

Learning from Ground Penetrating Radar
data to identify ancient buried structures

By

Merope Manataki

A thesis submitted to the School of Mineral Resources Engineering and the committee on graduate

studies Geotechnology and the Environment in partial fulfillment of the requirements for the

degree of

Doctor of Philosophy

at the

TECHNICAL UNIVERSITY OF CRETE

Chania, June 2021

iii

To my parents

Anastasia & Konstantinos,

and my grandmother

Aikaterini

“Ancora Imparo”

– Michelangelo

iv

EXAMINATION COMMITTEE

Antonios Vafidis (Supervisor)

Professor, Technical University of Crete

Apostolos Sarris

Professor, University of Cyprus

Michalis Zervakis

Professor, Technical University of Crete

Giorgos Apostolopoulos

Professor, National Technical University of Athens

Michalis Galetakis

Professor, Technical University of Crete

Panagiotis Partsinevelos

Associate Professor, Technical University of Crete

Nikos Papadopoulos

Principal Researcher, Foundation of Research and Technology Hellas

v

ABSTRACT

GPR data interpretation from archaeological prospection is a tedious and time-consuming process

that requires skills and experience. The interpretation process is prone to mistakes, even by the more

experienced users. The subsurface can create non-intuitive patterns, making the identification of the

buried targets uncertain, requiring additional information from other methods and technologies.

Archaeological remains may be bypassed or mistaken for other types of features. Further, residual

noise can easily be mistaken as structural remains when in a stripe form that is quite common when

surveying in rough terrains. Hence, a system capable of detecting archaeological remains from GPR

data could be employed as a guide to assist their interpretation, saving time and reducing mistakes.

Recent developments of Deep Learning (DL) and, in particular, Convolutional Neural Networks

(CNN) have shown impressive results for similar tasks in other scientific domains like computer

vision and medical image analysis. When it comes to GPR data, these methods and approaches have

not yet been used to the same extent. The studies dealing with the automatic detection of buried

antiquities using CNNs are very few, leaving an ample margin for investigation, and this research

contributes towards this direction.

In this study, AlexNet architecture is used to train CNN models for classifying GPR C-scans. The latter

are 2D images derived from slicing pseudo-3D volumes that can be constructed when collecting data

using survey grids. The data used have been collected from 52 archaeological sites located in Greece,

Cyprus, and Sicily using a Noggin GPR system equipped with a 250MHz antenna. Data collection was

vi Abstract

conducted under the framework of research projects of the Laboratory of Geophysical - Satellite

Remote Sensing and Archaeo-environment (GeoSat ReSeArch Lab) of the Foundation for Research

and Technology Hellas (FORTH). The collected data were processed in MATLAB to export the C-scans.

A preprocessing step is followed by applying an overlapping sliding window to crop square

subregions of selected C-scans to increase the number of images used for training. Three classes were

defined based on dominant features observed in the data: unidentified geophysical anomalies,

structures, and noise of stripe form. In total, 18375 examples were selected, 6125 per class. Two

datasets were constructed following two different splitting approaches to examine the

generalization: a random and non-random one. The CNN implementation and training were

performed in Python using the Tensorflow library and Keras API. Two optimizers were tested for

each dataset and compared: The Stochastic Gradient Descent (SGD) with momentum and Adam. Tests

to improve performance were also made by applying Batch Normalization (BN), Dropout, Image

Augmentation, and tuning the learning rate and batch size using the Keras tuner library. Two final

models were obtained, one for each dataset approach. The models were evaluated using 100

examples from two archaeological sites that were excluded from the training process.

The results showed that the model obtained from the dataset with the random split performed better

on the evaluation set, reaching a classification accuracy of 92% over 85%. However, it was observed

that the predictions were lacking robustness on similar images. Hence more data and further

improvements are required. Further, SGD with momentum performed better but required BN in all

five convolutional layers to achieve learning. Dropout improved the results further, but not

drastically. Against the expectations, Image Augmentation was not beneficial in any case. While Adam

did not require BN for the models to learn, it performed poorer due to overfitting and showed no

improvements when BN and dropout were used. The obtained results and good classification

performance showed that this is a very promising direction, and the automatic detection of buried

structures is a feasible task.

vii

ΠΕΡΙΛΗΨΗ

Η μέθοδος του γεωραντάρ είναι μη καταστροφική και εφαρμόζεται επιτυχώς σε αρχαιολογικές

γεωφυσικές διασκοπήσεις για την χαρτογράφηση θαμμένων θεμελίων. Η αρχή λειτουργίας του

στηρίζεται στην εκπομπή Η/Μ κυμάτων από κεραία-πομπό τα οποία διαδίδονται στο υπέδαφος με

ταχύτητα η οποία επηρεάζεται κυρίως από τις ηλεκτρικές ιδιότητες του μέσου. Όταν εισέλθουν σε

μέσο διαφορετικών ηλεκτρικών ιδιοτήτων ένα μέρος ανακλάται προς την επιφάνεια όπου

ανιχνεύεται από την κεραία-δέκτη ενώ το υπόλοιπο συνεχίζει τη διάδοση στο νέο μέσο. Στις

αρχαιολογικές διασκοπήσεις οι κεραίες πομπός-δέκτης κινούνται ταυτόχρονα έχοντας σταθερή

απόσταση μεταξύ τους κατά μήκος μιας γραμμής μελέτης πάνω στην επιφάνεια του εδάφους

συλλέγοντας καταγραφές που ονομάζονται ίχνη (traces). Κατά αυτό τον τρόπο προκύπτουν

τομογραφικές εικόνες του υπεδάφους. Σε αυτού του είδους εικόνες, τα αρχαία θεμέλια συνήθως

αποτυπώνονται με πρότυπα τα οποία έχουν την μορφή πολλαπλών υπερβολών και περιθλάσεων

που αναφέρονται ως ανακλάσεις.

Η ερμηνεία τέτοιων δεδομένων είναι μία ιδιαίτερα χρονοβόρα και απαιτητική διαδικασία, η επιτυχία

της οποίας στηρίζεται κυρίως στην εμπειρία. Ο λόγος είναι ότι τα πρότυπα με τα οποία

απεικονίζονται στα δεδομένα οι καταγραφές από το υπέδαφος, δεν αποδίδουν ξεκάθαρα τη φύση

του ανακλαστήρα που τα προκάλεσε. Έτσι ανακλάσεις θαμμένων αρχαιοτήτων μπορεί είτε να

παραβλεφθούν ή να παρερμηνευτούν. Τα δεδομένα γεωραντάρ είναι επίσης ευαίσθητα σε θόρυβο ο

οποίος συνήθως δεν μπορεί να απομακρυνθεί κατά την επεξεργασία αφήνοντας κατάλοιπα. Όταν

έχει γραμμική μορφή, καταγράφεται με πρότυπα που μοιάζουν αρκετά με αυτά των θαμμένων

κτιρίων. Σε τέτοια δεδομένα η αβεβαιότητα της ερμηνείας και η πιθανότητα λάθους είναι υψηλές

καθιστώντας αναγκαστική τη λήψη πληροφορία από άλλες μεθόδους. Η ανάπτυξη ενός συστήματος

viii Περίληψη

αυτόματης αναγνώρισης προτύπων που αποδίδονται σε αρχαία αρχιτεκτονικά κατάλοιπα θα

αποτελούσε ένα ιδιαίτερα χρήσιμο εργαλείο που θα διευκόλυνε την διαδικασία της ερμηνείας και θα

βελτίωνε την ακρίβεια της περιορίζοντας τα λάθη. Πάνω σε αυτό το πλαίσιο, η παρούσα διδακτορική

διατριβή εξετάζει τα Συνελικτικά Νευρωνικά Δίκτυα (ΣΝΔ) ως μέσο προς την υλοποίηση ενός τέτοιου

συστήματος.

Τα ΣΝΔ είναι ευρέως γνωστά λόγω των ραγδαίων εξελίξεων που έχουν γνωρίσει τα τελευταία χρόνια

σε σχέση με την αυτόματη αναγνώριση προτύπων και σε θέματα Βαθιάς Μαθήσεως. Είναι μία

κατηγορία Τεχνικών Νευρωνικών Δικτύων (ΤΝΔ) Πρόσθιας Τροφοδοσίας (Feedforward) με πλήρως

συνδεδεμένα επίπεδα (fully connected layers), στα οποία έχει ενσωματωθεί η λειτουργία της

συνέλιξης. Η τελευταία επιτρέπει δισδιάστατες και τρισδιάστατες εισόδους. Μία ενδεικτική

αρχιτεκτονική ΣΝΔ περιλαμβάνει το επίπεδο εισόδου, το συνελικτικό επίπεδο, το επίπεδο αποκοπής

ReLU (Rectified Linear Unit), το συγκεντρωτικό επίπεδο (pooling layer), τα πλήρως συνδεδεμένα

επίπεδα, και το επίπεδο εξόδου. Το συνελικτικό επίπεδο, το επίπεδο ReLU, και το επίπεδο

συγκέντρωσης είναι υπεύθυνα για την εξαγωγή των σημαντικών γνωρισμάτων (features) της

εισόδου, ενώ μέσω των πλήρως συνδεδεμένων επιπέδων, που είναι ουσιαστικά ένα ΤΝΔ πρόσθιας

τροφοδοσίας, εκτελείται η προσέγγιση του προβλήματος μαθήσεως, όπως λ.χ. ταξινόμηση ή

παλινδρόμηση. Τα βάρη των συνάψεων στα συνελικτικά επίπεδα στηρίζονται στα δεκτικά πεδία

(receptive fields), όπου ο νευρώνας ενός επιπέδου συνδέεται με μία περιοχή νευρώνων του

επόμενου επιπέδου.

Η εκπαίδευση των ΣΝΔ γίνεται με τον ίδιο τρόπο όπως στην περίπτωση των ΤΝΔ Πρόσθιας

Τροφοδοσίας, χρησιμοποιώντας τον αλγόριθμο οπισθοδιάδοσης (backpropagation) για τον

υπολογισμό του σφάλματος που προκύπτει από τα βάρη που έχουν αποδοθεί στις συνάψεις των

νευρώνων ενός επιπέδου, και έναν αλγόριθμο βελτιστοποίησης της κλίσης (gradient). Τα βάρη

αναπροσαρμόζονται έτσι ώστε να ελαχιστοποιείται η επιλεγμένη συνάρτηση κόστους (cost

function). Για την εκπαίδευση χρησιμοποιείται σύνολο δεδομένων που έχει χωριστεί σε ένα σετ

εκπαίδευσης (training set) και ένα σετ δοκιμών γενίκευσης (test set). Ένα σύνηθες πρόβλημα

εκπαίδευσης είναι αυτό της υπερπροσαρμογής (overfitting) όπου τα βάρη του μοντέλου μαθήσεως

έχουν προσαρμοστεί τόσο καλά στα δεδομένα του σετ εκπαιδεύσεως με αποτέλεσμα προβλέψεις με

χρήση διαφορετικών δεδομένων να είναι ανακριβείς. Ορισμένες γνωστές τεχνικές που

αντιμετωπίζουν το πρόβλημα της υπερπροσαρμογής και βελτιώνουν την γενίκευση είναι αναφορικά

η εφαρμογή μετασχηματισμών για αύξηση των εικόνων (Image Augmentation), η παράβλεψη

νευρώνων (Dropout) και η κανονικοποίηση κατά σύνολα (Batch Normalization).

Περίληψη ix

Τα ΣΝΔ παρουσιάζουν ένα ευρύ πεδίο εφαρμογών κυρίως σε προβλήματα επιβλεπόμενης μάθησης

που χρησιμοποιούν προσεγγίσεις όπως την ταξινόμησης εικόνας, την κατάτμησης εικόνας και τον

εντοπισμό αντικειμένων. Έτσι είναι ιδιαιτέρως διαδεδομένα σε θέματα μηχανικής όρασης που

σχετίζονται με ανάλυση εικόνας και βίντεο όπως π.χ. ανάλυση ιατρικών εικόνων, αναγνώριση

προσώπων, αναγνώριση κειμένων, ανάλυση δορυφορικών εικόνων κ.α.. Η εφαρμογή τους σε

δεδομένα γεωραντάρ δεν είναι το ίδιο διαδεδομένη, ενώ οι μελέτες που αφορούν συγκεκριμένα

αρχαιολογικά δεδομένα είναι ελάχιστες. Παρόλα αυτά τα αποτελέσματα που παρουσιάζουν είναι

αρκετά καλά, ενθαρρύνοντας την περαιτέρω έρευνα.

Στη παρούσα διατριβή χρησιμοποιείται η αρχιτεκτονική ΣΝΔ βαθιάς μαθήσεως AlexNet για την

ταξινόμηση οριζόντιων τομών βάθους (C-scans) της μεθόδου γεωραντάρ. Η συγκεκριμένη

αρχιτεκτονική ήταν αυτή που έκανε τα ΣΝΔ ευρέως γνωστά για θέματα ταξινόμησης εικόνας λόγω

των πολύ καλών αποτελεσμάτων. Παράλληλα είναι απλή παρέχοντας τα οφέλη μιας βαθιάς

αρχιτεκτονικής που αφορούν την αυτόματη αναγνώριση προτύπων. Αποτελείται από πέντε

συνελικτικά επίπεδα, τρία συγκεντρωτικά επίπεδα, και τρία πλήρως συνδεδεμένα. Η συνάρτηση

ενεργοποίησης που χρησιμοποιείται είναι η ReLU με εξαίρεση το τελευταίο πλήρης συνδεδεμένο

επίπεδο στο οποίο χρησιμοποιείται η Softmax. Επίσης γίνεται χρήση των τεχνικών γενίκευσης

Dropout και μίας τεχνικής κανονικοποίησης που εφαρμόζεται στα βάρη των συνελικτικών επιπέδων

που αναφέρεται ως Κανονικοποίηση Τοπικής Απόκρισης (Local Response Normalization).

Τα δεδομένα που χρησιμοποιούνται έχουν συλλεχθεί με το σύστημα Noggin και κεραία κεντρικής

συχνότητας 250MHz από 52 αναγνωρισμένες αρχαιολογικές θέσεις στην Ελλάδα, Κύπρο και Σικελία.

Τα δεδομένα συλλέχθηκαν στα πλαίσια ερευνητικών προγραμμάτων του Εργαστηρίου Γεωφυσικής-

Δορυφορικής Τηλεπισκόπησης και Αρχαιοπεριβάλλοντος του Ιδρύματος Τεχνολογίας και Έρευνας.

Αρχικά πραγματοποιήθηκε η επεξεργασία των δεδομένων σε περιβάλλον MATLAB που

αποσκοπούσε την αποθορυβοποίηση των δεδομένων, την ανάδειξη των ανακλάσεων από το

υπέδαφος και η εξαγωγή των εικόνων τομών βάθους. Οι τεχνικές και τα φίλτρα που εφαρμόσθηκαν

είναι οι: δειγματοληψία ιχνών (trace resampling), διόρθωση μηδενικού χρόνου (time-zero correction),

διόρθωση Dewow, ενίσχυση inverse amplitude decay, αφαίρεση μέσου σήματος υποβάθρου (Average

Background Removal), εφαρμογή ζωνωπερατών φίλτρων (Bandpass filtering), και ο υπολογισμός

του στιγμιαίου πλάτους μετασχηματισμού Hilbert (Instantaneous Envelope). Εν συνεχεία

δημιουργήθηκαν τρισδιάστατοι όγκοι του υπεδάφους και ακολούθησε η εξαγωγή των οριζόντιων

τομών (C-scans).

x Περίληψη

Σε επόμενο βήμα ακολούθησε ένα στάδιο προετοιμασίας στο οποίο εφαρμόζεται κυλιόμενο

παράθυρο αποκοπής με αλληλεπικαλυπτόμενο βήμα με σκοπό την αύξηση του αριθμού των εικόνων

που θα χρησιμοποιηθούν στο σετ δεδομένων για την εκπαίδευση των ΣΝΔ. Το μέγεθος του

παραθύρου προσαρμόσθηκε ώστε να αντιστοιχεί σε διαστάσεις 10x10m της κάθε τομής, ενώ η

επικάλυψη ορίσθηκε στα δύο μέτρα. Τα συγκεκριμένα διαστήματα κρίθηκαν κατάλληλα καθώς

επιτρέπουν την επαρκή απεικόνιση των αρχαίων κτιρίων ενώ παράλληλα αυξάνουν σημαντικά των

αριθμό των εικόνων που μπορούν να χρησιμοποιηθούν για εκπαίδευση.

Όσο αφορά το σετ δεδομένων, ορίστηκαν τρεις τάξεις βάση των κυρίαρχων γνωρισμάτων (feature)

που παρατηρήθηκαν στα δεδομένα και είναι: απροσδιόριστες γεωφυσικές ανωμαλίες, κτίρια και

γραμμικός θόρυβος. Συνολικά επιλέχθηκαν 18375 παραδείγματα, με 6125 ανά τάξη και ακολούθησε

διαμερισμός τους σε σετ εκπαίδευσης και σε αξιολόγησης. Σε αυτό σημείο εξετάζονται δύο

προσεγγίσεις, του αυτόματου και μη αυτόματου διαχωρισμού ώστε να εξεταστεί ποια μπορεί να

οδηγήσει σε καλύτερη γενίκευση. Στη πρώτη προσέγγιση τα δεδομένα του σετ γενίκευσης

προέρχονται εξ’ ολοκλήρου από την περιοχή μελέτης της Ελάτειας ενώ στη δεύτερη προσέγγιση ο

διαχωρισμός είναι τυχαίος από όλο το σύνολο των επιλεγμένων εικόνων για κάθε τάξη.

Τα ΣΝΔ υλοποιήθηκαν και εκπαιδευτήκαν σε Python χρησιμοποιώντας την βιβλιοθήκη Tensorflow

με το Keras API. Για την εκπαίδευση εξετάστηκαν δύο αλγόριθμοι βελτιστοποίησης ο Stochastic

Gradient Descent (SGD) με χρήση ροπής (momentum) και ο Adam (Adaptive Moments). Για την

βελτίωση των αποτελεσμάτων και απόδοσης εξετάστηκαν οι τεχνικές κανονικοποίησης συνόλου

(Batch Normalization), παράλειψης νευρώνα (Dropout), και εφαρμογή μετασχηματισμών αύξησης

εικόνων (Image Augmentation). Επιπλέον πραγματοποιήθηκε συντονισμός (tuning) των

υπερπαραμέτρων ρυθμού μάθησης (learning rate) και μέγεθος συνόλου (batch size) των δύο

αλγόριθμων βελτιστοποίησης που εξετάζονται, με σκοπό την περαιτέρω βελτίωση των

αποτελεσμάτων. Ο συντονισμός πραγματοποιήθηκε με την βιβλιοθήκη Keras Tuner.

Μέσα από μία σειρά συγκρίσεων και δοκιμών προέκυψαν δύο τελικά μοντέλα, ένα για κάθε την κάθε

προσέγγιση διαχωρισμού δεδομένων. Το μοντέλο Α προέκυψε από τον μη αυτόματο διαχωρισμό ενώ

το μοντέλο Β προέκυψε από τον αυτόματο διαχωρισμό. Η γενίκευση των δύο μοντέλων εξετάζεται

σε ένα νέο σετ δεδομένων που ονομάστηκε σετ αξιολόγησης (evaluation set). Σε αυτό επιλέχθηκαν

32 παραδείγματα γεωφυσικών ανωμαλιών, 32 θορύβου και 36 αρχαίων κτιρίων από τις

αρχαιολογικές θέσεις της Άλου Θεσσαλίας και της Σίσσι Ηρακλείου που είχαν εξαιρεθεί της

διαδικασίας εκπαίδευσης.

Περίληψη xi

Συνοψίζοντας τα αποτελέσματα, καλύτερος αλγόριθμος βελτιστοποίησης αποδείχθηκε ο SGD με

απαραίτητη όμως την χρήση κανονικοποίησης κατά σύνολα (Batch Normalization), ενώ η χρήση της

παράβλεψη νευρώνων (dropout) βελτίωσε περαιτέρω τα αποτελέσματα. Σε αντίθεση η εφαρμογή

μετασχηματισμών για αύξηση των εικόνων (Image Augmentation) είχε αρνητική επίδραση στα

αποτελέσματα και κρίθηκε η αναγκαία η περαιτέρω έρευνα ώστε να βρεθούν οι κατάλληλοι

μετασχηματισμοί που θα οδηγήσουν σε βελτίωση των αποτελεσμάτων. Όσο αφορά τις δοκιμές στο

σετ αξιολόγησης, καλύτερη γενίκευση παρουσιάζει το μοντέλο Β (αυτόματου διαχωρισμού)

πετυχαίνοντας ακρίβεια 92% έναντι 85%. Παρόλα αυτά, η ακρίβεια των προβλέψεων δεν ήταν

σταθερή καθώς υπήρχαν περιπτώσεις όπου παρόμοιες εικόνες δεν ταξινομήθηκαν καλά. Αυτό

υποδηλώνει την ανάγκη αύξησης του αριθμού των εικόνων εκπαίδευσης είτε με τεχνικές

μετασχηματισμών, είτε με νέα δεδομένα ή πιθανόν με χρήση γενετικού δικτύου για παραγωγή

εικόνων (Generative Adversarial Network). Εν κατακλείδι τα αποτελέσματα ταξινόμησης κρίνονται

ιδιαιτέρως καλά, με περιθώρια βελτίωσης. Έτσι σηματοδοτείται μια νέα πορεία έρευνας για την

εξέλιξη της διαδικασίας της ερμηνείας των δεδομένων γεωραντάρ.

xii

ACKNOWLEDGMENTS

First and foremost, I would like to express my sincere gratitude to my supervisor Professor Antonios

Vafidis for his invaluable guidance and encouragement during this Ph.D. program. His immense

knowledge and suggestions have been genuinely inspiring, which helped me develop and become a

better researcher. Further, I would like to extend my sincere appreciation to Professor Apostolos

Sarris for everything he taught me, especially during fieldwork. His support, guidance, and advice

were key factors in fulfilling this Ph.D. dissertation. Likewise, I would like to thank Professor Michalis

Zervakis for his kindness and for offering his expertise and knowledge on Deep Learning, a subject

with which I was unfamiliar. Furthermore, I would like to thank all the members of my examination

committee for their participation and their help in completing this thesis.

I would also like to express my sincere gratitude to Dr. Nikos Papadopoulos and the GeoSat

Research Lab of IMS - FORTH for hosting me as a Ph.D. scholar and supporting me financially through

the POLITEIA research project Action KRIPIS, project No MIS-448300 (2013SE01380035)

(http://politeia.ims.forth.gr/en/index.php). Further, the access they granted me to equipment for

data collection, as well as additional data, were of great importance to realize and complete this Ph.D.

dissertation. I would also like to express my appreciation to Stavros Niarchos Foundation for partially

funding this research through the project “Advancing Young Researchers’ Human Capital in Cutting

Edge Technologies in the Preservation of Cultural Heritage and the Tackling of Societal Challenges –

ARCHERS (https://archers.iesl.forth.gr).

http://politeia.ims.forth.gr/en/index.php

Acknowledgments xiii

Further, I would like to thank my colleagues and the people I met while staying at the GeoSat

Research Lab for sharing their knowledge and expertise with me, the great collaboration we had, and

the pleasant memories I made during fieldwork. Also, I would like to thank all the colleagues and

students who participated and helped in the various geophysical surveys from which the collected

data were used in this Ph.D. thesis.

My sincere gratitude goes to my friends and colleagues Dr. Tuna Kalayci and Dr. Ian Moffat,

for the excellent collaboration and the time they gave reviewing this manuscript. Their feedback and

corrections helped me improve the overall quality of this dissertation.

 Special thanks also go to Pantelis Vafidis. His suggestions and clarifications on Machine and

Deep learning topics were constructive and pointed out the direction that would work the best for

the data used in this thesis.

Further, I would like to thank my dear cousins and friends for their encouragement and

constant support. Finally, I would like to express my sincere gratitude to my family, especially my

parents, for their continuous and unconditional support, encouragement, and love. They made

everything possible.

xiv

CONTENTS

Examination Committee .. iv

Abstract .. v

Περίληψη... vii

Acknowledgments ... xii

Contents .. xiv

List of Figures ... xix

List of Tables ... xxiv

Abbreviations & Acronyms ... xxvi

Notations .. xxvii

1. Introduction .. 1

 Motivation ... 2

 Research Aim, Scope & Objectives .. 4

 Statement & Contributions ... 5

 Publications .. 6

 Thesis overview .. 7

Contents xv

2. Literature Review ... 8

 GPR in archaeological prospection ... 9

 Convolutional Neural Networks... 10

 Deep & Machine learning applications in GPR ... 13

 Related work .. 16

3. GPR for mapping ancient structures ... 17

 GPR overview and Applications ... 18

 GPR operational principle .. 18

 Data collection & survey parameters ... 20

 GPR data processing.. 23

 Case Studies examples ... 26

3.5.1 Ancient Demetrias .. 26

3.5.2 Ancient Mantinea, Peloponnese, Greece ... 28

3.5.3 Neolithic Thessaly, Greece .. 30

 Discussion ... 32

4. Theoretical Framework of CNNs .. 33

 The Concept of Learning from Data .. 34

4.1.1 The learning problem ... 34

4.1.2 The learning algorithm ... 34

4.1.3 Learning types ... 35

 Training process ... 36

4.2.1 Training for classification ... 36

4.2.2 Training error & cost functions .. 37

4.2.3 Gradient-based optimization ... 39

 Feedforward Neural Networks ... 40

4.3.1 The neuron model .. 41

4.3.2 Feedforward propagation ... 45

xvi Contents

4.3.3 Backpropagation Algorithm ... 47

4.3.4 Activation functions ... 50

4.3.5 Weights’ initialization ... 51

 Convolutional Neural Networks... 52

4.4.1 Convolution ... 52

4.4.2 CNN architecture .. 54

4.4.3 Training CNNs .. 56

 Generalization.. 59

4.5.1 Overfitting .. 60

4.5.2 Underfitting ... 60

 Regularization ... 62

4.6.1 Data Augmentation .. 62

4.6.2 Weight Decay .. 63

4.6.3 Dropout ... 64

4.6.4 Batch normalization .. 66

 Validation .. 68

4.7.1 Cross-Validation .. 69

4.7.2 Early stopping .. 69

 Closing remarks .. 70

5. Research Methodology ... 71

 Equipment, Tools & Software.. 72

 Archaeological Sites & GPR data collection ... 73

 Data Processing ... 79

5.3.1 GPR data import .. 79

5.3.2 Processing the imported B-scans ... 80

5.3.3 Export depth slices ... 83

 Building Datasets.. 85

Contents xvii

5.4.1 Increasing image number per class .. 87

5.4.2 Constructing the test and training sets.. 90

 CNN experiments ... 94

5.5.1 AlexNet overview ... 95

5.5.2 Baseline model implementation ... 97

5.5.3 Improving performance & tuning hyperparameters ... 98

 Models metrics & evaluation .. 101

 Closing remarks ... 101

6. Training Results & Discussion .. 103

 Dataset-A results ... 104

6.1.1 Training with SGD ... 104

6.1.2 Training with Adam .. 113

6.1.3 SGD and Adam comparison ... 119

6.1.4 Model A .. 121

 Dataset-B results ... 124

6.2.1 Training with SGD ... 124

6.2.2 Training with Adam .. 130

6.2.3 SGD and Adam comparison ... 134

6.2.4 Model B .. 136

 Comparison & Final Evaluation ... 138

 Closing remarks ... 150

7. Conclusions & Feature work ... 152

 Summary & highlights ... 152

7.1.1 On data selection & preparation ... 152

7.1.2 On dataset construction .. 153

7.1.3 On implementing and training models with AlexNet ... 154

7.1.4 Final Evaluation.. 155

xviii Contents

 Future work ... 156

Bibliography ... 158

APPENDIX A: Case Studies & Processing Scripts ... 172

A.1 NOGGIN GPR Header files .. 173

A.2 MATLAB Scripts used for processing .. 173

A.2.1 Import Noggin data .. 173

A.2.2 Processing example with traces resampling and zig-zag mode and scan-axis in the Y

direction. .. 175

Appendix B: CNN implementation& Training .. 181

B.1 AlexNet implementations ... 182

Appendix C: Additional Results & Final models... 194

xix

LIST OF FIGURES

Figure 3.1: Illustration of GPR operation principle.. ... 19

Figure 3.2: Illustration of the paths that an EM pulse can follow between the transmitter and the

receiver.. .. 20

Figure 3.3: Survey parameters of common offset reflection GPR systems. ... 22

Figure 3.4: Description of a GPR image acquired from a survey line.. ... 22

Figure 3.5: Description of hyperbolas and linear anomalies shown in GPR B-scans.. 23

Figure 3.6: A processing example of a GPR B-scan.. .. 25

Figure 3.7: Bandpass filtering effect that is shown on a C-scan.. ... 26

Figure 3.8: GPR survey at Demetria’s soccer field. .. 27

Figure 3.9: GPR results from Demetria's area at the soccer field.. .. 27

Figure 3.10: GPR results on the eastern side of the agora at Mantinea. ... 29

Figure 3.11: GPR and magnetic results from Magoula Almiriotiki. .. 30

Figure 3.12: GPR and Magnetics obtained results from Magoula Perdika 2. .. 31

Figure 4.1: Illustration of a Feed-Forward Network. .. 41

Figure 4.2: The Perceptron model of an artificial neuron. ... 43

Figure 4.3: Logistic regression for modeling an artificial neuron. .. 44

Figure 4.4: An example showing the computations performed in feedforward propagation for a

neuron that is resided at the hidden layer ℓ. ... 47

Figure 4.5: Basic blocks of an FNN training algorithm. One complete circle defines an epoch. 49

xx List of Figures

Figure 4.6: Popular activation functions used in FFN hidden layers. .. 51

Figure 4.7: Main components of a typical CNN architecture (Top) with their graphical description

(bottom).. .. 55

Figure 4.8: Example of a data set and three hypotheses where (a) is the underfitting scenario, (b) is

the best fit scenario, and (c) is overfitting. ... 61

Figure 4.9: Behaviors of the training and test error with the capacity that can lead to overfitting and

underfitting. ... 61

Figure 4.10: The concept of Dropout where (a) is the original network training and (b) is training

with dropout applied. .. 65

Figure 4.11: Dropout model where (a) is the original neural network while (b) is the network with

dropout applied .. 66

Figure 5.1: The components of the NOGGIN smart cart plus GPR system that was used for the data

collection of this research.. .. 72

Figure 5.2: Compilation of photographs taken in various survey sites using NOGGIN GPR showing the

different conditions met. .. 78

Figure 5.3: Representative examples that show the bandpass filtering effect on two B-scans and C-

scans when using the frequency window of 100-500MHz. ... 82

Figure 5.4: Data processing overview to produce C-scans. .. 84

Figure 5.5: Representative examples of well-preserved buried structures imprinted in GPR depth

slices. ... 86

Figure 5.6: Representative examples of geophysical anomalies found in GPR data.................................. 86

Figure 5.7: Representative examples of striping noise found in GPR data. ... 87

Figure 5.8: C-scan from ancient Halos exhibiting features that belong to the three classes. 88

Figure 5.9: Image cropping with overlapping sliding windows using a C-scan from Demetria’s GPR

survey as an example. .. 89

Figure 5.10: Example of C-scans selection in a survey grid measured at the ancient Demetrias site

used for cropping. .. 90

Figure 5.11: Directory structure of the dataset followed. .. 91

Figure 5.12: Training and test set examples from dataset-A... 92

Figure 5.13: Training and test set examples from dataset-B ... 93

Figure 5.14: Overview of experiments and trials performed on the two datasets..................................... 94

Figure 5.15: AlexNet architecture described in [50], including the activation functions applied on

specific layers and training improving methods such as the Local Response Normalization and

List of Figures xxi

dropout. On each convolutional layer, information such as the kernels’ size, kernels number, stride,

and padding, when used, is shown. .. 96

Figure 5.16: Examples of various image augmentation transforms. The input image will be replaced

by a randomly generated one produced by the selected transforms. ... 99

Figure 6.1: Learning curves produced by baseline training metrics showing that zero learning was

achieved. ... 105

Figure 6.2: Confusion matrix for classification predictions on the test set using the baseline model.

All the labels were classified as structures indicating that no learning was achieved during training.

The classification accuracy is 0.33. ... 105

Figure 6.3: Experiments and different setups of Batch Normalization and Dropout tested on the

AlexNet architecture using SGD with a learning rate of 0.001, batch size of 128, and a momentum of

0.9. With orange are highlighted the setup of BN with the best performance, and blue are the best

setup of adding dropout to chosen BN setup. ... 107

Figure 6.4: Learning curves that show improvements in learning. In a. is the loss calculated on the

training set, b. is the loss calculated on the test set, c. is the classification accuracy calculated on the

train set, and d. is the classification accuracy calculated on the test set. Charts a. and c. describe the

training performance while charts b. and d. describe the generalization.. .. 108

Figure 6.5: Learning curves showing the effect of adding dropout with a rate of 0.5. 109

Figure 6.6: Learning curves obtained by training Model 1 using SGD with a learning rate of 0.001 and

different batch sizes.. .. 111

Figure 6.7: Comparative charts showing the obtained learning curves of Model 1 (blue line) and the

application of image augmentation (orange line). .. 112

Figure 6.8: The resulted learning curves from training the baseline with Adam using a batch size of

128 and a learning rate of 0.001. ... 113

Figure 6.9: The effect of applying BN in different layers in AlexNet. .. 114

Figure 6.10: Comparative charts showing the effect of adding dropout with a rate of 0.5 in different

fully connected layers setup. ... 115

Figure 6.11: Comparative charts showing the effect of different batch sizes and learning rates when

training the baseline model with Adam. ... 117

Figure 6.12: The effect of augmentation techniques on Model 2A using Adam optimizer. The

validation loss chart shows that overfitting is reduced, but the curve is noisy. 118

Figure 6.13: Comparative charts of loss and accuracy learning curves of the best-obtained model that

were trained with SGD (orange) and Adam (blue).. ... 120

xxii List of Figures

Figure 6.14: Confusion matrices resulted from training with SGD (left) and Adam (right). 120

Figure 6.15: Learning curves of Model A. ... 121

Figure 6.16: Confusion matrix calculated using the weights of Model A that returns 91.17%

classification accuracy. ... 122

Figure 6.17:Examples of misclassified labels using Model A. .. 123

Figure 6.18: Learning curves of training the baseline showing that no learning was achieved. SGD was

used with a learning rate of 0.01 and a batch size of 123. ... 125

Figure 6.19: Various setups and tests for training dataset-B with SGD with a learning rate of 0.001

and a momentum of 0.9.. ... 126

Figure 6.20: Learning curves that show improvements in learning where a. is the loss calculated on

the training set, b. is the loss calculated on the test set, c. is the classification accuracy calculated on

the train set, and d. is the classification accuracy calculated on the test set.. ... 127

Figure 6.21: The effect of applying dropout with a rate of 0.5 in the best-performed BN setup. 128

Figure 6.22:Comparative plots that show the resulting learning curves obtained from training using

SGD with a learning rate of 0.001, a momentum of 0.9, and four different batch sizes that yielded high

accuracy. ... 130

Figure 6.23: The learning curves from training the baseline using the dataset-B and Adam optimizer

with a batch size of 128 and a learning rate of 0.001. ... 131

Figure 6.24: Comparative graphs showing the resulting learning curves from tests performed on

different BN setups for dataset-B and Adam optimizer. .. 132

Figure 6.25: Comparative charts showing the resulting learning curves for each batch size tested

using Adam optimizer with a learning rate of 0.001 on dataset-B. ... 133

Figure 6.26: Comparative graphs showing the loss and accuracy learning curves of the best-obtained

models that were trained with Model 1B (SGD) and Model 2B (Adam) using dataset-B. 135

Figure 6.27: Confusion matrices resulted from training with Model 1B (left) and Model 2B (right)

using SGD and Adam, respectively, for dataset-B. .. 135

Figure 6.28: Learning curves of Model Β.. .. 136

Figure 6.29: Confusion matrix calculated using the weights of Model B that returns 99.52%

classification accuracy. ... 137

Figure 6.30: Examples of misclassified labels of each class using Model B. ... 138

Figure 6.31: Comparative charts of the resulting learning curves from Model A and Model B. 139

Figure 6.32: The 32 examples selected for the Anomaly class of the Evaluation set. 140

Figure 6.33: The 32 examples selected for the Noise class of the Evaluation set. 141

List of Figures xxiii

Figure 6.34: The 36 examples selected for the Structures class of the Evaluation set.. 142

Figure 6.35: Confusion matrices calculated on the evaluation set for Model A and Model B, reaching

the classification accuracies of 85% and 92%, respectively. ... 143

Figure 6.36: The misclassified examples for the Anomaly class.. ... 147

Figure 6.37: The misclassified examples for the Noise class.. .. 148

Figure 6.38: The misclassified examples for the Structure class.. .. 149

Figure C.1: Learning curves comparing the effect of applying augmentation in Model 1 training setup

with SGD, a learning rate of 0.001, and a batch size of 64. .. 196

Figure C.2: The effect of applying dropout on the chosen BN setup for the case of dataset-B using

Adam optimizer.. ... 197

Figure C.3: Comparative chart showing the effect of applying image augmentation techniques using

dataset-B and Adam optimizer with a learning rate of 0.001 and a batch size of 32. 198

xxiv

LIST OF TABLES

Table 5.1: Information on the Neolithic settlements of Thessaly, Greece, and GPR data collection that

was carried out for the research program IGEAN.. ... 75

Table 5.2: Information on various archaeological sites and the GPR data collection that was carried

out for various research programs.. .. 76

Table 5.3: Information on archaeological sites and the GPR data collection that was carried out for

various individual surveys in collaboration with the corresponding Ephorates of Antiquities. 77

Table 5.4: Chosen parameters and hyperparameters for the AlexNet baseline model. The number

after each layer indicates its order in the architecture. ... 97

Table 5.5: Training hyperparameters used for the baseline model. .. 98

Table 6.1:SGD - Classification accuracy calculated on a randomly split validation set using different

batch sizes and learning rates.. ... 110

Table 6.2: Adam - Classification accuracy calculated on a randomly split validation set using different

batch sizes and learning rates.. ... 116

Table 6.3: SGD - Classification accuracy calculated on a randomly split validation set using different

batch sizes and learning rates. .. 129

Table 6.4: Adam - Classification accuracy calculated on a randomly split validation set using different

batch sizes and learning rates. .. 133

List of Tables xxv

Table 6.5: Prediction results from Model A and Model B for the Anomaly class of the evaluation set

occurred. .. 144

Table 6.6: Prediction results from Model A and Model B for the Noise class of the evaluation set

occurred. .. 145

Table 6.7: Prediction results from Model A and Model B for the Structure class of the evaluation set

occurred. .. 146

Table A.1: Example of header files (.HD) acquired with the NOGGIN system showing the stored

information.. ... 173

Table B.1: Implementation of AlexNet used as the baseline. .. 183

Table C.1: Summary of Model A. ... 195

Table C.2: Summary of Model B. ... 199

xxvi

ABBREVIATIONS & ACRONYMS

GPR Ground Penetrating Radar

CNN Convolutional Neural Networks

DL Deep Learning

ML Machine Learning

GD Gradient Descent

SGD Stochastic Gradient Descent

PLA Perceptron Learning algorithm

ANN Artificial Neural Network

RNN Recurrent Neural Network

FNN Feedforward Neural Networks

MLP Multi-Layer Perceptron

BN Batch Normalization

LRN Local Response Normalization

FC Fully Connected

xxvii

NOTATIONS

Scalars, Vectors & Matrices

𝒂 Scalar (real or integer)

𝒂 Vector (column vector)

𝒂𝒊 The 𝑖-th element of vector 𝒂

𝒂𝑻 Transpose of vector 𝒂(row vector)

𝒂̂ Vector of prediction

𝒂𝒊̂ The 𝑖-th predicted element of vector 𝒂̂

𝑨 Matrix

Spaces and Numbers

ℤ Integer

ℍ Hypothesis set

𝕏 Input space

𝕐 Output space or targeted space

ℝ Real number

xxviii Notations

Machine and Deep Learning

𝒇(𝒙) Function of 𝒙 where 𝒙 can be scalar 𝒂, vector 𝒂 or matrix 𝑨

𝒉(𝒘, 𝒙) Hypothesis of training process and function for predictions

𝒄𝒐𝒔𝒕 Cost function or loss function or error function

𝝋 Activation function

𝑬𝒕𝒓𝒂𝒊𝒏 Training error

≡ Equivalent

𝒂(𝒕) The number of iterations 𝑡 = 1,2, … an algorithm performs on a vector

𝑷(𝒂|𝒃) Probability of a given b

𝑷(𝒚 = 𝟏|𝒙; 𝒘) Probability of 𝑦 = 1 given 𝒙 parametrized by 𝒘

𝓓𝒕𝒓𝒂𝒊𝒏 Training dataset

𝓓 Dataset

𝜺
Cost function or error function or loss function over the predicted or training

quantities

𝜺𝒏 Cost function or error function or loss function for the sample point 𝑛

𝓵 The layer in a neural network where ℓ = 0,1, … , 𝐿

𝒛(𝓵) The activated input signal of layer ℓ that is a vector

𝒙𝒊
(𝓵)

 The 𝑖 − 𝑡ℎ example of a dataset that is an input of layer ℓ

1

1. INTRODUCTION

This Ph.D. thesis examines the automatic detection of ancient buried structures from GPR data using

Convolutional Neural Networks (CNNs). The main motive is the challenge met during GPR data

interpretation to discriminate patterns in the complex data derived from archaeological prospection

surveys. Considering the rapid advances of CNNs and the notable performance improvements they

have brough in applications related to image classification, object detection, and image segmentation,

they were chosen to investigate whether they can be used to aid and improve GPR data

interpretation. In this introductory chapter, the interpretation challenges that triggered this research

are firstly discussed, followed by the aim, scope, and objectives. The research’s contribution is also

mentioned, along with published material. Last, the structure of the thesis is given.

2 Introduction

 MOTIVATION

GPR has become a useful tool to use in geophysical surveys applied for archaeological prospection.

The latter is a process that can last for months and can be divided into four equally important phases.

It begins with the geophysical survey design, moves on to data collection, then data processing, and

last, data interpretation:

- Survey design is the phase where decisions regarding data collection are taken. This mainly

includes choices on which GPR antennas to employ to meet the investigation needs and select

the areas to cover with survey grids.

- The data collection and fieldwork phase can last from a few days to weeks, depending on the

size of the area under investigation. In archaeological surveys, data collection is traditionally

conducted using survey grids, as this approach gives most of the information GPR can

provide.

- The data processing phase may begin alongside data collection and continues after. It may

last for months after data collection is completed, depending on the data’s processing needs,

size, and the research questions placed. This is because GPR records are sensitive to changes

in ground conditions like the water content and prone to contain noise derived from different

sources, making them site-dependent. Hence, their processing requires trial and error to find

an efficient workflow. Data processing aims to reduce noise from the data and to highlight

the information related to the subsurface. Further, images are exported to be used for

interpretation. A single survey grid can produce up to a few hundred images to examine. The

two main representations used in archaeological investigations are tomographic images

called radargrams or B-scans and 2D depth slices, also called C-scans. The two representations

are used in an integrated manner as the former provide stratigraphic information while the

latter provides spatial information about the distribution of the reflectors at different depth

levels. C-scans can provide the most useful information in an archaeological interpretation

and are usually preferred, employing the B-scans only when validation of a feature is

required. Reprocessing is usually performed at least once to improve the GPR data and

produce the final images used in data interpretation.

- The data interpretation phase may begin during data processing and continues after the latter

is completed and requires experience and skills. This last phase involves browsing and

studying the resulting GPR images from the early stages of data processing to understand the

subsurface conditions and identify the reflectors. Data reprocessing is usually performed

during this step to aid interpretation. Representative images are then selected to illustrate

Introduction 3

the conditions and extract the shapes and other geometrical characteristics of the important

features identified. This step is beneficial to be performed using a Geographic Information

System (GIS) software like ArcGIS or the opensource QGIS. The selected GPR images can be

georeferenced and vectorized using shapefiles. This allows to directly compare and validate

the extracted GPR information with the one obtained by other geophysical methods, as well

as aerial photos, drone images, and others. Further useful representation in map forms can

be produced where the spatial relationship of the various identified features can be studied

to reveal the past further.

While many challenges are faced during each phase mentioned above, this thesis is mainly motivated

by those met during the data interpretation. As it was mentioned earlier, a valid interpretation

requires experience, skills, and a deeper understanding of the GPR data. Very often, the nature of

recorded reflections remains unknown while mistakes are easy to make, even by the more

experienced users. A few common mistakes observed from experience are: a) oversee a reflection

related to the target, b) interpret residual noise as a target, and c) misinterpret the target's true

nature due to very similar patterns or personal bias.

These mistakes can be limited to a degree when used a multi-sensor approach or a manifold approach.

In the former, multiple arrays of GPR antennas are used to collect data, which leads to faster data

acquisition and denser data collection that makes the subsurface imaging more accurate. However,

features not detectable from the GPR method due to their physical properties will remain invisible in

the recorded data. On the other hand, the manifold approach uses other geophysical methods over

the same area to measure different physical quantities. Although it is a more time-demanding

approach, the additional information can be extremely useful as it can be used to validate the GPR

interpretation or reveal a buried feature that GPR could not detect. The latter justifies the empirical

rule to “always use at least two geophysical techniques.” However, mistakes are still possible, as the

results from other geophysical methods are prone to the same mistakes. Another way is to provide a

GPR processing workflow to eliminate noise more efficiently, which requires time and effort while

risking removing information related to the targets, which is often inevitable. Another approach is to

use both B and C-scans to validate whether a feature under investigation exists in both

representations and is not a processing artifact or noise. Still, similar patterns from different targets

remain a challenge to discriminate. Also, this approach requires studying and cross-checking

information from many images. When data from large-scale surveys are employed, it is practically

difficult to apply this for all the under-question records. Hence, it requires much more time and effort

to exploit all the available information.

4 Introduction

For the abovementioned reasons, automatic feature detection seems appealing. A system capable of

detecting and recognizing the recorded antiquities from GPR data could be proven valuable with

many useful archaeological research applications. For example, it could be used as a guide in data

interpretation, reducing the commonly made mistakes, or as a navigator that finds the images in a

survey grid that have buried structures, speeding up their examination process significantly. Further,

it could be used to develop a representation of the results that is more straightforward to interpret.

When considering the recent remarkable advancements in Deep Learning, but in particular the

Convolutional Neural Networks known for the automatic feature extraction capability, training such

a system seems possible and worth investigating. Therefore, CNNs performance is examined using

GPR data collected from several geophysical campaigns in various archaeological sites settlements.

 RESEARCH AIM, SCOPE & OBJECTIVES

This research aims to develop a methodology capable of identifying buried structures from GPR data

in an automatic way. Towards this aim, the study's scope includes the implementation and training

of CNNs to classify GPR C-scans that exhibit buried structures while examines methods and

techniques to improve the results. Under this scope, the following objectives are performed:

Objective 1: GPR data collection from archaeological surveys

Data collection was performed on several archaeological sites during the collaboration with the

laboratory of Geophysical – Satellite Remote Sensing and Archaeo-Environment (GeoSat ReSeArch

Lab) of the Institute for Mediterranean Studies – Foundation of Research and Technology Hellas (IMS

- FORTH). Aside from the data collected, the GeoSat ReSeArch Lab provided additional data to cover

the needs of the study.

Objective 2: Data processing to highlight buried structures

The gathered data were processed in MATLAB to extract C-scans for training. Tests were performed

to establish a processing workflow that highlights structures by combining standard processing

techniques and corrections.

Objective 3: Dataset construction for training CNN

The classification labels are set upon the three dominant features observed in the collected GPR data.

These are patterns identified as structures, patterns of striping noise, and patterns of irregular

geophysical anomalies related to the subsurface. Hence, the classes of Structure, Noise, and Anomaly

were defined. A sliding window approach is used to increase the image number, and representative

Introduction 5

examples of each class are selected. Eventually, 6125 examples per class were gathered, split into the

training set and test set. Two approaches are tested to examine the generalization. One uses test set

examples derived solely from the same archaeological site while keeping them from the training set.

