
TECHNICAL UNIVERSITY OF CRETE

Migrating State Between Jobs in

Apache Spark

by

Kalogerakis Stefanos

A thesis submitted in partial fulfillment of the requirements for the

Diploma of Electrical and Computer Engineering

Thesis Committee

Associate Professor Antonios Deligiannakis, Supervisor

Professor Minos Garofalakis

Associate Professor Vasileios Samoladas

December 29, 2020

https://www.tuc.gr/

Abstract

Nowadays, data is being generated at an unprecedented rate and impacts every aspect

of our everyday life. As this amount increases, more and more organizations try to

incorporate techniques to handle that data in real-time and evolve their business strat-

egy. One critical challenge is ensuring fault-tolerance and high availability in our data.

On different occasions, the heterogeneous systems responsible for data processing must

disrupt their operation and update their infrastructure. In some other cases, system

failures can occur. Therefore, migration techniques that prevent data loss are getting

increasingly important.

In this thesis, we propose a state migration algorithm implemented on Apache Spark’s

Structured Streaming API. This powerful API offers a fast, scalable solution for process-

ing complex workloads and ensures fault tolerance through its checkpointing mechanism.

The algorithm handles state among different jobs and covers various scenarios where

users might wish to split, merge, or remotely deploy workflows in each job with no data

loss. In that way, users have complete control over workflow operators and can impact

their execution at will. Additionally, to prove that our implementation works, we used

Rapidminer Studio workflow designer to present complete and detailed test-cases for the

cases mentioned above.

Περίληψη

Στις μέρες μας, νεα δεδομένα παράγονται συνεχώς σε ένα πρωτοφανή ρυθμό επηρεάζοντας

όλες τις πτυχές της καθημερινότητάς μας. Καθώς ο όγκος τους συνεχίζει να αυξάνεται,

όλο και περισσότεροι οργανισμοί προσπαθούν να ενσωματώσουν τεχνικές για την διαχείριση

και επεξεργασία των δεδομένων αυτών σε πραγματικό χρόνο προκειμένου να εξελίξουν τις

στρατηγικές της επιχείρησης τους. Μια σημαντική πρόκληση, είναι η εξασφάλιση ότι τα

δεδομένα διαθέτουν ανοχή σε σφάλματα και υψηλή διαθεσιμότητα. Σε διαφορετικές περιπ-

τώσεις, τα ετερογενή συστήματα που είναι υπεύθυνα για την επεξεργασία των δεδομένων

πρέπει να διακόψουν την λειτουργία τους για αναβαθμίσουν τις υλικοτεχνικές υποδομές

τους. Σε άλλες περιπτώσεις, μπορεί να συναντηθούν σφάλματα συστήματος. Για αυτόν τον

λόγο τεχνικές migration για την αποτροπή απώλειας και μεταφοράς δεδομένων γίνονται

όλο και πιο σημαντικές.

Στα πλαίσια της συγκεκριμένης διπλωματικής εργασίας, παρουσιάζεται ένας αλγόριθμος

μεταφοράς κατάστασης υλοποιημένος στο Structured Streaming API του Apache Spark.

Αυτό το ισχυρό API προσφέρει μια γρήγορη και επεκτάσιμη λύση για την επεξεργασία περί-

πλοκων workflows και εξασφαλίζει ανοχή σε σφάλματα μέσω του μηχανισμού checkpoint

που διαθέτει. Ο αλγόριθμος διαχειρίζεται την κατάσταση μεταξύ διαφορετικών jobs, και

καλύπτει πληθώρα σεναρίων, όπου οι χρήστες δύνανται να διαχωρίσουν, να ενώσουν ή να

εκτελέσουν απομακρυσμένα workflows σε κάθε job δίχως απώλεια δεδομένων. Με αυτόν

τον τρόπο, υπάρχει πλήρης έλεγχος των operators του κάθε workflow και η εκτέλεση μπορεί

να επηρεαστεί με τρόπο που επιθυμεί ο εκάστοτε χρήστης. Προκειμένου να αποδείξουμε ότι

η υλοποίηση λειτουργεί, χρησιμοποιήσαμε το Rapidminer Studio για τον σχεδιασμό των

workflows, όπου παρουσιάζονται πλήρη και λεπτομερή test-cases για τις όλες περιπτώσεις

που αναφέρθηκαν προηγουμένως.

Acknowledgements

Firstly, I would like to express my sincere gratitude to my supervisor Prof. Antonios

Deligiannakis for his immediate assistance and guidance throughout this thesis. I would

also like to thank the members of committee, Prof. Minos Garofalakis and Prof. Vasilis

Samoladas, for their support.

Furthermore, I would like to personally thank SoftNet Lab members Nikos Giatrakos,

Giorgos Stamatakis and Xenia Arapi. The completion of this thesis would not be possible

without their assistance.

Last but not least, I am deeply thankful to my family and friends for always sup-

porting me throughout my studies.

iii

Contents

Abstract i

Περίληψη ii

Acknowledgements iii

List of Figures vi

List of Code Snippets vii

1 Introduction 1

1.1 Thesis Outline . 2

2 Background Knowledge 3

2.1 Streaming . 3

2.1.1 Bounded and Unbounded Streams 3

2.1.2 Window Models . 4

2.2 Hashing and String hashing . 5

2.2.1 Polynomial rolling hash function 5

2.3 JSON files . 6

3 Tools 7

3.1 HDFS - Hadoop Distributed File System 7

3.1.1 Key Features of HDFS . 7

3.1.2 Architecture . 8

3.1.2.1 NameNode . 8

3.1.2.2 DataNodes . 8

3.1.3 Data Manipulation . 9

3.1.3.1 Block Division . 9

3.1.3.2 Replication . 10

3.2 Apache Kafka . 10

3.2.1 Publish/Subscribe messaging . 10

3.2.2 Architecture . 11

3.3 Apache Livy . 12

3.3.1 Key Features of Livy . 12

3.4 Rapidminer . 14

iv

Contents v

3.4.1 RapidMiner Studio . 14

3.4.1.1 Fundamental Components 15

3.4.2 Rapidminer Streaming Extension 15

3.5 Apache Spark . 16

3.5.1 Spark components . 17

3.5.2 Architecture . 17

3.5.3 Structured Streaming . 18

3.5.3.1 Programming Model . 19

3.5.3.2 Transformations and Window Operations on Event-time 20

3.5.3.3 Stateful Incremental execution 22

3.5.3.4 Handling Late Events . 23

3.5.3.5 Starting Streaming Queries 24

3.5.3.6 Checkpoint and State internals 25

4 Implementation 27

4.1 Streaming Extension Details . 27

4.2 Data Parser . 27

4.3 Operators . 28

4.4 Custom JSON Property File . 29

4.5 State Migration Algorithm . 30

5 Experimental Execution 34

5.1 Detailed workflow description . 34

5.1.1 Complex Process(Streaming Nest name - complex Demo) 34

5.1.2 Simple Process(overview) . 35

5.2 Setup . 37

5.3 Execution . 38

5.3.1 Split case . 38

5.3.2 Merge . 43

5.3.3 State and job migration . 48

5.3.4 Production . 51

6 Challenges and Future Work 52

Bibliography 54

List of Figures

2.1 Bounded and Unbounded Streaming . 4

2.2 Landmark and Slinding Window Models 4

3.1 HDFS - Architecture . 8

3.2 HDFS - Block Division . 9

3.3 Publish/Subscribe messaging pattern . 11

3.4 Apache Kafka - Architecture . 11

3.5 Apache Livy - Architecture . 13

3.6 Rapidminer Studio - Streaming Nest Operator Example 16

3.7 Rapidminer Studio - Streaming Extension Operators Examples 16

3.8 Apache Spark - Ecoystem . 17

3.9 Apache Spark - Architecture . 18

3.10 Structured Streaming - Programming Model 19

3.11 Structured Streaming - Processing Model Example 20

3.12 Structured Streaming - Window count using sliding window model 22

3.13 Structured Streaming - Incremental Stateful Query Updates 23

3.14 Structured Streaming - Late Event manipulation 24

5.1 Complex Process - complex Demo Workflow 34

5.2 Simple Process - Overview . 35

5.3 Simple Process - simpleCount Demo Workflow 36

5.4 Simple Process - simpleSum Demo Workflow 36

5.5 Split Case - Initial Execution . 39

5.6 Split Case - HDFS checkpoint directory 40

5.7 Split Case - HDFS operator checkpoint directory 40

5.8 Split Case - Restart complex Demo workflow 40

5.9 Split Case - Restart simpleCount Demo workflow 42

5.10 Split Case - Restart simpleSum Demo workflow 43

5.11 Merge Case - Initial simpleSum Demo workflow execution 45

5.12 Merge Case - Initial simpleCount Demo workflow execution 46

5.13 Merge Case - HDFS checkpoint directory 47

5.14 Merge Case - Restart complex Demo workflow 48

5.15 Remote Case - Initial workflow execution 49

5.16 Remote Case - Remote workflow restart 50

5.17 Production Case . 51

vi

List of Code Snippets

1 JSON Property file example . 6

2 Apache Livy - Delete request in batch mode 14

3 Structured Streaming - Window Aggregation Example 21

4 Structured Streaming - Dataset creation example listening from a socket . 21

5 Structured Streaming - Complete Streaming Query Example 25

6 Structured Streaming - Checkpointing Mechanism Property 25

7 Data Parser Code Snippet . 28

8 JSON Property file example . 30

9 Polynomial Rolling Hash Function . 31

10 Additional Code for debugging . 37

11 Split Case - complex Demo properties . 38

12 Split Case - simpleCount Demo properties 41

13 Split Case - simpleSum Demo properties 41

14 Merge Case - simpleCount Demo properties 44

15 Merge Case - simpleSum Demo properties 44

16 Merge Case - complex Demo properties 47

17 Remote Case - simpleCount Demo properties 49

18 Remote Case - Modified remote location property 49

19 Cluster migration property . 50

20 Production - JSON output file . 51

vii

Chapter 1

Introduction

In the era of big data, an unfathomable amount of data is created, processed, and trans-

ferred every second. In 2020, an average person is estimated to create approximately 2.5

quintillion bytes per day. Another astonishing statistic states that most of the world’s

data(appr. 90%) has been created in only the past two years. This is justified as the

