEGOUEVWLY, Ol 0TIolEG AUEAVOLY TOV 0ELIUS TWY Xo-
Toy wENOEWY Toug Xxadnuepvd. TTapddhnha, dnuiovpyeltal 1 oveyxn Yo TNV amodo T avehu-
oY) Toug pe Bdon T véa ueyéln. H emxpatoloa uédodog avdhuong yio ToV UTOAOYLOUS TOU
LD ota yovduoporto yenotponolel molvoppiopols povol vouxheotdiou (SNPs) yio tnv a-
viyveuon tng amovaciog /%o topovaiuc BeutepeuoVTOY ahknhiwy. Ot xUpleg VAoTOLRoELS Ao-
Yiouxo0 uéypel oruepa Oe SLoyetpllovTon ATOTEAEGUIUTIXG TIC EMERYOUEVES ATUTHOELS YPOVOU-
/ UVAUNG TV UEANOVTIX®Y aVOADIGEWY UEYIANG XAldaxac. o awtd To Aéyo, dnuoupyinxe
n autévoun egappoyf qLD (quickLD) (https: // github. com/ StrayLamb2/qLD). To
qLD faociCeton oty mapatAenon 6t 1o LD unopel vo unoloylotel ye peydAin amédoon
A(AvovTag Yerion UEVOB®Y TOMATAACLIOUOD TUVAXWY, oL YeNotuoTolel utdpyovteg BeATi-
oTtononuévoug utoloyloTwolg tuprvee. Mall toug muprveg, to qLD yenowonotel teyvi-
%é¢ Slayelplone TnNg HVAUNG X TOREAANANG exTEAEOTC UE YPNoT EMECERYUOTH Xl XAPTAUC
YEUPXGY, Yo TEPUTERL UEIWTT TV YEOVGLY aveAUCTC. Y€ EXTEAECEIS EVOC VAUATOS GTOV
unepumoloyloTh Aris, To qLD emtuyydvel éwg xon 8 gopée tayUtepn enelepyacio and To
Ty OV TEOY P TEAEUTALAC TEY VOLOYING OF EXTENEDT) OTOV ETELERYUTTH, EVE UE T YPNON
NG %AETAC YRUPIXWY 1 eXTEAEOT elvon Emg xon 44 popeg Ty Tepn. Xe eXTEAECELS UE TIOA-
Aomhd vApota o éva cudfatixd Admtom, emitOyope 50 @opéc Torylteen enelepyaoio Evo-
VTL Tou (Blou Aoylouixo, aflonolwvToag Tov Blo apriuo vrudtony. Emnpociétng, to qLD
CUUTANPOVEL €V XEVO TV epyalelwy Teleutalag Teyvoloyiag, TapEyovTag T duVATOTN TN
ouoyétione YeTadh auDalpETMY, ATOUUXPUOUEVLY TEQLOY MY GTO YOVLOIWUA, BIEUXOAIVOVTIC
€toL v alohdynon tou LD oe Bedopéva peyding euPérelog, xon TNy aviyveuor Temv ouv-
elelyuévoy yovidlwy. Ta v mapousioon tng avdhuong tou qLD oe mporypotind dedouéva,

YPTOWOTOLACOUE OET OEBOPEVWY e 22,554 TAYjen Yowoiwuata Tou SARS-CoV-2.


https://github.com/StrayLamb2/qLD
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1. Introduction

Understanding the way nature and evolution work in species -especially in humans- is
one of humanity’s oldest goals. The science behind the research on this topic, biology,
dates back to Assyrians and Babylonians [4] from discovered illustrations and descriptions
of then-current medical and biological knowledge. Fast forward in the last couple of
centuries [5], the new, rising way of research using experimentation, leads to the discovery
of DNA in 1871. Over a hundred years later, in 1977, the first complete genome was
sequenced, leading to the creation of a new field of biology, genomics. Genomics is a
field that focuses on the structure, function, evolution, mapping, and editing of genomes.
While being relatively new, it is an ever-growing field of research. In the last decades,
using modern and cost-effective ways [6] to extract genomic information, data-banks are
increasing in size exponentially [7]. This increase yields the deployment of memory- and
performance-optimized computational approaches prerequisite for the analysis of future

large-scale datasets.

1.1 Motivation

This work focuses on a widely used statistic in population genomics, linkage disequilib-
rium (LD). LD is used to identify interactions among co-evolved genes by identifying
complementary mutations [8] or to search for traces of positive selection by revealing par-
ticular patterns in subgenomic regions [9]. In genome-wide association studies (GWAS),
LD facilitates the detection of polymorphisms of interest, e.g., associated with human
diseases [10], thereby contributing to the design of more effective drug treatments [11].
The preliminary steps of an LD study include a) DNA sequencing for a set of indi-
viduals of interest and b) mapping to a reference genome to create a multiple sequence
alignment (MSA). These are followed by a so-called SNP calling step that identifies the
polymorphic sites in the MSA, which are commonly referred to as single-nucleotide poly-

morphisms (SNPs). Non-polymorphic sites are not informative for LD analyses, therefore



Chapter 1. Introduction 2

they are pruned. Computing LD requires the calculation of allele and haplotype frequen-
cies per SNP and pair of SNPs, respectively. Thus, compute and memory requirements
increase linearly with the number of genomes (sample size) and quadratically with the
number of SNPs. While the number of SNPs is limited by the chromosomal length,
sample sizes continue to increase rapidly, fueled by advances in DNA sequencing tech-
nologies, as previously stated. To further put the sample-size growth into perspective,
the 1000Genomes [12]| project that launched in January 2008 sequenced 2,504 human
genomes in an 8-year span [12|, while well over 200,000 SARS-CoV-2, at the time of this
writing, complete genomes are already available on GISAID [13] since the beginning of
the ongoing coronavirus disease 2019 (COVID-19) pandemic (December 2019). To limit
the obstruction by computational inefficiencies and /or excessive memory requirements in
future scientific discoveries in the fields of population genetics and computational biol-
ogy, high-performance software implementations that employ the underlying hardware

efficiently and scale well with an increasing number of samples are required.

1.2 Contribution

Previous research on the topic of LD calculation revealed the capability to use general
matrix multiplications to speed up the execution. This resulted in the development of
two highly optimized kernels for modern microprocessor [14] and GPU architectures [3].
An additional feature that these kernels provide, is the ability to not only calculate LD
in a single region, but also between different pairs of regions. This feature enables the
analysis between distant regions or even chromosomes, without the need to create special
input files for this exact reason, which also comes with a calculation overhead due to the
nature of this problem.

As part of this work, an underlying interface that manipulates the input, memory, and
communication with the kernels was created. With this interface, we first developed a
sequential solution using each kernel. We then introduced parallel programming using

POSIX threads, populating instances of the CPU kernel, which proves to be especially



Chapter 1. Introduction 3

useful in clusters, where there is an abundance of available cores. Finally, we conjugated
both execution modes in a heterogeneous multi-threaded approach. Along the way, we
further optimized the platform for efficiency, with High-Performance Computing (HPC)
practices. The result of all the previous steps was the deployment of a highly performing
open-source software solution, qLD (quickLD). qLD allows the execution of large-scale
LD analyses, on off-the-shelf workstations in a fraction of the time required by state-of-
the-art software. This work provides insight into the inner workings of the project, as
well as benchmarks in several use cases, in two different machines. Along with the valida-
tion of our theoretical performance, we compare qLD with the state-of-the-art software,
PLINK [15].

qLLD outperforms PLINK 1.9 [16] as the sample size increases, achieving up to 8x
faster processing with the two CPU implementations compared. When LD offloads the
compute-intensive task of calculating haplotype frequencies to a GPU, analyses complete
up to 44x faster than PLINK 1.9, which cannot employ a GPU. Finally, in multi-threaded
applications, with the collective power of the CPU and GPU kernels, LD achieved 50x
speedup over PLINK 1.9, using the same number of threads.

Part of this work is already published [17] in the peer reviewed Biolnformatics and
BioEngineering conference (BIBE2020), under the title "qLD - High-performance Com-
putation of Linkage Disequilibrium on CPU and GPU". The video presentation from the
conference is also uploaded in Youtube, under the same title: https: //www. youtube.

com/ watch?v=rkN3zvlWSNc.

1.3 Structure

The remainder of this work is organized as follows. In Chapter 2, we provide a back-
ground on Linkage Disequilibrium and the means to transfer this biological problem into
a computational one. In Chapter 3 we highlight previous and related work, along with the
basis of our software, the optimized CPU, and GPU kernels. The design and workflow of
qLD are presented in Chapter 4, while we evaluate its performance in Chapter 5. Finally,

we discuss conclusions and further improvements in Chapter 6.


https://www.youtube.com/watch?v=rkN3zvlWSNc
https://www.youtube.com/watch?v=rkN3zvlWSNc

2. Linkage Disequilibrium

Linkage disequilibrium is defined as the non-random association between alleles at differ-
ent loci (genomic locations). In simple terms, when offspring are produced, evolutionary
forces such as mutation, gene flow, genetic drift, and natural selection are be applied. At
a chromosomal level, this means changes in the offspring’s alleles. LD is a metric that
identifies co-occurring combinations of alleles between generations in a genome, more

frequently than at random.

2.1 Importance of Linkage Disequilibrium in Biology

It is proven since the 1980s that LD is an important metric in genetics [18|. It is useful
in a wide range of different genomic analyses, affecting and being affected by many
factors in evolutionary biology. LD is as well deemed invaluable to genetics [18], due to
being used in gene-mapping, large-scale surveys upon genomic data, and most recently in
genome-wide association studies. In a wider scope of a genome, it reflects the population
history, providing knowledge and information about past events, the breeding system,
and geographic patterns in the history of evolution. Narrowing it down to each genomic
region, it provides information about the natural selection, gene conversion, mutation,
and other forces that cause allele frequency changes.

LD in population genetics is preferable among other selection models [19], providing
a better insight in selective sweeps [20, 21|, the processes in which beneficial mutations
become dominant throughout the history of a species. On an opposite, to the beneficial
traits, subject, LD can also be used to research genes that underlie risks of complex
diseases [22]. By doing so, scientists were able to track areas and variations of genes as
well as random genetic events linked to cancer [23-26] and type 1 diabetes [27]|. Recently,
LD was used to locate recombination hotspots in the SARS-CoV-2 genome by assessing

the reduction of association between mutations with an increasing genomic distance [28].
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2.2 Data Preparation

To conduct any LD computation, there are some preliminary steps [29], involving the
extraction of genetic material, the partial assembly and annotation of the genome, the
alignment of said parts, and finally a calling step in which variable sites are identified. A

top level pipeline is depicted in Figure 2.1.

Extraction Sequencing
Population DNA
Subject's Sequencer
o ® © Genetic Material g
- . mm (™ |
[ S EHEm -
. mm - I p . Sequenced
[ S Em "
1 Pieces of
|I DNA
Annotated Annotator
Ancestral Sequence DNA
. mm | > —> Assembler
|
. B L A3 m
Variant = ==
Caller [(— . Em
Assembled
DNA
Annotation Assembly
& Variant Calling l

VCF MSA + Annotation
Files Files

Figure 2.1: Top level example of the pipeline from DNA to Computer Data. The extracted
DNA is first sequenced in multiple pieces that are then assembled, annotated and saved
in files using the preferred data format.

Extraction To extract the DNA, individuals with representative characteristics of the
species are selected, if capable to provide enough genetic material. DNA is then extracted,
saving excess tissue from the same extraction in case of any later needs. Similarly, RNA
can be extracted for RNA-sequencing, which helps in the research later on. The type,
quality, purity, structural integrity, and preparation in general of the samples are integral
to the quality of the whole study. Although not preferable, some pooling of individuals
and amplification of the data can be used in cases of limited amounts of DNA. Contam-
ination of the samples with other organisms is often inevitable to some degree, but in

small amounts, it can be traced and filtered out in the next steps.
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Sequencing To assemble a genome, the samples first pass a sequencing step, which
includes multiple reads of the material, to gather as many repeat-free nucleotides as
possible. Repeats are regions that occur in multiple copies, regardless their location in
the genome. To produce quality results, a significantly greater number of nucleotides
than the reference values of the organism under study, are needed. Approximations for
the reference numbers can be found in several available databases, or else additional
studies and investigations are needed. In terms of the technologies used in sequenc-
ing, the most prominent methods today involve next-generation sequencing (NGS), also
known as second-generation sequencing (SGS), due to the extremely lower cost and much
greater performance than the first-generation sequencing technologies. Many remark-
able projects, as the 1000 genomes project, became a reality solely thanks to SGS. The
state-of-the-art sequencing technology today though, is the third-generation sequencing
(TGS). It focuses on producing the longest possible reads, tackling known issues of the
previous technologies, such as repeats and high GC-content, that make the next step of
the assembly difficult and sometimes ambiguous, although requiring more sophisticated

correction steps due to error rates in the range of 10% to 15%.

