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Abstract
Global Water Models (GWMs), which include Global Hydrological, Land Surface, and
Dynamic Global Vegetation Models, present valuable tools for quantifying climate change
impacts on hydrological processes in the data scarce high latitudes. Here we performed a
systematic model performance evaluation in six major Pan-Arctic watersheds for different
hydrological indicators (monthly and seasonal discharge, extremes, trends (or lack of), and
snowwater equivalent (SWE)) via a novel Aggregated Performance Index (API) that is based
on commonly used statistical evaluation metrics. The machine learning Boruta feature
selection algorithm was used to evaluate the explanatory power of the API attributes. Our
results show that the majority of the nine GWMs included in the study exhibit considerable
difficulties in realistically representing Pan-Arctic hydrological processes. AverageAPIdischarge
(monthly and seasonal discharge) over nine GWMs is > 50% only in the Kolyma basin
(55%), as low as 30% in the Yukon basin and averaged over all watersheds APIdischarge is
43%. WATERGAP2 and MATSIRO present the highest (APIdischarge > 55%) while
ORCHIDEE and JULES-W1 the lowest (APIdischarge ≤ 25%) performing GWMs over all
watersheds. For the high and low flows, average APIextreme is 35% and 26%, respectively, and
over six GWMs APISWE is 57%. The Boruta algorithm suggests that using different
observation-based climate data sets does not influence the total score of the APIs in all
watersheds. Ultimately, only satisfactory to good performingGWMs that effectively represent
cold-region hydrological processes (including snow-related processes, permafrost) should be
included in multi-model climate change impact assessments in Pan-Arctic watersheds.

https://doi.org/10.1007/s10584-020-02892-2

This article is part of a Special Issue on “How evaluation of hydrological models influences results of climate
impact assessment,” edited by Valentina Krysanova, Fred Hattermann, and Zbigniew Kundzewicz

* Anne Gädeke
a.gaedeke@gmail.com

Extended author information available on the last page of the article

Received: 15 January 2020 /Accepted: 12 October 2020 /Published online: 24 November 2020

Climatic Change (2020) 163:1329–1351

http://crossmark.crossref.org/dialog/?doi=10.1007/s10584-020-02892-2&domain=pdf
http://orcid.org/0000-0003-0514-2908
mailto:a.gaedeke@gmail.com


Keywords GlobalWaterModels . Model performance .Model evaluation . Arctic watersheds .

Boruta feature selection

1 Introduction

The rapid environmental changes occurring in the Pan-Arctic have triggered increased atten-
tion from the scientific community. Such changes include observed decreasing extent and
duration of snow cover (Pulliainen et al. 2020), permafrost thaw (Biskaborn et al. 2019), and
related changes in soil active layer depth (Walvoord and Kurylyk 2016), increased melting
rates of glaciers (Zemp et al. 2019), and changing partitioning of surface and groundwater
(Walvoord and Striegl 2007), all of which affect the hydrological processes in Pan-Arctic
watersheds. In addition, increasing discharge and subsequent freshwater transport to the Arctic
Ocean have been documented (Ahmed et al. 2020), which impact bio-geophysical processes
such as sea ice growth (Morison et al. 2012) and ocean circulation (Holliday et al. 2020). The
observed changes, and more importantly their rate of change, have the potential for strong
feedbacks to terrestrial ecosystems, the global climate system (McGuire et al. 2018; Post et al.
2019), and global freshwater circulation (Bring et al. 2016). Despite the increased scientific
attention, our current understanding of the hydrologic cycle in the high latitudes and its
linkages to other parts of the earth system still remains limited.

Pan-Arctic hydrological processes are largely controlled by the presence of permafrost, the
strong climate seasonality, and the wide fluctuations in surface energy balance (Ge 2013).
Annual peak discharge generally occurs following snowmelt, which presents the major
hydrological event in Pan-Arctic watersheds, and is often associated with large-scale flooding
(Bowling et al. 2003). Most of the snowmelt becomes overland flow as the ground is still
frozen constraining infiltration. Hydrological processes in the Pan-Arctic are highly suscepti-
ble to climate change, particularly due to the freezing point threshold. To increase our
understanding of Pan-Arctic hydrological processes, Global Water Models (GWMs), here
including Global Hydrological Models (GHMs), Land Surface Models (LSMs), and Dynamic
Global Vegetation model (DGVMs), could provide valuable tools for obtaining estimates of
hydrological variables where data availability is poor both spatially and temporally. GWMs
simulate the entire water cycle and make use of globally available datasets. Thereby, GWMs
can complement the sparse observation records and support climate change impact assess-
ments. A thorough performance evaluation is essential prior to applying models for climate
change impact assessments in this region.

Previous model evaluation studies focusing on the Pan-Arctic differ from ours in terms of
(i) the number and type of GWMs included, (ii) the spatial area/watersheds covered, (iii) the
hydrological indicator(s) analyzed, and (iv) evaluation methods. Slater et al. (2007), for
example, evaluated the performance of five LSMs for the period 1980–2001 across the Pan-
Arctic drainage system including the Lena, Yenisei, Ob, and Mackenzie watersheds. Their
results show that large differences in model performance exist across LSMs in terms of snow
hydrological processes, water balance partitioning, discharge seasonality, and baseflow.
Similarly, Andresen et al. (2019) found that LSMs tend to agree on decadal discharge trends
but underestimate discharge volume when compared to gauge data across the major Arctic
watersheds. Zaherpour et al. (2018) highlight the difficulty of GWMs in capturing the timing
of the seasonal discharge cycle in northern regions effectively. In a multi-model evaluation
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study of daily runoff estimates, Beck et al. (2017) found that uncalibrated GWMs outperform,
on average, uncalibrated LSMs in snow-dominated regions.

Global to continental scale multi-model climate change impact assessments are generally
performed with GWMs disregarding model performance under historical conditions (e.g.,
Gosling et al. (2017)). A central tendency of the multi-model ensemble (mean or median) is
often assumed as a good predictor due to large variations in performance of individual models
and in their projections. Zaherpour et al. (2018) used a novel integrated evaluation method to
show, however, that the ensemble mean fails to outperform best individual models for different
hydrological indicators that represent mean and extreme discharge conditions. Therefore, using
the ensemble mean and not carrying out a thorough model performance evaluation is not
recommended.

Krysanova et al. (2018) proposed guidelines consisting of 5 steps for effective evaluation of
GHMs to be used prior to climate change impact assessments. Such a thorough model
evaluation may suggest applying weighting coefficients to individual models in order to
constrain the ensemble to the best performing members instead of using the ensemble mean
approach (see Krysanova et al. (2020)). Thereby, confidence in projected impacts under
climate change may potentially be increased.

The objective of our study is to contribute to the understanding of how GWMs, LSMs, and
a DGVM perform in Pan-Arctic watersheds for different hydrological indicators, including
monthly and seasonal discharge, extremes, trends (or lack of), and snow water equivalent
(SWE), evaluated via a novel “Aggregated model Performance Index” (API). To reach this
objective, we, firstly, systematically evaluated the performance of five global GHMs, three
LSMs, and one DGVM using commonly used statistical evaluation metrics for six large
watersheds in the Pan-Arctic based on the guidelines for GHM evaluation by Krysanova
et al. (2018). After that, we assigned rating scores to each hydrological indicator based on
thresholds defined for the statistical evaluation metrics. We calculated three APIs in total:
APIdischarge, APIextreme, and APISWE. The API combines the rating scores for every hydrological
indicator in one index. We also applied the machine learning feature selection algorithm
Boruta to evaluate the explanatory power of the API attributes (climate forcing, GWM,
hydrological indicators, etc.). Our approach is easily interpretable and transferable to other
model evaluations and inter-comparisons, and has a potential to deliver more robust multi-
model climate change impact assessments.

2 Methods

2.1 Overview of study basins

The six largest watersheds located in the Pan-Arctic serve as a study area for the multi-model
GWM performance evaluation: Kolyma, Lena, Yenisei, Ob, Mackenzie, und Yukon (Fig. 1,
Table 1). Watershed sizes range between 526,000 and 2,950,000 km2. The combined dis-
charge from these watersheds is the single largest freshwater source to the Arctic Ocean
(Yukon via the Bering Strait). Permafrost covers large parts of the studied watersheds (Fig. 1).
Total permafrost coverage, which includes proportions of continuous, discontinuous, sporadic,
and/or isolated permafrost, ranges between 34 (Ob) and 100% (Kolyma and Lena). Continu-
ous permafrost covers only 3% in the Ob but the entire (100%) Kolyma watershed (Table 1,
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based on Brown et al. (1997)). In the northern, continuous permafrost zone, tundra vegetation
dominates, while boreal forests are characteristic for the southern, mostly discontinuous
permafrost zone. The climate ranges from polar in the high latitudes to subpolar and conti-
nental towards the lower latitudes. Arctic rivers are generally ice-covered for longer than
6 months of the year. Snow covers the Arctic landscapes for most of the year (e.g., 8 months in
Arctic Alaska (end of September to May)) and contains a considerable amount of the total
annual precipitation at the end-of-winter (Kane et al. 1991). Consequently, snow hydrological
processes play an important role in the Arctic hydrological cycle. Population density is low in
the study area (Kummu and Varis 2011).