IoT industry is booming and plays an integral part in our everyday lives.

As this amount increases, it is crucial to find ways to analyze those data on-the-fly

and extract useful information, leading to groundbreaking discoveries in different fields

of study. However, processing such large amounts of data is difficult, and performing

traditional computations is not doable under those circumstances. For those reasons,

big data frameworks, such as Apache Spark, have been created, allowing users to process

large amounts of data with quickness, accuracy, and efficiency.

While big data frameworks are getting more popular and continuously evolving, new

software tools are developed on top of big data frameworks to make them more user

friendly. Normally big data frameworks demand programming knowledge, which is a

limiting factor for many users. This is not the case with Rapidminer Studio, which is

an easy to use data science platform, and among other things, enables interaction with

Big Data frameworks without writing any code.

An important aspect of those frameworks is ensuring fault-tolerance and high avail-

ability in data between execution interruptions. On different occasions, the heteroge-

neous systems responsible for data processing must disrupt their operation and update

their infrastructure. In some other cases, system parameters or resource allocation must

change for more effective data processing. Therefore, migration techniques that prevent

data loss are getting increasingly important.

In this thesis, a State Migration Algorithm is proposed using Apache Spark’s Struc-

tured Streaming API and Rapidminer Studio designer. The algorithm takes full ad-

vantage of the powerful checkpointing mechanism that Structured Streaming provides

and offers a flexible solution that allows users to completely reformat their workflows,

1

Background Knowledge 2

alter their parameters or even transfer them to a remote cluster. All of the above is

accomplished with no data loss.

1.1 Thesis Outline

• Chapter 2-Background Knowledge: This chapter presents basic theoretical

knowledge of key concepts used in this thesis

• Chapter 3-Tools: Provides a comprehensive analysis(key features, architecture)

for all tools used in the implementation afterward. Each subsection is devoted to

a different technology, including HDFS, Apache Kafka, Apache Livy, Rapidminer,

and Apache Spark. In Apache Spark’s subsection, Structured Streaming API is

also scrutinized, the API used for the implementation.

• Chapter 4-Implementation: The fourth chapter examines all the aspects of

the current implementation. For a better understanding, the chapter is divided

into four subsections, all of which examine design choices and changes made in

Rapidminer Studio Extension. The proposed State Migration algorithm is also

analyzed in the last subsection.

• Chapter 5-Experimental Execution: This chapter includes complete test cases

for some key scenarios that State Migration Algorithm can deploy. All the different

workflows, setups, and properties are presented step by step for these scenarios,

which include splitting, merging, or remotely executing workflows.

• Chapter 6-Challenges and future work: The final chapter mentions some

limitations and challenges in the current implementation and recommends steps

for future interest

Chapter 2

Background Knowledge

2.1 Streaming

Streaming describes continuous, never-ending sequences of data that are made available

over time. That way, a constant feed of data is provided in applications, and their

manipulation can occur on the fly, without download. Those data can be generated by

various sources at different rates and volumes and can also combine into a single stream.

Real-time stock exchange, sensor monitoring, website tracking activity are only some

examples of streaming data applications. Steaming is also essential in big data, as it

provides real-time analytics, data ingestion, and data integration.

2.1.1 Bounded and Unbounded Streams

We can examine Streaming in two different paradigms; bounded and unbounded. An

unbounded stream is a stream, which does not have a defined ending point, and events

must be processed on the fly, as it is impossible to wait for all input data. In that case,

all events are the same, and users can distinguish them by their received time. Bounded

streams, on the contrary, have a predefined start and end time. All data in that time

frame can be ingested before processed or analyzed even further. Data is handled in

batches; that is why bounded stream processing is also known as batch processing.

3

Background Knowledge 4

Figure 2.1: Bounded and Unbounded Streaming

2.1.2 Window Models

In Streaming, multiple models exist regarding how time affects the streams and time ma-

nipulation in general. The most common which are analyzed below are the Landmark

and Sliding window model.

• Landmark model: In this model, we consider all the events from the moment

we initiate monitoring in a stream. Let us consider a time point 0, which is the

time when the monitoring starts. Each window will maintain events in the interval

[0, now] and grow as the stream progresses.

• Sliding window model: In this model, we consider only events contained in a

predefined window range. Specifically, let us consider a fixed size window w and

the current time point t. Each window will hold only the events existing in the

interval [t−w+1, t] and discard older events. As time passes, the window maintains

its size and slides. The number of events considered is (obviously) depending on

the window size.

Figure 2.2: Landmark and Slinding Window Models

Background Knowledge 5

2.2 Hashing and String hashing

A hash function is any function that will deterministically map data of arbitrary size to

smaller fixed-size values.

One of the applications of a hash function is efficient string comparison. The hash

function converts a string into an integer, and the condition that must apply in the

following: In the case of two equal strings, also their hash values must be equal. How-

ever, it is important to highlight that the opposite statement does not have to

hold(if hash values are equal, then the strings are not equal) as collisions can occur.

This method improves the complexity of the classic brute-force approach for letter by

letter comparison between two strings with O(1) complexity (brute-force complexity

O(min(length(string1), length(string2))))

2.2.1 Polynomial rolling hash function

The polynomial rolling hash function is a common way to define the hash of a string.

This family of hash functions treats the symbols of a string as coefficients of a polynomial

with a positive variable P and computes its value modulo a positive constant M. Given

a string s of length n :

hash(s) = s[0] + s[1] · P + s[2] · P 2 + ... + s[n− 1] · Pn−1 mod M (2.1)

=
n−1∑
i=0

s[i] · pi mod M, (2.2)

The right choice of P and M values is critical in order to get a decent hashing function.

P is typically a prime number roughly equal to the number of the characters within

the input alphabet. M is employed to avoid manipulating larger values(perform all

computations modulo M) and should be a large number; hence the probability of a

single comparison between two random strings colliding is inversely proportional to

M(about ≈ 1/M). However, this value should be sufficiently small to multiply two

values using 64-bit values and avoid overflows(chosen value M = 109 + 9 is a good

choice).

In order to boost no-collision probability, users often deploy different techniques,

including the selection of larger modulo and multiple hashes(for each string, compute

multiple hashes and compare their pairs one by one).

Technologies used 6

2.3 JSON files

The JSON file is a file that follows the JavaScript Object Notation (JSON) format to

store data structures and objects consisting of attribute-value pairs or other serializable

structures. JSON is a standard data interchange format that is also human-readable

and text-based, making it a ubiquitous data format. It serves a variety of purposes but

is mainly used to exchange data between web apps and servers.

{

"firstName":"Stefanos",

"lastName": "Kalogerakis",

"address": {

"streetAddress": "myAdress",

"city": "Chania",

"postalCode": "73134"

}

}

Code 1: JSON Property file example

Chapter 3

Tools

3.1 HDFS - Hadoop Distributed File System

Hadoop Distributed File System is an open-source, highly fault-tolerant data storage file

system that operates on commodity hardware. It is optimized when handling big data,

as the design purpose was to overcome issues like reliability and speed that traditional

databases could not.

3.1.1 Key Features of HDFS

1. Handles big data: HDFS accommodates applications with data sets typically

gigabytes to terabytes in size and provides a solution that traditional file systems

could not. It does this by segregating the data into manageable blocks, which

allow fast processing times and can deliver more than 2GB of data per second,

thanks to its cluster architecture.

2. Fault-tolerant: Data is replicated across multiple systems and is always accessi-

ble even in case of failure

3. Scalable: Resources can be managed (and scaled) in each system accordingly.

HDFS includes vertical and horizontal scalability mechanisms.

4. Portable: HDFS is designed to be portable across multiple heterogeneous hard-

ware platforms and be compatible with a variety of underlying operating systems.