Assembly Next is the actual assembly of the genome, along with pre- and post-
processing steps of correction and polishing. This step requires heavy computational
power, due to the sheer amount of data and can vary in performance amongst organisms
and samples. From SGS to TGS the pipeline of this process slightly changes. SGS having
trouble with aligning repeating areas correctly or having a bias on high GC areas due
to the sequencing process [29] focuses more on a statistical analysis of all the possible
alignments. Those alignments can also be way more in numbers than the TGS results,
due to more, shorter pieces of sequenced DNA. On the other hand, TGS focuses on er-
ror correction, mainly by comparing the reads against themselves or by using shorter
reads. In any case, ambiguous regions, or regions that were not sequenced, are marked

as unknown and the extracted pieces are stitched together to complete the assembly.
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Annotation The last step in the pipeline is the annotation. This is an entire chapter
on its own, with many different processes, approaches, workflows, and choices to be made.
It essentially is the part where each part of the assembled DNA is "mapped" to biological
functions, genes, proteins, and all kinds of information about the genome. It is the
step where mere raw genomic information is modeled and matched on the organism that
provided it. The most important note in the annotation from the perspective of computer
and data science though is the format in which the final annotated and assembled genome
is provided. This is thankfully standardized in a few, widely accepted formats, such
as GFF, GTF, Fasta, and others. These files are called multiple sequence alignments
(MSAs), they contain several sites previously sequenced and annotated, and they, in

turn, are processed to provide us with the final files needed for LD studies, SNP maps.

Variant Calling As mentioned previously, population genetics employ LD as a statis-
tical measure to identify mutated alleles that are co-inherited more frequently than one
would expect if these alleles were inherited independently. From a computational point
of view, the input to an LD study is either a multiple sequence alignment (MSA), i.e.,
a n X m matrix that comprises n rows (one row per genome) of m columns each (also
referred to as alignment sites), or a file that only comprises sites of interest, e.g., SNPs
in a Variant Call Format (VCF [30]) file. An SNP is essentially an alignment site with
two or more DNA states, i.e., at least one mutation has occurred at that site, whereas
monomorphic sites are non-informative for computing LD and therefore are discarded.

More information on the process of SNP mapping is provided in the next section.

2.3 Genomic Data Representation

Linkage Disequilibrium, as stated at the beginning of the chapter, is a metric of the
non-random association between alleles at different genomic locations. This translates
into differences between alleles in the genome of the subjects under investigation, and
an ancestral sequence, which serves as a baseline. MSA files, which is the first useful

data output of the genomic analysis, contains all the data to perform LD analyses, albeit
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i i+4
asssial T A[Ajc c G[T]a
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Figure 2.2: Example of a MSA that consists of an arbitrary number of sites, including
two SNPs at locations i and i + 4, along with their respective representations under the
ISM and the FSM evolutionary models. Adapted from [1].

containing much more information than needed. As depicted in Figure 2.2, an MSA
file contains mapped alignments of DNA for each participant and an ancestral sequence,
which are ‘encoded’ into new maps, using evolutionary models. A widely adopted evo-
lutionary model in real-world analyses as well as in silico simulations is the infinite-site
model (ISM) [31]. It assumes an infinite number of possible genomic locations where a
mutation can occur, which leads to at most one mutation per site. In other words, every
mutation appears on a site where no mutation has previously occurred. The ISM allows
SNPs to be represented by binary vectors, where a ‘0’ describes the allele state before
a mutation (ancestral state) while ‘1’ indicates the new state after a mutation (derived
state). The other evolutionary model depicted is the finite-site model (FSM), which rep-
resents the same information in binary tables, along with the state after the mutation.
We will focus on ISMs from this point on since this is the model of choice for most LD
analyses. To identify mutations under ISM, each sequence in the MSA is compared, on
a per-allele basis, with an ancestral sequence. Given an allele a; at location ¢ in the
ancestral sequence, the binary vector s describing SNP i is constructed as follows, where

[ | is the Iverson bracket notation:

st ={[si0 = @i, [si1 = @i, ..., [sin—1 = ai]} . (2.1)

In this example, the alignment site ¢ is the first SNP in the MSA, having mutations on
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three out of five subjects. The ISM representation using the binary vector s should be:

st ={1,1,0,0,1}. (2.2)

As we can see, the final information on the ** site, given the ISM model, is that the
sequences 0, 1, and 4 have mutated from the ancestral nucleotide base A. Calculating
the s vectors of each site in the MSA results in an SNP matrix file, ready to use in any
LD analysis. An example of the matrix GG, which we henceforth refer to as the genomic
matrix, is shown later in Chapter 4, where the input format is discussed in greater depths.
Note that while it does not show the site locations, which are stored in separate memory

space, the adjacent SNPs in GG can be thousands of sites apart in the genome.

2.4 Calculating LD

Linkage Disequilibrium provides a pairwise score between SNPs, by calculating both the
mutation frequency in each corresponding SNP and the pair, combined. These frequencies
are denoted as allele and haplotype frequencies respectively, where haplotype is defined
as a group of alleles inherited together from a single parent. In this context, it means
the frequency in which a mutation has occurred concurrently in both alleles. Using those
frequencies, we can compute the LD score of the pair using one of a few different formulas,

which are explained later in this section.

2.4.1 Mutation Frequencies

Having extracted only the SNPs, the calculation of both allele and haplotype frequencies
is relatively easy. We first need to count the number of mutations in each SNP (C; for
the " SNP), and the number of "shared" mutations, or rather the number of concurent

mutations between the SNPs, (Cy; for the pair of i and j" SNP respectively):

Nseqg—1

C; = Z [sip = 1] = S?Siv (2.3)

k=0
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Nyeg—1

Cij= > [six=1[s;x =1 =s5s;. (2.4)

k=0

From a biological standpoint, these counts are translated to the number of different
sequenced genomes (amongst N subjects) than contain a mutation of the i’ allele, first
in themselves and then as a pair. This means that the allele and the haplotype frequency,
denoted as P; and P;; respectively, is the normalization of the aforementioned counts, by

the number of sequences N, in the allignment:

C; sl's; Cy;  shs;
p=-=22 p. =Y -2t 2.5
Nseq Nseq ’ ! Nseq Nseq ( )

2.4.2 Computing LD using D and D’

LD deals with the probability of independent events. The event that two mutations
appear at different loci in the same sequence is said to be not independent, or in other
words, the corresponding pair of SNPs are in linkage disequilibrium when the probability
of the two mutations occurring at different loci in the same sequence is not the same as
the product of the probabilities of these mutations occurring independently. Therefore,

we compute

D;; = F; — BP, (2.6)

for every pair of SNPs, s; and s;, where P, ; represents the probability that a sample has
mutations in both SNPs, s; and s;, and F; and P; are the probabilities for the independent
events that a mutation has occured in s; and s;, respectively. When D = 0, s; and s;
are in linkage equilibrium, i.e., mutations in s; and s; occur independently of each other.
The two SNPs are in linkage disequilibrium when D # 0.

Using Equations 2.5 and 2.6, we can compute D; ; for all possible pairs of SNPs s; and

s; in the following manner:

Dij = ——(ss;) — (75 (s"s;) (2.7)
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The LD formulation in Equation 2.6 is not widely employed because the sign and range
of D;; vary with the frequency at which different mutations occur, which hinders D ;
comparisons across different SNP pairs. Therefore, several standardization methods for
D have been proposed. Amongst them, a proposal by R. C. Lewontin [32| suggested
that D can be normalized by dividing by the theoretical maximum difference between the

expected and observed allele frequencies:

_ i
D, = (2.8)

where D,, is defined in accordance to the sign of D, eliminating it from the equation:

mazr |—P,P;,—(1—PF,)(1—P;)|, D <O,
b _ ) marloRE, (- P)( - B 29
mln[Pl<1_PJ>7PJ<1_PJ)]7 D >0,

While D’ is certainly a more accurate metric for linkage disequilibrium, providing scores
that are disjoint from the fluctuation of allelic frequencies and effectively reducing their
numeric range, it suffers in some corner cases. When the sample size is small, or in the
case of rare alleles under examination, the produced scores are proven to be inflated.
Such a bias can lead to skewed results and requires examination and error correction.
This is one of the reasons that the most widely used measure to calculate LD is the next
method, which we use in this work, the squared Pearson’s coefficient, also known as r

squared.

2.4.3 Computing LD using squared Pearson Coefficient

The formula to calculate LD using the squared Pearson coefficient [33] 77:

2 __ (By—PRPY

YT RR(-P)1-P)
D?.
17]

" RE(1-P)1-P) (2.10)
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One of its main advantages is that all r,?j values are in the range of 0 to 1, with higher
values suggesting stronger association. This achieves the most optimal normalization to
our knowledge, enabling linkage disequilibrium studies without the need for any compen-
sation when comparing different genomic regions. Regardless of the employed measure,
notice that the cost of computing the 7’2-27 ; values for all pairs of SNPs is dominated by the
cost of D.

Having established some basic knowledge in the background and the pipeline of the
whole process of an LD study, the next section will proceed to the related work, covering

existing applications and implementations.



3. Related Work

In the following sections, we present some of the most notable implementations and
contributions to the LD studies, as well as state-of-the-art software that is most relevant
to our work. Lastly, we present the basis of our work, two optimized, high-performance

kernels that work in the heart of our program.

3.1 Software

Many ways to calculate LD exist, with many mathematical approaches surfacing through-
out the years. Naturally, there exist many software implementations, either motivated
by breakthroughs, or as performance-motivated alternatives to existing implementations.
It is obviously impossible to track and count each successful attempt in calculating LD.
Instead, the following are the most popular and widely used implementations, as per the
recommendations of researchers in the field.

LDA is a Java based LD analyzer, released by Ding et al. [34]. It uses autosomal
SNPs’ genotypic data with unknown phase. The first stage of computations consists of
either a Monte Carlo permutation or a z?-test, to check whether the alleles at each locus
are in Hardy-Weinberg equilibrium (HWE). For the alleles that are indeed on HWE, an
expectation-maximization (EM) algorithm is deployed to calculate the four haplotype
frequencies of pairwise loci. LDA uses several pairwise measures to quantify the degree
of LD, such as the D, D’ and 7? and the significant association between two loci is
tested through a Monte Carlo simulation-based likelihood ratio test or a z-test. LDA is
programmed as a Java graphical user interface, presents a significant variety of choices
to the user, allowing for several different analyses, and is capable of producing both text-
based and graphical output. The only disadvantage of this tool, is the lack of multi-thread
support, unfortunately making it unsuitable for large-scale analyses.

Haploview, released by Barett et al. [35], which is an open-source software for haplotype

analyses written in JAVA. It boasts of a wide selection of input data formats, as well as

13
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several genomic metrics, such as HWE, Mendelian inheritance errors and others. Through
the use of a GUI environment, the program presents the option of pairwise LD calculations
based on a wide array of LD measures, using either preset or user-defined groups of genetic
markers. Haploview is another tool, widely used by the research community, that also
suffers from a lack of a parallelized version. It has been updated and built upon for several
years, but multi-threading is yet unimplemented, and no recent developments have been
made.

SNPStats is a web-based application, developed by Sole et al. [36] for association stud-
ies analyses. It is designed from a genetic epidemiology point of view and is focused
on enabling research around association studies based on both SNPs and biallelic mark-
ers. While being an easy solution to the average user, with a large amount of features,
SNPStats is written in PHP and the computational core is implemented as a series of
R packages. Small workloads can be executed with the easy-to-use web application, but
larger ones require the user to deploy the R packages and manually develop the tests in
R. This, along with the lack of parallelization hinders its performance.