2.2 Models and data

Model evaluation was based on measured discharge at 18 gaging stations (two to four gauging
stations in each watershed: Fig. 1, Table 1) and estimates of SWE. Discharge measurements
were retrieved from “The Global Streamflow Indices and Metadata Archive” (GSIM) (Do
et al. 2018; Gudmundsson et al. 2018). Additionally, daily discharge data, used for the extreme
discharge analysis, was provided by GRDC (Global Runoff Data Centre, 56068 Koblenz,
Germany) at the outlet stations (highlighted in italics in Table 1). Estimates of total monthly

Fig. 1 Overview of study area including watershed outlines, gauges, and permafrost extent and type (Brown
et al. 1997). Watersheds (number) and gauging stations (letters) are detailed in Table 1
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SWE were obtained from the remote sensing product GlobSnow-2 (Metsämäki et al. 2015) for
the period 1980–2000. The SWE estimates were produced using a combination of passive
microwave radiometer and ground-based weather station data.

Model performance is evaluated for nine GWMs (4 GHMs, 4 LSMs, 1 DGVM) that
participated in the global water sector of ISIMIP2a (Gosling et al. 2019): the GHMs
WaterGAP2, H08, MPI-HM, PCR-GLOBWB, the DGVM LPJmL, and the LSMs DBH,
JULES-W1, MATSIRO, and ORCHIDEE (here all referred to as GWMs). The participating
GWMs and their main characteristics are detailed in Table 2. The simulations are based on a
common modeling protocol (ISIMIP2a 2018) which guarantees, as far as possible, consistent
spatial (0.5°) and temporal model resolution as well as input and output datasets. All GWMs
simulate the major global terrestrial hydrological processes, though using different algorithms
and mathematical formulae (Table 2). Simulated daily discharge was available from all nine
GWMs, and total monthly snow water equivalent (SWE) from six GWMs. MATSIRO,
JULES-W1, and LPJmL represent permafrost temperatures and soil freeze and thaw processes
that affect hydrological processes such as infiltration and water flow through permafrost. Three
other GWMs (WaterGAP2, PCR-GLOBWB, MPI-HM) present permafrost coverage statically
(fixed in space/time, by, e.g., reducing the maximum water holding capacity of the soil)
without dynamic feedbacks/linkages to hydrology. We evaluated the simulations that do not
consider the human influences on the water cycle, such as irrigation and dams. Apart from
WaterGAP2, the GWMs were not calibrated. The calibration of WaterGAP2 solely focused on
matching average long-term annual observed discharge by varying up to three parameters.
Additional information can be found in the respective model description papers (Table 2) and

Table 1 Study area details and gauging stations used (italicized ones represent the outlet/most downstream
stations). Permafrost coverage in each watershed was calculated based on permafrost extent in Brown et al.
(1997). Total permafrost coverage includes continuous, discontinuous, isolated, and sporadic permafrost. The
locations (longitude and latitude of the gauging stations as represented in the models is displayed in Table S1 in
the supplementary material). Watershed number and gauging station letter are in accordance with Fig. 1

Watersheds
(numbered as
in Fig. 1)

Countries Basin area
(M km2)

Gauging stations (river) Total permafrost
coverage (continuous
permafrost coverage)
(%)

1 Ob Russia, Kazakhstan,
China, Mongolia

2.95 a) Salekhard (Ob)
b) Hanti-Mansisk (Irtysh)
c) Kolpashevo (Ob)

34 (3)

2 Yenisei Russia
Mongolia

2.4 d) Igarka (Yenisei)
e) Bol. Porog (Nizhnyaya

Tunguska)
f) Pod. Tunguska (Yenisei)

90 (33)

3 Lena Russia 2.43 g) Kusur (Lena)
h) Hatyrik-Homo (Vilyuy)
i) Verkhoyanski Perevoz (Aldan)
j) Tabaga (Lena)

100 (80)

4 Kolyma Russia 0.53 k) Kolymskaya (Kolyma)
l) Sredne-Kolymsk (Kolyma)

100 (100)

5 Yukon Canada
USA

0.83 m) Pilot Point AK (Yukon)
n) Nenana AK (Tanana)
o) Eagle AK (Yukon)

99 (23)

6 Mackenzie Canada 1.66 p) Arctic Red River (Mackenzie)
q) Fort Simpson (Mackenzie)
r) Peace Point Alberta (Peace)

83 (15)
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for six of the GWMs (WaterGAP2, DBH, H08, PCR-GLOBWB, MATSIRO, LPJmL) in the
supplementary material of Zaherpour et al. (2018).

Four common observation-based climate datasets forced the GWMs (Table S2): Global
Soil Wetness Project Phase 3 (GSWP3), Princeton, WATCH, and WFDEI. Müller Schmied
et al. (2016) provided a more detailed description of the climate forcing datasets for hydro-
logical studies. The GWM JULES-W1, however, provided simulation results for only three of
the four climate forcing data (WATCH missing). In total, 35 model simulation combinations
(4 forcing data sets for 8 GWMs and 3 forcing data sets for JULES-W1) were available for the
hydrological model performance assessments.

2.3 Hydrological indicators

The hydrological indicators used in this study are detailed in Table 3. Monthly discharge, long-
term mean monthly discharge (seasonal dynamics), and mean annual discharge were comput-
ed based on measured monthly and simulated daily discharge records. For 10 gauging stations,
which include the outlet stations, the analysis period covers 30 years (1971–2000). For the
remaining eight stations, the measured discharge record is shorter (between 20 and 29 years,
Table S3). The calculation of the flow percentiles for high and low flows (based on daily
measured and simulated discharge) is based on the daily 30-year record and was limited to the
outlet gauging stations due to the data availability. Estimated (GlobSnow-2) and simulated
total monthly SWE data were used to calculate long-term total monthly SWE (1980–2000).

2.4 Evaluating model performance

Our GWM performance evaluation approach for Pan-Arctic watersheds, based on guidelines
provided in Krysanova et al. (2018), is summarized in Fig. 2. The model performance was
evaluated for 14 different hydrological indicators (Table 3) at different locations within the
watersheds in order to check internal consistency of the simulated hydrological processes.

Table 3 Overview of the hydrological indicators used in this study and the statistical evaluation metrics applied
(NSE Nash Sutcliffe Efficiency, PBIAS percent bias, SD standard deviation). Discharge related indicators were
calculated for the time period 1971–2000 (or shorter, depending on data availability, see Table S3) and SWE for
1980–2000. The indicators monthly, seasonal, and annual discharge were evaluated at 18 gaging stations and the
extremes at 6 gauging stations (outlets, Table 1). Seasonal SWE was evaluated at 4 points in each watershed (24
in total, locations defined in Table S4)

Indicator abbreviation Description of indicator Statistical evaluation
metrics

Monthly Monthly discharge NSE, PBIAS
Seasonal Long-term mean monthly discharge (seasonal dynamics of

discharge)
NSE, BIAS in SD

Annual Mean annual discharge Linear trend analysis
Q10, Q5, Q1, Q0.1, Q0.01 The magnitude of daily discharge that is exceeded 10%, 5%,

1%, 0.1%, and 0.01% of the time in the daily time series
of 30 years (indicator of high flow)

PBIAS

Q90, Q95, Q99, Q99.9, Q99.99 The magnitude of daily discharge that is exceeded 90%,
95%, 99%, 99.9%, and 99.99% of the time in the daily
time series of 30 years (indicator of low flow)

PBIAS

Seasonal SWE Long-term total monthly snow water equivalent (seasonal
dynamics of SWE)

NSE, BIAS in SD

Climatic Change (2020) 163:1329–1351 1335



Three different APIs (APIdischarge, APIextreme, APISWE) were developed based on assigning
individual rating scores considering threshold values of the statistical evaluation metrics
(Table 4). A rating score of 1 is associated with good model performance, 0.5 with
weak/satisfactory, and 0 with poor model performance. The statistical evaluation metrics used
include percent bias (PBIAS), bias in standard deviation (bias in SD), and Nash and Sutcliffe
Efficiency (NSE) (Nash and Sutcliffe 1970). The NSE (Eq. (1) in the supplementary material),
a dimensionless model efficiency criterion, assesses overall model fit and is not very sensitive
towards over- and underestimation (details in Krause et al. (2005)). Therefore, the monthly
discharge performance evaluation was complemented by PBIAS (Eq. (2) in the supplementary
material). The bias in SD (Eq. (3) in the supplementary material) assesses the standard
deviation of the mean annual cycle between measured and simulated time series (MMD)
and is therefore a suitable metric to evaluate model performance in terms of reproducing the
seasonality (amplitude). The thresholds for the statistical evaluation metrics were initially
oriented on widely used recommendations by Moriasi et al. (2007) and Moriasi et al. (2015)
and by considering suggestions of Krysanova et al. (2018). In this study, the thresholds for the
statistical performance were adjusted that means we made them less strict for GWMs. For
example, the NSE and PBIAS thresholds in Moriasi et al. (2015) for good performance of
monthly runoff in hydrological models are NSE ≥ 0.70 and PBIAS < ± 10, and for satisfactory
performance, NSE > 0.55 and ± 10 ≤ PBIAS ≤ ± 15. In this study, we defined a good model
performance of monthly runoff simulated by GWMs when NSE ≥ 0.5 and PBIAS is within ±
25%. Table 4 details the thresholds defined for this study.

