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Supplementary Notes 

Alternative Approach to Pattern Scaling  

 To obtain a scenario prediction with pattern scaling, we require a scaler value to 

multiply by the reference temperature response, here the 2xCO2_PDRMIP scenario (see 

Methods). This scaler value estimates the ratio of global mean temperature response between 

the new and reference scenario. In climate prediction and impact studies, the long-term global 

mean temperature response is typically estimated from a computationally cheap model, such 

as an energy balance model1,2, or by assuming linearity between effective radiative forcing and 

long-term temperature response3. The latter is calculated from a short GCM run with fixed sea-

surface temperatures (see Methods). This choice is based on the well-established assumption 

of linearity between radiative forcing and long-term temperature response for well-mixed 

greenhouse gases4.  

We have also investigated an alternative approach to estimate the scaler value, using 

the ratio of short-term global mean temperature response between the new and reference 

scenario. Although this is not typically done in practice, we do this to directly compare our 

proposed machine learning methods with pattern scaling when using the same predictor 

variable. Under the assumption of linearity, for a sudden step-forcing we expect the short-term 

temperature response to be directly proportional to the ratio of long-term global mean 

temperature response4, making this a valid choice for the scaler value. 

 

Predicted Response Maps 

The response maps predicted for each scenario are shown in Supplementary Fig. 1, 

where the top left plot shows the short-term GCM temperature response and all other maps 

show the predictions of long-term response:  the true GCM prediction on the bottom of the first 
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column, the machine learning methods in the second column (Ridge regression and Gaussian 

process regression respectively) and the pattern scaling methods in the third column (using 

ERF and global mean short-term response as the scaler value respectively). Note that the 

pattern scaling reference patterns are from the 2xCO2_PDRMIP scenario so this response is 

exactly predicted with both pattern scaling methods.  

There are increased regional variations in the prediction for Ridge and Gaussian process 

regression compared to the pattern scaling methods. Accounting for regional patterns in the 

short-term response leads to improved predictions in some regions in the short-lived pollutant 

perturbations, e.g. over Asia in the Gaussian process regression prediction of 10xBC_Asia, 

10xSO4_Asia and No_SO2_China. Furthermore, highly warming and cooling regional short-

term responses can cancel, giving a weak global mean radiative forcing (e.g. No_CO_Global 

and No_BC_NHML) or a weak global mean short-term temperature response (e.g. 0.005°C in 

No_BC_Global). This leads to weak pattern scaling predictions, (e.g. a global mean response 

of 0.01°C in No_BC_Global). This confirms that the spatial variability in the short-term 

response can be a valuable predictor of long-term response. 

The short-lived pollutant scenarios (BC, SO4, SO2, CO) are predicted somewhat less 

skilfully with any method compared to the long-lived pollutants, primarily due to the weaker 

forcing in the idealised short-lived pollutant perturbations that were performed with the GCM. 

Additionally, amongst short-lived pollutant scenarios, those featuring the weakest forcings are 

also less accurately predicted, as is the case for No_BC_NHML, No_BC_Global and 

No_SO2_US. 

Note that in some cases the machine learning methods incorrectly predict regional 

response patterns representative of the responses seen in the training data, such as the predicted 

cooling over Europe in the 10xBC Asia experiment. This occurrence would be less frequent 

with increased amount and variety of training data. 
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Spatial variability in response 

Supplementary Fig. 3 shows the global temperature distribution for each scenario for 

all prediction methods (General circulation model (GCM), Ridge regression prediction, 

Gaussian Process regression (GPR) prediction, Pattern Scaling (PS) using effective radiative 

forcing (ERF) and Pattern Scaling using the short-term global mean surface temperature (T)). 

For short-lived pollutant scenarios (first row), pattern scaling methods consistently under-

predict the variability in response over the globe. This is because the pattern scaling methods 

are restricted to the same distribution of temperature response, simply scaled based on the 

estimated mean response. This highlights that accurate regionally-specific predictions cannot 

be made with this approach.  

For larger forcing scenarios (third row), all methods perform similarly well in terms of 

the distribution of temperature response. These are mostly long-lived greenhouse gas forcings, 

with a much more homogeneous response pattern. We suggest that for rapid predictions of the 

response due to greenhouse gas forcings, a pattern scaling approach is sufficient. However, for 

predicting response to short-lived forcings, we expect increased regional structure in the 

response and therefore one of the machine learning methods would be more appropriate. 

