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The κ‑statistics approach 
to epidemiology
Giorgio Kaniadakis1*, Mauro M. Baldi2, Thomas S. Deisboeck3, Giulia Grisolia4, 
Dionissios T. Hristopulos5, Antonio M. Scarfone6, Amelia Sparavigna1, Tatsuaki Wada7 & 
Umberto Lucia4

A great variety of complex physical, natural and artificial systems are governed by statistical 
distributions, which often follow a standard exponential function in the bulk, while their tail obeys 
the Pareto power law. The recently introduced κ-statistics framework predicts distribution functions 
with this feature. A growing number of applications in different fields of investigation are beginning 
to prove the relevance and effectiveness of κ-statistics in fitting empirical data. In this paper, we use κ
-statistics to formulate a statistical approach for epidemiological analysis. We validate the theoretical 
results by fitting the derived κ-Weibull distributions with data from the plague pandemic of 1417 in 
Florence as well as data from the COVID-19 pandemic in China over the entire cycle that concludes in 
April 16, 2020. As further validation of the proposed approach we present a more systematic analysis 
of COVID-19 data from countries such as Germany, Italy, Spain and United Kingdom, obtaining very 
good agreement between theoretical predictions and empirical observations. For these countries we 
also study the entire first cycle of the pandemic which extends until the end of July 2020. The fact that 
both the data of the Florence plague and those of the Covid-19 pandemic are successfully described by 
the same theoretical model, even though the two events are caused by different diseases and they are 
separated by more than 600 years, is evidence that the κ-Weibull model has universal features.

Many phenomena in a large variety of disciplines present apparent regularities described by well-known statisti-
cal distributions1. Some examples include the populations of cities, the frequencies of words in a text, the energy 
distribution in solids, the behaviour of financial markets, the statistical distribution of the kinetic energy in a gas, 
etc.2,3. Moreover, statistical approaches provide powerful tools for medical and epidemiological applications, since 
they allow predicting the behaviour of certain diseases4,5. Thus, such approaches are very useful for informing 
health policy and decision making, particularly regarding control and mitigation measures in response to the 
societal impacts of epidemics and pandemics.

While an epidemic is defined as “the occurrence in a community or region of cases of an illness clearly in 
excess of normal expectancy”6,7, a pandemic is defined as “an epidemic occurring over a very wide area, crossing 
international boundaries, and usually affecting a large number of people”6,7. Pandemics are large-scale outbreaks 
of infectious diseases which cause a growth in mortality over a wide geographic area.

In addition to the obvious health consequences, both epidemics and pandemics also cause economic stress 
and social hardship. It has been emphasized that the probability of occurrence of pandemics is increasing due 
to the high inter-connectedness of the modern world, which is facilitated by the ease of travel and a continu-
ous increase of urbanisation6,8,9. Consequently, the international community is increasing its efforts toward the 
mitigation of the impacts of pandemics6. Some recent examples of pandemics are the 2003 SARS (Severe Acute 
Respiratory Syndrome), the 2014 West Africa Ebola epidemic, and the present COVID-19 (COronaVIrus Dis-
ease) pandemic caused by the SARS-CoV-2 virus.
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In this paper we formulate a statistical thermodynamics approach to epidemiology, which demonstrates the 
utility of κ-statistics for the analysis of epidemics and pandemics. First, we must consider certain facts which 
form the biomedical base of these phenomena. Below we summarise the principle causes of pandemics6:

•	 Pathogens such as influenza viruses that are capable of efficient transmission among humans, with a high 
potential to cause global and severe pandemics. They are characterized by a relatively long and asymptomatic 
infectious period, during which it is not possible to detect the infected persons and their movements.

•	 Pathogens such as Nipah virus which are capable of generating a moderate global threat. They are transmitted 
efficiently as a result of mutations and adaptation.

•	 Pathogens such as Ebola that are capable of causing local epidemics, with a non-negligible risk of evolving 
into a global pandemic.

Recently, pandemics have also found their origin in zoonotic transmissions of pathogens from animals to 
humans10.

The risk of pandemic spread is conditioned by the following factors11:

•	 pathogen factors such as genetic adaptation and mode of transmission;
•	 human factors such as population density, susceptibility to infection, travel, migration, poverty, malnutrition, 

and caloric deficits;
•	 factors related to public policy such as public health surveillance and measurements.