The other shuffles all the examples and does the test set and training set split randomly.

Objective 4: Investigate and choose a CNN architecture to train

Several well-known CNNs architectures were examined, and AlexNet was selected to begin with this

investigation before moving into deeper and more complex architectures. AlexNet was implemented

using Python with Tensorflow library and Keras API.

Objective 5: Training process and performance improvements

Several tests and trials are performed during training to find the more beneficial settings to the

constructed datasets. Two optimizers are considered and compared: The Stochastic Gradient

Descent with momentums and the Adam optimizer. Further, techniques known to improve training

performance and increase classification accuracy by limiting overfitting are examined. The ones

tested are Batch Normalization, Dropout, and Image augmentation. Additionally, tuning of the

learning rate and batch size hyperparameters is performed using the Keras tuner library. These tests

are performed for both datasets. The training performance and generalization are evaluated using

learning curves created by the Keras library metrics loss and classification accuracy calculated on the

training and test set. Confusion matrices are also used on the test set to evaluate the classification

performance.

Objective 6: Evaluation of the trained models' generalization using GPR images.

The best models obtained from each dataset are evaluated using GPR images from archaeological

sites that were entirely excluded from the training process. Confusion matrices are used to compare

the classification performance. The misclassified examples are presented and discussed.

 STATEMENT & CONTRIBUTIONS

This thesis shows that CNN with AlexNet architecture can be trained to classify remarkably well

patterns from structures, geophysical anomalies, and noise in GPR C-scans. With the lack of similar

works in the related literature, this work can be considered a starting base that points to further

improvements. The main contributions are:

6 Introduction

- Guidelines for the dataset construction. This regards the selection of the examples, splitting

them into the test set and training set and using a sliding window to increase the image

number.

- Sharing trained weights. The weights of the models that yielded the best performance will be

publicly available to be used either for predictions or to train new models with transfer

learning. The latter is a recommended direction to exploit that could make training with

smaller datasets possible and improve the training performance when larger datasets are

available.

- Guidelines for the training process. Excessive tests and comparisons were made using the

popular optimizers of Adam and SGD with momentum and Batch Normalization, Dropout, and

Image augmentation techniques. Further, the tuning process is used to study the effect of

learning rate and batch size in training performance. The results provide useful insights in

designing the training process for similar tasks related to GPR and archaeological surveys.

 PUBLICATIONS

This work is heavily based on the data collected, their processing, and their interpretation that was

published in:

- Manataki, M., A. Vafidis, and A. Sarris (2014). "Application of empirical mode decomposition methods

to ground penetrating radar data." First Break No.32. vol.8, pp. 67-71

- Manataki, M., Sarris, A., Donati, J.C., Cuenca Garcia, C., Kalayci, T., (2015). GPR: Theory and Practice in

Archaeological Prospection, in Best Practices of Geoinformatics Technologies for the Mapping of

Archaeolandscapes. Archaeopress Archaeology, pp. 13–24

- Manataki, M., Sarris, A., and Vafidis, A., 2015, July. Combining CEEMD and predictive deconvolution for

the suppression of multiple reflections and coherent noise in GPR signals. In 2015 8th International

Workshop on Advanced Ground Penetrating Radar (IWAGPR) (pp. 1-4). IEEE.

- Manataki, M., Sarris, A., and Vafidis, A., 2015, October. Employing CEEMD for Improving GPR Images-A

Case Study from a Neolithic Settlement in Thessaly, Greece. In 8th Congress of the Balkan Geophysical

Society (Vol. 2015, No. 1, pp. 1-5). European Association of Geoscientists & Engineers.

- Manataki, M., Sarris, A., Kalayci, T., Simon, F.-X., Cuenca-Garcia, C., Donati, J.C., Papadopoulos, N., 2015.

Studying the Variation of Geophysical Signals of the Architectural Attributes of the Neolithic Tells and

Landscape. In the International Conference on Computer Applications in Archaeology, CAA 2015,

University of Sienna, Sienna, Italy.

Introduction 7

 THESIS OVERVIEW

The layout of this thesis is as follows:

- In Chapter 2, the literature survey conducted is given and is divided into four parts: a) review

on the GPR contribution in the archeological investigation, b) review of the DL algorithms and

architectures that perform image classification, object detection, and image segmentation

along with the recent advances, c) a general review of ML and DL algorithms applied in GPR

along with the state-of-the-art and d) review on the related studies that uses DL techniques

with GPR data derived from archaeological prospection.

- Chapter 3 focuses on the application of GPR in archaeological surveys. It includes describing

the GPR principle, the data collection, the obtained data description, and their processing.

Additionally, three case studies are presented to show its capabilities and limitations better.

- In Chapter 4, the theoretical framework behind CNNs is given. It begins with the concept of

learning from data, moves on to the neuron description and feedforward neural networks,

and ends with describing essential operations found in a typical CNN architecture. The

training process is also described, along with challenges commonly met and techniques

developed to overcome them.

- Chapter 5 is a methodological one that summarizes and describes all the steps and actions

taken during this thesis to reach the final outcome. Details are given on the methods and tools

used, data collection, the data processing applied, the construction of the dataset, the

implementation of AlexNet architecture, and the testing process settings that were tested.

- In Chapter 6, the obtained results are presented and discussed.

- Chapter 7 is the concluding chapter, where future work and suggestions are also given.

Additionally, three appendices accompanied this dissertation:

- Appendix A includes additional details on data collection and the MATLAB processing script

used as described in Chapter 5.

- Appendix B includes python examples and scripts used for AlexNet implementation and

training, as described in Chapter 5.

- Appendix C includes complimentary results to Chapter 6.

8

2. LITERATURE REVIEW

In this chapter, the related literature to this research is reviewed and discussed. That includes a brief

review of studies showing how useful GPR is in detecting ancient buildings and foundations and how

it contributes to archaeological prospection. Next, a review of deep learning algorithms and their

recent advances is conducted, emphasizing those based on CNNs and are used to perform image

classification, object detection, and image segmentation. Further, a review of recent studies related

to the automatic interpretation of GPR data using ML and DL algorithms is given. Last, the related

work of this study is presented and discussed.

Literature Review 9

 GPR IN ARCHAEOLOGICAL PROSPECTION

The first attempts to use and study the GPR application in archaeological surveys are reported in the

mid-70s, where GPR was considered an experimental technology [1], [2]. Since then, it has become a

popular geophysical technique in the archaeological investigation to map the subsurface, and with

the latest hardware advances, its popularity is growing. The recorded data quality has improved,

having less noise, while data collection is faster, which allows a denser acquisition with improved

resolution. This led to the multi-channel or multi-offset systems that allow three-dimensional data

collection that increases mapping details and even faster data collection, as is discussed and shown

by Booth et al. [3], by Goodman et al. [4], and by Goodman and Piro [5].

GPR has been proven very efficient to map buried foundations and structural remains with detail in

the near-surface when proper conditions are met, like soils of low conductivity and contrast in the

buried target's electrical properties with the surrounding medium. Numerous studies in the related

literature have proven that fact. A few examples, including recent studies, are the successful mapping

of Roman structures [6]–[10], [11, p. 15], [12], ancient Greek structures [13]–[20], and houses in

settlements of Viking age[11], [21], Iron age[22], Bronze age [23], [24], as well as Neolithic[25]. Aside

from houses, GPR has been used to map and investigate graves, tombs and tumuli [11], [26]–[30], or

more complex structures like roman baths [31], cisterns [32], [33], and ancient theaters[34]–[36]. It

is also possible to detect pit-dwellings, surface-dwellings, farm plots, hedges, and paths, as reported

by Tohge et al., for the case study of Komochi-mura village in Japan [37]. GPR usage has been

expanded in the latest year to study the archaeological landscapes [38]. GPR can also be used to detect

buried antiquities in modern urban environments. An example is given by Papadopoulos et al. in [39].

These are among the reasons GPR has become among the most popular geophysical techniques

employed in integrated geophysical surveys designed for archaeological explorations.

GPR can contribute to archaeological research in many ways, especially when combined with other

methods and technologies. These can be other geophysical methods (i.e., Magnetics, Electromagnetic

Induction, Electrical tomography, Electrical resistivity), satellite and aerial images, drones, soil

sampling, Geographical Integrated Systems (GIS), and Global Position System (GPS). The advantages

of this approach are discussed in [40] by Moffat et al. A few representative examples include the case

studies of Vészto-Mágor tell in Hungary[41], the Iron age settlement at Vesterager in Denmark [22],

and several others in Turkey presented and discussed in [42]. The GPR data can fill with information

regarding the subsurface to help validate the interpretation of information derived from other types

of data and vice versa. When used with GIS and GPS, spatial relations can be studied, assisting in

10 Literature Review

better understanding the past. The main contributions are the high-resolution data when compared

with other geophysical techniques, including depth information that can help navigate and plan the

archaeological excavations. Through advances in processing algorithms, 3D models of the subsurface

can be created, assisting in the detection of the buried antiquities by producing more accurate

representations. Examples are given in [8], [12].

 CONVOLUTIONAL NEURAL NETWORKS

Deep Learning (DL) is a type of Machine Learning (ML) that has met rapid development over the past

decade due to faster computing innovations and the increment in the available digital data. This

development, which is currently ongoing, includes algorithms, methods, and techniques to learn from

the data. Goodfellow et al., in their book [43], showed that a common characteristic of DL algorithms

is that they follow the representation learning [44] approach where the important piece of

information for the learning task, called features, is learned in an automatic way directly from the

data. The latter is the distinguishing characteristic over the ML algorithms, where features are hand-

designed. DL algorithms are mostly applied in computer vision tasks such as image classification,

object detection, image segmentation, image retrieval. For this reason, they are applicable in any

domain that makes use of these tasks. A few examples are medical image analysis, natural language

processing, speech recognition, and text recognition. Several studies exist reviewing the DL

algorithms applied to each domain. DL algorithms reported in the review articles [45], [46] for

computer vision tasks are the Convolutional Neural Networks (CNN), Recurrent Neural Networks

(RNN), Deep Boltzmann Machines (DBMs), Deep Belief Networks (DBNs), Stacked Denoising

Autoencoders (SDAE), and Extreme Learning. Among them, CNNs were developed to be the most

prominent, especially for supervised learning tasks like classification, and soon expanded for any

computer vision task dealing with detection and recognition [47]. Among the reasons they stood out

compared to other DL algorithms, as LeCun et al. describes in [41], is the provision of automatic

feature detection that is performed in a hierarchical manner. Also, they are easy to train using

backpropagation and generalize better. Further, they are easily implemented due to the available

open-source libraries like Tensorflow, Theano and PyTorch, and the Keras API, which offer GPU

computations' advantages. Other are the availability of data along with hardware improvements that

allow the implementation of deeper architectures[48].

Despite the concept proposed during the 80s under Neocognitron [49], it became popular in 2012

with the first Deep Convolutional Neural Network (DCNN) architecture named AlexNet proposed by

Literature Review 11

Krizhevsky et al. [50]. AlexNet architecture was based on LeNet-5, a CNN architecture proposed in

1998 by LeCun et al. for classifying handwritten digits [51]. Besides the structural innovations of a

deeper architecture, AlexNet combined a few key research advances that were found to deal with

drawbacks observed in CNN performance like vanishing gradients and overfitting. These were the

usage of Rectified Linear Unit (ReLU) activation functions instead of tanh, weight initialization, the

usage of a newly proposed generalization technique called dropout, image augmentation, and

training using Stochastic Gradient Descent (SGD) with momentum. Further, it was the first

architecture that was trained using a parallel GPU arrangement. The developments and research

trends that followed are shown in the comprehensive review on CNN developments for image

classification conducted by Rawat and Wang's in [52]. Briefly, these include various advances in

architecture designs (i.e., increments of layers’ number, the concept of Network in a Network,

Inception module, different types of pooling), various modifications and improvements of ReLU

activations and cost functions activation, suggestions for improvements of the regularization

mechanisms (i.e., DropConnect), and various optimization techniques of the training process (i.e.,

different types of weight initialization like transfer learning, and batch normalization). More details

on the developments on the CNN architectures for image classification are given in the recent survey

conducted by Khan et al. in [48]. The authors classify the existing CNN architectures proposed over

the period 1998-2018, according to the innovations made into seven categories: Spatial Exploitation,

Depth, Multi-Path, Width based Multi-Connection, Feature-Map Exploitation, Channel Boosting, and

Attention. Further they discuss the strengths and weaknesses of each architecture listed. Reportedly,

most of the innovations have been made in relation to depth and spatial exploitation that has

improved the CNNs learning capacity. The former includes the architecture of LeNet, AlexNet, ZfNet,

VGG and GoogleNet, while the latter has the architecture of Highway Nets, ResNet, Inception-V3 and

V4, and Inception-ResNet. According to their findings, the latest advances on CNN architectures

replace the conventional layers with blocks acting as auxiliary learners improving further the

performance.

Despite the excellent performance reported, there are many drawbacks and open challenges

reported by many authors in the related literature. Some of them are discussed in [52] and [48].

Among them are:

- the lack of theoretical background that makes CNN acting like a black box difficult to interpret

- the computational cost remains high, and training demands powerful hardware

- a lack of robustness in classification accuracy is observed when adversarial examples are

present

12 Literature Review

- the need for an unsupervised approach as supervised learning and the requirement of

annotation can be restricted for large datasets

- the selection of hyperparameters highly affects the performance, and optimizing them requires

much time, skill, and effort due to the large number and the inevitable trial and error.

- the trained models are exhibiting dataset bias since the training examples were gathered for a

particular task [53].

The CNN architectures and developments mentioned above were made for image classification. Due

to the significant performance improvements the CNN brought, various modifications were made on

popular CNN architectures, like AlexNet, VGG, and Inception, to perform object detection and image

segmentation tasks. A recent survey on object detection CNN-based architecture is conducted by

Sultana et al. in [54]. The various algorithms used are divided into the one-stage approach and the

two-stage approach. Some popular examples of the one-stage approach are the Region-based CNN (R-

CNN), Fast R-CNN, Faster R-CNN, and Mask R-CNN. The two-stage approach includes the You Only

Look Once (YOLO), YOLO9000, the RetinaNet, the Single Shot Multibox Detector (SSD), and RefineNet.

Reportedly, the one-stage approaches perform better but are computationally more demanding.

Image segmentation is divided into semantic and instance. A review of popular CNN-based

approaches proposed and used for image segmentation is given by Garcia-Garcia et al. in [55]. For

semantic segmentation, the Fully Convolutional Network proposed by Long et al. in [56] is a popular

approach that modifies classification-intended architecture to produce spatial heat maps. This is

achieved by replacing the hidden layers with convolutional ones and introducing a deconvolutional

layer for upsampling. A popular architecture built with FCN and used in medical image analysis is the

U-Net [57]. Other approaches are the encoder-decoders, with SegNet [58] architecture being one

example, and the Conditional Random Fields (CRF) with DeepLab being an example [59]. On the other

hand, instance segmentation is more challenging as it also includes the object detection problem.

Hence modifications are proposed on architectures used for object detection tasks like R-CNN, Mask

CNN, and faster CNN, with the Simultaneous Detection and Segmentation method (SDS) [60] and

DeepMask [61] model being two examples.

Several future directions have been proposed as well in [47], [48], [52]. One of them is the

combination of CNN, RNN, and reinforcement learning to achieve a deeper level of image

understanding, while another is the use of ensemble learning that combines multiple and diverse

architectures to improve generalization and improve accuracy and robustness.

Literature Review 13

 DEEP & MACHINE LEARNING APPLICATIONS IN GPR

The automatic interpretation of GPR data is among the open research topics in the GPR community.

The motive is the non-intuitive nature of the GPR data with complex patterns, which makes their

interpretation difficult and prone to mistakes regardless of the field of application, i.e., archaeological

prospection, civil engineering, etc. The first attempts are reported in the late 90s and aimed to detect

the hyperbolas in the B-scans using pattern recognition and image analysis trends at the given time.

A couple of examples are Capineri et al.'s work [62] based on Hough transform, and the work by Al-

Nuaimy et al. in [63] that took a step further and combined neural networks and Hough transform to

detect and classify hyperbolas associated with buried targets.

The research interest was grown as ML algorithms and techniques were advanced, which led to their

use to approach more complex GPR problems than hyperbola detection from B-scans. These included

attempts to identifying the material of the buried object using synthetic data [64], [65], as well as

more application-driven tasks like to assess the condition of railway-ballast [66]. These approaches

have as common the use of a pattern recognition technique to extract features and then use SVM to

classify them. Other attempts used ML algorithms performing object detection like the Viola-Jones

used in [67] to detect and fit hyperbolas in real-time from B-scans. At the same time, Artificial Neural

Networks (ANNs) are also becoming a popular method to approach GPR problems related to

automatic interpretation. Travassos et al. conducted a review in [68] on various approaches based

on ML algorithms and ANNs combined with their GPR data application. Most of the studies mentioned

use B-scans for rebar detection and landmine detection, and the problem has expanded from

detecting hyperbolas to detect and localize targets. Regardless of the application, Travassos et al.

identified three typical stages, with the first one being a preprocessing stage. An image segmentation

stage was performed with ANN to classify areas of interest with hyperbolas, followed by a diagnosis

stage that uses ML techniques to identify patterns. The latter involves SVM, Hidden Markov Models

(HMM), Decision Trees (DT), and K-Nearest Neighbor, to name a few. All the above-mentioned

attempts mention positive and promising results; however, several issues are reported. One of the

challenges commonly addressed in the previously mentioned studies is the limited GPR data

availability that prevents achieving a good generalization on a larger scale. Another is the complexity

of extracting representative and effective features, especially when used in real-world data. Last is

the need to expand these approaches on 3D data since GPR systems have developed to collect them

and are used in several applications.

14 Literature Review

Several GPR studies are exploiting ML algorithms. In a recent one conducted by Giannakis et al. [69],

a framework has been developed to model GPR data acting as a solver for the EM forward problem.

Their work shows an alternative to the computationally demanding approach of the Finite-Difference

Time-Domain (FDTD) used by gprMax software [70], [71]. The same authors have also proposed a

new automated data interpretation scheme based on the regression task that identifies the diameter

and depth of reinforcement rebars by receiving a single A-scan as input [72]. Despite training used

entirely synthetic data, it generalized well on tests with real data. Another application is the

automatic rebar detection and deterioration of the bridge deck concrete made by Asadi et al., [73],

where they combine HOG feature extraction, Adaptive Boosting algorithm (Adaboost), and adaptive

polynomial filters using real GPR B-scans for both training and testing, which returned very good

results. The authors have made the dataset they used for training, called DECKGPRHv1.0, publicly

available. HOG feature extraction is also used by Skartados et al. [74] in a proposed methodology to

detect hyperbolas from real GPR data. They combined it with a preprocessing step that performs

segmentation on the A-scans and SVM to classify the extracted features.

However, most of the latest studies related to automatic interpretation focus on DL algorithms and

CNN that perform image classification, object detection, and segmentation tasks. This is an outcome

of CNN's automatic feature extraction ability from raw inputs and the development and improvement

of open-source DL libraries that make implementation easy while elaborating GPU's computation

advantages without any further effort. Hence problems approached with ML and pattern recognition

are re-approached from a DL perspective using mainly CNN-based algorithms. While some studies

focused on hyperbolas detection from GPR B-scans using either image classification or object

detection DL algorithms, others are more application-centered, with the majority being related to

Civil Engineering problems and landmine detection. However, their small number up to date shows

that DL research on GPR data is still new and in an early and experimental stage, with growing

interest. A summary of the studies that employ DL using GPR data is given in the following

paragraphs.

Regarding the hyperbolas detection studies, the implemented CNNs are either trained using synthetic

B-scan images and validated with real B-scan images [75] or trained with real B-scan training

datasets that were built from scratch [76], [77]. A practical guide for designing, training, and

optimizing CNNs for classifying B-scans is given by Reichmann et al. in [77], where they mention

several methods and techniques known to improve CNN performance. Among the mentioned ones

are weight initialization, regularization techniques (L2 and dropout), data augmentation, and the use

of pre-trained networks. The authors of [77] also compare the performance of three different CNN

Literature Review 15

configurations with the HOG feature and Random Forest classifier, reporting that all three CNNs

performed better. Pham and Lefevre performed a similar comparison in [78] between the

performances of two object detection algorithms, the Faster R-CNN and the Cascade Object Detection

(COD), based on HOG and Haar features. They reported that R-CNN outperformed COD in detecting

hyperbolas from B-scans. In a different study, Ozkaya et al.[79] introduce the Convolutional Support

Vector Machine (CSVM) network to detect hyperbolas in Bscans and classify the reflectors' shape and

material and the soil type. Their proposed approach was trained and tested on simulated data, and

the performance was compared with the popular CNN architectures of AlexNet, VGG16, GoogleNet,

ResNet, and SqueezeNet, returning better results.

DL algorithms are applied and studied in several Civil Engineering applications that use GPR data and

aim to detect and interpret the features of interest automatically. A few examples are using object

detection with the SSD algorithm to detect rebars in concrete [80], detecting pavement distress using

R-CNN, and detecting internal defects in tunnel lining through segmentation [81]. The latter study's

authors, Yang et al., propose a new segmentation scheme, named defect segmentation, and compare

its performance with SegNet and U-net. Additionally, a series of studies are conducted on different

DL approaches and their ability to detect cavities, pipes, manholes, and subsoils in the urban streets

in South Korea. Kim et al. [82] use AlexNet with B-scans to classify hyperbolas patterns attributed to

the targets mentioned before, while Kim et al. [83] and Kang et al. [84] use both C-scans and B-scans

to train AlexNet for the same purposes. Further, CNN architectures are proposed that are trained

using tri-planar GPR data and 3D voxel data by Kim et al. [85] and Khudoyarov et al. [86], respectively.

Last, a survey on the advances of deep learning application in GPR and Civil Engineering has been

conducted by Tong et al. [87]. They review and compare the various methods used in the recent

literature. They conclude that the approaches where A-scan were used as training data tend

performed better.

As for the recent studies focusing on landmine automatic detection, they follow a similar concept,

using an object detection approach with faster R-CNN [88], an image classification approach using

CNN with a LeNet inspired architecture [89], and an Autoencoder approach to analyze volumetric

data [90]. Other notable applications involve water content classification using A-scans with a

regression approach using 1-D CNN [91], and DL approaches to the inversion problems. In the latter,

Alvarez and Kodagoda in [92] propose a framework to transform GPR B-scans into permittivity maps

that are easier to interpret. The approach they follow solves the migration inversion problem using

semantic segmentation architectures that are trained with synthetic data. The architectures they

explore are the U-Net, Encoder-Decoder, and cGan. In a similar study, Liu et al. introduce GPRInvNet

16 Literature Review

[93], an architecture based on Encoder-Decoder and was used to reconstruct permittivity maps of

tunnel lining from GPR B-scans. Last, Rice et al. [94] explore the Generative Adversarial Networks

(GANs) to produce realistic GPR B-scans.

The studies mentioned above, which are among the first attempts of using DL with GPR data, show

the latest trends in the literature exploring automatic interpretation, and all of them report promising

and good results. This shows that DL can work well with GPR data. However, this is judged on small-

scale experiments based on the dataset used in each study and GPR application. To test each

approach's generalization, it requires larger-scale experiments, and hence, bigger datasets that are

currently lacking. Besides, DL and automatic feature detection may still not be the best approach for

all GPR problems related to automatic interpretation. This is mentioned in a recent study conducted

by Malof et al. in [95] to detect buried threats. They find that traditional classification ML approaches

with handcrafted feature extraction still perform better. Another drawback that was mentioned in

several studies is the incapability to discriminate similar hyperbolic patterns in B-scan derived from

the different buried targets. Some recommended solutions to this, either than sharing data, are to use

transfer learning and GANs to produce realistic GPR images and increase the training number.

 RELATED WORK

Deep learning applications in GPR data derived from archaeological prospection are currently

unexplored. The recent study conducted by Küçükdemirci and Sarris in [96] is the closest and only

one found towards the direction that this Ph.D. research is heading. Küçükdemirci and Sarris applied

semantic segmentation using U-Net to identify buried structures in C-scans. Their results were

particularly good, which encourages further research and points a future direction in the analysis of

GPR data derived from archaeological investigations. Hopefully, the current study will add to this

direction by exploring image classification using AlexNet to classify C-scans that contain buried

structures. Similar to the guide of [77], an emphasis is given to the training process, as well as

applying techniques known to improve the performance. Additionally, different approaches to

construct the training dataset are examined, aiming for a better training process and generalization.

17

3. GPR FOR MAPPING ANCIENT

STRUCTURES

Ground Penetrating Radar is a near-surface geophysical method proven to be an appropriate tool in

archaeological prospection. There are many studies in literature where authors manage to map

buried antiquities like roads, paths, public and residential buildings, graves, etc. The operation

principle of GPR lies in the interaction of E.M. energy with the matter. An antenna is transmitting and

receiving E.M. pulses that are injected into the ground. The method is strongly affected by the

medium's electrical properties, especially the conductivity, and the permittivity, which affect the

transmitting signal’s penetration and velocity. Besides the electrical properties, the penetration

depth is affected by the central frequency, which is decreasing as the frequency increases. The

acquired data are called radargramms, and under certain processing, depth slices of the subsurface

can be extracted. These are actual images of the subsurface showing areas with high contrast in

electrical properties. When the conditions are ideal (low conductivity environments, flat surface, lack

of vegetation), GPR can provide highly detailed and accurate results. Otherwise, it can still perform

well as a complementary method if proper processing is done.

This chapter's material has been published in Manataki, M., Sarris, A., Donati, J.C., Cuenca Garcia, C.,

Kalayci, T., (2015). GPR: Theory and Practice in Archaeological Prospection, in Best Practices of

Geoinformatics Technologies for the Mapping of Archaeolandscapes. Archaeopress Archaeology, pp.

13–24

18 GPR for mapping ancient structures

 GPR OVERVIEW AND APPLICATIONS

Ground Penetrating Radar (GPR) is a non-destructive electromagnetic (EM) geophysical technique

that uses radio waves, in the frequency range of 10MHz to 2GHz, to map the subsurface. The first

reported attempt of using radio wave signals to measure subsurface features was by El-said in 1956

[97], who tried to map the depth of a water table. The development of the method accelerated

considerably after 1970 due to the tremendous progress in electronics and computer technology.

However, it was not until after 1985 where the major advancement of GPR occurred [98]. During this

period, GPR technology draws attention worldwide, as it has become more affordable, expanding its

applications. Consequently, GPR's strengths and weaknesses were better examined and understood,

which opened new ways into hardware development and improvements. Recent hardware

advancements include multichannel systems that have greatly improved the speed, area coverage,

and spatial resolution, as discussed by Goodman and Piro in [5].

GPR can be used in several geosciences’ applications like to map the bedrock’s depth [99], to

determine the stratum thickness and the aquifer depth [100], to locate physical and artificial cavities

in the subsurface [101], as well as fracture zones [102], [103]. It is widely used in archaeological

prospection capable of detecting a variety of archaeological features, as was discussed in Chapter 2.

In the following sections, GPR's operational principle is given along with all the important parameters

that affect its performance in archaeological surveys. Additionally, a few practical data processing

steps are briefly described using real-world data. Finally, three case studies are presented, and the

capabilities of the method are discussed.

 GPR OPERATIONAL PRINCIPLE

GPR is an electromagnetic technique (EM), and its operation principle has similarities with the

seismic reflection method. A typical GPR system consists of the antenna, the timing unit, and a

portable computer (Figure 3.1a). The antenna is responsible for emitting and detecting EM energy

(10~2000MHZ) through a transmitter (Tx) and a receiver (Rx). The timing unit is an essential part

since it controls the radar signal generation and converts the received signals as a function of time.

The processing unit is used for storing the data and displays them in real-time.

The operation principle of GPR is simple. The transmitter emits high-frequency pulses of short

duration into the ground that “travel” through the subsurface until they meet a different material

boundary. At this point, part of the energy is reflected towards the surface and recorded by the

receiver antenna (black arrows in Figure 3.1b), while the remaining energy is diffused deeper (red

arrow in Figure 3.1b) until it hits another boundary, where it will be reflected and diffused again. This

GPR for mapping ancient structures 19

process reaches an end when all the energy is absorbed by the ground. This boundary or reflector is

defined by differences in subsoil materials' electrical properties, such as conductivity and permittivity.

Both affect the EM waves’ propagation and are of significant importance. Conductivity affects the

energy absorption, thus the signal penetration and the depth of the investigation, while permittivity

affects the wave velocity. In general, GPR is most useful in low-electrical-loss materials (i.e., very low

conductivity values). Clay-rich environments or areas of saline water will negatively affect the

method’s effectiveness, as explained by Cassidy in[104].

Figure 3.1: Illustration of GPR operation principle. In a) the system components are described, while in
b) the behavior of the EM waves when they meet a boundary with different electrical properties from
the soil (ε1>ε2). Part of the energy is reflected towards the surface, and another one (red arrow) is
diffused at deeper levels (concept re-created from Daniels in [105]).

Unlike magnetic or electrical methods, GPR does not directly measure the properties of the ground.

The receiver records the amplitude of the reflected pulses with respect to their travel time. This time

series is called trace or A-scan. The travel time, also known as double travel time or two-way time, is

the time that a signal needs to make the route transmitter-reflector-receiver and depends on the

propagation velocity of the EM pulses. When an EM pulse leaves the transmitter, its energy is spread

at different paths that are illustrated in Figure 3.2. In this example, the subsoil consists of two

homogeneous layers of different electrical properties. The first records are the direct airwaves and

ground waves since EM waves reach their maximum velocity when traveling in the air (0.3x109 m/s).

Additionally, they exhibit the highest amplitude values since the energy loss during this path is

minimum. Critically refracted and reflected waves exhibit slower velocities that depend on the

20 GPR for mapping ancient structures

medium's electrical properties, and their recordings appeared later than the direct waves. If the

velocity is known, then the depth of the reflector can be determined.

To better explain the GPR records or traces, an earthly homogeneous layer (without contrast in

electrical properties) is used as an example. Suppose a trace is recorded at a fixed position on that

layer's surface. In that case, it will bear information only from the direct waves with no other

reflections due to the homogeneity in electrical properties. Suppose a second homogeneous layer of

different electrical properties exists below. In that case, the resulted trace will exhibit amplitudes

from the direct waves, plus amplitudes corresponding to waves that were reflected at the boundary

between the two layers (like in Figure 3.2), with no further information. For a non-homogeneous case

scenario, the recorded traces are much more complicated, bearing multiple reflections. Hence, GPR

A-scans can reveal stratigraphic information.

Figure 3.2: Illustration of the paths that an EM pulse can follow between the transmitter and the
receiver. The direct airwaves and ground waves are the earliest records and are located at the top of
the trace, while objects and regions in the subsurface called reflectors cause the refracted and reflected
waves. In this illustrated case, the reflector is the boundary between the two layers. (Concept is redrawn
from Annan in [106]).

 DATA COLLECTION & SURVEY PARAMETERS

The most used GPR system in archaeological investigations is the common-offset reflection. In a

common offset array, the transmitter and the receiver have a fixed spacing and orientation. The A-

scans are collected by moving this fixed offset along the surface along a line called the survey line

using a regular distance interval. The line’s direction is referred to as the scan-axis as well as Y-axis

or X-axis when following a cartesian reference system. The concept is illustrated in Figure 3.3a.

Additionally, in the common-offset reflection systems, antennas come with a fixed central frequency.

GPR for mapping ancient structures 21

Frequency is a crucial parameter that affects both the investigation depth and data resolution. The

higher the central frequency, the lower the pulse penetration depth, and the higher the resolution in

both vertical and horizontal directions. This is due to EM wavelength and pulse width being inversely

proportional to the frequency as explained in [104], [106]. Thus, prior to the survey with GPR, one

must know the target(s) expected depth and select a frequency that allows reaching that depth. The

antenna frequency selection is based mainly on experience taking into account the ground

conditions. For example, a range of 200-300MHz can penetrate up to 2-3 m if the ground conditions

(i.e., conductivity and permittivity) are appropriate. Less is expected otherwise, mainly due to the EM

signals’ attenuation.

The data in archaeological surveys are usually collected by employing grids that cover an area under

investigation. The grids are set using a local cartesian system, mainly where several lines are

collected and are usually directed along the Y-axis. An important parameter is the line spacing, which

is the distance between the GPR parallel profiles (denoted as Δx in Figure 3.3b) and affects the spatial

coverage and how well the target will be resolved in the obtained data. Line spacing is a fixed value

and is set according to the antenna’s central frequency, and size used, as well as the targets’ expected

size and geometry. For detecting buried structures and foundations, a line spacing of 0.5m usually

suffices when combined when frequencies in the range of 200-300MHz are used. However, lower or

smaller sizes are also used depending on the expected target size and the survey needs. The

architectural remains can be mapped without losing spatial information, while unnecessary

overlapping is avoided. The higher frequency antennas have a smaller size, and hence, smaller

spacing is used (i.e., 0.25 for a 500MHz) to cover the same distance without leaving gaps that will

lead to spatial information loss.

While GPR transmits signals continuously, the records are discrete signals. Hence, caution should be

given to the sampling intervals in time and distance. The spatial sampling interval, Δy, defines how

often the traces are recorded along the survey line (denoted as Δy in Figure 3.3a). In other words, it

is the distance between two consecutive collected A-scans. Thus, it affects the total number of traces

that the line will include. A small value will result in a high detail coverage, but caution is needed to

avoid oversampling that slows down data collection speed without adding any further information.

Usually, this value is selected with respect to the central frequency. The time sampling interval is the

time lapse between two records in the same trace (spacing between the black dots denoted as Δt in

Figure 3.3a), and it affects the resolution on the vertical axis. This value is set according to Nyquist

criteria and the antenna’s central frequency, as Annan explains it in [106]. In the recent GPR system,

22 GPR for mapping ancient structures

the time interval is set automatically. As an example, the Noggin system by Sensors and Software

equipped with a 250MHz antenna uses the value Δt=0.4ns.

Figure 3.3: Survey parameters of common offset reflection GPR systems. (a) As the antenna is moving
along the surface, traces are recorded with a step that is defined by Δy along the scan axis. Additionally,
each trace includes a finite number of records (black dots) that are obtained with a step of Δt. (b) The
survey grids consist of parallel lines that are separated by a constant distance defined by Δx.

As the antenna moves along the scan axis, traces are collected, forming the image of Figure 3.4a. When

a colormap is applied to this image, the outcome is called B-scan, radargram, or section and can be

viewed in real-time while surveying (Figure 3.4a). B-scans reveal stratigraphic information along the

survey line. The reflections from targets may appear in hyperbolic forms or as linear reflections

depending on the antenna's orientation with respect to the target geometry. Assuming a buried wall,

as showing in Figure 3.5a, if the survey line is oriented perpendicular to the wall (“point” target), the

latter will form a hyperbola on the B-scan. If the scan-axis is oriented parallel to the wall's longest

dimension, then a linear anomaly will be formed (Figure 3.5b). Also, if the velocity is known, the time

axis can be converted to distance, indicating the depth of each reflector. In case the velocity is

unknown, it can be estimated from the hyperbolas appearing on the sections. This operation is

included in every GPR processing software package and is usually carried out by fitting a curve on a

hyperbola in a B-scan.

Figure 3.4: Description of a GPR image acquired from a survey line. (a) shows the collected traces plotted
together (a), while (b) shows the resulting image after applying a colormap, known as B-scan,
radargram, or a section.

GPR for mapping ancient structures 23

Figure 3.5: Description of hyperbolas and linear anomalies shown in GPR B-scans. (a) Hyperbolas are
formed from small targets or walls that the antenna passes perpendicular to their longest dimension.
(b) Linear anomalies characterize linear reflectors and are formed when the antenna is moving along
its longest dimension. The B-scans presented here are synthetic and were made using the gprMax
software [70], [71].

 GPR DATA PROCESSING

Processing is an essential and time-consuming procedure aiming to highlight reflections related to

the target(s) while removing unwanted information, i.e., noise. Various types of noise are present in

GPR data. The most common are white or random noise and coherent noise. The former usually

appears at deeper levels, overshadowing reflections from targets if they exist. Coherent noise can be

caused by external sources (cell phones, TV antennas, etc.) or by the EM energy that escapes towards

the air and is reflected by objects on the surface (trees, modern buildings, cars, rocks, electrical

cables, etc.) back to the transmitter. Coherent noise appears as echoes similar to the ones caused by

targets, and caution should be exercised during interpretation.

As described previously, the B-scans are created by moving a transmitter-receiver array along a

survey line on the surface and are 2D images of the subsurface. The horizontal axis is the distance

vector (m), while the vertical axis is the double travel time (ns) or can be converted to depth (m) if

the EM travel velocity is known. When working in grids, 3D images of the subsurface can be

constructed from the B-scans where depth slices or C-scans are extracted. Depth slices are also 2D

images where the two axes are the distance vectors X and Y of the survey grid and provide

information about the subsurface reflections at a specific time or depth. In other words, they are the

resulting images when slicing the 3D volume in time.

24 GPR for mapping ancient structures

Data processing of GPR data can be divided into two major stages: (1) the processing of the

radargrams where signal processing techniques are used, and slices are extracted, and (2) the

processing of slices where image processing corrections are applied. The emphasis is given to the

first stage that aims to filter out the noise from the data and enhance the reflections from the

subsurface. Some standard processes that are usually applied regardless of the field of application

are[107]:

• Traces reposition corrects the position of GPR traces in a survey line. This correction is

helpful to eliminate systematic offsets in survey lines’ starting and ending position, which usually

occurs in rough terrains.

• Time-zero correction estimates the first pulse's correct vertical position that left the antenna

and entered the subsurface. The effect of time zero correction is shown in Figure 3.6b, where Figure

3.6a is the raw section.

• Dewow filter removes low-frequency noise derived by low-frequency energy near the

transmitter and is associated with electrostatic and inductive fields. The dewow filter output is

presented in Figure 3.6c.

• Gain operation corrects the attenuation effect. There are a few different types used, namely

the Automatic Gain Control (AGC), the constant gain, and the Spreading & Exponential Compensation

(SEC) gain, and Inverse Amplitude Decay (IAD). However, when applied gain regardless of the type,

the existing noise is also highlighted. The effect of gain is presented in Figure 3.6d, where IAD has

been applied.

• Background subtraction filter reduces the random noise from the data and removes the direct

waves and background noise. For archeological prospection GPR data, it was found more efficient to

apply it after gain as it removes the noise enhanced by the latter while retaining the wanted

information. This is shown in Figure 3.6e.

• Frequency domain filtering includes low-pass and high-pass 1D filters that remove high or

low-frequency noise, respectively. These filters can be combined to retain frequencies at a specific

range and are called bandpass filters. The effect of a bandpass filter is presented on the C-scans of

Figure 3.7. The stripping noise caused by plowing lines is effectively removed by selecting an

appropriate frequency range, as shown in Figure 3.7b, where barely visible structures are

highlighted. However, finding a good frequency range is a challenging and tedious task.

GPR for mapping ancient structures 25

• Migration is an inverse process that removes distortion due to diffraction by reconstructing

the reflections to fall at their correct position. When applied successfully, a hyperbola will be reduced

to an isolated point target that is more accurate and easier to interpret representation. However, the

migration requires velocity information that is usually not available and cannot be accurately

estimated from common offset data. For GPR data, the Kirchhoff Migration is usually applied that

requires a fixed velocity estimate rather than a velocities model.

The abovementioned filters and corrections are considered basic but are not standard, apart from

time-zero correction and dewow, meaning that they may not always improve the B-scans. GPR data

are known to be site-dependent, resulting in trial and error to find an effective processing workflow.

By the time the processing on the B-scan is complete, Hilbert Transform (HT) is applied to calculate

the Instantaneous Amplitude [108] and to extract depth slices (Figure 3.7). The slices indicate the

changes in the instantaneous amplitude at a certain time, as mentioned earlier. High values designate

big changes in electrical properties and high reflectivity.

Figure 3.6: A processing example of a GPR B-scan. In (a) is the raw image, in (b) the time zero correction
is applied, in (c) the outcome of dewow filter is shown, in (d) the gain correction is applied, while in (e)
is the outcome of average background noise removal. The GPR profiles were derived from the
geophysical survey conducted by the GeoSat ReSeArch lab IMS-FORTH Institute at the monument of
Yperia Krini in Thessaly.

26 GPR for mapping ancient structures

Figure 3.7: Bandpass filtering effect that is shown on a C-scan. In (a) is the C-scan after the basic
processing, while (b) is the resulted C-scan of bandpass filtering. Structures that were not visible before
are highlighted. The presented depth slices were derived from the geophysical survey conducted at
Magoula Almyriotiki, Thessaly, by the GeoSat ResArch lab IMS-FORTH.

 CASE STUDIES EXAMPLES

3.5.1 Ancient Demetrias

The ancient city of Demetrias is located south of the modern city of Volos in Thessaly. The city was

established by the Macedonian military leader and eventual king, Demetrius Poliorcetes (337-283

BCE) in 294 BCE [109]. The city became the royal residence of the Antigonid dynasty of Macedonian

kings and flourished as an international and political center. The city permanently fell to the Romans

following the battle of Pydna in 168 BCE. The Antigonid dynasty was immediately dissolved, and the

Roman province of Macedonia, of which Demetrias was a part, was officially established a few

decades later in 146 BCE. During the Roman Imperial period, many central areas of the city, including

the Hellenistic palace area, were used for burials. Demetrias experienced a brief recovery beginning

in the 4th century CE when the Roman emperor Constantine the Great made the city an episcopal

sit[109]. Early Christian churches attest to this change in fortune. The city was finally abandoned

during the 6th century CE, and it was never reoccupied again.

The geophysical survey at the ancient Greek city of Demetriada was conducted during March 2014,

where two GPR systems were used. The first was a single channel Sensors & Software NOGGIN Plus-

Smart Cart system equipped with a 250 MHz shielded antenna frequency (Figure 3.8a), and the

second was a multi-channel MALÅ Imaging Radar Array (M.I.R.A.) with 400 MHz antennas (Figure

GPR for mapping ancient structures 27

3.8b). Both radars were employed to survey the soccer field area located east of the city agora and

southeast of the Hellenistic palace. The area was ideal for using GPR due to the flat surface and the

lack of vegetation. The total area covered is 120mx60m, where the line spacing was 0.5m. The results

for both radars are very detailed and presented in Figure 3.9.

Figure 3.8: GPR survey at Demetria’s soccer field. (a) Single-channel Noggin GPR equipped with a
250MHz antenna operated by Merope Manataki and (b) the multichannel Mala Mira GPR equipped with
400MHz antennas operated by Dr. Carmen Cuenca-Garcia.

Figure 3.9:GPR results from Demetria's area at the soccer field. (a) The slice at 0.4-0.5m depth derived
from Noggin GPR and (b) the slice at 0.47m derived from MALA Mira.

28 GPR for mapping ancient structures

The architectural features' overall arrangement beneath the soccer field recalls Hellenistic and

Roman urban houses with courtyards or gardens in the back and shared partition walls between

houses [110], [111]. Two main roads are clearly distinguished (Features 1 and 2 in Figure 3.9), with

a dense collection of buildings in the rectilinear city blocks in between. Features 3 and 4 seem to be

a single structure with at least seven rooms located at the west and a large free zone at the east with

few walls that functioned as a backyard courtyard or garden. A similar arrangement is noted with

Features 5 and 6. Features 7 reveals another collection of rooms that take up the city block's whole

width, but there is no clear evidence for an open courtyard. The survey found another cluster of the

room described by Feature 8, while Feature 9 appears to be a large open area that is not clear if it

relates to Feature 8. More than a dozen rooms were mapped from Feature 10 and at least four from

Feature 11.

3.5.2 Ancient Mantinea, Peloponnese, Greece

Mantinea was established within a level flood basin of northeastern Arcadia in the Peloponnese

before the middle of the 5th century B.C.E. Due to the lack of archaeological and literary evidence up

to the present, its date of foundation remains unknown. In 385 BCE, the city was destroyed by a

Spartan invasion, and its citizens were forced to depopulate. For 15 years, Mantinea was abandoned

until it was reestablished in 370 BCE after Sparta’s defeat in the Battle of Leuctra. The city played a

prominent role in the activities of the newly established Arcadian League during the 4th century

B.C.E., and, along with Megalopolis and Tegea, continued to be an influential regional presence in

Arcadia and the Peloponnese for several centuries.

The known archaeological features at Mantinea include the well-preserved elliptical fortification

walls, approximately 4 km in circumference, and the agora and theater at the center [112]–[114] but

very little of the remaining urban area inside the fortification walls (~120 hectares) has been

explored. A geophysical survey through the use of soil resistivity and magnetic methods was

conducted by the University of Patras (Greece) from 1988-91 northwest of the theater [115]. The

target area was limited to 1 hectare, but the survey revealed evidence for subsurface streets arranged

at right angles together with various buildings, possibly domestic in nature.

A geophysical survey was conducted to explore the structure and urban development of the classical

Greek city of Mantinea in the Peloponnese through an intensive geophysical fieldwork campaign

carried out by the Laboratory of Geophysical, Satellite Remote Sensing and Archaeo-environment of

the Institute for Mediterranean Studies (FORTH). For this task, the GPR system Noggin smart cart of

Sensors & Software (Figure 3.8a) was also employed using a 250MHz antenna. An area of 2.45ha was

GPR for mapping ancient structures 29

covered in total with GPR using 0.5m spacing between each transect. The data acquired with Noggin

GPR were noisy, but they exhibit anomalies related to buried structures. To enhance the anomalies

related to buried antiquities the data were processed using the following corrections order: trace

reposition, time zero correction, dewow filter, S.E.C. gain, background removal, bandpass filtering,

and migration. Here, the results obtained from the eastern side of the agora are presented (Figure

3.10a).

Figure 3.10: GPR results on the eastern side of the agora at Mantinea. (a) GPR slice illustrating the
anomalies at 1.0-1.1 m depth. (b) Comparison of the French plans (black color) and interpretation (red
color) occurred from selected GPR depth-slices using ArcGIS.

Figure 3.10a illustrates the slice at 1.0-1.1m estimated depth, where public buildings, including a long

“L” shape stoa with columns, appear as strong anomalies with detail. Many of them seemed to match

the public buildings excavated by the French in the 19th century and were reburied [116]. The

similarities and differences with the French plans are shown in Figure 10b, where black lines are the

findings of the excavation while red lines are the interpretation of the GPR data as occurred from all

the depth slices. There is an inclination in the orientation of the whole settlement. The “L” shape stoa

has double internal rows colonnades in the northeast direction and a single row along the north-

30 GPR for mapping ancient structures

south direction. Two adjoining structures also appear as strong linear anomalies behind the west of

the stoa. Those structures also appear in the French plan. The southern one is almost a perfect square

and is subdivided into smaller rectilinear rooms on either side of larger central rooms. The French

plan of the agora did not show the internal subdivision of space. Only a part of the other structure

could be surveyed because of a large tree, but it is clear that it is smaller than its neighbor and likely

had no interior rooms. The building is also oriented at a diagonal angle (unlike the southern building),

which is a distinct characteristic that is not present on the French plan. Another notable anomaly to

the northeast is a small structure and is also set at a diagonal angle. There does not appear to be an

internal subdivision of space.

3.5.3 Neolithic Thessaly, Greece

A large-scale geophysical exploration was conducted by the Laboratory of Geophysical, Satellite

Remote Sensing and Archaeo-environment of the Institute for Mediterranean Studies (FORTH)

during 2014 at numerous Neolithic tell sites, known as Magoules, in Thessaly. The purpose of this

study was the identification of intra- and inter-spatial patterns of Neolithic settlements in regions

under study through the comparative study of both archaeological and geophysical data. Non-

destructive geophysical methods like electrical resistivity, magnetics, E.M., and GPR were used on

selected sites that were either partially excavated or identified by survey expeditions. The most

remarkable results were derived from magnetics and included various Neolithic features like ditches,

enclosures, paleochannels, burnt structures, daub, and stone structures, etc.

