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Abstract: Social and computational archaeology focuses largely on the study of past societies and the evolu-
tion of human behaviour. At the same time, agent-basedmodels (ABMs) allow the e�icientmodeling of human
agency, and the quantitative representation and exploration of specific properties and patterns in archaeolog-
ical information. In this work we put forward a novel agent-based trading model, for simulating the exchange
anddistributionof resources across settlements inpast societies. Themodel is part of a broader ABMpopulated
with autonomous, utility-seeking agents corresponding to households; with the ability to employ any spatial
interaction model of choice. As such, it allows the study of the settlements’ trading ability and power, given
their geo-location and their position within the trading network, and the structural properties of the network
itself. As a case study we use the Minoan society during the Bronze Age, in the wider area of “Knossos” on the
island of Crete, Greece. We instantiate two well-known spatial interaction sub-models, XTENT and Gravity, and
conduct a systematic evaluation of the dynamic trading network that is formed over time. Our simulations as-
sess the sustainability of the artificial Minoan society in terms of population size, number and distribution of
agent communities, with respect to the available archaeological data and spatial interactionmodel employed;
and, further, evaluate the resulting trading network’s structure (centrality, clustering, etc.) and how it a�ects
inter-settlement organization, providing in the process insights and support for archaeological hypotheses on
the settlement organization in place at the time. Our results show that when the trading network is modeled
using Gravity, which focuses on the settlements’ “importance” rather than proximity to each other, settlement
numbers’ evolution patterns emerge that are similar to the ones that exist in the archaeological record. It can
also be inferred by our simulations that a rather dense trading network, without a strict settlement hierarchy,
could have emerged during the LateMinoan period, a�er the Theran volcanic eruption, a well documented his-
toric catastrophic event. Moreover, it appears that the trading network’s structure and interaction patterns are
reversed a�er the Theran eruption, when compared to those in e�ect in earlier periods.

Keywords: Agent-Based Modeling, Agent-Based Simulation, Multi-Agent Simulation, Model-Based Archaeol-
ogy, Spatial Interaction Model, Network Theory, Trade Network, Minoan Civilization

Introduction

1.1 Social archaeology focuses on the construction of the social space, the exploration of social processes in past
societies; and on coming up with models, hypotheses and interpretations on how individuals or groups expe-
rience and influence their own societies, and how these constructed narratives of the past can or do influence
modern societies. Likewise, the neighbouring discipline of computational archaeology focuses on the utiliza-
tion of computational and computer-based methods for the study of behavioural evolution, allowing social
scientists tomodel and carry out research in a formal and comprehensible way. Over the past two decades, the
social and computational archaeology has utilized agent-based modeling (ABM) 1 for simulating past societies
socio-ecological processes based on archaeological information and hypotheses (Axtell et al. 2002; Janssen
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2009; Heckbert 2013; Cockburn et al. 2013). This is due to an ABMs’ ability to represent individuals or soci-
eties, andencompassuncertainty inherent inarchaeological theories. Inorder toe�iciently encapsulatehuman
agency and quantitatively represent and explore specific properties and patterns of archaeological informa-
tion, incorporating ideas from multiagent systems (MAS) research in ABMs can enhance agent sophistication,
and contribute on the application of strategic principles for selecting among agent behaviours (Wellman 2016).

1.2 To this end, a recently developed ABMwith autonomous, utility-based agents explores alternative hypotheses
regarding the social organization of ancient societies, by incorporating di�erent social organization paradigms
and subsistence technologies (Chliaoutakis & Chalkiadakis 2016). Specifically, it employs a “self-organization”
social organization behaviour that allows the exploration of the historical social dynamics–i.e., the evolution
of social relationshipswithin the artificial agent community, considering a decentralized structural adaptation
algorithm (Kota et al. 2009), while being grounded on archaeological information and evidence. In this work,
we extend this ABM to simulate the artificial societies’ inter-settlement interactions, by developing a trading
sub-model that is able tomodel the exchange anddistribution of resources across artificial agent communities.
In particular, in this trading sub-model, two well-known spatial interaction models are currently enabled, the
XTENT (Renfrew & Level 1979) and Gravity (Hu� 1964) model, to formulate the trading network across agent
communities (while any other spatial interaction algorithm of choice can be potentially accommodated by our
model). As such, our approach is able to provide insights on the social organization of the artificial society on a
higher level than theoriginal ABM; that is, itmodels and studies inter-settlement interactions, rather than solely
intra-settlement ones.

1.3 Asacase study,weutilize theABMtoexplorehypothesesonsettlementpatterns, structureandpotential trading
organization of Minoan household agent communities (settlements), in the wider area of Knossos at the island
of Crete (Greece), during the Bronze Age. The case study readily incorporates knowledge on archaeological
sites locations and settlement types. Moreover, a conceptual natural disaster sub-model was also incorporated
in the ABM, in an attempt to provide insights towhether the e�ects of the volcanic eruption of Thera (Santorini),
ca. 1600 BCE, a�ected the trading network behaviour and set in motion the process that led to the breakdown
of Minoan society (Chliaoutakis et al. 2018).