 

 Accuracy of Alternative Pattern Scaling Approach 

Supplementary Fig. 4 shows the same prediction errors as Fig. 3 in the main text, with 

the additional results from the alternative pattern scaling approach that uses the global mean 

short-term temperature response as the scaler, labelled P(T). This method often performs better 

than the ERF approach. There are many possible reasons for this but the use of short-term 

temperature response rather than radiative forcing addresses, to a degree, the well-known issue 

regarding different pollutant types having different climate efficacies, i.e. different ratios 

between radiative forcing and temperature response1,5,6.  
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In fact, Supplementary Fig. 4 shows that this approach to pattern scaling can outperform 

the machine learning methods in terms of regionally averaged response in some regions (e.g. 

Northern Africa, North America) and is comparable in several other regions. This indicates the 

short-term global mean response alone is a relatively effective predictor of the long-term 

response, even before accounting for regional anomalies in the short-term.  

However, such a method is still strongly restricted in the pattern of response and cannot 

predict regional effects that are captured in the machine learning methods, as highlighted in 

Supplementary Figs. 1 and 2. Furthermore, pattern scaling does not present the opportunity to 

improve the performance with an increased dataset. Due to our relatively small dataset, we 

expect to see machine learning prediction errors improve with additional training data (Fig. 4) 

compared against the fixed median error from pattern scaling. This pattern scaling method is 

therefore ideal in the situation when there is limited training data but with increased datasets, 

we expect to obtain increasingly higher performance from using machine learning methods. 

 There are other possible choices to estimate the global mean temperature response, such 

as using an energy balance model1,2. However, due to the definition of pattern scaling, the 

spatial variability in response will always be tied to the magnitude of response, as highlighted 

in Supplementary Fig. 3. 

 

Scenario prediction accuracy 

The large spread in absolute prediction errors for all methods in Fig. 3 is specific to 

certain scenarios and regions. Firstly, some regions have a large magnitude of response in some 

scenarios, which leads to larger prediction error. Supplementary Fig. 5a shows the relationship 

between the mean response in a region and the associated prediction error for each method. 

The lines showing a relative error of 10%, 20%, 50%, 100% and 200% are also shown. Regions 

and scenarios with large magnitudes of response, greater than around 2°C tend to be predicted 
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with lower relative errors, falling below the 20% prediction error. For scenarios with weak 

magnitudes of response, we do not necessarily see small errors, with some of these prediction 

errors falling in the region where the relative error is greater than 200%.  

 Supplementary Fig. 5b shows the relative error for all scenarios over all regions 

compared to the global mean short-term response magnitude. The larger relative prediction 

errors tend to come from predictions of scenarios with weaker short-term responses, which will 

have lower signal-to-noise ratios. This is motivation for a training dataset with more strongly 

forced scenarios with greater signal-to-noise ratios in the short-term response. 

 

Early indicators using Regression coefficients 

There are a large number of regression coefficients; specifically, for each of the 27,840 

outputs, there are 27,840 regression coefficients as described in Methods. However, most of 

these coefficients are close to zero and have little influence on the output7. For the long-term 

response regression at a single grid-cell, the coefficients of larger magnitudes highlight the 

regions in the short-term response that are the best predictors of this grid-cell response. 

Supplementary Fig. 6a and b shows the magnitude of the coefficients on a map for a selected 

example output grid cell over East Asia and Europe respectively, highlighted by the black star.  

Following equation (3), it is the value of coefficient multiplied by the short-term 

temperature response (i.e. 𝛽𝑗𝑥𝑗 for each grid-cell 𝑗) that contributes to the long-term response. 

Since 𝑥𝑗 can take larger or smaller values depending on the region, we also show the results of 

the coefficient maps when 𝑥𝑗 is scaled to be have zero mean and unit variance for all input grid-

cells and find similar results (Supplementary Fig. 6d, e).  

In Supplementary Fig. 6a, the dominant coefficients appear in regions close to the 

predicted grid cell, indicating a strong relationship between the short- and long-term responses 
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in the localized region over East Asia. In contrast, some regions draw more predictive power 

from remote regions. For example, Supplementary Fig. 6b shows coefficients for a prediction 

over Europe are strongly influenced by the short-term responses predominantly in sea ice 

regions over the Arctic. This feature is consistent amongst grid-cell predictions in the Europe 

region. As the short-term response in this Arctic region is highly variable (Supplementary Fig. 