The APIdischarge consists of four different statistical evaluation metrics: NSEmonthly and
PBIAS were calculated for monthly discharge, and NSEseasonal and BIAS in SD for long-

Climate Forcing (GSWP3, Princeton, Watch, WFDEI)

Impact Model (GHMs, LSMs, DGVM)

Discharge SWE
Linear trends in 

annual discharge

NSE, PBIAS

Ra�ng score Ra�ng scoreRa�ng score

NSE, BIAS in SD

Monthly 
discharge

Mean monthly 
discharge

PBIAS

Q10, Q5, Q1, 
Q0.1, Q0.01

Q90 , Q95, Q99, 
Q99.9, Q99.99

Total monthly SWE

NSE, BIAS in SD

Remote sensing 
productMeasurements

Indicator-based Aggregated 
model Performance Index (API)

Sta�s�cal evalua�on metrics

Hydrological indicators

ThresholdsThresholds for each sta�s�cal 
evalua�on metric (Table 4) are 

translated to ra�ng scores

APISWEAPIdischarge APIextreme

Fig. 2 Overview of study approach: a set of hydrological indicators were calculated based on observed
(measured discharge, SWE from remote sensing product) and simulated discharge/SWE. Statistical evaluation
metrics (NSE: Nash-Sutcliffe Efficiency, PBIAS: percent bias, and bias in SD (standard deviation)) are used to
evaluate model performance for each hydrological indicator. Based on threshold values for each statistical
evaluation metrics, rating scores are assigned for each climate forcing/model/gauging station/indicator for good,
weak, and poor performance. The individual scores are aggregated to obtain an overall aggregated performance
index (API). Aggregation is carried out separately for hydrological indicators related to monthly discharge, long-
term mean monthly discharge, extremes (high and low flows), and SWE
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term mean monthly (seasonal) discharge. The rating scores were computed for each model
simulation (nine GWMs forced by four climate datasets each) at 18 gaging stations and for
four different metrics. An example of how the statistical evaluation metric NSEmonthly is
translated into a rating score is presented in Table S5 for the gauging station Kusur, Lena
basin. In total, 2592 discharge rating scores were computed. For JULES-W1, we averaged
over the statistical evaluation metrics (NSEmonthly, PBIAS, NSEseasonal, BIAS in SD) of the
three available climate forcing data sets to represent the missing WATCH-JULES-W1 for
consistency. We then summed up the rating scores for each climate forcing (maximum score 4
for each model), for each gauging station within a watershed, and for all statistical evaluation
criteria. For each watershed, between 288 and 576 rating scores, depending on the number of
gauging stations (2–4), form the basis of the watershed specific APIdischarge. The rating scores
were aggregated to 54 rating scores (9 rating scores for each watershed) which were then
divided by the maximum possible score and transferred in % to get the APIdischarge for each
model and watershed. An APIdischarge of 100% for one model means that for monthly
discharge, NSEmonthly is > 0.5 and PBIAS is within ± 25% and that for long-term mean
monthly discharge NSEseasonal is > 0.7 and BIAS in standard deviation is within ± 25% at all
gauging stations within a watershed.

The APIextreme was computed based on the statistical evaluation metric PBIAS for 10
percentile values (5 for low and 5 for high flow conditions) from the flow duration curve
(Table 3), similarly as presented in Liersch et al. (2018). The percentiles were calculated based
on daily measured and simulated discharge for a 30-year period (1971–2000) at the outlet
stations. The magnitude of daily discharge that is exceeded 10%, 5%, 1%, 0.1%, and 0.01%
and 90%, 95%, 99%, 99.9%, and 99.99% of the time corresponds to high flows and low flows,
respectively. The assignment of rating scores was done by computing the PBIAS for each flow
percentile individually. As a result, a total of 1080 scores for high and low flow were
calculated (6 gauging stations (only outlets), 4 climate forcing datasets, 9 GWMs, 5 flow
percentiles for high and low flow each, 1 statistical evaluation metric). For each watershed,
180 scores were aggregated to 54 model performance indices (9 for each watershed) for high
and flow flows each.

The APISWE consists of the BIAS in SD and NSEseasonal between total monthly estimated
(GlobSnow-2) and simulated SWE at four to five representative grid cells covering all cardinal
directions in each watershed (Table S4). The location of the points is shown in Fig. S1. For
SWE, rating scores were computed for 4 climate forcing datasets, 6 (out of 9) GWMs
(Tables 2, 4 GHMs, 2 LSM), at 24 locations (4–5 locations in 6 watersheds), and 2 scores
(NSEseasonal, BIAS in SD), totaling to 1152 scores. For each watershed, 192 to 240 scores
(depending on the number of points) were aggregated to 36 model performance indices. Model

Table 4 Rating scores and thresholds used for the statistical performance criteria. Discharge was analyzed in
terms monthly (NSEmonthly, PBIAS) and long-term mean monthly (seasonal dynamics, NSEseasonal, and BIAS in
SD) temporal resolution. Snow water equivalent (SWE) was only evaluated for long-term mean monthly
(seasonal dynamics, NSEseasonal, and bias in SD) temporal resolution. A rating score of 1 corresponds to a good,
0.5 a weak/satisfactory, and 0 to a poor performance. The values presented in the brackets and italics show the
thresholds suggested by Moriasi et al. (2007) and (Moriasi et al. 2015)

Rating scores NSEmonthly NSEseasonal PBIAS and bias in SD

1 ≥ 0.5 ≥ 0.7 ≤ − 25%, ≥ + 5%
0.5 (0.3, 0.5) (0.5, 0.7) (− 50%, − 25%) or (+ 25%, + 50%)
0 ≤ 0.3 ≤ 0.5 ≤ − 50%, ≥ + 50%

Climatic Change (2020) 163:1329–1351 1337



analysis was restricted to the period 1980–2000, due to the data availability of the GlobSnow-2
product.

The Boruta feature selection algorithm (Kursa et al. 2010) was used to estimate the
relevance of each attribute to the total score of the APIs (APIdischarge, APIextreme, APISWE).

The attributes consisted of:

– climate forcing data (4)
– GWMs (6 for APISWE, 9 for APIdischarge and APIextreme)
– statistical performance criteria (4 for APIdischarge, 1 for each percentile for APIextreme, 2 for

APISWE)
– gauging station per watershed (2–4 for APIdischarge, 1 for APIextreme)/SWE location (4–5))

For this purpose, we used the Boruta package in R. The analysis was carried out for each API
and watershed separately.

In addition, the observed and simulated mean annual discharge time series were analyzed
for possible trends (or lack of trend) using a simple linear regression analysis with a
significance level of 0.05. Simulations for time periods without available measurements were
excluded for consistency. The linear trend analysis is not part of the APIs, but a separate
analysis step in accordance with the approach suggested by Krysanova et al. (2018).

3 Results

3.1 Mean monthly discharge and seasonal dynamics

The performance of the GWMs regarding the statistical evaluation metrics NSEmonthly (Fig. 3),
PBIAS (Fig. 4), and NSEseasonal (Fig. S2) and BIAS in SD (Fig. S3) shows large differences
across GWMs and climate forcing data set. When averaged over all climate forcing data and
GWMs at all gauging stations, NSEmonthly varies between 0.94 (WFDEI-WaterGAP2 at Igarka
(Yenisei)) and − 28 (WATCH-LPJmL at Yukon (Eagle)), averaging to − 0.22. NSEseasonal

averages to − 0.29 with a maximum of 0.98 (WATCH-MPI-HM at Hatyrik-Homo (Lena))
and a minimum of − 28 (WATCH-LPJmL at Eagle AK (Yukon)). Systematic under-/overes-
timation (PBIAS monthly discharge) varies between + 150% (WATCH-DBH at Hanti-
Mansisk (Ob)) and − 87% (Princeton-ORCHIDEE at Nenana AK (Yukon)), averaging to
31%. The bias in SD averages to 50%, ranging from + 420% (WATCH-LPJmL at Hanti-
Mansisk (Ob)) to − 99% (Princeton-ORCHIDEE at Pilot Point AK (Yukon)). Performance is,
on average (over all statistical evaluation metrics, GWMs, and in all watersheds), not higher at
outlet compared to upstream stations. Variability in discharge across GWMs is larger com-
pared to the climate forcing data. No climate forcing data set consistently outperforms the other
for all statistical metrics in all basins, though our analysis suggests that GWMs forced by
GSWP3 show better results for bias in SD and PBIAS compared to when forced by the other
climate data sets. GWMs forced by Princeton are more likely to perform poorer regarding
PBIAS and NSEmonthly.

