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Featured Application: The generic applicability of the entropy-empowered rank product (RP)
calculation score supports the utilization of this non-parametric, threshold-free methodology in
different kinds of data. This is not restricted only in meta-analysis of different data sets, but could
serve as a key methodology for data integration of different sources of information, in the quest
for highly automated, systemic big data biological interpretation.

Abstract: Background: Here, we propose a threshold-free selection method for the identification of
differentially expressed features based on robust, non-parametric statistics, ensuring independence
from the statistical distribution properties and broad applicability. Such methods could adapt
to different initial data distributions, contrary to statistical techniques, based on fixed thresholds.
This work aims to propose a methodology, which automates and standardizes the statistical selection,
through the utilization of established measures like that of entropy, already used in information
retrieval from large biomedical datasets, thus departing from classical fixed-threshold based methods,
relying in arbitrary p-value and fold change values as selection criteria, whose efficacy also depends on
degree of conformity to parametric distributions. Methods: Our work extends the rank product (RP)
methodology with a neutral selection method of high information-extraction capacity. We introduce
the calculation of the RP entropy of the distribution, to isolate the features of interest by their
contribution to its information content. Goal is a methodology of threshold-free identification of the
differentially expressed features, which are highly informative about the phenomenon under study.
Conclusions: Applying the proposed method on microarray (transcriptomic and DNA methylation)
and RNAseq count data of varying sizes and noise presence, we observe robust convergence for
the different parameterizations to stable cutoff points. Functional analysis through BioInfoMiner
and EnrichR was used to evaluate the information potency of the resulting feature lists. Overall,
the derived functional terms provide a systemic description highly compatible with the results of
traditional statistical hypothesis testing techniques. The methodology behaves consistently across
different data types. The feature lists are compact and rich in information, indicating phenotypic
aspects specific to the tissue and biological phenomenon investigated. Selection by information content
measures efficiently addresses problems, emerging from arbitrary thresh-holding, thus facilitating
the full automation of the analysis.
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1. Introduction

Data analysis of high-throughput technologies (microarrays, next generation sequencing)
commonly predicates on the adoption of arbitrary p-value and fold change thresholds to define
the reliability and relevance of a set of features, in order to partition the initial distribution into two sets.
The first set S is further investigated for its phenotypic relevance, whereas the other is exempted from
further analysis, considered to be the baseline distribution with noise, either biological (coexisting,
causally unrelated processes) or technical [1]. This approach as a selection philosophy is currently
being debated. Specifically, regarding p-value thresh-holding, critics raise the issues of incomplete
information, misrepresentation, misinterpretation and bias [2,3], whereas for fold change thresh-holding,
the issues cited include the adoption of arbitrary thresholds [4], consequently the potential of strong
bias [5], with no theoretical underpinning for the threshold values. Ideally, selection thresholds should
take into account the form of data distributions, the presence of confounders, and the complexity of
phenomenon under investigation. Most of the approaches used also hinge on the conformity of data
distribution to a priori distributions, requiring extensive data preparation and careful application
of differential behavior identification methods to ensure it [6]. Prioritizing the identification of the
information content and using it to extract and identify meaningful results, rather than trying to assess
it as a post-analysis process was the main motivation for our approach.

1.1. From Rank Products to Entropic Ranks

The rank product method partially addresses these issues through a frequentist approach,
by measuring the consistency of behavior across the sample groups, using the fold change (FC)
criterion. When testing for up-regulation, the Rank Product RPup

g of a gene g) is calculated as:

RPup
g =

k∏
i=1

(
rup

i,g

Ni
) (1)

where Ni is the total number of features and rup
i,g (for single-colour transcriptomics) is the rank of gene g

in the decreasing-FC-ordered list of genes in the ith pair of control vs. case samples (i.e., rup = 1 for a gene
consistently more overexpressed than any other in all cases vs. all control samples). Similarly calculated
is the RPdown

g , over the increasing-FC-ordered lists. The percentage of false positive (pfp) value for each
rank product (RP) score is estimated through a permutation-based procedure outlined in the initial
publication of the method [4].

The initial Rank Product implementation in Bioinformatics, whilst addressing a number of
the aforementioned issues, retains arbitrariness by trimming the final list either by a calculated
pfp/p-value thresh-holding or by directly choosing the number of genes. Moreover, it tends to
behave over-optimistically with increasing data dimensionality, as shown in recent works [7] (see also
“Supplementary Material 1—Method”).