In order to better predict and mitigate the societal impact, the ability to quantify the morbidity and mortality 
associated with pandemics is very important. Consequently, statistical approaches based on available data that 
can lead to accurate models for predicting the behaviour of future pandemics are very useful. Historical data from 
past pandemics play a fundamental role, because they enable comparisons with theoretical models and can also 
be used to assess the performance of model-based forecasts. Historical records are often sparse and incomplete. 
Nonetheless, in all fields of research, scientists and engineers always search for “optimal” statistical distributions 
that can reliably predict the behaviour of different natural, engineered, and social systems12–14.

Since the beginning of the Covid-19 epidemic, various works in the scientific literature have presented statis-
tical analyses of the epidemiological data. Most of these works focus on the number of infections15–21 while the 
fatality curves have only been analyzed in a few studies. The analysis in the paper16 focuses on the cumulative 
data (cumulative distribution function) of Covid-19, using the Richardson growth model which depends on 
three free parameters. The data related to Covid-19 deaths per day (i.e., the empirical probability density func-
tion) are analyzed in the paper15 by adopting a four-parameter model which is based on non-extensive statistics. 
However, to our knowledge the development of a statistical model that admits explicit expressions for both the 
mortality cumulative distribution and the respective probability density function remains an open problem.

A second question concerns the mathematical features of suitable statistical models and in particular the 
behavior of the tails of the distribution functions. All of the existing models depend on three to five free param-
eters. However, a good fit of the data with a statistical model that depends on various free parameters is not 
sufficient proof of model validity. Two different model classes are mainly used to describe the Covid-19 data. 
The statistical distributions in the first class include the Weibull, Richardson, and SIR (Susceptible-Infected-
Recovered) model functions. These depend on three to five free parameters and exhibit exponential or stretched 
exponential tails. The second class includes statistical distributions with two, three, or four free parameters that 
feature power-law tails. Models in this class include the Pareto, Zipf, Burr, Student and Tsallis distributions.

The present work aims to address the two problems that are described above, i.e., analytical tractability and 
tail behavior. We propose a statistical model for the analysis of the fatality curves that originated in physics but 
has also been successfully used in other fields such as econophysics, finance, and seismology. This model depends 
only on three free parameters but nonetheless provides excellent fits to the empirical curves obtained from the 
data. In addition, the model admits simple, closed-form analytic expressions for all the main statistical functions 
such as the probability density function, the cumulative distribution function, the survival function, the quantile 
function, the hazard function and the cumulative hazard function. Hence, this model overcomes the problem of 
analytical tractability and allows straightforward analysis of both daily and cumulative empirical data.

Regarding the second problem (tail behavior), the proposed κ-Weibull model is closely related to both classes 
mentioned above, but it does not strictly belong in either class. Indeed, the model’s distribution function is a 
one-parameter continuous deformation of the Weibull distribution, which belongs in the first model class. 
However, the tail of the deformed distribution follows Pareto’s power law as the distributions in the second class. 
Two of the three model parameters, namely α and β , correspond to the standard Weibull parameters. The third 
parameter, κ , is related to deformation of the tail of the distribution into a power law; κ is directly linked to the 
Pareto exponent n of the survival function through the simple relationship κ = α/n.

In order to test the validity of the κ-Weibull model we analyze various epidemics with different character-
istics. First, we analyze the mortality data from the Florence plague that occurred in 141722–24. These historical 
mortality data are of particular interest, because they were carefully recorded and allow testing the model with 
an epidemic process that evolved over several months. A second test of the κ-Weibull model involves the diffu-
sion of Covid-19 in China25,26. The mortality curve derived from the Chinese Covid-19 data becomes flat after 
April 15, 2020. On the other hand, on April 17, 2020 China reported 1290 additional deaths which occurred 
during the entire cycle of the epidemic. However, no details were given regarding the temporal distribution of 
the fatalities. Hence, these data cannot be incorporated in our analysis. After April 15, 2020 only two cases of 
death have been reported to date (both in May 2020). However, these concerned infected individuals who had 
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returned to China from abroad. For this reason, it is considered that the mortality cycle from Covid-19 in China 
concluded on April 16. The Chinese data analyzed herein are the “partial data” until April 16, 2020 which exclude 
the additional 1290 deaths that were a posteriori reported on April 17.

To further test the κ-Weibull model, we present a systematic analysis of COVID-19 data from other countries 
such as Germany, Italy, Spain and United Kingdom25,26. The analyzed data from these countries spans the time 
window from the beginning of the epidemic in February 2020 until the beginning of August 2020. This temporal 
range completely captures the entire cycle of the first wave of the epidemic. Florence’s data are completely different 
from those of Covid-19 in terms of the epidemiological cause, the duration, the fatality rate and the historical 
time. The fact that the κ-Weibull model can successfully capture the behavior of data so different as those of 
Florence and Covid-19, as well as data from other fields of science (economics, finance, seismology) indicates 
that it possesses universality features which make it suitable for a wide range of applications.