1.4 Themain contributions of our work can be summarized as follows:
1. We provide a novel trading model that readily incorporates spatial interaction paradigms to simulate
trade among self-organized communities of autonomous utility-based agents.

2. We incorporate a natural disaster sub-model into the ABM, to provide insights on how a natural disaster
scenario could have a�ected the trading network behaviour and further the agent communities organi-
zation structure.

3. We utilize graph theory to analyze the trading network, and thus interpret simulation results in terms of
the network’s potential centralization, clustering behaviour or potential settlement organization during
the whole simulation period.

4. Our systematic studyof thedynamic tradingnetworkprovides support to certainarchaeological hypothe-
ses related to the specific period andmodeling area of study.

5. We exploit simulation results to derive intuitions regarding the appropriateness of di�erent spatial inter-
action models.

1.5 Specifically, our simulation results show that modeling a trading network that takes into account mainly the
settlements’ “importance” (e.g. in terms of population size or lifetime) rather than solely the distance between
settlement locations, can produce settlement patterns similar to the one that exist in archaeological record.
However, this is most appropriate when the settlements’ importance is known or can be derived based on ar-
chaeological evidence, thus allowing such a trading model to better capture the trend in settlement numbers
that exist in the archaeological record. By contrast, when settlements’ importance is not known, or cannot be
properly modeled, then a trading network model should favour the distance between settlements rather than
their importance.

1.6 Overall, the evolution of the values of the graph-theoretic indices characterizing our simulations’ network (i.e.
clustering coe�icient, in-degree and out-degree centrality) indicate that the Minoan’s trading network (at the
modeling area)was a�ectedby theTheran volcanic eruption. Specifically, it appears that the tradingnetwork in
the Late Minoan (LM) period becomes clearly more dense, while it seems that there exist only a few “important
centres” at the time, which is in line with the archaeological record. Moreover, it appears that the trading net-
work’s structure and interaction patterns are to an extent reversed a�er the Theran eruption, when compared
to those in e�ect in earlier periods.
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1.7 The rest of this paper is structured as follows: Section 2provides a reviewof existing examples of archaeological
ABMs in the literature. In Section 3 we provide a concise overview of the ABM, by describing its environmen-
tal representation; the agents and their interactions; and the agents social organization paradigms. Section
4 presents the theoretical background of the modeling process that was followed for developing the trading
network across settlements, based on both the XTENT and Gravity spatial interaction models. There, we also
introduce several concepts from network and graph theory required for the analysis of the resulting trading
network. Section 5 then presents our specific case study of early Minoan societies located at the wider central
area of Knossos in the island of Crete. In addition, we record the empirical evaluation of the various trading
models, in terms of potential settlement centralization and organization emerged during theMinoan period, by
first detailing the simulation parameters for the various scenarios considered, and then analysing the obtained
results. Finally, Section 6 concludes this work, and discusses simulation results and future research directions.

Background and RelatedWork

2.1 Social archaelogy seeks to understand the social organization of past societies at many di�erent points in
time (Renfrew & Bahn 2012). There is a great number of questions that may arise regarding the nature and
internal organization of the society under study. For instance, are the main social units, individuals or groups,
participate on a more-or-less equal basis, or do prominent di�erences in status or rank within the society (or
perhaps even di�erent social classes) exist? Answering these questions turns out to be harder when exploring
prehistoric communities rather than later ones, as written records in early societies are scant. Surely, there are
manymethods for acquiring information regarding the internal social organization of an early society. Beyond
field survey — which aims to discover mainly a presumed settlements hierarchy — one can make use of settle-
ment pattern information, written records, oral tradition and approaches from ethno-archaeology (Renfrew &
Bahn 2012). Clearly, the variety of methods used and the inherent uncertainty of the domain gives rise to a rich
space of hypotheses for any given question regarding the social organization of early societies.

2.2 As such, the past few decades has seen archaeology taking an increasing interest in ABM (Doran et al. 1994;
Dean et al. 2000; Axtell et al. 2002; Janssen 2009; Heckbert 2013; Cockburn et al. 2013; Crabtree et al. 2017).
Its emerging popularity is due to the ABM’s ability to represent individuals and societies, and to encompass
uncertainty inherent in archaeological theories. The unpredictability of interaction patterns within a simulated
agent society, along with the strong possibility of emergent behaviour, can assist archaeology researchers to
gain new insights into existing theories.