Our work aims to measure the information content of the RP distribution, implement a data-driven,
non-parametric partitioning, provide a workflow for high-throughput data analysis and unbiased
information extraction (Figure 1), and generalize the approach to various data types. We introduce
the calculation of entropy over a transformation of the RP distribution, followed by a clustering
procedure in order to identify the most consistent cutoff point successfully separating information-rich
features from noise-dominated ones, without human intervention. The methodology operates upon the
non-parametric RP distribution, relegating pfp and the p-value (which may be calculated empirically or
parametrically) to quality indicators of the analysis instead of decision criteria. Consequently, it allows
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for improvement of the pfp calculation methods and adoption of new approaches [7,8], ensuring result
reproducibility and comparability as long as the RP calculation process itself remains unchanged.

1 
 

 
Figure 1. Entropic ranks workflow. Entropic ranks builds upon the rank products methodology and
assesses its results in terms of the progression of Shannon entropy over a sliding window.

1.2. Entropy in Biostatistics

The utilization of entropy in bioinformatics has been tentative, for the most part, leading to specific
implementations instead of producing consistent classes of methodologies, governed by standard
practices. Nevertheless, we identify three main categories of such implementations:

Firstly, the usage of entropy as a measure for the optimization of classification techniques.
In most implementations, this is achieved prior to the classification, through dimensionality reduction
approaches driven by the evaluation of entropy in order to reduce feature redundancy [9–11]. However,
there is a recently introduced approach [12], in which entropy is used to directly weight and rank
fractional Fourier transform coefficients, upon which further clustering approach is based.

Secondly, the evaluation of entropy as a main component of the decision process.
Various approaches include patient stratification [13], inferring regulatory networks using transfer
entropy [14] and identification of periodical biological processes in time series data [15]. However,
there exists an approach more closely based on Shannon entropy and conceptually closer to our work
than others, which attempts to identify differential expression in RNA count data [16].

Lastly, a unique implementation utilizes entropy evaluation upon the variability of genome
regions [17] in order to evaluate their information content in contrast to uniformity, a contrast we also
use during the partitioning of the rank product distribution in the proposed methodology.

2. Methods

2.1. Rank Product Requirements

Rank product methodology is applied upon four basic premises [4] considered valid in
high-throughput signal distributions:
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• S << N (N: the full set of features);
• Independence of measurements between replicate arrays;
• The intensity of each feature over the range of samples is largely homoscedastic;
• The majority of non-zero fold changes between the sample groups are independent of each other.

2.2. The Segmentation Problem

Our working hypothesis is a direct corollary of the ordered RP distribution being an ordered set;
namely, that the first n elements of the RP distribution correspond to features of high information
content in respect to the phenomenon under scrutiny, and subsequent ones are to be excluded from
further analysis. Our partitioning process is functionally identical to a threshold-driven usage of
rank products, using optimal pfp thresholds, chosen individually for each experiment (see Table 1
and “Supplementary material 1—Method”). The generalized approach we aim to create should
automatically adapt to each experiment, consistently separating signal from noise while eschewing the
bias introduced by thresh-holding approaches.

Table 1. Number of differentially expressed features identified in the initial study compared with
entropic rank results. The last column notes the maximum p-value calculated through rank products
for these features. The number of features shows no correlation with sample size and the number
identified in the initial research.

GEO Accession Type Original
Publication S Entropic Ranks S RP Maximum

p-Value

GSE12288
Differentially

expressed 160
18 * <0.0001
86 ** <0.0001

GSE69486
Upregulated 127 135 0.0027

Downregulated 330 89 0.0083
GSE60767 [winter

2009]
Upregulated 0 29 <0.0001

Downregulated 0 53 <0.0001
GSE60767 [summer

2009]
Upregulated 0 33 <0.0001

Downregulated 0 26 <0.0001
GSE60767 [winter

2010]
Upregulated 0 34 <0.0001

Downregulated 0 41 <0.0001

GSE42861
Upregulated NA 24 <0.0001

Downregulated NA 98 <0.0001

SRP127667
Upregulated NA 32 <0.0001

Downregulated NA 37 <0.0001

*: upregulated, **: downregulated.