Based on the assigned rating scores (Table 4) for each statistical evaluation metric, model
performance regarding discharge (monthly and seasonal) was summarized for each watershed
(Fig. 5(a)) and each GWM (Fig. 5(d)) via the APIdischarge. WaterGAP2 outperformed the other
GWMs in all basins except in Kolyma. The APIdischarge of WaterGAP2 ranged between 38
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(Kolyma) and 93% (Yukon) and averaging to 72% (Table S6).MATSIRO andMPI-HM also had
an average APIdischarge above 50%, exceeding 60% in four basins. ORCHIDEE, JULES-W1, and
the DGVM LPJmL have rather low average APIdischarge of 25%, 16%, and 32% respectively. For
JULES-W1, APIdischarge was below 32% in all basins, averaging to 16% (Fig. 5(a)).

Considering that reaching a APIdischarge of 50% can be treated as an “acceptable model,” 6
GWMs in Kolyma basin, 4 GWMs in Lena basin, 5 GWMs in Ob basin, 3 GWMs in Yenisei
basin, 3 GWMs in Mackenzie basin, and 2 GWMs in Yukon basin meet the criterion. The

Fig. 3 Model performance evaluated using the statistical evaluation metric “Nash-Suitcliffe Efficiency (NSE)”
based on simulated and measured monthly discharge for each GWM forced by four observation-based climate
datasets (GSWP3, Princeton, WATCH, WFDEI). Each row presents the results for one watershed (row 1: Ob;
row 2: Yenisei; row 3: Lena; row 4: Kolyma; row 5: Yukon; row 6: Mackenzie) and each letter (a–r) refers to one
gauging station from the outlet (left column) to the upstream basins (Table 1). The dotted lines at 0.3 and 0.5
present the thresholds for assigning rating scores. The y-axis was adjusted to only represent the range 0–1
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average GWM performance is best for Kolyma basin (APIdischarge = 55%), followed by Lena,
Ob, Yenisei, and Mackenzie (APIdischarge = 40%). In the Yukon watershed, APIdischarge is 30%.
WaterGAP2 and MATSIRO demonstrated good or acceptable performance in five, MPI-HM
in four, DBH in three, and H08 and PCR-GLOBWB in two basins. ORCHIDEE and LPJmL
each performed well in only one basin, and all JULES-W1 results were below the acceptable
level of 50% in all six basins (Fig. 5(b)).

Fig. 4 Model performance evaluated using the statistical evaluation metric “Percent Bias” (Eq. (2) based on
simulated and measured monthly discharge for each GWM forced by four observation-based climate datasets
(GSWP3, Princeton, WATCH, WFDEI). Each row presents the results for one watershed (row 1: Ob; row 2:
Yenisei; row 3: Lena; row 4: Kolyma; row 5: Yukon; row 6: Mackenzie) and each letter (a–r) refers to one
gauging station from the outlet (left column) to the upstream basins (Table 1). The dotted lines at ± 25 and ± 50
present the thresholds for assigning rating scores. The y-axis was adjusted to only represent the range − 100 to +
100%

Climatic Change (2020) 163:1329–13511340



Figure 6 displays the observed and simulated mean seasonal discharge of the two best
performing and two worst performing GWMs, based on the API, for each watershed. In the six
watersheds, WaterGAP2 is four times among the best performing models, MATSIRO and
MPI-HM twice, and DBH once. ORCHIDEE belongs to the poorest performing models in all
watersheds, expect in Ob, followed by JULES-W1 (four times), DBH (twice), and LPJmL
(once). The best performing models reproduce the seasonal dynamics satisfactorily, although
the snow melt peak is, in the majority of the cases, underestimated and late summer discharge
overestimated. The poorly performing GWMs do not reproduce the snowmelt peak neither in
terms of timing (lag (DBH Mackenzie), lead (LPJmL in Ob)), nor magnitude (e.g.,
ORCHIDEE, JULES-W1, overestimation although timing is correct (DBH in Ob)). Conse-
quently, the seasonal dynamic of the Pan-Arctic watersheds is not represented well by the
GWMs as reflected in high absolute values of the BIAS in standard deviation (Fig. S3).
Figure 6 also shows that the uncertainty caused by the choice of climate forcing datasets
(shaded area around the mean) is highly variable across watersheds and GWMs.

3.2 Extremes

The APIextreme aggregated for high and low flows, each including 5 percentiles, is summarized
in Fig. 5(b, c, e, f). The APIextreme is displayed separately for each percentile in Table 5 for high

Fig. 5 Aggregated Performance Indices for monthly and seasonal discharge (APIdischarge) and the extremes
(APIextreme) organized by watershed (top row) and by Global Water Model (GWM) (bottom row). APIdischarge is
displayed by watershed (a) and Global Water Model (GWM) (d). APIextreme is displayed in for high flows
(including the percentiles Q10, Q5, Q1, Q0.1, Q0.01) (b, e) and low flows (Q90, Q95, Q99, Q99.9, Q99.99) (c, f) by
watershed (b,c) and by GWM (e, f). The black horizontal line (and number displayed) presents the average for a
watershed (a–c) and a GWM (d–f). Table S6 summarizes the underlying values for APIdischarge and Table S7 for
APIextreme
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and in Table S7 for low flow, each containing 270 values. Model performance is lower
(average 35% for high and 26% for low flows) compared to mean discharge (43%, Fig. 5).
The APIextreme, on average, decreases from the less (Q10, Q90) to the most (Q0.01, Q99.99)
extreme flow percentiles (Table 5, Table S7). For Q10, for example, APIextreme is > 50% for 36
out of 54 GWM and watershed combinations, while for Q0.01, it is only in 15 out of 54 cases.
Similarly, for low flows, the number of cases that APIextreme is > 50% reduces from 19 out of
54 (Q90) to 12 out of 54 (Q99.99). Among all GWMs, only MATSIRO has, on average, over all
flow percentiles, an APIextreme > 50% for both high and low flows. LPJmL reaches, consistently
across all high flow percentiles, an APIextreme of 100% and of > 50% in the Yenisei and Lena
basin, respectively (Table 5). High and low flows are, on average over all high and low flow
percentiles, best represented in the Ob watershed, with an APIextreme > 50%. In all other basins,
average APIextreme ranges between 26 and 38% for high flows (Fig. 5(b)). Average APIextreme for
low flows ranges between 4 (Kolyma) and 51% (Ob) when categorized by watershed and
between 0 (DBH) and 54% (MATSIRO) when categorized by GWM (Fig. 5(c, f)).

Fig. 6 Average mean monthly discharge of the two best (left column) and worst (right column) performing
Global Water Models (GWMs) each in six Pan-Arctic watersheds. The categories best and worst are based on the
model performance analysis detailed in the method section. The shaded area presents the variability range caused
by the four different observation-based climate forcing datasets, the thick line presents the mean
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3.3 Trends mean annual discharge

Trends in measured mean annual discharge are found to be significant (p < 0.05) only at two
stations: Igarka (Yenisei) and Sredne-Kolymsk (Kolyma) (Fig. S4). At Igarka, all simulations,
except WFDEI-PCR-GLOBWB, agree with the measurements in simulating a negative trend
in mean annual discharge despite difference in the magnitude (Fig. S4c). All simulated trends
are also significant except for WFDEI-PCR-GLOBWB and LPJmL (for all climate data
forcing sets) (Fig. S4 a). At Sredne-Kolymsk (Kolyma), all simulations, except WFDEI-

Table 5 The APIextreme for the high flow discharge percentiles (Q10, Q5, Q1, Q0.1, Q0.01) for each GWM and
watershed as visualized in Fig. 5. The darker blue color highlights an API > 50%, the lighter blue color an API =
50%, API < 50% are presented in gray. The yellow color highlights a performance in >5 0% averaged over all
GWMs (per watershed, last column) and over all watersheds (per GWM, last row). The orange color highlights
the overall average (over all watersheds and GWMs)