7

Technologies used 8

3.1.2 Architecture

HDFS incorporates a master-slave topology. The master node is known as NameN-

ode(only one per cluster), whereas (multiple) slave nodes are called DataNodes.

Figure 3.1: HDFS - Architecture

3.1.2.1 NameNode

NameNode is responsible for managing and maintaining DataNodes. NameNode also

keeps track of all the metadata in each data block, and its replicas by maintaining two

persistent files; editLog and FSimage. EditLog records every change that happens

within the file system metadata, and FSimage stores the entire file system image since

the beginning. Metadata contains information about where data is stored, permissions,

number of replicas, etcetera.

3.1.2.2 DataNodes

DataNodes are accountable for storing actual data in blocks assigned by the NameN-

ode. HDFS overcomes the issue of DataNode failure by creating replicas(copies) of the

data. The default replication is three, and it is strongly advised not to go under three.

Technologies used 9

DataNodes are supposed to send a heartbeat or signal to ensure that every node is

working.

3.1.3 Data Manipulation

Just like any other DFS, each system file is stored as a sequence of blocks on DataNodes.

Each block’s default size is 128MB in Apache Hadoop 2.x(64MB in Apache Hadoop

1.x). Block size is modifiable through the configuration. Before the NameNode can

store and manipulate data, files need to divide into smaller block-sized chunks stored as

independent units.

3.1.3.1 Block Division

The number of blocks depends on the initial size of the file. All but the last block are

the same size as the configured block size(128MB by default), while the last one is what

remains of the file. For example, an 320MB file splits into two blocks of 128MB, and a

third block stores the remaining 64MB.

Finally, each block is replicated into several copies based on the replication factor.

Figure 3.2: HDFS - Block Division

Note that the selection for a default block size of 128MB, transpired to balance the

tradeoff between overhead and processing time perfectly. In case the block size is smaller,

too many data blocks along with metadata can cause increased overhead, whereas in

case the block size is very large, the processing for each block increases.

Technologies used 10

3.1.3.2 Replication

The data replication method is responsible in order to handle unexpected failures and

data loss. NameNode creates several copies of every data block (3 by default, can be

modified through configuration), distributed across different DataNodes. Replicas are

not distributed randomly, as HDFS has rack awareness policies to ensure high availability

and fault tolerance while maximizing network bandwidth.

HDFS Rack Awareness policies include:

1. One DataNode can store one replica of a data block.

2. The same Rack cannot assign over two replicas of a single block.

3. The number of racks used inside an HDFS cluster must be smaller than the number

of replicas.

3.2 Apache Kafka

Apache Kafka is an open-source, reliable, high-throughput publish/subscribe messaging

system also described as a distributed event log where all the new records are immutable

and appended at the end of the log.

Kafka is nowadays a ubiquitous solution for real-time ingestion, analytics, and pro-

cessing streaming data. It is also compatible with all popular Big Data platforms,

including Spark, Storm, and Flink.

3.2.1 Publish/Subscribe messaging

Publish/Subscribe is a messaging pattern in which the sender (also known as the pub-

lisher) does not send data directly to specific receivers (also known as subscribers). The

publisher classifies the messages without knowing if there are any subscribers interested

in the particular type of message. Similarly, the receiver subscribes to receive a specific

class of messages without knowing if any senders are sending those messages. Many

Pub/Sub systems contain a broker or event bus where all messages are published. This

broker enables a loose connection between sender and receiver, which improves flexibility

and scalability in the system.

Technologies used 11

Figure 3.3: Publish/Subscribe messaging pattern

3.2.2 Architecture

Before breaking down the architecture even further, it is essential to introduce some

fundamental concepts utilised later on.

• Topic: is an ordered collection of events, stored in a durable way

• Producers: are the publisher clients, producing messages and assigns them to

different topics

• Consumers: are the subscriber clients, consuming messages from topics and

maintaining their position in the stream of data

Figure 3.4: Apache Kafka - Architecture

Technologies used 12

On a high level, Kafka consists of three main components: the Kafka cluster, produc-

ers, and consumers. A single Kafka server within the cluster is called a broker(usually

at least three brokers for redundancy). The broker is responsible for collecting messages

from producers, assigning offsets, and committing messages to disk. It is also respon-

sible for responding to consumers’ fetch requests and sending messages. Within the

cluster, one broker will work as a cluster controller and is responsible for tasks such as

monitoring broker failures.

Following the publish/subscribe messaging pattern, producers create new messages

and send them to a specific topic. Topic classifies data being sent and can be further

broken down into subsets, known as partitions. Each partition maintains separate

commit logs, and the order of messages can be guaranteed only across the same partition.

Splitting a topic into multiple partitions makes scaling easy as different consumers can

read each partition. In that way, partitions and consumers can be distributed across

different servers and achieve higher throughput. Then, consumers read messages by

subscribing to different topics. All messages are read in the order they were produced,

which is accomplished by keeping track of the offsets(sequential ID of specific messages

in specific partitions). Consumers always belong to a specific consumer group, and all

partitions of a topic are distributed evenly in each member.

Kafka also has a unique retention policy, based on which messages are persistent on

disk for a configured amount of time, and after expiration, they are released.

3.3 Apache Livy

Apache Livy is an open-source REST-based web service that enables easy interactions

with a Spark Cluster. Livy extends Spark capabilities, offering additional multi-tenancy

and security features via a simple REST interface or an RPC client library.

3.3.1 Key Features of Livy

1. Long-running Spark Contexts may be used for multiple Spark jobs by multiple

clients. Each context can own a different configuration, and every context or

driver can have multiple executors associated with it

2. Job results can be retrieved over REST asynchronously or synchronously

3. Multi-user support via user impersonation. The Livy server has access to resources

and files on behalf of the user that submits the corresponding requests. In that

way, permission escalation is avoided(important for multi-tenant environments)

Technologies used 13

4. Multiple jobs and clients can share Cached RDDs or Dataframes

5. Multiple Spark Contexts can be managed simultaneously and the Spark Contexts

run on the cluster in their containers (YARN/Mesos) instead of the Livy Server,

for improved fault tolerance and concurrency

6. Jobs submission can be delivered through precompiled jars, snippets of code, or

via client API

7. Ensure security via secure authenticated communication and wire encryption

Figure 3.5: Apache Livy - Architecture

There two modes to interact with the Livy interface:

• Interactive Sessions offer a running session where users can submit statements.

Given that resources are available, the demanded statements execution proceeds

and users can obtain the output. A typical use case is to experiment with data or

perform quick calculations. Requests are submitted under /sessions/ directory.

• Jobs/Batch offers a more compact solution to submit code packages like pro-

grams. A typical use case is a regular task equipped with arguments(input files,

output directory) and workload executed in the background. Requests are sub-

mitted under /batches/ directory.

The available requests for Apache Livy REST API are GET, POST, DELETE. Thor-

ough information regarding accepted parameters and expected responses in the different

Technologies used 14

modes are available in the documentation. The following example demonstrates an

indicative DELETE request in batch mode:

curl -H "X-Requested-By: skalogerakis" -X DELETE

http://clu01.softnet.tuc.gr:8999/batches/27↪→

Code 2: Apache Livy - Delete request in batch mode

3.4 Rapidminer

RapidMiner is a data science software platform that unites data preparation, machine

learning, and predictive model deployment. It is suitable for non-programmers, as its

powerful analytical solutions are based on templates that ensure speed and error mini-

mization. Rapidminer’s core of the platform is open source and was formerly known as

YALE(Yet Another Learning Environment). Some key features include:

1. Easy code-free environment

2. Data Loading

3. Data Transformation

4. Data Modelling

5. Data Visualization

6. Modular component schema(Using Operators)

3.4.1 RapidMiner Studio

RapidMiner Studio is an easy-to-use visual workflow designer that streamlines data

science tasks right from the fast prototyping of concepts to the development of mission-

critical predictive models. The intuitive GUI simplifies the development of predictive

analytic workflows by providing mechanisms to simulate data science-related tasks. It

also provides by default numerous data connectors that can extract, access, and load

information from any data source, any format, at any scale. Tools provided by default

in RapidMiner Studio include:

• Turbo Prep: For ETL(extract, transform, load) processing via a web-based user

interface

Technologies used 15

• Auto Model: Create predictive models using automated machine learning and

data science best practices

• Deployments: Offers one-click deployment of models

Extensions can add extra functionality to RapidMiner Studio, and are made available

on the RapidMiner Marketplace.

3.4.1.1 Fundamental Components

As mentioned beforehand, RapidMiner Studio provides an intuitive GUI to design visual

workflows. Those workflows are called Processes and are designed in a plug-and-play

fashion by wiring multiple Operators through Ports. Each Operator is a component

responsible for performing tasks(data processing, transformations, etcetera.) within the

process, and its output represents an input of the next one. Operator properties are

modifiable through the Parameters section.

3.4.2 Rapidminer Streaming Extension

Rapidminer Studio does not support the processing of streaming workflows by default.