Methods
The fundamental difficulty faced by mathematical approaches to epidemiology is that all forecasts strongly 
depend on the model employed, the parameter estimates, as well as the choices of the initial conditions. There 
are both deterministic and stochastic epidemiological models5,27. The κ-deformed model that we propose herein 
has its roots in statistical mechanics and is therefore stochastic by construction.

The κ‑deformed exponential function.  Let us consider the function n(t) to represent the number den-
sity of deaths at any given time t ∈ D , where D is the temporal domain of interest. In most cases of interest 
D = [t0,∞) , where t0 ≥ 0 . The probability of death within a short time interval δt around t is given by f (t)δt , 
where f(t) is the probability density function (pdf). Then, the respective number density is given by n(t) = Nf (t) , 
where N is the total number of deaths.

In statistical mechanics a general rate equation for f(t) is the first-order linear ordinary differential equation 
(ODE)

where the function r(t) is the decay rate. The solution of the above ODE is the exponential

with the standard normalisation condition which determines the constant c:

The normalization also enforces a constraint on the number density, i.e., N =
∫∞
t0

n(t)dt.
In the context of the exponential solution, the following three simple cases must be considered.

•	 The Exponential Model: this model is fundamental in every branch of science; indeed, it allows us to describe 
a great variety of phenomena, from elasticity to electricity, from nuclear decay to thermal transient response, 
to name a few. The exponential model can be obtained for constant decay rate, i.e., 

 which leads to the following exponential pdf: 

 with D = (0, +∞).
•	 Power-law Model (Pareto distribution): Zipf28–31, in his studies on the size distribution of cities, incomes and 

word frequencies, pointed out the notion of regularity in the distribution of sizes. In a great variety of these 
cases the distributions follow a power law with an exponent close to −1 , also known as Zipf ’s Law32–38. Such 
power law distributions have been considered with increasing interest in the description of regular distribu-
tions. Distributions with exponents different from −1 are known as Pareto’s law3,36,39. In general, distributions 
with power-law tails are known as heavy-tailed, fat-tailed or subexponential distributions, in juxtaposition to 
distributions whose tails decay exponentially2.

	   Perline introduced the following classification of power laws40:

–	 A power law is strong if the distribution is a power law over the entire domain of definition;
–	 A power law is weak if only part of the distribution is fitted by a power law;
–	 A power law is false if only a highly truncated part of the distribution is approximated by a power law 

(in the scientific literature there are many examples of false power laws41).

	    Pareto obtained his Type I model, named the Pareto law by fitting the available data in his time on increas-
ing social inequalities. He concluded that only economic growth can increase the income of the poor and 
decrease inequality42. Today, we know that his conclusions were partially right and partially wrong, because 

(1)
df (t)

dt
= −r(t) f (t),

(2)f (t) = c exp

(

−
∫ t

t0

r(t′) dt′
)

,

(3)
∫ t

t0

f (t′) dt′ = 1 .

(4)r(t) = β ,

(5)f (t) = β exp(−β t) ,
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economic growth and equity are strictly related to the social relations of production, to the technological 
level and institutional structures of the economy, and to the composition, accumulation and distribution of 
human capital, as well as the quality and accessibility of the educational and financial structures in place43. 
Moreover, since Pareto disseminated his approach in 189744, the application of heavy-tailed distributions in 
economics has been developed45.

	   The Pareto pdf f(t) is obtained from Eq. (1) by inserting the following time-dependent decay rate function 

 which leads to a power-law solution for the pdf, i.e., 

 in the domain D = (t0, +∞) , with t0 > 0:
•	 κ-Exponential Model: This model, which is based on a fundamental approach derived from relativity46, has 

proved useful in many applications. Experimental evidence suggests that probability density functions should 
resemble the exponential function for t → 0 . However, for t → 0 the Pareto pdf diverges. On the other hand, 
for high values of t many experimental results show a Pareto-like pdf with power law tails instead of expo-
nential decay. Consequently, for t → 0 it follows that r(t) ∼ β while for t → +∞ it follows r(t) ∼ p/t . So, 
the actual decay rate function r(t) should smoothly interpolate between these two regimes; a good proposal 
for r(t) has been introduced in the context of special relativity, where the function r(t) is given in terms of the 
Lorentz factor. We recall the expression of the Lorentz factor γκ(q) =

√

1+ κ2 q2 ; this expression involves 
the dimensionless momentum q where the parameter κ is the reciprocal of the dimensionless light speed c, 
i.e. κ ∝ 1/c . After posing r(t) = β/γκ(β t) or more explicitly 

 it follows that for t → 0 the decay rate r(t) approaches the exponential regime, i.e. r(t) ∼ β . On the other 
hand, for t → +∞ it follows that r(t) approaches the decay rate of the Pareto model, i.e. r(t) ∼ 1/κ t.