8c) and strongly responding (due to Arctic amplification, e.g. Supplementary Fig. 1a), this 

could contribute to the relatively poor prediction over Europe. This confirms a limitation of 

this approach, where predictions can be highly dependent on noise in the training data. 

There are spatially similar features in the regression coefficient maps that appear regardless 

of prediction region, such as the larger coefficients over South Asia, Northern Africa and 

generally over continental regions. This is further highlighted when an average is taken across 

all 27,840 outputs to find the global mean regression coefficient map shown in Supplementary 

Fig. 6c and when we do the same for scaled input values in Supplementary Fig. 6f. Here we 

see familiar patterns associated with warming, such as increased magnitudes in the mid-latitude 

bands around the jet stream and at high latitudes8–10. Some of this can be partially explained as 

regions that typically respond more strongly which means signals indicating the sign and 

magnitude of the response can be picked up earlier. For example,  ice and snow regions (e.g. 

Arctic) and high-altitude regions (e.g. Himalayas) are highlighted, both of which are known to 

warm more rapidly due to ice/snow albedo feedback11 and faster upper tropospheric 

warming12,13, respectively. However, when we account for the magnitude of typical response 

by scaling the input variables to the same magnitude everywhere in Supplementary Fig 6f, we 

see some patterns remain, suggesting they are robust early indicators  of long-term response in 

the GCM. In particular, the mid-latitude jet stream regions are dominant, as well as the high 

latitude Arctic sea-ice regions. 
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Data constraints 

As discussed in the main text, there are constraints due to the training data available 

that contributes to the poorer performance for data-driven methods in predictions over 

Europe. In particular, we suggest that this is due to:  

a) Large variance in long-term responses over Europe across the training data 

(Supplementary Fig. 8a). This means prediction data is more likely to be further 

from any known training data points to constrain it. This is particularly problematic 

for Gaussian process regression since it relies on correlations between training and 

test data points. 

b) Large internal variability in the long-term response over Europe and surrounding 

high latitude areas (Supplementary Fig. 8b). This makes this region inherently 

harder to predict with statistical or physical models, due to the weak signal-to-noise 

ratio relative to other regions. 

c) Large internal variability in the short-term response over Europe and surrounding 

high latitude areas (Supplementary Fig. 8c). A model with strong dependence on 

the short-term response over Europe is therefore dependent on noisy, highly 

variable inputs. 

 

Dimension Reduction  

One of the key challenges is the high-dimensional nature of gridded data that is output 

from GCMs. We have explored statistical and physical approaches to dimension reduction on 

both the short-term and long-term temperature response. For the former, we use principal 

component analysis (PCA). We calculate these by collapsing the spatial data for each 

simulation into a single vector and performing a Singular Value Decomposition on this to 
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obtain the principal components. Since the number of components is limited by the number of 

simulations available, we use all components here (20)7.  

We also make predictions on key regions, informed by physical knowledge of coherent 

climate characteristics rather than statistical relationships. We use the regions shown in Fig. 3, 

along with additional regions over the oceans (divided into North Atlantic, South Atlantic, 

North Pacific, South Pacific, Indian Ocean, Southern Ocean and the Antarctic) to cover the full 

grid.   

Supplementary Fig. 10 shows the absolute prediction errors in each region using these 

dimension reduction methods on the inputs (the short-term response), on the outputs (the long-

term response) and on both the inputs and outputs.  By using dimension reduction on the short-

term responses, the problem becomes better constrained. However, we do not find 

improvements in the predictions with either approaches.  

 

Alternative predictor variables 

There are a range of short-term predictor variables that could be chosen as inputs to the 

regression for predicting the long-term temperature response. Supplementary Fig. 9 shows the 

prediction errors when using various predictor variables in the regression, where errors are 

calculated from the absolute error over the regions shown in Fig. 3. These predictor variables 

are surface air temperature, air temperature at 500 hPa, geopotential height at 500 hPa, effective 

radiative forcing (ERF; calculated as the difference between outgoing and incoming radiation 

in the response of a GCM with fixed surface temperatures14) and sea level air pressure. Both 

sea level pressure and ERF produce large absolute errors suggesting these are not suitable 

predictors for long-term surface temperature response patterns. However, air temperature and 

geopotential height at 500 hPa offer predictions to a similar degree of accuracy as the surface 

temperature response. This suggests there is similar information encoded in these variables and 
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their patterns. Still, surface air temperature appears to be the predictor variable with 

consistently lower prediction errors and is most interpretable for predicting the long-term 

surface temperature response. 