2.3 For example, a relatively recent ABM for understanding how prehistoric societies adapted to the American
southwest landscape of their era is presented by Janssen (2010). That ABM could explore to some extent how
variousassumptions concerning social processesa�ect thepopulationaggregationandsize, and thedispersion
of settlements. In that model, interactions (like the sharing of resources among the agents, or the exchange of
resources among their settlements) are largely determined by rules that are built in the system. However, re-
sults suggest the temporal and spatial population dynamics are a�ected by many assumptions of the model;
resource dynamics a�ect the long-term population levels, whereas climate variability a�ects the short-term
aggregation levels of the prehistoric populations in American Southwest.

2.4 Likewise, Cockburn et al. (2013) developed an agent-based simulation of specialization in resource production,
and a system of barter allowing exchange of specialized products between household agents, in Pueblo soci-
eties existing between 600–1300 CE in southwestern Colorado with the ultimate goal of examining their e�ects
in these middle-range Neolithic societies. Much of the dynamism of the simulation is provided by annual and
spatially specific estimates of potential maize production on this landscape (Kohler 2012). Agents are respon-
sible for gathering and exchanging resources with other agents. In the case that agents cannot obtain all the
resources they need on their own, they are allowed to exchange with other agents. Moreover, if an agent is not
performing well at its present location, it will move to a more suitable location in the study area, by evaluat-
ing resource productivity of prospective areas. When an agent has excess storage of a resource, it will let other
neighbouring agents know; and if they have higher production costs for these resources, they will predict that
the agent will be able to help them meet any shortfall for this resource in the upcoming year. Although the
authors are less concerned about the realism of some of the assumptions that are hard-coded in their model,
they conclude that adding social influence to their reference system with economic specialization leads to a
population that is not necessarily larger in size, but one that is more specialized.

2.5 Another recent exampleof a simulationmodel integratingcellular automataandanetworkmodelof theancient
Maya social-ecological system, is MayaSim (Heckbert 2013). The purpose of the model is to better understand
thecomplexdynamicsof social-ecological systems, and to testquantitative indicatorsof resilienceaspredictors
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of system sustainability or decline. Agents representing Maya settlements (rather than households), develop
and expand within a landscape that changes under climate variation and anthropogenic pressure. Agents are
utility-based in the sense that they estimate the utility of the various actions at hand. However, they choose
actions whose utility has reached some thresholds that are in fact hard-coded by themodeller. Moreover, their
utility function is a�ected by agent resource exchange that occur between settlement agents, since they are
connected via a network of links that represent trade routes. Themodel was able to reproduce spatial patterns
and timelines somewhat analogous to that of the ancient Maya, although this proof-of-concept stage model
requires refinement and further archaeological data for better calibrations.

2.6 By contrast, Chliaoutakis & Chalkiadakis (2016) try to assess the influence of di�erent social organization be-
haviours on population growthwith respect to their geographic context and available archaeological evidence.
Specifically, the ABM’s case study is regarding the Minoan civilization, in the “Malia” area at the island of Crete,
Greece, during the Bronze Age period. The ABM incorporates several social organization paradigms, giving em-
phasis to a self-organization social behaviour, where household agents within a settlement continuously re-
assess their relations with others. An alternative “evolutionary” self-organization social behaviour was also in-
troducedby the sameauthors, drivenby the interactionsof strategic agentsoperatingwithin agivenagent com-
munity (Chliaoutakis & Chalkiadakis 2017). They incorporated evolutionary game-theory into the agents social
organization process, by simulating repeated “stage games” played by any pair of agents within an agent com-
munity, in order to assess the e�ects these interactions have on population viability and strategic behaviours
that may emerge in the long-term. When agents adopt an “egalitarian-like” social organization paradigm, the
emerging development of many “small-size” settlements seems to be the way for survival over time. When the
self-organization social paradigm was adopted for determining household agents relations, a “heterarchical”
social structure emerges, rather than a clear “hierarchical” one evident in later periods.2 Simulation results
demonstrated that self-organized agent societies appear to be giving rise to larger settlements during their
evolution, maintaining larger population sizes than the “egalitarian” distributive one. This fact, is in line with
archaeological evidence for larger settlements (towns and palaces) eventually coming to existence during the
Middle/Late Minoan period, where a more varied social structure is now suggested (Driessen & Langohr 2014).

2.7 As a final note, and to the best of our knowledge, the only archaeology-related ABM that utilizes a spatial inter-
actionmodel, is that ofGraham(2006). TheABMsimulatesmovementof travellers (agents) between settlement
locations known through archaeological field survey in specific regions of Central Greece during the Geometric
periodandCentral ItalyduringProtohistory. Theauthorutilizes anentropy-maximizingmodel, that is, theGrav-
ity spatial interaction model, in order to ultimately rank the settlements by the number of times they emerged
as most “important” in the various metrics of the travellers network. Agents in the ABM are only able to travel
to settlements around their neighbourhood and only to the most attractive site out of three potential destina-
tions. Although the factual description of the ABM is missing, since the author argues that the mathematics in
the ABM are not themost important consideration, but rather the description of how the agents interact, some
indicative results are presented and discussed.3