Rapidminer Streaming Extension enables the creation of optimized, streaming workflows

in Flink, Spark, or Kafka.

The extension adds extra architectural components that reflect the philosophy of

Rapidminer Studio and allow workflow design without extra coding. Streaming Nest

is a new key Operator that serves as a subprocess. That means that the developer can

encapsulate families of Operators(Stream Transformation Component) inside after

double-clicking the corresponding Streaming Nest. Operators can connect with arrows,

and their direction showcases the data flow of each workflow.

Stream Transformation Component includes Operators that can perform stream

transformations provided by Big data platforms. All these Operators were designed as

an abstraction layer and can operate without defining the Big Data platform. Some of

these operators are:

• Aggregate Stream

• Duplicate Stream

• Join Streams

• Connect Streams

Technologies used 16

• Filter Stream

• Kafka Sink

• Kafka Source

• Map Stream

• Select Stream

The Connection Component connects the operator between the abstraction layer of

the Operators mentioned above and the cluster of different Big Data platforms.

Figure 3.6: Rapidminer Studio - Streaming Nest Operator Example

Figure 3.7: Rapidminer Studio - Streaming Extension Operators Examples

3.5 Apache Spark

Apache Spark is an open-source cluster computing framework for real-time processing

and analysis of a large amount of data. Some of its key features, including real-time low

latency processing, fault-tolerance, powerful caching, and ease-of-use, make the frame-

work incredibly popular among data scientists.

Technologies used 17

3.5.1 Spark components

The following components comprise the Spark ecosystem:

Figure 3.8: Apache Spark - Ecoystem

• Spark Core Engine: The core engine of the entire spark ecosystem and takes

care of processing. Everything works on top of Spark Core Engine.

• SparkSQL: used for structured data and semi-structured data processing

• Spark Streaming: A lightweight API, used for real-time analytics. Both batch

processing and real-time processing is allowed.

• Spark MLlib: Used for ML applications and predictive analytics

• GraphX: Graph type of analytics, data is represented as Graphs

3.5.2 Architecture

Spark is based on two important abstractions

• RDDs(Resilient Distributed Dataset): are the fundamental units of data in

Spark that can be divided and executed parallel across different worker nodes of

the cluster.

• DAG(Directed Acyclic Graph): DAG is the Spark Architecture background

scheduling layer that implements scheduling in a stage-oriented manner. (sequence

of computations performed on data)

Technologies used 18

Figure 3.9: Apache Spark - Architecture

Spark uses a master-slave architecture that consists of a driver that runs on a master

node and multiple executors which run across the worker nodes in the cluster.

Master Node has a Driver Program. Every spark application has a driver pro-

gram, and that internally contains a Spark Context, which is the entry point of the

application for any spark functionality.

This Spark Context interacts with the cluster manager to handle jobs. The cluster

manager is responsible for acquiring resources on the Spark cluster and allocating them

to a Spark job. The driver program and the Spark Context take care of executing the job

across the cluster. At a high level, a job is split into multiple tasks, and afterwards will be

distributed over the slave or worker nodes. Whenever Spark performs transformations

or uses methods of Spark context, then RDDs are distributed across multiple nodes.

Worker nodes are the slave nodes who execute the tasks on the partition RDDs and

then return the result to the spark context.

In a nutshell, Spark Context takes the job, divides the jobs into multiple tasks, and

sends them on the worker nodes. These tasks then transform on partition RDDs, and

the result returns to the main spark context.

Increasing the number of workers can lead to faster execution time, as memory

caching increases, and jobs can be executed concurrently in multiple nodes.

3.5.3 Structured Streaming

Apache Spark’s Structured Streaming is a processing engine built on top of the strong

foundations of Spark SQL. The main idea behind Structured Streaming is that the user

should perform streaming analytics without reasoning about streaming and corner cases.

Technologies used 19

This powerful and high-level API deals with those limitations and provides a fast, scal-

able, and fault-tolerant solution for managing complex data and workloads. Structured

Streaming supports two kinds of Stream processing; micro-batch and continuous.

For this thesis, we explore the micro-batch engine as Continuous Stream Processing

does not support stateful operations.

3.5.3.1 Programming Model

Conceptually, Structured Streaming treats data as entries of a dynamic(and infinite)

input table. New entries in the stream behave as rows appended to the input table. The

users define queries on the input table as if it was a batch-like query on a static table,

and a final Result Table is generated.

Figure 3.10: Structured Streaming - Programming Model

Internally, Spark maintains the minimal intermediate state required(not the entire in-

put stream) and incrementally updates the final Result Table after new entries arrive,

respectively. When changes occur in the results table, modified results are written to

the external sink. Triggers control the frequency Spark appends new entries to Input

Table and eventually updates the Result Table.

Technologies used 20

Figure 3.11: Structured Streaming - Processing Model Example

The output is the final part of the model, which specifies the changes to write into an

external system(HDFS, S3). Three modes are currently available:

• Complete mode: The whole result table are written to external storage every

time

• Append mode: The default mode, in which only newly appended rows to the

result table since the last trigger, are written to external storage

• Update mode: In this mode, only the updated rows that in the Result table are

written to external storage

3.5.3.2 Transformations and Window Operations on Event-time

Spark’s Dataset and DataFrame APIs are embedded on Structured Streaming. Both

Datasets and DataFrames represent distributed collections of data with different prop-

erties and methods.Such methods include data transformation(map, flatmap) and SQL-

type operations(select, groupBy) along with running aggregations(average, max).

Technologies used 21

Dataset<Row> windowAggr = query.groupBy(

functions.window(column("timestamps"), "10 minutes", "5 minutes")

).count();

Code 3: Structured Streaming - Window Aggregation Example

The developer can create Datasets or DataFrames with the use of readStream()

from different sources. This example illustrates how to read data from the connection

145.2.1.3:1234

1 Dataset<Row> lines = spark

2 .readStream()

3 .format("socket")

4 .option("host", "145.2.1.3")

5 .option("port", 1234)

6 .load();

Code 4: Structured Streaming - Dataset creation example listening from a socket

A widespread way to handle data is by performing operations on different types of

windows on event-time(generation time of the event). The code above demonstrates a

sliding window example performing count aggregation(10 minutes window, slide every

5 minutes). In Structured Streaming, window operations are special group-By aggrega-

tions. Note that in this case, every time window is a group, and input events can affect

different windows. So in some instances, multiple table rows need to be updated.

Technologies used 22

Figure 3.12: Structured Streaming - Window count using sliding window model

3.5.3.3 Stateful Incremental execution

Stateful Stream Processing is stream processing with state. The main difference with

stateless processing is that records can combine and are not independent. State is a

collection of keys and their current value pairs. A streaming query is stateful in the

following cases:

• Stream Aggregation

• Arbitrary Stateful Streaming Aggregation

• Stream-Stream Join

• Stream Deduplication

• Streaming Limit

During the execution of stateful streaming queries, SparkSQL internally maintains an

intermediate state for fault tolerance. The intermediate state is stored versioned inside

the Spark executors memory and also backed to the user-defined checkpoint location

using write-ahead logs. Checkpoint location is a path to a fault-tolerant file system

like HDFS. Every trigger reads the previous state and saves the updated state both in

memory and the write-ahead log. In case of failure, the latest completed state restores

from the checkpoint location, and the query resumes its execution from the point of fail-

ure. The API also ensures exactly-once guarantees for stateful stream processing when

input sources are replayable, and streaming sinks are idempotent to handle reprocessing.

Technologies used 23

Figure 3.13: Structured Streaming - Incremental Stateful Query Updates

3.5.3.4 Handling Late Events

Handling late and out-of-order data is also supported automatically; Spark preserves

state, enabling late events to update older window entries. However, it is crucial to limit

state; otherwise, it would increase indefinitely. In order to achieve that, watermarking

is introduced, which is essentially a moving threshold of how late events are expected to

be and when to drop old state. The system keeps track of the max event time, and the

watermark is a trailing threshold that trails behind this max event time. Data within

the trailing gap are allowed to aggregate.

In contrast, data older than watermark is too late and dropped. Windows older than

watermark automatically delete to limit the amount of intermediate state in-memory.

Watermarks only applied on stateful operations and ignored otherwise.

In the previous windows aggregation example, the method .withWatermark(”timestamp”,

”10 minutes”) adds a 10-minute watermark threshold, and the following photo illus-

trates the impact of the watermark.

Technologies used 24

Figure 3.14: Structured Streaming - Late Event manipulation

3.5.3.5 Starting Streaming Queries

After specifying the final Dataset or DataFrame, the final step is to initiate the streaming

computation. Dataset.writeStream() accomplishes that by returning the required

DataStreamWriter interface with the following properties:

• Output sink information: Specifies the sink format (file, Kafka, console, mem-

ory), output location path, etcetera

• Output mode: Specifies the content written to the external sink. Append is the

default mode. Check the Programming Model section for more details regarding

the available modes.

• Query name: Specifies an ID-like distinct query name. This property is optional.