Figure 3.11: GPR and magnetic results from Magoula Almiriotiki. (a) GPR slice at 0.7-0.8m and (b)
magnetic results. GPR exhibits better resolution revealing that the large structure on the magnetic
results is a cluster of buildings.

Survey with GPR on those environments was not an easy task due to the rough terrain and the

modern cultivations. The geomorphology of the area and the soil condition (clay-rich environments)

GPR for mapping ancient structures 31

resulted in noisy data with minimal signals penetration (up to 1.0m). Thus, GPR was used mostly as

a supplementary method to enrich the information obtained from other geophysical methods. This

case study aims to show the contribution of GPR, even though the data were problematic. One

example is presented in Figure 3.11. The left image is the depth slice derived from GPR with a 250MHz

antenna at Magoula Almyriotiki, while the right image is the magnetic results from the same position.

Even though GPR could not map all the structures as the magnetics did, it shows better resolution to

the mapped ones revealing that the big structure appearing on the magnetic data is, in reality, a

cluster of individual smaller houses.

Figure 3.12: GPR and Magnetics obtained results from Magoula Perdika 2. (a) GPR slice at 0.7-0.8m and
(b) magnetics results from the same position. GPR revealed a structure, probably stone-made, that is
barely visible with white shades on the magnetics data. Both images are georeferenced in ArcGIS.

A different example comes from Magoula Perdika 2 (Figure 3.12). In this case, GPR managed to map

a structure with great detail (Figure 3.12a) that is barely visible on the corresponding magnetic

results (Figure 3.12b). This contrast between the two methods gives additional information about the

structure’s building materials that is most probably made of stone. This is because magnetics can

better map burned clay structures as they exhibit greater contrast in magnetics properties, and

hence, a stone structure will appear more faded than a burned one. On the other hand, GPR is relying

32 GPR for mapping ancient structures

mostly on the contrast of the electrical properties, and stone structures are expected to cause

stronger reflections.

 DISCUSSION

In this chapter, an overview of GPR's theoretical background was given, including data collection and

processing, emphasizing mapping structures where three case studies were presented. The aim here

was to show the capability and limitation of GPR to detect structures. Overall, GPR is proven to be a

great tool for archaeological investigations. When soil conditions and geomorphology are

appropriate, GPR can provide detailed data of the subsurface and successfully map numerous

features, including buried structures, roads, and city blocks. The results were also proven accurate

when compared with ground truth information. Even if the survey conditions are not ideal and high

noise levels exist in the data, it is impossible for them to be improved with a proper data processing

workflow. For such cases, GPR can still perform nicely as a complementary method providing

additional information to understand the subsurface’s real conditions better.

33

4. THEORETICAL FRAMEWORK OF CNNS

Convolutional Neural Networks (CNNs or ConvNets) are part of the Artificial Neural Networks (ANNs)

evolution that started with the introduction of the perceptron back in 1958. The use of convolutional

layers in neural network architecture was firstly introduced in the model of Neocognitron by

Fukushima in 1980 [49]. Based on this concept, along with developments in ANNs gradient-based

training algorithms, LeCun et al. introduced a CNN architecture named LeNet-5 for handwritten digits

classification in 1998 [51]. LeNet-5 is the foundation of every CNN architecture used nowadays. CNNs

follow the same framework as other Neural Networks and ML algorithms in order to learn from data.

In this chapter, this framework is described, emphasizing image classification. It begins with the basic

Machine Learning (ML) concept to learn from data, proceeds with training a neuron using gradient-

based algorithms, continues with training the Feed Forward Neural Networks (FFNs), and expands

in applied these to a CNN architecture. Further, methods and techniques to improve training are also

discussed as they play an important role in more recent CNNs developments and state-of-the-art

performances.

34 Theoretical Framework of CNNs

 THE CONCEPT OF LEARNING FROM DATA

Learning from data is among the primary purposes of Machine Learning. As a notion, “learning” is

abstract and may expand to different domains and applications. Even in ML, there is no strict

definition of it, and, as Goodfellow et al. mention in [43], many authors describe its concept

intuitively. However, there are attempts for a formal definition. Mitchell in [117] defines learning

from data in terms of experience, tasks, and performance measures. For the scope of this research and

simplicity reasons, a more intuitive description will be given that is mainly adopted from Abu-

Mostafa et al. in [118].

4.1.1 The learning problem

According to Abu Mostafa et al. in [118], the starting point of learning from data is the learning

problem. It usually involves finding an unknown formula that will take some inputs and will produce

a specific outcome. The produced outcome is the learning target. Expressing the learning problem

using symbols, if 𝒳denotes the space that all the possible inputs belong to, and 𝒴 denotes the space

of the targeted outputs, a solution to the learning problem will be to find the target function, 𝑓𝑡𝑎𝑟𝑔𝑒𝑡,

that will take any inputs derived from 𝒳 and will produce outputs that will belong in space 𝒴:

 𝑓𝑡𝑎𝑟𝑔𝑒𝑡: 𝒳 → 𝒴 (4.1)

Thus, the goal of the learning process is to find an approach to the unknown target function:

𝑔~𝑓𝑡𝑎𝑟𝑔𝑒𝑡. This approach will be the solution to the learning problem, and the means to reach that

solution is the learning algorithm.

4.1.2 The learning algorithm

Since an analytic solution of 𝑔 is not feasible, the way to finally find 𝑔 will be empirical using datasets

and learning algorithms. The datasets are pairs of inputs-outputs examples or data points, 𝒟 =

{(𝑥1, 𝑦1), … , (𝑥𝑁 , 𝑦𝑁)}, that is known to belong in the spaces 𝒳 and 𝒴 so that, 𝑦𝑖 = 𝑓𝑡𝑎𝑟𝑔𝑒𝑡(𝑥𝑖) with 𝑖 =

1, … , 𝑁. The learning algorithm takes as input the examples in 𝒟 and tries to find a formula that best

approximates 𝑓𝑡𝑎𝑟𝑔𝑒𝑡. In other words, a learning algorithm is a sequence of steps and procedures

capable of learning from the data by approaching 𝑓𝑡𝑎𝑟𝑔𝑒𝑡. To do so, the algorithm examines some

candidate formulas, ℎ𝑘, that derived from a set called the hypothesis set, denoted by ℋ, and chooses

the one that best fits the 𝑑𝑎𝑡𝑎. This formula, let denote it as ℎ𝑜𝑢𝑡, will be the output of the algorithm

and a possible candidate of 𝑔. Whether ℎ𝑜𝑢𝑡 = 𝑔 is a crucial step in the learning process and is

discussed in the following paragraphs.

Theoretical Framework of CNNs 35

The hypothesis set ℋ depends on the task that the learning algorithm performs (also referred to as

a machine learning task or learning task). According to [43], the task is the way a machine learning

system should process an example and, more specifically, its features. Features are quantitative

measures found in the dataset, 𝒟, and describe the subject of the learning problem. The notion of the

task is better understood when giving practical examples. Goodfellow et al., in [43], address a few

that are commonly performed in learning problems. Namely, these are classification, classification

with missing outputs, regression, transcription, machine translation, structured output, anomaly

detection, synthesis and sampling, imputation of missing values, denoising, and probability mass

function estimation. The list of examples is, of course, much more extensive as it expands to the whole

range of machine and deep learning applications. Thrunn and Prut in [119] give a more conceptual

insight into the learning tasks and their contribution to an algorithm's ability to learn.

4.1.3 Learning types

Up to this point, a generic and abstract concept of the learning process is described. When it comes

to practice, significant variations of the learning process exist. One can guess that every learning

problem's solution depends on the available data and can be acquired using different tasks and thus

different learning algorithms. Despite the complexity, there are some common patterns observed in

the algorithms' learning behavior concerning the data that allows the categorization of learning. The

most common types of learning mentioned in the literature are supervised, unsupervised, and

reinforcement [43], [120]–[122].

In supervised learning (also called predictive), the user acts as a "supervisor" by providing the

learning algorithm sets of inputs along with their associated outputs. The learning algorithm's

purpose is to find a function that will lead from input to output given a task. Tasks mostly performed

using supervised learning algorithms are classification and regression. If the outputs are categorical,

the former is used, while if the outputs are real-valued, the latter is chosen. Some examples of popular

supervised learning algorithms are Linear regression, Perceptron, Logistic regression, and Support

Vector Machine.

Unsupervised or descriptive learning makes use of data that solely consists of inputs. The purpose

usually is to discover similarities or patterns within the data. Some tasks that are usually performed

under this category are clustering, density estimation, and dimensionality reduction [120]. Among

the well-known unsupervised algorithms are the Principal Components Analysis (PCA) and the k-

means clustering.

36 Theoretical Framework of CNNs

Reinforcement learning is a particular category that focuses on learning through a trial and error

system without any guidance from the user. In this case, the data are observations of an environment,

and the algorithm learns how to act in this environment, given a particular observation. The learning

comes through rewarding each correct action is taken [123].

At this point, it should be mentioned that this categorization of learning is not absolute nor has strict

limits. Authors like Ayodele in [120] mention more types of learning like semi-supervised,

transduction, and learning to learn. These are mainly subbranches of supervised and unsupervised

learning types, but the further description of this topic goes beyond the scope of this dissertation.

Since the main subject of this research is classification using supervised learning algorithms, the

emphasis is given to concepts related to the supervised approach of learning.

 TRAINING PROCESS

The training "teaches" the learning algorithm to perform the task using the training data or examples.

On an abstract level, training is the process during which the learning algorithm searches for the

function ℎ𝑜𝑢𝑡 inside the hypothesis set ℋ, so that ℎ𝑜𝑢𝑡 = 𝑔 to best approximate 𝑓𝑡𝑎𝑟𝑔𝑒𝑡. Finding ℎ𝑜𝑢𝑡

is performed empirically using training data. In supervised learning, the training data or datasets are

pairs of examples drawn from the input space 𝒳 and the corresponding output from the target space

𝒴. In this case, finding ℎ𝑜𝑢𝑡 means to model the relations between inputs-outputs, usually using

weights, and measure how well the model performs. The hypothesis set and the learning algorithm

that are both chosen by the user will make a learning model [118]. The training description might

seem vague on this abstract level, as it is a concept better described using practical examples. Here,

training for classification will be described using linear models as the latter are used to model the

artificial neuron.

4.2.1 Training for classification

So far, it has only been mentioned that classification is a task that a learning algorithm performs.

What classification does is to assign labels 𝑦 = {1, . . , 𝐾}, that is the output space 𝒴 , to some input

data x ∈ 𝒳. In other words, it is the process that categorizes the inputs into the 𝐾 classes. In machine

learning applications 𝐾 ∈ ℤ should be at least 2. When 𝐾 = 2, is the case of binary classification, and

y takes the values of 0 and 1. When 𝐾 > 2, then it is called multiclass or categorical classification.

Regardless of the number of the classes, the classification problem can be formalized using the

function approximation described earlier in subsection 4.1:

 𝑦 = 𝑓𝑐𝑙𝑎𝑠𝑠(x) (4.2)

Theoretical Framework of CNNs 37

The unknown function 𝑓𝑐𝑙𝑎𝑠𝑠, takes the inputs x and classifies them into 𝑦. The learning algorithm's

goal is to produce a function 𝑔𝑐𝑙𝑎𝑠𝑠 that will classify the inputs in the same manner the unknown

function would, i.e., 𝑔𝑐𝑙𝑎𝑠𝑠~𝑓𝑐𝑙𝑎𝑠𝑠 . Thus, finding 𝑔𝑐𝑙𝑎𝑠𝑠 is what training a learning algorithm is about.

The latter will pick functions, ℎ, from the hypothesis set and measure their performance on the given

classification task. This is performed on a training data set. The training dataset consists of examples

drawn from the input space 𝑥𝑖 ∈ 𝒳, along with a label,𝑦𝑖 ∈ {1, … , 𝐾} which indicates the category

they belong to. In other words, there are pairs of inputs-labels that is known to satisfy 𝑦𝑖 = 𝑓𝑐𝑙𝑎𝑠𝑠(𝑥𝑖).

To approximate the unknown 𝑓𝑐𝑙𝑎𝑠𝑠 , a known function ℎ ∈ ℋ is picked by the learning algorithm,

assuming it fits the training data set. Then, the algorithm examines this assumption by using ℎ to

make predictions of the label that the input 𝑥𝑖 belongs to:

 𝑦𝑖̂ = ℎ(𝑥𝑖) (4.3)

Equations (4.2) and (4.3) describe the functional approach that the algorithm learns from the data. A

probabilistic approach is the one to be preferred in most classification learning problems as it

introduces uncertainty that makes it more realistic. Instead of the unknown classification function,

the learning algorithm tries to find the unknown distribution that generates the output label 𝑦 given

the training data 𝒙. So, 𝑓𝑐𝑙𝑎𝑠𝑠 is now expressed in terms of 𝑃(𝑦|𝒙) and the training data are samples

derived from that distribution. The hypothesis ℎ(𝒙) will now use the training data to approach the

targeted distribution, and the way to approach it is through the notion of likelihood. That is, the

probability of hypothesis ℎ(𝒙) parametrized by 𝒘 to have modeled the unknown distribution

correctly. If the two classes are a binary case with labels being +1 and -1, i.e., 𝑦 = ±1, the hypothesis

ℎ(𝒙) is now expressed as [121]:

 𝑃(𝑦 = 1|𝒙; 𝒘) = ℎ(𝒙) (4.4)

Thus, 𝑃(𝑦 = −1|𝒙; 𝒘) = 1 − ℎ(𝒙) (4.5)

The parameter 𝒘 is a vector of weights, which shows the contribution of an input value to the

classification label under question. So, the functions in the hypothesis set are expressed in terms of

the training input values, ℎ(𝑥𝑖 , 𝑤𝑖). The training process for classification is about updating the

weights to find an ℎ that best fits the training data. This is performed using error measures and then

updating the weights using an optimization technique to minimize the cost function.

4.2.2 Training error & cost functions

The error measures serve two purposes in the training process. The first is to evaluate the produced

hypothesis ℎ(𝒙, 𝒘), and the second is to update the weights. For the evaluation of the training results,

the notion training error, 𝐸𝑡𝑟𝑎𝑖𝑛, is used. It is usually defined by a loss or cost function that quantifies

38 Theoretical Framework of CNNs

the offset between the predicted value 𝑦𝑛̂ is and the value 𝑦𝑛 of the training dataset. For classification

where the 𝑦’s are classification labels, 𝐸𝑡𝑟𝑎𝑖𝑛 can be expressed as the average error of the individual

data samples, 𝑁, defined by a cost function [118], [121]:

𝐸𝑡𝑟𝑎𝑖𝑛 =

1

𝑁
∑ 𝑐𝑜𝑠𝑡(𝑦𝑛̂, 𝑦𝑛)

𝑁

𝑛=1

 (4.6)

The type of cost function is chosen by the user and is an essential component of the learning process.

Different error functions will lead to different results that affect any decision made regarding the

final hypothesis ℎ(𝒙, 𝒘). It also affects the process of updating the weights, as will be described in the

following paragraph. The choice of 𝑐𝑜𝑠𝑡(𝑦𝑛̂, 𝑦𝑛) is usually done empirically while taking into account

the training data, the learning, and the learning task.

An example is the 0-1 cost function that quantifies the misclassified points for the case of binary

classification [120]:

𝑐𝑜𝑠𝑡(𝑦𝑛̂, 𝑦𝑛) = 𝕀(𝑦𝑛̂ ≠ 𝑦𝑛) = {

0, 𝑦𝑛̂ = 𝑦𝑛

1, 𝑦𝑛̂ ≠ 𝑦𝑛
 (4.7)

where 𝕀(∙) is the indicator function.

Another example is the squared error [43]:

 𝑐𝑜𝑠𝑡(𝑦𝑛̂, 𝑦𝑛) = 𝜀𝑛(𝑦𝑛̂, 𝑦𝑛) = (𝑦𝑛̂ − 𝑦𝑛)2 (4.8)

that is used in Mean Squared Error (MSE), a very popular approach in machine learning, especially

for the task of regression.

However, the most popular choice for classification is using cost functions based on the cross-entropy.

Cross entropy quantifies the dissimilarities between the distribution of the training set and the

predictions of the model produced by the hypothesis ℎ(𝒙, 𝒘). The definition of cross-entropy is based

on the expected value, 𝔼[∙], of a function 𝑓(𝑥) with respect to the probability distribution 𝑃(𝑥) [43]:

 𝔼[𝑓(𝑥)] = ∑ 𝑃(𝑥)𝑓(𝑥)

𝑥

 (4.9)

If 𝑃𝑡𝑟𝑎𝑖𝑛 = 𝑃(𝑦|𝒙) is the empirical distribution that the training data are following, and 𝑝𝑚𝑜𝑑𝑒𝑙 =

𝑃(𝑦|𝒙; 𝒘) is the distribution of the predictions parametrized by the weights 𝒘, the cross-entropy is

the expected value of the negative log-likelihood of 𝑝𝑚𝑜𝑑𝑒𝑙[43], [120]:

Theoretical Framework of CNNs 39

 𝐽(𝒘) = −𝔼 log 𝑝𝑚𝑜𝑑𝑒𝑙 = − ∑ 𝑃𝑡𝑟𝑎𝑖𝑛 log 𝑝𝑚𝑜𝑑𝑒𝑙

𝑥

 (4.10)

In other words, it expresses the cost of using the 𝑝𝑚𝑜𝑑𝑒𝑙 with respect to the empirical distribution,

𝑃𝑡𝑟𝑎𝑖𝑛, that the algorithm aims to learn. Hence:

 𝑐𝑜𝑠𝑡(𝑦𝑛̂, 𝑦𝑛) ≡ 𝐽(𝒘) = −𝔼 log 𝑝𝑚𝑜𝑑𝑒𝑙 (4.11)

Equations (4.10) and (4.11) express a category of cost functions that are based on the cross-entropy.

The final functional form of these equations depends on 𝑝𝑚𝑜𝑑𝑒𝑙 and thus, varies from model to model.

For example, it can be the negative log-likelihood for Gaussian or Bernoulli distribution. In this

dissertation, the emphasis is given on cost functions used in feedforward neural networks (FNNs) (see

section 4.3). The chosen cost function is then used to improve the accuracy of the training. This is

done using optimization techniques. In this dissertation, gradient-based techniques are used.

4.2.3 Gradient-based optimization

Gradient-based optimization techniques are the core of training in supervised learning. They are

iterative algorithms that calculate the gradient of the cost function with respect to the weights and

update them to minimize it. The principles of gradient descent (GD) and stochastic gradient descent

(SGD) are given below.

- Gradient Descent

Gradient Descent or Steepest Descent is a general iterative algorithm used in finding a local minimum

of a differentiable function or the solution of any linear or non-linear system. For training learning

algorithms, it is used to find the values in the weight vector 𝒘 that will minimize the training error

𝐸𝑡𝑟𝑎𝑖𝑛 defined with a cost function (equation (4.6)) with respect to the weights. The minimization

will occur at a point in the weight space that the gradient of the error function becomes:

 ∇𝐸𝑡𝑟𝑎𝑖𝑛(𝒘) = 0 (4.12)

This point can be either a local or a global minimum of the error function. Gradient descent will find

a numerical solution to equation (4.12) through an iterative procedure of updating weights. For a

number of iterations 𝑡 = 1,2, … , 𝑁, and an initial value for weights 𝒘(0), GD will update the weights

using small steps in the direction of −∇𝐸𝑡𝑟𝑎𝑖𝑛(𝒘) as [121]:

 𝒘(𝑡+1) = 𝒘(𝑡) − 𝜂∇𝐸𝑡𝑟𝑎𝑖𝑛(𝒘(𝑡)) (4.13)

The parameter 𝜂 < 0 is a step size, also known as the learning rate, and affects how quickly GD will

approach the minimum (local or global). It has a high impact on GD performance. Ideally, 𝜂 should

40 Theoretical Framework of CNNs

be small enough when the algorithm is close to a local minimum and big when it is far from

approaching it faster. One option to achieve such behavior, according to [118], is to set 𝜂 in

proportion to the norm of the gradient, 𝜂𝑡 = 𝜂‖∇𝐸𝑡𝑟𝑎𝑖𝑛‖ using a fix value for 𝜂. The empirical value

of around 0.1 is suggested.

- Stochastic Gradient Descent

Stochastic Gradient Descent (SGD) is a randomized version of GD. The main difference is that the

gradient, ∇𝐸𝑡𝑟𝑎𝑖𝑛(𝒘), is calculated for a single point of the training data set instead of the whole N

points. For this reason, GD is also called batch gradient descent. In SGD, a random point (𝑥𝑛, 𝑦𝑛) is

picked from 𝒟𝑡𝑟𝑎𝑖𝑛 and 𝑐𝑜𝑠𝑡(𝑦𝑛̂, 𝑦𝑛) is calculated for this data point using the hypothesis 𝑦𝑛̂ =

ℎ(𝒘, 𝑥𝑛). The weights are then updated in the same way as GD to minimize the cost error gradient,

using the equation (4.13). The justification on why SGD works lies in the expected value of the weight

change with respect to a randomly picked point [118]:

𝔼[−∇𝑐𝑜𝑠𝑡(𝑦𝑛̂, 𝑦𝑛)] =

1

𝑁
∑ 𝑐𝑜𝑠𝑡(ℎ(𝒘, 𝑥𝑛), 𝑦𝑛)

𝑁

𝑛=1

= −∇𝐸𝑡𝑟𝑎𝑖𝑛 (4.14)

Equation (4.14) expresses that the expected weight change is the same as the batch GD. This is

because, over several randomly selected points, possible fluctuations in the gradient direction will

be canceled out, leading to an “average” direction that will be the same as the deterministic GD. In

practice, SGD is a simple algorithm that works well with lower computational cost over GD. The

introduced randomness of picking one data point at a time helps in preventing getting stuck on a

shallow local minimum point, which leads to better optimization [43], [118].

 FEEDFORWARD NEURAL NETWORKS

Feedforward Neural Networks (FNN) are Artificial Neural Networks (ANN) that perform

classification. ANNs are generally inspired by the biological neural networks [124], which are

conceptually described as neuron circuits [125], i.e., a population of neurons interconnected by

synapses to pass signals when activated. The synapses are modeled by weights that point to whether

the connection with a different neuron is excitatory or inhibitory. The weights' magnitude also

establishes whether a connection is strong (high values) or weak (values close to zero). The FNN

architecture is based upon this concept, where the artificial neurons (also called units or nodes) are

organized into layers. An example of a typical FNN architecture is presented in Figure 4.1. It consists

of an input layer, an output layer, and hidden layers in between. The input layer feeds the network

with information drawn from input space, 𝒳. Then is processed in the hidden layers through the

Theoretical Framework of CNNs 41

application of transformation or activation functions, 𝜑, and is finally categorized into labels defined

by the output layer. The output labels are generated by a hypothesis ℎ(𝒙) that the FNN has learned.

The indices ℓ = 0,1, … , 𝐿 are used to number the layers of an FNN, where ℓ = 0 is the input layer,

ℓ = 𝐿 is the output layer, and any value 0 < ℓ < 𝐿 is used for the hidden layers. When the number

of the intermediate hidden layers increases, the FNN is characterized as deep and hence the name

deep learning.

Figure 4.1: Illustration of a Feed-Forward Network. The network consists of the input layer that uses
examples drawn from input space 𝒳, the hidden layers where activation functions, 𝜑, are applied and
the output layer. The produced output is the classification labels of a learned hypothesis ℎ(𝒙) picked
from the hypothesis space ℋ. The black arrows denote the directions that forward and backpropagation
are performed.

To train such a network requires two processes. The first is to make a prediction following a sequence

of steps known as the forward propagation, and the second is to update the weights using the

backpropagation algorithm. To better describe these two processes, the artificial neuron model will

be first introduced as it is the fundamental unit of any ANN.

4.3.1 The neuron model

The artificial neuron is the mathematical model of the biological neuron. For convenience, the

artificial neuron will now be referred to only as a neuron. The neuron performs linear classification

through three main processes that are multiplication, summation, and the application of an activation

or transfer function. In more detail, the inputs 𝑥𝑛 that enter the neuron are weighted by multiplying

them with a corresponding 𝑤𝑛. The products are summed up, and a bias term, 𝑏, is added. The last

step is the application of the activation function, 𝜑 to produce the output [126]:

42 Theoretical Framework of CNNs

ℎ(𝒙) = 𝜑 (∑ 𝑤𝑛𝑥𝑛

𝑁

𝑛=1

+ 𝑏) (4.15)

where 𝒙 is a real-valued vector containing the inputs 𝑥𝑛, and ℎ ∈ ℋ is the produced hypothesis of

linear form that uses a threshold based on the mathematical function of 𝜑. Traditionally 𝜑 is the

signum function that is known as the perceptron, the sigmoid function that is known as the logistic

regression.

- Perceptron

Frank Rosenblatt introduced the perceptron in 1958 [127] as a hypothetical nervous system or a

machine with the ability to learn. Nowadays, it is best known as a learning algorithm used solely for

the binary classification of data. The perceptron can perform properly only when using linearly

separable data. That means a line exists that can divide the data into two classes. Using the signum

function, equation (4.15) becomes:

ℎ(𝒙) = sign (∑ 𝑤𝑛𝑥𝑛

𝑁

𝑛=1

+ 𝑏) (4.16)

that uses a threshold:

ℎ(𝒙) = {
1, ∑ 𝑤𝑛𝑥𝑛

𝑁

𝑖=1

+ 𝑏 > 0

−1, otherwise

 (4.17)

The output values 𝑦 = {−1, 1} represent the two categories of the binary classification. The dot

product of equation (4.16) is usually expressed in vector form:

 ℎ(𝒙) = sign(𝒘𝑇𝒙) (4.18)

where 𝒙 is a real-valued vector and 𝒘 is the vector containing the weighs 𝑤𝑖 and the bias term b as

𝑤0 = 𝑏. The concept of the perceptron is illustrated in Figure 4.2. Training the perceptron is about

finding the optimal 𝒘 that produces a line described by final hypothesis ℎ(𝒙) that assigns the correct

labels in 𝒙. The training process is performed iteratively and is known as the Perceptron Learning

Algorithm (PLA).

Theoretical Framework of CNNs 43

Figure 4.2: The Perceptron model of an artificial neuron.

PLA uses a dataset that contains pairs of inputs-labels, 𝐷𝑃𝐿𝐴 = {(𝒙𝑛, 𝑦𝑛)}, with 𝑛 = 1, . . , 𝑁 being the

number of examples, 𝒙𝑛 ∈ 𝒳: ℝ and 𝑦𝑛 ∈ 𝒴: {−1, 1}. If 𝑡 denotes the number of iterations, the

starting point is to solve equation (4.18) using the inputs 𝒙𝑛 and an initial value of 𝒘(𝟎) to produce

labels ℎ(𝒙𝑛). Following the training process, the next step is to calculate the training error, 𝐸𝑡𝑟𝑎𝑖𝑛

(equation (4.6)), using a cost function to find the misclassified points, 𝑦𝑛 ≠ ℎ(𝒙𝑛)(equation (4.7)).

The algorithm will focus on these points and, picking one misclassified point at a time and, it will

iteratively update the corresponding weights that will lead to the correct labels. For each iteration,

𝑡 > 0 , PLA picks the current weight, 𝒘(𝑡) of the misclassified point , and updates it using the

following rule [118]:

 𝒘(𝑡+1) = 𝒘(𝑡) + 𝑦(𝑡)𝑥(𝑡) (4.19)

The algorithm terminates when there are no other misclassified examples in the data set. One worth

mentioned modification of PLA is the pocket algorithm, which behaves better when training data are

not linearly separable. Several learning algorithms that were developed in the years to follow were

based on this concept, including Neural Networks. Gallant compares some of them in [128].

- Logistic Regression

Logistic regression performs binary classification using a line or a plane as in PLA. In logistic

regression, the non-linear sigmoid function is used that is defined as:

44 Theoretical Framework of CNNs

𝜎(𝑧) =

1

1 + 𝑒−𝑧
∈ (0, 1) (4.20)

If 𝑧 is the neuron’s input signal:

𝑧 = ∑ 𝑤𝑛𝑥𝑛

𝑁

𝑛=1

= 𝒘𝑇𝒙 (4.21)

the hypothesis space of equation (4.15) becomes:

 ℎ(𝒙) = 𝜎(𝒘𝑇𝒙) (4.22)

The equation (4.22) is the vectorized form of the logistic regression and outputs values that range

from 0 to 1. The model of logistic regression is presented in Figure 4.3.

Figure 4.3: Logistic regression for modeling an artificial neuron.

The output of logistic regression is interpreted as the probability of the input belonging to a class,

allowing this way a level of uncertainty. When compared to perceptron is like a softer threshold

[118]. Further, logistic regression will try to learn the unknown distribution that generates the

output label𝑦 given 𝒙, 𝑃(𝑦|𝒙) using the likelihood as was described earlier. Hence, the equation (4.4)

becomes:

 𝑃(𝑦 = 1|𝒙; 𝒘) = ℎ(𝒙) = 𝜎(𝒘𝑇𝒙) (4.23)

With, 𝑃(𝑦 = −1|𝒙; 𝒘) = 1 − ℎ(𝒙) (4.24)

Theoretical Framework of CNNs 45

The cost function used to define the training error in logistic regression is based on the cross-entropy:

𝐸𝑡𝑟𝑎𝑖𝑛 =

1

𝑁
∑ ln (1 + 𝑒−𝑦𝑖𝒘𝑇𝒙𝑖)

𝑁

𝑖=1

 (4.25)

The equation (4.25) is the result of maximizing the likelihood of ℎ(𝒙) (which means closer to the

target distribution) that is equivalent to minimizing the negative log-likelihood (equation (4.10)).

The mathematical proof is given in [118]. Thus, to train the logistic regression means to update the

weights of the sigmoid function ℎ(𝒙) to minimize 𝐸𝑡𝑟𝑎𝑖𝑛 of equation (4.25). This is performed with

gradient-based optimization methods (SG or SGD) described previously.

The single neuron model has the limitation of classifying only linear separable data. This limitation

was overcome by using multiple neurons arranged in layers, which led to feedforward networks.

Modern FFNs are mainly based on logistic regression, while learning is implemented through two

main processes, the feedforward, and backpropagation, which are discussed in the subsections

below.

4.3.2 Feedforward propagation

Feedforward is the process of making a classification prediction using the weights assigned in the

connections of the neurons of each layer. FNN was named after feedforward propagation to

differentiate them from a different ANN type, the Recurrent Neural Networks (RNNs), where the

signals are allowed to move back and forth using loops that form directed cycles [129].

Feedforward propagation resembles a “flow” of information inside the network that goes from the

input layer to the output layer. The same processes described for the single neuron are performed,

following this flow, by all the neurons of the FNN. Briefly, these are multiplication with the weights,

summation, bias addition, and application of an activation function to produce the output. The key

concept of this layered network is that an activated output of one neuron will be the input of the

neurons resided in the next layer. To better describe how this mechanism works, Figure 4.4 will be

used that illustrates a part of a deep feedforward network. This part consists of three hidden layers

index as (ℓ − 1), (ℓ), and (ℓ + 1). The index of each layer is expressed using the superscripts.

Additionally, the subscripts 𝑖 and 𝑗 are used to index the neurons of two consecutive layers. The

former denotes the neuron that provides the feed while the latter the neuron under computations.

Also, the weights assigned in the connections are expressed as 𝒘𝑖𝑗, which is interpreted as the weight

vector from the connection of neuron 𝑖 to neuron 𝑗.

46 Theoretical Framework of CNNs

In the example of Figure 4.4, the neuron 𝑖, from the layer (ℓ − 1) has produced an output of 𝒂𝑖
(ℓ−1)

that will be the input to a neuron, 𝑗, of the next layer ℓ. The weight vector 𝒘𝑖𝑗
(ℓ)

 is assigned and

multiplied with 𝒂𝑖
(ℓ−1)

 and,the dot product is calculated to produce the signal that will feed neuron 𝑗

of layer (ℓ):

𝒛𝑗
(ℓ)

= 𝒃𝑗
(ℓ)

+ ∑ 𝒘𝑖𝑗
(ℓ)

𝒂𝑖
(ℓ−1)

𝑑(ℓ−1)

𝑖=1

 (4.26)

where 𝑑(ℓ−1) expresses the dimensionality of the layer that provides the input, and 𝑏𝑗
(ℓ)

 is the bias

term that is added to the signal. The bias term is usually incorporated in the weight vector by adding

a zero-indexed unit input on the layer that provides the feed, i.e.,𝒂𝑖=0
(ℓ−1)

= 1, and modify equation

(4.26) as:

𝒛𝑗
(ℓ)

= ∑ 𝒘𝑖𝑗
(ℓ)

𝒂𝑖
(ℓ−1)

𝑑(ℓ−1)

𝑖=0

 (4.27)

where 𝑏𝑗
(ℓ)

= 𝒘0𝑗
(ℓ)

.

Next, a non-linear activation function, 𝜑, of choice is applied on the weighted signal 𝒛𝑗
(ℓ)

 to produce

the output value of the current neuron and current layer 𝓪𝑗
(ℓ)

:

 𝓪𝑗
(ℓ)

= 𝜑 (𝒛𝑗
(ℓ)

) (4.28)

When all the activations for all the neurons of the layer (ℓ) are computed, the algorithm of forward

propagation proceeds to the next consecutive layers that, in the case of figure, are (ℓ) and (ℓ + 1).

The activated output 𝓪𝑗
(ℓ)

 will now feed the layer (ℓ + 1), hence it will become the input 𝒂𝑖
(ℓ)

 and

equations (4.26) to (4.28) will be applied to produce the corresponding values of 𝒛𝑗
(ℓ+1)

 and 𝓪𝑗
(ℓ+1)

.

This process is performed by all the neurons of the hidden layers.

Theoretical Framework of CNNs 47

Figure 4.4: An example showing the computations performed in feedforward propagation for a neuron
that is resided at the hidden layer ℓ. The neuron receives as input the activated output of a neuron of

the previous layer, 𝓪𝑖
(ℓ−1)

, and produces the current activated output 𝓪𝑗
(ℓ)

. This output will be the input

for the neurons of the next hidden layer ℓ + 1 to produce the corresponding activated outputs using the
same process.

For a more compact representation, the matrix form of (4.27) is used where 𝑾(ℓ) gathers all the

weights of a hidden layer:

 𝒛(ℓ) = (𝑾(ℓ))
𝑇

𝒂(𝑙−1) (4.29)

Hence, the forward propagation is a recursive process that begins when the network is fed with the

training examples of the input layer 𝒂(ℓ=0) and ends when it reaches the output layer 𝓪(𝐿)that are the

predicted values of the produced hypothesis for the given 𝑾. So, 𝓪(𝐿) = ℎ(𝒙; 𝒘) = 𝒚̂ , where 𝒘 =

{𝑾(1), 𝑾(2), … , 𝑾(𝐿)}. When reaching the point of obtaining the hypothesis and the predictions, the

training error, 𝐸𝑡𝑟𝑎𝑖𝑛, is calculated using an efficient cost function, as was described earlier in this

chapter (equations (4.6)- (4.11)). The cost function depends on the activation function that is chosen.

More details on activation functions will be discussed later in this subsection.

4.3.3 Backpropagation Algorithm

The steps to train a feedforward neural network are no different from those used to train a single

neuron (as described in perceptron and logistic regression). These are to use a cost function to

calculate the training error 𝐸𝑡𝑟𝑎𝑖𝑛(𝒘) of the prediction made by the hypothesis ℎ(𝒙; 𝒘), and then use

48 Theoretical Framework of CNNs

a gradient-based optimization method to update the weights by minimizing the cost function. The

backpropagation algorithm performs the first step, which calculates the gradient of the cost function

for a fully connected network of neurons. The gradient is calculated using partial derivatives of the

chosen cost function with respect to the weights, 𝜕𝐸𝑡𝑟𝑎𝑖𝑛 𝜕⁄ 𝒘. Because the resulted weight vector

(i.e., from feedforward propagation) is a vector of matrices, 𝒘 = {𝑾(1), … , 𝑾(𝐿)}, the partial

derivative is calculated with respect to each weight matrix at layer (ℓ). For this reason, cost functions

that can be expressed as sums of cost functions over the 𝑁 individual data samples are used [130]:

 𝜕𝐸𝑡𝑟𝑎𝑖𝑛

𝜕𝑾(ℓ)
=

1

𝑁
∑

𝜕𝜀𝑛

𝜕𝑾(ℓ)

𝑁

𝑛=1

 (4.30)

where 𝜀𝑛 = 𝑐𝑜𝑠𝑡(𝑦𝑛̂, 𝑦𝑛). Such cost functions can be the MSE or the cross-entropy-based cost

functions. The term 𝜕𝜀𝑛 𝜕𝑾(ℓ)⁄ expresses that in a single layer (ℓ) of FNN, any change in the weights

𝑾(ℓ) will change the cost error of that layer. Due to the way the forward propagation works (Figure

4.4), the errors introduced with the assigned weights of a layer (ℓ) are affected by the errors

introduced by the weights of all the previous layers through the input signal 𝒛(ℓ). In turn, they will be

passed on the activated signal 𝒂(ℓ) that will affect the next layers, as equation (4.29) indicates, and

will eventually be accumulated in the output layer (𝐿). The way these errors are distributed is

described by a quantity known as the sensitivity [130] or delta error:

𝛿(ℓ) =

𝜕𝜀

𝜕𝑧(ℓ)
 (4.31)

The error 𝛿(ℓ) applies to a single layer of the FNN and expresses how the cost 𝜀 changes in that layer

with respect to the input signal 𝑧(ℓ) (equation (4.29)). Backpropagation make use of the chain rule of

calculus and 𝛿(ℓ) as an intermediate quantity to calculate the 𝜕𝜀𝑛 𝜕𝑾(ℓ)⁄ of that layer as:

 𝜕𝜀

𝜕𝑾(ℓ)
= 𝑎(ℓ−1)(𝛿(ℓ))

𝑇
 (4.32)

The mathematical proof of the equation (4.32) can be found in [130] as well as in [121]. Equation

(4.32) describes the basic concept of how the backpropagation algorithm works. It relies on how the

weights of the previous layer (through the activated output 𝑎(ℓ−1)) and the 𝛿(ℓ) of the weights of the

current layer (through the input signal 𝑧(ℓ)) affect the cost function of layer(ℓ). The activated outputs,

𝑎(ℓ), are known quantities that are calculated during the forward propagation, using the output of the

previous layer 𝑎(ℓ−1) (equations (4.28) and (4.29)). What remains for the backpropagation algorithm

is to compute the delta errors. These calculations are made moving in the opposite direction of

Theoretical Framework of CNNs 49

feedforward propagation (hence the name backpropagation). So, to calculate 𝛿(ℓ), 𝛿(ℓ+1)is used

[130]:

 𝛿(ℓ) = 𝜑′(𝑧(ℓ))⨀(𝑾(ℓ+1)𝜹(ℓ+1)) (4.33)

The error 𝛿(ℓ+1) is fed backward towards layer (ℓ), multiplied with the weights, 𝑾(ℓ+1) and summed

up. This is the input for the neurons of layer (ℓ). In forward propagation, when the input signal

reaches a neuron, an activation function 𝜑 is applied. In backpropagation, the element-wise

multiplication ⨀, or Hadamard product, by 𝜑′(𝑧(ℓ)) is applied to get 𝛿(ℓ). The term 𝜑′(𝑧(ℓ)) is the

derivative of the activated input signal in layer (ℓ). The mathematical proof of equation (4.33) can be

found in [130]. This equation, which is generic and applies to any hidden layer of an FNN, expresses

the chain of dependencies between layers that will cause changes in the cost function. Since the

direction of the computation is backward, the input and starting point of the backpropagation

algorithm will be the error in the output layer 𝛿(𝐿). Using equation (4.31) and the chain rule with the

dependency of 𝒂(𝐿) = 𝜎(𝑧𝐿) as an intermediate value, the error of output layer can be computed as:

𝛿(𝐿) =

𝜕𝐸𝑡𝑟𝑎𝑖𝑛

𝜕𝑧(𝐿)
=

𝜕𝐸𝑡𝑟𝑎𝑖𝑛

𝜕𝑎(𝐿)

𝜕𝑎(𝐿)

𝜕𝑧(𝐿)
= ∇𝒂𝐸𝑡𝑟𝑎𝑖𝑛𝜎′(𝑧𝐿) (4.34)

The functional form of the equations above depends on the activation functions and the cost function

that are used. Once the backpropagation algorithm has computed the delta errors and hence

∇𝐸𝑡𝑟𝑎𝑖𝑛(𝒘), a gradient-based optimization algorithm like SG or SGD is implemented to update the

weights, as was described earlier in this chapter.

Thus, a training algorithm for FFN has three main blocks (Figure 4.5); the first is forward propagation

to make a prediction; the second is backpropagation to calculate the gradient of the error, and the

third is to perform SG or SGD to update the weights. A complete run of these three blocks defines an

epoch. Training algorithms are executed over many epochs until minimum error is achieved.

Figure 4.5: Basic blocks of an FNN training algorithm. One complete circle defines an epoch.

50 Theoretical Framework of CNNs

4.3.4 Activation functions

Activation functions, 𝜑, mentioned under the Neuron model in subsection 4.3.1, play an essential role

in an FNN architecture as they introduce non-linearity in the network. Nonlinearity is a desirable

addition to the networks as linearly non-separable data can be classified. Further, the choice of an

appropriate nonlinear activation function is important to the training performance as its derivative

will be used by the backpropagation and optimization algorithms. As was previously described,

nonlinear activations are applied to the inputs of the hidden layers and the output layer of an FNN.

Usually, the activation function used in a hidden layer differs from the activation function used in the

output layer.

In the case of the hidden layers, the activation function is chosen accordingly to improve the neurons'

training performance. A popular choice is the “s” shaped functions like the hyperbolic tangent, tanh

[131][132]:

tanh(𝑧) =

𝑒𝑧 − 𝑒−𝑧

𝑒𝑧 + 𝑒−𝑧
 (4.35)

The hyperbolic tangent was the most popular choice for FFN and multi-perceptron networks until

the Rectified Linear Unit (ReLU) were introduced as an activation function [133] and become the

default recommendation to use. ReLU is a piecewise linear function that outputs zero if the input is

negative while retaining the input otherwise:

 𝜑(𝑧) = max {0, 𝑧} (4.36)

ReLU function is shown to have better performance, and it is easier to train using gradient-based

optimization techniques [43]. It also appears to overcome a limitation when using a sigmoid function

or the tanh in deep architectures, known as the vanishing gradient problem. Vanishingly small

gradients will prevent efficient changes in the weight, making it difficult to find the correct direction

to move so that the cost function is optimized [43]. The gains of using ReLU have led to the

development of variations like the Leaky ReLU [134] or the Exponential Linear Units (ELU) [135],

aiming for further training performance improvements. Figure 4.6 illustrates the most popular

activations used in FFNs mentioned above. However, finding the optimum activation function for a

hidden layer is a tedious process that relies on experimentation. While ReLU is a good choice for the

hidden layers in deep architectures in most cases, Leaky ReLU is preferred when inactive neurons

exist in the layer. A common practice is to start with ReLU, evaluate the results, and move on to other

activations if performance is not satisfactory [136].

Theoretical Framework of CNNs 51

Figure 4.6: Popular activation functions used in FFN hidden layers.

For the output layer case, the activation function is chosen according to the classification type, i.e.,

categorical or binary, to filter the obtained results. The sigmoid function (equation (4.20)) can be

applied for binary classification only, while in the case of two or more classes, softmax is used to

represent the probability distribution over 𝑘 different classes [43]:

softmax(𝑧)𝑖 =

exp (𝑧𝑖)

∑ exp (𝑧𝑗)𝑛
𝑗=1

 (4.37)

Since softmax is more generic and applies to binary classification as well, it is most preferred.

4.3.5 Weights’ initialization

Weights’ initialization is the process followed to set the values of the initial weights that will be used

by forward propagation prior to training. It can be viewed as a preprocessing step that defines the

starting point of training regarding the weights parameter. This starting point may determine

whether the training algorithm converges and how quickly it will converge [43] and further prevent

vanishing gradient problems from happening in deep architectures. In general, it is preferable to

initialize the weights randomly rather than setting them to a fixed value or zero when using

stochastic training algorithms like SGD [43]. Several publications show effective ways to initialize

weights like in [22] and [23], and the choice of the proper method depends on the activation function

52 Theoretical Framework of CNNs

used in the hidden layers. For example, the Xavier (Glorot) Normal Initialization [139] is a popular

choice when using hyperbolic tangent, while for ReLU is the He Normal Initialization [140]. An

overview of weight initialization methods for FFN is given in [141].

 CONVOLUTIONAL NEURAL NETWORKS

Convolutional Neural Networks (CNN) are FNNs that involve the convolution operation in their

architecture. Predictions are made following a forward propagation algorithm that performs

convolution instead of multiplication in some layers, while training is performed using a

backpropagation algorithm. CNNs overcome an important restriction of FNNs that is the 1D inputs.

In CNNs, the inputs can be 1D, 2D, or 3D arrays. This allows the use of images that made CNNs very

popular in various machine vision applications and other domains that use images as data (e.g.,

Biology, Remote sensing, Medical images. CNNs were the reason behind the boost of artificial neural

network developments that is now known as Deep Learning. In this chapter, the way CNNs learn from

data is discussed.

4.4.1 Convolution

Convolution is a mathematical operation between two functions that expresses how one modifies the

other. Denoted with ∗, the convolution between two continuous functions, 𝑓(𝑡) and 𝑔(𝑡), is defined

as the integral of their product, having one of them reversed and shifted [142]:

𝑓(𝑡) ∗ 𝑔(𝑡) = ∫ 𝑓(𝜏)𝑔(𝑡 − 𝜏)𝑑𝜏

+∞

−∞

 (4.38)

For discrete signals with samples 𝑛𝑖 ∈ 𝒏, the convolution between two signals will produce a third

signal that is defined as the Cauchy product [143]:

𝑠(𝑛𝑖) = (𝑥 ∗ ℎ)(𝑛𝑖) = ∑ 𝑥(𝑘)ℎ(𝑛𝑖 − 𝑘)

+∞

𝑘=−∞

 (4.39)

where 𝑥[𝑛] is the input signal, ℎ[𝑛] is the impulse response and 𝑠[𝑛] is the convolved output signal.

The impulse response depends on the system which receives the input signal 𝑥(𝑛), and is defined as

the output of that system when used the Dirac function, 𝛿(𝑛), as input. If the system is a filter, the

impulse response will be the filter kernel, and the output will be the filtered input signal [144]. There

are four steps followed in computing equation (4.39) and are: 1) fold ℎ(𝑘) to obtain ℎ(−𝑘), 2) shift

ℎ(−𝑘) according to 𝑛𝑖 to obtain ℎ(𝑛𝑖 − 𝑘), 3) multiply ℎ(𝑛𝑖 − 𝑘) by 𝑥(𝑘) and 4) sum all the values of

the product sequence to obtain the output for 𝒏.

Theoretical Framework of CNNs 53

For computer vision, the discrete convolution of equation (4.39) is modified accordingly for 2D or 3D

arrays that are used to represent images. If 𝐼 is a 2D input image, and 𝑓𝑘𝑒𝑟𝑛𝑒𝑙 is also a 2D filter kernel

then the convolved image, 𝑆, is [43]:

 𝑆(𝑖, 𝑗) = (𝐼 ∗ 𝑓𝑘𝑒𝑟𝑛𝑒𝑙)(𝑖, 𝑗) = ∑ ∑ 𝐼(𝑚, 𝑛)𝑓𝑘𝑒𝑟𝑛𝑒𝑙(𝑖 − 𝑚, 𝑗 − 𝑛)

𝑛𝑚

 (4.40)

or 𝑆(𝑖, 𝑗) = (𝑓𝑘𝑒𝑟𝑛𝑒𝑙 ∗ 𝐼)(𝑖, 𝑗) = ∑ ∑ 𝐼(𝑖 − 𝑚, 𝑗 − 𝑛)𝑓𝑘𝑒𝑟𝑛𝑒𝑙(𝑚, 𝑛)

𝑛𝑚

due to the commutative property. The type of the filter, 𝑓𝑘𝑒𝑟𝑛𝑒𝑙, in the convolution equation, modifies

the input image. The filters are designed for a particular processing purpose. It can be either to

eliminate or to enhance elements of the input image. For example, linear smoothing filters are used

to remove random noise, while Fourier filtering removes noise at certain frequencies. Other filters

are designed to identify certain image features. Image features are the important attributes of the

image’s regions (i.e., texture) and their boundaries (i.e., edges or lines), which define an object [145].