Pfeifer et al. [37] released PopGenome, an R package for population genetic analyses
that can compute a wide range of statistics, including LD. The vision of the project was
the creation of a "Swiss army knife" that supports most widely-used input file formats,
used in a well-established platform for geneticists, like R. It is established as a platform-
independent, open-source framework with a great variety of implemented functionality,
wide support for input files and many output formats, even in graphical representations.
PopGenome supports multi-core execution, and most of the core functions are written
in C or C++ for speed. Yet, the deployed LD kernel does not exploit neither the cache
hierarchy, nor vector intrinsics, while the overall execution also suffers from the inherent
overhead of interpreted languages, such as R.

Alachiotis et al. [38] released OmegaPlus, a scalable, open-source software for rapid
detection of selective sweeps in whole-genome data based on linkage disequilibrium.
OmegaPlus revolves around a bigger scope in research, utilizing LD as part of a big-

ger pipeline, internally. OmegaPlus’ main statistic is the w statistic [39], which is used
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to measure positive-selection in populations. The w statistic, in turn, bases on LD to
calculate whether the mutations in a region are beneficiary, with r? being the default
LD measure. Since the topic of selective sweeps requires large numbers of pairwise LD,
among other, calculations, OmegaPlus is equipped with an optimized LD calculation im-
plementation. In addition, it provides the ability of parallelization [40] with either POSIX
Threads, or using the more generic, OpenMP API. While OmegaPlus uses efficiently the
available system memory, similarly to PopGenome, it does not fully exploit the cache
hierarchy either.

Chang et al. [41] released a comprehensive update to the widely used PLINK soft-
ware [15] for whole-genome association and population-based linkage analyses. The up-
dated implementation (PLINK 1.9/2.0) exhibits significant performance and scalability
improvements in comparison to the initial software. It heavily relies on bitwise opera-
tions, multithreading, and high-level algorithmic improvements for the most compute-
demanding functions, such as distance-based clustering and LD-based pruning. PLINK
1.9 implements the squared Pearson coefficient as a measure of LD and deploys the SSE2-
based Lauradoux/Walish popcount algorithm to achieve high performance. Since PLINK
1.9 is the most used and latest stable high-performance implementation of LD, it became

the benchmark for our performance.

3.2 Hardware

While software implementations provided many options to the LD research, there is sig-
nificantly less research on hardware-based solutions. Most of the work on the general
topic of population genetics in heterogeneous or solely bare-metal applications unfortu-
natelly does not revolve around LD. Three implementations in our knowledge can be
considered related to this work, as high-performance LD platforms, one of which is used
in LD and presented in the next section.

First, Alachiotis and Weisz in their work on LD using FPGAs 2], utilize a database-like

search model in two regions of an MSA to achieve pairwise correlation. This implemen-
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tation uses the on-chip memory to act as a "query" of a subset of SNPs in a region,
with the rest of the SNPs being streamed through the allele and haplotype calculators
to finally enter the LD cores. Following this process, given an optimal number of LD
cores for delay reduction, the pairwise score between the query and the streamed data is
calculated. This implementation, while proven to be extremely efficient, lacks the ability
to scale up with the trend of the genomic data, since one of its fundamental parts, the
on-chip memory, limits the size of the datasets that can be supported.

Another implementation using FPGAs was the work of Bozikas et al. [1], which pre-
sented a novel hardware architecture for the calculation of LD in arbitrarily large datasets.
By utilizing multiple levels of parallelism and efficient transformation of the memory data
layouts, they created a bare-metal computation kernel capable of high-performance pro-
cessing. Additionally, they mapped those kernels in a heterogeneous computing platform
that enabled 4 parallel FPGAs to work simultaneously, using a high-speed memory in-
terface. The resulting accelerator showed promising speedups, while supporting large
datasets. As the authors noted in their publication, this work is not yet complete and

set, but since hybrid computing is rising, it serves as a great contribution to the field.

3.3 Computing LD as GEMM

Alachiotis et al. [14] observed that the computational kernel for calculating LD can be cast
in terms of dense linear algebra (DLA) operations. This allowed leveraging the collective
knowledge in the DLA community in developing high-performance implementations for
various microprocessor architectures, leading to the design of a highly efficient CPU kernel
for LD that achieves between 84% and 95% of the theoretical peak performance of the
machine.

Building upon the aforementioned DLA-based approach, which targeted modern CPU
architectures, Binder et al. [3] presented a generic SNP-comparison framework that cal-
culates LD on GPU architectures. The authors ported the proposed framework onto a

variety of GPU platforms from different vendors, reporting between 55% and 97% of the
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theoretical peak throughput of each specific GPU architecture.

These two kernels provide qLD with all the computational tools needed for an LD
study. Using customized versions provided by their respective authors, tailored to use
the same input data structures for compatibility, we were able to implement them with
minimal effort into the platform. More detailed information on how the kernels work is

provided in the next chapter.



4. Design and Usage

The design and functionality of the proposed software framework for high-performance
computation of LD is presented in this chapter. We begin with the introduction of the
supported input file format and the implemented memory optimizations for faster exe-
cution. We continue with presenting the two kernels used in qLD, their architecture and
their approach on LD calculation using GEMM. Finally, we present qLLD, its architecture,
the general workflow in different use cases and the most noteable optimizations during

its creation.

4.1 Input Files

Multiple data formats are used in LD studies, especially in the course of genomic in-
formatics” history. HGVS [42|, BED [43|, GFF/GTF [43], GVF [44] are just a few of
the most widely-used formats. In later years, VCF became the preferred format in LD
studies, because it is unambiguous, scalable and flexible, allowing extra information to
be added to the info field. Many millions of variants can be stored in a single VCF file.

This is the reason why qLLD supports the VCF file format for its input.

© 00 g O U AW N

— = e e
W N = O

##fileformat=VCFv4.1

##FILTER=<ID=PASS ,Description="All filters passed">

##fileDate=20150218
##treference=ftp://ftp.1000genomes.ebi.ac.uk//.../hs37d5.fa.gz
##source=1000GenomesPhase3Pipeline
##contig=<ID=2,assembly=b37,length=243199373>

##ALT=<ID=CNV,Description="Copy Number Polymorphism">

##FORMAT=<ID=GT, Number=1,Type=String ,Description="Genotype">
##INF0=<ID=CS,Number=1,Type=String,Description="Source call set.">

#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT HGO0O0096 HGOO0097 ...
6 63854 rsb544586840 T G 100 PASS AC=1;AF=0.00019 GT olo 0lo0
6 63979 rsb561313667 C T 100 PASS AC=334;AF=0.066 GT 0l0 0l0
6 63980 rsb530120680 A G 100 PASS AC=354;AF=0.070 GT olo 0lo

Listing 4.1: Variant Call Format example, partially derived from the Human chromosome
6. The header portion uses the # in front of the line. The body is Tab-delimited. This

is a diploid genome, so the samples contain 2-bit information ( X | x ).

18
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As depicted in Listing 4.1, the VCF file consists of a header that provides metadata
describing the body of the file and the body itself. In the current state of qLD, header
files are not processed semantically, apart from the validation of the format itself. The
body of a VCF file is tab-separated into 8 mandatory columns, an optional format column
that describes the samples, and an additional arbitrary number of sample columns. The

mandatory columns provide information about:

e the name of the chromosome or sequence,

the position of each variation in the sequence,

the identifier of the variation,

the reference base,

the alternative alleles in the position,

the quality score associated with the inference of the given alleles,

the filters that the variation passed and

a list of key-value pairs describing the variation

While being an easy to read format, VCF provides a lot of redundant information
for qL.D, while the user-friendly representation of each sample with a character does not
fit the requirements of an HPC platform. Some more efficient alternatives have arisen
through the years to accomodate the large data expansion, especially in GWAS. Honor-
able mentions in this regard is the proposal of BCF, the binary-VCF file format, found in
the VCFtools package, the MVF [45] a format designed for phylogenomics and popula-
tion genomic analysis, and SeqArray [46], built on-top of Genomic Data Structure (GDS)
data format, which provides better data access and compression. Lastly, one of the most
prevelant alternatives to VCF are the BED files, developed during the Human Genome
Project [47] and later used by-default with PLINK. To this extend, qLD transforms the
information into another, efficient file format, with perfect compatibility with our data

structures, presented later in this chapter.
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4.2 Data Representation in Memory

The ISM allows SNPs to be represented by binary vectors, where a ‘0’ describes the allele
state before a mutation (ancestral state) while ‘1’ indicates the new state after a mutation
(derived state). This representation is sub-optimal though, having each table entry take
up 4 to 8 bits of memory, depending on the data type, while effectively needing only one.
On the other hand, accessing each element separately could lead to suffocation of the
memory controller, since the project is aimed towards parallel processing with a single,
shared memory space, which could deal with several concurrent requests per cycle. Thus,
to reduce the amount of memory space and accesses, we store each SNP as a group of

Nine w-bit-long unsigned integers with N;,, defined as follows:

N
Niny = [ Sﬂ , (4.1)
w

with zero padding if Ny, mod w # 0, and w = 64. The entire set of SNPs that
collectively describe a genomic region of interest for computing LD is represented by a
(k x w) X n matrix, G, where k = N;,;. An example of the matrix GG, which we henceforth
refer to as the genomic matrix, is shown in Figure 4.1. The genomic matrix GG exclusively
comprises SNPs. All monomorphic sites are already discarded during a preceding format
conversion step, discussed in detail later in this section. For clarity reasons, Figure 4.1
does not show the site locations, which are stored in separate memory space, but note
that adjacent SNPs in G can be thousands of sites apart in the genome. We henceforth

represent an SNP as a column vector s.

4.3 Microkernels

The microkernels that qLLD is based on, use general matrix multiplication operations
(GEMM) to compute the haplotype frequency matrix, which is then used to calculate
LD. Each of these kernels uses a different framework to speed up the calculations, based
on the platform they are running. The CPU kernel uses the GotoBLAS implementation

found in the open-source BLIS framework, while the GPU kernel uses custom functions,
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Figure 4.1: Pictorial representation of samples in the (k x w) X n genomic matrix, G. The
rows represent samples while the columns represent SNPs at different genomic locations.
Adapted from [2].

running in the OpenCL framework for inter-platform communication.

4.3.1 CPU kernel

In a work published in 2016 [14]|, N.Alachiotis et al. proposed a reformulation of the
LD computations to maximize the amount of operations that can be cast as matrix
multiplication, based on their observation that LD formulas resemble matrix operations.
As hinted in the equations 2.5, using a dense linear algebra (DLA) approach, we can find

the desired frequencies with the following operations:

1

H =
Nseq

G'a (4.2)
D=H-PP" (4.3)

where the first operation computes all of the haplotype frequencies, storing them in a
matrix H, while the second operation calculates and subtracts the product of the allele
frequencies from H. P, similarly to the equations in Section 2, is the per-SNP allele
frequency vector derived from an s SNP vector, in a genomic matrix G.

Using this formulation, the computation of H is an O(n®) operation, being a matrix



Chapter 4. Design and Usage 22

multiplication, while the subtraction is an O(n?) operation, given it is an outer product
of two vectors. This became the predominant process in terms of computation cost as

the number of SNPs gets larger and larger, which called for the following optimizations:

GotoBLAS approach To speed up the matrix operations, Alachiotis et al. turned to
a popular approach in the DLA community, the Level 3 Basic Linear Algebra Subpro-
grams (BLAS3), which are efficient algorithms for matrix multiplications on modern-day
processors. In the BLAS approach, H could be translated into a general matrix multi-
plication (GEMM) operation, which is essentially the following high-performance, scalar

formula:

C = aAB + 8C, (4.4)

where A, B and C' are of dimensions m X k, k x n and m X n, respectively. Without
getting into too many details, the way GEMM works is by utilizing a rank-k update on
the input matrices, breaking down the whole operation into much simpler blocked-dot
products. A helpful visual representation is shown in Figure 4.2. Thankfully, Alachiotis
et al. note that the format in which SNP data are allocated, is already optimal for use in
a GEMM kernel, without further manipulation, making the integration of the kernel easy.

The implementation of this approach was enabled by the employment of a well-known

framework, the BLAS-Like Instantiation Software (BLIS) [48].