• Trigger interval: Specifies the trigger interval. This property is optional, and if

absent, the system checks for availability of new data right after the completion of

previous processing

• Checkpoint location: Specifies a directory location in an HDFS-compatible,

fault-tolerant file system to store all checkpoint information. It is important to

Technologies used 25

state that not all sinks guarantee the same end-to-end fault-tolerance (some sinks

are meant for debugging purposes). This property is optional.

To start executing the continuous query, the developer must also use the start() method,

which produces a final StreamingQuery object. It can be used later for monitoring

purposes. In many cases, to prevent the execution from stopping while the running

query is alive, the method awaitTermination() is called.

1 Dataset<Row> example = ...

2

3 example

4 .writeStream()

5 .outputMode("append")

6 .queryName("randomness")

7 .format("json")

8 .option("checkpointLocation", "randomPath/dir")

9 .option("path", "NewRandomPath/dir")

10 .start();

Code 5: Structured Streaming - Complete Streaming Query Example

3.5.3.6 Checkpoint and State internals

In the previous sections, we examine both state and checkpoint high-level concepts. In

this section, we perform a more in-depth analysis regarding the internals of checkpointing

and state.

In the earlier code snippet, the following line performed the checkpoint.

.option("checkpointLocation", "randomPath/dir")

Code 6: Structured Streaming - Checkpointing Mechanism Property

Each query defines a checkpoint location, and while the query is alive, Spark constantly

writes metadata to the checkpoint path. Just as a reminder, the checkpoint location is a

physical directory pointing to a distributed file system. Checkpoint location stores four

types of data:

Implementation 26

• Source Files: that maintain information about all input sources processed in the

query. For instance, a Kafka source preserves information about partitions and

offsets.

• Offsets: Files that maintain offset details for each particular batch(watermark,

timestamp, configurations). Internally it’s represented as org.apache.spark.sql.execution.

streaming.OffsetSeqLog

• Commits: Files that contain commit information about batch metrics .Internally

it’s represented as org.apache.spark.sql.execution. streaming.CommitLog

• Metadata: File that contains metadata information regarding our query as a

query ID. Internally it’s represented as org.apache.spark.sql.execution.streaming.

CommitMetadata

• State: These files exist only after stateful stream processing. State data is stored

as LZ4-compressed objects(delta and snapshot files) that contain key-value pairs

for each state.

Chapter 4

Implementation

In this chapter, we examine all the different aspects and steps of the implementation.

These steps can be further divided into five subsections analyzed below: Streaming

Extension Details, Data Parser, Operators, Custom JSON Property File,

State Migration Algorithm. It is essential to state that all our workflows were

designed and executed in Rapidminer Studio and Rapidminer Streaming extension, so

all our techniques were deployed in this environment.

4.1 Streaming Extension Details

Before scrutinizing our implementation, it is important to highlight some high-level de-

tails concerning Rapidminer Streaming Extension. As discussed earlier, the new Stream-

ing Extension Operators were designed as an abstraction layer and can operate indepen-

dently without defining the Big Data platform at first. The connection component is

accountable for the interaction with Big Data platforms, and the connection is achieved

via REST APIs. In Spark’s case, Apache Livy REST API is employed. So when re-

ferring to changes in Spark configuration, later on, we actually refer to modification in

Apache Livy configuration or the request sent in Spark at a later stage. Apache Livy

operates on batch mode, and the requests are jar files carrying information about Spark

cluster configurations and the Operators executed in the requested workflow.

4.2 Data Parser

Firstly, it is essential to ensure that our Operators always have sufficient data resources to

execute successfully. One of the first observations after using Apache Spark’s Structured

27

Implementation 28

Streaming API, was that on some occasions, a new batch did not generate despite the

new data provided as input. It came up when very few data entries were provided as

input. For that reason, the design of a custom data parser was necessary, to provide

a continuous data stream to Apache Kafka; our primary messaging system. This data

parser receives as input .txt or .csv files and ”publishes” all entries in a topic defined by

the user.

1 Stream<String> FileStream = Files.lines(Paths.get(CsvFile));

2 KafkaProducer<String, String> finalProducer = producer;

3

4 FileStream.forEach(line -> {

5 /**

6 * Synchronous Kafka producer to make sure we will not lose any data

7 */

8

9 try {

10 RecordMetadata metadata = finalProducer.send(new

ProducerRecord<>(KafkaTopic, line)).get();↪→

11 } catch (Exception e) {

12 LOGGER.log(Level.SEVERE, "Exception occured",e);

13 throw new RuntimeException(e);

14 }

15 });

Code 7: Data Parser Code Snippet

Input files are randomly generated files in a specific format to match the requirements of

the operators in Rapidminer Studio. Data format follows the pattern ”word”:”<character

value>” ,” value”:” <integer value>”

4.3 Operators

Rapidminer Streaming extension offers a variety of choices regarding Operators with

several attributes in each case. All Operators existed beforehand, and the goal was

to add some extra properties to complement each one without modifying their core

functionality. It is also apparent that the final goal, which is to restart and migrate

State, will be achieved by handling stateful operations. On that basis, not all Operators

can serve our purpose. More precisely, only Aggregate Stream, Join Stream, and

Implementation 29

Connect Stream will operate in our final implementation. It is essential to notice that

all of these Operators follow the Sliding Window Model, and their State perseveres

for the duration of window time. The user determines the duration of the window.

Another critical detail is each Operator’s name. While the user can rename at will

all Operators, by default, Rapidminer Studio does not allow the usage of the same name

in more than one instance in the same Process. That means that all the operators in

the same Process possess ID-like unique names, which is incredibly helpful, as

explained in the following sections.

4.4 Custom JSON Property File

The implementation’s fundamental challenge was to enable dynamic user interaction,

and extra functionality as the whole migration approach utilizes user-defined paths.

However, that could not get directly accomplished through Rapidminer’s Studio GUI.

The design of a custom JSON file with the following properties serves our purpose:

JSON file properties

Jobs:

• Data Type: List

• Description: Contains multiple different jobs with different properties

– job name

∗ Data Type: String

∗ Description: The name of the job that the properties below apply

– checkpoint location

∗ Data Type: String

∗ Description: Full checkpoint path where all the required information for

restarting is stored

– merge

∗ Data Type: Boolean/String(“true”, “false” values allowed)

∗ Description:Flag property that Enables/disables merge jobs

– merge jobs

∗ Data Type: comma-delimited Strings

∗ Description: When enabled, moves all the available (full) paths to the

checkpoint location

Implementation 30

– remote

∗ Data Type: Boolean/String(“true”, “false” values allowed)

∗ Description: Flag property that Enables/disables remote connection

– remote connection

∗ Data Type: String in the format “host:port”

∗ Description: When enabled, initiates the new Spark Job in the given

configuration

– remote location

∗ Data Type: String

∗ Description: Copy the contents of the checkpoint location on a different

DFS location(full path) and use that as a new checkpoint location. Use

that property only when the checkpoint location already exists and will

not be initiated in this execution. Disable the property by leaving its

value empty “ ” or by removing the property at all.

{

"job name":"newOperators",

"checkpoint location": "hdfs://45.10.26.123:9000/apps/",

"merge":"false",

"merge_jobs":["hdfs://45.10.26.123:9000/apps/Checkpoint/"],

"remote":"true",

"remote_connection":"45.10.26.123:58090"

}

Code 8: JSON Property file example

4.5 State Migration Algorithm

When a new Spark Job(Streaming Nest with spark connection) starts executing, the

first step relies on processing the custom JSON file as described earlier. All job names

included in the file are scanned, and all the related properties of the one matching the

new running job name are fetched. Some of these properties are critical and required

for the successful execution of the job, so our job must find a JSON file match.

The first property to investigate is the checkpoint location. This property is exe-

cuted in the algorithm’s last steps but needs to be examined first for context purposes.

Checkpoint location points to the full path in a persistent storage DFS(in current im-

plementation HDFS), where all the information required for the running workflow to

Implementation 31

restart will be stored. More specifically, each stateful Operator creates a subdirectory

to store its State by utilizing the Operator’s name, since each Operator in Rapidminer

Studio has a unique name(in the same Process).

However, this unique operator name cannot directly apply to name a directory due

to HDFS name constraints. According to HDFS documentation, all characters in URLs

that are not a–z, A–Z, 0–9, ’-’, ’.’, ’ ’ or ’ ’ must first convert to URL encoding and

so plenty of special characters including spaces heavily adopted by users will cause is-

sues. For that purpose, the following polynomialRollingHash transformed our unique

operator name into a unique ID number.