2.3. Partitioning the RP Distribution

The RP score distribution (i.e., for upregulated features) is an ordered set, beginning with a steep
ascent, converging to a linear distribution for features following the null hypothesis and finally diverging
again for the last few features (i.e., downregulated) (see “Supplementary material 1—Method”). The set
of features most significant in describing the phenomenon investigated consists of the first n elements
of that distribution, necessarily encompassing at least part of the steep ascent of RP scores. Conversely,
the linear part of the distribution corresponds to stochastically behaving features, which should be
excluded. Moreover, the RP score distribution carries information regarding each feature’s consistency
of behavior across replicates and is rigidly determined by the structure and form of the original data,
deflecting external computational bias (in contrast to pfp calculation). Consequently, n will be robustly
determined by partitioning the RP distribution.
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2.4. Differences of Consecutive RP Scores and Entropy

Given that the RP distribution is ordered, we can calculate the distribution of the differences
between consecutive terms (RPup

i+1 − RPup
i , i ∈ [1, N − 1] when testing for upregulation), shown in

Figure 2B, which is more intuitive to understand than the initial RP distribution and proves more
apt for the partitioning process described below. The initial ascent, at least partly overlapping with
any significant differentially behaving features, is represented by a descending distribution of RP
differences. Features following the null hypothesis (undifferentiated behavior) are expected to achieve
ranks at random, resulting in a set of mostly undifferentiated RP scores [18]. An extreme case of this
behavior was observed on applying rank sums (which has a sparser set of values) on the GSE12288 data
set (see “Supplementary Material 1—Method”, Part 3), where lengthy areas of genes adhering to the
null hypothesis resulted in equal rank sum scores. In less extreme cases, undifferentiated rank product
(or sum) scores result in non-zero differences between these consecutive, “null-hypothesis-abiding”
terms of the ordered set, stochastically oscillating around values near zero.
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Figure 2. (A) Characteristic entropy distribution for GSE60767 data, winter 2009, upregulated.
Parameters used were: window size 220, 20 bins for discretization and advancement of the sliding
window gene-by-gene. The initial, low-entropy set is clearly defined (initial blue-colored area).
The low-entropy area near the end is attributed to a single difference value oscillation, lowering the
entropy of the 220 windows containing it. (B) The corresponding distribution of consecutive RP score
differences. The initial, signal-dominated area always overlaps with genes selected by the original rank
products. The latter, noise-dominated area represents features to be excluded.
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Given that RP scores reward systematic behavior of features across samples (and thus convey
information on it), these two distinct patterns can be considered to represent the difference between
systematic behavior, attributable to differentiated processes (evident in the steep descent of RP
differences), and noise-dominated behavior following the null rank product hypothesis (evident in
stochastically oscillating RP differences). On this basis, we aim to utilize the calculation of entropy to
partition this distribution into an initial, low-entropy and information-rich area and a high-entropy,
information-poor subsequent area. The former will be considered to be the set S, containing n features.
The latter will be considered the set of features with a low signal-to-noise ratio, excluded from
further analysis.

2.5. Partitioning the Entropy Distribution

Using a sliding window over the distribution of differences, we calculate the entropy of values
within each instance of the sliding window in nats, using the Shannon entropy:

H = −

p∑
k=1

θk ln(θk) (2)

as modified by a Dirichlet-multinomial regularization resulting in:

ĤBayes = −

p∑
k=1

θ̂
Bayes
k ln

(
θ̂

Bayes
k

)
(3)

where θ̂Bayes
k =

yk+ak
n+A , A =

∑p
k=1 ak and ak = 1, as per the Bayes–Laplace uniform prior, reflecting our

prior knowledge for the bin counts used during discretization [19], with each bin having an equal
a priori chance of accommodating a result. Figure 2A shows the resulting entropy score distribution
for the GSE60767 gene expression data set. The initial, low-entropy area represents S. Subsequently,
entropy rises sharply and oscillates around higher values, due to (small in absolute value, as seen in
Figure 2B) stochastic oscillations of the RP differences. This pattern holds across different parameters
of the sliding window and bin count, as well as across different data types, with consistency analogous
to that of the RP distribution’s overall shape.