	   The solution of the rate equation in this case yields the following pdf 

 where the κ-deformed exponential function is given by 

 with 0 < κ < 1 . It is important to note that in the κ → 0 limit and in the t → 0 limit the function expκ (t) 
approaches the ordinary exponential exp(t) , i.e. 

 On the other hand the function expκ (−t) for t → +∞ presents a power-law tail, i.e. 

 Furthermore, the κ-exponential satisfies the following identity 

 in analogy with the standard, non-deformed, exponential.
The κ-exponential represents a very powerful tool which can be used to formulate a generalized statistical theory 
capable of treating systems described by distribution functions that exhibit power-law tails46–48. The mechanism 
generating the κ-exponential function is based on first principles from special relativity, and therefore the new 
function appears very promising for physical applications. Generalized statistical mechanics, based on the κ
-exponential, preserves the main features of ordinary Boltzmann-Gibbs statistical mechanics which is based 
on the ordinary exponential through the Boltzmann factor. For this reason, it has attracted the interest of 
many researchers over the last two decades who have studied its foundations and mathematical aspects49–58, the 
underlying thermodynamics59,60, and specific applications of the theory to various fields. A non-exhaustive list 
of applications includes those in quantum statistics61–64, in quantum entanglement65,66, in plasma physics67–73, 
in nuclear fission74–77, in astrophysics78–81, in quantum gravity82–87, in geomechanics88,89, in genomics90,91, in 
complex networks92–94, in economy95–99, in finance100–103, as well as in reliability analysis and seismology104–106.

The κ‑deformed statistical model.  Given a pdf f(t) which represents the death rate, the cumulative dis-
tribution function (cdf) F(t) : D → [0, 1] represents the probability of death between the initial time and the 

(6)r(t) =
p

t
, p > 1 ,

(7)f (t) =
p− 1

t0

(

t0

t

)p

, p > 1 ,

(8)r(t) =
β

√

1+ κ2 β2 t2
,

(9)f (t) = (1− κ2) β expκ (−β t) ,

(10)expκ (t) =
(

√

1+ κ2 t2 + κ t
)1/κ

,

(11)expκ (t) ∼
κ→0

exp(t) ,

(12)expκ (t) ∼
t→0

exp(t).

(13)expκ (−t) ∼
t→+∞

(2κt)−1/κ .

(14)expκ (t) expκ (−t) = 1 ,
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current time t. F(t), which is also known as the lifetime distribution, is given by means of the following integral 
F(t) =

∫ t
t0
f (t′)dt′.

Conversely, the pdf f(t) is given by the derivative of F(t). In the following, we will assume without loss of 
generality that t0 = 0 . The complement of F(t), i.e., S(t) = 1− F(t) is known as the survival function, and it 
represents the probability of survival at time t.

In most models of population dynamics the following time-dependent monomial is introduced

The expression (15) for T contains the real-valued parameters α > 0 and β > 0 . We can think of T(t) as the 
time measured by a nonlinear clock107. T(t) is regularly used in the definition of the survival function S(t) which 
becomes an implicit function of time based on the dependence of S on T = T(t) , i.e. S = S(T).

The survival function of the Weibull model is then defined according to

and it represents a stretched exponential function in time.
Popular models for empirical data that exhibit power-law tails include the Log-Logistic model108, with sur-

vival function given by

the Burr type XII or Singh-Maddala model109, with survival function given by

and the Dagum model110, with survival function given by

Various other postulates can be used for the analytical expression of the survival function. However, for physi-
cal applications it is extremely important to identify physical mechanisms or first principles which lead to such 
expressions for the survival function.

The κ-deformed statistical model can be viewed as a one-parameter generalization of the Weibull model, 
obtained by replacing the ordinary exponential exp(t) in the definition (16) of the survival function by the κ
-deformed exponential expκ (t) . Then, using the Weibull dependence for T given by Eq. (15), we obtain the fol-
lowing expression for the κ-deformed survival function Sκ = Sκ (t)

or more explicitly

The κ-deformed survival function Sκ (t) reduces to the ordinary survival function of the Weibull model in the 
κ → 0 limit. The rate equation obeyed by Sκ is expressed in terms of T as a linear first-order ODE

with initial condition Sκ (0) = 1 . The ODE (22) represents an interpolation between the rate equation of the 
exponential model and that of the Pareto model; moreover, the functional form in Eq. (22) is dictated by the 
first principles of special relativity.