Popcount Another optimization in the overall process of LD calculation using this
work as a basis, is the use of the intrinsic POPCNT operation for the calculation of the
haplotype frequency F;;. Remembering the Equation 2.5, given that s; and s; are binary
values, P;; equals 1 if and only if both alleles have mutated (having the value of 1, while
0 otherwise). Substituting the product with a count of ones in a pairwise AND logical
operations greatly increases the efficiency of this step, further increasing the performance

of the kernel. Therefore, haplotype frequencies are calculated using:
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Blocked-dot product

N =

Block-panel multiplication

Em -= gH

Rank-k updates

i ) i

Figure 4.2: GotoBLAS layered approach to implementing a GEMM (rank-k) kernel on
cache-based architectures. General matrix dimensions are first partitioned into rank-k
kernels (bottom layer), which in turn are implemented as block-panel matrix multiplica-
tions (middle layer) These block-panel matrix multiplications are then implemented as
blocked-dot products (top-layer). Adapted from [2].

seq

Data Format As stated in the beginning of the chapter, the data format in which
the SNP maps are saved and used, employ a compression of the by-nature binary SNP
elements into 64-bit unsigned long integers. Hence, accounting for this specific data
format, which also introduces another optimization in the kernel, the new formula for the
haplotype frequency is:

1

Pj=——> POPCNT (s} & sf) (4.6)

seq k=0
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4.3.2 GPU kernel

The next kernel this work is based on, was developed by E. Binder et al. [3], albeit
offloading the calculation of the haplotype frequencies to the GPU (second and third
loop around in Figure 4.3), using the highly portable OpenCL framework. The model
of the GPU architecture in Binder’s et al. publication works on some assumptions,
essential for the adaptation of the BLAS approach. Figure 4.4 provides a simplified
visual representation. The main assumptions of their model, although stripped down to

the minimum required features, briefly are:

— Thread Group. Each GPU comprises of Ny, groups of Ny number of threads
that execute the same instruction at any given clock cycle. Known as warps and

wavelronts.

— Compute Cores. A GPU is made up of No computational cores that perform

independently. Known as streaming multi-processors or compute units.

— Computer Clusters. Each computer core comprises of N, clusters. Each cluster

can execute a thread group independently.

— Arithmetic Units. Each cluster contains multiple arithmetic units, bound to
execute a specific instruction. For any instruction fn there are Ny, arithmetic
units in a cluster, varying based on the instruction, that have a latency of Ly,
cycles. Each arithmetic unit can be pipelined through the use of Ly, different

thread groups.

— Shared Memory. Each compute core contains a fast, shared memory of N,qreq
bytes, that are used from all the executed thread groups in the core. It is organized

into parallel-access NV, banks.

— Load/Store Architecture. Data has to be loaded from memory before the com-

putation. Each thread can load and store N,.. elements at the same time.
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Figure 4.3: The GotoBLAS layered approach as implemented in the BLIS framework.
Adapted from |[3].
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Figure 4.4: Organization of the hardware features on the model GPU architecture. The
GPU above can be characterized by the following parameters: No = 2, Ny = 3, and
Ny, = 16. Adapted from |[3].
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Based on these assumptions, the sizes of the data structures need to be evaluated
and parameterized, for the kernel to run at its full potential on each GPU model. For
optimization purposes explained in their publication, the values are configured as follows.
In Figure 4.3, which provides a more detailed insight of the BLIS architecture, the reader

can easily see which size each value presents:

My = Nyees (4.7)

Nyee is the number of elements each thread in a thread group can load/store at the
same time, while m,. is one of the dimensions in the second loop-around layer. Using this

value maximizes the reuse of the output matrix.

Ny

-0 4.8
Ncl, ( )

me =

m, is one of the dimensions of the blocks packed into shared memory, found in the third
loop-around layer. The number of banks N, to the number of clusters N, minimizes the

possibility of bank conflicts.

Nshared
kc - 9 49
N, (4.9)

k. describes the number of elements in the shared memory space, given that each
element is 4 bytes, and Npareq i the size of shared memory in bytes. Greater numbers
than this would overflow the memory.

Nrm
nZTT

r

Nvechn (410)

M
Lastly, n,., which is the last configurable dimensions, should be large enough to ensure
the computation of a unique value each time, with a lower bound calculated as such, while
also being as large as possible to speed up the process. There is no upper bound, because
of the way each manufacturer evaluates its resources at a deeper level and how each

compiler uses the available GPU registers. Given that the system is configured correctly,
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this kernel promises immense speedups, while noting that, as is the case with the CPU
kernel, popcount is still a bottleneck that stresses the need for better implementations
that overcome this unavoidable limitation in the present.

In conclusion of this brief explanation of the kernels that we use, the optimizations they
made to boost the performance of LD calculations are a key part of the success of this
project. Using these kernels we managed to optimally calculate the most performance-
critical part of the LD calculation pipeline, achieving sizeable speedup over the state-of-

the-art software we benchmark with, as shown later in Chapter 5.

4.4 Execution Pipeline

VCF Flle MDF Files [ \ Input/

» < InputList
l gLD-parse T l
Start qLD-parse-VCF gLD-parse-2MDF gLD-compute —* End
A
WCF Chunk Files — | LD Report —

Figure 4.5: The qLD flowchart qLLD-parse contains two subroutines, qLD-parse-VCF and
qgLD-parse-2MDF. If the MDF files already exist, only qLD-compute is executed.

Following the process from Chapter 2, we have VCF files consisting of SNPs. To
start the calculation process, we must first preprocess and parse the data for validity,
correctness, compatibility, and optimal use. In addition to performance, a major con-
cern in designing an efficient software for large-scale LD studies is memory management,
since requirements grow quadratically with the number of SNPs. For this reason, qL.D
implements a two-step process, as depicted in Figure 4.5, that separates parsing from
processing, which allows pairwise LD calculations between arbitrarily distant SNPs to be
conducted without increasing the memory space. We henceforth refer to the parsing and

the processing modes of qLLD as qLD-parse and gLD-compute, respectively.
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4.4.1 qLD-parse

VCF Input Files (Several GB)

Chromosome A / \ Chromosome B

Sample List

qLD-parse | » dLD-parse

Chromosome i Data Chunks l Chromosome

20 M W m o (FewMB) oW M W ™
HE N :/ “ HE N
H B B H BE B
Figure 4.6: The qLD parse workflow. Given a VCF input file, qLD-parse creates a

chromosome pool containing corresponding MDF files. An optional sample list can select
the samples to-be-included in the MDF files.

The first step of the process, gLD-parse (depicted in Figure 4.6), focuses on converting
each—potentially large-VCF input file to an intermediate data representation that allows
faster subsequent parsing and processing. The conversion process is performed once per
VCF file and list of samples of interest. During this step, each VCF is split into a series
of fixed-size files (Chromosome Pool in the figure) in a custom, LD-specific data format
dubbed Matrix Data Format (MDF, see Listing 4.2). As presented, the VCF file is parsed
and the valid samples (in the sample list) are converted into 4-bit unsigned words. A larger
number of samples leads to a larger sequence of 4-bit words per MDF row. Note that
MDF files to be processed using qLLD contain 64-bit words. Each line also contains the
total bit count per SNP (MDF row). The genomic coordinates (start and end position) of
the subgenomic region stored in each MDF file are part of the filename. This convenient
naming convention facilitates backward mapping of MDF files to the chromosomal region
of the input VCF. Each MDF file is typically a few MB in size, regardless of the number

of samples or SNPs in the VCF, with larger sample sizes leading to fewer SNPs per file.
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##fileformat=VCF
smpO smpl smp2 smp3 smp4 smpb
1 1 0 0 1 1
1 0 1 0 1 1
0 0 0 1 0 1
1 0 0 1 1 1
##fileformat=MDF
Bitcount packedO
4 15
3 11
1 1
3 11

D O W

Listing 4.2: VCF-to-MDF conversion using the sample list “smp0 smpl smp4 smp5b"
and assuming 4-bit MDF words for convenience. The bitcount of each resulting SNP is

calculated in the process and included in the file.

4.4.2 gLD-compute

gloworfmosome Data Chunks Chromosome

Al B W W W (FewMB) W W W W ™o
H E N y HEEEE
HEmE HE N

Region A MDF File Region B g

B Format \= el
Task List
gLD-compute 1: Reg.X-Reg.Y
2: Reg.X-Reg.Z
i: Reg.A-Reg.B
K: Reg.Z-Reg.Y

Figure 4.7: The qL.D-compute workflow. Previously calculated MDF files get pulled into
the program using a task list as input. The allele and haplotype frequencies are first
calculated and then being used to produce the final LD score. A single report per task is
saved in a user-designated directory.
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The second step (qLD-compute in Figure 4.7) focuses on computing all LD scores
between SNPs in pairs of genomic regions. A region pair, e.g., regions A and B in the
figure, represents a compute task. qLD relies on the genomic coordinates that appear in
the MDF filenames to parse the right subsets of MDF files and load the two chromosomal
regions of a compute task to the main memory. For region A in Figure 4.7, for instance,
only the MDF files =, y, and z are parsed. When the region pair is represented in the
main memory, the kernels are employed, based on the user-selected computation mode,
to compute the haplotype frequency. Thereafter, allele frequencies and the final r? scores
are computed according to Equations 2.5 and 2.10, respectively. qL.D produces a separate

LD report per compute task.

4.4.3 Commands and Arguments

The following listings provide the required command lines for using qLD. A single as-
terisk indicates a required argument, while double asterisks indicate mutually exclusive

arguments.

qLD-parse The first step of the qLD workflow is implemented through gLD-parse,
which itself consists of two subfunctions: qLD-parse-VCF (splits a VCF to chunks) and
gLD-parse-2MDF (converts each chunk to an MDF file). Listings 4.3 and 4.4 provide the

basic input arguments.

./bin/qLD-parse -VCF

-inputlList !$STRING! * %
-input '$STRING! * %
-output ' $STRING! *
-size '$INTEGER! *

Listing 4.3: qLD-parse-VCF command. Divides the initial VCF in zipped chunks.
"input" and "inputList" arguments supersede each other. All of the arguments presented

are required.
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./bin/qLD-parse -2MDF
-input '$STRING!  *
-output '$STRING! =

-samplelList !$STRING!

Listing 4.4: qLD-parse-2MDF command. Transforms the previous zipped VCF chunks

to MDF files. "sampleList" is an optional argument.

qLD-parse-VCF receives an input file that is either a single VCF (-input) or a list
of several VCF files (-inputList) and creates a directory (-output) that contains VCF
chunks of fixed size in MB (-size). The path to the produced output folder is input
to qLD-parse-2MDF (-input), along with the list of samples of interest (-sampleList),

which stores the generated MDF files in a user-given directory (-output).

qLD-compute In the second step, gLD-compute is launched to conduct the required

LD calculations. Listing 4.5 provides basic input arguments.

./bin/qLD-compute

-input $STRING * %
-input?2 $STRING * %
-inputList $STRING * %
-output $STRING *
-ploidy $STRING *
-r2limit $FLOAT
-threads $INTEGER
-mdf

-gpu

-compete

-sorted

Listing 4.5: qLD-compute command. Uses VCF chucks or MDF files to calculate the
input tasks provided by the "input(2)" or "inputList" arguments. Arguments with an

asterisk are required.

Using VCF chunks or, preferably, MDF files (-mdf) as input, qLD-compute generates
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LD reports. Similarly to qLD-parse-VCF, either a pair of inputs (-input,-input2) are
provided, in which case a single report is produced, or a list of several tasks (-inputList),
in which case a report per task is stored to the output directory (-output). The ploidy,
meaning the number of sets of chromosomes in an organism, therefore the number of
alleles per loci, is also required (-ploidy). Optional parameters allow to deploy the
GPU kernel (-gpu), set a number of threads (-threads) for parallel execution, apply

optimizations (-compete, -sorted) and/or apply a threshold to the output (-r2limit).