Thus, convolution can be viewed as a way to apply feature transforms to identify them through the

usage of filters. By identifying the important features, tasks like classification, segmentation, or object

detection can be performed either in a single image or among a group of images.

In Deep Learning applications, the central idea is to use the convolution operation to transform a

neural network's input into a useful representation for the learning task. In practice, what is actually

implemented is not convolution but the cross-correlation function, as explained in [43], with the

cross-correlation function being the same as convolution but without the reversal of the filter:

 𝑆(𝑖, 𝑗) = (I ∗ 𝑓𝑘𝑒𝑟𝑛𝑒𝑙)(𝑖, 𝑗) = ∑ ∑ 𝐼(𝑖 + 𝑚, 𝑗 + 𝑛)𝑓𝑘𝑒𝑟𝑛𝑒𝑙(𝑚, 𝑛)

𝑛𝑚

 (4.41)

The flipping step turns out to be redundant for the learning process and the training of the algorithm,

as explained in [43]. However, the process is referred to as convolution in most ML and DL libraries.

In this work, this convention is adopted as well. Convolution is introduced in some CNNs layers in

place of matrix multiplication and is called convolution layers. This allows the use of varying size

inputs and not only 1D arrays. Further, the filter kernels that are applied to the input are of much

smaller size, resulting in identifying the important features while having dimensionality reduction

for more efficient computations and memory handling. The typical architecture of CNNs is described

in the following paragraph.

54 Theoretical Framework of CNNs

4.4.2 CNN architecture

CNNs can receive as input images represented by arrays. If the image is black and white, then the

array is 2D, with dimensions defined by the height and the width of the image (HxW). For colored

images, the array is 3D (also called tensor) with dimensions (HxWxC), where C is the color model,

e.g., the three RGB channels. The array is passed through a sequence of layers that perform a

particular processing operation; each of them is depicted schematically in Figure 4.7. There are four

main layers found in a typical CNN architecture. These are the convolutional layer, the pooling layer,

the flattening layer, and the fully connected or dense layer. The convolutional and pooling layers are

responsible for feature detection, while the dense layers are responsible for the classification of the

identifying features.

- Convolutional layer

The convolutional layer is usually the first layer in a CNN architecture and receives as an input a

colored image. Color images are three-dimensional, having the size HxWx3, where number three

indicates the three RGB channels. Then convolution is applied (equation (4.41)) for a number of

different filters that act as feature detectors. Each convolution act will produce a filtered version of

the input image called the feature map. The convolution operation is performed by sliding the filter

on the input image using a fixed pixel step called the stride. Hence, the dimensions of the output

feature map depend on the size of the filter and the stride. Bigger filter sizes and strides will result in

a more drastic dimensionality reduction. So, a feature map can be viewed as a shrink version of the

image that retains the features with a higher correlation to the ones indicated by the convolutional

filter. This process is applied to all the filters designed for the given layer. So, the output of the

convolutional layer is a 3D array that stacks all the feature maps obtained from all the filters used.

The filters are designed automatically by the training algorithm during the optimization process to

improve the classification results [43], [146]. There can be more than one convolutional layer in a

CNN architecture, as will be discussed later in this chapter.

Theoretical Framework of CNNs 55

Figure 4.7: Main components of a typical CNN architecture (Top) with their graphical description
(bottom). The overall architecture can be divided into two stages, the feature detection stage, and the
feature classification stage. The feature detection stage usually has an arrangement of convolutional
and pooling layers along with the application activation functions to increase non-linearity. The
classification stage is an FNN. Between the two stages, a flattening step is implemented that vectorizes
the input for the FNN.

An additional step that is implemented in most CNN architectures is the application of a non-linear

activation. It is usually applied to the convolutional output to ensure non-linearity. Non-linearity

increases classification performance as more complex and non-linear features can be identified. In

most CNN architectures, the ReLU function is used [43]. Goodfellow et al., in [43], mention this step

as the detector stage and usually is applied for every convolutional layer that exists in a CNN

architecture. However, studies like the one in [142] debate the efficiency in applying ReLU in every

convolutional layer for deep architectures. Other studies examine performance improvements using

alternative activations of ReLU like the concatenated ReLU (CReLU)[147] or the Average Biased ReLU

(AB-ReLU) [148]. In any case, these modifications are task-oriented, which indicates that

experimentation is necessary when it comes to performance improvements.

- Pooling layer

Pooling is a down-sampling operation. It usually is placed after the convolutional layer, hence, it

receives as inputs the feature maps. Pooling operations are performed by using kernels that slide on

the input for a fixed stride. Two types are mostly used, the max-pooling and the average pooling. In

56 Theoretical Framework of CNNs

max pooling, the max value of the region covered by the kernel is only kept. In average pooling, the

average of the values of the region placed within the kernel is calculated and kept. Between the two,

max pooling is the most popular choice [43]. The comparative study in [149] also suggests better

performance when max pooling is used in CNN architectures for object detection. The output of a

pooling operation is the pooling maps. Thus, a pooling map retains the important features or part of

them while further reducing the dimensions for a more efficient computational cost. The pooling

operation emphasizes whether a feature exists rather than where it appears in the image. This is a

property called invariance to local translation [43] and is beneficial for feature classification as it adds

more flexibility in their detection. Typically, in CNN architectures, a pooling layer succeeded a

convolutional layer. For deeper architectures with many convolutional and pooling layers pairs, the

features of the image are learned in hierarchical order according to the space they occupied in the

input image [43]. An alternative to the pooling layer is to use a convolutional layer of larger stride.

- Flattening layer

Flattening is an intermediate step between the feature detection stage, that is, the convolutional and

pooling layers and the fully connected layers that perform classification. The latter requires the input

to be a vector. Thus, the flattening step converts the 3D array, resulted from the last layer of the

feature detection stage, into a 1D array (vector) that will be the input of the FNN that follows.

- Fully connected layers

Fully connected layers describe the layers of an FNN design to perform feature classification, which

is the last processing stage in a CNN architecture. A fully connected layer is also called the dense layer.

The FNN receives as input the 1D array that includes all the important features identified during

CNN's feature detection stage. It performs feature classification by following the forward propagation

process described earlier in this chapter, i.e., using shared weights and biases and applying non-

linear activation functions (equations (4.26)-(4.29)).

4.4.3 Training CNNs

The training of CNNs is performed within the same context as the FNN that was described earlier.

That is, using the forward propagation algorithm to make a prediction for some initiated weight

values and then update these weights to minimize the cost function. The weights are updated by

using the backpropagation algorithm, which calculates the gradients of the errors and then a

gradient-based optimization technique to minimize them. The particularity of CNNs lies in the layers

of the feature detection stage that receive 3D arrays instead of vectors and are using operations like

Theoretical Framework of CNNs 57

convolution and pooling instead of matrix multiplication. Here, a neuron or unit in a layer is a pixel

that is connected with a previous layer using the concept of receptive fields or field of view.

Receptive fields, like the neurons, are models that are also biologically inspired by the visual system

of animals and are regions that can trigger neuronal responses when stimulated [150], [151]. In deep

learning, a receptive field is a block of neurons in the input that affects a neuron in the next layer

[152], [153]. LeCun et al. in [43] named these regions as filter banks. Compare to the typical FFNs, the

neurons of a layer in CNNs’ feature detection stage are not fully connected. The convolutional filter

or pooling filter defines the receptive field's size, and the weights are introduced by the type of filter

used. The training process will update these values. The equations described in the feedforward and

backpropagation algorithm can be applied. A step-by-step derivation using backpropagation in a CNN

with two convolutional layers, two pooling layers, and a fully connected layer is given in [154]. To

update the weights, SGD is among the most popular choices of optimizers. More recent algorithms

embed the momentum method to accelerate learning of SGD or use newer developed adaptive

learning rate optimization algorithms. In the last category, many algorithms have been proposed to

overcome issues related to the learning rate of SGD, like slow convergence. An overview of the most

popular ones for the field of DL is given in [155]. For image classification with CNNs, the most

preferred optimizers are the SGD algorithm using momentum and the Adaptive Momentum

estimation (Adam).

- Momentum

Momentum, introduced by Polyak in [156], is a method used in DL to accelerate learning when using

gradient-based optimizers. It is particularly efficient in cases of gradients that a local minimum is

harder to approach either due to noise, high curvatures, or when gradients are small but consistent

[43]. Momentum introduces velocity, 𝜐, in the gradient descent updating process (equation (4.13))

that helps in accelerating towards the direction of the local minima. If 𝐽(𝒘) is a cost function to be

minimized with respect to the weights 𝒘 and 𝑡 the iteration, the momentum is given by [157]:

 𝝊(𝑡+1) = 𝜇𝝊𝑡 − 𝜂∇𝐶(𝒘(𝑡)) (4.42)

 𝒘(𝑡+1) = 𝒘(𝑡) − 𝝊(𝑡+1) (4.43)

where 𝜂 > 0 is the learning rate, 𝜇 ∈ [0,1] is the momentum coefficient (usually set to 0.9), and

∇𝐶(𝒘(𝑡)) is the gradient at 𝒘(𝑡). The velocity vector accumulates the gradient elements of the

previous steps that point to the same direction. When 𝜇 and 𝜂 are close, the gradients of the previous

58 Theoretical Framework of CNNs

steps have a greater effect on the current direction [43]. The weights are updated using equation

(4.43).

- Adam

Kingma and Ba introduced adaptive moments or “Adam” in [158] as an adaptive learning rate

optimization algorithm that is based on SGD. According to the authors, Adam combines beneficial

features of the Adaptive Gradient Algorithm (AdaGrad) [159] and the Root Means Square Propagation

(RMSProp) [160]. These are the efficiency of issues related to sparse gradients (like in Adagrad) and

the efficiency with online and non-stationary problems (like in RMSProp). In Adam, the adaptive

learning rates are computed by storing an exponentially decaying average of both the past gradients,

𝑚(𝑡), and past squared gradients, 𝜐(𝑡) [158]:

 𝒎(𝑡) = 𝛽1𝒎𝑡−1 + (1 − 𝛽1)∇𝐶(𝒘(𝑡)) (4.44)

 𝝊(𝑡) = 𝛽2𝝊𝑡−1 + (1 − 𝛽2)(∇𝐶(𝒘(𝑡)))2 (4.45)

The 𝑚(𝑡) and 𝜐(𝑡) are estimates of the first moment and the second moment of the gradient,

respectively, and 𝛽1 and 𝛽2 are the corresponding decay rates. The authors in [158] observed that

the moments of equations (4.44) and (4.45) are biased to 0 for low decay rates. This led them to

include bias-corrected estimations of the first and second-moment:

𝒎̂ =

𝒎(𝑡+1)

1 − 𝛽1
(𝑡+1)

 (4.46)

𝝊̂ =

𝝊(𝑡+1)

1 − 𝛽2
(𝑡+1)

 (4.47)

The weights are updated according to [158]:

𝒘(𝑡+1) = 𝒘(𝑡) − 𝜂

𝒎̂

√𝝊̂ + 𝜖
 (4.48)

where 𝜖 is a small scalar (i.e., 10−8) to prevent division by 0. The recommended values for 𝛽1 and 𝛽2

are 0.9 and 0.999 according to [158].

The choice of the best optimizer is mostly based on experimentation. Several studies exist in the DL

literature, comparing the performance of various optimizers providing empirical guides. For

classification with CNN, many of these studies conclude that Adam performs better than similar

algorithms like RMSProp and Adagram [161],[158]. However, there are also studies, like the one

conducted by Wilson et al. [162], which conclude that SGD is a better choice than adaptive rate

algorithms as a better generalization is achieved.

Theoretical Framework of CNNs 59

 GENERALIZATION

The essence of learning from data in every ML and DL applications is that the final hypothesis, ℎ(𝒙)

resulted from the training process will be able to make correct predictions when using entirely new

inputs from 𝒳. That is the meaning of generalization. Thus, an important part of every ML and DL

training session is to examine whether ℎ(𝒙) generalizes well. If this is true, then the output, ℎ(𝒙), is

the best approximate of the unknown target function or distribution and the solution to the learning

problem. Else, training should be repeated using different ℋ (i.e., find different weights).

To evaluate generalization, ℎ(𝒙) is used to make predictions using a test set and then measure the

error between the real and the predicted value, 𝐸𝑡𝑒𝑠𝑡 [118]:

 𝐸𝑡𝑒𝑠𝑡 = ℰ(ℎ(𝒙𝒕𝑒𝑠𝑡) ≠ 𝑓(𝒙𝒕𝑒𝑠𝑡)) = ℰ(𝑦̂𝑡𝑒𝑠𝑡 − 𝑦𝑡𝑒𝑠𝑡) (4.49)

This error is an estimation of the error that will occur when using any data drawn from 𝒳, or any

data that were generated by the unknown distribution 𝑃(𝑦|𝒙) [118]. An indication that the picked

ℎ(𝒙) generalizes well, is when the gap between 𝐸𝑡𝑒𝑠𝑡 and 𝐸𝑡𝑟𝑎𝑖𝑛 is minimum. Ideally, it would be the

same. Hence, setting an appropriate test set is a major step towards the evaluation of how well a

model has learned, and further, how much the model’s predictions using new data can be trusted.

Usually, the test set is defined by splitting the data that will be used for training. The size of the test

set, i.e., the number of the examples used, must be big enough for the error to be representative for

the entire 𝒳, but at the same time, not too big as it will reduce the number of examples available for

training. An empirical rule is to split training and test sets using the ratio of 80% -20%, so having

enough data is essential for learning. Additionally, the portion of data kept for the test set must be

entirely intact from the training process.

An important property of ℋ that is used to evaluate generalization is the capacity [43]. The capacity

describes the size and complexity of ℋ. It is quantified using the Vapnik-Chervonenkis dimension (VC),

denoted as 𝑑𝑉𝐶 . The VC dimension is used to apply an upper boundary on 𝐸𝑡𝑒𝑠𝑡 that shows the

effective number of parameters to keep the distance close to 𝐸𝑡𝑟𝑎𝑖𝑛. This boundary is called the VC

generalization boundary [118]. Briefly, it expresses that good generalization, from 𝐸𝑡𝑟𝑎𝑖𝑛 to 𝐸𝑡𝑒𝑠𝑡, is

possible for an infinite ℋand finite 𝑑𝑉𝐶 when using enough training data 𝛮. A rule of thumb is 𝑁 =

10 × 𝑑𝑉𝐶. On the other hand, the gap between the two errors grows as the model capacity grows. The

latter agrees with the Occam’s razor principle stating that among competing hypotheses that explain

a known observation equally well, the simplest one should be chosen [43]. Thus, to have chances for

good generalization, the following terms must be considered [43], [130]:

60 Theoretical Framework of CNNs

1. An efficient amount of training data, 𝑁, is required

2. 𝐸𝑡𝑟𝑎𝑖𝑛 be as close to zero as possible

3. 𝐸𝑡𝑒𝑠𝑡 and 𝐸𝑡𝑟𝑎𝑖𝑛 gap be minimum

4. The capacity of the model be simple enough to keep the gap small

5. The capacity of the model be complex enough to keep 𝐸𝑡𝑟𝑎𝑖𝑛 small

Another approach that may give insights on the generalization is the bias-variance tradeoff. It mainly

applies to real-valued functions and is based on minimizing the square error of 𝐸𝑡𝑒𝑠𝑡 and 𝐸𝑡𝑟𝑎𝑖𝑛. This

is translated as a tradeoff of minimizing either the bias or the variance. Since this analysis is not

practical for classification, as discussed in [113] and [115], it is not further discussed as it exceeds

this dissertation's scope.

There are two behaviors observed during the training process of a learning algorithm, known as

overfitting and underfitting, leading to poor generalization.

4.5.1 Overfitting

Overfitting means that the hypothesis, ℎ(𝒙), fits the training data so well that it results in poor

generalization. In other words, the error during training is very small, but the test error is very large.

So, the gap between 𝐸𝑡𝑒𝑠𝑡 and 𝐸𝑡𝑟𝑎𝑖𝑛 is also large. Abu Mostafa et al. in [118] describe overfitting as

the process of picking those hypotheses from ℋ that keep reducing 𝐸𝑡𝑟𝑎𝑖𝑛 while keep increasing 𝐸𝑡𝑒𝑠𝑡.

There are a few obvious reasons that can cause overfitting. One is the noise level in training data.

High noise level leads to overfitting, as the learning algorithm will try to reduce the error by picking

a hypothesis to fit the noise or outliers as well. Another reason is that the hypothesis space is very

complex, or the capacity is very high. Under this condition, overfitting is more likely to happen as it

increases the chances of a hypothesis that is not a good approximate of 𝑓, that is ℎ ≠ 𝑔, to better fit

the data. A graphical example of overfitting is presented in Figure 4.8.

Overfitting is a challenging issue, and an open research subject commonly met in several Machine

and Deep Learning problems. Overfitting can be limited or even prevented when using regularization

techniques (will be discussed in the following subsection) and when increasing the size and quality

of training data.

4.5.2 Underfitting

Underfitting is the opposite of overfitting. A sign of underfitting is when 𝐸𝑡𝑟𝑎𝑖𝑛 is not sufficiently low.

That means the hypothesis picked by the learning algorithm does not adequately fit the data.

Underfitting happens when the hypothesis set is not complex enough to capture the underlying

Theoretical Framework of CNNs 61

structure of the data. Thus, the capacity is low. For example, using a simple linear ℎ(𝒙) to describe

points of a polynomial of a very high order. A graphical example is presented in Figure 4.8. As a result,

ℎ will not generalize well.

Thus, the real challenge is to find a hypothesis complex enough to avoid overfitting, underfitting, and

at the same time to achieve a good generalization. One way to find this optimal capacity is graphical

by observing the curves of the errors 𝐸𝑡𝑒𝑠𝑡 and 𝐸𝑡𝑟𝑎𝑖𝑛 when plotted with respect to the capacity

(Figure 4.9).

Figure 4.8: Example of a data set and three hypotheses where (a) is the underfitting scenario, (b) is the
best fit scenario, and (c) is overfitting. (Concept recreated from [43])

Figure 4.9: Behaviors of the training and test error with the capacity that can lead to overfitting and
underfitting. The Underfitting zone lies in lower capacities. In the overfitting zone, the training error
decreases as capacity increases while the test error increases. The optimal capacity lies in where both
errors are low, and their gap is the minimum. (Concept recreated from [43]).

62 Theoretical Framework of CNNs

 REGULARIZATION

The purpose of regularization is to prevent overfitting and achieve better generalization. In a more

general sense, Goodfellow et al. in [43] describe regularization as any modification made to a learning

algorithm that is intended to reduce its test error but not its training error. Kukačka et al. [163]

categorize the various regularization methods that are used the most in the machine and deep

learning problems. It becomes clear that regularization is a combination of different techniques that

are being embedded in the different stages and components of the learning process. According to

their taxonomy, regularization can be achieved: 1) by applying transformations on the training data,

2) by choosing a proper network architecture, 3) through the error function chosen during training,

4) through the addition of an explicit regularizer, and 5) via the optimization during training. It is

also very common to combine different regularization techniques to achieve as good a generalization

as possible. For this, Abu-Mostafa et al. in [118] characterize regularization as much an art as it is a

science. It can make a difference, but that would depend on skills and experience. For the purpose of

this study, regularization techniques used with CNN are examined. The most popular ones are data

augmentation, weight decay, dropout, and batch normalization.

4.6.1 Data Augmentation

A way of achieving good generalization is using an adequate number of training data that represent

the input space. Data augmentation assists in that direction by creating new data and add them to the

training set. This is done by applying various transformations in the training set. Data augmentation

is efficient for classification tasks like image classification for object recognition, particularly, when

the available data are insufficient to train accurate and robust classifiers.

The transformations applied in these cases are label-preserving like small affine transformations

[164]. The authors in [165] mentioned seven families of transformations proper for image

classification. These are:

• flip that mirrors an image along the horizontal or vertical axis

• crop that produces sub-windows of the input image

• homography that changes the viewpoint of the input image

• scale, that changes the scale of the input image

• colorimetric transformations that create variations of the RGB color scheme of the input

image using the covariance matrix

• JPEG compression that creates variations on the input image encoding

• rotation that rotates the input image around its center

Theoretical Framework of CNNs 63

• Order-K Transformations that refer to the number K of combinations of the previously

mentioned transforms.

The purpose of applying these transformations, either standalone or in a combination, is to ensure

that the target will be detectable despite differences related, for example, to the angle that the image

was taken and the lens distortion, or the orientation and the size of the feature of interest, the

contrast in colors or tones, etc. In other words, there are target-preserving transformations to mimic

natural transformations [163]. Another data augmentation approach is to inject random noise on the

inputs, for example, to improve the robustness of neural networks. Augmentation techniques vary

significantly and usually are chosen manually according to the learning needs. Data augmentation is

known to have contributed to achieving state-of-the-art results on the various machine and deep

learning tasks related to computer vision. However, bad choices in the data augmentation scheme

can lead to a detrimental impact on the accuracy and the robustness of the classifier. Thus, it is a

strategy that requires good planning. Two algorithms that are developed to find the best possible

applicable transformations for image classification are the adaptive data augmentation in [164] and

the Image Transformation Pursuit in [165].

4.6.2 Weight Decay

Weight decay is a traditional technique that falls under the category of adding an explicit

regularization term when following the taxonomy in [163]. This term assigns a penalty denoted by,

𝛺, and is called a regularizer, denoted by 𝓇. If 𝑁 is the to total number of the data points, the

regularizer has the general form of [118]:

𝓇 =

𝜆

𝑁
𝛺 (4.50)

where 𝜆 ≥ 0 is a value that controls the amount of regularization. The regularizer is independent of

the inputs and the targeted values, while it depends on parameters related to the hypothesis space

and the number of the data points. For less training data, more amount of regularization is needed.

In weight decay, the penalty is the squared norm, 𝐿2, of the weights: 𝛺(𝒘) = 𝒘T𝒘. So, equation

(4.50) becomes:

 𝓇(𝒘) = 𝜆𝒘T𝒘 (4.51)

The regularizer, 𝓇(𝒘), is added to the loss function of equation (4.6), defining the augmented error

[118]:

64 Theoretical Framework of CNNs

 𝐸𝑎𝑢𝑔 = 𝐸𝑡𝑟𝑎𝑖𝑛(𝒘) + 𝜆𝒘T𝒘 (4.52)

Minimizing the augmented error becomes the new subject of training when using weight decay. To

do so, both terms in equation (4.52) must be minimum. Thus, it enforces 𝐸𝑡𝑟𝑎𝑖𝑛 to become small when

weights in 𝒘 are small. In other words, weight decay penalizes large weights as 𝜆 becomes larger. In

a way it reduces the size or the capacity of the hypothesis space, and this may prevent overfitting.

Weight decay is also known as 𝐿2 regularization, ridge regression, and Tikhonov regularization.

4.6.3 Dropout

Dropout is one of the most popular methods and has many variants that are proposed over the years

for improvements [163]. Srivastava et al. initially introduced dropout in [166] as a technique to

prevent neural networks from overfitting with a low computational cost. Deep neural networks are

capable of learning complicated relationships between their inputs and outputs due to their multiple

non-linear hidden layers. This ability tends to cause overfitting as noise usually exists in the training

data that is mistreated as data drawn from input space. Models of these relationships will fail to

generalize when applied to the test set. A solution to this issue would be to combine different models

with all possible parameters and average their predictions. However, this is not applicable as it would

require unlimited computations, while dropout is a feasible approach.

The concept of dropout is to exclude units in both hidden and input layers and their connections

while training a neural network. The choice of the units is random, using a probability to be “dropped

out,” 𝑝. This probability is independent among the units. Srivastava et al. [166] recommend a value

𝑝 = 0.5 for units inside the hidden layer, and 𝑝 closer to 1 for units inside the input layers. Thus, the

outcome of dropout will be a number of “thinned” versions of the original network. The concept of

dropout is illustrated in Figure 4.10. If the original neural network consists of 𝑛 number of units, then

2𝑛 possible thinned neural networks may result from it. So, dropout is about sampling the 2𝑛 thinned

neural networks and then proceeding with their training using weight sharing and an approximate

averaging method. This is performed by dividing the process into training time that uses dropout and

test time without dropout. During training time, a unit of the network might be present with some

probability 𝑝 and will produce some weights 𝒘. At test time, the same unit is always present since no

dropout is used, and its produced weights 𝒘 are multiplied by the probability 𝑝.

The dropout neural network model is described in comparative Figure 4.11. On the left is a neural

network where 𝐿 are the hidden layers with index ℓ ∈ {1, … , 𝐿}, 𝑧(ℓ) is the vector of inputs passed to

layer 𝑙, 𝑦(ℓ) is the vector of outputs from layer 𝑙 (𝑦(0) will be the input 𝑥). Following the feedforward

Theoretical Framework of CNNs 65

propagation, with weights 𝒘(ℓ) and biases 𝒃(ℓ) of each layer ℓ, the input of each layer 𝑧(ℓ) and

corresponding output 𝑦(ℓ) will be:

 𝑧𝑖
(ℓ+1)

= 𝒘𝑖
(ℓ+1)

𝒚(ℓ) + 𝑏𝒊
(ℓ+1)

 (4.53)

 𝑦𝑖
(ℓ+1)

= 𝜑 (𝑧𝑖
(ℓ+1

) (4.54)

where 𝜑 is an activation function.

With dropout, the forward propagation will be [166]:

 𝑟𝑗
(ℓ)

~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝) (4.55)

 𝒚̃(ℓ) = 𝒓(ℓ) ∗ 𝒚(ℓ) (4.56)

 𝑧𝑖
(ℓ+1)

= 𝒘𝑖
(ℓ+1)

𝒚̃(ℓ) + 𝑏𝑖
(ℓ+1)

 (4.57)

 𝑦𝑖
(ℓ+1)

= 𝜑 (𝑧𝑖
(ℓ+1

) (4.58)

The equation (4.55) expresses a vector of independent Bernoulli random variables that correspond

to each layer ℓ, and has a probability 𝑝 of being 1. This vector is element-wise multiplied with the

corresponding outputs of layer ℓ. In this way, the thinned outputs 𝒚̃(ℓ) are created (equation (4.56))

and will be the inputs to the next layer, 𝑧𝒊
(ℓ+𝟏)

, as describes equation (4.57). This process is applied

to each layer.

Figure 4.10: The concept of Dropout where (a) is the original network training and (b) is training with
dropout applied (Concept redrawn from [166]).

66 Theoretical Framework of CNNs

Figure 4.11: Dropout model where (a) is the original neural network while (b) is the network with
dropout applied (Concept redrawn from [166]).

4.6.4 Batch normalization

Batch normalization (BN) is a technique proposed by Ioffe and Szegedy in [167], and while its

primary purpose is to accelerate training in deep neural networks, it acts as a regularizer as well

[168]. When using SGD, in deep neural network architectures, training times are very long as the

distribution of each layer’s inputs is sensitive to changes in the parameters of the previous layer (i.e.,

the learning rate of a batch). Moreover, any small change is amplified as the layers of the deep

network proceed. Ioffe and Szegedy defined these changes in distribution at a network layer level as

the Internal Covariate Shift [167]. Acceleration in training is then feasible if the internal covariate

shift is reduced, which can be achieved by normalizing each layer's inputs. Normalizing a neural

network's input is a common practice in many ML and DL applications as the non-linear activation

functions (i.e., tanh or the sigmoid) are less saturated for this distribution range. As a result, the

optimizer converges faster, which leads to faster training times. Batch normalization is a mechanism

that embeds normalization in the architecture of a neural network and is applied for each activation

layer's input.

Like dropout, BN operates differently for training and test time. For training time, BN is applied to

the batches of data used by SGD. If ℬ = {𝑥1, … , 𝑥𝑚} are the input values of the batch, the batch-mean,

𝜇ℬ, and batch-variance, 𝜎ℬ
2, are calculated as[167]:

Theoretical Framework of CNNs 67

𝜇ℬ =

1

𝑚
∑ 𝑥𝑖

𝑚

𝑖=1

(4.59)

𝜎ℬ

2 =
1

𝑚
∑(𝑥𝑖 − 𝜇ℬ)2

𝑚

𝑖=1

(4.60)

and the batch inputs are normalized, 〈𝑥𝑖〉, as:

 〈𝑥𝑖〉 =
𝑥𝑖 − 𝜇ℬ

√𝜎ℬ
2 + 𝜖

 (4.61)

where 𝜖 is a small value to prevent division by zero.

Then, a scale, 𝛾, and a shift, 𝛽, are applied to the normalized value 〈𝑥𝑖〉 :

 𝑦𝑖 = 𝛾〈𝑥𝑖〉 + 𝛽 ≡ 𝛣𝛮𝛾,𝛽(𝑥𝑖) (4.62)

where 𝑦𝑖 is the input to the activation at a single layer for the current batch. The pair of parameters

𝛾 and 𝛽 are trainable and are updated during the training process, along with the rest of the

parameters like the weights, using backpropagation, and SGD or any other extension of it (e.g., Adam).

Equations (4.59)-(4.62) are referred to as the Batch Normalizing Transform [167].

During test time, where no batches are used, predictions are made for some new inputs using the

trained model. If 𝑥 is the input for the layer’s activation, it is normalized as:

〈𝑥〉 =

𝑥 − E[𝑥]

√Var[𝑥] + 𝜖

(4.63)

where the mean, E[𝑥], and variance, Var[𝑥] are the expected values collected from the batch training:

 E[𝑥] = Eℬ[𝜇ℬ] (4.64)

 𝑉𝑎𝑟[𝑥] =
𝑚

𝑚 − 1
Eℬ[𝜎ℬ

2] (4.65)

BN algorithm can be implemented prior to layers that use activation functions. For example, in FNNs,

BN is applicable prior to any hidden layer. For CNNs, BN can be implemented between convolutional

layers, using as inputs the feature maps that the nonlinear activation function will be applied (i.e., the

ReLU step) or before a dense layer in the same manner as an FNN. However, it is more common for

BN to be applied between convolutional layers rather than before dense layers. Aside from the gains

in training time, BN has other benefits like acting as a regularization technique and, in some cases,

eliminates the need for dropout[167], [168]. It also eliminates the need for a bias term in the

activation input.

68 Theoretical Framework of CNNs

 VALIDATION

Throughout the various stages of the learning process discussed in previous subsections, one can

realize that achieving good performance relies on experimentation upon the choices made for

parameters and other settings during these stages, from designing an architecture to training and

generalization. These settings and parameters, which are not learned using a learning algorithm but

have a great impact on learning, are referred to as the hyperparameters. For example, in neural

network architectures, hyperparameters can be the number of hidden layers, the number of units in

a layer, and the choice of activation and cost function. Hyperparameters are also parameters of the

training algorithm, like the learning rate or the momentum, as well as parameters related to the

applied generalization methods like the dropout value.

Validation is an additional step in learning from data that aims to optimize or tune the

hyperparameters that control the learning process for better performance. For this purpose, a

validation set is used. Similar to the test set, the validation set is a subset of the training set that is

excluded from the training process. The difference to the test set is that the validation set is used to

make choices while training. After a hypothesis, ℎ, is generated from the learning algorithm, using

the initial choices of the hyperparameters, it is then evaluated on the validation set by calculating the

validation error [118]:

𝐸𝑣𝑎𝑙 =

1

𝐾
∑ 𝑐𝑜𝑠𝑡(𝑦𝑖̂

𝑣𝑎𝑙 , 𝑦𝑖) = 𝐼(𝑦𝑖̂
𝑣𝑎𝑙 ≠ 𝑦𝑖)

𝐾

𝑖=1

 (4.66)

where 𝑐𝑜𝑠𝑡 is expressed as the binary error for classification and 𝑦𝑖̂
𝑣𝑎𝑙 is a prediction made using the

hypothesis ℎ(𝒘) with the samples in the validation set. The model's hyperparameters are then tuned

manually or by using meta-algorithms and techniques, and training is repeated using the new choices

[43]. For the new model 𝐸𝑣𝑎𝑙 is calculated. Having repeated this process producing several models,

the one with the lowest 𝐸𝑣𝑎𝑙 is selected. The final evaluation of the model and its generalization is

performed on the test set. Because the validation set includes samples withdrawn from the training

set, it has to be small enough to refrain from significantly reducing the training examples and big

enough to be representative for a good evaluation. A rule of thumb is to set 20% of the training data

for validation [118]. A popular validation approach for splitting the data is cross-validation.

While the validation set can have various uses in the ML and DL application range, in neural networks,

it is mostly used for applying early stopping, which helps to avoid overfitting by terminating training.

Further tuning is mainly performed manually, focusing on certain hyperparameters. Automated

hyperparameter tunning is challenging due to the complexity and the large number of parameters

Theoretical Framework of CNNs 69

that FNNs and CNNs can have, especially when generalization techniques are also involved. When the

hyperparameters under tuning are three or fewer, methods like the grid search or random search are

used [43].

4.7.1 Cross-Validation

Splitting the available training data into a test set and validation set requires enough data for the

learning process to be successful. In cases where the data are not enough, even if the rule of 80%-

20% is followed, the test set will end up being small introducing statistical uncertainty in the test

error estimation. This case scenario is met very often in real-world problems, and approaches are

developed to reduce this uncertainty in the test error estimation. The concept behind this approach

is to estimate the test error on different randomly chosen subsets of the original dataset. One of the

most popular techniques is the 𝑘-fold cross-validation. The 𝑘-fold cross-validation algorithm splits

the dataset in 𝑘 non-overlapping subset; each one corresponds to a trial. For each trial, the given

subset is used as a test set and the rest for the training set. The 𝐸𝑡𝑒𝑠𝑡 is estimated as the average of k-

trials.

Cross-validation can also be used to choose a model or the proper hypothesis set, among others [118].

The test error is estimated for each model, and the one with the smallest cross-validation error is

chosen for the training process.

4.7.2 Early stopping

Early stopping is a simple, yet effective technique applied to ML and DL problems to prevent

overfitting. As was described in generalization, during the training of the model, the curve of the

training error decreases over time (epochs) as the model tends to overfit the training data. A way to

understand when the model starts to overfit (Figure 4.9) is to observe the curve of generalization

error as well. An indication of overfitting is when the generalization error starts to increase. Early

stopping aims to find the time or epoch that the model starts to overfit and terminate training. In

other words, it aims to determine the right number of epochs to train the model.

Early stopping can be seen as both a generalization technique and a hyperparameter selection meta-

algorithm [43]. For the latter, the hyperparameter under question is the number of epochs that are

tuned using the validation set. In this case, the curve of the validation error is observed. A common

practice is to evaluate the validation error periodically during training while keeping copies of the

best model. A benefit of early stopping is that after finding the best training time, training can be

repeated, including the samples in the validation set as well. It can also be used alongside other

regularization methods.

70 Theoretical Framework of CNNs

 CLOSING REMARKS

In this chapter, the fundamental concepts of learning from data using CNN were described revealing

their depth and complexity. Since a recipe that guarantees good results does not exist, the trial and

error approach is inevitable. A starting base to produce reliable predictive models requires:

- a well-defined learning problem,

- enough and qualitative data to support it,

- a well-designed CNN architecture for the task (i.e., number of convolutional layers, pooling

layers, dense layers, units in a layer, size of kernels, activation functions, etc.),

- an efficient training algorithm for the given architecture (i.e., SGD, employing momentum,

Adam, etc.).

Choosing an appropriate performance measure (i.e., loss or cost functions) is important as it indicates

the quality of training and how well the produced model generalizes when used new data. For cases

where performance is poor or requires improvements, regularization techniques can be used to limit

or prevent overfitting, a cause for bad generalization. Several options exist (i.e., weight decay,

dropout, batch normalization), and more than one can be combined. This leads to many

hyperparameters that are mostly defined empirically and might as well require tuning. Hence,

validation approaches can be used to tune the hyperparameters, which can further improve

performance and lower the learning process's computational cost. The successful application of

generalization and validation techniques depends on how representative the samples included in the

test and validation set are, highlighting the fact that in ML and DL, the more the data, the better.

71

5. RESEARCH METHODOLOGY

This chapter describes the methods and tools employed in this research that aims to identify in an

automatic way ancient buried structures in GPR data. Toward this goal, Convolutional Neural

Network (CNN) and their potential to classify GPR images exhibiting structures are examined. Since

this research is among the first steps in using CNNs for interpreting GPR depth slices from

archaeological prospection, it is designed to serve as a base, providing insights for further

developments and improvements. This includes building datasets from scratch due to the lack of

available ones for this research's needs and testing CNNs on a more fundamental level, rather than

using more advanced and recent architectures, to understand what works better. For this reason,

AlexNet was used as it is simple and has the benefits of a deep architecture.

The conducted research study can be divided into four major stages; data collection, data processing,

dataset construction, and training using CNNs for the classification of selected features. Each stage is

judged equally important in achieving learning from GPR depth slices. Learning would not be possible

without GPR data featuring structures, while data processing helps create the right representations

for dataset constructions. The latter are the inputs of CNNs and affect the training process. If the

training dataset does not represent the input and output spaces well enough, then the produced

models would be unreliable, and hence any prediction made using them. This was one of the biggest

challenges faced while conducting this research. Last training CNNs is a tedious and time-consuming

process ruled by trial and error. CNNs are quite complicated, involving many hyperparameters to set

and different methods and techniques to choose from that could lead, or not, to improve learning

72 Research Methodology

from data. Here, some of the most popular approaches, known to work well in most cases, are tested.

This includes the type of optimizer used for training, batch normalization, and dropout methods.

 EQUIPMENT, TOOLS & SOFTWARE

For the data collection phase, the GPR system NOGGIN smart cart by Sensors & Software equipped

with a 250MHz antenna was used (Figure 5.1). The antenna is attached to a cart along with a wheel

odometer. The odometer is responsible for triggering EM pulses and records traces while rotating,

using a fixed distance interval (i.e., the trace sampling 𝑑𝑦). The records are stored in memory card

attached to the Digital Video Logger (DVL). Further, the DVL can display a GPR profile under scanning

in real-time. At the same time, it also performs other data-collection-related processes like the

odometer calibration or setting various parameters like sampling steps, survey grids dimensions,

estimation of EM velocity, and stacking. More details can be found in the user guide in [169].

Figure 5.1: The components of the NOGGIN smart cart plus GPR system that was used for the data
collection of this research. The photo was taken during the fieldwork at Naxos, Sicily.

The collected data were processed in MATLAB R2017b. Scripts were made to import and process the

collected data, mostly using a compilation of functions from toolboxes developed for GPR processing

like GPR-Pro V1.4 [170], matGPR R2 [171], as well as from the seismic toolboxes CREWES [172] and

Research Methodology 73

SeismicLab [173]. The data preparation phase for CNNs was also performed in MATLAB R2017b,

developing scripts to produce the images of the dataset.

The last phase of the research related to training CNNs for GPR feature classification was performed

in Python v.3.6. For the implementation of CNN, the Tensorflow library and Keras API were

employed using GPU support. NVIDIA CUDA development 10.1 was used. Other libraries used for

various computations and producing plots and figures are NumPy, matplotlib, PIL, and sklearn.

The latter methods and functions were used to evaluate classification performance.

Both data processing and CNN training were performed on a PC with the following specifications:

CPU Intel Core i7-4790K @ 4.00GHz, RAM 16 GB, OS Windows 10 64-bit, GPU NVIDIA GeForce GTX

970. Google Colaboratory, or “Colab” for short, was also used in training and tuning CNNs. Google

Colab is a hosted Jupyter notebook service by Google Research that allows running python scripts

through a browser. At the same time, it provides access to computer resources, including GPUs, for a

limited amount of time.

 ARCHAEOLOGICAL SITES & GPR DATA COLLECTION

The data used for this research were collected from 52 different archaeological sites located in

Greece, Cyprus, and Sicily, through integrated geophysical surveys. Most of them took place during

the period 2013-2019. These surveys were organized and guided by the laboratory of Geophysical –

Satellite Remote Sensing and Archaeo-Environment of the Institute for Mediterranean Studies -

Foundation and Research and Technology Hellas (IMS - FORTH). The selected sites exhibit traces of

civilizations from different historical periods, with most of them dating from the Neolithic to Ottoman

years.

The purpose of GPR surveys in all cases was to map structural archaeological remains in the near-

surface. The GPR system used was NOGGIN GPR equipped with a 250MHz antenna (Figure 5.1). This

particular GPR system was efficient in mapping buried foundations up to 2m below the surface in

various archaeological sites that were considered for this research, where different environmental

conditions were met, including from flat and urban areas to rural and more rocky ones with rough

terrains and conductive soils. The 250MHz antenna provided a good balance between the spatial

resolution and investigation depth to map structural remains. A 500MHz antenna was also tested in

a few sites but exhibited higher attenuation in the recorded signals, which decreased the

investigation depth.

74 Research Methodology

The data were collected using survey grids defined by a local cartesian coordinate system described

in Chapter 3. Points along X-axis indicate the start and endpoints of the scan lines, while points along

the Y-axis are the collected traces. The former is often referred to as the baseline, while the latter is

the scan axis. When the area of interest was large, the mosaic approach was followed. According to

it, a broader area is covered using subgrids. The size of each subgrid is decided upon by the terrain’s

morphology and the need for coverage. There is also the NOGGIN system's limitation that a survey

grid cannot exceed the number of 100 lines. This led to various grid sizes and geometries, with 2x4m

being the smallest and 50x120m being the largest measured among the areas this research concerns.

The average grid dimension was 20x30m. The total number of survey grids measured with GPR is

470, covering a sum area of 321,918m2.

All the GPR profiles were collected in parallel lines using a fixed 0.25-0.5m spacing between them,

which is adequate for mapping foundation structures. The traces sampling was set to 0.05m or

0.025m along a scan line, which was decided upon the terrain’s morphology. The smaller sampling

might provide a better resolution but lowers the data collection speed, which can be challenging to

handle in rough terrains resulting in skipping records. The lines orientation was either the same (i.e.,

parallel mode) or alternate (i.e., zig-zag mode). For cases that rectangular grids were defined, the zig-

zag mode was preferred as it speeds up the data collection. The parallel mode was used when a

rectangular survey grid was not possible to be defined, but the need for coverage was high (i.e.,

following a natural boundary). Last, stacking was used to amplify the transmitted signal and improve

data quality (i.e., fixing the signal attenuation). The number of stacking was decided on the field

according to factors like the signal’s attenuation and terrain morphology on each survey grid. The

more stacks, the longer it takes to record a trace; thus, it reduces the data collection speed.

Details on the 52 archaeological sites like the location, the number of grids per site measured, and

published material on the collected GPR data are summarized in Table 5.1 to Table 5.3. In the same

tables, data collection parameters adapted to each site's conditions like trace sampling and stacking

are also presented. The sites in Table 5.1 were surveyed under the IGEAN research project. The

surveys conducted for the sites presented in Table 5.2 are organized per research program, and last,

the sites presented in Table 5.3, the surveys were carried out in collaboration with the corresponding

Ephorates of Antiquities responsible for the site. In these sites where human traces from different

chronological periods have been found, dating from the Neolithic to Ottoman years, GPR could detect

structural features from various chronological periods, as was discussed in Chapter 3. Its

performance in detecting these traces varied, and this relied on the prevailing soil conditions, the

contrast in physical properties, and the preservation state of the buried structures.

Research Methodology 75

Table 5.1: Information on the Neolithic settlements of Thessaly, Greece, and GPR data collection that
was carried out for the research program IGEAN. Data collection parameters include the total number
of survey grids measured on each settlement, the trace sampling 𝑑𝑦 and the number of pulse stacking.
The line spacing for all the grids was 𝑑𝑥 = 0.5𝑚. For the survey parameters, cells with more than one
value indicate different settings for measuring the grids in the same area.

Innovative Geophysical Approaches for the Study of Early Agricultural Villages of Neolithic

Thessaly-(IGEAN)[174]

Site name Location Grids (#) dy(m) Stacks

(#)

Published

material

1 Agios Dimitrios
Agios Dimitrios,

Magnesia, Thessaly

4 0.025 8 [175]

2 Agios Nikolaos
Kanalia, Magnesia,

Thessaly

2 0.025 8 [175]

3 Almyriotiki
Almyros, Magnesia,

Thessaly

8 0.025-0.05 4 & 8 [175]–[179]

4 Almyros 2
Almyros, Magnesia,

Thessaly

5 0.05 8 [63], [69]

5 Bakalis
Velestino, Magnesia,

Thessaly

2 0.025 16 [16], [18],

[175], [182]

6 Belitsi
Anchialos, Magnesia,

Thessaly

4 0.025 & 0.05 4 & 8 [175], [183]

7 Deksameni
Almyros -Velestino,

Magnesia, Thessaly

1 0.025 8 [175]

8 Eleftherochori
Eleftherochori,

Magnesia, Thessaly

4 0.025 8 [175]

9 Kamara
Almyros, Magnesia,

Thessaly

4 0.05 8 [175], [181]

10 Karatsantagli
Almyros, Magnesia,

Thessaly

1 0.025 4 [63], [69]

11 Karatsantagliou Magnesia, Thessaly 1 0.025 4 [175]

12
Kastraki 2

/Perivlepto

Magnesia, Thessaly 8 0.025 8 [175], [181]

13 Kastro Kokkinas
Kokkina, Magnesia,

Thessaly

1 0.025 8 [175]

14 Mylos Baitsi
Almyros, Magnesia,

Thessaly

8 0.025 8 [175]

15 Perdika 1
Almyros, Magnesia,

Thessaly

6 0.05 8 [176]

16 Perdika 2
Almyros, Magnesia,

Thessaly

3 0.05 8 [175], [179],

[181]

17 Rizomilos 2 Magnesia, Thessaly 3 0.025 8 [175], [184]

18 Velestino 3 - Mati
Velestino, Magnesia,

Thessaly

9 0.05 8 [175], [176]

19
Velestino 4 -

Visviki

Velestino, Magnesia,

Thessaly

1 0.025 8 [175], [182]

20 Zerelia
Almyros, Magnesia,

Thessaly

2 0.025 16 [175]

76 Research Methodology

Table 5.2: Information on various archaeological sites and the GPR data collection that was carried out
for various research programs. Data collection parameters include the total number of survey grids
measured on each settlement, the trace sampling 𝑑𝑦 and the number of pulse stacking. The line spacing
for all the grids where 𝑑𝑥 = 0.5𝑚 with the only exception a few grids in Sissi where 𝑑𝑥 = 0.25𝑚 . For
the survey parameters, cells with more than one value indicate different settings for measuring the grids
in the same area.

POLITEIA research project, Action KRIPIS [185] (Code: 2013SE0138003)

Site name Location Grids (#) dy(m) Stacks

(#)

Published

material

21 Demetriada Magnesia, Thessaly 7 0.05 8 [16], [18],

[186]–[188]

22 Gortyna Heraklion, Crete 6 0.05 8 -

23 Lefkes Livadeia, Boeotia,

Central Greece

2 0.025 8 -

24 Mantineia Arcadia, Peloponnese 17 0.05 8 [186], [189],

[190]

25 Magoula

Balomenou

Chaeronea, Boeotia,

Central Greece

3 0.025 8 -

26 Psilomata 2 Livadeia, Boeotia,

Central Greece

3 0.025 8 -

27 Psilomata 3 Livadeia, Boeotia,
Central Greece

3 0.025 8 -

28 Orchomenos Boeotia, Central

Greece

2 0.025 8 -

29 Tegyra Boeotia, Central

Greece

6 0.025 8 -

30 Voulokaliva-Site

35

Voulokaliva,

Magnesia, Thessaly

3 0.025 8 -

Ancient City project, ARISTEIA II Action (Code:2013SE0138004)

31 Halos Magnesia, Thessaly 7 0.025 8 [186]

32 Heraia Arcadia, Peloponnese 12 0.025 4 [186], [187]

ArchaeoLandscapes Europe" (ArcLand) [191]

33 Hyettos Boeotia, Central

Greece

34 0.025 &

0.05

8 [192], [193]

The Sissi Archaeological Project (Sarpedon) [194]

34 Sissi Heraklion, Crete 17 0.05 8 & 16 [195]–[197]

The Greek colony of Naxos in Sicily: mapping the town plan and geophysical survey [20]

35 Naxos Giardini-Naxos, Sicily 89 0.025 &

0.05

8 [198]

Salamis Urban Landscape Project 2016–2020 [199]

36 Salamis Salamis island, Attica,

Central Greece

9 0.05 8 -

Research Methodology 77

Table 5.3: Information on archaeological sites and the GPR data collection that was carried out for
various individual surveys in collaboration with the corresponding Ephorates of Antiquities. Data
collection parameters include the total number of survey grids measured on each settlement, the trace
sampling 𝑑𝑦 and the number of pulse stacking. The line spacing for all the grids where 𝑑𝑥 = 0.5𝑚. For
the survey parameters, cells with more than one value indicate different settings for measuring the grids
in the same area.