1 static String polynomialRollingHash(String str)

2 {

3 // M:1/M equals collision probability

4 // P number of symbols

5 final int p = 10000;

6 final int m = (int)(1e9 + 9);

7 long power_of_p = 1;

8 long hash_val = 0;

9

10 //Loop to calculate the hash value in each string character

11 for(int i = 0; i < str.length(); i++)

12 {

13 hash_val = (hash_val + str.charAt(i) * power_of_p) % m;

14 power_of_p = (power_of_p * p) % m;

15 }

16 return String.valueOf(hash_val);

17 }

Code 9: Polynomial Rolling Hash Function

Each Operator’s target path to store its State follows the pattern checkpoint loca-

tion\polynomialRollingHash(operatorName). By inspecting the hash function’s

result, the user will not be able to distinguish the actual operators between them. To pro-

vide the user with the option to identify each Operator, when an operator name contains

parentheses, the contents between them concatenate with the hash result using under-

score() to form the target path. For example, if operatorName=”SKtest(mytest)”

and polynomialRollingHash(operatorName)=”9123223” the final path for that

operator will be checkpoint location\9123223 mytest\.

Experimental Execution 32

In case this target path already exists, the state recovers and execution resumes,

whereas if it does not exist, Spark creates a new target path, and execution starts while

preserving state information. When in production and not in debug mode, an additional

directory is created with the formatted checkpoint location\polynomialRollingHash

(operatorName) RES to store the result files produced during the execution.

On the other hand, remote and remote connection take effect while handling spark

configuration. When the remote property is enabled (”true” as value), remote connection

is used. Remote connection overwrites the current connection configuration by setting

a new host and port. Remember that remote connection property follows the pattern

”host:port”.This property can prove very useful as each job can be initiated or continued

in a different cluster.

Merge, and merge jobs properties can be applied to concatenate directories in the

same HDFS. In case the merge property is enabled(”true” as value), all the directories

included in the merge job property move their content to the checkpoint location path.

In many scenarios, the user might wish to move the State of a specific operator and

continue executing different workflows with different operators.

Finally, the remote location property copies the checkpoint location’s contents to a

different HDFS. After copying all the contents to the new HDFS, it sets our checkpoint

location = remote location to handle restart directly from that location. Note that the

checkpoint location directory should already exist and not get created for the first time

during this execution. When the value of this property is empty ” ” or does not exist

at all, it is ignored.

Experimental Execution 33

The following pseudocode sums all steps and properties analyzed beforehand.

Algorithm 1: State migration algorithm

1 Properties job properties = {job name, checkpoint location, remote location,

merge, merge jobs ,remote, remote connection}
2 Input json config = {jobName | Φ(jobName) ⊆ job properties }

3 foreach job do

4 if cur job name exists in json config then

5 fetch cur job properties ← Φ(cur job name)

6 if remote then

7 Create job in host:port

8 end

9 if merge then

10 foreach merge jobs directory do

11 move directory into checkpoint location

12 end

13 end

14 if remote location exists || not empty then

15 Copy checkpoint location to remote location

16 Set checkpoint location ← remote location

17 end

18 foreach stateful operator do

19 if \checkpoint location\polynomialhash(uniqueOperatorName) exists

then

20 restore state from directory

21 else

22 create directory and store state

23 end

24 continue execution

25 end

26 end

27 end

Chapter 5

Experimental Execution

In this chapter, various execution scenarios showcase how the implementation can adapt

to any situation. The following examples cover handling (split, merge) workflow and

remote state migration cases.

5.1 Detailed workflow description

Rapidminer Studio and streaming extension Operators are applied to design all the

workflows. For this demonstration, only Aggregate state Operators are incorporated

so that all the workflows remain as simple as possible(even the complex ones).

5.1.1 Complex Process(Streaming Nest name - complex Demo)

Figure 5.1: Complex Process - complex Demo Workflow

34

Experimental Execution 35

Operator Parameters:

• Kafka Source:

– topic: SKinput

• SK sum:

– key: word

– value key: value

– window length: 2

– function: Sum

• SK count(myCount):

– key: word

– value key: value

– window length: 5

– function: Count

• Kafka Sink:

– topic: SKout

• Kafka Sink (2):

– topic: SKout2

5.1.2 Simple Process(overview)

Figure 5.2: Simple Process - Overview

The Process above consists of two different Streaming Nest with the names simple-

Count Demo and simpleSum Demo, both of which are analyzed below

Experimental Execution 36

Streaming Nest name - simpleCount Demo

Figure 5.3: Simple Process - simpleCount Demo Workflow

Operator Parameters:

• Kafka Source (2):

– topic: SKinput

• SK count(myCount):

– key: word

– value key: value

– window length: 5

– function: Count

• Kafka Sink (2):

– topic: SKout2

Streaming Nest name - simpleSum Demo

Figure 5.4: Simple Process - simpleSum Demo Workflow

Experimental Execution 37

Operator Parameters:

• Kafka Source:

– topic: SKinput

• SK sum:

– key: word

– value key: value

– window length: 2

– function: Sum

• Kafka Sink:

– topic: SKout

5.2 Setup

Extra logic must be added to the original code to verify that our checkpoint mechanism

works. The main reason lies in the architecture and working principles of Structured

Streaming API, in conjunction with windowing and watermarking used by the stateful

Operators in Rapidminer Studio. We add the following code to SparkAggregateTrans-

formerTranslator.java.

1 my_stream.writeStream()

2 .format("console")

3 .outputMode("complete")

4 .option("truncate", false)

5 .option("checkpointLocation",

""+this.checkpointName+finalOperatorName+"")↪→

6 .start();

Code 10: Additional Code for debugging

The format employed is console (only for debugging purposes, as mentioned in the

documentation) to print all results in the console. As outputMode, the complete option

outputs the entire result table, every time that new entries trigger the system(and a new

batch generates).

Another important detail is that throughout the tests, the custom Data Parser ex-

amined in the previous section is in use so that all operators have a sufficient amount of

data to process every time.

Experimental Execution 38

5.3 Execution

5.3.1 Split case

In this scenario, the job initiated is complex Demo with the following properties.

{

"job name":"complex_Demo",

"checkpoint location": "hdfs://clu01.softnet.tuc.gr:8020/user/skal c

ogerakis/DemoComplexCheckpoint/",↪→

"merge":"false",

"merge_jobs":[""],

"remote":"false",

"remote_connection":"clu01.softnet.tuc.gr:8999",

"remote_location":""

}

Code 11: Split Case - complex Demo properties

After a while, the running job gets terminated, and the console output is

Experimental Execution 39

Figure 5.5: Split Case - Initial Execution

As previously mentioned, after the generation of every new batch, the whole result

table is printed as well as the time window with the corresponding timestamps to monitor

both new and old entries. In the output above, after the first execution, the red values

represent the sum operator’s first window values, whereas the values in blue represent

the first window values of the count operator.

The checkpoint location provided in JSON is inspected to confirm that the checkpoint

worked as expected.

Experimental Execution 40

Figure 5.6: Split Case - HDFS checkpoint directory

For reasons of completeness, directory contents of a random operator are listed.

Figure 5.7: Split Case - HDFS operator checkpoint directory

The same complex Demo job restarts, and this time the execution of both sum and

count operators resumes from the last successful batch submitted. So the values of the

previous execution are preserved.

Figure 5.8: Split Case - Restart complex Demo workflow

As the next step, the Process Simple will execute containing simpleCount Demo and

simpleSum Demo Streaming Nest jobs consecutively. The simpleCount Demo contains

Experimental Execution 41

the same count operator from the complex workflow, whereas simpleSum Demo contains

the sum operator. The properties for each job are defined below.

{

"job name":"simpleCount_Demo",

"checkpoint location": "hdfs://clu01.softnet.tuc.gr:8020/user/skal c

ogerakis/DemoComplexCheckpoint/",↪→

"merge":"false",

"merge_jobs":[""],

"remote":"false",

"remote_connection":"clu01.softnet.tuc.gr:8999",

"remote_location":""

}

Code 12: Split Case - simpleCount Demo properties

{

"job name":"simpleSum_Demo",

"checkpoint location": "hdfs://clu01.softnet.tuc.gr:8020/user/skal c

ogerakis/DemoComplexCheckpoint/",↪→

"merge":"false",

"merge_jobs":[""],

"remote":"false",

"remote_location":""

}

Code 13: Split Case - simpleSum Demo properties

Despite splitting our workflow, each operator’s execution can resume independently from

the last point of failure and continue with new entries in the result table.

Experimental Execution 42

Figure 5.9: Split Case - Restart simpleCount Demo workflow

Experimental Execution 43

Figure 5.10: Split Case - Restart simpleSum Demo workflow

Note that the user can modify the window length parameter during restarts without

causing any errors to maintain a longer/shorter window state.

5.3.2 Merge

This execution scenario includes executing simpler workflows and merging some of the

operators to run a more complex workflow. For that reason, the Process Simple

executes with the following properties for simpleCount Demo and simpleSum Demo jobs,

respectively.