4.5 Preprocessing

Before every LD analysis, the VCF files need to be preprocessed with qLD-parse-VCF
and qLD-parse-2MDF, as mention previously. This is a serial execution step since the
critical workload is bound by disk access, that cannot be parallelized. qLD-parse-VCF is
a past contribution to the project, that manipulates the VCF files as we need, resulting
in zipped chunks of data to minimize their footprint. Compatibility is maintained with
these files in gLD-compute, as was intended before the start of the project. However,
as the development proceeded, it was apparent that VCFs need further preprocessing
to be used efficiently, which burdened the calculation step for no added benefits. This
prompted the creation of qLD-parse-2MDF, which consists of all the VCF processing code.
The data structure used in qLD-compute is, as mentioned earlier in this Chapter, arrays
of 64-bit unsigned long integers, each representing 64 or fewer SNPs. Thus the MDF
files, consisting of exactly this data structure, provide the information needed for the LD
computation in a much cleaner and faster way, eliminating processing overheads, just by
adding another small preprocessing step to the input data. The process of creating MDFs
also handles the exclusion of non-polymorphic sites, that do not count as valid SNPs in an
LD study. Although being a lossy procedure, the pruned information was of no interest
in further steps of the process, thus providing further compression of the input, without
loss of valuable data. Following this step, is the execution of qLD-compute, where the

actual LD calculation takes place.
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4.6 LD Computation
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Figure 4.8: The qLD-compute flowchart. The initialization and argument parsing hap-
pens in a sequential process in the beginning. The LD calculations take place in the par-
allel threads, along with other complementary functions. Upon completion the threads
merge and return a successful execution. Each process in this flowchart is further depicted
in a deeper level in the following figures.

qLD-compute is capable of running in both single- and multi-threaded modes. Hav-
ing said that, it should be explicitly specified that both modes execute within Pthreads,
even if it is not strictly beneficial to the single-threaded execution. This design approach
was decided after testing, where we found the overall benefits to heavily outweigh the
potential downsides. Every contribution in the project revolved around the computa-
tional part of the platform, aside from some helper functions for proof-of-concept for the
kernels. Therefore, it was fundamentally needed to develop a primal, serial version, be-
fore attempting to parallelize it. After completing this process, we immediately started
to parallelize the core functions. Many techniques and different builds were tested, to
ensure that our final model was the most scalable and memory-efficient approach given

the nature of our problem. While building and testing the final versions of the parallel
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approach, the truly serial and the single-threaded "serial" modes competed in several
tests with different data sizes, to determine the realistic overhead of the deployment of
Pthreads even for a single thread versus the serial code. We found out that given the
workload in all use cases (minimum, average, heavy), the execution times were the same,
within a margin of error in milliseconds while having almost no toll on the memory usage.
Hence the serial approach was discontinued, for easier code maintenance, less clutter, and
minimization of boilerplate code. The final version of qLD-compute works as depicted in

Figure 4.8, and each step is further explored in the following subsections.

4.6.1 Preliminary Sequential Steps

In any kind of execution, the basic workflow consists of a serial execution part at the
beginning and the end of the program, essential for proper initialization and completion
of the program, and a parallel part that handles the calculations. The most notable

functions (depicted in Figure 4.9) in the serial segment are:

Command Line Argument Parsing: Since the execution of qLD-compute happens
exclusively from the command line, the first step is to parse the argument list, as shown
in Listing 4.5. This updates any flags and variables needed, setting the execution path
of the program. The -threads argument, in particular, is responsible for the selection
between single- and multi-threaded operation, while the -gpu flag enables the computa-
tional offload to the GPU, establishing a connection to one of the graphics units if more

than one exist in the system.

Task loading: A task is defined as a single, independent execution, be it in a single
region or between a pair of regions. qLD-compute can work with single tasks or a list of
multiple tasks as input, which are then loaded in memory, in a linked list data structure.
Several checks ensure that the input is valid and remove invalid tasks while informing the
user about the failed checks. When all of the tasks are loaded in memory, we proceed to

the next step.
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Command list.txt

Dirt, 1, 1000, Dir2, 50, 2000
Dirt, 50, 100, Dir1, 10, 1500

gLD-compute l

P> Command Line
Argument Parsing

listName="list.txt"

mdf=1

blis=1

gpu=1

ploidy=1

threads=2 :

output="outDir" Task Loading

task 0 task 1

InA=[Dir1/file1.mdf] InA=[Dir1/file1.mdf]

PosMinA=1 PosMinA=50

PosMinB=1000 PosMinB=100

InB=[Dir2/file1.mdf,  InB=[Dir1/file1.md, In;z:i‘ﬁion
Dir2/file2.mdf] Dir1/file2.mdf]

PosMinA=50 PosMinA=10

PosMinB=2000 PosMinB=1500

Figure 4.9: Sequential functions of qLD-compute. An example of the preliminary func-

tions in a theoretical run with "list.txt". We assume that each input MDF file contains
1000 SNPs.

Thread Initialization and Work Assignment: qLD-compute uses POSIX threads
for the parallelization of the computation step. One of the hardest choices in the whole
project was deciding on which level we would perform the parallelization. The two ends
of the spectrum in parallelization are fine and coarse grain. Grain refers to the routine
which will run in parallel, fine being a small, specific function or calculation, while coarse
meaning a broader part or even the entirety of the program. After small experimentation
with fine-grain parallelization, we concluded that while it is plausible that in high scale
calculations finer grains would be beneficial, they certainly didn’t downscale well enough,
having a low computation to communication ratio. Since the primal testing on coarse
grain parallelization yielded much greater results, we opted to continue with a coarser
grain, assigning a whole task execution as the parallel function. The communication

between threads with this grain size is minimized due to the existence of the task queue
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that concludes of independent tasks. Using this approach, we are also able to pre-assign
the GPU handling in a single thread, if GPU offloading is enabled, even before the initia-
tion of the parallel process. This prevents any bottlenecking between the two processing
units and greatly simplifies the heterogeneity of the project. Hence, immediately after

the thread initialization, we start the parallel execution, without any intermediate steps.

4.6.2 Parallel routine and sub-functions

The parallel routine utilizes POSIX threads and consists of all the steps depicted in
Figure 4.7, under the qLD-compute module, including some helper functions. Each thread
uses an internal loop to extract tasks from the task list, which is the only communication
point between the threads, through a mutex. The mutex is responsible for an orderly
dequeue of threads, without implications in case of simultaneous demand. The available
memory for each thread is allocated beforehand when the thread first starts. The current
model of the data structures uses simple statistical estimations based on the average
frequency of SNPs in a genomic range, leaving open an expansion window, in case of

miscalculations. In execution order, the main functions in a single thread are:

Preparation

Task Loading: In the preparation step, the thread dequeues a task from the list, if
available, and loads the task-specific values such as data ranges, names, and directories
for the input and output files, flags, and helper variables in local variable structs. It then

proceeds to load the actual genomic data in memory, in the table creation step.

Table Creation step: The data tables each thread handles contain first and foremost
the SNP vectors, then the position, the identifier, and the popcount of each site. Given
the pruning and validation checks on the preprocessing step of creating the MDF files,
no further manipulation of the data is needed, hence they are loaded immediately in
the memory. Using the data provided from the loaded task, each thread opens the

corresponding to the task’s region files one by one, locates the lines containing valid data,
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gLD-compute

task_0 task_1
InA=[Dir1/file1.mdf] InA=[Dir1/file1.mdf]
PosMinA=1 PosMinA=50
PosMinB=1000 PosMinB=100
InB=[Dir2/file1.mdf, InB=[Dir1/file1.mdf,
Dir2/file2.mdf] Dir1/file2.mdf]
PosMinA=50 PosMinA=10
PosMinB=2000 PosMinB=1500

Thread 1 Thread 2 (GPU)

TableB TableA
|

Empty
Tasks Tasks

Figure 4.10: Parallel functions of qLD-compute. Continuing from the previous figure, 2
threads are used, utilizing the GPU. Each task is loaded in the corresponding thread and
discarded when the calculations finish. When the tasks finish, the threads merge and the
program ends the execution.

and loads the 64-bit unsigned integer values to the SNP table, along with all of the other
information mentioned earlier. The memory space of the SNP tables, while technically
being a matrix, is laid out in an array format, with an accommodating indexing function
to this specific data structure. This layout is preferable and used by the kernels as well,
reducing page faults and cache misses. After loading everything on memory, we proceed
to the calculation of the allele and haplotype frequencies, the LD score calculation, and
the output of the reports, using the CPU kernel in CPU threads and the GPU kernel on
the GPU-offloading thread if enabled.
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LD Calculation

Matrix Layout :
Memory Packing Kernel Usage

outDir/Report.txt

. Allele Frequency
Printing Results & LD Calculation

Figure 4.11: Inner functions of LD Calculation Step. The tables go through several
memory transformations for better cache management. In the kernel usage step, the
GPU is employed in the GPU-handling thread. To refrain from bloating the diagram it
is not depicted differently from the CPU kernel employment.

Matrix Layout Transformation (MLT): Both the CPU and GPU kernels follow the
same processes since they are based on the same approach to the LD calculation problem.
Firstly, one of the tables corresponding to the input SNPs is transposed, to abide by the
formats needed in Operations 4.2, 4.3. In the case of a single input region, we keep both

the initial and transposed tables. Following this step, we have the memory packing.

Memory Packing: As mention in the kernel sections, the implementation of the
GEMM operations involves looping through smaller blocks within the matrices. This
allows efficient calculation in the limited cache space of a processor, with minimal cache
misses. It also ensures that the memory size used in the calculation step is always bound
and independent of the initial size of the calculated task. Thus, before the calculations,
the memory is packed using a specific layout, creating blocks that are then fed into the

kernels.
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Using the CPU kernel: The CPU kernel uses the BLIS frameworks, which is linked
at compilation time, and used in the form of a library. Thus, in this step, we simply call

the GEMM function and provide the necessary arguments, alongside the SNP blocks.

Using the GPU kernel: The GPU kernel uses the OpenCL framework, and, as it
offloads the computation to another processing unit, we first transfer the data needed
through the connection established in the initialization phase. Without getting into
details, since this kernel is not our work, the OpenCL framework initiates a program
written in OpenCL language, running the GEMM micro-kernel. When the data are
transferred successfully, this program is executed, calculating the resulting table. Upon
finishing, it transfers the results back to CPU memory space. Appropriate testing was
done to ensure the optimal fit of the kernel to the specific GPUs, as per the instructions

of its developers.

Allele frequency & LD calculation: When the resulting haplotype frequency tables
are complete, we proceed to the allele frequency calculation, along with the LD calcula-
tion, using the Squared Pearson Correlation Coefficient (Equation 2.10). This consists of

four divisions, and the outcome is then saved in the list of the results.

Printing the Results: The results are printed into a file for every task. The data
reported are the IDs and positions of the SNPs, along with the allele frequency of each
SNP and the LD score of the pair. Depending on the limit set by the user (r2limit) and
the task size, the output file size can vary from some MBs to several GBs. This puts a
heavy load on the disk I/O, which can tremendously slow down the process, especially in
the case of multiple threads. Apart from the application of r2limit from the user, which
is fairly common practice in LD studies, which research strong correlations, we further
optimized the writing to a sufficient level. The first optimization comes from utilizing
C’s string and file buffers efficiently, to reduce the amount of disk writes. The second

optimization is presented in the next section.
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4.6.3 Completion

Thread Merging and Program Completion After the successful printing of the
report, the thread successfully finishes the task, resets to the beginning of the process, and
pulls the next task. If it fails, it returns to the caller function, indicating the completion
of the execution. Upon its return, each thread immediately goes into an inactivity state,
waiting for the other threads to finish. When all threads are inactive, the master thread

shuts down the program, completing a successful run.