A Utility-Based ABM

3.1 Against the background presented above, we present here an ABM that serves the following purposes: (a) it
can be employed for the study of practically any society of choice in a specific geographic context, and can eas-
ily incorporate and assess hypotheses regarding socio-economic processes proposed by archaeologists; and
(b) it showcases how MAS-originating concepts, techniques, and algorithms can be employed in archaeology-
related ABMs. Unlike most existing ABM approaches in archaeology, which employ a simple reflex agent archi-
tecture, the ABM here employs utility-based agents that act autonomously towards utility maximization, and
can build and maintain complex social structures.4 Indeed, using ABMs that were built on knowledge derived
from archaeological research, but do not attempt to fit their results to a specific material culture, allows for the
emergence of dynamics for di�erent types of societies in di�erent types of landscapes. This aids the generation
of new hypotheses, as well as the transfer and re-use of knowledge beyond a specific case study.

3.2 In this work, we adopt and build on top of thework of Chliaoutakis & Chalkiadakis (2019). Agents correspond to
households, each containing up to amaximum number of individuals (people).5 Each household agent resides
in a cell within the environmental grid, with the cell potentially shared by a number of agents. Adjacent cells
occupied by agents make up a settlement—and there is at least one occupied cell in a settlement. Households
are utility-based autonomous agentswho can settle (or occasionally resettle) and cultivate in a specific environ-
mental location. They also possess an explicit representation of the environmental grid, and use this to choose
the best available migration location they canmove to within a pre-specified radius, to improve their utility.
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3.3 The total number of agents in the system changes over time, as individuals belonging to household agents born
or die. Agent procreation ability, determining the annual levels of births of household inhabitants, is based on
the amount of energy consumed by a household agent x during the year. This in turn depends on the resources
harvested, that is, the agent’s utilityUx, which is a function of population size and available resources at a given
location, as we explain below. When household inhabitants exceed a critical number, new households (agent
o�springs) are created; and when the agent overall utility levels are not high enough to sustain its people, the
agent considers migrating to prevent individuals from dying.

3.4 Specifically, at every time step, agent x picks the best action b′ in the set of actionsActionsx at its disposal:

b′ = argmaxb∈ActionsxUx(b) (1)

3.5 The main preoccupation of the agents is to stay alive by acquiring and consuming resources. If an agent fails
to acquire enough energy it will eventually die out, since it will stop procreating. Acquiring energy is the only
inbuilt goal of the agents. Currently, the only action available for agents to acquire energy is via harvesting the
lands. This can be done (a) either at the agent’s current location (via employing the cultivation action); or (b) at
some other location towhich the agentmigrates (migration action). Therefore, since there are only two actions
to consider, the (expected) utility Ux of the agent x can be simply described as follows (assuming the agent
cultivates n environmental cells):

Ux=max{
n∑
k=1

Rk, U
′
x} (2)

where Rk is a function that describes the agricultural production quantity or reward of a cell k, given its geo-
morphological characteristicswith respect to its location on the grid (land suitability) and the amount of labour
appliedon thecell by theagents (soil fertility/quality).6 Equation2 thusdetermines that theutility of agentxde-
pends on the expected agricultural production of the cells it cultivates (its total harvested resource amount), as
well as the expected utilityU ′x of a new candidatemigration location, which in turn depends on the agricultural
production of the new position (immediately a�er migration). The number of cells n that a given household
agent x needs (and is able) to cultivate at a given position, depends on the number of its population (people),
and its agricultural regime in use. There are two well-known agricultural practices implemented in our model:
“intensive agriculture”, where agents intensively cultivate the neighbouring land area leading to greater pro-
duction per hectare; and “extensive agriculture”, where agents “expand” their cultivating area by using more
land, but producing less per hectare when compared to the intensive agricultural practice. Thus, an agent may
cultivate the land within a specified range from its settled location, while be also able to store any surplus re-
sources to its storage, for up to user-defined number of years.

3.6 Now, agents in themodel areable toemploy several social organizationparadigms, that is, resourcedistribution
schemes, such as:7

• independent, where agents acquire and consume resources independently

• egalitarian-like, whereacquired resourcesarepooledeachyearanddistributedequally among theagents

• self-organized, where agents autonomously re-arrange their relations, and hence the underlying “social
network structure” describing these relations, without any external control

• hierarchical, where agents distribute resources based on “static” relations, following the same rules as
those governing the self-organized behaviour but without changing any relation during their evolution

3.7 Both in the “self-organized” and “hierarchical” social organization paradigms, agents relations determine the
way resources are ultimately distributed among them.