We note that there may be numerous low-entropy areas over the entropy distribution. The RP
distribution is an ordered set, with ordering corresponding to decreasingly statistically significant and
consistent differential behavior under the fold change criterion. Thus, our hypothesis is that the very
first low-entropy area corresponds to features with consistently differentiated behavior between the
two populations, hence more strongly tied to the phenomenon under study compared to subsequent
areas. Contrarily, the high-entropy areas (including any local minima of entropy, resulting from
random oscillations in low-signal areas as seen in the right part of the distribution) correspond to
features associated with the rank products null hypothesis (achieving ranks with a uniform probability
distribution [18]), thus not informative on the phenomenon. Consequently, we now need to consistently
identify the first low-entropy area in an unsupervised manner. This segmentation should be achieved
while eschewing the need for user-defined arbitrary thresholds, thus avoiding the re-introduction of
bias inherent in thresh-holding approaches. The finely detailed structure of the entropy distribution
prohibits stable convergence of change-point algorithms, which would be the first approach to
partitioning ordered distributions. They exhibit high variation of performance, wholly reliant on the
specifics of the sliding window and bin count. This class of algorithms also fails to converge reliably
regarding the RP distribution. For all the above, see also “Supplementary Material 1—Method”.

2.6. K-means Clustering to Calculate n

To reliably overcome the partitioning problem of the RP distribution, we evaluated the performance
of a selection of clustering methodologies, aiming to categorize the entropy values into a high-entropy
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and a low-entropy cluster. Maximum consistency against outliers and incidental complexity was
exhibited by the K-means algorithm. Direct corollary of our hypotheses so far is that if the low-entropy
cluster starts at the beginning of the RP score list (which is an ordered set), then there is at least
a single, highly informative, differentially behaving feature. If so, n will be defined as the number
of features preceding the first element of the high-entropy cluster (Figure 2A, leftmost blue area).
The rationale is that the first high-entropy value will correspond to the first sliding window containing
no information-rich (in terms of behavioral pattern relevant to the comparison performed) features.
Due to the ordering of the RP distribution, all features following a rejection are to be rejected as well.
This procedure proves highly resistant to perturbations concerning the specifics of the sliding window
and the number of bins used in entropy calculation. Reiterating this procedure over a range of window
sizes and bin counts yields a small set of suggested values for n, one of which exhibits prominent
consistency. This will mark the cutoff defining the set of highly informative features, forgoing the need
for external thresholds (to pfp or even entropy values), thereby decoupling the selection process from
calculated statistical scores, relegating their use to post-selection result assessment.

2.7. Implementation

The development, actualization, testing, and verification through analyses were all performed in
R v3.4.1, using open source R packages from Bioconductor in RStudio and usegalaxy.eu, in order to
ensure transparency and reproducibility. Full citation of the packages is offered in “Supplementary
Material 1—Method”.

In the interests of reproducibility and platform independence afforded by a dockerized
implementation, the dockerfile for the tool is hosted at: https://github.com/Hector-Xavier/Entropic_
Ranks_docker.

3. Results

3.1. Evaluation Criteria

A threshold-free, adaptive, generalized selection process, like the one proposed, should be
evaluated according to the following criteria: (a) specificity of the selected features in terms of
biological relevance, (b) sensitivity to weak biological signals, (c) performance on data sets of varying
noise content, and (d) its generality in terms of reliable performance across different types of experiments.
To test against these criteria, we selected and analyzed a range of published, publicly accessible data sets,
each tied to one or more of the aforementioned criteria. The chosen data sets (Table 2) and workflows
used during analysis are presented more fully in “Supplementary Material 2—Data Sets”. Biological
relevance of the results was assessed with Gene Set Enrichment Analysis [20] tools EnrichR [21,22] and
BioInfoMiner [23].

https://github.com/Hector-Xavier/Entropic_Ranks_docker
https://github.com/Hector-Xavier/Entropic_Ranks_docker
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Table 2. GEO data sets used for verification.