Individual Geophysical surveys

Site name Location Grids (#) dy(m) Stacks (#) Published

material

37 Amathounta Limassol, Cyprus 5 0.025 8 -

38 Bentenaki Heraklion, Crete 7 0.025 16 [39]

39 Delphi Phocis, Central

Greece

17 0.05 8 [200]

40 Elateia Phthiotis, Central

Greece

15 0.025-

0.05

8 , 22 & 25 -

41 Idomeni Kilkis, Macedonia 6 0.05 8 [201]

42 Ierapytna Lasithi, Crete 6 0.025 16 [34]

43 Koumasa Heraklion, Crete 13 0.05 8 -

44 Lechaion Corinthia,

Peloponnese

13 0.05 8 -

45 Palamari Skyros island,

Sporades, Central

Greece

10 0.05 8 [202]

46 Paralia Avlidas Euboea, Central

Greece

25 0.025 8 -

47 Pella Pella, Macedonia 5 0.05 8 -

48 Plataies Boeotia, Central

Greece

19 0.05 8 -

49 Sikyon Corinthia,

Peloponnese

19 0.025 16 [19], [203],

[204]

50 Turkish school Rethymno, Crete 6 0.05 8 [39], [205]

51 Yperia Krini

spring

Velestino, Thessaly 2 0.025 8 -

52 Zominthos Rethymno, Crete 5 0.05 4 -

In Figure 5.2, a compilation of photographs taken in a few of the abovementioned sites during data

collection using NOGGIN GPR is presented. These are a few examples that show the variety of the

different conditions met. These include different weather conditions, from rains to heatwaves that

affect the soils’ water content. Others are the different terrain conditions that include flat and easily

access areas, more rocky areas, cultivated areas, high vegetation areas, and different slopes.

78 Research Methodology

Figure 5.2: Compilation of photographs taken in various survey sites using NOGGIN GPR showing the
different conditions met.

Research Methodology 79

 DATA PROCESSING

GPR data processing is known to be a tedious process characterized by trial and error as the quality

of the data is site-dependent, and the processing needs may differ significantly not only among

different areas but also for profiles collected in different grids in the same area. However, due to the

amount of data used in this research, an empirical workflow that was found to work satisfactorily for

the collected data was followed. Processing was held in MATLAB and is divided into three stages. The

first is to import the data, the second to process the GPR profiles to reduce noise and highlight

reflection from the subsurface, and the last to produce and export depth slices.

5.3.1 GPR data import

The first step of processing is to import survey grid data in the MATLAB environment. A NOGGIN GPR

stored profile consists of two files; a header file (.HD) and a binary data file (.DT1). The header file is

an ASCII file accessible by any word processor and text editor software. The stored information

includes system details and data collection settings. Examples of header files can be found in Table

A.1 of Appendix A. The data file format is Digital Terrain Elevation Data (DTED) of level 1. It contains

as many records as the collected traces, and each record is a set of a header section and a data section.

The former serves as an annotation that links the information of the HD file to each trace. The latter

is an array of 2-byte integers, and each value corresponds to a data point of a trace. An example of

the data file structure can be found in appendix A of the NOGGIN user guide in [169]. The stored

profiles used the prefix LINEY or LINEX, where Y or X indicate whether the scan-axis orientation is

along the Y or X-axis of the survey grid and is followed by the line's number. Numbering starts from

0, so LINEY0 will be the first line of the grid with the Y-axis direction.

A MATLAB script was made to import the stored profiles and is given in Script A.1 of Appendix A. The

script is a modified version of the one found in the toolbox GPR-Pro [170] and is adapted to work

with NOGGIN data. When running the script, navigation windows appear, prompting the user to

select the .HD and their corresponding .DT1 files. The filenames and paths are stored along with

selected parameters from the header file, useful for processing, which are assigned as variables. The

data points are loaded using the built-in functions fopen, fread, and fclose. Since all the loaded

traces are flattened in a single vector, the next step is to arrange them accordingly in a 2D array to

create a B-scan where each column is a trace. Further, the scan-axis distance vector, the time

sampling, and the double travel time vector are also computed and stored.

The script keeps the number of the selected lines, and if a single line is selected, then the 2D array is

named B-scan. If multiple lines are selected, the B-scans are stored under the cell array named

80 Research Methodology

Lines, as happens in a survey grid. A cell array has indexed data containers called cells containing any

type of data like vectors or arrays of strings and numbers, or mixed and of different sizes and lengths.

This data type is convenient in handling the different dimensions of the B-scans imported from a

survey grid and makes possible the application of processing workflows through loops. After running

the script, all the imported variables and GPR profiles were saved manually in a .mat file treated as

the raw data.

5.3.2 Processing the imported B-scans

The processing workflow applies in the raw Bscans using the saved variables after running the

NOGGIN_data_import.m script. The processing workflow presented here applies to the B-scans

of a survey grid that are stored in a cell array. The purpose is to remove noise, highlight reflections

from the subsurface, and geometrically correct the Bscans so that they can be inserted in a 3D array.

Each processing step was applied to all the lines of the cell array using for loops. The output of each

step was the input of the next one. A representative example of the processing workflow followed is

given in Appendix A for a survey grid at Demetria's archaeological site. In summary, the workflow

includes in order:

1. Geometrical corrections to fix offsets in the collected traces' position. This correction

resamples the distance vector to meet the line length indicated by the survey grid geometry.

A script was made to perform this task and is given in the processing example of Appendix A

(Script A.3).

2. Time zero to correct the vertical position of the first pulse. A script was made that uses a user-

defined time value and crops out earlier records and given in the processing example of

Appendix A (Script A.4).

3. Dewow filter that is applied for the removal of low-frequency noise. The dewow function from

the toolbox matGPR[171] was used.

4. Gain functions to compensate for the attenuation effect like SEC2 gain or AGC gain. In this

research, the adaptive gain Inverse Amplitude Decay (IAD) of matGPR was used that is

implemented with the function gaininvdecay. This particular implementation of gain was

preferred due to its adaptivity that allows the user to select the attenuation model that better

suits a survey line.

5. Filters and corrections that are applied to remove noise enhanced by the gain. This includes

the Average Background Removal (ABR) and bandpass filtering. For ABR, the function

rmbackgr of matGPR was used. As for bandpass filtering, the function bp_filter from the

Research Methodology 81

SeismicLab toolbox [173] was used. The frequency window of 100MHz – 500MHz was found

to retain useful information and remove most noise that was enhanced by the gain filter. This

frequency band was determined by observing the average spectrum of the lines in several

grids. The bandpass filtering effect is presented in Figure 5.3. The average spectrum was

calculated for the bandpass filter input using a modified version of the estimatefw function

made by Dr. Nikos Economou from the Laboratory of Applied Geophysics, School of Mineral

Resources Engineering – TUC.

In Figure 5.3, representative examples are given that show the effect of bandpass filtering when using

the frequency window of 100-500MHz. The presented examples are derived from two survey grids,

one measured at the Ancient Halos’s site and the other at Demetrias’ site. For both cases, a B-scan

and a C-scan are presented before and after bandpass filtering is applied. The corresponding average

spectrum plots for all the traces in selected B-scans before and after bandpass filtering are also given

where the frequencies cut-off is shown. For Ancient Halos, the processing workflow that was

followed and described earlier left noise in the B-scans, which was enhanced with gain, and ABR

could not remove. The noise that is visible in the B-scan at X=0.6m of the survey grid in Figure 5.3 is

low-frequency and is efficiently removed by cutting off frequencies below 100MHz. Additionally, the

frequencies above 500MHz do not seem to be related to any useful information, and hence they are

removed. In the filtered B-scan, the noise is removed while information related to the subsurface’s

reflections is retained. This greatly impacts the produced C-scans where bandpass filtering that

retains the 100-500MHz frequency range has overly improved the depth slice at t=24.5ns, and

structures are better visible.

Bandpass filtering at 100-500MHz after applying IAD gain and ABR is equally effective to the

representative B-scan was taken at a survey grid from Demetria’s site. The reflections identified as

structures are better shown in the filtered image. By removing strong amplitudes that correspond to

noise, the architectural remains are shown with greater detail in the resulting C-scan at t=25.8ns and

without the loss of useful information. This was also the case for all the survey grids studied and

processed in this thesis. Although this processing workflow was not always optimal for all the

collected data, it did not worsen or distort the results.

A few exceptions were made during the first step of the abovementioned workflow. The trace

resampling was only applied in case studies where a rectangular grid was defined, as the same fixed

value can be used for all the lines' lengths. There were a few cases in the survey lines that were not

starting or ending in a predefined position. A few examples are cases where natural boundaries were

82 Research Methodology

followed or when natural obstacles existed on the surface that prevented defining a rectangular grid.

For those, trace resampling could not be applied and was excluded from the workflow.

Figure 5.3: Representative examples that show the bandpass filtering effect on two B-scans and C-scans
when using the frequency window of 100-500MHz.

Research Methodology 83

5.3.3 Export depth slices

The last step is to produce depth slices or C-scans. This includes the application of Hilbert Transform

(HT) on each profile to calculate the Instantaneous Envelope or Amplitude and then put the B-scans

of the cell arrays in 3D arrays designed after the survey grid dimensions. The function of GPR-Pro,

dBInstantaneousEnvelope, was used to calculate the instantaneous envelope. This step is

implemented in Script A.9 of Appendix A. If the zig-zag mode was used during data collection, then

the orientation of the corresponding lines requires fixing to get the correct geometry. These lines

correspond to the odd-numbered lines of the survey grid that go under the even indices of the 3D

array, were reversed using MATLAB’s built-in function fliplr(Script A.10). An alternative and

more generic approach is given in Script A.11 that while creating the volume, it searches for lines with

a negative sampling step, and if found any, it reverses only those. For the case where the survey grid

was not rectangular, the lines were padded with NaN to the longest line’s dimension collected to

create a 3D volume and extract slices (Script A.12).

The next step is to extract the slices. The 3D volume has a dimension of MxNxK where M is the number

per trace in time (ns), N is the number of the collected traces along a line (m), and M is the number

of lines in the survey grid (m). In order to create the C-scans, arrays with size NxK are extracted by

taking samples in the vertical axis. These arrays are like snapshots of the area outlined by the survey

grid at different times. One characteristic of the GPR data is the difference in the size of N and K with

N>>K, as the sampling step used is of a different order of magnitude. The line spacing is about ten

times bigger than the sampling step that the traces are collected. Thus, to create images proportional

to the grids' dimension, the scan-axis is usually downsampled, while the baseline-axis is upsampled.

Further, an interpolation method and colormap of choice are applied to create pseudocolor images.

This process was performed using MATLAB’s pseudocolor plot, pcolor. An implementation is given

in Script A.13 of Appendix A, which plots and saves the produced C-scans in the active root directory

using the time sample's name. The script was used to produce the depth slices presented in this thesis

using the reverse grayscale as colormap.

Last, for case studies, the X-axis was chosen as the scan-axis, the scripts were modified accordingly

to get the correct geometry, and the same processes were applied. A schematic overview of the data

processing that was followed in this research is presented in Figure 5.4. The B-scan presented is a

line collected in a survey grid at Demetria's archaeological site that corresponds at x=10.0 m.

Reflections related to buried structures are visible in the output Bscan produced by the processing

workflow followed. The same processes were applied for all the B-scans in the survey grid, and 3D

84 Research Methodology

volume was created to export C-scans as described previously. The presented C-scan is sampled at

the time of 28ns and exhibits anomalies identified as well-preserved structural remains of the

Hellenistic period.

Figure 5.4: Data processing overview to produce C-scans. The presented examples were collected from
Demetria's archaeological site. Trace reposition and zig-zag correction were applied only for survey
grids that required it.

Research Methodology 85

 BUILDING DATASETS

The produced images from each survey grid were gathered and examined, looking for anomalies

attributed to buried archaeological remains, and could be used to construct the training datasets.

During this process, three main categories of features were observed in the images:

- Geophysical anomalies attributed to structural remains. These are linear features that

imprint the geometries of buried walls, individual structures, or even more complex

architectures like city blocks (Figure 5.5).

- Geophysical anomalies related to the subsurface. These are areas of strong amplitudes that

usually have an irregular shape but can also exhibit a linear trend. For most of them, the

reflector's nature is uncertain. Usually, assumptions are made based on their shape, their

depth, and in-situ observations during data collections. These anomalies can be related to

archaeological remains, but their poor preservation condition prevents their identification as

they appear as fuzzy areas in the data. They can also be entirely irrelevant to archaeological

contexts, like geological layers and voids, bedrock, buried debris, pipes, or other modern

constructions. The knowledge of their existence is essential in evaluating the subsurface's

overall condition within the investigation depth (Figure 5.6).

- Noise. Since different noise types exist, the noise here describes the residual noise that was

not removed from the applied processing workflow and usually appears in stripes form. The

cause that created this type of noise varies, and, at the same time, it is difficult to be

determined with certainty. It can be the gap between the antenna and the surface when

collecting data due to the terrain’s roughness, like plowing lines that were imprinted in the

data or faulty traces due to the antenna bumping. Another noise type might be related to the

low battery level, creating broad stripes of different amplitude intensity (Figure 5.7).

Thus, the labels of structure, anomaly, and noise were defined for the classification task to describe

the abovementioned categories' features. Even though identifying the buried structure is the main

interest of this research, it was deemed beneficial to identify patterns of other dominant features

observed in the GPR depth slices towards a complete and more accurate classification. The idea

behind it is that the chances of mistaking a non-structural feature for a structure are less when the

classifier is trained to identify the other two classes as well. Especially for a common case met that

striping noise co-exists with structures, it can be difficult to discriminate them, increasing this way

the uncertainty of the data interpretation made even by the more experienced users. Thus, examining

86 Research Methodology

the capability of CNNs to identify and classify these features correctly was included in this

dissertation’s objectives.

On the next step, manual classification of images exhibiting features belonging to the three classes

was held by organizing them accordingly into folders to gather the material for constructing the

learning datasets.

Figure 5.5: Representative examples of well-preserved buried structures imprinted in GPR depth slices.
The examples are derived from survey grids at Heraia, Demetrias, and Mantinea archaeological sites.

Figure 5.6: Representative examples of geophysical anomalies found in GPR data. For the case of
Lehaion, the assumed reflector is the geological layer’s boundaries, for Amathounta is debris, and for
the monument of Yperia Krini is scattered structural material.

Research Methodology 87

Figure 5.7: Representative examples of striping noise found in GPR data. For the case of Almyriotiki, the
horizontal stripes were caused by plowing lines on the surface. For Demetrias, the vertical stripes were
probably caused by faulty traces, and for Naxos, Sicily, the stripes are related to low battery levels.

5.4.1 Increasing image number per class

A challenge met during the dataset construction for training CNNs was finding enough images per

class to achieve a good generalization and avoid underfitting. As it was described in subsection 4.5, a

sufficient number of training data examples is required to describe the input space well enough, but

practical guidelines on the smallest efficient number of images required are of lacking. For this

reason, the size of the datasets used in similar GPR studies (like in [76] and [96]), as well as popular

datasets used for training CNNs (e.g., MNIST [206] and CIFAR-10 [207]) were used as guides in filling

a sufficient number of images. This has led to a minimum threshold of 5000 images per class as a

starting point.

This number was proven difficult to reach. Features belonging to the three classes usually coexist in

the depth slices, which prevents from using them as a training classification example for a class. A

typical example is given in the depth slice of Figure 5.8 from the GPR survey at the ancient Halos site.

This particular C-scan is sampled at t=26.47ns and presents numerous features, including structural

remains of two different constructional phases, residual striping noise from processing, and a strong

linear reflector of uncertain nature. In this image, the residual noise has the same orientation as one

of the structural phases, making their interpretation difficult and prompting to mistake the noise for

structure or overlooking a structure.

88 Research Methodology

Figure 5.8: C-scan from ancient Halos exhibiting features that belong to the three classes.

Thus, many images could not be assigned to a single class, and in the end, the images that were solely

exhibiting features belonging to a class were not that many. An idea to overcome this issue was to

isolate and save as individual images subregions of the C-scans of unique features. To further increase

the number of images, the subregions are extracted using a square sliding window. This process is

implemented in the function slidewcrop_y given in Script A.14 of appendix A. The function takes

as input a volume, the sample in time corresponds to a C-scan, the sliding window length, and the

stride in the X and Y directions in meters. For the given window’s size and stride, the function applies

the pseudocolor plot and plots the corresponding subregion of a C-scan as an image. The images are

stored in folders on a given path, named after the window size, and the time in ns the C-scan is

sampled. The function also applies to multiple time samples in a 3D volume. An example of applying

slidewcrop_y is given in Script A.15 of Appendix A. The resulted images were manually browsed

and organized under folders according to the features.

The sliding window function was applied in selected C-scans from the various sites and grids using a

10x10m size window. This window size was found adequate to produce as many sub-images as

possible and describe the patterns of interest well. For this reason, the survey grids that are bigger

than 10x10m were only used to export images. As for the stride, a 2.0m distance was chosen, which

Research Methodology 89

results in overlapping sliding windows. This approach further increased the produced images’

number. Krizhevsky et al. used a similar approach in [50], where they took five crops of an input

image aligned at its center and the four corners. The sliding windows approach is preferred here as

it can produce more images of useful features and can be adapted better to GPR images’ different

dimensions. An example is presented in Figure 5.9, where a region of the C-scan featuring structures

is cropped using sliding windows. The starting point of the window in this example is X=0m, Y=84m.

All the produced images were saved in .jpeg format using a pixel size of 256x256.

Figure 5.9: Image cropping with overlapping sliding windows using a C-scan from Demetria’s GPR
survey as an example. The window used has a length of 10mx10m while the stride is 2.0m in both
directions X and Y.

The abovementioned process was applied to numerous C-scans picked from the survey grids studied

in this research. Their selection was made while considering the following:

• to be representative of the subsurface conditions and summarize the most important

features.

• to highlight the different ways the same feature appears in different depths.

• to avoid repetitive patterns and overly similar images

90 Research Methodology

An example of C-scan selection for cropping is presented in Figure 5.10 using images from a survey

grid at Demetria's site, where city blocks, including several structural elements, are mapped. Each C-

scan reveals a different level of detail of the same targets.

Figure 5.10: Example of C-scans selection in a survey grid measured at the ancient Demetrias site used
for cropping. Shorter times are closer to the surface.

5.4.2 Constructing the test and training sets

The cropped images produced by the previous step were browsed manually, choosing representative

examples for each class while avoiding the ones that exhibit features for more than one class or were

almost identical. Based on this approach, a total of 18750 images were gathered, having 6250 images

per class. The images were split using the 80%-20% rule into the training set and test set. This led to

using 5000 images per class for training models and 1250 for testing their generalization. The images

were organized into the directory structure identified by the Keras API and Tensorflow library to load

the data and classification labels (Figure 5.11).

Research Methodology 91

Figure 5.11: Directory structure of the dataset followed.

A dilemma that emerged during dataset construction concerns selecting the test set’s examples that

would lead to a better generalization. One idea was to exclude images derived from a site entirely

from the training set and use them solely as a test set. The other was to follow a random selection on

all the images gathered and split them into a test and training set. Hence, two datasets were built,

named dataset-A and dataset-B. For dataset A the images used as a test set were exclusively selected

from survey grids measured at Elateia archaeological site. This site was chosen as it exhibited enough

examples to reach 1250 images per class. The training set includes 5000 images selected from the

rest archaeological sites. The second approach was followed for dataset-B, i.e., splitting the 6250

images per class randomly into a training and test set. In Figure 5.12 and Figure 5.13, a small sample

from the two dataset’s images is presented per class for comparison reasons. The presented samples

were chosen randomly, and considering the small size, they do not fully represent the entire dataset.

Both datasets have pros and cons. Dataset-A is closer to the real-case scenario to use the model for

predictions in unseen data. However, the test set might not be representative enough, which may

cause unstable training performance. The test set of dataset-B is representative of the corresponding

training set, but due to the overlapping window crops, it might fail to predict correctly unseen data.

92 Research Methodology

Figure 5.12: Training and test set examples from dataset-A. Test set images are sampled from Elateia
archaeological site.

Research Methodology 93

Figure 5.13: Training and test set examples from dataset-B. The split of test and train set is random
following the 80%-20% rule.

94 Research Methodology

 CNN EXPERIMENTS

The two datasets, A and B, were used in a series of experiments to train CNN models. An overview is

given in Figure 5.14. Following the evolution of popular CNNs architectures used in image

classification, the AlexNet was chosen as the starting base of this investigation before moving into

more complicated or deeper ones. In this series of experiments, two optimizers, the SGD and Adam,

are tested and compared for both datasets.

Figure 5.14: Overview of experiments and trials performed on the two datasets.

The trials begin on a model defined as the baseline, which is an implementation of AlexNet

architecture. Further, techniques known to improve performance, such as batch normalization (BN),

dropout, and image augmentation, are tested as well. The two optimizers are compared using the test

set of the dataset used. The setup that returns the best results for each dataset is used to train the

last two models, named Model A and Model B. These two models are used to evaluate the two

approaches followed when constructed the datasets and examine which one generalizes better. This

is performed on an evaluation set that has a small number of entirely new examples for each feature

class. Details of the whole process are given in the following paragraphs.

Research Methodology 95

5.5.1 AlexNet overview

AlexNet, proposed by Krizhevsky et al.[50], was the winning architecture of the ImageNet Large Scale

Visual Recognition Challenge (LSVRC) 2012 competition, with significantly better performance over

the runner-up (Top-5 error rate 15.3% over 26.2%). The input of AlexNet is a color image of

227x227x3 and has eight layers, five being convolutional (Conv) and three fully connected (FC).

Among the key characteristics is that it uses ReLU activation functions (instead of 𝑡𝑎𝑛ℎ that used to

be the standard) after every Conv layer and after the two first FC layers. For the last FC layer, which

feeds the output layer, the softmax activation function is applied, which produces a distribution over

the 1000 class labels defined by the CIFAR-10 dataset used for training. CIFAR-10 dataset is a well-

known dataset containing colored images used to train and test DL algorithms. Further, three

overlapping max-pooling layers succeed the first, second, and fifth Conv layers. The authors used

augmentation techniques on the input images, Local Response Normalization (LRN), and dropout

regularization to improve training performance and reduce overfitting. LRN was applied after ReLU

nonlinearities of the first and second Conv layers, while dropout, with probability 0.5, was applied at

the first two FC layers. A schematic description of the architecture is presented in Figure 5.15.

As for training, the authors used Stochastic Gradient Descent (SGD) with a batch size of 128 examples,

a momentum of 0.9, and a weight decay of 0.0005. The learning rate was initialized by 0.01 and was

divided by 10 when the validation error stopped improving. Additionally, each layer's weights were

initialized randomly from Gaussian distribution with zero mean and standard deviation 0.01. As for

the biases, the second, fourth, and fifth Conv layers, and all FC layers, were initialized with 1’s, while

for the remaining layers with 0’s.

96 Research Methodology

Figure 5.15: AlexNet architecture described in [50], including the activation functions applied on specific
layers and training improving methods such as the Local Response Normalization and dropout. On each
convolutional layer, information such as the kernels’ size, kernels number, stride, and padding, when
used, is shown. The shape of each layers’ output is also denoted.

Research Methodology 97

5.5.2 Baseline model implementation

In this research, the implementation of AlexNet was made using the Keras functional API. A model

that served as a baseline for experimentation was constructed following the architecture presented

in Figure 5.15, with the last FC layer adapted for the three classes. Weight and bias initializations

were set in the same way as described in the original paper. Dropout and normalization techniques

were excluded from the baseline model and applied to later trials to test their effectiveness and what

works the best for the data used in this research. Details on the model parameters and

hyperparameters are presented in Table 5.4. The Python script for this implementation is given in

Script B.1 of Appendix B.

Table 5.4: Chosen parameters and hyperparameters for the AlexNet baseline model. The number after
each layer indicates its order in the architecture.

AlexNet baseline parameters and hyperparameters

Input size 227x227x3

Conv1 Kernel size: 11x11, Number of filters: 96, Strides: 4, Padding = 0,

Bias initializer: zeros, Weight initializer: Gaussian 𝜇 = 0, 𝜎 = 0.01

Activation: ReLU

Conv2 Kernel size: 5x5, Number of filters: 256, Strides: 1, Padding = 2,

Bias initializer: ones, Weight initializer: Gaussian 𝜇 = 0, 𝜎 = 0.01

Activation: ReLU

Conv3 Kernel size: 3x3, Number of filters: 384, Strides: 1, Padding = 1,

Bias initializer: zeros, Weight initializer: Gaussian 𝜇 = 0, 𝜎 = 0.01

Activation: ReLU

Conv4 Kernel size: 3x3, Number of filters: 384, Strides: 1, Padding = 1,

Bias initializer: ones, Weight initializer: Gaussian 𝜇 = 0, 𝜎 = 0.01

Activation: ReLU

Conv5 Kernel size: 3x3, Number of filters: 256, Strides: 1, Padding = 1,

Bias initializer: ones, Weight initializer: Gaussian 𝜇 = 0, 𝜎 = 0.01

Activation: ReLU

FC1, FC2 Units: 4096, Weight initializer: Gaussian 𝜇 = 0, 𝜎 = 0.01, Bias initializer: ones,

Activation: ReLU

FC3 Units: 3, Weight initializer: Gaussian 𝜇 = 0, 𝜎 = 0.01, Bias initializer: ones,

Activation: softmax

Max Pooling Kernel size: 3x3, Stride: 2

98 Research Methodology

The initial settings for training the baseline were also taken from [50]. These are SGD as an optimizer,

batch size of 128 examples, learning rate of 0.01, and momentum of 0.9. Weight decay and dividing

learning rate by ten were avoided to test their effectiveness in later stages. As for the cost function,

the categorical cross-entropy was chosen. The evaluation of the training performance was made per

epoch, using the Keras accuracy class metrics, which calculates the predicted values’ frequency that

matches the correct label. The number of epochs was set to 100, using early stopping to prevent

training the model when it overfits. The implementation of training the baseline is given in Script B.4

of Appendix B. The optimizer is set through the Keras optimizer class, compiling the optimizer is

done with the .compile method, while training is performed with the .fit method. Early

stopping is implemented using the Keras callbacks API, setting an empirical patience value at 30

epochs while monitoring the validation loss. This means the training will be terminated if the

validation loss will not improve over the next 30 epochs. Table 5.5 summarizes the training settings

of the baseline model.

Table 5.5: Training hyperparameters used for the baseline model.

Baseline training hyperparameters

Optimizer SGD learning rate: 0.01, momentum: 0.9,

Cost function Categorical cross-entropy

Epochs 100

Early stopping Patience: 30 epochs, monitor: validation loss

5.5.3 Improving performance & tuning hyperparameters

Several tests were performed aiming to find a combination of settings that leads to better

classification for both datasets. The settings examined are methods and techniques used in various

deep learning applications known to improve performance by reducing overfitting or tuning the

model’s hyperparameters for optimal performance. The tested settings used in this study are:

1. Data augmentation techniques

2. Dropout regularization and batch normalization methods applied to specific layers of the

chosen architecture.

3. Settings, methods, and techniques that affect the optimizer and the training process. These

are the optimizer type with the corresponding learning rate and batch size, early stopping,

and reducing the learning rate in predetermined schedules.

Research Methodology 99

The first step was to examine performance improvements using dropout and Batch Normalization

(BN). BN was chosen instead of LRN, as it is known to perform better while it acts as a regularizer

that prevents overfitting [43]. Following the baseline's training results, adjustments were made to

the learning rate value, and tests of different setup combinations of BN and dropout applications

were performed. For this step, training was held using 50 epochs, a number that was judged sufficient

to understand from the learning curves the learning behavior and the need for improvements. For

the setup with the best performance, the effectiveness of applying augmentation techniques was

examined next.

Image augmentation was implemented using the ImageDataGenerator class and

flow_from_directory method from Keras dataset preprocessing utilities. Several

transformations are available, and tests were performed to find those that can produce real-like

results. Figure 5.16 shows the available transforms and an example of the images produced by their

random combination. An example of importing the data and applying augmentation is given in Script

B.2 of Appendix B. Dropout and BN were implemented using the classes Dropout and

BatchNormalization of the Keras layers API, respectively. Dropout layers were placed after the

dense layers, FC1 and FC2, and prior to the ReLU layers. In addition, the BN layers were placed after

the first two convolutional layers, Conv1 and Conv2, and prior to the ReLU layers. The

implementation of adding both BN and dropout layers in the baseline model’s architecture is given

in Script B.3 of appendix B.

Figure 5.16: Examples of various image augmentation transforms. The input image will be replaced by
a randomly generated one produced by the selected transforms.

100 Research Methodology

Further improvements to the training setup were examined, including tuning the learning rate and

batch size. Two optimizers were tested and compared, the SGD with momentum and Adam [158].

Adam is a popular optimizer based on adaptive estimates of lower-order moments and is often

compared to SGD with momentum. Several studies exist reporting Adam performs better, like in

[158] or in [208], while others are showing that SGD with momentum is a better choice, like in [162]

for binary classification. In a different study, the authors state that even though Adam or similar

adaptive optimizers tend to perform better at the initial training stages, SGD is the one that

generalizes better [209]. For the abovementioned reasons, both optimizers were considered and

tested. For Adam option’s, the Keras default values were used, with a learning rate of 0.001.

The tuning process was performed to find an efficient combination of learning rate and batch size for

each optimizer. These two hyperparameters significantly affect the training’s performance and

stability, and are crucial in the resulting model reliability, as discussed in [210]. For this task, the

RandomSearch of Keras tuner library was chosen as an alternative to the grid search algorithm as

it is faster and computationally less demanding. This process requires defining a hyper-model using

the model builder function and set possible values, or a values’ range for the

hyperparameters under tuning. The random search algorithm receives the function’s output, and the

tuning process begins by calling the .search method. The learning rate values tested were chosen

using a log scale. For SGD are [10-2(default), 10-3,10-4, 10-5,10-6] since it was known from training the

baseline that the default learning rate did not perform well when used a batch of size 128 but

performed better when was reduced by 10 in the log scale. For Adam the values tested are [10-1 ,10-

2, 10-3(default), 10-4, 10-5]. The batch sizes tested are [16, 32, 64, 128, 256], where 256 was the limit

as memory issues were experienced with a batch size of 512. Tuning was performed for one batch

size value at a time due to hardware limitations and memory issues. The training set was split into a

validation set and a new training set using the 80%-20% rule. A full example of the tuning process

for the case of SGD and a batch size of 32 is given in Script B.5 of Appendix B. In this example, early

stopping is used, setting the patience to 10 epochs to terminate training when the model starts

overfitting.

The combinations with the highest score were used to train new models using the full dataset. During

this training optimization step, early stopping was applied to refrain from training when overfitting

occurs. Last, for the model with the best results, the potential for further improvements like reducing

learning while training was also examined. This can be implemented using the

LearningRateScheduler class of the Keras callbacks API.

Research Methodology 101

 MODELS METRICS & EVALUATION

After every epoch, training performance is evaluated using the validation accuracy and validation

loss of accuracyclass by Keras metrics. The resulted weights for a completed epoch are used

to make predictions on the test set, and the frequency in which the prediction matches the correct

label is calculated. This frequency is eventually returned as binary accuracy by dividing the total

amount of labels by the amount of those predicted correctly, while the validation loss is calculated

based on the misclassified labels. The validation loss and accuracy were plotted with respect to the

epochs creating learning curves that were used to evaluate the training process and decide on further

action for improvements. Aside from the learning curves, a confusion matrix was also used to evaluate

the classification performance of a model. The confusion matrices were proven useful as they could

give information on the misclassified labels per class, thus finding which images’ predictions were

wrong and understanding the model’s limits. Last, selected models (Model A and B) were used to

make predictions on the evaluation set that has 100 GPR images that were intentionally excluded

from the two datasets. These images derive from survey grids at Halos and Sissi archaeological sites,

and examples are presented along with the results in the next chapter.

 CLOSING REMARKS

This chapter described the methods and tools used to identify buried structures from GPR data. These

were applied in four research stages: the GPR data collection, the data processing, the dataset

preparation, and the training of CNNs for image classification. Data collection was conducted over a

considerable time window period under various geophysical campaigns in different archaeological

sites. All the collected data were reprocessed using MATLAB for the needs of this study. A workflow

was established that works well for most data that suffer from signal attenuation. Even though it is

not optimal for all case studies and their survey grids, as noise residuals exist, it highlights the buried

structures, when present, satisfactorily. The central concept is to apply gain earlier in processing and

then apply filters to remove the enhanced noise. Following this workflow resulted in producing depth

slices that were interpreted and categorized according to the dominant features. Three main

categories were observed: buried structures, geophysical anomalies of unknown targets, and

residual noise in stripping forms. Identifying GPR signals under these three categories would guide

the interpretation process quite well, reducing mistakes like interpreting linear residual noise as a

structural remain. For this reason, datasets with the three classes were constructed.

Dataset construction was a tedious and challenging task as the gathered images were limited in

number and not enough for training a CNN. A solution to this issue was to crop the chosen depth

102 Research Methodology

slices using a sliding window corresponding to 10x10m, which drastically increased the image’s

number. The produced sub-images were manually organized under the correct label. The next issue

faced was the way that the images should split into a training and test set. Since the test set should

contain data unseen by the training set, a dataset was constructed using images from one case study

solely for the test set, which resembles the real case scenario of adding new data in a model. An issue

with this approach might be the sliding window approach, making the resulting test set not

representative enough of the train set. The latter could lead to unstable training and, further, poor

generalization. To test this scenario, a second dataset was constructed that randomly splits all the

collected images into a training set and test set. This dataset might be more prone to overfitting due

to the images' similarities because of the overlapping window approach. The training was performed

in both datasets, following by comparing the best-resulted models to see which approach leads to

better generalization.

For the training process on each dataset, a series of experiments and trials were made. AlexNet

architecture was used for all cases, and the experiments focused on finding the best setup for the

combined application of batch normalization, dropout, and image augmentation. For these setups,

two popular optimizers were used and compared—the SGD with momentum and Adam to examine

which one is more proper for the constructed dataset. Tuning was also performed on each optimizer

for the learning rate and the size of the batches. A final model was trained for each dataset using the

best combinations of setups and learning hyperparameters acquired from the previous steps. Early

stopping was used to refrain from training when overfitting. The two models were compared and

evaluated on images derived by two survey sites intentionally excluded from the learning process.

The results and discussion on them are given in the following chapter.

103

6. TRAINING RESULTS & DISCUSSION

In this chapter, the results obtained during a series of training experiments are presented and

discussed. These results provide useful insights into some research questions regarding the dataset

construction and make it possible to evaluate the efficiency of some decisions made like the sliding

windows crop approach to increase the image number. Further, through the various tests and

comparisons made, some intuitions are provided regarding the training process for classifying GPR

depth slices from archaeological prospection. These concern decisions upon the training optimizer,

the impact of the learning rate and the batch size used, and how much performance improvements

are expected when using image augmentation, batch normalization, and dropout techniques. First,

the results of the training process using dataset-A are presented, followed then by dataset-B. The

best-obtained models, named after each dataset as Model A and Model B, are then compared on an

evaluation set, made with examples excluded from both datasets. The results suggested that Model

B, trained with SGD and the dataset that the random split for training and test sets, performs better.

104 Training Results & Discussion

 DATASET-A RESULTS

Dataset-A was constructed by using examples solely from the survey site of Elateia as a test set, as

was described in Chapter 5. Several trials and experiments were performed, aiming to find the setup

that can lead to better generalization. The trials started on a baseline, that is, the AlexNet architecture

without normalization and regularization techniques. On this baseline, two optimizers, the SGD and

Adam, are tested. Techniques like batch normalization and dropout were gradually applied using

different setups and combinations. Additionally, the tuning of the batch size and learning rate was

performed with the randomsearch algorithm. Image augmentation techniques were also applied

during these training experiments to test their impact on the obtained results. The two optimizers

showed different training behavior and, for this, were treated differently. All the choices made on

the applied improvement techniques, their implantation in the AlexNet, and the tuning process were

based on the learning curves of classification accuracy and loss function. These led into two models;

Model 1, which was trained using the setups that gave better performance when used SGD, and Model

2, which was trained using the settings that were better for Adam optimizer. These choices and their

outcome are presented and discussed in the following paragraphs.

6.1.1 Training with SGD

Training the baseline with SGD was challenging. Learning was not feasible when using the optimizer's

initial settings, namely a learning rate of 0.01, a batch size of 128, and a momentum of 0.9. The

learning curves of Figure 6.1 present this behavior. The top chart presents the optimization learning

curve that shows the categorical cross-entropy loss function, as resulted after an epoch was

completed on both the training and test set. Loss is high and constant for both cases when, ideally, it

should have dropped and stabilized at zero as epochs increase. This means that no optimization was

achieved for training, and hence the model could not learn from data. Further, the test error is

constant, meaning that no changes were made in the classification predictions. The bottom chart of

Figure 6.1 shows the learning curves of prediction accuracies calculated on the training and test set

after an epoch was completed. The training accuracy fluctuates around 0.33, while the test set

accuracy is constant on that number. This behavior is explained as having predicted only 1/3 of the

total labels’ count correctly, with no further improvements since the weights were not optimized

during training. This is better shown in the corresponding classification matrix (Figure 6.2), which

shows that all the images were classified as structures.

Training Results & Discussion 105

Figure 6.1: Learning curves produced by baseline training metrics showing that zero learning was
achieved. On top is the categorical cross-entropy loss function as calculated on the training set (blue
line) and test set (orange line). On the bottom is the accuracy of the training and test sets' classification
predictions after an epoch was completed.

Figure 6.2: Confusion matrix for classification predictions on the test set using the baseline model. All
the labels were classified as structures indicating that no learning was achieved during training. The
classification accuracy is 0.33.

106 Training Results & Discussion

A possible reason for not achieving optimization during training, and hence learning, is the choice of

inappropriate settings for the optimizer. Further, the network could also experience an internal

covariate shift phenomenon due to the random weight initialization. The generalization and whether

underfitting or overfitting exists cannot be evaluated at this point without trained weights. In the

next step, different learning rates were used to train the baseline. The tested values were 0.001 and

0.0001, from the initial 0.01, returning the same negative result. Thus, several experiments were

designed to test different setups of batch normalization, dropout, and learning rates for the optimizer

aiming to achieve learning. The experiment's overview is presented in Figure 6.3. A total of 20 tests

were performed. For all tests, batch normalization is implemented after the convolutional layers and

prior to the activation layer, while dropout is implemented after the hidden layers and prior to the

activation layer.

The first three tests were used to examine the effectiveness of BN and dropout individually, and then

all together like they were implemented in the original article of AlexNet in [50]. The training was

still not feasible under these setups using learning rates of 0.01 and 0.001, and further tests were

conducted focusing on different setups of BN, as described by tests 4 to 17 of Figure 6.3. Training

using the learning rate of 0.01 was still not feasible. It was eventually achieved by using the learning

rate of 0.001 and applying batch normalization in most convolutional layers as described in tests 5,

6, and 7. The corresponding learning curves are presented in Figure 6.4. The charts of training loss

and training accuracy show that test 6, which is applying batch normalization in all five convolutional

layers, has the best training performance, followed by test 5 that is applying BN in the first four

convolutional layers. With test 6 setup, the learning is faster. The resulting learning curves of test 7

(yellow lines) show that applying BN in the third convolutional layer significantly affects training

accuracy, training loss, and learning speed. As for generalization, the validation loss curves show

overall poor results, with test 6 performing better. It is less noisy than test 5 and exhibits less

overfitting. Overfitting begins after 18 epochs, with a loss increment that stabilizes around one. The

constant big gap between the validation loss and corresponding training of Figure 6.4a (1 vs. 0) is

evidence of overfitting. There are no further improvements in classification predictions calculated on

the test set, while the weights during training continue to fit the training set well. Thus, dropout was

used as the next step in an attempt to improve the results of test 6 further. The testing setups include

the application of dropout with a rate of 0.5 in the first two hidden layers (test 18), the first hidden

(test 19), and the second hidden layer (test 20) (Figure 6.3), while the resulted learning curves are

presented in Figure 6.5.

Training Results & Discussion 107

Figure 6.3: Experiments and different setups of Batch Normalization and Dropout tested on the AlexNet
architecture using SGD with a learning rate of 0.001, batch size of 128, and a momentum of 0.9. With
orange is highlighted the setup of BN with the best performance, and blue is the best setup of adding
dropout to chosen BN setup.

108 Training Results & Discussion

Figure 6.4: Learning curves that show improvements in learning. In a. is the loss calculated on the
training set, b. is the loss calculated on the test set, c. is the classification accuracy calculated on the
train set, and d. is the classification accuracy calculated on the test set. Charts a. and c. describe the
training performance while charts b. and d. describe the generalization. The most efficient set is the one
of test5 (blue line), where BN is applied in all five convolutional layers, followed by test 5 (orange), where
BN is applied on the first four convolutional layers. Some degree of learning was achieved by the setup
of test 7 (yellow) during the last epochs. Here BN was applied on the first two and last two convolutional
layers. No learning was achieved for the rest setups (gray), resulting in the same flat learning curves as
the baseline model.

Comparison of the learning curves of validation loss and accuracy of Figure 6.5 shows that the three

dropout setups (blue, grey, and red lines) perform similarly with performance improvements over

the baseline with BN to all the convolutional layers (orange line). Adding dropout in the hidden layers

seems to reduce overfitting as the validation loss decreases and validation accuracy increases for all

three setups. The latter is improved from ~0.78 to ~0.84 after 20 training epochs. Before that, the

curves appear noisy. For this reason, the setup of having dropout in the second hidden was chosen

for being the less noisy one and exhibiting slightly higher accuracy in the classification predictions

made on the test set. However, a gap between training loss and validation loss still exists (~0.75 vs.

0) without any signs of reduction, showing generalization issues still exist despite the improvements

made. A possible reason is that the test set used is not representative enough of the training set.

Whether this can be further improved remains to be answered while tuning the batch size and the

learning rate.

Training Results & Discussion 109

Figure 6.5: Learning curves showing the effect of adding dropout with a rate of 0.5. The orange curves
are the ones that resulted from the chosen setup of BN (test 6) and are displayed for comparison reasons.
The dark gray curves resulted from adding dropout to the first and second hidden layers (test 18), with
red to the first hidden layer (test 19) and blue to the second hidden layer (test 20). The performance is
overall improved, with loss decreasing and accuracy increasing for all three implementations. Adding
dropout in the second hidden layer only produced less noisy curves and was chosen as the most efficient
one.

110 Training Results & Discussion

On the next step to improve performance, the batch size and learning rate used by the SGD optimizer

are tested for the chosen setup described previously. For simplicity, it will be referred to as Model 1.

The algorithm of randomsearch by Keras tuner library was used to find the right combination of

batch size and learning rate to retrain Model 1, as was described in Chapter 5. The results presented

in Table 6.1 show the final accuracy calculated on a validation set that was split randomly from the

training set following the 80-20 rule. Thus, offset in the calculated accuracy is expected when used

these settings of the dataset-A test set, where the images are entirely new. These tests were used as

a guide for the next set of experiments.

Table 6.1:SGD - Classification accuracy calculated on a randomly split validation set using different
batch sizes and learning rates. The highest accuracies per batch are highlighted with bold letters.

Learning rates

0.01 0.001 0.0001 0.00001 0.000001

B
at

ch
 s

iz
e

s

16 0.975778 0.988889 0.984556 0.962556 0.9702222

32 0.549778 0.988556 0.983444 0.971222 0.9426667

64 0.346111 0.989556 0.978667 0.97 0.8914444

128 0.723333 0.982111 0.979222 0.962556 0.8018889

256 0.866778 0.983667 0.677222 0.393333 0.4531111

What can be seen from Table 6.1 is that the learning rate of 0.001 returns the highest accuracies for

all batch sizes, followed by the learning rate of 0.0001. Among them, the batch sizes of 16, 32, and 64

are the highest. The learning rate of 0.01 seems unstable as it returns very high accuracy for the

smallest and then the largest batch size used. The lower learning rates exhibit overall very high

accuracies for the batch sizes 16, 32, 64. Therefore, three new experiments are performed testing

these batch sizes. For the training, 50 epochs were used, a learning rate of 0.001 and a momentum of

0.9. The resulting learning curves are presented in Figure 6.6, showing the learning curves resulted

from batch size 128 for comparison reasons. The curves appear to be noisier as batch size decreases,

and for the case of size 16, the performance becomes worse, increasing overfitting, while batch size

64 performs similarly to 128. Batch size 32 appears to be a better choice as it exhibits slightly higher

classification accuracy. The loss shows no further improvements. In the next step, data augmentation

is used with the image transforms described in Chapter 5, showing no further improvements (Figure

6.7). A possible explanation for this is that the applied image transforms are not representative of the

test set's examples, and more tests are required.

Training Results & Discussion 111

Figure 6.6: Learning curves obtained by training Model 1 using SGD with a learning rate of 0.001 and
different batch sizes. Training with a batch size 32 performs slightly better.

112 Training Results & Discussion

Figure 6.7: Comparative charts showing the obtained learning curves of Model 1 (blue line) and the
application of image augmentation (orange line).

Training Results & Discussion 113

The setup that returned the best results for the tests and trials performed in this research is described

by Model 1, i.e., using BN to all the convolutional layers and dropout with a rate of 0.5 to the second

fully connected layers. The training settings for SGD are momentum 0.9, the learning rate of 0.001,

and a batch size of 32. Despite there is room for improvements, the results were judged satisfactorily

at this stage of this research. This setup will be compared to Adam's results described in the following

subsection.

6.1.2 Training with Adam

The baseline’s learning curves obtained with the Adam optimizer are presented in Figure 6.8. Without

using any regularization or normalization technique, Adam's training achieved a maximum

classification accuracy of ~0.8. The loss function appears noisy and exhibits signs of overfitting.

Figure 6.8: The resulted learning curves from training the baseline with Adam using a batch size of
128 and a learning rate of 0.001.

114 Training Results & Discussion

In the next step to improve learning, the BN and dropout application is examined, using the setups

from test1 to test17 described in Figure 6.3. Learning was achieved using the setups of test1, test8,

test9, and test10. The corresponding learning curves are presented in Figure 6.9, showing poor

performance. Both validation accuracy and loss are very noisy with poor generalization, indicating

that applying BN is not beneficial in this case. The learning curves produced by the test8 setup show

a better accuracy curve after training for 30 epochs but might be due to overfitting as the validation

loss remains constant.

Figure 6.9: The effect of applying BN in different layers in AlexNet. The gray colors indicate that no
learning was achieved using this particular setup. For test1, BN is applied to convolutional layers 1 and
2 (blue line). For test8 to convolutional layers 1,2,3 and 5 (orange line). For the test9 to convolutional
layers 1,2, and 5 (green line). Last for test10 (dark blue line) to convolutional layers 3,4 and 5.