3.8 The self-organization algorithmhas twomain stages: the task execution and re-allocationmechanism, bywhich
it is decided which agents will receive (energy) resources from others to cover their needs, based on their rela-
tions; and the re-organization (decentralized structural adaptation) one, used for re-evaluating and potentially
altering their relations at every time step. The evaluation that is performed during the re-organization stage
is based on the relative di�erence of the overall utility “surplus” exchanged between a pair of agents, in case
the relation had been di�erent than the current one. Specifically, any interaction between a pair of household
agents within a settlement, takes place based on the following relation types: acquaintance, peer or author-
ity (superior - subordinate) related agents, where these relations give rise to a social structure reflecting the
flow of resources during exchanges among the agents. The authority relation depicts “superior status” of an
agent x over the subordinate agent y in the context of their social organization, reflecting that higher amounts
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of resources flow from x to y during exchanges than those flowing in the opposite direction; the peer relation
holds between agents who are considered more-or-less equal in status (i.e. flows involve resource transfers
of almost equal amounts in both directions); while acquainted agents are aware of each other’s presence, but
have no interaction. Agents use the information about all their past and current year allocations to re-evaluate
their relations with others. Thus, agents may improve their performance as a “group” (vitality of the settle-
ment) by modifying the social structure through changes to their relations (re-organization) continuously over
time (Chliaoutakis & Chalkiadakis 2016).

Modeling Trade Across Settlements

4.1 In this work we extend the intra-settlement exchange of resources (household level) to inter-settlement inter-
actions (settlement level). Certainly, in the absence of written records it is not easy to determine what were the
mechanisms of trade, orwhatwas the nature of the exchange relationship. However, several formal techniques
are available for the study of trade, such as the development of a distributionmap for finds ormaterials, within
a specific geographic area (Renfrew & Bahn 2012). Considering such distribution maps, pondered by fall-o�
analysis, the quantity of a tradedmaterial usually declines as the distance from the source increases.

4.2 For instance, let us consider a “down-the-line” trading system (Renfrew & Bahn 2012). If one site, e.g. village,
receives its supplies of a rawmaterial down a linear trading network from its neighbour site up the line, it may
retain a given proportion of the material for its own use, and trade the remainder to its neighbour site down
the line. If each village does the same, an exponential fall-o� curve will result, as illustrated in Figure 1. In some
cases, however, there are regularities in the way in which the decrease occurs, and this pattern can inform
us about the mechanism by which a material reached its destination. As an example, a di�erent distribution
system, through major and minor sites, would produce a di�erent fall-o� pattern, in particular, a multi-modal
fall-o� curve, since lower-order settlements tend to exchange with higher-order centres, even if the latter lies
further from the source than an accessible lower-order settlement (Figure 1). We note at this point that in the
rest of this paper we shall use the term “settlement” to refer to any site category, such as village, town, etc.

Figure 1: Relationship between settlement organization, type of exchange, and supply, for resources traded on
land. [Le�] Down-the-line exchange of village site. [Right] Exchange between lower-orderwith the higher-order
sites. Adapted from Renfrew & Bahn (2012).

4.3 A possible solution to conceptualize exchange and distribution of resources (flows) between settlements, relies
on using a spatial interactionmodel (Renfrew&Bahn 2012; Rodrigue et al. 2017). The basic assumption regarding
spatial interaction models is that flows are a function of the attributesWi of the origin location i, and the at-
tributesWj of the destination location j and the “friction” of distanceDi,j between the concerned origin and
destination locations. The general formulation of the spatial interaction model is as follows (Rodrigue et al.
2017):

Ii,j = f(Wi,Wj , Di,j) (3)

4.4 In our work here, Ii,j represents a measure of “attractiveness” corresponding to the interaction probability or
probability of trade between settlements i and j. Di,j is the distance between the settlement locations.8 Vari-
ablesWi orWj are used to express a measure of “importance” for settlement i and j, respectively. Attributes
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o�en used to express such variables are socio-economic in nature, such as population or gross domestic prod-
uct in modern societies.

4.5 Sincewe are calculating the settlements’ interaction probability at any given time-step t during the simulation,
we consider the following attributes:

• Pj,t, defined as the ratio of the population of settlement j (i.e., the total number of its household’s inhab-
itants) with respect to the total population at time t, and

• Kj,t, defined as the ratio of the number of time steps that settlement j has existed so far up to t.

4.6 Then, at any given time-step t, we define the weight of importanceWj,t of a settlement location j as follows:

Wj,t =
√
Pj,t ·

√
Kj,t (4)

4.7 For example, assume that at time-step t = 1000 Si settlements exist in the ABM environmental area, where
i = 1, 2 and the total population is 8000 inhabitants; and assume that S1 has a population of 2880 inhabitants
and a lifetimeof 810 yearswhileS2 has a population of 5120 inhabitants and a lifetimeof 360 years up to current
(annual) time-step t. ThenWi,t is calculated as follows:

W1,1000 =
√
P1,1000 ·

√
K1,1000 =

√
2880

8000
·
√

810

1000
= 0.6 · 0.9 = 0.54

W2,1000 =
√
P2,1000 ·

√
K2,1000 =

√
5120

8000
·
√

360

1000
= 0.8 · 0.6 = 0.48

4.8 Thus, settlement S1 has a higher weight (of importance) than settlement S2, even though S2 has an almost
double population size than S1, due to the higher lifetime of S1 during the simulation.