 

Short-term response period 

 We define the short-term response to be the first 10 years of the GCM response, to 

allow the GCM some time to respond to the forcings and to take an average over sufficient 

years to remove natural variability15. However, we find that using shorter time periods already 

show promise. Supplementary Fig. 11 shows the absolute prediction errors in °C when the 

short-term response is defined as the first 5 years of the GCM response. The prediction errors 

for Ridge regression and Gaussian process regression are increased compared to Fig. 3, but in 

most regions are competitive when compared against both pattern scaling methods, but 

particularly the ERF approach. As before, it is expected that an increased training dataset will 

further reduce prediction error. This would make a strong enhancement to the speed of 

prediction of new unseen scenarios, as fewer years of the GCM are required. 
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Supplementary Tables 
 

Supplementary Table 1: List of available simulations and their sources8,16–23. Note that for 

all long-lived pollutants (CO2, CH4, CFC-12) perturbations are global and for short-lived 

pollutants (SO4, SO2, BC, CO) are a mix of both global and regional perturbations, specified 

in the table. 

Source Short name Description 

PDRMIP 17–19 (100 

years of simulation) 

 

2xCO2_PDRMIP Global doubling of CO2 concentration 

(PDRMIP) 

3xCH4 Global tripling of methane concentration 

10xCFC-12 10x increase in chloroflorocarbon-12 globally 

+2%_Solar_Constant 2% increase in solar forcing 

5xSO4_Global 5x increase in sulfate aerosol concentration 

globally 

10xBC_Global 10x increase in black carbon concentration 

globally 

10xSO4_Europe 10x increase in sulfate aerosol concentration 

over Europe 

10xSO4_Asia 10x increase in sulfate aerosol concentration 

over Asia 

10xBC_Asia 10x increase in black carbon concentration over 

Asia 

SO4_pre-industrial Pre-industrial sulfate levels 

ECLIPSE20–22 (80 

years of simulation) 

2xCO2_ECLIPSE Global doubling of CO2 concentration 

(ECLIPSE)  

20%_CH4 20% reduction in methane emissions globally 

No_BC_Global 100% reduction in black carbon emissions 

globally 

No_SO2_Global 100% reduction in sulfur dioxide emissions 

globally 

No_CO_Global 100% reduction in carbon monoxide emissions 

globally 

Kasoar et al. 

(2018)8,16,23 (200 

years of simulation; 

used first 100) 

 

 

No_SO2_NHML 100% reduction in sulfur dioxide emissions 

over the northern hemisphere mid-latitudes  

No_SO2_China 100% reduction in sulfur dioxide emissions 

over China 

No_SO2_East_Asia 100% reduction in sulfur dioxide emissions 

over East Asia 

No_SO2_Europe 100% reduction in sulfur dioxide emissions 

over Europe 

No_SO2_US 100% reduction in sulfur dioxide emissions 

over the US 

No_BC_NHML 100% reduction in black carbon emissions over 

the northern hemisphere mid-latitudes 
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Supplementary Figures 

(for multi-page figures note that the caption is placed below the last subfigure) 
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Supplementary Fig. 1: Predicted surface temperature response patterns for all scenarios in °C. First column: 

GCM responses in short-term (top) and long-term (bottom); Second column: the predicted long-term response using 

machine learning methods Ridge regression (top) and Gaussian Process Regression (bottom); Third column: the 

predicted long-term response using Pattern Scaling methods based on effective radiative forcing (ERF; top) and 

short-term global mean surface-temperature (T; bottom). Scenarios are described in Supplementary Table 1. Note 

the different colour bar scales for different scenarios. 
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Supplementary Fig. 2: Absolute error maps for all methods, a mean, b median over all predicted scenarios 