Training Results & Discussion 115

Dropout was next applied to the fully connected layers of test8 to check whether the generalization

can be improved. Same as the SGD case, three different dropout setups were tested, to hidden layers

1 and 2, only to hidden layer one, and then only to hidden layer 2. The comparative charts in Figure

6.10 show no improvement in the generalization, but on the contrary, the learning curves of both

validation loss and accuracy appear noisier with large fluctuations. Further, for the case of applying

dropout in the second hidden layer only, it led to achieving no learning.

Figure 6.10: Comparative charts showing the effect of adding dropout with a rate of 0.5 in different fully
connected layers setup. The BN setup used applies to convolutional layers 1, 2, 3, and 5. Dropout is tested
on the 1st and second fully connected layers (light blue line), the 1st fully connected layer (dark blue line),
and the 2nd fully connected layer (gray line). The latter resulted in the zero-learning case.

116 Training Results & Discussion

Up to this point, the baseline is the model that performs the best as the application of BN and dropout

is not beneficial and more research is required. In an effort to improve the performance of the

baseline trained with Adam, different learning rates and batch sizes were tested using the random

search algorithm. The resulted accuracies are summarized in Table 6.2. The highest validation

accuracy was achieved using the batch size of 64 and a learning rate of 0.001. High accuracies are

also observed for larger batch sizes and lower learning rates. Additionally, the lowest learning rate

returned very high accuracies for all the batch sizes.

Table 6.2: Adam - Classification accuracy calculated on a randomly split validation set using different
batch sizes and learning rates. The highest accuracies per batch are highlighted in bold.

Learning rates

0.1 0.01 0.001 0.0001 0.00001

B
at

ch
 s

iz
e

s

16 0.333333 0.334778 0.333333 0.333333 0.9335556
32 0.333333 0.401889 0.927222 0.544778 0.9218889
64 0.333333 0.333333 0.946444 0.737778 0.9324445

128 0.333444 0.333333 0.910111 0.943778 0.9388889
256 0.333333 0.516444 0.914111 0.933222 0.919

For the next step, the baseline line is retrained using batch size 64 with the learning rate of 0.001,

and 128 using the learning rate of 0.0001 and then the lowest one of 0.00001. The resulted validation

learning curves are presented in the charts of Figure 6.11. Compared to the baseline line model that

was trained using batch size 128 and the learning rate of 0.001, reducing the learning rate to 0.0001

performed slightly better (blue line), resulting in higher classification accuracy. However, overfitting

is still observed. Using a batch size of 256 with a learning rate of 0.0001 returned similar results

(black line) but has lower classification accuracy. Last, the resulted learning curves of using a learning

rate of 0.00001 and batch size 128 indicate that more training is required. Despite being noisy, the

validation accuracy has an increasing trend, while the validation loss has a decreasing one. Here, the

training settings of the 0.0001 learning rate and a batch size of 128 were selected due to the higher

classification accuracy. This setup, named Model2, was retrained using augmentation to test whether

the generalization improves. From the resulting learning curves, the overfitting and the classification

accuracy are both reduced. However, no significant improvement is observed as the learning curves

became noisier (Figure 6.11).

Training Results & Discussion 117

Figure 6.11: Comparative charts showing the effect of different batch sizes and learning rates when
training the baseline model with Adam.

118 Training Results & Discussion

Figure 6.12: The effect of augmentation techniques on Model 2A using Adam optimizer. The validation
loss chart shows that overfitting is reduced, but the curve is noisy. The validation accuracy chart shows
a drop in classification accuracy when used the augmentation techniques.

Training Results & Discussion 119

6.1.3 SGD and Adam comparison

The training process of AlexNet with dataset-A using the SGD and Adam optimizers presented

entirely different learning behaviors. On the one hand, SGD required applying BN and dropout

techniques to achieve learning and classification performance, which improved with learning rate

and batch size hyperparameters tuning, reaching validation accuracy around ~0.85. Image

augmentation was not beneficial in reducing overfitting or increasing validation accuracy further. On

the other hand, with Adam optimizer, learning was possible without the need to use BN and dropout.

However, the results could not further be improved using the methods tested here, and further work

is required on this matter. The validation accuracy was further improved, reaching ~0.8 after

reducing the learning rate. Image augmentation did reduce overfitting but decreased the

classification accuracy on the test set. Due to the differences mentioned above, the best-obtained

models using each optimizer are chosen and compared. The comparison is made on the learning

curves for classification accuracy and loss calculated on the test set. For SGD, the AlexNet model with

the best performance resulted by applying BN to all five convolutional layers, a dropout rate of 0.5 to

the second fully connected layer, while training options were a learning rate of 0.001, the momentum

of 0.9, and a batch size of 32. For Adam, the AlexNet model with the best performance was obtained

without any BN and dropout application using a learning rate of 0.0001 and a batch size of 128. The

corresponding learning curves are presented in Figure 6.13. The SGD approach performs the best,

given the setups tested in this dissertation, with higher accuracy on the test set and less overfitting.

Indications that the SGD approach is more accurate than Adam’s are also shown when comparing the

tuning results of Table 6.1 and Table 6.2 for SGD and Adam, respectively.

This is also shown in the confusion matrices presented in Figure 6.14 for the two models. Adam’s

model resulted in a classification accuracy of 81.20%, while the SGD model has 86.91%. Both models

classified most of the labels correctly under the structure and noise classes, with SGD being slightly

more accurate. The main difference is observed for the anomaly class, where most mistakes were

made from both models, with SGD being better. These mistakes mainly concern examples of

anomalies that were misinterpreted as structures and then examples of noise that were

misinterpreted as structures.

120 Training Results & Discussion

Figure 6.13: Comparative charts of loss and accuracy learning curves of the best-obtained model that
were trained with SGD (orange) and Adam (blue). With faded orange and blue lines are the
corresponding accuracy and loss curves on the training set.

Figure 6.14: Confusion matrices resulted from training with SGD (left) and Adam (right).

Training Results & Discussion 121

6.1.4 Model A

The SGD approach that uses BN and dropout is selected as the most efficient one for dataset-A. The

final model summary, named Model A, is presented οn Table C.1 of Appendix C. The SGD optimizer

is used for training, with momentum 0.9, a learning rate of 0.001, and a batch size of 32, as discussed

previously. Additionally, a stepped learning rate scheduler was set that reduces the learning rate by

half every ten epochs. The training was performed for 100 epochs using early stopping, applied on

the validation loss, and 20 epochs patience to ensure no further improvements exist before stopping.

The resulted learning curves are presented in Figure 6.15. The training was terminated after 30

epochs due to overfitting that begins after the 11th epoch. This is also the point that the best

performance is observed, with classification accuracy that reaches 91% and validation loss that

drops to 0.4.

Figure 6.15: Learning curves of Model A. The highest validation accuracy and lowest validation loss
are observed in epoch 11 (orange dashed line).

122 Training Results & Discussion

Next, the weights at the 11th epoch were used to calculate the test set's confusion matrix to evaluate

classification (Figure 6.16). For the anomaly class, 1006 out of 1250 labels were correctly predicted.

For the rest, most of them were misclassified as structures. This negatively affects the accuracy of the

structure class and indicates the dataset requires reworking. The noise class predictions were the

most accurate, having 1231 out of 1250 labels classified correctly. For the structure class, 1182 out

of the 1250 labels were correctly predicted. Thirty of them were misclassified as anomalies and

another 38 as noise. A few examples of misclassified labels are presented in Figure 6.17. Most of the

mistaken anomalies as structures present some linearity or have corner-like shapes. The

misclassified structures as anomalies are mainly intermittent linearities characterized by strong

amplitudes, while the ones mistaken as noise have mainly weaker amplitudes derived from deeper

levels. As for noise, the misclassified images are somewhat fuzzy and perhaps not representative

enough of the corresponding ones in the training set. This information is found particularly useful

for future improvements on the dataset used for training.

Figure 6.16: Confusion matrix calculated using the weights of Model A that returns 91.17% classification
accuracy.

Training Results & Discussion 123

Figure 6.17:Examples of misclassified labels using Model A.

124 Training Results & Discussion

 DATASET-B RESULTS

Dataset-B was constructed by using all the selected GPR c-scans and splitting them randomly into a

training set and test set, as described in Chapter 5. Due to this study's comparative nature, the

random split was performed once, and the resulted sets were used in common for all the tests

performed to find and study the misclassified examples. The training process using dataset-B was

performed in the same way as with dataset-A. That includes training the baseline with both

optimizers and then applied BN and dropout to find the setup that yields better performance for each

one of them. Tuning the batch size and learning rates was performed next for the chosen setups, and

the results were used to train Model 1 for the SGD approach and Model 2 for Adam's approach. The

two models were compared on the dataset-B test set, and the training settings, which gave the best

results, were used to train the final model named Model-B.

6.2.1 Training with SGD

The training process using SGD on dataset-B had the same behavior as the corresponding one of

dataset-A; namely, learning was not possible without BN. The resulted learning curves obtained from

training the baseline model exhibiting this behavior are presented in Figure 6.18. Hence, BN and

dropout were applied in different setup combinations, shown in Figure 6.19, to find the one that

makes learning feasible. All the setup tested were trained for 50 epochs, using a learning rate of 0.001

and a momentum of 0.9. Same as dataset-A case, no learning was feasible for the initial learning rate

of 0.01. Learning was achieved for the setup describe by test5 and test6. The former applies BN to

the first four convolutional layers, while the latter to all of them. The corresponding learning curves

(Figure 6.20) were advised in order to choose between the two setups.

Best performance is achieved when BN is applied in all the convolutional layers. Learning is faster,

as both the training accuracy and loss function curves are showing in Figure 6.20a and Figure 6.20c,

respectively. Further, the validation curves have shown that generalization is also better when

applied BN to all the convolutional layers. They appear less noisy, with less overfitting and faster

convergence to zero (Figure 6.20b), while the highest accuracy is also achieved faster (Figure 6.20d).

Training Results & Discussion 125

Figure 6.18: Learning curves of training the baseline showing that no learning was achieved. SGD was
used with a learning rate of 0.01 and a batch size of 123. On top is the categorical cross-entropy loss
function as calculated on the training set (blue line) and test set (orange line) after an epoch was
completed. On the bottom is the accuracy of the training and test sets' classification predictions after an
epoch was completed.

126 Training Results & Discussion

Figure 6.19: Various setups and tests for training dataset-B with SGD with a learning rate of 0.001 and
a momentum of 0.9. Gray colors indicate that no learning was achieved when used the current setup.
The BN setup that returned the best performance is highlighted with intense orange color, while intense
blue color highlights the final setup that includes dropout regularization.

Training Results & Discussion 127

Figure 6.20: Learning curves that show improvements in learning where a. is the loss calculated on the
training set, b. is the loss calculated on the test set, c. is the classification accuracy calculated on the
train set, and d. is the classification accuracy calculated on the test set. Plots a. and c. describe the
training performance while charts b. and d. describe the generalization. The most efficient set is the one
of test6 (blue line), where BN is applied in all five convolutional layers, followed by test 5 (orange), where
BN is applied on the first four convolutional layers. No learning was achieved for the rest setups (gray),
resulting in the same flat learning curves as the baseline model.

The BN setup of test6 was used for the next series of tests that examine the effect of applying dropout

in the first two hidden layers of AlexNet. Same as dataset-A, three setups are tested, applying dropout

in both hidden layers, only the first and only the second, as described by tests 18 to 20 in Figure 6.19,

respectively. Comparing the resulting learning curves with those of the best performed BN setup

(orange colors in Figure 6.21) show that the performance is slightly improved when applied dropout

in both hidden layers (dark gray colors in Figure 6.21). Applying dropout in the first hidden layer only

appears to worsen performance, while applying in the second hidden layer only does not show any

significant improvement. Hence the setup described by test18, which is applying BN to all

convolutional layers and dropout to the first and second hidden layers, was used in the next step,

which tunes the training hyperparameters.

128 Training Results & Discussion

Figure 6.21: The effect of applying dropout with a rate of 0.5 in the best-performed BN setup. With
orange color is the BN setup’s resulted learning curves shown for comparison reasons. Dark gray color
corresponds to applying dropout to the first and second hidden layers, red color to the first hidden layer,
and blue color to the second hidden layer. Applying dropout in both hidden layers improves the results
slightly.

For tuning the learning rate and batch size of Model 1, the randomsearch algorithm of the Keras

tuner library is used. Following the same steps as the dataset-A case, the training set was randomly

split into new training and validation sets using the 80%-20% rule. Hence, the results are expected

to be close to those obtained for dataset-A and were presented in Table 6.1. The tuning here was

performed using one trial per test instead of three to speed up the process. According to the previous

Training Results & Discussion 129

tests' results, the number of 20 epochs was chosen as it seemed sufficient to identify whether the

performance has improved or not. The batch sizes tested were 16, 32, 64, 128, and 256, for the five

learning rates, from 10-2 to 10-6, using the log sample step of 10. The resulted accuracies are gathered

in Table 6.3. The learning rate of 0.001 has the highest accuracies for all the batch sizes, followed by

the learning rate of 0.0001. The learning rate of 0.01 appears inconsistent. Accuracy drops as the

learning rate decreases in the log scale. Following the tuning results, the batch sizes of 16, 32, 64, and

128 were used with the learning rate of 0.001 to retrain Model 1 for 50 epochs, and the resulted

learning curves are presented in the comparative charts of Figure 6.22. The batch sizes that show

better performance are those of 64 and 16. They both have fewer fluctuations than the batch sizes of

128 and 32 in the resulted validation loss and accuracy curves. Between the batch sizes of 64 and 16,

the former performs better after ten training epochs, while the latter in the first ten epochs. Since the

highest accuracies and lower losses are observed after the 10th epoch, the batch size of 64 is chosen

as the best one. The setup of using BN in all the convolutional layers, dropout of rate 0.5 in the first

two hidden layers, while training using SGD with the momentum of 0.9, the learning rate of 0.001,

and batch size of 64 is named as Model 1 and will be compared with the corresponding one obtained

with Adam. Augmentation was also applied in the training setup of Model 1 but did not improve the

results (Figure C.1 in Appendix C); instead, the resulted curves appeared much noisier, same as

dataset A. Thus, augmentation techniques were excluded at this stage of this study.

Table 6.3: SGD - Classification accuracy calculated on a randomly split validation set using different
batch sizes and learning rates. The highest accuracies per batch are highlighted with bold letters.

Learning rates

0.01 0.001 0.0001 0.00001 0.000001

B
at

ch
 s

iz
e

s

16 0.966 0.978667 0.974333 0.955667 0.6673333
32 0.333333 0.967667 0.966 0.918 0.6293333
64 0.937667 0.969667 0.948333 0.865333 0.549

128 0.957667 0.964333 0.939667 0.743333 0.5073333
256 0.79 0.895 0.819333 0.655333 0.5023333

130 Training Results & Discussion

Figure 6.22:Comparative plots that show the resulting learning curves obtained from training using SGD
with a learning rate of 0.001, a momentum of 0.9, and four different batch sizes that yielded high
accuracy. The batch size 64 (gray line) appears to perform slightly better after ten training epochs.

6.2.2 Training with Adam

The resulting learning curves of training the baseline with Adam optimizer are presented in Figure

6.23. Compared with the corresponding ones obtained for dataset-A (Figure 6.8), they appear less

noisy, achieving higher validation accuracy and less overfitting. However, learning was faster for

Training Results & Discussion 131

dataset-A as the training accuracy curve converges faster to 1. Learning was also possible without

the need to use BN.

Figure 6.23: The learning curves from training the baseline using the dataset-B and Adam optimizer
with a batch size of 128 and a learning rate of 0.001.

Next, the various BN and dropout setup described in Figure 6.19 were tested using Adam as an

optimizer seeking performance improvements of the baseline results. The resulting learning curves

of the setups described by test1 to test17 are presented in Figure 6.24. Learning is feasible for the

setups described by test5, test6, test8, test9, and test17. However, the curves appear noisy with high

fluctuations compared to the ones obtained from the baseline model. The setup described by test8,

where BN is applied to the first three and the last convolutional layers, performs better after 40

epochs. After this point, the performance is improved when compared to the baseline model. The

validation loss converges to zero and the validation accuracy to one. Dropout was applied next for

the setups described by test18, 19, and 20 of Figure 6.24, but no further improvements were observed

from the resulting learning curves; instead, the performance is worse. The corresponding graphs can

132 Training Results & Discussion

be found in Figure C.2 of Appendix C. For this reason, dropout was excluded, and the setup of BN

described by test8 was chosen for the next step, where training hyperparameters are tuned to

examine whether further performance improvements are possible.

Figure 6.24: Comparative graphs showing the resulting learning curves from tests performed on
different BN setups for dataset-B and Adam optimizer. a. is the training loss, b. is the validation loss, c.
is the training accuracy, and d. is the validation accuracy. With gray colors are the models that resulted
in no learning.

The tuning process was like the dataset-A case, with the exception that the learning rate of 0.1 was

excluded, and the learning rate of 10-6 was included. The former was excluded as no training was

feasible when using it. Further, the trials executed per experiment with randomsearch algorithm

were also reduced to one from three to speed up the process. The results are summarized in Table

6.4. Remarkably high accuracies were achieved for the learning rate of 0.001. Hence, the learning

curves were used to pick the batch size that yields better performance, and the results are presented

in Figure 6.25. The batch size of 32 resulted in improvements in both validation accuracy and loss

after 38 training epochs. For this reason, it was selected as the final training setup, named Model 2,

despite producing noisier learning curves than the baseline for approximately the first 40 epochs. An

observed inconsistency with the tuning results concerns batch 16, where non-learning is observed

(gray lines in Figure 6.25). This might indicate a non-robust training setup, and further tests are

Training Results & Discussion 133

required. Same as with the SGD case, augmentation techniques were not beneficial on the

performance, as shown in Figure C.3 Appendix C.

Table 6.4: Adam - Classification accuracy calculated on a randomly split validation set using different
batch sizes and learning rates. The highest accuracies per batch are highlighted with bold letters.

Learning rates

0.01 0.001 0.0001 0.00001 0.000001

B
at

ch
 s

iz
e

s

16 0.333333 0.988 0.987667 0.979 0.882
32 0.333333 0.988667 0.981333 0.961333 0.7883334
64 0.979333 0.986667 0.971 0.944333 0.6493334

128 0.980667 0.985 0.969333 0.907 0.569
256 0.976333 0.974 0.961333 0.822667 0.5236667

Figure 6.25: Comparative charts showing the resulting learning curves for each batch size tested using
Adam optimizer with a learning rate of 0.001 on dataset-B. The baseline learning curves are presented
for comparison reasons. Batch 32 is selected as the training setup for Model 2.

134 Training Results & Discussion

6.2.3 SGD and Adam comparison

Training the AlexNet architecture with dataset-B using SGD and Adam optimizers was like the case

of dataset-A. The two training approaches required different BN and dropout setups to improve

performance. For the SGD optimizer case applying BN was also essential in achieving learning. The

setup that returned the best results was applying it in all the convolutional layers, and performance

was further improved by applying dropout with a rate of 0.5 in the first two hidden layers. As for

training, the learning rate of 0.001 with a batch size of 64 resulted in the best performance given the

settings tested. This model is named Model 1B, and the learning curves for 50 training epochs are

presented in Figure 6.26 with orange color. On the other, training with Adam did not require BN to

achieve learning, and only with the baseline setup, a validation accuracy of 92% was achieved. BN

improved performance when applied to the convolutional layers 1, 2, 3, and 5, while dropout was

excluded as it had a negative impact on the results. This setup that was trained with Adam returned

the best results when used a learning rate of 0.001 and a batch size of 32, and the obtained model is

named Model 2B. The corresponding learning curves are presented in the comparative charts of

Figure 6.26. Between the two, Model 1B performs better. The validation loss curve is less noisy and

converges to zero faster. The same goes for the validation accuracy curve, which converges to 1 faster.

Both approaches eventually reach exceedingly high classification accuracy within the period of 50

epochs, as is shown in confusion matrices of Figure 6.27. SGD Model 1B has 99.65% classification

accuracy on the test set, and Adam’s Model 2Bhas 99.44%. The former has fewer misclassified labels,

especially for the noisy class, where predictions are 100% correct. The settings of Model 1B were

chosen to train the final model using dataset-B named Model B that is described in the following

paragraph.

Training Results & Discussion 135

Figure 6.26: Comparative graphs showing the loss and accuracy learning curves of the best-obtained
models that were trained with Model 1B (SGD) and Model 2B (Adam) using dataset-B. Faded orange
and blue lines correspond to the accuracy and loss curves on the training set.

Figure 6.27: Confusion matrices resulted from training with Model 1B (left) and Model 2B (right) using
SGD and Adam, respectively, for dataset-B.

136 Training Results & Discussion

6.2.4 Model B

Following the previous test results, the SGD approach was used to train the final model using dataset

B, named Model B. The final model summary with details is presented in Table C.2 of Appendix C. The

training used a learning rate of 0.001, a batch size of 64, and a momentum of 0.9. Unlike the case of

Model A, no further training tests were performed, like applying early stopping or reducing the

learning rate with a Keras scheduler, as the performance was found very good. The training epochs

were set to 30, as the highest performance was reached around 15 epochs in the previous tests, and

the weights were saved when the validation accuracy was improved using the Keras library callbacks

API. The obtained learning curves are presented in the charts of Figure 6.28. The best performance

over the period of 30 epochs occurred at 19, with validation accuracy reaching 99.52% and loss

function being at 0.0191.

Figure 6.28: Learning curves of Model Β. The highest validation accuracy and lowest validation loss
were obtained after 19 training epochs (noted with orange dashed line).

Training Results & Discussion 137

The confusion matrix of Figure 6.28 was computed using the weights of the 19th epoch on the test

set of dataset-B. There are six misclassified labels under anomaly class, three under noise class, and

nine under structure class. A few representative examples of the misclassified labels are presented

in Figure 6.30. These provide some insights on further improvements for the training dataset, for

example, including more linear features like pipes, under the anomaly class to better distinguish

these patterns from the ancient buried structures. Horizontal noise appears to be challenging as well,

as it can easily be mistaken for structural remains. Further, there seems to be the tendency to classify

strong amplitudes as anomalies, which requires further research.

Figure 6.29: Confusion matrix calculated using the weights of Model B that returns 99.52% classification
accuracy.

138 Training Results & Discussion

Figure 6.30: Examples of misclassified labels of each class using Model B.

 COMPARISON & FINAL EVALUATION

In this concluded section, the resulted models that yielded better performance when trained with

dataset-A and dataset-B are compared to find what is the best approach for training CNN models with

GPR depth slices from archaeological prospection surveys. For both approaches, the SGD optimizer

was found to perform better than Adam, and both required BN application to all the convolutional

layers for the models to learn. The learning curves resulted from Model A and B are presented in the

comparative charts of Figure 6.31.

Training Results & Discussion 139

Figure 6.31: Comparative charts of the resulting learning curves from Model A and Model B.

Overall, Model B has better generalization performance as the test set, which was split randomly from

the training set, better represents the latter. The result is smoother curves, with less overfitting and

higher validation accuracy. This made the training process easier. However, the main question is

which approach generalizes the best for entirely new data. Thus, the weights that yielded the best

results from each model, namely the 11th epoch for Model A and the 20th epoch for Model B, are used

on an evaluation set with 32 geophysical anomaly examples (Figure 6.32), 32 noise examples (Figure

6.33), and 36 structure examples (Figure 6.34).

140 Training Results & Discussion

Figure 6.32: The 32 examples selected for the Anomaly class of the Evaluation set. Examples 0 to 18
derived from Halos' archaeological sites, while examples 19 to 31 from the archaeological site of Sissi.

Training Results & Discussion 141

Figure 6.33: The 32 examples selected for the Noise class of the Evaluation set. Examples 32 to 63 derived
from the Halos’ archaeological site, while the examples 60 to 63 from the archaeological site of Sissi.

142 Training Results & Discussion

Figure 6.34: The 36 examples selected for the Structures class of the Evaluation set. Examples 64 to 96
derived from Halos’ archaeological site, while examples 97 to 99 from the archaeological site of Sissi.

Training Results & Discussion 143

The models were evaluated using the predict and evaluate functions of Keras library, as

described in Chapter 5, on the evaluation set. Further, the confusion matrices were computed to

visualize the classification performance. The results are presented in Figure 6.35. Overall, Model B

generalizes better than Model A, reaching a classification accuracy of 92% over 85%. The confusion

matrices show that Model A performed better in predicting all the Anomaly class examples correctly,

with zero mistakes over two made with Model B. However, Model A performed poorer than model A

for the other two classes. Model A made seven wrong predictions for the Noise class, where model B

made three, while for the Structure class, model A made eight mistakes where model B made three.

Figure 6.35: Confusion matrices calculated on the evaluation set for Model A and Model B, reaching the
classification accuracies of 85% and 92%, respectively.

The two models’ analytical predictions on the examples presented in Figure 6.32, Figure 6.33, and

Figure 6.34 are presented in Table 6.5 for the Anomaly class, in Table 6.6 for the Noise class, and in

Table 6.7 for the Structure class, respectively. All the misclassified labels are highlighted with orange

color, while with yellow color are the marginally correct predictions, with accuracy less than 60%.

144 Training Results & Discussion

Table 6.5: Prediction results from Model A and Model B for the Anomaly class of the evaluation set
occurred. With orange are highlighted the misclassified labels, while with yellow are the marginally
correct predictions (<60%).

ID Model A: 85% Model B: 92%
Anomaly(%) Noise(%) Structure (%) Anomaly(%) Noise(%) Structure (%)

0 100.0 0.0 0.0 100.0 0.0 0.0

1 100.0 0.0 0.0 100.0 0.0 0.0

2 100.0 0.0 0.0 100.0 0.0 0.0

3 100.0 0.0 0.0 100.0 0.0 0.0

4 100.0 0.0 0.0 100.0 0.0 0.0

5 100.0 0.0 0.0 100.0 0.0 0.0

6 100.0 0.0 0.0 100.0 0.0 0.0

7 100.0 0.0 0.0 99.2 0.0 0.8

8 100.0 0.0 0.0 100.0 0.0 0.0

9 99.9 0.0 0.1 100.0 0.0 0.0

10 100.0 0.0 0.0 98.6 0.0 1.4

11 100.0 0.0 0.0 100.0 0.0 0.0

12 100.0 0.0 0.0 100.0 0.0 0.0

13 100.0 0.0 0.0 100.0 0.0 0.0

14 100.0 0.0 0.0 100.0 0.0 0.0

15 100.0 0.0 0.0 100.0 0.0 0.0

16 100.0 0.0 0.0 100.0 0.0 0.0

17 100.0 0.0 0.0 100.0 0.0 0.0

18 100.0 0.0 0.0 100.0 0.0 0.0

19 99.8 0.0 0.2 100.0 0.0 0.0

20 100.0 0.0 0.0 7.2 0.0 92.8

21 100.0 0.0 0.0 100.0 0.0 0.0

22 100.0 0.0 0.0 100.0 0.0 0.0

23 52.7 0.0 47.3 15.2 0.0 84.8

24 100.0 0.0 0.0 100.0 0.0 0.0

25 100.0 0.0 0.0 100.0 0.0 0.0

26 100.0 0.0 0.0 100.0 0.0 0.0

27 100.0 0.0 0.0 100.0 0.0 0.0

28 100.0 0.0 0.0 100.0 0.0 0.0

29 100.0 0.0 0.0 100.0 0.0 0.0

30 100.0 0.0 0.0 100.0 0.0 0.0

31 100.0 0.0 0.0 100.0 0.0 0.0

Training Results & Discussion 145

Table 6.6: Prediction results from Model A and Model B for the Noise class of the evaluation set occurred.
With orange are highlighted the misclassified labels, while yellow shows the marginally correct
predictions (<60%).

ID Model A: 85% Model B: 92%
Anomaly(%) Noise(%) Structure (%) Anomaly(%) Noise(%) Structure (%)

32 2.3 96.8 1.0 0.0 100.0 0.0

33 0.0 100.0 0.0 0.0 100.0 0.0

34 0.0 100.0 0.0 0.0 100.0 0.0

35 0.0 99.8 0.1 0.0 100.0 0.0

36 0.0 99.9 0.1 0.0 100.0 0.0

37 0.0 99.9 0.1 0.0 99.9 0.1

38 0.0 86.1 13.9 0.0 4.7 95.3

39 0.0 1.1 98.9 0.0 0.1 99.9

40 0.0 43.3 56.7 0.0 5.0 95.0

41 0.0 100.0 0.0 0.0 100.0 0.0

42 60.6 38.3 1.1 0.0 100.0 0.0

43 0.0 0.0 100.0 0.0 100.0 0.0

44 0.0 100.0 0.0 0.0 100.0 0.0

45 0.0 100.0 0.0 0.0 100.0 0.0

46 0.0 100.0 0.0 0.0 100.0 0.0

47 0.0 100.0 0.0 0.0 100.0 0.0

48 0.0 100.0 0.0 0.0 100.0 0.0

49 0.0 99.9 0.1 0.0 100.0 0.0

50 0.0 100.0 0.0 0.0 100.0 0.0

51 0.1 98.7 1.2 0.0 100.0 0.0

52 0.0 100.0 0.0 0.0 100.0 0.0

53 0.0 100.0 0.0 0.0 100.0 0.0

54 0.0 100.0 0.0 0.0 100.0 0.0

55 0.0 100.0 0.0 0.0 100.0 0.0

56 0.0 92.0 8.0 0.0 100.0 0.0

57 53.3 28.6 18.1 0.0 100.0 0.0

58 99.1 0.9 0.0 0.0 100.0 0.0

59 99.3 0.7 0.0 2.5 97.5 0.0

60 0.2 98.7 1.1 0.0 83.3 16.7

62 0.0 100.0 0.0 0.0 100.0 0.0

62 0.0 100.0 0.0 0.0 100.0 0.0

63 0.0 100.0 0.0 0.0 100.0 0.0

146 Training Results & Discussion

Table 6.7: Prediction results from Model A and Model B for the Structure class of the evaluation set
occurred. With orange are highlighted the misclassified labels, while yellow shows the marginally
positive predictions (<60%).

ID Model A: 85% Model B: 92%
Anomaly(%) Noise(%) Structure (%) Anomaly(%) Noise(%) Structure (%)

64 0.0 0.0 100.0 0.0 0.0 100.0
65 0.0 0.0 100.0 0.0 0.0 100.0
66 0.0 0.0 100.0 0.0 0.0 100.0
67 0.0 0.0 100.0 0.0 0.0 100.0
68 0.1 0.0 99.9 0.0 0.0 100.0
69 0.0 0.0 100.0 0.0 0.0 100.0
70 0.0 0.0 100.0 0.0 0.0 100.0
71 0.0 0.0 100.0 0.0 0.0 100.0
72 0.0 0.0 100.0 0.0 0.0 100.0
73 0.0 0.0 100.0 0.0 0.0 100.0
74 0.0 0.0 100.0 0.0 0.0 100.0
75 0.0 0.0 100.0 0.0 0.0 100.0
76 0.0 0.0 100.0 0.0 0.0 100.0
77 0.0 0.0 100.0 0.0 0.0 100.0
78 0.7 0.0 99.3 22.4 0.0 77.6
79 0.0 0.0 100.0 0.0 0.0 100.0
80 0.0 0.0 100.0 0.0 0.0 100.0
81 0.0 0.0 100.0 0.0 0.0 100.0
82 100.0 0.0 0.0 99.3 0.0 0.6
83 100.0 0.0 0.0 0.4 0.0 99.6
84 100.0 0.0 0.0 98.7 0.0 1.3
85 100.0 0.0 0.0 44.0 0.0 56.0
86 90.4 0.0 9.6 33.3 0.0 66.7
87 95.9 0.0 4.1 92.1 0.0 7.9
88 1.4 0.0 98.6 0.0 0.0 100.0
89 75.7 0.0 24.3 31.3 0.0 68.7
90 0.0 0.0 100.0 0.0 0.0 100.0
91 1.2 0.0 98.8 0.0 0.0 100.0
92 10.4 0.0 89.6 0.0 0.0 100.0
93 1.2 0.0 98.8 0.0 0.0 100.0
94 0.0 0.0 100.0 0.0 0.0 100.0
95 98.5 0.0 1.5 0.2 0.0 99.8
96 1.5 0.0 98.5 0.1 0.0 99.9
97 0.0 0.0 100.0 0.0 0.0 100.0
98 0.0 0.0 100.0 0.0 0.0 100.0
99 0.0 0.0 100.0 0.0 0.0 100.0

Training Results & Discussion 147

The incorrect predictions made by Model B for the Anomaly class (Table 6.5) were on the examples

21 and 23 that were classified as structures. The misclassified examples are shown in Figure 6.36.

These are different instances of the same anomalies as occurred from the overlapping sliding window

approach described in Chapter 5. Examples 23 is also a marginal case for Model A, which was found

52.7% as an anomaly and 47.3% as a structure. A notable observation is that example 24 (Figure

6.32), which is another instance of the same feature, is correctly classified by both models with 100%

accuracy (Table 6.5). This shows a non-robust behavior to consider for future improvements. Further,

more examples are required to examine which approach generalizes the best.

Figure 6.36: The misclassified examples for the Anomaly class. Orange color indicates a misclassified
label, and blue a correctly classified label.

The Noise class’s misclassified examples (Table 6.6) are 39, 40, 42, 43, 57, 58, and 59 for model A,

while for model B are the examples 38, 39, and 40. All the misclassified examples are gathered and

presented in Figure 6.37. The noise example 38 was classified as a structure by Model B, and more

likely, was mistaken as a wall. In a similar way, examples 39 and 40 were mistaken as structures by

both models. A notable observation regards example 39, which is a marginally negative prediction

for Model A, having found 43.3% as noise and 56.7% as structure. However, Model B performed

better in identified correctly noise derived from the surface like plowing lines, as presented in

examples 42, 43, 58, and 59. Example 57 has three different noise types and appears in three different

orientations: vertical, horizontal, and diagonal. Model B prediction was accurate, while Model A gave

mixed results, having classified it 53.3% as an anomaly, 28.6% as noise, and 18.1% as a structure.

The obtained results indicate that the random approach followed while training Model B leads to a

better generalization for noise in GPR data.

148 Training Results & Discussion

Figure 6.37: The misclassified examples for the Noise class. Orange color indicates a misclassified label,
and blue a correctly classified label.

Training Results & Discussion 149

Figure 6.38: The misclassified examples for the Structure class. Orange color indicates a misclassified
label, and blue a correctly classified label.

150 Training Results & Discussion

The Structure class's incorrect predictions (Table 6.7) are the examples 82, 83, 84, 85, 86, 87, 89, and

95 for model A, while for Model B are 82, 84, and 87. The examples mentioned were classified as

anomalies instead of structures and are presented in Figure 6.38. This includes different images of

the same structural feature of the examples 82, 83, 84, and 85. This particular feature is a unique

pattern that was not included in the training data that is probably attributed to a collapsed roof.

Model B was more accurate than Model A. However, the results are not robust. Examples 82 and 84

are misclassified, 83 is correctly classified, while 85 is a marginally correct prediction. The latter

derived from a greater depth where the structure is not that well preserved, having a distorted image.

The rest of the examples were derived from a structural complex that is not very well preserved, and

Model B was overall more accurate than Model A. The obtained results indicate that Model B

generalizes better for the Structure class than Model A. However, further improvements are required

to improve the robustness of the predictions.

 CLOSING REMARKS

This chapter presents and discusses the two CNN training approaches' obtained results using

dataset-A and dataset-B. For both cases, AlexNet architecture was used. The performance of two

optimizers, the SGD and Adam, was examined to find which one is better for learning for the two

constructed datasets. For each optimizer, different batch sizes and learning rates were tested. The

application of BN and dropout to different layers setup of AlexNet was also examined through a series

of trials to select the one that yields better performance. The training optimizers were compared and

evaluated according to their best-resulted models' performance on the test set of the current dataset

used in the training process. The best settings that include the optimizer with the tuned learning rate

and batch size and the corresponding BN-dropout setup were used to train the final models, one for

each dataset named Model A and Model B, respectively.

Training with SGD performed better than Adam but required applying BN in most of the

convolutional layers for the models to learn. Applying BN to all the convolutional layers had the best

performance for both datasets A and B. Dropout applied to the hidden layers slightly improved the

results by reducing overfitting. It was found better for dataset-A to apply it on the second hidden

layer only, while for dataset-B, it was better to apply it on the first two hidden layers of AlexNet. The

learning optimum for both cases was 0.001. As for the batch size, 32 was better for dataset-A, while

64 was better for dataset-B. This difference is more likely related to the non-random and random

approach that was followed in the two datasets. Larger batch sizes tend to be more effective when

selecting the examples randomly as they become more representative of the whole datasets, leading

Training Results & Discussion 151

to more stable training. Last, the image augmentation techniques applied did not improve

performance and were excluded from this study's training process. Training with Adam optimizer

showed different and notable behavior. Learning was feasible without the need to use BN and

dropout. For the case of dataset-A, the performance worsens when applied BN and dropout. On the

contrary, it becomes better for dataset-B when applied BN to convolutional layers 1, 2, 3, & 5 and

after ~40 training epochs. However, it was still performing worse than SGD. Dropout did not show

any performance improvements, and neither did image augmentation.

The final Model A was trained with SGD using a batch size of 32, a momentum of 0.9, and a starting

learning rate at 0.001. Due to the noisy validation curves and overfitting, an extra step was made

where the learning rate is reduced by half every ten epochs after the first ten epochs. BN was applied

to all five convolutional layers, while dropout was applied with a rate of 0.5 to the second hidden

layer. This step slightly improved its performance. The model reaches a pick classification accuracy

of 91.17% on the dataset-A test set before it started to overfit. The final Model B was also trained

with SGD using a batch size of 64, a momentum of 0.9, and a learning rate of 0.001. Due to the

exceedingly high performance (~99%) using a fixed learning rate, further tests were not required.

BN was also applied to all five convolutional layers while, dropout, of rate 0.5, was found better to

use in the first two hidden layers. This model reached a pick classification accuracy of 99.65%

calculated on the test-set of dataset B. When comparing the two models' training process, Model B

was easier to train as the random split followed for the test set makes the latter more representative

of the training set. For this reason, the produced learning curves are less noisy and easier to interpret.

Further, the validation accuracy was much higher, and it also has less overfitting than Model A.

The last verdict on which model generalizes the best was made on an evaluation set with examples

that were entirely excluded from the training process. The results showed that Model B generalizes

better, reaching a classification accuracy of 92% over 85% resulted from Model A. The obtained

results provided some useful insights into constructing a dataset and training AlexNet CNN to achieve

high classification performance. Further, it leaves space for future improvements that will be

discussed in the next chapters.

152

7. CONCLUSIONS & FUTURE WORK

This research investigated the automatic detection of ancient buried structures from GPR data using

a deep learning approach. Specifically, CNNs and AlexNet architecture that performs image

classification is examined. This was realized through a series of actions and steps that included the

data selection and preparation, dataset construction, the implementation of AlexNet, training of

AlexNet, applying methods and techniques to improve performance, and last, evaluating learning

using unseen from the training process data. The results proved that automatic detection of

archaeological remains from GPR data is feasible, and DL algorithms and CNNs constitute the right

approach to achieve it. In this conclusory chapter, a summary of the research objectives and the

performed task is given along with the most important findings. The chapter closes with the planned

future work and suggestions for further research.

 SUMMARY & HIGHLIGHTS

In the following paragraphs, a review of the research objectives and the most important findings are

summarized.

7.1.1 On data selection & preparation

Data selection and preparation were the first steps in creating a proper dataset so that CNNs can

learn from it for this study purposes. Real GPR data were only considered while the chosen

representation was C-scans. In C-scans, the buried structures have more distinct patterns than the

ones that appear in B-scans. In the former, they are characterized by linear segments, while in the

latter, by multiple reflections that can be similar to different buried objects, other than structures.

Conclusions & Future work 153

Synthetic data were not used, as it was found challenging and computationally demanding to

simulate with the desired realism such data.

The data used were collected from several archeological sites located in Greece, Cyprus, and Sicily.

The Noggin GPR system was used in all cases equipped with a 250MHz antenna, while the data was

performed using survey grids. The data were processed in MATLAB using standard GPR processing

methods and techniques, and C-scans were extracted from 470 grids. Several ancient structures are

identified in the extracted images of different archaeological periods, including small houses, more

complex and bigger structures, roads, fortifications, even entire city blocks. These are excellent

examples that reflect the GPR's capability to map the past's architectural remains in detail. The main

drawbacks were the signal attenuation and the increased noise level caused mainly by the rough

terrain, which caused air gaps between the antenna and ground surface. The latter causes artifacts

that appear almost in the whole recording time range. The main issue was the stripping noise that

sometimes matched the structure’s orientation, making the interpretation uncertain. Standard

processing techniques can remove that noise up to a degree, having to choose between useful

information removal or having noise residues.

All the images that exhibit structures were gathered only to find out that less than one hundred

showed unique and clear structural patterns, which is not enough to train a CNN from scratch. The

majority of C-scans featuring structures were a mixture of noise in stripping form and unidentified

geophysical anomalies with irregular shapes. For this reason, an overlapping sliding window

approach was used to crop square sub-regions of the selected C-scans and, at the same time, to

increase the image number that can be used for training. This approach was beneficial, judging from

the final results of this research and the predictions made on the evaluation set, where descent

generalization was achieved. More importantly, learning would not be feasible without increasing

the number of images employed in this method.

7.1.2 On dataset construction

With the candidate images prepared, the dataset construction followed. The classification labels were

set, and the selected examples were split into a training set and a test set. Three classification labels

were chosen based on the dominant features observed in the processed C-scans and are structures,

noise, and geophysical anomalies. Representative examples were carefully selected for each label to

trying to avoid identical or mixed examples. The images gathered for each class were 6125, making

a total of 18375.

154 Conclusions & Future work

For splitting, the 80-20 rule was used for the number of the examples in the training set and test set.

A dilemma faced was whether to split the data in a random way or use for a test set examples solely

from one archaeological site. The former would be ideal if more data from more archaeological sites

were available and no sliding window approach was used. However, in this case, with limited data, it

might result in a non-representative test set that would negatively impact the training process. The

random approach with the sliding window method was expected to have an adequate training

performance, but the main question was how well could generalize when used entirely new data.

Hence, two datasets were constructed to test which one generalizes better. Dataset-A describes the

non-random split approach, and Dataset-B the random split approach.

The obtained results show that models trained with Dataset-B and the random approach were overall

better in both training performance and generalization that was tested in the final evaluation set.

However, it was found that more data are required to improve the prediction’s robustness.

7.1.3 On implementing and training models with AlexNet

AlexNet was implemented in Python using Tensorflow library with Kera API. The implementation

was straightforward as proposed in the original article, using a 227x227 input size, same size

convolutional and pooling filters, and same biases and weight initialization. For training, two popular

optimizers were tested and compared, the SGD with momentum and Adam. For each optimizer,

different setups of BN and dropout were tested to find the one the yields better performance. For

those best-performed setups, tuning of the learning rate and batch size was performed to study their

impact on the training process. Image augmentation was also tested, choosing image transforms that

produce real-like images without distortion of the feature. Additionally, early stopping was

considered useful when a model started to overfit. Last, a learning rate scheduler, which reduces the

learning rate by half every ten epochs, was also tested. The abovementioned process was applied

twice, once for each dataset.

For the training performance and evaluation, the learning curves of the loss function and accuracy

for both the training and test set with respect to the training epochs were employed. Confusion

matrices were also used to evaluate the classification performance and find the examples that were

either correctly classified or misclassified to study them. These two tools were proven handy in

understanding and improving the learning process.

The above-mentioned comparison results and tests showed some useful insights on how to train

CNNs using AlexNet architecture effectively. SGD with momentum required the applications of BN in

at least four convolutional layers for the model to learn, while Adam required none. However, the

Conclusions & Future work 155

performance and classification accuracy achieved with SGD and momentum was better than Adam,

where BN and dropout did not significantly improve the performance. Hence, the Adam optimizer

exhibits more overfitting. BN had a more significant impact on performance than dropout did. As

mentioned, it was essential for learning when SGD with momentum was used. For that case, the best

results were obtained by applying BN to all five convolutional layers for both datasets. Dropout with

a rate of 0.5 further improved the results when applied either in the first two fully-connected layers

for Dataset B or only in the second for Dataset A.

Tuning of the learning rate and batch size was performed using Keras tuner library for both

optimizers and datasets. It appeared that the learning rate had a higher impact than the batch size.

The former seems to affect more the learning capability and how fast it can be achieved, while the

latter affects the training stability and the fluctuations in the accuracy scores. The highest accuracy

of 91.17% was scored for dataset-A using SGD with momentum 0.9, learning rate 0.0001, and a batch

size of 32. Respectively, for dataset-B, the highest of 99.65% accuracy was scored from SGD with

momentum 0.9, learning 0.001, and batch size of 64.

Unexpectedly data augmentation did not help in improving the generalization. On the contrary, it

worsened the results for both dataset and optimizers. The reasons remain unknown, and it can only

be assumed that the chosen transformations were not representative, and a handcrafted

augmentation approach is required. Further research is required. Last, the learning rate scheduler

tested on dataset-A showed no further gains. The scheduler was not applied on Dataset-B as its

performance was already high.

7.1.4 Final Evaluation

The final evaluation was made on a much smaller dataset with examples derived from Ancient Halos'

archaeological sites in Thessaly and Sissi in Heraklion. The dataset includes 32 examples of

geophysical anomalies, 32 examples of stripping noise, and 36 examples of structures. The images

were used as inputs to make predictions using the best-obtained models, named model-A and model-

B, resulting from training with dataset-A and dataset-B. Confusion matrices were used to evaluate

the results and find the misclassified examples.

The results indicated that model-B performs overall better than model-A, reaching a classification

score of 92% over 85%. This showed that the random split approach regarding dataset construction

should be preferred as it is easier to train and generalizes better. Model A was 100% accurate in

predicting the geophysical anomaly class examples, while Model B predicted 30 out of 32 correctly,

where the two examples were mistaken as structures. Further, Model B misclassified three noise

156 Conclusions & Future work

examples as a structure where model-A made seven mistakes, classifying three examples as structure

and four as a geophysical anomaly. Model-B was also more accurate than Model-A in predicting the

structure class examples. Model-B made three mistakes where the structure examples were classified

as anomalies, while Model-A made mistaken eight of the structure examples as anomalies. However,

it was found that more data are required to improve the predictions’ accuracy.

To summarize, the best results of this study were obtained with:

- dataset-B following the random split approach,

- BN applied to all the convolutional layers,

- dropout of 0.5 applied to the first two hidden layers

- training using SGD with momentum 0.9, a constant learning rate at 0.001, and a batch size of

64.

The obtained results triggered many ideas for improvements and some future directions that are

discussed in the following paragraphs.

 FUTURE WORK

The obtained results and good performance showed that this is a very promising direction and

automatic detection of buried structures is an achievable task. However, this is considered only the

beginning, with many things left to improve, investigate, and try.

First, one thing that needs improvement is the training dataset. This involves increasing the image

number, perform more tests to split the examples for training effectively, and enriching the variety

of examples as much as possible. This can be achieved either through new data collection and data

sharing (more case studies, different GPR systems, and antennas) or through synthetic data. For the

latter, one idea is to use the transformed images by image augmentation for training. Another idea is

to create synthetic images from the real ones using the Generative Adversarial Networks (GANs).

An interesting method to be implemented and tested in the near future is the Class Activation

Mapping (CAM) that visualizes the parts of the image which CNN employs to decide upon the assigned

label class using heatmaps. This information could be useful to improve the datasets and to

understand what CNN has learned.

A couple of techniques recommended by many authors and were not tested in this thesis are

ensemble learning and transfer learning. In the former, weights obtained from different models are

Conclusions & Future work 157

averaged, while in the latter, the weights are initialized from a trained model. Both methods are

reported to improve classification performance and the training process, even when the data are

limited and small in numbers.

Next is to implement and try more recent and deeper architectures than AlexNet. VGG is next on the

list, as it uses convolutional filters of smaller size and successive convolutional layers, which have

reportedly improved classification performance. One suggestion for future work is to combine CNNs

with Recurrent Neural Network (RNN) to add meaningful full text in the classification results. This

could open a new perspective in the GPR data interpretation.