Experimental Execution 44

{

"job name":"simpleCount_Demo",

"checkpoint location": "hdfs://clu01.softnet.tuc.gr:8020/user/skal c

ogerakis/DemoSimpleCountCheckpoint/",↪→

"merge":"false",

"merge_jobs":[""],

"remote":"false",

"remote_connection":"clu01.softnet.tuc.gr:8999",

"remote_location":""

}

Code 14: Merge Case - simpleCount Demo properties

{

"job name":"simpleSum_Demo",

"checkpoint location": "hdfs://clu01.softnet.tuc.gr:8020/user/skal c

ogerakis/DemoSimpleSumCheckpoint/",↪→

"merge":"false",

"merge_jobs":[""],

"remote":"false",

"remote_location":""

}

Code 15: Merge Case - simpleSum Demo properties

Since the checkpoint location points to a different place from the previous example, all

aggregate computations should start from the beginning. The output console confirms

the hypothesis.

Experimental Execution 45

Figure 5.11: Merge Case - Initial simpleSum Demo workflow execution

Experimental Execution 46

Figure 5.12: Merge Case - Initial simpleCount Demo workflow execution

The Complex Process then deploys, containing the count and sum operators from sim-

pleCount Demo and simpleSum Demo, respectively. To successfully restore and resume

the execution, all operators must exist under the same directory, used as the check-

point location. For that purpose, the jobs mentioned above execute with the following

properties.

Experimental Execution 47

{

"job name":"complex_Demo",

"checkpoint location": "hdfs://clu01.softnet.tuc.gr:8020/user/skal c

ogerakis/MergeCheckpointDemo/",↪→

"merge":"true",

"merge_jobs":["hdfs://clu01.softnet.tuc.gr:8020/user/skalogerakis/ c

DemoSimpleSumCheckpoint/168998164/","hdfs://clu01.softnet.tuc. c

gr:8020/user/skalogerakis/DemoSimpleCountCheckpoint/165830172_ c

myCount/"],

↪→

↪→

↪→

"remote":"false",

"remote_connection":"clu01.softnet.tuc.gr:8999",

"remote_location":""

}

Code 16: Merge Case - complex Demo properties

Count aggregate operator terminated in batch 3, whereas sum aggregate ended in batch

4. Both initiate the Complex Process execution from lastbatchID + 1 while main-

taining the previously generated values(Figure 4.14).

Also the HDFS path, hdfs://clu01.softnet.tuc.gr:8020/user/skalogerakis/MergeCheckpointDemo/

the merged Operators also verify the correctness of the approach.

Figure 5.13: Merge Case - HDFS checkpoint directory

Experimental Execution 48

Figure 5.14: Merge Case - Restart complex Demo workflow

5.3.3 State and job migration

The implementation supports both state and job migration, which can occur indepen-

dently—the property remote location copies (and transfers) state from one HDFS clus-

ter to another. Checkpoint location copies contents from the original HDFS into a

remote location path, located in a different cluster.

For this example, we execute simpleCount Demo Streaming Nest(found in Process

Simple) with the following properties.

Experimental Execution 49

{

"job name":"simpleCount_Demo",

"checkpoint location": "hdfs://clu01.softnet.tuc.gr:8020/user/skal c

ogerakis/DemoMigration/",↪→

"merge":"false",

"merge_jobs":[""],

"remote":"false",

"remote_connection":"clu01.softnet.tuc.gr:8999",

"remote_location":""

}

Code 17: Remote Case - simpleCount Demo properties

Execution initiates from the beginning and after batch one is terminated.

Figure 5.15: Remote Case - Initial workflow execution

Then, the remote location property changes, and the job restarts.

{

"remote_location":"hdfs://45.10.26.123:9000/apps/Checkpoint/DemoRe c

moteLocationMigration/"↪→

}

Code 18: Remote Case - Modified remote location property

Experimental Execution 50

Figure 5.16: Remote Case - Remote workflow restart

The execution works as expected, and the first batch generated is batch 2, resuming

from the last successfully executed batch. Note that Spark configuration did not change

from the previous examples during that test, and the latest job submission transpires in

the same cluster as previously. This fact proves that Spark and HDFS are independent

and can operate under different clusters with success.

Job migration between clusters can happen with the use of remote and remote connection

parameters. When remote is enabled, property remote connection will overwrite Spark’s

existing host and port configurations.

For instance, the following properties will execute the job in a remote spark cluster

with configurations port=clu01.softnet.tuc.gr, host=8999.

{

"remote":"true",

"remote_connection":"clu01.softnet.tuc.gr:8999",

}

Code 19: Cluster migration property

Challenges and Future Work 51

Nevertheless, both clusters must operate under the same(or similar) Spark version.

Spark and Structured Streaming API can undergo significant changes from one version

to another, leading to unexpected behaviour and failures during the execution.

5.3.4 Production

As mentioned at the beginning of this chapter, our examples execute on the console,

used only for debugging purposes. The following code showcases one of the possible

alternatives for production mode.

my_stream.writeStream()

.format("json")

.outputMode("append")

.option("path",

""+this.checkpointName+finalOperatorName+"_RES")↪→

.option("checkpointLocation",

""+this.checkpointName+finalOperatorName+"")↪→

.start();

Code 20: Production - JSON output file

For each operator, in this case, a new directory is created with the name /finalOp-

eratorName RES(more information regarding finalOperatorName in Implementation

Chapter), where only newly appended rows in the dynamic result table since the last

trigger are outputted in JSON files.

Figure 5.17: Production Case

Chapter 6

Challenges and Future Work

State and job migration stages were the most challenging sections of the implementation.

During state migration, remote location property induces massive overhead slowing

down the execution. As a reminder, remote location property copies an HDFS directory’s

contents into a remote and new HDFS directory. A documented problem concerning

small files in HDFS can provoke such problematic behavior.

Firstly, the checkpointing mechanism in Structured Streaming API produces thou-

sands of small files. Moreover, as stated beforehand, in the HDFS description, it is

optimized to operate under large files, with small files causing lots of seeks, which proves

very inefficient. Small files are considered those that are significantly smaller than the

default HDFS block size. If we are storing many small files, the matter is that HDFS

cannot handle lots of files. The primary reason is that each file, directory, and block in

HDFS serves as an object within NameNode memory, each of which occupies 150 bytes.

For example, 10 million files, each using only a block, would use about 3 gigabytes of

memory. From that point, scaling up much beyond proves extremely inefficient and

infeasible in many cases.

Note that our initial approach merge locations property also copied the contents of

directories into the chosen final directory of the same HDFS, which, however, caused

the same issue. Transferring the initial directories into the final target directory, solved

the problem using Hadoop move command. This solution worked instantly, without

additional overhead to the execution.

Compatibility was undoubtedly challenging and caused problems during the job mi-

gration stage. As mentioned in the last chapter, only clusters operating under the same

Spark versions(or similar versions) can perform job migration because Spark can undergo

major updates between updates. During our tests, two different clusters were accessi-

ble, using Spark versions 2.4.5 and 2.3.2, respectively. The implementation operated as

expected after fetching the correct dependencies for each version. Nevertheless, no im-

plementation would simultaneously work for both versions, and so a complete example,

including the remote property, could not be executed properly.

52

Challenges and Future Work 53

Future work could introduce an optimal way to manage small file problems in HDFS

so that the implementation could operate under production. Some proposed solutions,

incorporate different compaction techniques to handle and discard some of the small

files, use of different DFS(HopsFS claims that is designed on top of HDFS to tackle

small file issue) or even use of a different type of storage(such as HBase, Cassandra,

ScyllaDB).

Bibliography

[1] Json - introduction. URL https://www.w3schools.com/js/js json intro.asp.

[2] Json files. URL https://en.wikipedia.org/wiki/JSON.

[3] Bounded-unbounded streams. URL https://flink.apache.org/flink-archite

cture.html.

[4] Window models. URL https://www.researchgate.net/figure/Window-model

s-illustrations-i-landmark-ii-sliding-iii-damped fig1 325977106.

[5] Streaming data. URL https://aws.amazon.com/streaming-data/.

[6] String hashing and polynomial rolling hashing. URL https://cp-algorithms.c

om/string/string-hashing.html?fbclid=IwAR3CATNn2O-PPeIML3W17SF9C4JU8p

eLE5y9Hldf9Q5ntMd4WyZHifnL21Q.

[7] Polynomial rolling hashing. URL https://www.geeksforgeeks.org/string-has

hing-using-polynomial-rolling-hash-function/.

[8] What is hdfs. URL https://phoenixnap.com/kb/what-is-hdfs.

[9] Hdfs tutorial. URL https://www.simplilearn.com/tutorials/hadoop-tutoria

l/hdfs.

[10] Apache hdfs-overview. URL https://hadoop.apache.org/docs/current/hadoop

-project-dist/hadoop-hdfs/HdfsDesign.html.

[11] Hdfs image. URL https://www.datasciencecentral.com/profiles/blogs/hado

op-for-beginners.

[12] Apache kafka explained. URL https://www.youtube.com/watch?v=JalUUBKdcA

0&t=1029s&ab channel=Finematics.

[13] Apache kafka overview. URL https://kafka.apache.org/.

[14] Apache hdfs-overview. URL https://hadoop.apache.org/docs/current/hadoop

-project-dist/hadoop-hdfs/HdfsDesign.html.

[15] Apache livy overview. URL https://livy.apache.org/.