The most important feature of the function Sκ (t) is that it continuously interpolates between a power-law 
tail for large t ≫ 1 , i.e.,

and exponential dependence

for t ≪ 1.
The lifetime distribution function Fκ = Fκ (t) is given by the expression

while the pdf fκ = fκ (t) , defined fκ = dFκ/dt , is given by

(15)T(t) = β tα .

(16)S = exp(−T) ,

(17)S =
1

1+ T
,

(18)S =
1

(1+ T)p
, p > 0 ,

(19)S = 1−
Tp

(1+ T)p
, p > 0 .

(20)Sκ = expκ (−T) ,

(21)Sκ (t) = expκ (−β tα), α > 0,β > 0 .

(22)
dSκ

dT
= −

1
√
1+ κ2 T2

Sκ ,

(23)Sκ (t) ∼ (2 κ β)−1/κ t−α/κ ,

(24)Sκ (t) ∼ exp(−β tα) ,

(25)Fκ (t) = 1− expκ (−β tα) ,

(26)fκ (t) =
α β tα−1

√

1+ κ2 β2 t2α
expκ (−β tα) .
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The rate equation for the survival function assumes the form of the first-order linear ODE

where Sκ (0) = 1 , and �κ = �κ (t) is the hazard function (hazard rate) defined through

Hence, the hazard function assumes the expression

The cumulative hazard function �κ = �κ(t) is defined by means of the integral

and is linked with Sκ through

After taking into account that the κ-exponential function (10) can also be expressed in the form

the cumulative hazard function �κ = �κ(t) assumes the following explicit expression

and in the κ → 0 limit reduces to the standard Weibull cumulative hazard function �(t) = β tα . It is important 
to note that in the standard Weibull model the cumulative hazard function coincides with the function T(t).

Finally, the quantile function Qκ is defined as the inverse of the survival function follows Sκ = Sκ (t) . By 
expressing the quantile function in the form t = Qκ (Sκ ) , one easily obtains

where the κ-logarithm lnκ (u) is the inverse function of expκ (u) , i.e. lnκ (expκ (u)) = expκ (lnκ (u)) = u and is 
given by

After observing that the function lnκ (u) approaches the function ln(u) in the κ → 0 limit, it follows that in the 
same limit Qκ (u) reduces to the quantile function of the standard Weibull model.

Regarding the meaning of the parameters α , β and κ , we observe that the first two are the same as in the 
Weibull model and therefore have the same meaning. In particular, α is the shape parameter while β is linked 
to the scale parameter τ through the relationship β = τ−1/α . The deformation parameter κ , on the other hand, 
is linked to the Pareto exponent n of the survival function through the simple relationship n = α/κ and to the 
Pareto exponent p of the pdf via p = 1+ α/κ ; the former follows from the asymptotic dependence of the survival 
function given by Eq. (23), while the latter from the fact that f (t) = −dS(t)/dt.

The mode of the probability density function, i.e. the time tM where the pdf attains its maximum value can be 
easily obtained analytically as a function of the free parameters α , β and κ . More explicitly, after setting the first 
time derivative of the probability density function equal to zero we obtain the following biquadratic equation

with TM = β tM
α.

This equation can be solved to obtain TM as a function of α and κ . It can also be solved to determine κ as a 
function of α and TM , i.e.,

This last expression is very useful in the analysis of empirical data.
Finally, the κ-deformed statistical model presented above, which represents a one-parameter continuous 

deformation of the Weibull model, has been successfully applied in econophysics for the analysis of personal 
income distribution95 and in seismology104. We believe that the applicability of the model to such complex 
dynamical systems which are quite different from each other suggests that the model involves universal features.

(27)
dSκ (t)

dt
= −�κ (t) Sκ (t) ,

(28)fκ (t) = �κ (t) Sκ (t).

(29)�κ (t) =
α β tα−1

√

1+ κ2 β2 t2α
.

(30)�κ(t) =
∫ t

0
�κ (u) du ,

(31)�κ(t) = − ln Sκ (t) .

(32)expκ (x) = exp

(

1

κ
(arcsinh(κ x)

)

,

(33)�κ(t) =
1

κ
arcsinh (κ β tα) ,

(34)Qκ (u) =
(

−
1

β
lnκ (u)

)1/α

,

(35)lnκ (u) =
uκ − u−κ

2 κ
.