4.7 Additional Optimizations

The qLD platform was developed using High Performance Computing (HPC) practices
for input/output (I/0), memory management and overall performance. The kernels that
calculate LD are also optimized. Therefore, to further boost the performance of qL.D, we
devised of qLD-specific alternatives to existing implementations, that perform faster than
their generic counterparts. These optimizations include the creation of Matrix Data File
format, a custom blocking routine for the input tasks, different task-to-thread allocation

methods and a custom printing function using lookup tables:

4.7.1 MDF parsing
The Matrix Data Format (MDF) File

One of the most common file formats for gene sequencing variations is the variant call
format (VCF). A typical VCF contains all the necessary information for an LD study,
written in a human-friendly way, albeit being quite inefficient for a high-performance
LD platform. Each element of the SNP matrix is represented with a single (or more,
depending on the ploidy) character while providing binary information. This creates a
significant overhead on the execution, where we must pack the information to fit it in the

limited ram and cache spaces.
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1 ##fileformat=MDFvO.1
2 #CHROM POS 1ID BC compSNP_O compSNP_1 compSNP_2
3 23 1 rso01 50104 728691394239593355 484860778953314344 5852295991283862418
4 23 16 rs85 50046 5889810797632891717 4067052671618687417 2187254492323864484
5 23 158 1rs35 50031 4733340049119312308 3565397348654009321 1345173088689663059
6 23 160 1rsb20 50019 3080731532467135050 6110428055623626207 1674574188567292802
7 23 470 1rs1050 50144 4357582525877649028 3817763505454594719 7760019307366416598

Listing 4.6: Matrix Data Format example, each sample block contains 64 samples encoded
in unsigned integer values. CHROM, POS, ID are the same with the initial VCF values.

The kernels used in LD, for those same limitations, handle the SNPs as arrays of
64-bit words, where each word represents 64 samples of the SNP. This was the deciding
factor on the optimization of the input files, with the creation of MDF. The resulting
MDF files, as shown in Listing 4.6, share the most basic SNP information with their VCF
counterparts but differ in the packing of SNP arrays into 64-bit word arrays.

Another process that further optimizes the files both in size and execution time on
the computation step, is the trimming of invalid sites. Since the creation of MDF files
needs to first read each site, we capitalized on that read as much as possible. LD studies
require SNP inputs, where VCFs provide sites as input. An SNP is always a site, while
the opposite doesn’t apply. Since the rules that validate an SNP require to first read the
whole site, we prune non-SNP sites in the MDF creation, to both save space in the disk
and calculation time.

Additionally, we calculate the bit count, meaning the number of 1s, in each SNP, and
add it to the SNP’s information in the file. This is used in the calculation of the allele
frequencies in the calculation step, which is a part of the LD calculation.

Having already calculated the bit counts and pruned the invalid sites, the input from
an MDF file is just directly fed into the correct tables in the calculation step, without
any further processing.

Before the decoupling of file processing and the computation step, each run suffered
from a significant overhead, that was deemed unnecessary. Since the VCF files are still
processed into MDFs though, the trimmed time is not avoided per se. The performance
gain is cumulative and related to the number of tasks a user needs from a specific dataset,

therefore it is not accurately measurable. FEven if we can not give a definitive peak
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performance gain in the best-case scenario, it is certain that in the worst case, it does

not hinder the process, while promoting a better workflow practice.

4.7.2 Custom Blocking Factor

Input Region Resulting Matrix
A Transposed Input Region ABT
. AT cT

CATCB'CC]|

E-8

Calculating Upper Diagonal Matrix of sub-regions

L
_ ABT
e - Om
= -

Figure 4.12: Example of a spliting input task. Each block contains a subdivision of the
initial region. Splitting the input enables the trimming of redundant information.

An experimental feature that yields great results especially in single region executions,
is the segmentation of the input task in smaller sub-tasks. The main idea behind this
feature is to expand the concept of blocking, that our kernels use when calculating haplo-
type frequencies. Given that GEMM is designed to calculate whole matrices, single region
calculations produce results that mirror on the diagonal. Using a blocking technique on
the SNPs of the input task, as shown in Figure 4.12 we can approximately calculate only
the results closer to the diagonal matrix. As depicted, the darker half of the resulting
matrices is redundant information. When replacing the initial task with the new multi-
plications between the blocks, we can trim the calculations by removing the redundant
regions. Having separated the input task in N blocks, the resulting "optimized" task list

has a size of:
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N
#Tasks = Z x, (4.11)
=1

and the number of redundant calculated LDs has shrunk dramatically. Specifically,
given an input matrix with N SNPs, the number of elements of the upper triagonal

matrix (excluding the diagonal, given it is always equal to 1) is

N(N —1)

#FElements = 5 ,

(4.12)

as opposed to N2 on the whole resulting matrix. Using this optimization step effectively,
we aim to approach the triagonal matrix as close as possible. Additionally, by lowering
the dimensions of every single sub-task, we ensure that the memory footprint of each
thread is smaller, enabling better scalability when we add more threads in the execution

since the available memory for all the threads is shared and also limited.

4.7.3 Competing Task Queue and Sorting
Time per thread in Multi-Threaded Execution
using different Task Allocation Models.

Task List Sorted Task List
234 5 3 0 624

Task Preallocation Competing Queue Competlng Queue + Sorting

=
LT L

Threads Threads Threads

Figure 4.13: Example of the task allocation on threads. Task preallocation assigns regions
of tasks to each thread, while the two competing implementations allow each thread to
pull a task from the list whenever it finishes calculating the previous task.
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The parallelization of several tasks of dynamic sizes can lead to imbalances in the load
of each thread. To combat this issue, a competing queue was implemented, where each
thread competes to pop the next task upon completion. A competing approach to the
allocation of the tasks ensures balance over time. To further improve upon this idea, a
sorting method was implemented, for corner cases such as when heavy tasks exist at the
end of the queue. The sorting method is not taxing on the performance of the platform,
since the queue is implemented as a linked list. Sorting such a structure with the merge
sort algorithm has O(N * logN) time complexity, which is low compared to the total
execution time of an average LD workload. In Figure 4.13, a typical allocation with all

the different methods is depicted.

Task Preallocation: Using the task preallocation method, where each thread is as-
signed to a region of tasks, it becomes apparent that the performance can vary depending
on the order of the tasks. Each thread, in the example, gets a region of two tasks. This

creates an imbalance, where the critical thread is thread number 3.

Competing Queue: Changing to a competing approach, we should expect to see better
results, but this is not depicted in the example. On the contrary, thread 3 has been
assigned an even greater workload. This is not the typical case, being an intentional
exaggeration due to the small number of tasks and a badly weighted initial task list.
Given a greater number of tasks, the average workflow would eventually be smoothly
allocated, due to the competition. Cases like this though led to the implementation of

the sorted competing queue.

Sorted Competing Queue: Sorting the task list, we ensure that the grain of our tasks
gets finer as we get to the finish of the execution. This way, the last tasks act as fillers
to the time gaps created by their larger counterparts. As we can see in the example, this

leads to the most balanced execution, along with the best execution time.
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4.7.4 Printing using Lookup tables

To improve write times, we experimented with a custom printing function specifically for
the floating-point numbers, since fprintf is a general-purpose function and introduces a
substantial overhead on type conversions. As shown in Listing 4.7, we finally opted to
use Lookup tables, since it is the most common technique to combat mapping overheads,
especially to text. Based on the fact that the output is dominated by floating-point values
(FPVs), we map each FPV to a character array from ‘0’ to ‘9’, where each digit points
to its representation in the array. This simple optimization achieves up to 1.7x faster
printing, with 10 FPVs with 9-digit precision stored in a file in 0.123 seconds, while

requiring 0.208 seconds when the standard C library function fprintf is used.
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def reverse (num):
while num > O:

digits++

rev = rev * 10 + num % 10
num = num / 10
num = rev

return digits, num

# Main function, separates the integer

# from the decimal part, then reverses

# (since printing works as a queue)

# and prints digit-by-digit the given

# number in the right order with the

# given precision

def custom_print(fp, value, precision):
char_array[10] = "0123456789"

powl0 = 10 ~ precision

int_part (int)value
decimals = value - int_part * powlO
[int_dig,inv_int]=reverse(int_part)

[dec_dig,inv_dec]=reverse (decimals)
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if inv_int ==
fputc(’0’, fp)

while inv_int != O:
c2p = char_array[inv_int % 10]
fputc(c2p, £fp)
inv_int = inv_int / 10
int_pos++

for i = [0:1:int_dig - int_pos]:
fputc(’0’, fp)

fputc(’.’, £fp)

for i = [0:1:precision - dec_dig]:
fputc(’0’,£fp)

for i = [0:1:dec_dig]:
c2p = char_array[inv_dec % 10]
fputc(c2p, £fp)

inv_dec = inv_dec / 10

Listing 4.7: qLD custom printing routine for floating-point values based on a lookup table
approach. (C code implementation available at : https: //github. com/ StrayLamb2/

qLD/blob/master/ src/ correlator/ src/ fast_print. c)


https://github.com/StrayLamb2/qLD/blob/master/src/correlator/src/fast_print.c
https://github.com/StrayLamb2/qLD/blob/master/src/correlator/src/fast_print.c

5. Performance Evaluation

In this chapter, all of our test results are grouped by their scope, in their respective
sections. The datasets used in the following evaluation derived from a single haploid
dataset of 20k SNPs and 100k samples. Depending on the specific needs of each test, qLD-
parse created a sub-set of MDF files, accordingly. We decided to evaluate our performance
on haploid data, since using diploid data would only effectively double the sample size
(2-bit information per sample). Real or realistically-made simulated datasets include a
high percentage of monomorphic sites or sites with missing data, making it impossible
to determine their SNP size prior to the experiment, so we refrained from using such
datasets in the early development stages. When the project reached its development
targets, it was already capable of running with real datasets. To showcase this, we used
qLD for the computation of LLD in the much recent and trending COVID-19 set.

The following sections introduce the systems in which we tested our code, and cover
both the single- as well as the multi-threaded performance. The single-threaded section
contains the baseline evaluation of qLD in terms of execution speed, throughput, and
speedup. Additionally, a time breakdown of a typical qLD single-threaded execution in
its main functions is presented, which provides a better insight into the allocation of the
execution time. Finally, we present the results on the custom blocking of the input tasks,
which is an optimization of the single region executions.

The multi-threaded section evaluates the heterogeneous CPU and GPU environment,
involves the co-ordination of both computing units, and showcases the ability to simulta-
neously use them while balancing the load to compensate for the differences in execution
speed. In addition, we tackle some of the challenges we faced and use performance
graphs to establish the choices made. Lastly, we prove the ability of qLD to process real
datasets, using a Covid19 dataset, derived from the available SARS-CoV-2 sequences in
the GISAID database. (https: //www. gisaid. org/).
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5.1 Experimental Setup

In our experiments, we tried to evaluate the program in as many cases as possible, firstly
because we had to ensure that it works in different machines with different hardware
configurations and secondly to benchmark the differences between mainstream and server
components. Given the aforementioned reasons, we performed experiments on an off-
the-shelf personal laptop and the ARIS supercomputer (https: //hpc. grnet. gr/en/).
Table 5.1 provides the specifications of the employed test platforms. We compare our
performance with the software PLINK 1.9 [41], since it is well designed, well known,
and widely used. PLINK 1.9 is also able to directly compare in most of our use cases,
both in single-thread, as well as in multi-threaded runs. The only limitations in terms of
compatibility are the ability to run bi-regional correlations, which we found impossible
in PLINK 1.9 without having at least a significant computational overhead of redundant
data, and the utilization of the GPU as a processing unit. All runs were performed using
the default 72 limit of both qLD and PLINK 1.9 (r7, ., = 0.2), which serves as a high-
pass filter on the output. We opt-in filtering the output, because in most realistic cases
the unfiltered outputs can grow in sizes of hundreds of GBs quite fast, while the useful

information in them is only a few GBs or less.

System 1 System 2
Description Off-the-shelf laptop | Aris supercomputer
CPU Model Core i5-8300H Xeon E5-2660v3
Microarchitecture Coffee Lake Haswell
Nominal Frequency 2.3 GHz 2.6 GHz
Max. Turbo Frequency 4.0 GHz 3.3 GHz
Processors 1 2
Cores/Processor 4 10
Total Cores 4 20
Memory 8 GB 32 GB
GPU Model GTX 1050-M Tesla K40
Streaming Multiprocessors 5 15
Cuda Cores 640 2880
GPU Memory 4 GB 12 GB

Table 5.1: System Specifications


https://hpc.grnet.gr/en/
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5.2 Single Thread Performance

The single-threaded performance tests of this project consist of 4 different factors; Ex-
ecution speed, throughput, speedup, and breakdown. Execution speed is used as an
evaluation of real-life user experience. Throughput, although tied to the execution speed,
gives us a better understanding of the scaling capabilities of the interface, since the ker-
nels are already tested and optimized for scaling. As speedup, we compare the gain in
terms of execution speed against the state-of-the-art PLINK v1.9, as a benchmark of
improvement over the current state of LD research platforms.