Aside from classification tested here, image segmentation is a very promising direction for GPR

images, as shown in the recent study by Küçükdemirci and Sarris [96]. A future direction could be

the application of segmentation in 3D GPR volumes to extract 3D of the subsurface, a GPR

representation that is currently lacking. Last, CNNs could be adopted in data processing and

denoising. One suggestion is to train CNN to detect noise through segmentation and then filter out

the noise.

158

BIBLIOGRAPHY

[1] F. Rainey, “Archaeology: New tools for an old art: Thermoluminescence, magnetometers,

satellite photography, and other techniques and instruments aid the archaeologist,” IEEE

Spectr., vol. 13, no. 9, pp. 39–43, 1976.

[2] B. Bevan and J. Kenyon, “Ground-penetrating radar for historical archaeology,” MASCA

Newsl., vol. 11, no. 12, pp. 2–17.

[3] A. D. Booth, N. T. Linford, R. A. Clark, and T. Murray, “Three‐dimensional, multi‐offset

ground‐penetrating radar imaging of archaeological targets,” Archaeol. Prospect., vol. 15, no.

2, pp. 93–112, 2008.

[4] D. Goodman, A. Novo, G. Morelli, S. Piro, D. Kutrubes, and H. Lorenzo, “Advances in GPR

imaging with multi-channel radar systems from engineering to archaeology,” in Symposium

on the Application of Geophysics to Engineering and Environmental Problems 2011, 2011,

pp. 416–422.

[5] D. Goodman and S. Piro, “Multi-channel GPR,” in GPR Remote Sensing in Archaeology,

Springer Berlin Heidelberg, 2013, pp. 175–185. Accessed: Jan. 23, 2015. [Online]. Available:

http://link.springer.com/chapter/10.1007/978-3-642-31857-3_9

[6] N. Linford, “From hypocaust to hyperbola: ground-penetrating radar surveys over mainly

Roman remains in the UK,” Archaeol. Prospect., vol. 11, no. 4, pp. 237–246, 2004, doi:

https://doi.org/10.1002/arp.238.

[7] B. A. Berard and J. M. Maillol, “Common- and multi-offset ground-penetrating radar study of

a Roman villa, Tourega, Portugal,” Archaeol. Prospect., vol. 15, no. 1, pp. 32–46, 2008, doi:

https://doi.org/10.1002/arp.319.

[8] L. Verdonck, “Detection of Buried Roman Wall Remains in Ground-penetrating Radar Data

using Template Matching,” Archaeol. Prospect., vol. 23, no. 4, pp. 257–272, 2016, doi:

https://doi.org/10.1002/arp.1540.

[9] N. T. Linford and P. K. Linford, “Ground penetrating radar survey over a Roman building at

Groundwell Ridge, Blunsdon St Andrew, Swindon, UK,” Archaeol. Prospect., vol. 11, no. 1,

pp. 49–55, 2004, doi: https://doi.org/10.1002/arp.220.

Bibliography 159

[10] L. Verdonck and F. Vermeulen, “GPR survey at the Roman town of Mariana (Corsica),”

ArcheoSciences Rev. Archéom., no. 33 (suppl.), Art. no. 33 (suppl.), Oct. 2009, doi:

10.4000/archeosciences.1635.

[11] D. Goodman et al., “Chapter 15 - GPR Archaeometry,” in Ground Penetrating Radar

Theory and Applications, Harry M. Jol, Ed. Amsterdam: Elsevier, 2009, pp. 479–508.

Accessed: Jul. 22, 2013. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/B9780444533487000156

[12] L. B. Conyers and J. Leckebusch, “Geophysical archaeology research agendas for the

future: Some ground‐penetrating radar examples,” Archaeol. Prospect., vol. 17, no. 2, pp. 117–

123, 2010.

[13] A. Vafidis et al., “Integrated geophysical studies at ancient Itanos (Greece),” J. Archaeol.

Sci., vol. 32, no. 7, pp. 1023–1036, Jul. 2005, doi: 10.1016/j.jas.2005.02.007.

[14] F. Yiğit, G. Tucker, and S. Özcelik, “GPR (Ground Penetrating Radar) Survey at Notion

(June 2017),” in 2018 17th International Conference on Ground Penetrating Radar (GPR),

Jun. 2018, pp. 1–4. doi: 10.1109/ICGPR.2018.8441675.

[15] S. Imposa, S. Grassi, G. Patti, and D. Boso, “New data on buried archaeological ruins in

Messina area (Sicily-Italy) from a ground penetrating radar survey,” J. Archaeol. Sci. Rep.,

vol. 17, pp. 358–365, Feb. 2018, doi: 10.1016/j.jasrep.2017.11.031.

[16] J. C. Donati et al., “New Insights into the Urban Plans of Demetrias and Pherai from

Integrated Geophysics and Satellite Remote Sensing”.

[17] J. C. Donati, A. Sarris, C. Cuenca-García, T. Kalayci, N. Papadopoulos, and F.-X. Simon,

“The Urban Plan of Mantinea in the Peloponnese: An Intergrated Geophysical and Satellite

Remote Sensing Fieldwork Campaign,” presented at the Archaeological Institute of America

2015 Annual Meeting, New Orleans, LA, 2015.

[18] A. Sarris et al., “Amalgamation of Satellite Remote Sensing and Geophysical Prospection

for the Investigation of Ancient Cities: Two Case Studies from Demetrias and Pherai at the

Region of Magnesia, Thessaly, Greece,” in 8th Congress of the Balkan Geophysical Society,

2015, vol. 2015, no. 1, pp. 1–5.

[19] A. Sarris, N. Papadopoulos, and V. Trigkas, “Recovering the urban network of ancient

Sikyon through multi-component geophysical approaches,” in Layers of Perception, Berlin,

2008, pp. 11–16. doi: 10.11588/propylaeumdok.00000486.

[20] “The Greek colony of Naxos in Sicily: mapping the town plan and geophysical survey |

FIA.” http://www.finninstitute.gr/naksoksen-kreikkalainen-siirtokunta-sisiliassa-

kaupunkikuvan-kartoitus-ja-geofyysinen-tutkimus/ (accessed Sep. 21, 2020).

[21] I. Trinks, J. Gustafsson, J. Emilsson, C. Gustafsson, B. Johansson, and J. Nissen, “Efficient,

large-scale archaeological prospection using a true 3D GPR array system,” ArchéoSciences

Rev. Archéom., no. 33 (suppl.), pp. 367–370, Oct. 2009.

[22] R. Filzwieser et al., “Integration of Complementary Archaeological Prospection Data from

a Late Iron Age Settlement at Vesterager—Denmark,” J. Archaeol. Method Theory, vol. 25,

no. 2, pp. 313–333, Jun. 2018, doi: 10.1007/s10816-017-9338-y.

[23] T. M. Urban, J. F. Leon, S. W. Manning, and K. D. Fisher, “High resolution GPR mapping

of Late Bronze Age architecture at Kalavasos-Ayios Dhimitrios, Cyprus,” J. Appl. Geophys.,

vol. 107, pp. 129–136, Aug. 2014, doi: 10.1016/j.jappgeo.2014.05.020.

[24] A. Novo, M. Solla, J.-L. M. Fenollós, and H. Lorenzo, “Searching for the remains of an

Early Bronze Age city at Tell Qubr Abu al-’Atiq (Syria) through archaeological investigations

160 Bibliography

and GPR imaging,” J. Cult. Herit., vol. 15, no. 5, pp. 575–579, Sep. 2014, doi:

10.1016/j.culher.2013.10.006.

[25] A. Gyucha et al., “Settlement nucleation in the neolithic: a preliminary report of the Körös

regional archaeological project’s investigations at Szeghalom-Kovácshalom and Vésztő-

Mágor,” Neolit. Copp. Age Carpathians Aegean Sea Chronol. Technol. 6th 4th Millenn. BCE,

pp. 129–142, 2012.

[26] R. Deiana, J. Bonetto, and A. Mazzariol, “Integrated Electrical Resistivity Tomography

and Ground Penetrating Radar Measurements Applied to Tomb Detection,” Surv. Geophys.,

vol. 39, no. 6, pp. 1081–1105, Nov. 2018, doi: 10.1007/s10712-018-9495-x.

[27] S. Santos‐Assunçao, K. Dimitriadis, Y. Konstantakis, V. Perez‐Gracia, E.

Anagnostopoulou, and R. Gonzalez‐Drigo, “Ground‐penetrating radar evaluation of the

ancient Mycenaean monument Tholos Acharnon tomb,” Surf. Geophys., vol. 14, no. 2, pp.

197–205, Jun. 2016, doi: 10.3997/1873-0604.2015030.

[28] M. Pipan, L. Baradello, E. Forte, and I. Finetti, “Ground penetrating radar study of iron

age tombs in Southeastern Kazakhstan,” Archaeol. Prospect., vol. 8, no. 3, pp. 141–155, 2001,

doi: https://doi.org/10.1002/arp.162.

[29] J. T. Herrmann, J. L. King, and J. E. Buikstra, “Mapping the internal structure of Hopewell

tumuli in the Lower Illinois River Valley through archaeological geophysics,” Adv. Archaeol.

Pract., vol. 2, no. 3, pp. 164–179, 2014.

[30] C. Vaughan, “Ground‐penetrating radar surveys used in archaeological investigations,”

GEOPHYSICS, vol. 51, no. 3, pp. 595–604, 1986, doi: 10.1190/1.1442114.

[31] L. B. Ciampoli, R. Santarelli, E. M. Loreti, A. Ten, and A. Benedetto, “Structural detailing

of buried Roman baths through GPR inspection,” Archaeol. Prospect., vol. n/a, no. n/a, doi:

https://doi.org/10.1002/arp.1776.

[32] N. S. Spanoudakis, M. Manataki, V. Niniou-Kindeli, and A. P. Vafidis, “GPR Imaging at

Aptera Archaeological Site,” presented at the 6th Congress of Balkan Geophysical Society,

Oct. 2011. Accessed: Oct. 17, 2013. [Online]. Available:

http://www.earthdoc.org/publication/publicationdetails/?publication=54679

[33] G. Dean, N. Yasushi, S. Kent, P. Salvadore, H. Hiromichi, and H. Noriaki, “Advances in

Imaging of Subsurface Archaeology using GPR,” 한국지구물리탐사학회:학술대회논문집,

pp. 8–21, 2004.

[34] N. G. Papadopoulos, A. Sarris, M. C. Salvi, S. Dederix, P. Soupios, and U. Dikmen,

“Rediscovering the small theatre and amphitheatre of ancient Ierapytna (SE Crete) by

integrated geophysical methods,” J. Archaeol. Sci., vol. 39, no. 7, pp. 1960–1973, Jul. 2012,

doi: 10.1016/j.jas.2012.01.044.

[35] N. S. Spanoudakis, A. Vafidis, A. Paganis, N. Andronikidis, N. Hatzidakis, and V. Niniou-

Kindeli, “Geophysical Survey at the Area of the Ancient Theater of Aptera,” in 8th Congress

of the Balkan Geophysical Society, 2015, vol. 2015, no. 1, pp. 1–5.

[36] A. Sarris, N. Papadopoulos, S. Déderix, and M.-C. Salvi, “Geophysical approaches applied

in the ancient theatre of Demetriada, Volos,” in First International Conference on Remote

Sensing and Geoinformation of Environment, 2013, pp. 87950H-87950H–8.

[37] M. Tohge, F. Karube, M. Kobayashi, A. Tanaka, and K. Ishii, “The use of ground

penetrating radar to map an ancient village buried by volcanic eruptions,” J. Appl. Geophys.,

vol. 40, no. 1–3, pp. 49–58, Oct. 1998, doi: 10.1016/S0926-9851(97)00039-6.

[38] L. B. Conyers, “Ground-penetrating radar for landscape archaeology: method and

applications,” Seeing Unseen Geophys. Landsc. Archaeol., pp. 245–255, 2009.

Bibliography 161

[39] N. Papadopoulos, A. Sarris, M. Yi, and J. Kim, “Urban archaeological investigations using

surface 3D Ground Penetrating Radar and Electrical Resistivity Tomography methods,”

Explor. Geophys., vol. 40, no. 1, pp. 56–68, 2009, doi: 10.1071/EG08107.

[40] A. Sarris, T. Kalayci, I. Moffat, and M. Manataki, “An introduction to geophysical and

geochemical methods in digital geoarchaeology,” in Digital Geoarchaeology, Springer, 2018,

pp. 215–236.

[41] A. Sarris et al., “Integration of geophysical surveys, ground hyperspectral measurements,

aerial and satellite imagery for archaeological prospection of prehistoric sites: the case study

of Vésztő-Mágor Tell, Hungary,” J. Archaeol. Sci., vol. 40, no. 3, pp. 1454–1470, Mar. 2013,

doi: 10.1016/j.jas.2012.11.001.

[42] M. G. Drahor, “Integrated Geophysical Investigations in Archaeological Sites: Case

Studies from Turkey,” in Archaeogeophysics: State of the Art and Case Studies, G. El-Qady

and M. Metwaly, Eds. Cham: Springer International Publishing, 2019, pp. 27–68. doi:

10.1007/978-3-319-78861-6_2.

[43] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. The MIT Press, 2016.

[44] Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A review and new

perspectives,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 8, pp. 1798–1828, 2013.

[45] R. K. Sinha, R. Pandey, and R. Pattnaik, “Deep learning for computer vision tasks: A

review,” presented at the International Conference on Intelligent Computing and Control

(ICICC), Madurai, India, 2017.

[46] A. Voulodimos, N. Doulamis, A. Doulamis, and E. Protopapadakis, “Deep learning for

computer vision: A brief review,” Comput. Intell. Neurosci., vol. 2018, 2018.

[47] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521, no. 7553, pp. 436–

444, 2015.

[48] A. Khan, A. Sohail, U. Zahoora, and A. S. Qureshi, “A survey of the recent architectures

of deep convolutional neural networks,” Artif. Intell. Rev., vol. 53, no. 8, pp. 5455–5516, 2020.

[49] K. Fukushima, “Neocognitron: A self-organizing neural network model for a mechanism

of pattern recognition unaffected by shift in position,” Biol. Cybern., vol. 36, no. 4, pp. 193–

202, Apr. 1980, doi: 10.1007/BF00344251.

[50] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep

convolutional neural networks,” in Advances in neural information processing systems, 2012,

pp. 1097–1105.

[51] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to

document recognition,” Proc. IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[52] W. Rawat and Z. Wang, “Deep convolutional neural networks for image classification: A

comprehensive review,” Neural Comput., vol. 29, no. 9, pp. 2352–2449, 2017.

[53] T. Tommasi, N. Patricia, B. Caputo, and T. Tuytelaars, “A deeper look at dataset bias,” in

Domain adaptation in computer vision applications, Springer, 2017, pp. 37–55.

[54] F. Sultana, A. Sufian, and P. Dutta, “A review of object detection models based on

convolutional neural network,” in Intelligent Computing: Image Processing Based

Applications, Springer, 2020, pp. 1–16.

[55] A. Garcia-Garcia, S. Orts-Escolano, S. Oprea, V. Villena-Martinez, and J. Garcia-

Rodriguez, “A review on deep learning techniques applied to semantic segmentation,” ArXiv

Prepr. ArXiv170406857, 2017.

162 Bibliography

[56] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic

segmentation,” in Proceedings of the IEEE conference on computer vision and pattern

recognition, 2015, pp. 3431–3440.

[57] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical

image segmentation,” in International Conference on Medical image computing and

computer-assisted intervention, 2015, pp. 234–241.

[58] V. Badrinarayanan, A. Kendall, and R. Cipolla, “Segnet: A deep convolutional encoder-

decoder architecture for image segmentation,” IEEE Trans. Pattern Anal. Mach. Intell., vol.

39, no. 12, pp. 2481–2495, 2017.

[59] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, “Semantic image

segmentation with deep convolutional nets and fully connected crfs,” presented at the 3rd

International Conference on Learning Representations, San Diego, California, 2015.

[60] B. Hariharan, P. Arbeláez, R. Girshick, and J. Malik, “Simultaneous detection and

segmentation,” in European Conference on Computer Vision, 2014, pp. 297–312.

[61] P. O. Pinheiro, R. Collobert, and P. Dollár, “Learning to segment object candidates,” in

Advances in Neural Information Processing Systems, 2015, pp. 1990–1998.

[62] L. Capineri, P. Grande, and J. a. G. Temple, “Advanced image-processing technique for

real-time interpretation of ground-penetrating radar images,” Int. J. Imaging Syst. Technol.,

vol. 9, no. 1, pp. 51–59, 1998, doi: https://doi.org/10.1002/(SICI)1098-

1098(1998)9:1<51::AID-IMA7>3.0.CO;2-Q.

[63] W. Al-Nuaimy, Y. Huang, M. Nakhkash, M. T. C. Fang, V. T. Nguyen, and A. Eriksen,

“Automatic detection of buried utilities and solid objects with GPR using neural networks and

pattern recognition,” J. Appl. Geophys., vol. 43, no. 2, pp. 157–165, Mar. 2000, doi:

10.1016/S0926-9851(99)00055-5.

[64] E. Pasolli, F. Melgani, and M. Donelli, “Automatic Analysis of GPR Images: A Pattern-

Recognition Approach,” IEEE Trans. Geosci. Remote Sens., vol. 47, no. 7, pp. 2206–2217,

Jul. 2009, doi: 10.1109/TGRS.2009.2012701.

[65] Q. Lu, J. Pu, and Z. Liu, “Feature Extraction and Automatic Material Classification of

Underground Objects from Ground Penetrating Radar Data,” JECE, vol. 2014, p. 28:28-28:28,

Jan. 2014, doi: 10.1155/2014/347307.

[66] W. Shao, A. Bouzerdoum, S. L. Phung, L. Su, B. Indraratna, and C. Rujikiatkamjorn,

“Automatic Classification of Ground-Penetrating-Radar Signals for Railway-Ballast

Assessment,” IEEE Trans. Geosci. Remote Sens., vol. 49, no. 10, pp. 3961–3972, Oct. 2011,

doi: 10.1109/TGRS.2011.2128328.

[67] C. Maas and J. Schmalzl, “Using pattern recognition to automatically localize reflection

hyperbolas in data from ground penetrating radar,” Comput. Geosci., vol. 58, pp. 116–125,

Aug. 2013, doi: 10.1016/j.cageo.2013.04.012.

[68] X. L. Travassos, S. L. Avila, and N. Ida, “Artificial Neural Networks and Machine

Learning techniques applied to Ground Penetrating Radar: A review,” Appl. Comput. Inform.,

Oct. 2018, doi: 10.1016/j.aci.2018.10.001.

[69] I. Giannakis, A. Giannopoulos, and C. Warren, “A Machine Learning-Based Fast-Forward

Solver for Ground Penetrating Radar With Application to Full-Waveform Inversion,” IEEE

Trans. Geosci. Remote Sens., vol. 57, no. 7, pp. 4417–4426, Jul. 2019, doi:

10.1109/TGRS.2019.2891206.

Bibliography 163

[70] C. Warren, A. Giannopoulos, and I. Giannakis, “gprMax: Open source software to simulate

electromagnetic wave propagation for Ground Penetrating Radar,” Comput. Phys. Commun.,

2016, doi: 10.1016/j.cpc.2016.08.020.

[71] A. Giannopoulos, “Modelling ground penetrating radar by GprMax,” Constr. Build.

Mater., vol. 19, no. 10, pp. 755–762, Dec. 2005, doi: 10.1016/j.conbuildmat.2005.06.007.

[72] I. Giannakis, A. Giannopoulos, and C. Warren, “A Machine Learning Scheme for

Estimating the Diameter of Reinforcing Bars Using Ground Penetrating Radar,” IEEE Geosci.

Remote Sens. Lett., pp. 1–5, 2020, doi: 10.1109/LGRS.2020.2977505.

[73] P. Asadi, M. Gindy, and M. Alvarez, “A machine learning based approach for automatic

rebar detection and quantification of deterioration in concrete bridge deck ground penetrating

radar B-scan images,” KSCE J. Civ. Eng., vol. 23, no. 6, pp. 2618–2627, 2019.

[74] E. Skartados et al., “Ground penetrating radar image processing towards underground

utilities detection for robotic applications,” in 2018 International Conference on Control,

Artificial Intelligence, Robotics & Optimization (ICCAIRO), 2018, pp. 27–31.

[75] J. Sonoda and T. Kimoto, “Object Identification form GPR Images by Deep Learning,” in

2018 Asia-Pacific Microwave Conference (APMC), Nov. 2018, pp. 1298–1300. doi:

10.23919/APMC.2018.8617556.

[76] K. Ishitsuka, S. Iso, K. Onishi, and T. Matsuoka, “Object Detection in Ground-Penetrating

Radar Images Using a Deep Convolutional Neural Network and Image Set Preparation by

Migration,” Int. J. Geophys., vol. 2018, 2018.

[77] D. Reichman, L. M. Collins, and J. M. Malof, “Some good practices for applying

convolutional neural networks to buried threat detection in Ground Penetrating Radar,” in

2017 9th International Workshop on Advanced Ground Penetrating Radar (IWAGPR), Jun.

2017, pp. 1–5. doi: 10.1109/IWAGPR.2017.7996100.

[78] M. Pham and S. Lefèvre, “Buried Object Detection from B-Scan Ground Penetrating Radar

Data Using Faster-RCNN,” in IGARSS 2018 - 2018 IEEE International Geoscience and

Remote Sensing Symposium, Jul. 2018, pp. 6804–6807. doi: 10.1109/IGARSS.2018.8517683.

[79] U. Ozkaya, F. Melgani, M. Belete Bejiga, L. Seyfi, and M. Donelli, “GPR B scan image

analysis with deep learning methods,” Measurement, vol. 165, p. 107770, Dec. 2020, doi:

10.1016/j.measurement.2020.107770.

[80] H. Liu, C. Lin, J. Cui, L. Fan, X. Xie, and B. F. Spencer, “Detection and localization of

rebar in concrete by deep learning using ground penetrating radar,” Autom. Constr., vol. 118,

p. 103279, 2020.

[81] S. Yang et al., “Defect segmentation: Mapping tunnel lining internal defects with ground

penetrating radar data using a convolutional neural network,” ArXiv200313120 Phys. Prepring

Submitt. Constr. Build. Mater., Mar. 2020, Accessed: Sep. 15, 2020. [Online]. Available:

http://arxiv.org/abs/2003.13120

[82] N. Kim, K. Kim, Y.-K. An, H.-J. Lee, and J.-J. Lee, “Deep learning-based underground

object detection for urban road pavement,” Int. J. Pavement Eng., vol. 21, no. 13, pp. 1638–

1650, 2018, doi: 10.1080/10298436.2018.1559317.

[83] N. Kim, S. Kim, Y.-K. An, and J.-J. Lee, “A novel 3D GPR image arrangement for deep

learning-based underground object classification,” Int. J. Pavement Eng., vol. 0, no. 0, pp. 1–

12, Aug. 2019, doi: 10.1080/10298436.2019.1645846.

[84] M.-S. Kang, N. Kim, J. J. Lee, and Y.-K. An, “Deep learning-based automated

underground cavity detection using three-dimensional ground penetrating radar,” Struct.

Health Monit., vol. 19, no. 1, pp. 173–185, 2020.

164 Bibliography

[85] N. Kim, S. Kim, Y.-K. An, and J.-J. Lee, “Triplanar Imaging of 3-D GPR Data for Deep-

Learning-Based Underground Object Detection,” IEEE J. Sel. Top. Appl. Earth Obs. Remote

Sens., vol. 12, no. 11, pp. 4446–4456, 2019.

[86] S. Khudoyarov, N. Kim, and J.-J. Lee, “Three-dimensional convolutional neural network–

based underground object classification using three-dimensional ground penetrating radar

data,” Struct. Health Monit., p. 1475921720902700, 2020.

[87] Z. Tong, J. Gao, and D. Yuan, “Advances of deep learning applications in ground-

penetrating radar: A survey,” Constr. Build. Mater., vol. 258, p. 120371, 2020, doi:

https://doi.org/10.1016/j.conbuildmat.2020.120371.

[88] V. Kafedziski, S. Pecov, and D. Tanevski, “Detection and Classification of Land Mines

from Ground Penetrating Radar Data Using Faster R-CNN,” in 2018 26th Telecommunications

Forum (TELFOR), Nov. 2018, pp. 1–4. doi: 10.1109/TELFOR.2018.8612117.

[89] S. Lameri, F. Lombardi, P. Bestagini, M. Lualdi, and S. Tubaro, “Landmine detection from

GPR data using convolutional neural networks,” in 2017 25th European Signal Processing

Conference (EUSIPCO), Aug. 2017, pp. 508–512. doi: 10.23919/EUSIPCO.2017.8081259.

[90] P. Bestagini, F. Lombardi, M. Lualdi, F. Picetti, and S. Tubaro, “Landmine Detection

Using Autoencoders on Multipolarization GPR Volumetric Data,” IEEE Trans. Geosci.

Remote Sens., 2020.

[91] J. Zheng, X. Teng, J. Liu, and X. Qiao, “Convolutional Neural Networks for Water Content

Classification and Prediction With Ground Penetrating Radar,” IEEE Access, vol. 7, pp.

185385–185392, 2019, doi: 10.1109/ACCESS.2019.2960768.

[92] J. K. Alvarez and S. Kodagoda, “Application of deep learning image-to-image

transformation networks to GPR radargrams for sub-surface imaging in infrastructure

monitoring,” in 2018 13th IEEE Conference on Industrial Electronics and Applications

(ICIEA), May 2018, pp. 611–616. doi: 10.1109/ICIEA.2018.8397788.

[93] B. Liu et al., “GPRInvNet: Deep Learning-Based Ground Penetrating Radar Data Inversion

for Tunnel Lining,” ArXiv191205759 Phys., Dec. 2019, Accessed: Sep. 15, 2020. [Online].

Available: http://arxiv.org/abs/1912.05759

[94] W. Rice, M. Omwenga, D. Wu, and Y. Liang, “Enhanced Underground Object Detection

with Conditional Adversarial Networks,” Aug. 2019, pp. 59–63. Accessed: Nov. 20, 2020.

[Online]. Available:

https://issatconferences.org/Abstracts/DSIS/Content_DSIS/content_DSIS_19/59.html

[95] J. M. Malof et al., “A large-scale multi-institutional evaluation of advanced discrimination

algorithms for buried threat detection in ground penetrating radar,” IEEE Trans. Geosci.

Remote Sens., vol. 57, no. 9, pp. 6929–6945, 2019.

[96] M. Küçükdemirci and A. Sarris, “Deep learning based automated analysis of archaeo-

geophysical images,” Archaeol. Prospect., vol. 27, no. 2, pp. 107–118, 2020, doi:

10.1002/arp.1763.

[97] M. A. H. El-said, “Geophysical Prospection of Underground Water in the Desert by Means

of Electromagnetic Interference Fringes,” Proc. IRE, vol. 44, no. 1, pp. 24–30, 1956, doi:

10.1109/JRPROC.1956.274846.

[98] A. P. Annan, “GPR—History, Trends, and Future Developments,” Subsurf. Sens. Technol.

Appl., vol. 3, no. 4, pp. 253–270, Oct. 2002, doi: 10.1023/A:1020657129590.

[99] J. L. Davis and A. P. Annan, “Ground-Penetrating Radar for High-Resolution Mapping of

Soil and Rock Stratigraphy1,” Geophys. Prospect., vol. 37, no. 5, pp. 531–551, 1989, doi:

10.1111/j.1365-2478.1989.tb02221.x.

Bibliography 165

[100] J. A. Doolittle and J. R. Butnor, “Chapter 6 - Soils, Peatlands, and Biomonitoring,” in

Ground Penetrating Radar Theory and Applications, Harry M. Jol, Ed. Amsterdam: Elsevier,

2009, pp. 177–202. Accessed: Jul. 22, 2013. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/B9780444533487000065

[101] A. K. Benson, “Applications of ground penetrating radar in assessing some geological

hazards: examples of groundwater contamination, faults, cavities,” J. Appl. Geophys., vol. 33,

no. 1–3, pp. 177–193, 1995, doi: 10.1016/0926-9851(95)90040-3.

[102] M. Grasmueck, “3-D ground‐penetrating radar applied to fracture imaging in gneiss,”

GEOPHYSICS, vol. 61, no. 4, pp. 1050–1064, 1996, doi: 10.1190/1.1444026.

[103] U. Theune, D. Rokosh, M. Sacchi, and D. Schmitt, “Mapping fractures with GPR: A case

study from Turtle Mountain,” GEOPHYSICS, vol. 71, no. 5, pp. B139–B150, 2006, doi:

10.1190/1.2335515.

[104] N. J. Cassidy, “Chapter 2 - Electrical and Magnetic Properties of Rocks, Soils and Fluids,”

in Ground Penetrating Radar Theory and Applications, Harry M. Jol, Ed. Amsterdam:

Elsevier, 2009, pp. 41–72. Accessed: Jul. 22, 2013. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/B9780444533487000028

[105] J. J. Daniels, “Ground Penetrating Radar Fundamentals,” Ohio, Appendix to U.S.EPA,

Region V, 2000. [Online]. Available:

http://www.earthsciences.osu.edu/~jeff/Library/BASICS.PDF

[106] A. P. Annan, “Chapter 1 - Electromagnetic Principles of Ground Penetrating Radar,” in

Ground Penetrating Radar Theory and Applications, Harry M. Jol, Ed. Amsterdam: Elsevier,

2009, pp. 1–40. Accessed: Jul. 22, 2013. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/B9780444533487000016

[107] N. J. Cassidy, “Chapter 5 - Ground Penetrating Radar Data Processing, Modelling and

Analysis,” in Ground Penetrating Radar Theory and Applications, Harry M. Jol, Ed.

Amsterdam: Elsevier, 2009, pp. 141–176. Accessed: Jul. 22, 2013. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/B9780444533487000053

[108] P. Y. Ktonas and N. Papp, “Instantaneous envelope and phase extraction from real signals:

Theory, implementation, and an application to EEG analysis,” Signal Process., vol. 2, no. 4,

pp. 373–385, Oct. 1980, doi: 10.1016/0165-1684(80)90079-1.

[109] A. Batziou-Efstathiou, “Δημητριάς,” Athens Archaeol. Receipts Fund, 2001.

[110] F. Rumscheid and W. Koenigs, Priene: a guide to the" Pompeii of Asia Minor". Ege

Yayinlar, 1998.

[111] P. Zanker, Pompeii: public and private life, vol. 11. Harvard University Press, 1998.

[112] S. Hodkinson and H. Hodkinson, “Mantineia and the Mantinike: Settlement and Society in

a Greek Polis,” Annu. Br. Sch. Athens, vol. 76, pp. 239–296, Nov. 1981, doi:

10.1017/S0068245400019547.

[113] F. E. Winter, “Arkadian Notes I: Identification of the Agora Buildings at Orchomenos and

Mantinea,” EchCl, vol. 31, pp. 235–46, 1987.

[114] F. E. Winter, “Arkadian Notes II: the Walls of Mantinea, Orchomenos and Kleitor,” EchCl

Ns, vol. 8, pp. 192–96, 1989.

[115] A. Sarris, “Shallow Depth Geophysical Investigation Through the Application of Magnetic

and Electric Resistance Techniques: AN Evaluation Study of the Responses of Magnetic and

Electric Resistance Techniques to Archaeogeophysical Prospection Surveys in Greece and

Cyprus,” Thesis PHD-- Univ. Neb. - Linc. 1992Source Diss. Abstr. Int. Vol. 53-08 Sect. B Page

166 Bibliography

4002, 1992, Accessed: Sep. 26, 2014. [Online]. Available:

http://adsabs.harvard.edu/abs/1992PhDT.......248S

[116] G. Fougères, Mantinée et l’Arcadie. A. Fontemoing, 1898.

[117] T. M. Mitchell, Machine learning. McGraw-hill New York, 1997.

[118] Y. S. Abu-Mostafa, M. Magdon-Ismail, and H.-T. Lin, Learning from data, vol. 4.

AMLBook New York, NY, USA:, 2012.

[119] S. Thrun and L. Pratt, Learning to learn. Springer Science & Business Media, 2012.

[120] K. P. Murphy, Machine learning: a probabilistic perspective. MIT press, 2012.

[121] C. M. Bishop, Pattern recognition and machine learning. springer, 2006.

[122] T. O. Ayodele, “Types of machine learning algorithms,” New Adv. Mach. Learn., pp. 19–

48, 2010.

[123] R. S. Sutton and A. G. Barto, “Reinforcement learning: An introduction,” 2011.

[124] J. J. Hopfield, “Neural networks and physical systems with emergent collective

computational abilities,” Proc. Natl. Acad. Sci., vol. 79, no. 8, pp. 2554–2558, 1982.

[125] J. J. Hopfield and D. W. Tank, “Computing with neural circuits: A model,” Science, vol.

233, no. 4764, pp. 625–633, 1986.

[126] A. Krenker, J. Bester, and A. Kos, “Introduction to the artificial neural networks,” in

Artificial neural networks-methodological advances and biomedical applications,

IntechOpen, 2011.

[127] F. Rosenblatt, “The perceptron: a probabilistic model for information storage and

organization in the brain.,” Psychol. Rev., vol. 65, no. 6, p. 386, 1958.

[128] I. Stephen, “Perceptron-based learning algorithms,” IEEE Trans. Neural Netw., vol. 50,

no. 2, p. 179, 1990.

[129] A. Graves, A. Mohamed, and G. Hinton, “Speech recognition with deep recurrent neural

networks,” in 2013 IEEE international conference on acoustics, speech and signal processing,

2013, pp. 6645–6649.

[130] Y. Abu-Mostafa, M. Magdon-Ismail, and H. Lin, “E-Chapter 7: Neural Networks,” Learn.

Data, 2015.

[131] B. L. Kalman and S. C. Kwasny, “Why tanh: choosing a sigmoidal function,” in

[Proceedings 1992] IJCNN International Joint Conference on Neural Networks, 1992, vol. 4,

pp. 578–581.

[132] B. Karlik and A. V. Olgac, “Performance analysis of various activation functions in

generalized MLP architectures of neural networks,” Int. J. Artif. Intell. Expert Syst., vol. 1, no.

4, pp. 111–122, 2011.

[133] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltzmann machines,”

2010.

[134] B. Xu, N. Wang, T. Chen, and M. Li, “Empirical evaluation of rectified activations in

convolutional network,” ArXiv Prepr. ArXiv150500853, 2015.

[135] D.-A. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and accurate deep network learning

by exponential linear units (elus),” ArXiv Prepr. ArXiv151107289, 2015.

[136] S. Sharma, “Activation functions in neural networks,” Data Sci., vol. 6, 2017.

[137] S. Koturwar and S. Merchant, “Weight Initialization of Deep Neural Networks(DNNs)

using Data Statistics,” ArXiv171010570 Cs Stat, Mar. 2018, Accessed: Sep. 11, 2020.

[Online]. Available: http://arxiv.org/abs/1710.10570

[138] S. K. Kumar, “On weight initialization in deep neural networks,” ArXiv Prepr.

ArXiv170408863, 2017.

Bibliography 167

[139] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward neural

networks,” in Proceedings of the thirteenth international conference on artificial intelligence

and statistics, 2010, pp. 249–256.

[140] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing human-level

performance on imagenet classification,” in Proceedings of the IEEE international conference

on computer vision, 2015, pp. 1026–1034.

[141] C. A. de Sousa, “An overview on weight initialization methods for feedforward neural

networks,” in 2016 International Joint Conference on Neural Networks (IJCNN), 2016, pp.

52–59.

[142] Handbook of Formulas and Tables for Signal Processing | Alexander D. Poularikas |

Springer. Accessed: Feb. 09, 2017. [Online]. Available:

http://www.springer.com/gp/book/9783540648345

[143] J. G. Proakis and D. K. Manolakis, Digital Signal Processing: Principles, Algorithms and

Applications, 3rd ed. Prentice Hall, 1995.

[144] S. W. Smith, “The scientist and engineer’s guide to digital signal processing,” 1997.

[145] R. Jain, R. Kasturi, and B. G. Schunck, Machine vision, vol. 5. McGraw-hill New York,

1995.

[146] J. Wu, “Introduction to convolutional neural networks,” Natl. Key Lab Nov. Softw. Technol.

Nanjing Univ. China, pp. 5–23, 2017.

[147] W. Shang, K. Sohn, D. Almeida, and H. Lee, “Understanding and improving convolutional

neural networks via concatenated rectified linear units,” in international conference on

machine learning, 2016, pp. 2217–2225.

[148] S. R. Dubey and S. Chakraborty, “Average biased ReLU based CNN descriptor for

improved face retrieval,” ArXiv Prepr. ArXiv180402051, 2018.

[149] D. Scherer, A. Müller, and S. Behnke, “Evaluation of pooling operations in convolutional

architectures for object recognition,” in International conference on artificial neural networks,

2010, pp. 92–101.

[150] D. H. Hubel and T. N. Wiesel, “Receptive fields and functional architecture of monkey

striate cortex,” J. Physiol., vol. 195, no. 1, pp. 215–243, 1968.

[151] D. H. Hubel and T. N. Wiesel, “Receptive fields of single neurones in the cat’s striate

cortex,” J. Physiol., vol. 148, no. 3, p. 574, 1959.

[152] W. Luo, Y. Li, R. Urtasun, and R. Zemel, “Understanding the effective receptive field in

deep convolutional neural networks,” in Advances in neural information processing systems,

2016, pp. 4898–4906.

[153] S. Indolia, A. K. Goswami, S. P. Mishra, and P. Asopa, “Conceptual Understanding of

Convolutional Neural Network- A Deep Learning Approach,” Procedia Comput. Sci., vol.

132, pp. 679–688, Jan. 2018, doi: 10.1016/j.procs.2018.05.069.

[154] Z. Zhang, “Derivation of backpropagation in convolutional neural network (cnn),” Univ.

Tenn. Knoxv. TN, 2016.

[155] S. Ruder, “An overview of gradient descent optimization algorithms,” ArXiv160904747

Cs, Jun. 2017, Accessed: Oct. 04, 2020. [Online]. Available: http://arxiv.org/abs/1609.04747

[156] B. T. Polyak, “Some methods of speeding up the convergence of iteration methods,” USSR

Comput. Math. Math. Phys., vol. 4, no. 5, pp. 1–17, 1964.

[157] I. Sutskever, J. Martens, G. Dahl, and G. Hinton, “On the importance of initialization and

momentum in deep learning,” in International conference on machine learning, 2013, pp.

1139–1147.

168 Bibliography

[158] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” ArXiv Prepr.

ArXiv14126980, 2014.

[159] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for online learning and

stochastic optimization.,” J. Mach. Learn. Res., vol. 12, no. 7, 2011.

[160] G. Hinton, N. Srivastava, and K. Swersky, “Neural networks for machine learning lecture

6a overview of mini-batch gradient descent,” Cited On, vol. 14, no. 8, 2012.

[161] S. Bera and V. K. Shrivastava, “Analysis of various optimizers on deep convolutional

neural network model in the application of hyperspectral remote sensing image classification,”

Int. J. Remote Sens., vol. 41, no. 7, pp. 2664–2683, 2020.

[162] A. C. Wilson, R. Roelofs, M. Stern, N. Srebro, and B. Recht, “The marginal value of

adaptive gradient methods in machine learning,” in Advances in neural information processing

systems, 2017, pp. 4148–4158.

[163] J. Kukačka, V. Golkov, and D. Cremers, “Regularization for deep learning: A taxonomy,”

ArXiv Prepr. ArXiv171010686, 2017.

[164] A. Fawzi, H. Samulowitz, D. Turaga, and P. Frossard, “Adaptive data augmentation for

image classification,” in 2016 IEEE International Conference on Image Processing (ICIP),

2016, pp. 3688–3692.

[165] M. Paulin, J. Revaud, Z. Harchaoui, F. Perronnin, and C. Schmid, “Transformation pursuit

for image classification,” in Proceedings of the IEEE conference on computer vision and

pattern recognition, 2014, pp. 3646–3653.

[166] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: a

simple way to prevent neural networks from overfitting,” J. Mach. Learn. Res., vol. 15, no. 1,

pp. 1929–1958, 2014.

[167] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by

reducing internal covariate shift,” ArXiv Prepr. ArXiv150203167, 2015.

[168] P. Luo, X. Wang, W. Shao, and Z. Peng, “Towards understanding regularization in batch

normalization,” ArXiv Prepr. ArXiv180900846, 2018.

[169] “Noggin - User’s Guide.” Sensors & Software Inc., 2011. Accessed: Sep. 19, 2020.

[Online]. Available: https://www.sensoft.ca/products/noggin/overview/

[170] S. N. Spanoudakis and A. Vafidis, “GPR-PRO: A MATLAB module for GPR data

processing,” in 2010 13th International Conference on Ground Penetrating Radar (GPR),

2010, pp. 1–5. doi: 10.1109/ICGPR.2010.5550131.

[171] A. Tzanis, “Matgpr: A freeware matlab package for the analysis of common-offset GPR

data,” in Geophysical Research Abstracts, 2006, vol. 8.

[172] G. F. Margrave and K. W. Hall, “CREWES Matlab Toolbox,” Consortium for Research in

Elastic Wave Exploration Seismology. https://www.crewes.org/ResearchLinks/FreeSoftware/

(accessed Jan. 05, 2020).

[173] M. D. Sacchi, “Signal Analysis and Imaging Group - SeismicLab - Matlab Scripts for

Seismic Data Processing.” http://seismic-lab.physics.ualberta.ca/ (accessed Sep. 17, 2020).

[174] “IGEAN.” https://igean.ims.forth.gr/?q=en (accessed Sep. 20, 2020).

[175] A. Sarris et al., “Opening a New Frontier in the Neolithic Settlement Patterns of Eastern

Thessaly, Greece.,” in Communities, Landscapes, and Interaction in Neolithic Greece,

Rethymno, 2017, vol. 20, pp. 27–48.

[176] T. Kalaycı and A. Sarris, “Multi-Sensor Geomagnetic Prospection: A Case Study from

Neolithic Thessaly, Greece,” Remote Sens., vol. 8, no. 11, p. 966, 2016.

Bibliography 169

[177] M. Manataki, A. Sarris, and A. Vafidis, “Employing CEEMD for Improving GPR Images-

A Case Study from a Neolithic Settlement in Thessaly, Greece,” 2015.

[178] C. Cuenca-García et al., “Walking over Magoulas: Mapping Neolithic Tell Settlements in

Thessaly (Greece) using Integrated Archaeo-geophysical Techniques.,” presented at the 17th

IUPPS Congress, Burgos, Sep. 2014.

[179] M. Manataki et al., “Studying the Variation of Geophysical Signals of the Architectural

Attributes of the Neolithic Tells and Landscape,” presented at the In International Conference

on Computer Applications in Archaeology, CAA 2015, University of Sienna, Sienna, Italy,

Apr. 2015.

[181] T. Kalayci, F.-X. Simon, and A. Sarris, “A Manifold approach for the investigation of early

and middle Neolithic settlements in Thessaly, Greece,” Geosciences, vol. 7, no. 3, p. 79, 2017.

[182] E. Alram-Stern et al., “Magoula Visviki revisited: comparing past excavations’ data to

recent geophysical research.”.

[183] K. Vouzaxakis, “A new Neolithic site in Thessaly (Greece): the Belitsi magoula,”

Antiquity, vol. 75, no. 287, pp. 15–16, 2001.

[184] F.-X. Simon, T. Kalayci, J. C. Donati, C. C. Garcia, M. Manataki, and A. Sarris, “How

efficient is an integrative approach in archaeological geophysics? Comparative case studies

from Neolithic settlements in Thessaly (Central Greece),” Surf. Geophys., vol. 13, no. 6, pp.

633–643, 2015.

[185] “POLITEIA.” https://www.ims.forth.gr/en/project/view?id=73 (accessed Sep. 21, 2020).

[186] J. C. Donati et al., “A regional approach to ancient urban studies in Greece through multi-

settlement geophysical survey,” J. Field Archaeol., vol. 42, no. 5, pp. 450–467, 2017.

[187] J. C. Donati and A. Sarris, “Geophysical survey in Greece: recent developments,

discoveries and future prospects,” Archaeol. Rep., vol. 62, pp. 63–76, 2016.

[188] M. Manataki, A. Sarris, and A. Vafidis, “Combining CEEMD and predictive

deconvolution for the suppression of multiple reflections and coherent noise in GPR signals,”

in 2015 8th International Workshop on Advanced Ground Penetrating Radar (IWAGPR),

2015, pp. 1–4.

[189] A. Sarris et al., “Revealing the urban features of the ancient greek city of Mantineia through

the employment of ground penetrating radar,” in 2015 8th International Workshop on

Advanced Ground Penetrating Radar (IWAGPR), 2015, pp. 1–4.

[190] M. Manataki, A. Sarris, J. C. Donati, C. Cuenca Garcia, and T. Kalayci, “GPR: Theory and

Practice in Archaeological Prospection,” in Best Practices of Geoinformatic Technologies for

the Mapping of Archaeolandscapes, Archaeopress Archaeology, 2015, pp. 13–24.

[191] “ArcLand - Home.” http://www.arcland.eu/ (accessed Sep. 21, 2020).

[192] A. Sarris and J. Bintliff, “Scouring the surface and peering beneath it at the ancient city of

Hyettos, Boeotia, Greece,” presented at the Sensing the Past, Final ArcLand Conference,

Frankfurt, Feb. 2015.

[193] A. Sarris, N. Papadopoulos, C. Cuenca-Garcia, D. Alexakis, M. Manatakia, and G.

Cantoro, “Exposing the Urban Plan of the ancient city of Hyettos, Boeotia, Greece,” Archaeol.

Pol., vol. 53, pp. 364–367, 2015.

[194] “The Sissi Archaeological Project | Sarpedon.” https://sarpedon.be/ (accessed Sep. 21,

2020).

[195] J. Driessen, “A new ceremonial centre at Sissi (Nomos Lassithiou),” 2016.

170 Bibliography

[196] A. Sarris, M. Manataki, S. Dederix, and J. Driessen, “Revealing the structural details of the

Minoan settlement of Sissi, Eastern Crete, through geophysical investigations,” in 12th

International Conference of Archaeological Prospection, 2017, pp. 206–208.

[197] S. Déderix, A. Sarris, and M. Manataki, “Geophysical Investigations at Sissi; 2015-2016,”

in Excavations at Sissi, IV. Preliminary Report on the 2015-2016 Campaigns (Aegis 13),

Louvain-la-Neuve: Presses universitaires de Louvain, 2018.

[198] J. Pakkanen, M. C. Lentini, A. Sarris, E. Tikkala, and M. Manataki, “Recording and

Reconstructing the Sacred Landscapes of Sicilian Naxos,” Open Archaeol., vol. 5, no. 1, pp.

416–433, Nov. 2019, doi: 10.1515/opar-2019-0026.

[199] “Salamis Urban Landscape Project 2016–2020 | FIA.”

http://www.finninstitute.gr/arkeologinen-yhteistyoprojekti-salamiin-saaren-ambelakiassa-

2016-2020/ (accessed Sep. 21, 2020).

[200] A. Sarris et al., “Uphill and downhill geophysical challenges in Delphi, Greece,” in

Archaeologia Polona, Warsaw, Poland, 2015, vol. 53, pp. 343–347. Accessed: Sep. 21, 2020.

[Online]. Available:

https://www.researchgate.net/publication/317066409_Uphill_and_downhill_geophysical_ch

allenges_in_Delphi_Greece

[201] S. Chatzitoulousis et al., “Records and Transformations of Memories in the Cultural

Landscape of Idomeni (Kilkis, Northern Greece),” Open Archaeol., vol. 5, no. 1, pp. 563–585,

Dec. 2019, doi: 10.1515/opar-2019-0035.

[202] A. Sarris, N. Papadopoulos, S. Déderix, M. C. Salvi, and E. Monahan, “Geophysical

Mapping of the Prehistoric Settlement at Palamari of Skyros,” 2012.

[203] A. Sarris et al., “Revealing the ancient city of Sikyon through the application of integrated

geophysical approaches and 3D modelling,” ArcheoSciences Rev. Archéom., no. 33 (suppl.),

Art. no. 33 (suppl.), Oct. 2009, doi: 10.4000/archeosciences.1468.