(36)T4
M κ4 −

[

α2 T4
M + 2 (α − 1)T2

M

]

κ2 + (α − 1)2 − α2 T2
M = 0 ,

(37)κ =
1

TM

√

α − 1+
1

2
α2 T2

M − α TM

√

α +
1

4
α2 T2

M .
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Results
The purpose of this section is the validation of the κ-Weibull statistical model which is described in detail in the 
“Methods” section. The validation is performed by applying the model to various pandemic data. An intriguing 
first application regards the analysis of the number of deaths during the plague pandemic that ravaged the city 
of Florence in the XV century.

The Bubonic Plague or Black Death arrived in Europe in 1348 and in Italy in the spring of the same year22,23. 
It should be noted that the plague inspired Boccaccio to write his famous nouvelle Decameron only a couple of 
years after the end of the pandemic. Its consequence was the death of around 25-50% of Europe’s population 
by 1351. The pandemic is believed to have started in China and came to Europe via the trading routes though 
Asia and the Black Sea. In the year 1417, Florence had a population of 60,000 inhabitants and the Italian city’s 
Grain Office maintained a series of Books of Dead which recorded the number of human deaths caused by the 
bubonic plague. Florentines contracted the disease through contact with infected black rats and the fleas that 
they carried23. From a thermodynamic point of view, deaths which are due to the spread of an epidemic can be 
considered as an irreversible process inside an open system. Herein we show how the evolution of the plague 
in relation to the time and the number of deceased people can be explained using the κ-deformed statistics. In 
Table 1 the statistical data of the 1417 plague in Florence are summarised as a function of time24.

We consider the death occurrence probability as the ratio between the monthly number of deaths (given by 
the second column of the Table 1) and the cumulative number of deaths. We assume that the latter is equal to the 
total number of deaths that were recorded between May and December increased by an additional 100 deaths; 
we hypothesize that the latter occurred in the months following December, raising the total number of deaths 
to N = 12000.

Figure 1 shows the quantile function Qκ (left) and the cumulative distribution function Fκ (right), versus the 
time t for the Florence epidemic. The theoretical quantile function of the κ-deformed model, defined in Eq. (34), 
is just the bisectrix of the plane represented by the continuous straight line. The continuous sigmoid curve repre-
sents the theoretical cumulative distribution function as given by Eq. (25). The empirical data related to the two 
functions (marked on the plots by dots) are deduced from the data in Table 1. The optimal fit parameters have 
the following values: κ = 0.612 , α = 3.460 and β = 0.012 . It is clear that the model describes the empirical data 
very well. Deviations of the empirical quantiles from the theoretical curves are likely due to detection errors since 
as it is evidenced in Table 1, the number of monthly deaths is approximated with an error margin of the order 
of 100 units. This statistical error is responsible for the dispersion of empirical quantiles around the bisectrix. 
Hence, the optimal parameter estimate κ = 0.612 clearly shows the difference (supported by the data) between 
the optimal κ-deformed model and the standard Weibull model corresponding to value κ = 0.

Table 1.   Temporal distribution of plague victims and population in Florence during the year 141724.

Month Dead people Population of Florence

May 600 59400

June 700 58700

July 2700 56000

August 5000 51000

September 2000 49000

October 600 48400

November 200 48200

December 100 48100

Figure 1.   Theoretical (continuous curve) and empirical (dots) plots of the quantile function (left) and the 
cumulative distribution function (right) versus time for the 1417 Florence plague epidemic. The theoretical 
curves are based on Eqs. (34) and (25), respectively.



8

Vol:.(1234567890)

Scientific Reports |        (2020) 10:19949  | https://doi.org/10.1038/s41598-020-76673-3

www.nature.com/scientificreports/

As second application we analyze the data of Covid-19 mortality in China during the winter and spring of 
202025,26. The Chinese data on SARS-CoV-2 are important, as they represent the first statistical record for the 
entire evolutionary cycle of the COVID-19 pandemic in the world. It is important to note that the first and only 
cycle of Covid-19 ended in China with a total of 3,342 deaths around April 16, 2020. After April 17, 2020 while 
the Covid-19 cycle in China had already ended, the authorities reported 1290 additional deaths that occurred 
outside the hospitals during the entire cycle without disclosing their temporal distribution. For this reason the 
present analysis is applied to the 3,342 deaths which were reported by April 16, 2020.