Q10 WATERGAP2 DBH H08 MPI-HM PCR-GLOBWB MATSIRO ORCHIDEE LPJML JULES-W1 Average
Lena 100 100 50 50 0 50 12.5 87.5 0 50
Kolyma 50 75 62.5 62.5 62.5 50 12.5 50 12.5 49
Yenisei 100 100 62.5 100 37.5 62.5 50 100 0 68
Ob 50 12.5 100 87.5 75 87.5 62.5 62.5 25 63
Mackenzie 50 0 100 50 0 87.5 25 100 50 51
Yukon 87.5 87.5 37.5 0 0 50 0 75 0 38
Average 73 63 69 58 29 65 27 79 15 53
Q5 WATERGAP2 DBH H08 MPI-HM PCR-GLOBWB MATSIRO ORCHIDEE LPJML JULES-W1
Lena 50 87.5 0 37.5 0 37.5 12.5 100 0 36
Kolyma 0 50 25 62.5 37.5 50 0 62.5 0 32
Yenisei 50 62.5 12.5 50 0 12.5 12.5 100 0 33
Ob 50 12.5 87.5 87.5 75 75 62.5 0 25 53
Mackenzie 50 0 100 50 0 87.5 0 25 12.5 36
Yukon 87.5 75 50 12.5 0 50 0 62.5 0 38
Average 48 48 46 50 19 52 15 58 6 38
Q1 WATERGAP2 DBH H08 MPI-HM PCR-GLOBWB MATSIRO ORCHIDEE LPJML JULES-W1
Lena 25 37.5 0 0 0 12.5 0 100 0 19
Kolyma 0 37.5 12.5 37.5 25 50 0 37.5 0 22
Yenisei 12.5 37.5 0 0 0 12.5 0 100 0 18
Ob 50 12.5 62.5 87.5 75 62.5 87.5 0 37.5 53
Mackenzie 50 0 100 50 0 100 0 0 12.5 35
Yukon 75 75 37.5 25 0 75 0 37.5 0 36
Average 35 33 35 33 17 52 15 46 8 31
Q0.1 WATERGAP2 DBH H08 MPI-HM PCR-GLOBWB MATSIRO ORCHIDEE LPJML JULES-W1
Lena 0 25 0 0 0 12.5 0 100 0 15
Kolyma 0 37.5 12.5 37.5 50 50 0 25 0 24
Yenisei 0 25 0 12.5 0 12.5 0 100 0 17
Ob 75 0 50 50 75 37.5 75 0 37.5 44
Mackenzie 50 0 100 37.5 0 87.5 0 0 12.5 32
Yukon 62.5 75 12.5 0 0 62.5 0 25 0 26
Average 31 27 29 23 21 44 13 42 8 26
Q0.01 WATERGAP2 DBH H08 MPI-HM PCR-GLOBWB MATSIRO ORCHIDEE LPJML JULES-W1
Lena 0 0 0 0 0 0 0 62.5 0 7
Kolyma 0 37.5 12.5 37.5 62.5 62.5 0 12.5 0 25
Yenisei 25 25 0 12.5 0 12.5 0 100 0 19
Ob 87.5 0 50 50 87.5 25 87.5 0 37.5 47
Mackenzie 50 12.5 100 37.5 0 87.5 0 0 12.5 33
Yukon 62.5 62.5 12.5 0 0 62.5 0 25 0 25
Average 38 23 29 23 25 42 15 33 8 26
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PCR-GLOBWB, agree on a negative trend in mean annual discharge (Fig. S4d) but only 17
(out of 40, 42.5%) are also significant (Fig. S4b). At all other gauging stations, trends in
measured mean annual discharge are not significant.

3.4 Snow water equivalent

The performance index regarding seasonal SWE (APISWE) is displayed in Fig. S5 and the
corresponding values in Table S8. Average APISWE is 57%. An APISWE > 50% is reached in
27 out of 36 cases. These numbers are higher compared to the averages for discharge and
extremes, but it cannot be directly compared to the APIdischarge, as only six (compared to nine)
models provided SWE output, only four grid cells are considered in each basin, and the
analysis period differs slightly. GWMs reproduce SWE best in Mackenzie watershed (72%),
followed by Lena (62%) and poorest in the Yukon basin (44%). All GWMs reach an
APISWE ≥ 50%. The simulated seasonal dynamics of SWE is compared to the observations
for each watershed in Fig. S6 to Fig. S11.

3.5 Boruta feature selection

For all APIs (APIdischarge, APIextreme, APISWE), the climatic forcing was consistently detected as
not relevant by the Boruta algorithm across all watersheds. This implies that forcing the
GWMs with four different (instead of only one) observation-based climate forcing data sets
has a low relevance for the overall API score in this study. All other attributes, e.g., the GWMs
and the statistical performance criteria, are confirmed relevant for the overall API score. For
APISWE, other attributes, such as the statistical performance criteria, were, in some cases, also
found unimportant in addition to the climate forcing data. The GWM is identified the most
important attribute for APISWE in all watersheds except in Lena and Mackenzie, where the
GWMs is, however, still among the three most important attributes (out of 10 in total). For the
calculation of APISWE and APIdischarge in the Kolyma watershed, the data available to train the
Boruta algorithm was likely not sufficient (for APISWE only 6 GWMs, for APIdischarge Kolyma
only two gauging stations).

4 Discussion

The GWMs often have a considerable bias (mostly systematic underestimation) and difficul-
ties in reproducing the seasonal discharge cycle when compared against observations in Pan-
Arctic watersheds. Overall GWM performance, assessed for different hydrological indicators
with several statistical evaluation metrics for up to four gauges in each watershed, ranges from
satisfactory to poor. However, in some cases, API is larger than 70% (9 of 54 for the monthly
and seasonal discharge, 10 of 54 for high flows and 8 of 54 for low flow, 3 out of 36 for SWE).
No GWM consistently outperforms the other models in all watersheds and for all indicators,
and model performance, on average, does not increase with basin size. This is in line with
other model inter-comparison studies (e.g., Slater et al. (2007)), where also no model was the
best or worst performing when compared to a range of observations and in different water-
sheds across the Pan-Arctic. Our results, satisfactory to poor performance of GWMs, are also
consistent with global studies that also include watersheds located in temperate and tropical
climates (Krysanova et al. n.d.). In the study by Krysanova et al. (n.d.), the best (WaterGAP2
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and MATSIRO) and poorest (e.g., LPJmL) performing GWMs match with our study while
two GWMs, H08 and DBH, performed slightly better in the Artic compared to other climate
zones.

We also demonstrate that the variability across the observation-based climate forcing data is
smaller compared to that across GWMs. This is also confirmed by the feature selection using
the Boruta algorithm. The large variability of performance across GWMs is most likely related
to model structural differences and/or lack of physical process representation for some
processes, difficulties to represent some processes with a relatively coarse resolution of 0.5°,
and missing calibration (except WaterGAP2, which was calibrated) as well as no targeted
model setup/parameterization focusing on Arctic hydrological processes.

Most GWMs struggle to simulate the snowmelt peak, the most important hydrological
event in (sub) Arctic rivers, both in terms of absolute discharge amount and timing. This is
directly linked to the GWMs rather simple representation of snow hydrological processes
including the onset of snowmelt (isothermal phase change of the snowpack), the fate of
snowmelt (infiltration into soils, refreezing over cold periods), snow compaction, and redis-
tribution of snow on the landscape. Additionally, processes related to and affecting river
routing, such as ice jams and dams, are highly complex and often are not considered or only
included very simplistic in GWMs. Dams are not considered in the runs without human
influences that we analyzed here. This likely explains the relatively poor model performance in
the Ob (particularly at Hanti-Mansisk (Irtysch River)) and in the Yenisei watershed where the
impact of dams on changes in the seasonal discharge has been documented (Adam et al. 2007).
Concurrently, general errors in the forcing data, which are consistent across all datasets, such
as snowfall underestimation (Beck et al. 2017; Hancock et al. 2014) and uncertainties in wind
speed, amplify the rather poor simulation of snowmelt peak flow. Strong winds that are
characteristic for Arctic tundra environments enhance sublimation and could therefore add
to the general underestimation of the snowmelt peak by GWMs.

Except for many GWMs in the Ob watersheds (particularly at gauges Salekhard and Hanti-
Mansisk) and for DBH and H08 in Mackenzie and Lena (gauge: Hatyrik-Homo), the GWMs
have a tendency to underestimate measured monthly discharge in this region. This phenomena
has already been documented by others, e.g., Andresen et al. (2019) and Lohmann et al.
(2004). Lohmann et al. (2004) highlighted that measured discharge is underestimated by LSMs
in areas with significant snowfall, and that snowmelt peak timing can be off by up to 4 months.
Beck et al. (2017) and Hancock et al. (2014) attributed an early bias in spring snowmelt peak
to precipitation underestimation that leads to insufficient snow accumulation and subsequently
to too rapid snow melt. In our study, GWMs forced by Princeton underestimate, on average,
discharge (and snowmelt peak) more significantly. The GWMs forced by WFDEI, WATCH,
and GSWP3 perform better, as precipitation is corrected for snow undercatch and scaled to the
monthly precipitation sums of Global Precipitation Climatology Centre (GPCC). GWM
improvements, particularly, related to snow hydrological processes are, however, limited by
sparse data availability and the challenges in measuring snow-related processes effectively
over larger spatial and temporal scales.