[204] Y. A. Lolos et al., “Surveying the Sikyonian plateau: integrated approach to the study of

an ancient cityscape,” in Proceedings of the 5th Congress of the Greek Archaeometric Society,

Athens, 2012, pp. 305–326. Accessed: Sep. 21, 2020. [Online]. Available:

https://www.academia.edu/36028879/SURVEYING_THE_SIKYONIAN_PLATEAU_INTE

GRATED_APPROACH_TO_THE_STUDY_OF_AN_ANCIENT_CITYSCAPE

[205] N. G. Papadopoulos, A. Sarris, and C. Giapitsoglou, “Mapping the buried archaeological

remains in the area of the old Turkish School of Rethymno (Crete, Greece) through the

application of surface ERT and GPR techniques,” in Πρακτικα 5ού Σύμποσιού Ελλήνικής

Αρχαιομετρικής Εταιρειας, Επιστ. Επιμελεια Ν. Ζαχαριας, Μ. Γεώργακοπούλού, Κ. Πολύκρετή,

Γ. Φακορελλής, Θ. Βακούλής, Αθήνα, 2012, pp. 101–116.

[206] “MNIST handwritten digit database, Yann LeCun, Corinna Cortes and Chris Burges.”

http://yann.lecun.com/exdb/mnist/ (accessed Sep. 26, 2020).

[207] “CIFAR-10 and CIFAR-100 datasets.” http://www.cs.utoronto.ca/%7Ekriz/cifar.html

(accessed Sep. 26, 2020).

[208] J. Zhang et al., “Why ADAM beats SGD for attention models,” ArXiv Prepr.

ArXiv191203194, 2019.

[209] N. S. Keskar and R. Socher, “Improving generalization performance by switching from

adam to sgd,” ArXiv Prepr. ArXiv171207628, 2017.

[210] F. He, T. Liu, and D. Tao, “Control batch size and learning rate to generalize well:

Theoretical and empirical evidence,” in Advances in Neural Information Processing Systems,

2019, pp. 1143–1152.

Bibliography 171

172

APPENDIX A: CASE STUDIES &

PROCESSING SCRIPTS

APPENDIX A: Case Studies & Processing Scripts 173

A.1 NOGGIN GPR HEADER FILES

Table A.1: Example of header files (.HD) acquired with the NOGGIN system showing the stored
information. On the left is the header file of the survey line acquired in Sissi, Crete, while on the right is
a survey line acquired in Demetrias, Thessaly. The header of the left was acquired with an upgraded
antenna and DVL firmware. These two headers are representative of the data used for this research. If
the zig-zag mode is followed, the value of the step size used is negative for opposite orientated lines.

1234

Data Collected with Noggin Gold

2017-06-27

NUMBER OF TRACES = 393

NUMBER OF PTS/TRC = 222

TIMEZERO AT POINT = 22

TOTAL TIME WINDOW = 88.800

STARTING POSITION = 0.0000

FINAL POSITION = 19.6000

STEP SIZE USED = 0.0500

POSITION UNITS = m

NOMINAL FREQUENCY = 250.00

ANTENNA SEPARATION = 0.2500

PULSER VOLTAGE (V) = 165

NUMBER OF STACKS = 8

SURVEY MODE = Reflection

ODOMETER CAL (t/m) = 1132.550049

STACKING TYPE = F1, P8, DynaQ OFF

1234

Data Collected with Noggin Plus

2014/03/16

NUMBER OF TRACES = 2381

NUMBER OF PTS/TRC = 185

TIMEZERO AT POINT = 37

TOTAL TIME WINDOW = 74

STARTING POSITION = 0.0000

FINAL POSITION = 119.0000

STEP SIZE USED = 0.0500

POSITION UNITS = m

NOMINAL FREQUENCY = 250.00

ANTENNA SEPARATION = 0.2794

PULSER VOLTAGE (V) = 100

NUMBER OF STACKS = 8

SURVEY MODE = Reflection

ODOMETER CAL (t/m) = 1144.300049

STACKING TYPE = F1

Site: Sissi Site: Demetrias

A.2 MATLAB SCRIPTS USED FOR PROCESSING

A.2.1 Import Noggin data

Script A.1:MATLAB script to import NOGGIN GPR data that have been stored in DVL type III.

clear all; clc;
%%
% A script made to import NOGGIN DATA using DVL type III.

% Outputs:
% Bscan: The GPR profile if a single line is selected (2D array)
% Lines: Cell array of Bscans if multiple lines are selected
% K: is the total number of the selected lines.
% x: scan axis vector (in selected distance unit)
% dt:sampling in time (ns)
% t: double travel time vector.

% Variables name assinged to selected Header information
% ntrace ---------> number of traces
% nsample --------> number of points per trace
% t0 -------------> Timezero at point (in ns)
% dx -------------> Step size used (i.e traces sampling)
% (in selected position units)
% ant_sep --------> Antenna Separation (in selected position units)
% time_window ----> Total time window (in ns)
%%%

174 APPENDIX A: Case Studies & Processing Scripts

[filename_header, pathname_header] = uigetfile({'*.HD'},'Select NOGGIN header files

(.HD)', 'MultiSelect', 'on');
[filename_data, pathname_data] = uigetfile({'*.DT1'}, 'Select NOGGIN data files

(.HD)', 'MultiSelect', 'on');

pathname_header = fullfile(pathname_header, filename_header);
pathname_data = fullfile(pathname_data, filename_data);
tf=iscell(pathname_data);

if tf==1 %multiple GPR lines - Survey Grid
 K=length(pathname_data);
for k=1:K
 fileID{k} = fopen(pathname_header{k},'rt');
for i=1:39
 header_data{k,i} = fgetl(fileID{k});
end
 ntrace{k}=str2num(header_data{k,7}(22:length(header_data{k,7})));
 nsample{k}=str2num(header_data{k,9}(22:length(header_data{k,9})));
 dx{k}=str2num(header_data{k,19}(22:length(header_data{k,19})));
 antenna{k}=str2num(header_data{k,23}(22:length(header_data{k,23})));
 ant_sep{k}=str2num(header_data{k,13}(22:length(header_data{k,13})));
 time_window{k}= str2num(header_data{k,13}(22:length(header_data{k,13})));
 t0{k}=str2num(header_data{k,11}(22:length(header_data{k,11})));

%import the data
 fileID2{k} = fopen(pathname_data{k}, 'r');
 data{k} = fread(fileID2{k},inf,'int16');
 fclose(fileID2{k});

% Create the 2D Bscan
 [m,n] = size(data{k});
 L=m/ntrace{k};
 e=reshape(data{k},(L),ntrace{k});
 [m2,n2]=size(e);
 data1{k}=e((1):m2,:);
 [m,n]=size(data1{k});
 Lines{k}=data1{k}(60+t0{k}+1:m,:);

% Recalculate ntrace and nsamples
 ntrace{k}=size(Lines{k},2);
 nsamples{k}=size(Lines{k},1);

% Scan axis vector x, time sampling dt, and double travel time
% vector t
 x{k}=0:dx{k}:ntrace{k}*dx{k}-dx{k};
 dt{k}=time_window{k}/nsamples{k};
 t{k}=0:dt{k}:time_window{k}-dt{k};
end
else %Single GPR line
 fileID = fopen(pathname_header,'rt');
for i=1:39
 header_data{i} = fgetl(fileID);
end
 ntrace=str2num(header_data{7}(22:length(header_data{7})));
 nsample=str2num(header_data{9}(22:length(header_data{9})));
 dx = str2num(header_data{19}(22:length(header_data{19})));
 antenna=str2num(header_data{23}(22:length(header_data{23})));
 ant_sep = str2num(header_data{25}(22:length(header_data{25})));
 time_window = str2num(header_data{13}(22:length(header_data{13})));
 t0=str2num(header_data{11}(22:length(header_data{11})));

 fileID2 = fopen(pathname_data, 'r');

APPENDIX A: Case Studies & Processing Scripts 175

 data = fread(fileID2,inf,'int16');
 fclose(fileID2);
 [m,n] = size(data);
 L=m/ntrace;
 e=reshape(data,(L),ntrace);
 [m2,n2]=size(e);
 data1=e((1):m2,:);
 [m,n]=size(data1);
 Bscan=data1(60+t0+1:m,:);

 nsamples=size(Bscan,1);
 x=0:dx:ntrace*dx-dx;
 dt=time_window/nsamples;
 t=0:dt:time_window-dt;
end

A.2.2 Processing example with traces resampling and zig-zag mode and scan-axis in the

Y direction.

The following scripts were used to process the data acquired from a survey grid at Demetrias

archaeological site, Thessaly. The data were acquired using the zig-zag mode.

Script A.2: Load RAW lines and survey parameters saved in .mat file using a navigation window.

a=(uigetfile({'*.mat'},'Select GPR RAW mat file to plot(.mat)'));
load(a,'Lines','filename_data','ntrace','x','t','dt','dx','nsamples');

Lines_raw=Lines;
K=length(Lines_raw);
yr=x;
twindow=dt{1}*nsamples{1};
dy=dx;

Script A.3: Processing Step 1 - Script that implements trace resampling along the scan axis Y.

input=Lines_raw;
t_samples=size(input{1,1},1);
Y=120; %Set length of the survey grid along the scan axis Y in m
y_samples=round(Y/dy{1,1});
targetSize = [t_samples y_samples];
Lines_repos=input;
for k=1:K
 Lines_repos{k}=imresize(input{k},targetSize);
 y{k}=0:dy{k}:dy{k}*targetSize(2)-dy{k};
end

Script A.4: Processing Step 2 – Script that implements time zero correction.

%Plot raw Bscans to select time zero
nl=1:20; % set Bscans to plot
b=0.4; % set amplifier for Bscan contrast
for k=nl
 name{k}=strcat(filename_data{k}(1:end-4),'_RAW');

176 APPENDIX A: Case Studies & Processing Scripts

 name_fig{k}=strcat('Demetriada Stadium_a 250MHz',{' '},filename_data{k}(1:end-

4),{' '},'Raw');
 h{k}=figure('visible','on','Position',[1 1 1920 1080]);
 imagesc(yr{k},t{k},Lines_raw{k}), colorbar; colormap bone;
 set(gca,

'YDir','reverse','XaxisLocation','top','fontsize',16,'fontweight','bold');
 set(gcf, 'Color', 'w')
 Ctmp=max(max(abs(Lines_raw{k})));
 caxis([-Ctmp*b Ctmp.*b])
 xlabel('DISTANCE (m)','fontsize',16,'fontweight','bold')
 ylabel('TIME (ns)','fontsize',16,'fontweight','bold')
 title(name_fig{k},'fontsize',16,'Interpreter', 'none')
end

t0=6; % set index of time zero
for k=1:K
 Lines_tz{k}=Lines_repos{k}(t0:end,:);
 tz{k}=0:dt{k}:length(t{k}(t0:end))*dt{k}-dt{k};
end

Script A.0.5: Processing Step 3- Application of the Dewow function by matGPR

for k=1:K
 Lines_dewow{k}=dewow(Lines_tz{k});
end

Script A.6:Processing Step 4 - Application of the Inverse amplitude decay function by matGPR

%%STEP 5: GAIN - Inverse Amplitude Decay
for k=1:K
 Lines_gain{1,k}=gaininvdecay(Lines_dewow{1,k},tz{1,k});
end

Script A.7: Processing Step 5 – Application of Average Background Removal function by matGPR

%%STEP 6. Average Background Removal
for k=1:K
 Lines_bnr{k}=rmbackgr(Lines_gain{k});
end

Script A.8:Processing Step 6 – Calculation of the absolute spectrums and application of bandpass

filtering function by SeismicLab.

%Absolute Spectrum
[M,N]=size(Lines_bnr{1});
for k=1:K
for n=1:N

[BNR_Spectr{k}(:,n),fw(:,n),BNR_CSpectr{k}(:,n),f(:,n)]=estimatefw(Lines_bnr{k}(:,n),d

t{k});
end
end

%% Bandpass filtering
f1=100e+6;% frequencies in hertz

APPENDIX A: Case Studies & Processing Scripts 177

f2=200e+6;
f3=400e+6;
f4=500e+6;

for k=1:K
 k
 [Lines_bp{k},Transfer{k}] = bp_filter(Lines_bnr{k},dt{k}*1e-9,f1,f2,f3,f4);
end

Script A.9: Computation of the Instantaneous Envelope in DB using the function

dBInstantaneousEnvelope by GPR-Pro and creation of the 3D volume to extract slices.

for k=1:K
V(:,:,k)=dBInstantaneousEnvelope(Lines_bp{k});
end

Script A.10: Script to correct the orientation of the even indexed lines when using zig-zag mode.

for k=2:2:K-1
V(:,:,k)=fliplr(V(:,:,k));
end

Script A.11: Instantaneous envelope calculation and volume creation that detects and reverses the lines

with negative sampling step.

for k=1:K
V(:,:,k)=dBInstantaneousEnvelope(Lines_bp{k});
if dy{k}<0
V(:,:,k)=fliplr(V(:,:,k));
end
end

Script A.12: Instantaneous envelope calculation, nan-padding, and volume creation for non-rectangular

grids that works for both parallel and zig-zag mode.

for k=1:K
 k
 Lines_DB{k} = dBInstantaneousEnvelope(Lines_bp{k});
end

%Find maximum Y
for k=1:K
 [M, N]=size(Lines_DB{k});
 maxY(k)=N;
end
Ymx=max(maxY);
y_max=0:dy{1}:dy{1}*Ymx-dy{1};

for k=1:K
 k
if dy{k}>0
 [M, N]=size(Lines_DB{k});
 Lines_DB_pad{k}=padarray(Lines_DB{k},[0 Ymx-N], NaN, 'post');
V(:,:,k)=Lines_DB_pad{k};
elseif dy{k}<0

178 APPENDIX A: Case Studies & Processing Scripts

 [M, N]=size(Lines_DB_bp{k});
 Lines_DB_pad{k}=padarray(Lines_DB{k},[0 Ymx-N], NaN, 'pre');
V(:,:,k)=fliplr(Lines_DB_bp_pad{k});
end
end

Script A.13: Producing and saving C-scans (depth slice) from a GPR volume created from the previous

steps. The script uses MATLAB CPU parallel processing.

% Variables used from previous steps: V, dt, dy, tz, nsamples, y, Y, K

% Setting the variables used for ploting and saving C-scans
lp=0.5; % line space (m)
x=[];
x=0:lp:(K*lp)-lp;
X=lp*(K-1);
y=y{1};
vel=0.1; %velocity estimation of EM wave (m/ns)
T=(size(tz{1},2))*dt{1};
D=(T*vel)/2; %Depth estimation
dd=D/nsamples{1}; %depth sampling estimation
dpth=0:dd:D-dd;
dpth_si=round(dpth,3);

volume_name=strcat('Site1_Grid1');%the volume name of choice
tsi_vec=round(tz{1},2);
for m=1:M
 tsi_tmp{m}=strcat(mat2str(tsi_vec(m)));
 tsi_chr{m}=strrep(tsi_tmp{m},'.','_');
 slicename{m}=char(strcat(volume_name,{'_'},tsi_chr{m},{'ns'}));
 slicename_wo{m}=char(strcat(volume_name,{'_'},tsi_chr{m},{'ns'},{'_'},{'wo'}));
end

% Plot and save C-scans
c1=1.6; %scale for colormap min
c2=0.97; %scale for colormap max
M=1:134; %sampling of depth slices

V1=(permute(V,[2 3 1]));
parfor m=M
 name_fig{m}=strcat({'Depth='},{' '},mat2str(dpth_si(m)),{'m'},{'

'},{'t='},mat2str(tsi_vec(m)),{'ns'});

 h{m}=figure('visible','off','Position',[1 1 1920 1080]); %use to plot image on

screen resolution
 pcolor(x,y{1},V1(:,:,m)), colorbar; colormap gray;

colormap(flipud(colormap));shading interp
 set(gca,'fontsize',18,'fontweight','bold','LooseInset', get(gca,

'TightInset'));
 set(gcf, 'Color', 'w')
 Cmin=min(min(V1(:,:,m))); Cmax=max(max(V1(:,:,m)));
 caxis([(Cmin*c1) (Cmax*c2)])
 pbaspect([X Y 1])
 xlabel('DISTANCE (m)','fontsize',18,'fontweight','bold')
 ylabel('DISTANCE (m)','fontsize',18,'fontweight','bold')
 title(name_fig{m},'fontsize',18,'Interpreter', 'none');
 saveas(h{m},slicename{m},'jpeg')
% close(h{m})
end

APPENDIX A: Case Studies & Processing Scripts 179

poolobj = gcp('nocreate');
delete(poolobj);

Script A.14: MATLAB function, slidewcrop_y, that was made to save as images subregions in selected

C-scans using the pseudocolor plot function. The function applies to survey grids that use the Y direction

as the scan axis.

function

slidewcrop_y(path_v,V,A,a,b,wx,wy,stridex,stridey,dpth_si,tsi_vec,dy,lp,dt,volume_name

)

%slidewcrop_y crops and saves the selected depth slices using sliding windows.
% Detailed explanation goes here
[N, K, M]=size(V);
dy=abs(dy{1});dx=lp;dt=(dt{1});
y=0:dy:N*dy-dy; y=round(y,4);
Y=dy*N;
x=0:dx:K*dx-dx; x=round(x,4);
X=dx*K;

dest_dir1=char(strcat(path_v,num2str(wx),{'x'},num2str(wy),{'\'}));
mkdir(dest_dir1)

for i=1:X-1
 Xc(i,:)=(i-1)*stridex:dx:wx+(i-1)*stridex;
 [tfx,IDX(i,:)]=ismember(Xc(i,:),x);
end
IDX(any(~IDX,2),:)=[]; % nulls zero values if any

if stridex==0
 IDX=unique(IDX,'rows');
end

for j=1:Y-1
 Yc(j,:)=round((j-1)*stridey:dy:wy+(j-1)*stridey,4);
 [tfy,IDY(j,:)]=ismember(Yc(j,:),y);
end
IDY(any(~IDY,2),:)=[]; % nulls zero values if any

if stridey==0
 IDY=unique(IDY,'rows');
end

nwX=size(IDX,1); %length for
nwY=size(IDY,1);

for m=A
 tic
 name_fig{m}=strcat({'Depth='},{' '},mat2str(dpth_si(m)),{'m'},{'

'},{'t='},mat2str(tsi_vec(m)),{'ns'});
 tsi_tmp{m}=strcat(mat2str(tsi_vec(m)));
 tsi_chr{m}=strrep(tsi_tmp{m},'.','_');
 dest_dir2=char(strcat(dest_dir1,num2str(m),{'_'},tsi_chr{m}));
 mkdir(dest_dir2)
for i=1:nwX
for j=1:nwY
 m

180 APPENDIX A: Case Studies & Processing Scripts

 i
 j
 pos_name=sprintf('Xstr_%d_Ystr_%d',i,j);
 slicename{m}=char(strcat(volume_name,{'_'},tsi_chr{m},{'ns_'},pos_name));
 h{m}=figure('visible','off','Position',[1 1 1920 1080]);
 pcolor(x(IDX(i,:)),y(IDY(j,:)),V(IDY(j,:),IDX(i,:),m)),colormap gray;

colormap(flipud(colormap));shading interp
 set(gca,'fontsize',18,'fontweight','bold','LooseInset', get(gca,

'TightInset'));
 set(gcf, 'Color', 'w')
 Cmin=min(min(V(:,:,m))); Cmax=max(max(V(:,:,m)));
 caxis([(Cmin*a) (Cmax*b)])
 pbaspect([10 10 1])
 xlabel('DISTANCE (m)','fontsize',18,'fontweight','bold')
 ylabel('DISTANCE (m)','fontsize',18,'fontweight','bold')
 title(name_fig{m},'fontsize',18,'Interpreter', 'none');
 saveas(h{m},fullfile(dest_dir2,slicename{m}),'jpeg')
 close(h{m})
end
end
 toc
end

end

Script A.15: Example of applying slidewcrop_y. Windows of 10x10 and 20x20 are used for the selected

C-scans in A. The windows are overlapping using a stride of 2m along Y and X directions.

clear variables; close all; clc
v='name_of_processed_volume.mat';
path_v='C:\path_to_volume_v \';
load(v,'V1','dpth_si','tsi_vec','dy','lp','dt','vel','volume_name');

V=V1;
A=[10, 27, 33, 37, 42, 50, 72, 150, 176]; %indices of selected C-scans
a=1.7; %scaler Cmin
b=0.98; %scale Cmax

wx=10;
wy=10;
stridex=2;
stridey=2;
slidewcrop_y(path_v,V,A,a,b,wx,wy,stridex,stridey,dpth_si,tsi_vec,dy,lp,dt,volume_name

)

clear wx wy stridex stridey
wx=20;
wy=20;
stridex=2;
stridey=2;
slidewcrop_y(path_v,V,A,a,b,wx,wy,stridex,stridey,dpth_si,tsi_vec,dy,lp,dt,volume_name

)

181

APPENDIX B: CNN

IMPLEMENTATION& TRAINING

182 Appendix B: CNN implementation& Training

B.1 ALEXNET IMPLEMENTATIONS

Script B.1: Implementation of AlexNet baseline model in python.

import tensorflow as tf

from tensorflow import keras

from tensorflow.keras import layers

H=227

W=227

initializer = tf.keras.initializers.RandomNormal(mean=0, stddev=0.01)

inputs = keras.Input(shape=(H, W,3), name='input_layer')

x = layers.Conv2D(filters=96, kernel_size=11, strides=4, padding='valid',

 kernel_initializer=initializer,

bias_initializer='zeros')(inputs)

x = layers.Activation('relu')(x)

x = layers.MaxPooling2D(pool_size=3, strides=2)(x)

x = layers.Conv2D(filters=256, kernel_size=5, strides=1, padding='same',

 kernel_initializer=initializer, bias_initializer='ones')(x)

x = layers.Activation('relu')(x)

x = layers.MaxPooling2D(pool_size=3, strides=2)(x)

x = layers.Conv2D(filters=384, kernel_size=3, strides=1, padding='same',

 kernel_initializer=initializer,

bias_initializer='zeros')(x)

x = layers.Activation('relu')(x)

x = layers.Conv2D(filters=384, kernel_size=3, strides=1, padding='same',

 kernel_initializer=initializer, bias_initializer='ones')(x)

x = layers.Activation('relu')(x)

x = layers.Conv2D(filters=256, kernel_size=5, strides=1, padding='same',

 kernel_initializer=initializer, bias_initializer='ones')(x)

x = layers.Activation('relu')(x)

x = layers.MaxPooling2D(pool_size=3, strides=2)(x)

x = layers.Flatten()(x)

x = layers.Dense(units=4096, kernel_initializer=initializer,

bias_initializer='ones')(x)

x = layers.Activation('relu')(x)

x = layers.Dense(units=4096, kernel_initializer=initializer,

bias_initializer='ones')(x)

x = layers.Activation('relu')(x)

outputs = layers.Dense(units=3, kernel_initializer=initializer,

bias_initializer='ones')(x)

outputs = layers.Activation('softmax')(outputs)

Appendix B: CNN implementation& Training 183

model = keras.Model(inputs, outputs, name='AlexNet_baseline')

model.summary()

Table B.1: Implementation of AlexNet used as the baseline.

Model: "AlexNet_dropout_normalization"

Layer (type) Output Shape Param #

===

Input Layer (InputLayer) [(None, 227, 227, 3)] 0

Conv1 (Conv2D) (None, 55, 55, 96) 34944

Batch Normalization (None, 55, 55, 96) 384

ReLU (Activation) (None, 55, 55, 96) 0

Max Pooling (MaxPooling2D) (None, 27, 27, 96) 0

Conv2 (Conv2D) (None, 27, 27, 256) 614656

Batch Normalization (None, 27, 27, 256) 1024

ReLU (Activation) (None, 27, 27, 256) 0

Max Pooling (MaxPooling2D) (None, 13, 13, 256) 0

Conv3 (Conv2D) (None, 13, 13, 384) 885120

ReLU (Activation) (None, 13, 13, 384) 0

Conv4 (Conv2D) (None, 13, 13, 384) 1327488

ReLU (Activation) (None, 13, 13, 384) 0

Conv5 (Conv2D) (None, 13, 13, 256) 2457856

batch_normalization_2 (Batch (None, 13, 13, 256) 1024

ReLU (Activation) (None, 13, 13, 256) 0

Max Pooling (MaxPooling2D) (None, 6, 6, 256) 0

flatten (Flatten) (None, 9216) 0

FC1 (Dense) (None, 4096) 37752832

Dropout (Dropout) (None, 4096) 0

ReLU (Activation) (None, 4096) 0

FC2 (Dense) (None, 4096) 16781312

Dropout (Dropout) (None, 4096) 0

ReLU (Activation) (None, 4096) 0

FC3 (Dense) (None, 3) 12291

184 Appendix B: CNN implementation& Training

Softmax (Activation) (None, 3) 0

===

Total params: 59,868,931

Trainable params: 59,867,715

Non-trainable params: 1,216

Script B.2: Python script to import training set, test set, and apply image augmentations transforms on
the training dataset.

from keras.preprocessing.image importImageDataGenerator

H=227

W=227

pth_tr ='dataset/training/'

pth_ts ='dataset/test/'

batch_size =128

train_datagen =ImageDataGenerator(rescale=1./255,

 width_shift_range=[-5,5],

 height_shift_range=[-5,5],

 zoom_range=0.1,

 horizontal_flip=True,

 vertical_flip=True,

 rotation_range=90,

 brightness_range=[0.9,1.1])

train_set = train_datagen.flow_from_directory(directory=pth_tr,

 target_size=(H,W),

 class_mode='categorical',

 batch_size=batch_size)

test_datagen =ImageDataGenerator(rescale =1./255)

test_set = test_datagen.flow_from_directory(directory=pth_ts,

 target_size=(H,W),

 class_mode='categorical',

 batch_size=batch_size)

Script B.3: Adding dropout and batch normalization layers in the baseline model architecture.

import tensorflow as tf

from tensorflow import keras

from tensorflow.keras import layers

H=227

W=227

initializer = tf.keras.initializers.RandomNormal(mean=0, stddev=0.01)

inputs = keras.Input(shape=(H, W,3), name='input_layer')

Appendix B: CNN implementation& Training 185

x = layers.Conv2D(filters=96, kernel_size=11, strides=4, padding='valid',

 kernel_initializer=initializer,

bias_initializer='zeros')(inputs)

x = layers.BatchNormalization()(x)

x = layers.Activation('relu')(x)

x = layers.MaxPooling2D(pool_size=3, strides=2)(x)

x = layers.Conv2D(filters=256, kernel_size=5, strides=1, padding='same',

 kernel_initializer=initializer, bias_initializer='ones')(x)

x = layers.BatchNormalization()(x)

x = layers.Activation('relu')(x)

x = layers.MaxPooling2D(pool_size=3, strides=2)(x)

x = layers.Conv2D(filters=384, kernel_size=3, strides=1, padding='same',

 kernel_initializer=initializer,

bias_initializer='zeros')(x)

x = layers.Activation('relu')(x)

x = layers.Conv2D(filters=384, kernel_size=3, strides=1, padding='same',

 kernel_initializer=initializer, bias_initializer='ones')(x)

x = layers.Activation('relu')(x)

x = layers.Conv2D(filters=256, kernel_size=3, strides=1, padding='same',

 kernel_initializer=initializer, bias_initializer='ones')(x)

x = layers.Activation('relu')(x)

x = layers.MaxPooling2D(pool_size=3, strides=2)(x)

x = layers.Flatten()(x)

x = layers.Dense(units=4096, kernel_initializer=initializer,

bias_initializer='ones')(x)

x = layers.Dropout(0.5)(x)

x = layers.Activation('relu')(x)

x = layers.Dense(units=4096, kernel_initializer=initializer,

bias_initializer='ones')(x)

x = layers.Dropout(0.5)(x)

x = layers.Activation('relu')(x)

outputs = layers.Dense(units=3, kernel_initializer=initializer,

bias_initializer='ones')(x)

outputs = layers.Activation('softmax')(outputs)

model = keras.Model(inputs, outputs, name='AlexNet_baseline_BN_Dropout')

model.summary()

Script B.4: Setting the learning optimizer, compiling, and training the baseline model using early
stopping to terminate training when 30 epochs have passed without improvement in validation loss.

opt = tf.keras.optimizers.SGD(learning_rate=0.01, momentum=0.9,

nesterov=False)

model.compile(loss='categorical_crossentropy',

186 Appendix B: CNN implementation& Training

 optimizer=opt, metrics=['accuracy'])

epochs =100

early_stop = tf.keras.callbacks.EarlyStopping(monitor='val_loss',

patience=30)

csv_logs =

tf.keras.callbacks.CSVLogger('checkpoints/AlexNet_A_SGDm_baseline_training.lo

g', separator=',', append=True)

callbacks_list =[csv_logs, early_stop]

hist = model.fit(

 train_set,

 epochs=epochs,

 verbose=1,

 callbacks=callbacks_list,

 validation_data=test_set)

Script B.5: Implementation of splitting the training set into training and validation sets using the batch
size of 32 examples, defining the hyper-model with possible learning rates values for SGD, setting the
random search parameters, and then run the tuning process.

import tensorflow as tf

from tensorflow import keras

from tensorflow.keras import layers

from kerastuner.tuners importRandomSearch

from keras.preprocessing.image importImageDataGenerator

Make the train and validation sets by spliting 80-20

pth_tr ='/content/datasetA/dataset/training/'

pth_ts ='/content/datasetA/dataset/test/'

batch_size=32

H =227

W =227

train_datagen =ImageDataGenerator(rescale=1./255,

 validation_split=0.2)

train_set = train_datagen.flow_from_directory(directory=pth_tr,

 target_size=(H,W),

 class_mode='categorical',

 subset='training',

 shuffle=True,

 batch_size=batch_size)

validation_set = train_datagen.flow_from_directory(directory=pth_tr,

 target_size=(H,W),

 class_mode='categorical',

 subset='validation',

 shuffle=True,

 batch_size=batch_size)

Define the hypermodel using the model builder function

Appendix B: CNN implementation& Training 187

def build_model(hp):

set AlexNet weight initializer

 initializer = tf.keras.initializers.RandomNormal(mean=0, stddev=0.01)

input layer

 inputs = keras.Input(shape=(H, W,3), name='input_layer')

1st convolutional layer

 x = layers.Conv2D(filters=96, kernel_size=11, strides=4, padding='valid',

 kernel_initializer=initializer,

bias_initializer='zeros')(inputs)

 x = layers.BatchNormalization()(x)# It has Local Response Normalization

 x = layers.Activation('relu')(x)

 x = layers.MaxPooling2D(pool_size=3, strides=2)(x)

2nd convolutional layer

 x = layers.Conv2D(filters=256, kernel_size=5, strides=1, padding='same',

 kernel_initializer=initializer, bias_initializer='ones')(x)

 x = layers.BatchNormalization()(x)

 x = layers.Activation('relu')(x)

 x = layers.MaxPooling2D(pool_size=3, strides=2)(x)

3rd convolutional layer

 x = layers.Conv2D(filters=384, kernel_size=3, strides=1, padding='same',

 kernel_initializer=initializer,

bias_initializer='zeros')(x)

 x = layers.Activation('relu')(x)

4th convolutional layer

 x = layers.Conv2D(filters=384, kernel_size=3, strides=1, padding='same',

 kernel_initializer=initializer, bias_initializer='ones')(x)

 x = layers.Activation('relu')(x)

5th convolutional layer

 x = layers.Conv2D(filters=256, kernel_size=3, strides=1, padding='same',

 kernel_initializer=initializer, bias_initializer='ones')(x)

 x = layers.Activation('relu')(x)

 x = layers.MaxPooling2D(pool_size=3, strides=2)(x)

Flattening layer

 x = layers.Flatten()(x)

1st Fully connected layer

 x = layers.Dense(units=4096, kernel_initializer=initializer,

bias_initializer='ones')(x)

 x = layers.Dropout(0.5)(x)

 x = layers.Activation('relu')(x)

2nd Fully connected layer

 x = layers.Dense(units=4096, kernel_initializer=initializer,

bias_initializer='ones')(x)

 x = layers.Dropout(0.5)(x)

 x = layers.Activation('relu')(x)

3rd Fully connected layer aka Output

 outputs = layers.Dense(units=3, kernel_initializer=initializer,

bias_initializer='ones')(x)

 outputs = layers.Activation('softmax')(outputs)

 model = keras.Model(inputs, outputs, name='AlexNet_SGD_tuning')

Tune the learning rate for the optimizer

 hp_lr = hp.Choice('learning_rate', values =[1e0,1e-1,1e-2,1e-3,1e-

4],default=1e-2)

 opt = tf.keras.optimizers.SGD(learning_rate=hp_lr, momentum=0.9,

nesterov=False)

188 Appendix B: CNN implementation& Training

 model.compile(loss='categorical_crossentropy', optimizer=opt,

metrics=['accuracy'])

return model

specify the tuner

tuner =RandomSearch(build_model, objective='val_accuracy', max_trials=5,

 executions_per_trial=3,

project_name='AlexNet_A_SGD_tlr32')

run the tunner with early stopping

callbacks=tf.keras.callbacks.EarlyStopping('val_loss', patience=10)

tuner.search(train_set, epochs=100, verbose=0,

validation_data=validation_set,

 callbacks=[callbacks])

Script B.6: Full script of implementing AlexNet and training Model B, which returned the best results
during the study.

Setup

import numpy as np

import tensorflow as tf

from tensorflow import keras

from tensorflow.keras import layers

from keras.preprocessing.image importImageDataGenerator

Get the data and prepare the datasets

H=227

W=227

pth_tr ='dataset/training/'

pth_ts ='dataset/test/'

batch_size =64

train_datagen =ImageDataGenerator(rescale=1./255)

train_set = train_datagen.flow_from_directory(directory=pth_tr,

 target_size=(H,W),

 class_mode='categorical',

 batch_size=batch_size)

test_datagen =ImageDataGenerator(rescale =1./255)

test_set = test_datagen.flow_from_directory(directory=pth_ts,

 target_size=(H,W),

 class_mode='categorical',

 batch_size=batch_size)

AlexNet implementation with BN and dropout

initializer = tf.keras.initializers.RandomNormal(mean=0, stddev=0.001)

inputs = keras.Input(shape=(H, W,3), name='input_layer')

Appendix B: CNN implementation& Training 189

x = layers.Conv2D(filters=96, kernel_size=11, strides=4, padding='valid',

 kernel_initializer=initializer,

bias_initializer='zeros')(inputs)

x = layers.BatchNormalization()(x)

x = layers.Activation('relu')(x)

x = layers.MaxPooling2D(pool_size=3, strides=2)(x)

x = layers.Conv2D(filters=256, kernel_size=5, strides=1, padding='same',

 kernel_initializer=initializer, bias_initializer='ones')(x)

x = layers.BatchNormalization()(x)

x = layers.Activation('relu')(x)

x = layers.MaxPooling2D(pool_size=3, strides=2)(x)

x = layers.Conv2D(filters=384, kernel_size=3, strides=1, padding='same',

 kernel_initializer=initializer,

bias_initializer='zeros')(x)

x = layers.BatchNormalization()(x)

x = layers.Activation('relu')(x)

x = layers.Conv2D(filters=384, kernel_size=3, strides=1, padding='same',

 kernel_initializer=initializer, bias_initializer='ones')(x)

x = layers.BatchNormalization()(x)

x = layers.Activation('relu')(x)

x = layers.Conv2D(filters=256, kernel_size=3, strides=1, padding='same',

 kernel_initializer=initializer, bias_initializer='ones')(x)

x = layers.BatchNormalization()(x)

x = layers.Activation('relu')(x)

x = layers.MaxPooling2D(pool_size=3, strides=2)(x)

x = layers.Flatten()(x)

x = layers.Dense(units=4096, kernel_initializer=initializer,

bias_initializer='ones')(x)

x = layers.Dropout(0.5)(x)

x = layers.Activation('relu')(x)

x = layers.Dense(units=4096, kernel_initializer=initializer,

bias_initializer='ones')(x)

x = layers.Dropout(0.5)(x)

x = layers.Activation('relu')(x)

outputs = layers.Dense(units=3, kernel_initializer=initializer,

bias_initializer='ones')(x)

outputs = layers.Activation('softmax')(outputs)

model = keras.Model(inputs, outputs, name='AlexNet_ModelB')

#Model Overview

model.summary()

keras.utils.plot_model(model,"AlexNet_ModelB_simple.png")

keras.utils.plot_model(model,"AlexNet_ModelB.png", show_shapes=True)

setting optimizer - compile

190 Appendix B: CNN implementation& Training

opt = tf.keras.optimizers.SGD(learning_rate=0.001, momentum=0.9,

nesterov=False)

model.compile(loss='categorical_crossentropy',

 optimizer=opt, metrics=['accuracy'])

Train - Fit the model

epochs =30

early_stop = tf.keras.callbacks.EarlyStopping(monitor='val_loss', patience=5)

csv_logs = tf.keras.callbacks.CSVLogger('checkpoints\AlexNet_ModelB.log',

separator=',', append=True)

pth_checkp ='checkpoints/AlexNet_ModelB_{epoch:02d}_{val_accuracy:.2f}.hdf5'

checkpoint_callback = tf.keras.callbacks.ModelCheckpoint(

 filepath=pth_checkp, monitor='val_accuracy', verbose=1,

 save_best_only=True, mode='auto', save_freq='epoch')

 callbacks_list =[checkpoint_callback, csv_logs]

hist = model.fit(

 train_set,

 epochs=epochs,

 verbose=1,

 callbacks=callbacks_list,

 validation_data=test_set)

evaluate the model

scores = model.evaluate(test_set, verbose=0)

print("%s: %.2f%%"%(model.metrics_names[1], scores[1]*100))

save model and architecture to single file

model.save('AlexNet_ModelB.h5')

print("Model saved in disk")

#%%

Plot loss per iteration

import matplotlib.pyplot as plt

plt.title('AlexNet_ModelB')

plt.plot(hist.history['loss'], label='loss')

plt.plot(hist.history['val_loss'], label='val_loss')

plt.legend()

plt.show()

Plot accuracy per iteration

plt.title('AlexNet_ModelB')

plt.plot(hist.history['accuracy'], label='accuracy')

plt.plot(hist.history['val_accuracy'], label='val_accuracy')

plt.legend()

plt.show()

#%%

cell to plot confusion matrix

from sklearn.metrics import confusion_matrix

import itertools

test_datagen =ImageDataGenerator(rescale =1./255)

test_set = test_datagen.flow_from_directory(directory=pth_ts,

Appendix B: CNN implementation& Training 191

 target_size=(H,W),

 class_mode='categorical',

 batch_size=batch_size,

 shuffle=False)

Im_predict= model.predict(test_set, verbose=1, callbacks=callbacks_list)

Im_test= np.argmax(Im_predict, axis=1)

cm = confusion_matrix(test_set.classes,Im_test)

print(cm)

def plot_confusion_matrix(cm, classes,

 normalize=False,

 title='Confusion matrix',

 cmap=plt.cm.Blues):

"""

 This function prints and plots the confusion matrix.

 Normalization can be applied by setting `normalize=True`.

 """

 plt.imshow(cm, interpolation='nearest', cmap=cmap)

 plt.title(title)

 plt.colorbar()

 tick_marks = np.arange(len(classes))

 plt.xticks(tick_marks, classes, rotation=45)

 plt.yticks(tick_marks, classes)

if normalize:

 cm = cm.astype('float')/ cm.sum(axis=1)[:, np.newaxis]

print("Normalized confusion matrix")

else:

print('Confusion matrix, without normalization')

print(cm)

 thresh = cm.max()/2.

for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):

 plt.text(j, i, cm[i, j],

 horizontalalignment="center",

 color="white"if cm[i, j]> thresh else"black")

 plt.tight_layout()

 plt.ylabel('True label')

 plt.xlabel('Predicted label')

cm_plot_labels =['Anomaly : 0','Noise : 1','Structure : 2']

plot_confusion_matrix(cm=cm, classes=cm_plot_labels, title='Confusion

Matrix')

from sklearn.metrics import classification_report

class_report=classification_report(test_set.classes,Im_test,

target_names=cm_plot_labels)

print(classification_report(test_set.classes,Im_test,

target_names=cm_plot_labels))

192 Appendix B: CNN implementation& Training

Script B.7: Script used to load and evaluate a saved model using the evaluation set.

Load model and calculate the confusion matrix

import numpy as np

import tensorflow as tf

from keras.preprocessing import image

from tensorflow.keras.preprocessing.image importImageDataGenerator

from tensorflow.keras.models import load_model

import matplotlib.pyplot as plt

model = load_model('AlexNet_ModelB_best.hdf5')

model.summary()

H=227

W=227

pth_ts ='dataset/'

batch_size =1

test_datagen =ImageDataGenerator(rescale =1./255)

test_set = test_datagen.flow_from_directory(directory=pth_ts,

 target_size=(H,W),

 class_mode='categorical',

 batch_size=batch_size,

 shuffle=False)

score = model.evaluate(test_set, verbose=0)

print("%s: %.2f%%"%(model.metrics_names[1], score[1]*100))

#%% cell to plot the confusion matrix

from sklearn.metrics import confusion_matrix

import itertools

Im_predict= model.predict(test_set, verbose=1)

predictions = np.argmax(Im_predict, axis=1)

predictions100 =Im_predict*100

cm = confusion_matrix(test_set.classes, predictions)

print(cm)

def plot_confusion_matrix(cm, classes,

 normalize=False,

 title='Confusion matrix',

 cmap=plt.cm.Blues):

"""

 This function prints and plots the confusion matrix.

 Normalization can be applied by setting `normalize=True`.

 """

Appendix B: CNN implementation& Training 193

 plt.imshow(cm, interpolation='nearest', cmap=cmap)

 plt.title(title)

 plt.colorbar()

 tick_marks = np.arange(len(classes))

 plt.xticks(tick_marks, classes, rotation=45)

 plt.yticks(tick_marks, classes)

if normalize:

 cm = cm.astype('float')/ cm.sum(axis=1)[:, np.newaxis]

print("Normalized confusion matrix")

else:

print('Confusion matrix, without normalization')

print(cm)

 thresh = cm.max()/2.

for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):

 plt.text(j, i, cm[i, j],

 horizontalalignment="center",

 color="white"if cm[i, j]> thresh else"black")

 plt.tight_layout()

 plt.ylabel('True label')

 plt.xlabel('Predicted label')

cm_plot_labels =['Anomaly : 0','Noise : 1','Structure : 2']

plot_confusion_matrix(cm=cm, classes=cm_plot_labels, title='Confusion

Matrix')

from sklearn.metrics import classification_report

class_report=classification_report(test_set.classes, predictions,

target_names=cm_plot_labels)

print(classification_report(test_set.classes, predictions,

target_names=cm_plot_labels))

Im_predict2 = np.rint(Im_predict)

Im_predict3 = np.argmax(Im_predict2, axis=1)

labels=test_set.classes

Show miscassified examples # to do

missclass_idx = np.where(predictions != labels)[0]

i = np.random.choice(missclass_idx)

#plt.imshow([i])

#plt.title('True label: %s Predicted label: %s' % (labels(Im_test[i]),

labels(Im_predict[i])))

194

APPENDIX C: ADDITIONAL RESULTS &

FINAL MODELS

Appendix C: Additional Results & Final models 195

Table C.1: Summary of Model A.

Model: "AlexNet_ModelA"

Layer (type) Output Shape Param #

===

input_layer (InputLayer) [(None, 227, 227, 3)] 0

conv2d (Conv2D) (None, 55, 55, 96) 34944

batch_normalization (BatchNo (None, 55, 55, 96) 384

activation (Activation) (None, 55, 55, 96) 0

max_pooling2d (MaxPooling2D) (None, 27, 27, 96) 0

conv2d_1 (Conv2D) (None, 27, 27, 256) 614656

batch_normalization_1 (Batch (None, 27, 27, 256) 1024

activation_1 (Activation) (None, 27, 27, 256) 0

max_pooling2d_1 (MaxPooling2 (None, 13, 13, 256) 0

conv2d_2 (Conv2D) (None, 13, 13, 384) 885120

batch_normalization_2 (Batch (None, 13, 13, 384) 1536

activation_2 (Activation) (None, 13, 13, 384) 0

conv2d_3 (Conv2D) (None, 13, 13, 384) 1327488

batch_normalization_3 (Batch (None, 13, 13, 384) 1536

activation_3 (Activation) (None, 13, 13, 384) 0

conv2d_4 (Conv2D) (None, 13, 13, 256) 884992

batch_normalization_4 (Batch (None, 13, 13, 256) 1024

activation_4 (Activation) (None, 13, 13, 256) 0

max_pooling2d_2 (MaxPooling2 (None, 6, 6, 256) 0

flatten (Flatten) (None, 9216) 0

dense (Dense) (None, 4096) 37752832

activation_5 (Activation) (None, 4096) 0

dense_1 (Dense) (None, 4096) 16781312

dropout (Dropout) (None, 4096) 0

activation_6 (Activation) (None, 4096) 0

dense_2 (Dense) (None, 3) 12291

activation_7 (Activation) (None, 3) 0

===

Total params: 58,299,139

Trainable params: 58,296,387

Non-trainable params: 2,752

196 Appendix C: Additional Results & Final models

Figure C.1: Learning curves comparing the effect of applying augmentation in Model 1 training setup
with SGD, a learning rate of 0.001, and a batch size of 64. The chosen augmentation techniques that

were applied have a negative impact on the generalization.

Appendix C: Additional Results & Final models 197

Figure C.2: The effect of applying dropout on the chosen BN setup for the case of dataset-B using Adam
optimizer. Dropout was applied to three different setups, but none improves the performance. The

baseline with BN in the first three and last convolutional layers gives the best results after 40 epochs
(orange line).

198 Appendix C: Additional Results & Final models

Figure C.3: Comparative chart showing the effect of applying image augmentation techniques using
dataset-B and Adam optimizer with a learning rate of 0.001 and a batch size of 32.

Appendix C: Additional Results & Final models 199

Table C.2: Summary of Model B.

Model: "AlexNet_ModelB"

Layer (type) Output Shape Param #

===

input_layer (InputLayer) [(None, 227, 227, 3)] 0

conv2d (Conv2D) (None, 55, 55, 96) 34944

batch_normalization (BatchNo (None, 55, 55, 96) 384

activation (Activation) (None, 55, 55, 96) 0

max_pooling2d (MaxPooling2D) (None, 27, 27, 96) 0

conv2d_1 (Conv2D) (None, 27, 27, 256) 614656

batch_normalization_1 (Batch (None, 27, 27, 256) 1024

activation_1 (Activation) (None, 27, 27, 256) 0

max_pooling2d_1 (MaxPooling2 (None, 13, 13, 256) 0

conv2d_2 (Conv2D) (None, 13, 13, 384) 885120

batch_normalization_2 (Batch (None, 13, 13, 384) 1536

activation_2 (Activation) (None, 13, 13, 384) 0

conv2d_3 (Conv2D) (None, 13, 13, 384) 1327488

batch_normalization_3 (Batch (None, 13, 13, 384) 1536

activation_3 (Activation) (None, 13, 13, 384) 0

conv2d_4 (Conv2D) (None, 13, 13, 256) 884992

batch_normalization_4 (Batch (None, 13, 13, 256) 1024

activation_4 (Activation) (None, 13, 13, 256) 0

max_pooling2d_2 (MaxPooling2 (None, 6, 6, 256) 0

flatten (Flatten) (None, 9216) 0

dense (Dense) (None, 4096) 37752832

dropout (Dropout) (None, 4096) 0

activation_5 (Activation) (None, 4096) 0

dense_1 (Dense) (None, 4096) 16781312

dropout_1 (Dropout) (None, 4096) 0

activation_6 (Activation) (None, 4096) 0

dense_2 (Dense) (None, 3) 12291

activation_7 (Activation) (None, 3) 0

===

Total params: 58,299,139

Trainable params: 58,296,387

Non-trainable params: 2,752