We then break down the execution time in the four major components of the program.
These graphs are used to find out if qLD still has a critical path on the LD calculations,
when the optimized kernels are used, or rather we should switch our focus on a newly
found critical path in the future of the project.

Lastly, we provide testing results on a promising improvement in input manipulation,

by fragmenting the input task into several sub-tasks.

5.2.1 Execution speed comparison

In the first test, we compare the execution speed of PLINK 1.9, the CPU kernel, and
the GPU kernel in qLD. We aim to show, not only that we operate faster than the
state-of-the-art solution, but also that we do not hinder the performance of the kernels
compared to the previous work. Figure 5.1 illustrates execution times of qLLD and PLINK
1.9 when the sample size increases up to 100k (Fig. 5.1A), and the number of SNPs
increases up to 10k for fixed sample sizes of 2,5k (Fig. 5.1B), 10k (Fig. 5.1C), and 100k
(Fig. 5.1D). Expectedly, execution times increase linearly with the number of samples
and quadratically with the number of SNPs.

We can also observe that System 1 (off-the-shelf laptop) outperforms System 2 (ARIS
supercomputer), exhibiting shorter execution times overall. This is expected because
we test the sequential execution, and the operating frequency of System 1 (3.8 GHz

turbo frequency) is about 40% higher than the nominal frequency of System 2 (2.6 GHz).
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Figure 5.1: Execution times on System 2 for increasing number of samples Fig. 5.1A and
increasing numbers of SNPs when the sample size is 2,500 sequences (Fig. 5.1B), 10,000
sequences (Fig. 5.1C), and 100,000 sequences (Fig. 5.1D).

This works under the assumption that our node on Aris ran without, or using only a
small amount of boost, probably because of a conservative tuning for safety and stability.

Tables 5.2 and 5.3 summarize these results in terms of speedup (discussed in detail in

Section 5.2.2).
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5.2.2 Throughput comparison

A major difference between qLD and PLINK 1.9 is the way pairwise LD scores are
computed. As previously mentioned, qLD relies on the BLIS framework and exploits the
observation that pairwise LD computations can be cast as a matrix-multiply operation.
Computing all pairwise LD scores between all SNPs in a single region using BLIS results
in the calculation of a symmetric output matrix, thus having evaluated the same scores
twice. PLINK 1.9, on the other hand, only processes a single file/region and calculates a

diagonal matrix with all the pairwise LD scores.

Single Region Pair of regions
Samples Throughput (LD x10°/sec) Speedup (x) over PLINK 1.9 | Throughput (LD x10%/sec)
(x10%) | qLD_CPU LD GPU PLINK 1.9 | LD _CPU qLD _GPU |qLD_CPU qLD_GPU
2.5 8.679 11.466 3.306 2.625 3.468 17.361 22.936
10.0 3.967 8.560 0.942 4.210 9.082 7.937 17.123
20.0 2.155 5.813 0.478 4.510 12.167 4.310 11.628
30.0 1.497 4.416 0.319 4.685 13.823 2.994 8.834
40.0 1.133 3.581 0.241 4.706 14.874 2.267 7.163
50.0 0.912 2.983 0.193 4.726 15.465 1.823 5.967
60.0 0.770 2.572 0.161 4.773 15.940 1.540 5.144
70.0 0.657 2.200 0.137 4.782 16.012 1.314 4.401
80.0 0.583 1.965 0.121 4.812 16.228 1.166 3.931
90.0 0.518 1.758 0.108 4.804 16.312 1.036 3.516
100.0 0.465 1.558 0.096 4.822 16.157 0.930 3.117

Table 5.2: Throughput performance on System 2 for increasing number of samples when
a single SNP region and a pair of regions are processed by qLD CPU, qLD GPU, and
PLINK 1.9. The table also provides the observed speedups of qLD CPU and qLD GPU
versus PLINK 1.9. The region size is 5,000 SNPs, thus 12.5 x 10% and 25 x 10° LD scores
are computed when a single SNP region and a pair of regions are processed, respectively.

Single Region Pair of regions

Region
size | munber Throughput (LD x10°/sec Speedup (x) over PLINK 1.9 | 11" | Throughput (LD x10%/

(SNPs) of LD roughput ( sec) peedup (x) over . of LD roughput ( sec)

scores scores

(x10%) | (x10% |qLD_CPU qLD_GPU PLINK 1.9 | qLD_CPU qLD _GPU (x10%) | qLD_CPU  ¢LD_GPU
1.0 0.500 0.257 0.284 0.095 2.701 2.977 1.000 0.515 0.568
2.0 1.999 0.359 0.645 0.097 3.713 6.671 4.000 0.718 1.290
3.0 4.499 0.414 0.953 0.097 4.279 9.845 9.000 0.829 1.907
4.0 7.998 0.444 1.303 0.097 4.568 13.414 | 16.000 0.887 2.606
5.0 12.498 0.466 1.580 0.097 4.822 16.363 | 25.000 0.931 3.161
6.0 17.997 0.480 1.902 0.097 4.934 19.562 | 36.000 0.960 3.805
7.0 24.497 0.492 2.181 0.097 5.060 22.443 | 49.000 0.984 4.363
8.0 31.996 0.498 2.439 0.097 5.140 25.176 | 64.000 0.996 4.878
9.0 40.496 0.507 2.616 0.097 5.220 26.951 | 81.000 1.013 5.233
10.0 49.995 0.512 2.842 0.097 5.272 29.254 | 100.000 1.024 5.685

Table 5.3: Throughput performance on System 2 for increasing region size (number
of SNPs) when a single SNP region and a pair of regions are processed by qLD CPU,
gLD GPU, and PLINK 1.9. The table also provides the observed speedups of qLD CPU
and qLD _GPU versus PLINK 1.9. The sample size is 100,000 sequences.
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Because of this, when a single region is processed, qLD computes twice the amount
of scores that PLINK 1.9 computes. To perform a fair throughput comparison, since
qLD can not compute only the diagonal matrix when a single region is processed, and
PLINK 1.9 does not support two different regions as input, we report effective throughput
performance for an increasing number of samples (Table 5.2) and SNPs (Table 5.3),
distinguishing between processing a single region and a pair of regions of the same size
in terms of SNPs. As can be observed in the tables, qLD is between 2.63x and 4.82x
faster than PLINK 1.9 when the sample sizes increase from 2,500 sequences to 100,000
sequences, and between 2,70x and 5,27x faster when the region size increases from 1,000
SNPs to 10,000 SNPs. When qLD offloads computations to a GPU, qL.D is between 3.47x
and 16.31x faster than PLINK 1.9 (running on the CPU) when the sample size increases,

and between 2.98x and 29.25x faster when the number of SNPs increases.

5.2.3 Execution time breakdown

Figure 5.3 presents execution time breakdowns for the processing step of qLD when the
number of samples and the number of SNPs increase. qLD-compute consists of 4 main

stages that collectively contribute to its total execution time:

e Memory Layout Transformation (MLT): transposition of one of the two in-
put genomic regions, as required by BLIS for computing LD as a matrix-multiply
operation. This stage is not performance-critical as it only relocates SNP data in

memory.

e General Matrix-Multiply (GEMM): Invocation of the CPU/GPU LD micro-
kernel through BLIS for computing haplotype frequencies as a matrix-multiply op-
eration. This stage is performance-critical and dominates the total execution time

in all CPU runs.

e Linkage Disequilibrium (LD) score computation: Calculation of the allele fre-
quencies for all SNPs in the two regions and the final LD scores. This stage heavily

relies on floating-point operations, but the amount of time spent on floating-point
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operations for computing LD scores becomes negligible as the sample sizes grow
because the overall execution time is dominated by GEMM. When qLD deploys a
GPU, however, the GPU-based GEMM stage is between 2 and 20 times faster than
the CPU one, which leads to the LD time dominating execution times for sample

sizes as low as 10,000 sequences.

e Write Output: Storing LD scores in a text file. Note that we apply the default
cutoff threshold for LD scores (13, .. = 0.2) to discard very low scores and prevent

output reports from exploding in size. Our custom printing is also enabled by

default.
A. qLD_CPU time breakdown for B. qLD_GPU time breakdown for
increasing sample size (5k SNPs) increasing sample size (5k SNPs)
MLT MLT
20 s GEMM 1.2 s GEMM
LD 1.0 LD
~ 15 Write _ Write
L £ 0.8
© ©
E 10 Eo06
= =
0.4
5
0.2
0 0.0
0 20 40 60 80 100 0 20 40 60 80 100
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Figure 5.2: Execution time breakdown of qLD-compute when executing on a CPU and a
GPU on System 2 when samples increase for set SNP size.
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Figure 5.3: Execution time breakdown of qLD-compute when executing on a CPU (left
column) and a GPU (right column) on System 2, when SNPs increase for set sample

sizes.
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5.2.4 Custom Blocking Factor

To evaluate the custom blocking optimization correctly, we need to find the trend between
performance and blocking factor. The balance that we need to achieve is the reduction
of redundant results, versus the loss of throughput using smaller tasks. As explained
previously in this work, the workload of GEMM scales quadratically with the SNPs in the
input. This means that as we break down the input in finer blocks, we should expect to see
quadratic speedup over the initial time. In reality though, the finer we split the input, the
more tasks are created, accumulating overhead from the task initialization. Additionally,
the allele frequency calculation in the LD step is scaling linearly to the number of SNPs,
providing less speedup than the GEMM function. Having all these restrictions in mind,
we provide the following results from tests on several blocking factors, using both the
CPU and GPU kernels. As was expected, the optimal blocking factor varies depending
on the input task size, but using it, we achieved a significant speedup in all tests, with
approximately 1.5x speedup in both kernels. This, on top of the 5x and 29x previously
observed speedups of qLD over PLINK in similar workloads, leads to a total of 7.5x
speedup over PLINK with the CPU and 43.5x with the GPU. It is also apparent, that
when used incorrectly, blocking can lead to performance loss, especially when using the
GPU kernel. Future work is needed to determine the correct implementation of this

custom blocking, but given the provided speedup it is a promising optimization.
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Figure 5.4: Execution Time in qLD using custom blocking in the input. The CPU kernel
greatly benefits from blocking, overall. The GPU kernel only benefits from slight blocking,
since it is prone to communication overhead in smaller datasets.
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Figure 5.5: Speedup over the initial task in qLD using custom blocking in the input.
The CPU kernel achieves up to 1.55x speedup using 21 sub-tasks (factor 6) against the
un-blocked initial task in the biggest dataset. The GPU kernel achieves 1.45x speedup,

with fewer and larger blocks (factor 3).
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5.3 Parallel Performance

When we introduce parallelization with the help of Pthreads, we need to mainly evaluate
the speedup and the scalability of the implementation. Since most of qLD’s optimizations
are applied in the parallelization process, we also need to evaluate the performance boost
of each optimization applied. Therefore, we present all of the tests that provide insight
into the multi-threaded performance of qLLD, along with the final juxtaposition between

qLD and PLINK.

5.3.1 Multi-core CPU Scalability with number of threads

An important aspect of the parallelization of qLLD that needs to be evaluated is its scal-
ability on the CPU cores. The CPU kernel, while being slower than the GPU kernel, is
scaling well with the number of available cores, ranking third in the previous compari-
son, when using only 4 threads. To find out the cutoff of the CPU kernel speedup, we
deployed a test on 1000 tasks of arbitrary SNP size in System 2, using up to 20 threads.
The SNP size varied from 1k to 10k SNPs. Blocking was not applied. As we can observe
in Figure 5.6, the speedup starts to drop when approaching the 20 thread mark, in all
test cases. It also approaches linear speedup more when the sample size increases, while

maintaining a high speedup overall.