Under historic climate conditions, the GHMs, on average, performed better than the LSMs
in the Pan-Arctic watersheds, with the exception (in many cases) of MATSIRO. Beck et al.
(2017) suggest that the differences in model performance are caused by the snow routines with
the simple conceptual degree-day approach (GHMs) outperforming the physically based
energy balance approach (LSMs). In our case, however, DBH performed reasonably well
regarding SWE (Fig. S5), despite relying on the more complex energy balance approach. This
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suggests that the reasons for better/poorer performance are more complex. For example, the
overall annual flow volume differs in many cases considerably between GWMs and
observations as well as across GWMs. We also suggest to additionally evaluate the entire
water balance as well as the sensitivity of water balance components to changes in the climatic
drivers to gain a deeper understanding of the GWM structural differences in Arctic watersheds.
Hattermann et al. (2017) have for example shown that the climate sensitivity of uncalibrated
GWMs in the historical period is comparable to calibrated regional models. However, the
differences in processes implementation (particularly permafrost) could make larger differ-
ences under climate change conditions. The consideration of permafrost temperatures and
annual soil freeze/thaw processes in JULES-W1, MATSIRO, and LPJmL add additional
complexity but is imperative for climate change impact assessments as increased surface and
subsurface water interactions will have the potential to change the discharge regimes of high-
latitude watersheds with large-scale consequences for land-atmosphere biochemical processes.

Model performances concerning monthly and long-term mean monthly discharge are
poorer for the watersheds located in North America (Yukon followed by Mackenzie). These
watersheds are characterized by a higher percentage of glacier coverages compared to the
watersheds located in Asia. Glaciers, even with a low overall coverage, influence the discharge
regime considerably, especially under drought/low rainfall conditions (Huss 2011). None of
the GWMs evaluated here explicitly simulate glacier-related hydrological processes, which
most likely also contributes to their weak or poor performance in these watersheds.

WaterGAP2 (calibrated only for the long-term average annual discharge) outperformed the
other GWMs when analyzing hydrological indicators based on monthly and long-term mean
monthly discharge, which underscores the importance of targeted calibration for the hydro-
logical indicator of interest. However, our study showed, similarly to Zaherpour et al. (2018),
that WaterGAP2’s performance for extremes is only average. For SWE, the performance of
WaterGAP2 (APISWE = 48%) is below the average (APISWE = 57%). MATSIRO outperforms
the other GWMs for discharge extremes (APIextreme = 51% for high and 54% for low flows),
and is the second best performing model for discharge (APIdischarge = 58%). Zaherpour et al.
(2018) highlighted the superior, physically based snow and soil scheme of MATSIRO. In our
analysis, MATSIRO did not outperform the other GWMs regarding SWE. However, we have
to admit that our SWE evaluation approach was rather simplistic, and may not represent the
model performance accurately enough, since we compared the simulated SWE output to the
GlobSnow-2 product at only four randomly chosen grid cells within the entire watershed.
Additionally, GLobSnow-2, a remote sensing product, is known to inherit uncertainties
(Metsämäki et al. 2015).

DGVMs are developed to explain the changes in vegetation dynamics and associated
impacts on and linkages to the hydrological and carbon cycles, while LSMs are designed to
simulate the exchange of water, carbon, and energy in General Circulation and Earth System
Models. Therefore, hydrological processes per se and the interaction with snow and permafrost
were not the main objectives for neither their development nor their setup/parameterization.
This may explain a weak or poor performance of ORCHIDEE, LPJmL, and JULES-W1 for
discharge and snow seasonality in many cases. Updated model versions of ORCHIDEE, such
as reported in Wang et al. (2013) and Guimberteau et al. (2018), improved model performance
regarding Artic hydrological processes considerably (such as snow depth, SWE, snow albedo,
and snowmelt runoff) which highlights the potential of targeted model development to
improve model performance independently of explicit parameter calibration.
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5 Conclusions and outlook

Our results show that the majority of the nine GWMs included in the study exhibit consider-
able difficulties in realistically representing Pan-Arctic hydrological processes. The perfor-
mance evaluation showed that no GWM outperformed other GWMs in all watersheds and for
all hydrological indicators. This also implies that we could not identify any links between the
model efficiency and model structure/parameterization. We also highlighted that no climate
forcing dataset was better suited for all indicators and statistical evaluation metrics, though
results based on Princeton showed a larger PBIAS on average. Thus, there is an urgent need to
refine the representation of cold-region hydrological processes in GWMs to improve their
performance, as changes in these processes will govern the fate of the Arctic. This includes
direct process representation (snow, permafrost, glaciers, river routing accounting for ice
cover/different flow velocities) and a more appropriate model setup and parameterization.
The GHMWaterGAP2 outperformed the more complex LSMs for mean flow, while the LSM
MATSIRO showed a better performance than other models for extremes. The GHMs often
lack relevant cold-region processes (permafrost, glaciers), have simple snow schemes, and
represent vegetation statically. Many LSMs, on the other hand, represent vegetation dynam-
ically which is highly relevant under climate change as vegetation cover strongly influences
the partitioning of precipitation into evapotranspiration and discharge.

Considering the relatively weak or poor performance of most GWMs in most watersheds
under current climate conditions, a comprehensive model evaluation is recommended before
conducting climate impact assessments. Only GWMs that show good or satisfactory evalua-
tion results (i.e., API > 0.5) and that represent cold-region hydrological processes (snow
hydrological processes, permafrost) effectively should be included in multi-model climate
change impact assessments in Pan-Arctic watersheds. Models meeting these criteria include
WaterGAP2 (though requiring a dynamic permafrost module), MATSIRO, MPI-HM for
monthly/seasonal dynamics, MATSIRO and LPJmL for high flows, and MATSIRO for low
flows. All other models require performance improvement and all except JULES-W1 the
incorporation of dynamic permafrost. Tools, such as the API presented here, are promising to
define weighting coefficients based on model performance, and to identify GWMs that
potentially could be applied for impact assessment, and GWMs that should be excluded from
the ensemble. Model exclusion should trigger an analysis about the model’s shortcomings and
result in model refinement. Therefore, a close collaboration between impact modelers and the
model development teams is crucial. Ultimately, the model weighting approach could provide
more trustworthy results of impact assessment and reduce large uncertainty ranges which are
generally characteristic for multi-model climate change impact assessments. Further, the API
makes the interpretation of model performance involving a large ensemble of participating
GWMs transparent and easily understandable by a wide range of audience.

Our study can be extended by defining model weighting coefficients based on the API and
comparing this approach to the traditional ensemble mean approach in climate change impact
assessments. Another interesting study could be done by comparing GWM performances with
and without including human influences, which could be also done using our suggested API
approach. Other statistical evaluation metrics and additional hydrological indicators could be
also included in the evaluation. Considering the rapid rate of environmental changes occurring
in the Pan-Arctic, we urgently need to increase our understanding of the hydrological cycle
and its linkages to other parts of the earth system, and GWMs are suitable tools to do so.

Climatic Change (2020) 163:1329–1351 1347



Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s10584-020-02892-2.

Acknowledgments We would like to thank the German Federal Ministry of Education and Research (BMBF)
and the European Research Area for Climate Services ERA4CS with project funding reference number
01LS1711C for funding the ISIPedia project (Yoshihide Wada was supported by the same project under grant
no. 690462). This study also benefited from funding of JSPS KAKENHI (grant no.: 17K12820), the Key
Research Program of the Chinese Academy of Sciences (grant no. ZDRW-ZS-2017-4), and the Strategic Priority
Research Program of the Chinese Academy of Sciences (XDA19070302). We would like to thank Maria del
Rocio Rivas Lopez for downloading and extracting the GlobSnow-2 dataset. Faruque Abdullah supported
Figs. 3 and 4 and Figs. S1 and S2.