 

a 

b 
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Supplementary Fig. 3: Spatial variability of long-term surface temperature response in °C for all prediction 

methods and for all scenarios. The distribution of predicted surface temperature responses constructed from all 

spatially weighted grid-points is shown along the vertical axis for each prediction method. From left to right the 

plots show the prediction from the general circulation model (GCM), Ridge regression prediction, Gaussian Process 

regression (GPR) prediction and Pattern Scaling (PS) using effective radiative forcing (ERF) and using the short-
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term global mean surface temperature (T). The central vertical boxes indicate the interquartile range shown on a 

standard box plot, the horizontal line shows the median and the black point shows the mean. Note the different 

vertical scales for each row.
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Supplementary Fig. 4: Absolute errors in °C for all scenarios in each selected region 

highlighted in Fig. 3 for long-term climate response prediction using four methods: 

R=Ridge regression, G=Gaussian Process regression, P(E)=pattern scaling using ERF as the 

scaler value P(T)=pattern scaling using global mean short-term temperature response as the 

scaler value.  
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Supplementary Fig. 5: Absolute and relative prediction errors °C, a Absolute prediction 

error in °C compared against response magnitude for all predicted scenarios over key regions 

in Fig. 3. The faded points show regional predictions for each scenario with the bold points 

a 

b 
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showing the average absolute prediction error for one scenario across all regions. The lines for 

relative errors of 10%, 20%, 50%, 100% and 200% are also shown. b Relative prediction errors 

as a percentage against short-term global mean response. The faded points show the regional 

prediction errors and the bold points show the average relative prediction error for each 

scenario across all regions. R=Ridge regression, G=Gaussian Process regression, P(E)=Pattern 

scaling using ERF as the scaler value P(T)=Pattern scaling using global mean short-term 

temperature response as the scaler value.
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a 

b 

c 
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Supplementary Fig. 6: Ridge regression coefficients for a single selected grid-cell 

d 

e 

f 
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regression at the point indicated by the star a over East Asia, b over Europe c the global 

mean Ridge regression coefficients calculated by taking a spatially weighted average over all 

output grid-cells and displayed as a percentage. d e f the same as a b c  but calculated with 

inputs normalized independently for each predictor to remove any dependence on magnitude 

of response. 
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Supplementary Fig. 7: Boxplots showing the distribution of absolute prediction errors 

across all scenario predictions trained on an increasing number of simulations. For a fixed 

number of training data points, the process of training and predicting is repeated several times 

over different combinations of training data to obtain multiple prediction errors for each 

scenario. Boxes show the interquartile range, whiskers show the extrema, lines show the 

medians and black diamonds show the mean values (also plotted in Fig. 4). Note the different 

scale for the Arctic and Europe.  
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Supplementary Fig. 8: Maps of variability in data, a Simulation variability calculated as the 

standard deviation in long-term surface temperature response across all available data, b 

Internal variability in long-term temperature response calculated as the standard deviation at 

each grid point across the long-term response time series in the control run from Kasoar et al. 

a 

b 

c 
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(2018) simulations, c Internal variability in short-term temperature response calculated as the 

standard deviation at each grid point across the short-term response time series in the control 

run from the Kasoar et al. (2018) simulations.   
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Supplementary Fig. 9: Absolute errors in °C for the key regions highlighted in Fig. 3 for 

Gaussian process regression where different approaches to dimension reduction are 

used. The first column shows no dimension reduction (the same as Fig. 3), the next three 

columns use principal component analysis (PCA), on the inputs, the outputs and both inputs 

and outputs respectively and the last two columns use regional dimension reduction on the 

inputs, the outputs and both inputs and outputs respectively.  
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Supplementary Fig. 10: Absolute errors in °C for Gaussian process regression where 

different predictor variables are used as inputs for all key regions highlighted in Fig. 3: 

ST=Surface Temperature, AT500=Air Temperature at 500hPa, GPH500=Geopotential Height 

at 500hPa, ERF=Effective Radiative Forcing, SLP=Sea Level Pressure. Note that when using 

SLP as a predictor for the response for the Arctic, two points exceed the axis maximum (5.0 

and 5.6 °C). 
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Supplementary Fig. 11: Same as Supplementary Fig. 4 but using only 5 years as short-

term response in the training and prediction process. Absolute error in °C for all scenarios 

in each selected region, for long-term climate response prediction using four methods: 

R=Ridge regression, G= Gaussian Process regression, P(E)=Pattern scaling using ERF as the 

scaler value P(T)=Pattern scaling using global mean short-term temperature response as the 

scaler value.  
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