4.9 Now, past societies of the first farmers in di�erent parts of the world, may be generally described as indepen-
dent sedentary and relatively egalitarian communities without any strongly centralized organization (Renfrew
&Bahn2012). Following thedevelopmentof farming, inmany cases, the farmingeconomyunderwent aprocess
of intensification, associated with developing exchange. Given this, wemake the following assumption: at any
given time-step t, each (household) agent within a settlement i is socially contracted as a community member
to give away a portion of its stored surplus ps (e.g. 20%or 80%) to be communally pooled as the corresponding
settlement trading resourcesNi,t and be traded away by the settlement later on. We note that the percentage
of surplus resources that an agent is able to give away is user-defined in the ABM.

4.10 For instance, if at time t = 1400, settlement S53 has ai households (agents), where i = 1, 2, 3, and each agent
has sti surplus resources in its storage, e.g., st1 = 100, st2 = 200, st3 = 50, while the user-defined percentage of
stored surplus to be given away is ps = 20%, then the settlement’s overall trading resources unit N53,1400 are
calculated as follows:

N53,1400 = ps ·
3∑
i=1

sti = 0.2 · (100 + 200 + 50) = 70

4.11 Then, settlement i can ultimately trade and exchange resourcesEi,j,t with settlement j at time-step t, by dis-
tributing its trading resourcesNi,t based on its interaction probability Ii,j,t, as follows:

Ei,j,t =
Ii,j,t ·Ni,t∑n
j=1 Ii,j,t

(5)

4.12 To give some intuition on the calculation of Ei,j,t let us provide another example; however, in order to not
overloadnotation,wearedropping the t index,when this is not required. Thus, ifweconsider a setofpotentially
interacting settlements Si where i = {1, 2, 3, 4, 5} and Ii,j is provided by some spatial interaction model (e.g.,
the XTENT or Gravity used in this work), so that I1,2 = 0.2, I1,3 = 0.6, I1,4 = 0.8, I1,5 = 0.4 then settlement S1

will distribute a portion of its trading resources, e.g.,N1 = 200 (in kg) to settlement S2, as follows:

E1,2 =
I1,2 ·N1∑5
j=1 I1,j

=
0.2 · 200

0.2 + 0.6 + 0.8 + 0.4
= 20

4.13 As such, S1 will give away 10% of its overall trading resources to settlement S2, 30% to settlement S3, 40% to
settlement S4 and 20% to settlement S5— in the event that trade occurs with the corresponding probabilities.
Similarly, when the trading process is over, settlement iwill proportionally distribute the “public good” payo�
among its household agents, based on their number of inhabitants.

4.14 We elaborate on the XTENT and Gravity spatial interaction models immediately below.
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The XTENTmodel

4.15 The XTENTmodel asserts some relationship of settlement size and distance, whereby the larger dominates the
smaller if the distance between them is su�iciently small, whereas the smaller retains autonomy if that distance
is large enough (Renfrew & Level 1979). Thus, it assumes that a large centre will dominate a small one if they
are close together; in political terms the smaller site has no independent or autonomous existence. This ap-
proach overcomes the limitation of the Thiessen polygonsmethod, where territories are assigned irrespective
of the size of the settlement, and where there are no dominant or subordinate settlements, allowing a simple
approximation of the political reality and a hypothetical politicalmap to be constructed (Renfrew&Bahn 2012).

4.16 In our ABM, the “attractiveness” determining the level of trading interaction of settlement i (origin location)
with settlement j (destination location) that relies on the XTENT formula, is proportional to the importance of
the destination location and declines linearly with their distance, as follows:

Ii,j =W β
j −m ·Di,j (6)

where β andm are constants used to adjust the required level of the e�ect that theweight of importanceWj of
settlement j and the distanceDi,j have on the overall “attraction” between settlements i and j, respectively.
Of course, one has to experimentwith specific values forβ andm to reflect the required attraction between set-
tlements i and j. Intuitively, this “attraction” Ii,j corresponds to a (trading) “interaction probability” between i
and j. Moreover, in order to turn Ii,j into an actual probability of trade between settlements i and j we choose
to scale its value to [0;1] (min-max normalization).

4.17 Given the Ii,j ’s, one can provide visualization intuitions about settlement main trading territories by coloring
each “cell” in the modeling area with the same color of the settlement to which it is mostly attracted to (see
Figure 12 in Appendix A).