Figure 2 reports the probability density function fκ Eq. (26), the cumulative distribution function Fκ Eq. (25), 
the quantile function Qκ Eq. (34), the survival function Sκ Eq. (21), the hazard function �κ Eq. (29) and the cumu-
lative hazard function �κ Eq. (33) versus the time t (measured in days) for the COVID-19 pandemic in China. 
The best fit parameters have the values: κ = 0.720 , α = 3.827 and β = 7.6 · 10−7 . The plots in this figure confirm 
the goodness of fit of the κ-deformed model. In particular, there is no systematic deviation of the empirical 
quantiles from the theoretical linear trend while the statistical nature of data leads to slight dispersion around the 
bisectrix. Furthermore the survival function Sκ versus time t is shown on a log-log plot in order to better explore 
differences between the empirical data and the theoretical predictions, especially in the tail of the distribution. 
The almost linear decay of the tail in this log-log plot is remarkable, showing clear signs that the Chinese Covid-
19 data follows the Pareto power law in the distribution tail. The dispersion around the theoretical curves of the 
empirical data for both fκ and �κ reflects statistical fluctuations that are independent on the adopted theoretical 
model. These fluctuations are averaged out and become less evident in the cumulative functions Fκ , Sκ , �κ and Qκ.

Figure 2.   Theoretical (continuous curve) and empirical (dots) plots of the probability density function (top 
left), cumulative distribution function (top right), quantile function (middle left), survival function (middle 
right), hazard function (bottom left) and cumulative hazard function (bottom right) versus time for the Covid-
19 mortality data related to China 2020 epidemic. The theoretical curves are based on Eqs. (26), (25), (34), (21), 
(29) and (33) respectively.
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In the following we focus on the pandemic in Europe; in particular, we analyze the mortality Covid-19 data 
of Germany, Italy, Spain and United Kingdom, during the spring of 202025,26. In these European countries the 
virus began to spread later than in China while the mortality exceeded the Chinese rate by more than 10 times.

Figure 3 shows the probability density function fκ (t) versus time related to Covid-19 mortality daily data for 
Germany, Italy, Spain and United Kingdom. The theoretical curve is given by Eq. (26). The parameter α for the 
four countries assumes the values 3.83, 3.90, 4.00 and 4.15 respectively. The parameter κ for the four countries 
assumes the values 1.68, 1.67, 1.70 and 2.185 respectively. Finally the parameter β for the four countries assumes 
the values 4.7 · 10−7 , 2.2 · 10−7 , 4.00 · 10−7 and 6.7 · 10−8 respectively. The comparison of the above optimal 
parameters for the four countries is performed below.

Figure 4 shows the cumulative distribution function Fκ (t) versus time related to Covid-19 mortality data 
for Germany, Italy, Spain and United Kingdom. The theoretical curve is given by Eq. (25). The optimal values 
of the parameters α , κ and β for the four countries are the same as in Fig. 3. It is worth noting that the statistical 
fluctuations of the daily data which are evident in Fig. 3 are absorbed in the representation of the cumulative 
data shown in Fig. 4.

Figure 5 displays the survival function Sκ (t) versus time on a log-log plot related to Covid-19 mortality data 
for Germany, Italy, Spain and United Kingdom. The continuous curve is the theoretical function defined in 
Eq. (21). The optimal values of the parameter α , κ and β for the four countries are the same as in Fig. 3. In this 
log-log plot, a remarkable agreement between the theoretical predictions and the empirical data clearly emerges. 
Furthermore, the almost linear decay of the tail of the survival function shown in this plot indicates a Pareto 
power-law tail for all the countries studied here, in agreement with the κ-deformed model.

For the purpose of comparing the Covid-19 mortality data from China, Germany, Italy, Spain and United 
Kingdom we focus on the probability density function. First, we discuss the growth in mortality (i.e., the left 
tail) which is due to the initial phase of the virus spread. This is followed by a discussion of the final phase of the 
studied cycle, during which the decrease in the virus spread is described by the right tail of the curve.

The asymptotic behaviour of fκ (t) for t → 0 (left tail) is given by fκ (t) ∝ tα where τ = β−1/α is the Weibull 
scale parameter. The shape parameter for China, Germany, Italy, Spain and United Kingdom has the values 3.83, 
3.83, 3.90, 4.00 and 4.15 respectively. These estimates of α are very close in value, with an average value equal 
to 3.94± 0.2 . It can therefore be concluded that for the five countries analyzed, the initial growing phase of the 
Covid-19 mortality presents quite similar dynamic behavior.