54

https://www.w3schools.com/js/js_json_intro.asp
https://en.wikipedia.org/wiki/JSON
https://flink.apache.org/flink-architecture.html
https://flink.apache.org/flink-architecture.html
https://www.researchgate.net/figure/Window-models-illustrations-i-landmark-ii-sliding-iii-damped_fig1_325977106
https://www.researchgate.net/figure/Window-models-illustrations-i-landmark-ii-sliding-iii-damped_fig1_325977106
https://aws.amazon.com/streaming-data/
https://cp-algorithms.com/string/string-hashing.html?fbclid=IwAR3CATNn2O-PPeIML3W17SF9C4JU8peLE5y9Hldf9Q5ntMd4WyZHifnL21Q
https://cp-algorithms.com/string/string-hashing.html?fbclid=IwAR3CATNn2O-PPeIML3W17SF9C4JU8peLE5y9Hldf9Q5ntMd4WyZHifnL21Q
https://cp-algorithms.com/string/string-hashing.html?fbclid=IwAR3CATNn2O-PPeIML3W17SF9C4JU8peLE5y9Hldf9Q5ntMd4WyZHifnL21Q
https://www.geeksforgeeks.org/string-hashing-using-polynomial-rolling-hash-function/
https://www.geeksforgeeks.org/string-hashing-using-polynomial-rolling-hash-function/
https://phoenixnap.com/kb/what-is-hdfs
https://www.simplilearn.com/tutorials/hadoop-tutorial/hdfs
https://www.simplilearn.com/tutorials/hadoop-tutorial/hdfs
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html
https://www.datasciencecentral.com/profiles/blogs/hadoop-for-beginners
https://www.datasciencecentral.com/profiles/blogs/hadoop-for-beginners
https://www.youtube.com/watch?v=JalUUBKdcA0&t=1029s&ab_channel=Finematics
https://www.youtube.com/watch?v=JalUUBKdcA0&t=1029s&ab_channel=Finematics
https://kafka.apache.org/
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html
https://livy.apache.org/

Bibliography 55

[16] Apache livy tutorial. URL https://www.statworx.com/de/blog/access-your-s

park-cluster-from-everywhere-with-apache-livy/.

[17] Rapidminer studio review. URL https://reviews.financesonline.com/p/rapid

miner-studio/.

[18] Rapidminer studio wiki. URL https://en.wikipedia.org/wiki/RapidMiner.

[19] Rapidminer streaming extension. URL https://zenodo.org/record/4064296#.X

46VC9AzZqM.

[20] Apache spark presentation. URL https://www.youtube.com/watch?v=9U4ED7KQw

lE&feature=emb title&ab channel=Databricks.

[21] Apache spark overview. URL https://spark.apache.org/.

[22] Structured streaming-basic analysis. URL https://databricks.com/blog/2016/

07/28/structured-streaming-in-apache-spark.html.

[23] Structured streaming intro. URL https://www.pavanpkulkarni.com/blog/18-s

park-structured-streaming-intro/.

[24] Structured streaming stateful processing. URL https://databricks.com/blog/

2017/05/08/event-time-aggregation-watermarking-apache-sparks-structu

red-streaming.html.

[25] Checkpoint storage in structured streaming. URL https://www.waitingforcod

e.com/apache-spark-structured-streaming/checkpoint-storage-structure

d-streaming/read.

[26] Internals stateful stream processing. URL https://databricks.com/session e

u19/the-internals-of-stateful-stream-processing-in-spark-structure

d-streaming.

[27] Structured streaming stateful processing. URL https://databricks.com/blog/

2017/05/08/event-time-aggregation-watermarking-apache-sparks-structu

red-streaming.html.

[28] Structured streaming api- overview. URL https://spark.apache.org/docs/late

st/streaming-programming-guide.html.

[29] Hdfs small file problem. URL https://blog.cloudera.com/the-small-files-p

roblem/.

[30] Hdfs small files best practises. URL https://www.agilelab.it/management-of-s

mall-files-on-hdfs-problem-analysis-and-best-practices/.

https://www.statworx.com/de/blog/access-your-spark-cluster-from-everywhere-with-apache-livy/
https://www.statworx.com/de/blog/access-your-spark-cluster-from-everywhere-with-apache-livy/
https://reviews.financesonline.com/p/rapidminer-studio/
https://reviews.financesonline.com/p/rapidminer-studio/
https://en.wikipedia.org/wiki/RapidMiner
https://zenodo.org/record/4064296#.X46VC9AzZqM
https://zenodo.org/record/4064296#.X46VC9AzZqM
https://www.youtube.com/watch?v=9U4ED7KQwlE&feature=emb_title&ab_channel=Databricks
https://www.youtube.com/watch?v=9U4ED7KQwlE&feature=emb_title&ab_channel=Databricks
https://spark.apache.org/
https://databricks.com/blog/2016/07/28/structured-streaming-in-apache-spark.html
https://databricks.com/blog/2016/07/28/structured-streaming-in-apache-spark.html
https://www.pavanpkulkarni.com/blog/18-spark-structured-streaming-intro/
https://www.pavanpkulkarni.com/blog/18-spark-structured-streaming-intro/
https://databricks.com/blog/2017/05/08/event-time-aggregation-watermarking-apache-sparks-structured-streaming.html
https://databricks.com/blog/2017/05/08/event-time-aggregation-watermarking-apache-sparks-structured-streaming.html
https://databricks.com/blog/2017/05/08/event-time-aggregation-watermarking-apache-sparks-structured-streaming.html
https://www.waitingforcode.com/apache-spark-structured-streaming/checkpoint-storage-structured-streaming/read
https://www.waitingforcode.com/apache-spark-structured-streaming/checkpoint-storage-structured-streaming/read
https://www.waitingforcode.com/apache-spark-structured-streaming/checkpoint-storage-structured-streaming/read
https://databricks.com/session_eu19/the-internals-of-stateful-stream-processing-in-spark-structured-streaming
https://databricks.com/session_eu19/the-internals-of-stateful-stream-processing-in-spark-structured-streaming
https://databricks.com/session_eu19/the-internals-of-stateful-stream-processing-in-spark-structured-streaming
https://databricks.com/blog/2017/05/08/event-time-aggregation-watermarking-apache-sparks-structured-streaming.html
https://databricks.com/blog/2017/05/08/event-time-aggregation-watermarking-apache-sparks-structured-streaming.html
https://databricks.com/blog/2017/05/08/event-time-aggregation-watermarking-apache-sparks-structured-streaming.html
https://spark.apache.org/docs/latest/streaming-programming-guide.html
https://spark.apache.org/docs/latest/streaming-programming-guide.html
https://blog.cloudera.com/the-small-files-problem/
https://blog.cloudera.com/the-small-files-problem/
https://www.agilelab.it/management-of-small-files-on-hdfs-problem-analysis-and-best-practices/
https://www.agilelab.it/management-of-small-files-on-hdfs-problem-analysis-and-best-practices/

	Abstract
	Περίληψη
	Acknowledgements
	List of Figures
	List of Code Snippets
	1 Introduction
	1.1 Thesis Outline

	2 Background Knowledge
	2.1 Streaming
	2.1.1 Bounded and Unbounded Streams
	2.1.2 Window Models

	2.2 Hashing and String hashing
	2.2.1 Polynomial rolling hash function

	2.3 JSON files

	3 Tools
	3.1 HDFS - Hadoop Distributed File System
	3.1.1 Key Features of HDFS
	3.1.2 Architecture
	3.1.2.1 NameNode
	3.1.2.2 DataNodes

	3.1.3 Data Manipulation
	3.1.3.1 Block Division
	3.1.3.2 Replication

	3.2 Apache Kafka
	3.2.1 Publish/Subscribe messaging
	3.2.2 Architecture

	3.3 Apache Livy
	3.3.1 Key Features of Livy

	3.4 Rapidminer
	3.4.1 RapidMiner Studio
	3.4.1.1 Fundamental Components

	3.4.2 Rapidminer Streaming Extension

	3.5 Apache Spark
	3.5.1 Spark components
	3.5.2 Architecture
	3.5.3 Structured Streaming
	3.5.3.1 Programming Model
	3.5.3.2 Transformations and Window Operations on Event-time
	3.5.3.3 Stateful Incremental execution
	3.5.3.4 Handling Late Events
	3.5.3.5 Starting Streaming Queries
	3.5.3.6 Checkpoint and State internals

	4 Implementation
	4.1 Streaming Extension Details
	4.2 Data Parser
	4.3 Operators
	4.4 Custom JSON Property File
	4.5 State Migration Algorithm

	5 Experimental Execution
	5.1 Detailed workflow description
	5.1.1 Complex Process(Streaming Nest name - complex_Demo)
	5.1.2 Simple Process(overview)

	5.2 Setup
	5.3 Execution
	5.3.1 Split case
	5.3.2 Merge
	5.3.3 State and job migration
	5.3.4 Production

	6 Challenges and Future Work
	Bibliography