Funding Open Access funding enabled and organized by Projekt DEAL.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and
indicate if changes were made. The images or other third party material in this article are included in the article's
Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included
in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy
of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Adam JC, Haddeland I, Su F, Lettenmaier DP (2007) Simulation of reservoir influences on annual and seasonal
streamflow changes for the Lena, Yenisei, and Ob' rivers. J Geophys Res: Atmos 112. https://doi.
org/10.1029/2007jd008525

Ahmed R, Prowse T, Dibike Y, Bonsal B, O’Neil H (2020) Recent trends in freshwater influx to the Arctic
Ocean from four major arctic-draining rivers. Water 12:1189

Andresen CG et al (2019) Soil moisture and hydrology projections of the permafrost region: a model intercom-
parison. Cryosphere 3(2):591–609. discussion 2019:1–20. https://doi.org/10.5194/tc-2019-144

Beck HE, van Dijk AIJM, de Roo A, Dutra E, Fink G, Orth R, Schellekens J (2017) Global evaluation of runoff
from 10 state-of-the-art hydrological models. Hydrol Earth Syst Sci 21:2881–2903. https://doi.org/10.5194
/hess-21-2881-2017

Best MJ et al (2011) The Joint UK Land Environment Simulator (JULES), model description - Part 1: Energy
and water fluxes. Geosci Model Dev 4:677–699. https://doi.org/10.5194/gmd-4-677-2011

Biskaborn BK et al (2019) Permafrost is warming at a global scale. Nat Commun 10:264. https://doi.org/10.1038
/s41467-018-08240-4

Bowling LC, Kane DL, Gieck RE, Hinzman LD, Lettenmaier DP (2003) The role of surface storage in a low-
gradient Arctic watershed. Water Resour Res 39:1087. https://doi.org/10.1029/2002WR001466

Bring A et al (2016) Arctic terrestrial hydrology: a synthesis of processes, regional effects, and research
challenges. J Geophys Res Biogeosci 121:621–649. https://doi.org/10.1002/2015JG003131

Brown J, Ferrians OJ, Heginbottom JJA, Melnikov ES (1997) Circum-Arctic map of permafrost and ground-ice
conditions. Washington, DC: U.S. Geological Survey in Cooperation with the Circum-Pacific Council for
Energy and Mineral Resources. Circum-Pacific Map Series CP-45. https://doi.org/10.3133/cp45

Do HX, Gudmundsson L, Leonard M, Westra S (2018) The global streamflow indices and metadata archive
(GSIM) - part 1: the production of a daily streamflow archive and metadata. Earth Syst Sci Data 10:765–785.
https://doi.org/10.5194/essd-10-765-2018

Döll P, Lehner B (2002) Validation of a new global 30-min drainage direction map. J Hydrol 258:214–231.
https://doi.org/10.1016/S0022-1694(01)00565-0

Ge S (2013) Permafrost hydrology. By Ming-ko Woo Arct Antarct Alp Res 45:615–616. https://doi.org/10.1657
/1938-4246-45.4.615

Gosling SN et al (2017) A comparison of changes in river runoff from multiple global and catchment-scale
hydrological models under global warming scenarios of 1 °C, 2 °C and 3 °C. Clim Chang 141:577–595.
https://doi.org/10.1007/s10584-016-1773-3

Climatic Change (2020) 163:1329–13511348

https://doi.org/
https://doi.org/
https://doi.org/
https://doi.org/10.1029/2007jd008525
https://doi.org/10.1029/2007jd008525
https://doi.org/10.5194/tc-2019-144
https://doi.org/10.5194/hess-21-2881-2017
https://doi.org/10.5194/hess-21-2881-2017
https://doi.org/10.5194/gmd-4-677-2011
https://doi.org/10.1038/s41467-018-08240-4
https://doi.org/10.1038/s41467-018-08240-4
https://doi.org/10.1029/2002WR001466
https://doi.org/10.1002/2015JG003131
https://doi.org/10.3133/cp45
https://doi.org/10.3133/cp45
https://doi.org/10.1016/S0022-1694(01)00565-0
https://doi.org/10.1657/1938-4246-45.4.615
https://doi.org/10.1657/1938-4246-45.4.615
https://doi.org/10.1007/s10584-016-1773-3


Gosling S et al (2019) ISIMIP2a simulation data from water (global) sector (V. 1.1). https://doi.org/10.5880
/PIK.2019.003

Gudmundsson L, Do HX, Leonard M, Westra S (2018) The global streamflow indices and metadata archive
(GSIM) – part 2: quality control, time-series indices and homogeneity assessment. Earth Syst Sci Data 10:
787–804. https://doi.org/10.5194/essd-10-787-2018

Guimberteau M et al (2018) ORCHIDEE-MICT (v8.4.1), a land surface model for the high latitudes: model
description and validation. Geosci Model Dev 11:121–163. https://doi.org/10.5194/gmd-11-121-2018

Hanasaki N et al (2008) An integrated model for the assessment of global water resources – part 1: model
description and input meteorological forcing. Hydrol Earth Syst Sci 12:1007–1025. https://doi.org/10.5194
/hess-12-1007-2008

Hancock S, Huntley B, Ellis R, Baxter R (2014) Biases in reanalysis snowfall found by comparing the JULES
land surface model to globsnow. J Clim 27:624–632. https://doi.org/10.1175/jcli-d-13-00382.1

Hattermann FF et al (2017) Cross-scale intercomparison of climate change impacts simulated by regional and
global hydrological models in eleven large river basins. Clim Chang 141(3):561–576. https://doi.
org/10.1007/s10584-016-1829-4

Holliday NP et al (2020) Ocean circulation causes the largest freshening event for 120 years in eastern subpolar
North Atlantic. Nat Commun 11:585. https://doi.org/10.1038/s41467-020-14474-y

Huss M (2011) Present and future contribution of glacier storage change to runoff from macroscale drainage
basins in Europe. Water Resour Res 47:W07511. https://doi.org/10.1029/2010WR010299

ISIMIP2a (2018) The Inter-Sectoral Impact Model Intercomparison Project (ISIMIP): ISIMIP2a simulation
protocol. Authors: ISIMIP Coordination Team, Sectoral Coordinators & Scientific Advisory Board.
https://www.isimip.org/#isimip2a/. [Online Accessed on 5 April 2019]

Kane DL, Hinzman LD, Benson CS, Liston GE (1991) Snow hydrology of a headwater Arctic basin: 1. Physical
measurements and process studies. Water Resour Res 27:1099–1109. https://doi.org/10.1029/91WR00262

Krause P, Boyle DP, Bäse F (2005) Comparison of different efficiency criteria for hydrological model
assessment. Adv Geosci 5:89–97. https://doi.org/10.5194/adgeo-5-89-2005

Krysanova V, Donnelly C, Gelfan A, Gerten D, Arheimer B, Hattermann F, Kundzewicz ZW (2018) How the
performance of hydrological models relates to credibility of projections under climate change. Hydrol Sci J
63:696–720. https://doi.org/10.1080/02626667.2018.1446214

Krysanova V et al (2020) How evaluation of global hydrological models can help to improve credibility of river
discharge projections under climate change. Clim Change. https://doi.org/10.1007/s10584-020-02840-0

Kummu M, Varis O (2011) The world by latitudes: a global analysis of human population, development level
and environment across the north–south axis over the past half century. Appl Geogr 31:495–507. https://doi.
org/10.1016/j.apgeog.2010.10.009

Kursa MB, Jankowski A, Rudnicki WR (2010) Boruta – a system for feature selection. Fundamenta Inform 101:
271–285. https://doi.org/10.3233/FI-2010-288

Liersch S et al (2018) Are we using the right fuel to drive hydrological models?. A climate impact study in the
Upper Blue Nile. Hydrol Earth Syst Sci 22:2163–2185. https://doi.org/10.5194/hess-22-2163-2018

Lohmann D et al (2004) Streamflow and water balance intercomparisons of four land surface models in the North
American Land Data Assimilation System project. J Geophys Res Atmos 109:D07S91. https://doi.
org/10.1029/2003jd003517

McGuire AD et al (2018) Dependence of the evolution of carbon dynamics in the northern permafrost region on
the trajectory of climate change. Proc Natl Acad Sci U S A 115:3882–3887. https://doi.org/10.1073
/pnas.1719903115

Metsämäki S et al (2015) Introduction to GlobSnow snow extent products with considerations for accuracy
assessment. Remote Sens Environ 156:96–108. https://doi.org/10.1016/j.rse.2014.09.018

Moriasi DN, Arnold JG, Van Liew MW, Bingner RL, Harmel RD, Veith TL (2007) Model evaluation guidelines
for systematic quantification of accuracy in watershed simulations. Trans ASABE 50:885–900. https://doi.
org/10.13031/2013.23153

Moriasi DN, Gitau MW, Pai N, Daggupati P (2015) Hydrologic and water quality models: performance measures
and evaluation criteria. Trans ASABE 58:1763–1785. https://doi.org/10.13031/trans.58.10715

Morison J, Kwok R, Peralta-Ferriz C, Alkire M, Rigor IG, Andersen R, Steele M (2012) Changing Arctic ocean
freshwater pathways. Nature 481:66–70 doi:https://doi.org/10.1038/nature10705

Müller Schmied H et al (2016) Variations of global and continental water balance components as impacted by
climate forcing uncertainty and human water use. Hydrol Earth Syst Sci 20:2877–2898. https://doi.
org/10.5194/hess-20-2877-2016

Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models part I — a discussion of
principles. J Hydrol 10:282–290. https://doi.org/10.1016/0022-1694(70)90255-6