GEO Accession Organism Type of Samples Array Samples Cases Controls

GSE12288 H. sapiens
Total RNA from

leukocytes in
peripheral blood

Affymetrix Human
Genome U133A

Array
222 110 112

GSE69486 H. sapiens
Total RNA from

fibroblasts from skin
biopsies

Illumina
HumanHT-12 V4.0

Expression Beadchip
12 10 2

GSE60767 H. sapiens
Total RNA was
extracted from

leukocytes

Illumina
HumanHT-12 V3.0

Expression Beadchip
466 312 154

GSE42861 H. sapiens DNA from blood
leukocytes

Illumina
HumanMethylation450

BeadChip
44 20 24

SRP127667 H. sapiens
DNA from sorted
cardiac myocyte

nuclei
Illumina HiSeq 2500 13 10 3
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As an additional measure of verification, we compared its performance with the rank products
and rank sums, both in their original form [4] and their recent implementation [7], as well as with
the implementation of our entropic analysis upon the Rank Sum statistic (referred to as “entropic
sums”). Moreover, SRP127667 was also tested for differential expression using EdgeR to verify the
baseline biological relevance of results under a standard methodology since the application of rank
statistics on RNAseq count data is novel. Overall, our approach exhibited consistent behavior on real
as well as simulated data. Functional analysis of the derived feature lists showed that entropic ranks
provides increased specificity at a concise list size, supporting the argument of efficient rejection of
noise-dominated features. In short, entropic ranks lists produced highly relevant functional term lists
in all cases, whereas other methodologies (rank products, “entropic sums”, hypothesis testing, etc.)
show variable performance according to experiment setup and thresh-holding values, ranging from
comparable performance to lack of results. Discussion of the implementations and summaries of
results is found in “Supplementary Material 1—Method”. Discussion of the data sets and results of all
methods applied on them are presented in “Supplementary Material 2—Data Sets”. All files, tables and
plots created are contained in “Supplementary Material 3—Output”.

This approach was adopted due to the fact that standard methodologies of comparison, such as
list overlap, are inappropriate for two specific reasons. Firstly, they allow the assessment of
interchangeability of two methods given similar thresh-holding choices, whereas entropic ranks
were created to be a threshold-independent feature selection process. Secondly, statistical testing
methodologies evaluate the value distributions in each population, whereas our approach is driven
by patterned behavior, thus preferring genes with higher fold changes as a byproduct of its function,
instead of its main focus.

3.2. Simulated Data

In order to assess performance on simulated data with known truth values, as is standard practice,
we elected a simulated RNAseq count table data set with spiked values [24]. It has been created
using a random number generator for the express purpose of benchmarking differential expression
methodologies and consists of 10 samples, 5 “cases” and 5 “controls”. Out of the 12,500 features,
1250 known features have spiked values.

Our method highlights features in a manner different than usual statistical testing: instead of
relying on statistical value thresh-holding, it trims the resulting lists according to the identification
of pockets of organized and consistent behavior among the features investigated. Consequently,
direct comparison to approaches such as t-testing can be difficult, especially on simulated data tailored
to fit hypothesis testing. Simulated data sets created with random number generators exhibit none
of the underlying biological constraints present in real data. Moreover, the differentially expressed
features in biological systems tend to be organized in consistent networks.

These differences lead us to expect that our method, which detects patterns of expression instead of
statistical distributions, will underperform compared to hypothesis testing approaches in a simulated,
spiked value data set. Even more importantly, our method aims to assess the information content of
features’ behavior across populations. Simulated data created using random number generators by
definition exhibit highly stochastic behavior in the absence of biological constraints, which are difficult
to model. Assessment of such a data set, in terms of information content should be expected to return
few findings, if any, as there are no consistent patterns to be detected. Moreover, removal of the spiked
values should reduce the findings even further, possibly eliminating them altogether.

Indeed, entropic ranks underperformed in the identification of the spiked features as compared
to limma on the simulated data, as can be seen in “Supplemetary Data 3—Output”. Testing the
null hypothesis by removing the spiked values reduced performance even further, leading to the
identification of 23 differentially expressed features by entropic ranks compared to a single differentially
expressed feature returned by limma. However, investigation of these 23 differentially “false positives”
showed that they represented rows for which the random number engine had failed to create properly
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uniform distributions across samples. Instead, these features were highly differentially expressed
(15-fold or more) between populations, usually with a single outlying value in one of the two
populations. Both under the null hypothesis and when using the full data, entropic ranks was
more robust than rank products and “entropic sums” against false positive results. Its robustness
was comparable with rank sums, which has convergence issues with high data dimensionality (see
“Supplementary Material 1—Method”, Part 5).