The Gravity model

4.18 The Gravity model is the most common formulation of the spatial interaction method (Rodrigue et al. 2017).
It is named as such because it uses a similar formulation as the Newton’s law of gravity. The “attractiveness”
between the locations of origin i and destination j that relies on the Gravity model is proportional to the im-
portance of the destination location and inversely proportional to their respective distance (Hu� 1964):

Ii,j =Wj/D
λ
i,j (7)

4.19 Likewise, one would of course need to experiment with λ in order to e�iciently reflect the required (growing)
e�ect that distance have to the trading probability between settlements i and j. In our simulations experiments
and same as with the XTENTmodel, Ii,j is also scaled to [0;1] (min-max normalization).

4.20 An example of settlement “trading” territories relying on the Gravitymodel is provided in Appendix A, Figure 13,
by assuming the same settlement locations as in the previous example (cf. Figure 12, Appendix A) as destination
locations, and origin locations to be any landscape cell in the modeling area.

Discussion on the spatial interactionmodels used

4.21 In the simulation scenarios described later on, we consider two di�erent views on the trading probability be-
tween settlements; one favouring the distance between settlements rather than its importance, relying on the
XTENT model with β = 1.5 andm = 0.005 (Equation 6), and another favouring the importance of settlement
locations rather than the distance between them, enabled by the Gravity model with λ = 0.2 (Equation 7). We
will observe thesemodels’ e�ect on settlement organization anddistributionpatterns in our simulation results.

4.22 The aim of assigning the specific values of β andm for the XTENT model, and of λ for the Gravity model, is to
adequately model the required trade-o� between settlements distance and importance for the specific case
study’s geographic area described later on (maximum distance of about 40 km). To provide an intuition on
the two di�erent views on the trading probability between settlements, let us assume that the probability dis-
tribution of “importance” for a potential destination settlement is as illustrated in Figure 2 (the blue dashed
sinusoidal curve). The corresponding probability distribution of interaction of an origin settlement with the re-
spective destination location is then depictedwith the red and yellow curve, considering the XTENT andGravity
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Figure 2: Probability distribution of importance of a potential destination settlement location and the corre-
sponding distribution probability of interaction of an origin settlement location, considering the XTENTmodel
with β = 1.5,m = 0.005 and the Gravity model with λ = 0.2.

models, respectively. As shown in Figure 2, the distance between the origin and destination settlements has a
greater role when the XTENTmethod is employed, while it has a lesser impact when the Gravitymodel is in use.

Graph theory for trading network analysis

4.23 In ourABM, settlements interactwith several other settlements, formulatingadi�erent tradingnetworkat every
given time-step during the simulation, based on the enabled trading scheme (XTENT or Gravity model). What
we need to explore in such a dynamic trading network of settlements, is whether and to what degree some
settlements are more important or central than others, based on their trading interactions; and whether set-
tlements tend to create groups characterised by a relatively high density of trading interactions. Thus, in order
to better understand and provide insights on the consequence of patterns of interaction between settlements,
we adopt in our work some of themain approaches that network and graph theory has developed. We describe
these below.

4.24 To beginwith, a trading network can naturally be represented by a graph. A graph consists of a set of points and
a set of edges or ties connecting pairs of points. In our case, each settlement location in the trading network
corresponds to a point in the graph and each trading interaction (link) corresponds to an edge that connects a
pair of settlement locations.

4.25 A fundamental measurement concept for the analysis of network graphs is centrality, that can highlight impor-
tant information about the network organization and its structure (Freeman 1979). Centrality index describe
point locations in terms of how close they are to the “centre” of the network activity. Thus, settlements who
have more interaction ties (edges) to other settlements may be in advantaged positions. Because they have
many interaction ties, they may have access to more of the exchanged resources over the network as a whole,
and hence are less dependent on other settlements (Hanneman & Riddle 2005).

4.26 Whenever two settlements trade, they are directly connected by an edge, and thus, they are adjacent. The
number of other settlements to which a given settlement is adjacent is called the degree of that settlement. A
simple and e�ective measure of a settlement’s centrality is its degree. Since resources can be exchanged in a
single edge direction towards another settlement, the temporal trading network of the ABM is represented as a
“directed” graph and it is important to distinguish centrality based on in-degree, from centrality based on out-
degree. If settlements receivemany interaction ties, theycanbedescribedasprominent, orhavinghighprestige,
sincemany other settlements seek to direct resources to them, and this may indicate their importance (Hanne-
man & Riddle 2005). Settlements with high out-degree centrality are able to distribute resources tomany other
settlements, or make many other settlements aware of their resource exchange potential, thus being more in-
fluential than settlementswith lowout-degree centrality; although itmightmatter towhich settlement they are
distributing resources, this measure does not take that into account (Hanneman & Riddle 2005).