Climatic Change (2020) 163:1329–1351 1349

https://doi.org/10.5880/PIK.2019.003
https://doi.org/10.5880/PIK.2019.003
https://doi.org/10.5194/essd-10-787-2018
https://doi.org/10.5194/gmd-11-121-2018
https://doi.org/10.5194/hess-12-1007-2008
https://doi.org/10.5194/hess-12-1007-2008
https://doi.org/10.1175/jcli-d-13-00382.1
https://doi.org/10.1007/s10584-016-1829-4
https://doi.org/10.1007/s10584-016-1829-4
https://doi.org/10.1038/s41467-020-14474-y
https://doi.org/10.1029/2010WR010299
https://www.isimip.org/#isimip2a/
https://doi.org/10.1029/91WR00262
https://doi.org/10.5194/adgeo-5-89-2005
https://doi.org/10.1080/02626667.2018.1446214
https://doi.org/10.1007/s10584-020-02840-0
https://doi.org/10.1016/j.apgeog.2010.10.009
https://doi.org/10.1016/j.apgeog.2010.10.009
https://doi.org/10.3233/FI-2010-288
https://doi.org/10.5194/hess-22-2163-2018
https://doi.org/10.1029/2003jd003517
https://doi.org/10.1029/2003jd003517
https://doi.org/10.1073/pnas.1719903115
https://doi.org/10.1073/pnas.1719903115
https://doi.org/10.1016/j.rse.2014.09.018
https://doi.org/10.13031/2013.23153
https://doi.org/10.13031/2013.23153
https://doi.org/10.13031/trans.58.10715
https://doi.org/10.1038/nature10705
https://doi.org/10.5194/hess-20-2877-2016
https://doi.org/10.5194/hess-20-2877-2016
https://doi.org/10.1016/0022-1694(70)90255-6


Oki T, Nishimura T, Dirmeyer P (1999) Assessment of annual runoff from land surface models using total runoff
integrating pathways (TRIP). J Meteorol Soc Jpn Ser II 77:235–255. https://doi.org/10.2151/jmsj1965.77.1
B_235

Pokhrel YN, Koirala S, Yeh PJ-F, Hanasaki N, Longuevergne L, Kanae S, Oki T (2015) Incorporation of
groundwater pumping in a global land surface model with the representation of human impacts. Water
Resour Res 51:78–96. https://doi.org/10.1002/2014wr015602

Post E et al (2019) The polar regions in a 2°C warmer world. Sci Adv 5:eaaw9883. https://doi.org/10.1126
/sciadv.aaw9883

Pulliainen J et al (2020) Patterns and trends of northern hemisphere snow mass from 1980 to 2018. Nature 581:
294–298. https://doi.org/10.1038/s41586-020-2258-0

Schaphoff S, Heyder U, Ostberg S, Gerten D, Heinke J, Lucht W (2013) Contribution of permafrost soils to the
global carbon budget. Environ Res Lett 8:014026. https://doi.org/10.1088/1748-9326/8/1/014026

Sitch S et al (2003) Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ
dynamic global vegetation model. Glob Chang Biol 9:161–185. https://doi.org/10.1046/j.1365-
2486.2003.00569.x

Slater AG, Bohn TJ, McCreight JL, Serreze MC, Lettenmaier DP (2007) A multimodel simulation of pan-Arctic
hydrology. J Geophys Res Biogeosci 112:G04S45. https://doi.org/10.1029/2006JG000303

Stacke T, Hagemann S (2012) Development and evaluation of a global dynamical wetlands extent scheme.
Hydrol Earth Syst Sci 16:2915–2933. https://doi.org/10.5194/hess-16-2915-2012

Tang Q, Oki T, Kanae S, Hu H (2007) The influence of precipitation variability and partial irrigation within grid
cells on a hydrological simulation. J Hydrometeorol 8:499–512. https://doi.org/10.1175/jhm589.1

Traore AK et al (2014) Evaluation of the ORCHIDEE ecosystem model over Africa against 25 years of satellite-
based water and carbon measurements. J Geophys Res Biogeosci 119:1554–1575. https://doi.org/10.1002
/2014JG002638

Wada Y, Wisser D, Bierkens MFP (2014) Global modeling of withdrawal, allocation and consumptive use of
surface water and groundwater resources. Earth Syst Dynam 5:15–40. https://doi.org/10.5194/esd-5-15-2014

Walvoord MA, Kurylyk BL (2016) Hydrologic impacts of thawing permafrost—a review. Vadose Zone J 15:1–
20. https://doi.org/10.2136/vzj2016.01.0010

Walvoord MA, Striegl RG (2007) Increased groundwater to stream discharge from permafrost thawing in the
Yukon River basin: potential impacts on lateral export of carbon and nitrogen. Geophys Res Lett 34:L12402.
https://doi.org/10.1029/2007GL030216

Wang T et al (2013) Evaluation of an improved intermediate complexity snow scheme in the ORCHIDEE land
surface model. J Geophys Res Atmos 118:6064–6079. https://doi.org/10.1002/jgrd.50395

Zaherpour J et al (2018) Worldwide evaluation of mean and extreme runoff from six global-scale hydrological
models that account for human impacts. Environ Res Lett 13:065015. https://doi.org/10.1088/1748-9326
/aac547

Zemp M et al (2019) Global glacier mass changes and their contributions to sea-level rise from 1961 to 2016.
Nature 568:382–386. https://doi.org/10.1038/s41586-019-1071-0

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Affiliations

Anne Gädeke1 & Valentina Krysanova1 & Aashutosh Aryal1 & Jinfeng Chang2,3,4 &Manolis
Grillakis5,6 & Naota Hanasaki7 & Aristeidis Koutroulis5 & Yadu Pokhrel8 & Yusuke
Satoh3,7

& Sibyll Schaphoff1 & Hannes Müller Schmied9,10
& Tobias Stacke11

& Qiuhong
Tang12 & Yoshihide Wada3 & Kirsten Thonicke1

1 Potsdam Institute for Climate Impact Research, Member of the Leibniz Association, Telegrafenberg,
14412 Potsdam, Germany

2 Laboratoire des Sciences du Climat et de l’Environnement, LSCE/IPSL, CEA–CNRS–UVSQ, Université
Paris-Saclay, 91191 Gif-sur-Yvette, France

3 International Institute for Applied Systems Analysis (IIASA), Schlossplatz 1, A-2361 Laxenburg, Austria
4 College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China

Climatic Change (2020) 163:1329–13511350

https://doi.org/10.2151/jmsj1965.77.1B_235
https://doi.org/10.2151/jmsj1965.77.1B_235
https://doi.org/10.1002/2014wr015602
https://doi.org/10.1126/sciadv.aaw9883
https://doi.org/10.1126/sciadv.aaw9883
https://doi.org/10.1038/s41586-020-2258-0
https://doi.org/10.1088/1748-9326/8/1/014026
https://doi.org/10.1046/j.1365-2486.2003.00569.x
https://doi.org/10.1046/j.1365-2486.2003.00569.x
https://doi.org/10.1029/2006JG000303
https://doi.org/10.5194/hess-16-2915-2012
https://doi.org/10.1175/jhm589.1
https://doi.org/10.1002/2014JG002638
https://doi.org/10.1002/2014JG002638
https://doi.org/10.5194/esd-5-15-2014
https://doi.org/10.2136/vzj2016.01.0010
https://doi.org/10.1029/2007GL030216
https://doi.org/10.1002/jgrd.50395
https://doi.org/10.1088/1748-9326/aac547
https://doi.org/10.1088/1748-9326/aac547
https://doi.org/10.1038/s41586-019-1071-0


5 School of Environmental Engineering, Technical University of Crete, 73100 Chania, Greece
6 Lab of Geophysical-Remote Sensing & Archaeoenvironment, Institute for Mediterranean Studies, Foun-

dation for Research & Technology Hellas, 74100 Rethimnon, Greece
7 National Institute for Environmental Studies, Japan 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
8 Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI 48824,

USA
9 Institute of Physical Geography, Goethe-University of Frankfurt, 60438 Frankfurt am Main, Germany
10 Senckenberg Leibniz Biodiversity and Climate Research Centre (SBiK-F) Frankfurt, 60325 Frankfurt am

Main, Germany
11 Helmholtz-Zentrum Geesthacht, Institute of Coastal Research, 21502 Geesthacht, Germany
12 Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Science and

Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China

Climatic Change (2020) 163:1329–1351 1351


	Performance evaluation of global hydrological models in six large Pan-Arctic watersheds
	Abstract
	Introduction
	Methods
	Overview of study basins
	Models and data
	Hydrological indicators
	Evaluating model performance

	Results
	Mean monthly discharge and seasonal dynamics
	Extremes
	Trends mean annual discharge
	Snow water equivalent
	Boruta feature selection

	Discussion
	Conclusions and outlook
	References