This level of sensitivity to patterned behavior and robustness against false positive discoveries
should be considered features of the method. Moreover, the plots created by entropic ranks during
entropy calculation show very high entropy near the beginning of the distribution, and tend to oscillate
around lower values further on. This pattern shows an initial low-entropy cluster behaving similar to
the noise-dominated areas than we see in real data sets. Such behavior could help the experimenter
identify poorly structured data sets.

3.3. Series GSE12288

The set provides microarray gene expression data of leukocytes from 110 patients with Duke
coronary artery disease (CAD index > 23) and 112 control subjects (CADi = 0) [25]. It is provided as
a studied data set of a known pathology upon which the baseline specificity of the method can be
assessed. Moreover, we can compare our method to a mainstream analysis workflow by comparing
our results to the list of 160 genes identified in the original publication as significantly (rho > 0.2,
p < 0.0027) correlated with the CAD index.

A comparison of cardiovascular diseases associated with the gene lists identified in the original
publication and through our methodology using the Comparative Toxicogenomics Database (CTD) [26]
set analyzer is presented in Table 3. The gene lists do not overlap, with the exception of a single gene,
CDC42, which has been shown to function as an anti-hypertrophic molecular switch in the heart [27,28].
BioInfoMiner was used to map the list onto the human phenotype [29] and MGI Mammalian [30,31]
ontologies, highlighting a number of inflammatory response terms and T-cell activation processes,
associated with abnormalities of the hematopoietic system. Mapping our list onto the Reactome
ontology [32,33] through BioInfoMiner highlights a Selenocysteine synthesis process, which has been
shown to have antioxidant effects [34]. EnrichR mapped the resulting gene list onto dbGaP [35],
ranking “hypertension” as the top term by combined score. At the same time, the sampled tissue was
clearly identified through Jensen TISSUES [36], ARCHS4 TISSUES [37] and Human Gene Atlas [38]
as “blood”, “peripheral blood” and “whole blood”, respectively. When we mapped the 160-gene list
from the original publication using BioInfoMiner, it returned relevant results, especially in the human
phenotype and MGI Mammalian ontologies, but it failed to achieve both the breadth and specificity of
the results returned by the list generated using our approach (see “Supplementary Data 3—Output”,
under GSE12288 for the full results).

Table 3. GSE12288: Results of the comparison of differentially expressed genes identified by the initial
study and entropic ranks with cardiovascular diseases through CTD.

Disease Name Disease ID Disease
Categories

Corrected p-Value
for Original

Analysis

Corrected p-Value
for Entropic

Ranks

Stroke MESH:D020521
Cardiovascular
disease|nervous
system disease

0.00408 0.00504

Infarction, Middle
Cerebral Artery MESH:D020244

Cardiovascular
disease|nervous
system disease

5.88 × 10−6 0.00712

Cardiovascular
Diseases MESH:D002318 Cardiovascular

disease - 0.01264
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Table 3. Cont.

Disease Name Disease ID Disease
Categories

Corrected p-Value
for Original

Analysis

Corrected p-Value
for Entropic

Ranks

Cerebral Arterial
Diseases MESH:D002539

Cardiovascular
disease|nervous
system disease

- 0.01484

Cerebral Infarction MESH:D002544
Cardiovascular
disease|nervous
system disease

- 0.01484

Intracranial
Arterial Diseases MESH:D020765

Cardiovascular
disease|nervous
system disease

- 0.01829

Vascular Diseases MESH:D014652 Cardiovascular
disease 1.23 × 10−4 0.01950

3.4. Series GSE69486

In order to assess the specificity even when the input signals are weak due to technical or biological
(phenotype associated) reasons, we used a data set containing microarray gene expression data of
fibroblast cells from 10 samples of patients with bipolar disease and two control samples. A way
to assess specificity is the capability of the resulting differentially expressed list to identify the cell
population. Sensitivity is evaluated if functional analysis of the gene list identified ontological terms
associated with the neurological pathologies underlying bipolar condition (as was the hypothesis of
the original study).

EnrichR successfully identified the cell population as “Fibroblast” through ARCHS4.
Achilles fitness decrease [39] highlighted “GB1-central nervous system” as the most significant
term by rank-based. More phenotype-specific results were achieved through BioInfoMiner-mediated
mapping of the list onto MGI Mammalian, which is densely described. This mapping includes a distinct
branch of terms related to nervous system abnormalities. Of note is the presence of MMP3 in the highly
connected gene list produced by BioInfoMiner, as it has been shown to be tied to bipolar disease [40].
Moreover, Reactome highlighted the term for “synthesis of prostaglandins (PG) and thromboxanes
(TX)”, which have been tied to bipolar disease [41] and are used as markers in relevant pharmacological
research [42].