The asymptotic behaviour of fκ (t) for t → ∞ (right tail) is given by fκ (t) ∝ t−p where p = 1+ α/κ is the 
pdf ’s Pareto parameter (tail exponent). This parameter which governs the behavior of the right tail of the dis-
tribution takes the values 6.31, 3.28, 3.33, 3.35 and 2.83 for China, Germany, Italy, Spain and United Kingdom 
respectively. It can be observed that the dynamics of the final phase of the first cycle of the epidemic is essentially 
the same for the three continental European countries in the study. For these countries the Pareto parameter is 
approximately equal to 3.32± 0.04 . For the United Kingdom, on the other hand, the Pareto parameter is lower 

Figure 3.   Theoretical (continuous curve) and empirical (dots) plots of the probability density function versus 
time for the Covid-19 mortality data related to Germany (top left), Italy (top right), Spain (bottom left) and 
United Kingdom (bottom right) 2020 pandemic. The theoretical curves are based on Eq. (26).
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Figure 4.   Theoretical (continuous curve) and empirical (dots) plots of the cumulative distribution function 
versus time for the Covid-19 mortality data related to Germany (top left), Italy (top right), Spain (bottom left) 
and United Kingdom (bottom right) 2020 pandemic. The theoretical curves are based on Eq. (25).

Figure 5.   Theoretical (continuous curve) and empirical (dots) plots of the survival function versus time for the 
Covid-19 mortality data related to Germany (top left), Italy (top right), Spain (bottom left) and United Kingdom 
(bottom right) 2020 pandemic. The theoretical curves are based on Eq. (21).
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(equal to 2.83) indicating that the tail is thicker, i.e., that mortality is more persistent over time. On the contrary, 
the Paretto index is higher (equal to 6.31) for the Chinese data which indicates a faster decay of the mortal-
ity curve than the respective European curves. The differences in the Pareto parameters between the different 
countries are likely to reflect differences in the response strategies, in the compliance of the citizens to restrictive 
measures that can curb the spread of the virus, as well as in the readiness and quality of the health care system 
including emergency treatment units.

Discussion
Both the plague data from the pandemic of 1417 in Florence as well as the Covid-19 data of the 2020 pandemic 
from China, Germany, Italy, Spain and United Kingdom have been analyzed by means of the proposed κ-Weibull 
model, to obtain information about the spreading dynamics of these deadly disease outbreaks.

It is worth recalling that the Florence plague data are approximate and relatively sparse, and thus they cannot 
be used to reliably test a statistical model. However, the Florence data are of great historical importance as they 
represent the first quantitative and regularly collected record of a pandemic. The first two figures in this paper 
undoubtedly show that at least the cumulative Florence data are compatible with the proposed κ-deformed 
statistical model.

On the other hand, the Chinese data set on SARS-CoV-2 are important, as they represent the first statistical 
record for the entire evolutionary cycle of the COVID-19 pandemic in the world. The Chinese mortality data 
have been successfully used to perform a first validation test of the κ-deformed model.

It is important to note that the first and only (so far) cycle of Covid-19 ended in China with a total of 3,342 
deaths. This is a relatively low mortality compared to other countries where the number of deaths was decidedly 
higher and mortality figures rose to a few dozen times that of China. A second noteworthy fact is that on April 
17, 2020 while the Covid-19 cycle in China had already ended, the Chinese authorities reported 1290 additional 
deaths that occurred outside hospitals during the entire cycle without providing any information regarding their 
temporal distribution.

It is therefore evident that the data pertaining to the 3,342 deaths caused by Covid-19 in China are partial. 
For this reason, the validation of the κ-deformed model with complete data from other countries affected by 
Covid-19 is extremely important. Thus, we focused on Europe and analyzed the Covid-19 data of Italy and Spain, 
where the virus began to spread towards the beginning of March 2020, as well as the data from Germany and 
the United Kingdom, where the virus began to spread two weeks later. These data from the European countries 
and China differ with respect to the total number of deaths, which in the case of Germany is about 3 times the 
number of Chinese deaths while for Italy, Spain and United Kingdom the mortality is about 10 times that of 
China. Very good agreement has been obtained by fitting the κ-Weibull model to the data from these European 
countries, thereby providing further and more reliable validation of the theoretical model.

The κ-deformed, three-parameter model admits simple analytical forms for all the main statistical functions 
(probability density function, cumulative distribution function, survival function, quantile function, hazard 
function, cumulative hazard function) and can therefore be easily applied to Covid-19 data. Furthermore this 
model preserves all the universality properties already present in the original Weibull model. The results obtained 
by applying the κ-deformed model to mortality data from Covid-19 pertaining to the first cycle of the pandemic 
in China, Germany, Italy, Spain and United Kingdom, suggest that the κ-deformed model could also be used 
to model infection data from the first cycle of the Covid-19 pandemic as well as for the analysis of the second 
pandemic cycle which has already started in August 2020.
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