Speedup per number of Threads Speedup per number of Threads
on 1000 tasks (10k samples) on 1000 tasks (100k samples)
- Linear - Linear
25 gLD CPU sorted 25 gLD CPU sorted
—— qLD CPU —— qLD CPU
20 20
o o
3 =
g 15 g 15
] ()
& &
10 10
5 5
1 8 16 20 1 8 16 20
Threads Threads

Figure 5.6: Speedup of execution with increasing number of CPU threads on the Aris
supercomputer. 1000 tasks of arbitrary sizes are used.
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5.3.2 GPU-handling Thread Pinning

Since most of the tests in this section inherently evaluate the GPU in multi-threaded
executions, the first decision we ought to evaluate is the way qLD handles the "special"
GPU-offloading thread, that uses the GPU kernel for the haplotype frequency calcula-
tions. Firstly, we should address that the kernels are developed for maximum efficiency
in their assigned core usage, meaning that our thread limit is the physical core limit of
the CPUs in each system. While this does not constitute a problem when the CPU is
handling the performance-critical parts of the execution, a typical GPU-handling thread
waits while the GPU calculates the workload. This results in CPU performance loss for
that particular time window on that particular thread.

From the design perspective, we could resolve this issue by adding another CPU-
handling thread and letting the GPU-handling thread unpinned. This would certainly
introduce more latency to the thread that shares the same core for the CPU intensive
part of the execution, but it could also be balanced out from the introduction of the new,
pinned CPU thread in place of the former GPU-handling thread.

To test both the pinned and unpinned GPU-handling thread designs, we used System
1, due to its small physical core size, on a list of 1000 tasks with varying numbers of
SNPs for a set number of samples. The pinned mode runs on 3 pinned CPU and 1
pinned GPU threads, while the unpinned uses 4 pinned CPU and 1 unpinned GPU
thread. As depicted in Figure 5.7, while the unpinned design leads the performance
by a small margin in low-to-mid sample sizes, when the samples get bigger, even the
slight disruption of an unpinned thread is enough to heavily toll the execution. This
test is verified by the breakdown of the execution time in the previous section, where we
witnessed that the GPU kernel fires up and dominates the execution when the sample
size is bigger. Apparently, in these cases, even the slightest delay in the execution of the

ten-times-faster GPU kernel is enough to hinder the overall performance.
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Execution times on dedicated GPU thread vs Execution times on dedicated GPU thread vs
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Figure 5.7: Execution time comparison of 4 pinned total CPU and GPU Threads vs 4
pinned CPU + 1 unppined GPU Thread. When calculating tasks with larger sample
sizes, where the execution time is considerably slower, pinning the GPU-handling thread
offers the best performance.

5.3.3 Competing Task Queue and Sorting

As mentioned previously, LD uses the input task list as the means of parallelization of
the workload, where each task is executed by a different thread. Since the workload is,
most of the time, not balanced, there was a need to address the balancing of the tasks to
the available threads.

In the design section, we addressed the 3 methods that qLD can use to assign the
tasks to each thread. The regional assignment preallocates the tasks to specific threads
based on the number of available threads. The competing queue pops a task from the
task queue and assigns it to a thread whenever that thread finishes its previous execution.
The sorted competing queue uses the same approach, after sorting the task queue first. In
this test, we evaluate those methods in the worst-case scenario, since it is the cleanest way
to visualize the benefits of the two optimized executions, eliminating randomness from
our results. The input consisted of a total of 40 tasks, with an increasing workload every
10 tasks, from 1k to 7k in 2k intervals. The execution was performed on the first System,
the off-the-self laptop, since we wanted to utilize all of the available computational power
in this test, and doing so in a cluster with 20 cores would call for extreme input data
sizes and execution time. The evaluation involved CPU only execution, heterogeneous

execution with a pinned GPU-handling thread, and a single GPU-handling thread,
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Figure 5.8: Comparison of Different Task Assignment Techniques. The LD graph (top)
shows the workload per thread, while the Time graph (bottom) shows the execution time
per thread. The workload and time using a single GPU thread is depicted in purple.
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to test if the heterogeneous execution is slowed down by the slower CPU threads.

In Figure 5.8 we can observe the workload balancing with each assignment technique
in the LD subfigure, while the execution times appear in the Time subfigure. The work-
load of the initial task is assigned linearly in the regional execution, so the first thread
calculates the first 10 tasks, the second thread calculates the next 10, etc. The highest
thread time in each execution is also equal to the total execution time of qLLD, meaning
that the fastest execution is the one with the lowest peak in the time graph.

As we can observe, while the competing queue approach seems to work sufficiently well,
the slight modification of sorting the input first gives a completely balanced execution
time. Another vital observation is that the execution time of the sorted competing queue
parallel approach is better, although marginally, than the single GPU-handling thread.

This sets the premise for the following tests in multi-threaded heterogeneous executions.
To achieve better (than the single GPU-handling thread) parallel execution, we need the
sorted competing queue approach. It also raises the question of whether increasing the

CPU threads helps the performance. To evaluate this, we proceed to the next test.

5.3.4 Aggregate System Performance

Evaluating the task assignment methods we observed a reduced performance when ex-
ecuting in parallel, compared to the single GPU kernel execution. The performance of
qLD is bound by a lot of parameters, making it extremely difficult to evaluate properly
as a whole. The main parameters we could address, given the previous evaluations, are
the input data size, the blocking factor in the input, and the thread count. To utilize
all previous knowledge, while using both kernels to their maximum potential, we chose
an input of 20k SNPs and 100k samples. This set resulted to the best speedup for both
kernels in the evaluation of the custom blocking optimization and should not favor one
kernel over the other. Using the aforementioned data, we know that the optimal block-
ing factor for the CPU in this input is 7, while 3 for the GPU. As for the number of
threads, we tested the maximum available threads (4), the combination of a single CPU

and a single GPU thread (2), and a single GPU thread (1). The results are presented
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in Figure 5.9, confirming that the combination of the CPU and GPU kernels using the
maximum available threads is marginally slower than the single GPU kernel execution

when the former is used with a blocking factor favoring the CPU kernel.

Execution time comparison between single GPU and
parallel modes (100k samples, 20k SNPs)
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Figure 5.9: Time comparison between several parallel executions and single GPU kernel
execution using optimal blocking factors on the input. The parallel heterogeneous execu-
tion provides good results when using an optimal blocking factor and more threads, but
is marginally slower than the dedicated GPU execution.

5.4 qLD vs PLINK Performance Comparison

Conducting all the previous tests, we gained a good understanding of the most optimal
multi-threaded executions. To measure qLD’s speedup over PLINK in multi-threaded
mode, we compare our CPU and heterogeneous parallel execution modes, alongside the
seemingly best performing single-threaded GPU execution mode with the parallel PLINK.
It should be noted again, that, PLINK does not utilize GPUs and handles the blocking
of the input internally. Hence, PLINK gets the initial task as input, while qLD applies
the custom blocking feature to enable the parallelization of each task. The results in

Figure 5.10 show that overall, qLD is faster in any type of execution. When using smaller
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Figure 5.10: Execution time comparison between PLINK 1.9 and the top 3 performing
modes of qLD. Time graphs are presented in the left column, with logarithmic graphs
being on the right.

sample sizes, the CPU and heterogeneous executions outperform the single GPU-handling

thread, while in larger sample sizes the GPU, alongside the heterogeneous execution show

the best performance. In conclusion, qL.D shows up to 29x speedup over PLINK in smaller

sample sizes using the heterogeneous execution mode, closely followed by the CPU and

GPU execution modes with 22x and 19x respective speedup over PLINK. In larger sample

sizes qLD _GPU outperforms PLINK with 50x speedup, with the heterogeneous and CPU

execution performing 43 and 21 times faster than PLINK.
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5.5 Application on SARS-CoV-2 Genomes

To showcase qLD, we used 39,941 high-coverage SARS-CoV-2 genomes from the GISAID
database (https://www. gisaid. org/), downloaded on July 9, 2020. We kept only
complete sequences (genomes with base-pair lengths greater than 29,000), and trimmed
the ambiguous states (N’s) from both the beginning and the end of the genomes. There-
after, we excluded all sequences that contained Ns, and employed the experimental version
of MAFFT [49] for closely-related viral genomes to create a multiple sequence alignment
in FASTA format. The final dataset, after discarding the sequences that did not pass the
aforementioned filters, comprised 22,554 genomes. We used snp-sites [50] to convert the
FASTA to VCF for processing with qL.LD, invoking the tool’s built-in option for omitting

columns that did not exclusively contain A, C, G, T.
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Figure 5.11: Hexbin plot (gridsize=16) of LD scores calculated using qL.D on System 1
(laptop) in 18 seconds.

Figure 5.11 illustrates qLD scores (r?) in a hexbin plot with grid=16. The two highest-
score bins shown in the figure correspond to regions 15,042—15,517 and 22, 684—23, 198
with scores 1.0 and 0.92, respectively. Both regions are UniProt highlighted regions of
interest as shown in the UCSC genome browser view of SARS-CoV-2 genomic datasets
(https: // genome. ucsc. edu/ cgi-bin/hgTracks? db=wuhCorl), with the first region
found in the non-structural protein 12 and is known to interact with RMP Rendemsivir,
while the second region found in the Spike protein S1 and is a motif in the Receptor

Binding Domain that binds to human ACE2.


https://www.gisaid.org/
https://genome.ucsc.edu/cgi-bin/hgTracks?db=wuhCor1

6. Conclusions and Future Work

In this work, we presented a new scalable platform for calculating pairwise LD scores
in heterogeneous environments. Using optimized kernels based on the BLIS framework
(9qLD_CPU) and the OpenCL framework (qLD_GPU), we achieved single-thread speedup in
all test-cases, up to 5Hx and 29x using the CPU and GPU kernels respectively, over the
widely used state-of-the-art PLINK 1.9. Based on HPC practices, the platform works on
par with the theoretical performance of these computation kernels with minimal overhead
from the rest of the processing steps. Furthermore, using certain experimental optimiza-
tion techniques, we were able to achieve additional speedups of up to 1.5x with both
kernels over the default execution. Cross-referencing our results, this leads to a maxi-
mum observed speedup of 7.5x and 43.5x over PLINK 1.9, in single-thread executions.

Using qLLD in multi-threaded executions, we observed overall satisfactory results. In
terms of scaling, the CPU execution seems able to handle many concurrent threads,
maintaining close to linear speedup. Testing several optimizations on the allocation of
tasks to threads, we managed to achieve almost perfectly balanced workloads, utilizing
all of the available hardware to the maximum potential.

The default execution in a heterogeneous environment resulted in -at best- similar per-
formance to the single-threaded GPU kernel execution in most cases. The sheer difference
in power between the two kernels led to unbalanced executions hindering the performance
of the GPU kernel, especially in workloads with many samples, where the GPU kernel
performs the best. More testing on the optimization of the heterogeneous execution could
lead to better results, though, as proven with the introduction of input blocking in the
parallel heterogeneous execution. Using optimal parameters in the last experiment, we
managed to achieve a significant 50% increase in performance with heterogeneous exe-
cution vs the single GPU execution in small sample sizes. Overall, using qL.LD optimally
with all the performance optimization features enabled, we managed to achieve up to 50x
speedup over the state-of-the-art PLINK 1.9 in scaling SNP sizes and large sample sizes

(100k samples) with the parallel heterogeneous execution in qLD.

66
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The future of this project revolves heavily around the fine-tuning of all the optimiza-
tions presented here. Given the nature of realistic data, where each site in the input
region is not necessarily an SNP, uncertainty is introduced in the input parsing. Most
of the optimizations are already usable with realistic data, utilizing estimations based on
empirical statistics and memory reallocation mechanisms to prevent failure in executions.
Looking back at the performance evaluation, especially when using the custom blocking
feature, it becomes apparent that we need to set a designated block size and enforce an
automated blocking mechanism in the input. This doubles up as a preventative mecha-
nism to the uncertainty in memory usage with realistic data but enforces the mandatory
use of MDF files since they contain SNP-only values.

Lastly, qL.D is programmed to be flexible and modular, to be expandable, to get future
kernel upgrades, and to support more genetic calculations in the future. Since the LD
calculation tool-set is a completely separate function that runs inside the threads when
selected, we could easily append another tool-set that can utilize the existing HPC plat-
form for different calculations. On the other side, since the LD kernels simply calculate
GEMM operations, we could refactor the existing qLLD operation for different domains
than utilize matrix multiplications. An example domain for this modification could be
the assessment of chemical similarity using the Tanimoto coefficient [51] in Chemical In-
formatics, where the computational pipeline resembles LD both mathematically and in

data structure.
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