3.5. Series GSE60767

Chosen to assess performance in data of high noise content and to assess the sensitivity of the
proposed method, this data set contains microarray gene expression data from 312 leukocyte samples
of healthy adult males from the highly polluted industrial region of Ostrava and 154 healthy male
control samples from Prague [43]. The study aimed to investigate differential gene expression induced
by chronic exposure to elevated pollution levels. Due to the weakness of the biological signal and the
need to address a significant batch effect induced by beadchip performance, standardized t-testing
identified no statistically significant (p-value < 0.05) differentially expressed genes within each of the
three sampling seasons, even with very low long fold change (lfc) thresholds (<0.1).

Our methodology was able to identify genes with differential behavior in regards to the city of
origin in all three sampling seasons, as seen in Table 1. Mapping the resulting gene lists through
EnrichR consistently identified the “diabetes melitus, type 2” through OMIM disease and OMIM
expanded [44], a connection supported by past research [45]. Bioinfominer mapping of the gene
lists onto Gene Ontology [46,47] and MGI Mammalian ontologies highlights terms characteristic of
a response to increased levels of particulate matter and associated pollutants. There are generalized
inflammation indicators which have been tied to cardiovascular syndromes and lung cancer [48],
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as well as terms relating to the development of the nervous system, which can be attributed to the
toxic metal load of particulate matter particles [49].

3.6. Series GSE42861

This methlation microarray data set was selected in order to test the performance and specificity
of the proposed method on DNA methylation data profiles of a known pathology [50,51]. This will
also allow evaluation of the generality of the proposed method, given that DNA methylation platforms
contain many more probes, have different distribution of values (M-values) and are also greatly
influenced by blood cell population perturbations between samples. The study explores the methylation
profiles of peripheral blood leukocytes from patients with rheumatoid arthritis compared to healthy
controls. We opted to apply our methodology onto the subpopulation of the data set consisting of
samples taken from 50 to 60 years old men and women who had never been smokers, in order to
reduce potential confounders. Out of the 44 samples thus selected, 20 were of patients with rheumatoid
arthritis and 24 were control samples.

Using EnrichR, Jensen DISEASES identified rheumatoid arthritis as the most significant term
by rank based ranking. Of particular note is the presence of allograft rejection terms at the top of
the lists of both KEGG 2016 [52] and WikiPathways 2016 [53], pointing to the triggering of the same
basic mechanisms in the course of the disease. BioInfoMiner mapping of the list onto Gene Ontology,
Human Phenotype, MGI Mammalian and Reactome provides highly overlapping results. There is
an overarching inflammatory response with terms specific to T-cell activation. Gene Ontology highlights
the “telomere maintenance” (Figure 3) term, which has been an area of active study as to its implication
in autoimmune syndromes [54–56]. Furthermore, in the Human Phenotype ontology, highlighted terms
include autoimmunity and rheumatoid arthritis. Lastly, the highly connected genes identified through
BioInfoMiner for these four ontologies have a strong presence of the major histocompatibility complex
family (HLA-C, HLA-DRB1, HLA-DQB1, HLA-DQA1, HLA-DRB1), a finding in agreement with one
of the studies citing the data set [51]. Even with a reduced sample number, the proposed method
extracted a biological signal highly relevant to the phenotype and in line with the findings of the
original study for the full data set.
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3.7. Series SRP127667

In order to further test the generality of the proposed method, we applied it on RNAseq count table
data, which follow different distributions than gene expression and methylation data. The application
of rank statistics on RNAseq count data is novel within the Bioinformatics field. Nevertheless, in the
field of Astrophysics RPs have been successfully used in pipelines performing occultation [57] and
gravitational wave [58] event verification. These “discovery enumeration” phenomena are Poisson
point processes, similar to the discovery-based formation of RNAseq count tables from RNA reads.
Given that the requirements of RP hold for the count tables except for the independence of variance
(which has been shown to affect statistical threshold selection [59], which we do not perform), we extend
the verification testing of our non-parametric methodology to RNAseq data, aiming to assess the
specificity of the method, despite the biological and computational problems generated by RNAseq
data as opposed to transcriptomics. Additional analysis of our data using EdgeR verified the relevance
of entropic ranks results. We compared the gene counts obtained from RNA sequencing of cardiac
myocytes from 10 adult patients with terminal heart failure to three control samples from the BioProject
study SRP127667.

EnrichR was used to map the differentially expressed genes to Panther 2016 [60], Jensen DISEASES
and Reactome. Panther 2016 highlighted as the first term by combined ranking the Wnt signaling
pathway, which has been implicated in cardiovascular syndromes [61]. Jensen DISEASES terms ranked
first by combined score were “hypertension”, “coronary artery disease” and “cerebrovascular disease”.
Reactome highlighted as the second term by combined ranking the Ca2+ pathway. Using BioInfoMiner
to map the list onto Gene Ontology and Human Phenotype ontology showed terms related to thrombosis
abnormalities, tyrosine phosphorylation of Stat3 protein, and the regulation of body fluid levels through
the urinary system—the last of which is a known regulator mechanism of blood pressure (Figure 4).
Lastly, the highly connected genes identified through BioInfoMiner are specifically associated with
pharmaceuticals prescribed for cardiovascular conditions.Appl. Sci. 2020, 10, x FOR PEER REVIEW 14 of 18 
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4. Conclusions

We present and evaluate a methodology, which extends the rank products method to create
a generalized framework for threshold-independent selection of differentially expressed features,
according to the information content of their behavior.

The biological interpretation of the functional analysis performed on each data set supports the
capability of our method to separate information-rich data from noise, eschewing the limitations and
plights of fold change and p-value thresh-holding approaches, which are inherent in statistical testing
approaches such as t-testing. Fold change and pfp are computed, but are relegated to quality indicators
for the evaluation of the experiments and subsequent analysis instead of being used as decision criteria.

The analytic workflow we apply, exploits solely the elementary preprocessing, normalization
and signal correction bioinformatic techniques, to ensure reproducibility of results and transparency
of the comparative evaluation. No further processing steps, aiming to force values to conform to
a specific kind of distribution were used, alluding to the generalized character of the proposed method,
as well as the case of its introduction for broader data analytic scenarios.

Further comparison between the results of enrichment analysis following entropic ranks and
rank products, as well as other methodologies (detailed in “Supplementary Material 2—Data Sets”)
shows that the identification of differentially expressed features by the proposed method provides
highly specific information with respect to the experiment. Manual assessment often suggests higher
specificity of results both when compared to larger and smaller lists, as well as when lists overlap (as
in comparisons with rank products/rank sums results) and when containing different sets of features,
as a result of using different families of methodologies (e.g., hypothesis testing performed in our lab or
the results of the initial publication of a data set).

Features of Entropic Ranks

In summary, the proposed method extends the rank product methodology by incorporating
the measurement of information content as an integral part of the analysis and interpretation.
Firstly, the selection of significant genes is based on the distribution of all genes over the entire
populations, rather than evaluating each gene independently. Information-poor data, such as simulated
data sets [24] with a very low signal-to-noise ratio exhibit a starkly different entropy distribution,
without a defined, initial, low-entropy area followed by stably high entropy area with minimal
oscillations (see “Supplementary Material 2—Data Sets” and “Supplementary Material 3—Output”).
Secondly, the methodology is applicable to a broad array of selection problems and data types, as long
as they conform to basic assumptions made by the rank products methodology. Thirdly, it departs
from the adoption of arbitrary or empirical statistical thresholds, exploring the information density of
the distribution and cherry picking clusters of high information content, through rigorous entropic
analysis. Fourthly, the automation of the partition process is possible, allowing for unsupervised
and unbiased analytical processes to be applied. The fifth feature is the ability to freely adjust the
analytic granularity (by changing the sliding window step) to more refined or coarser inspection,
enabling solutions of varying computational cost and level of convergence. Lastly, another advantage
of this method is the potential for integration of data from different sources or dissection levels into the
same analysis, as long as they can be transformed to similar, ranked value distributions.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-3417/10/
20/7077/s1: “Supplementary Material 1—Method.pdf”, “Supplementary Material 2—Data Sets.pdf”,
“Supplementary Material 3—Output.7z”. The following is available at http://doi.org/10.5281/zenodo.4028882:
“Supplementary Material 3—Output.7z”.
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