4.27 Let us now assume that a potential trading network is formulated with n number of settlements Sj (network
nodes), at a specific time-step during the simulation in our ABM. This snapshot of the trading network can
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be represented as a directed graph, where numerous trading interactions occur between settlements. The in-
degreeorout-degree centrality indexCD(Sj) is thenumberof incomingoroutgoing tradingedges, respectively,
for a settlement Sj (Freeman 1979):

CD(Sj) =

n∑
i=1

tr(Si, Sj) (8)

where, tr(Si, Sj) = 1 if and only ifSi andSj interact (trade resources) and thus, connectedby a tie or edge; and
tr(Si, Sj) = 0, otherwise. Themagnitude ofCD(Sj) for a settlement j partly depends of the size of the trading
networkonwhich it is calculated. However, sinceour tradingnetwork isdynamicandconstantly changesduring
its evolution, it is desirable to have a measure that is independent of network size. Thus, we calculate the
relative degree centralityCD ′(Sj) for a settlement j, which is defined as:

CD
′(Sj) =

CD(Sj)

n− 1
(9)

4.28 The e�ect of network size has been removed by normalizing withmaxCD(Sj) = n− 1, since any given settle-
ment Sj can at most be adjacent to n − 1 other settlements in the trading network graph. Overall, the degree
of a settlement point can be viewed as an index of its potential trading activity.

4.29 Another view of settlement point centrality, within a “directed” network graph, is based on the frequency with
which a settlement Sk falls between pairs of other settlements on the shortest or “geodesic” paths connecting
them, defined as the relative betweenness centrality index (White & Borgatti 1994):

CB
′(Sk) =

∑n
i

∑n
j bi,j(Sk)

(nI − 1)(nO − 1)− (nS − 1)
, bi,j(Sk) =

gi,j(Sk)

gi,j
, i 6= j 6= k (10)

where gi,j is the number of geodesics linking Si and Sj , gi,j(Sk) is the number of geodesics linking Si and Sj
that containSk and, bi,j is the probability that pointSk falls on a randomly selected geodesic linkingSiwithSj .
Similarly to the relative degree centrality CD ′(Sk) of a settlement Sk, the measure is also independent of the
dynamic trading network size, since it is normalized by the maximum betweenness centrality of a settlement
Sk, that is (nI − 1)(nO − 1) − (nS − 1), where nO is the number of settlements with outgoing edges, nI
the number of settlements with incoming trading links and nS the number of settlements with reciprocated
edges (White & Borgatti 1994). A settlement point in such a position of high relative betweenness centrality can
influence other nearby settlements by holding resources in exchange, exhibiting a potential for control of their
distribution. It is this potential for control that defines the centrality of these settlements.

4.30 Now, when centrality is applied to the whole trading network graph, such a measure should index the degree
to which the centrality of the most central settlement exceeds the centrality of all other settlements, and it is
expressed as a ratio of that excess to itsmaximumpossible value for thenetwork graph containing theobserved
number of settlement points (Freeman 1979). Thus, the relative degree graph centrality index varies between 0
and 1, and is defined as follows:

CD
′ =

∑n
i=1[CD

′(S∗)− CD ′(Si)]
max

∑n
i=1[CD

′(S∗)− CD ′(Si)]
(11)

where n is the number of settlement points, CD ′(Si) is the relative degree centrality defined above for set-
tlement Si, and CD ′(S∗) is the largest value of CD ′(Si) for any settlement in the trading network graph. The
maximumpossible sumof di�erences in settlement relative degree centrality,max

∑n
i=1[CD

′(S∗)−CD ′(Si)],
is reduced to n2−3n+2

n−1 = n− 2 for the relative degree graph centrality index (cf. (Freeman 1979)).

4.31 Similarly, the relative betweenness graph centrality index varies between 0 and 1, and is defined as follows:

CB
′ =

∑n
i=1[CB

′(S∗)− CB ′(Si)]
max

∑n
i=1[CB

′(S∗)− CB ′(Si)]
(12)

wheren is thenumberof settlementpoints,CB ′(Si) is the relativebetweenness centrality for settlementSi and
CB
′(S∗) is the largest value of CB ′(Si) for any settlement in the trading network graph. The maximum possi-

ble sum of di�erences in settlement relative betweenness centrality, that is,max
∑n
i=1[CB

′(S∗)− CB ′(Si)] is
reduced to n− 1 for the relative degree graph centrality index (White & Borgatti 1994).

4.32 Then, high relative in-degree or out-degree graph centrality means that there are few settlements of high im-
portance, or highly influential settlements respectively, in the trading network (and thus the most prominent
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or influential settlement in the network really “stands out”,making the value of the numerator in Equation 11 go
up). On the other hand, low relative in-degree or out-degree graph centralitymeans that there aremany settle-
ments with a similar level of influence or importance. Accordingly, high relative betweenness graph centrality
means that there are few settlements with high potential for control in the trading network, while low relative
betweenness graph centralitymeans that there aremany settlements that exhibit a similar potential for control
in the trading network.

4.33 To provide visualization intuitions on the relative network graph centrality (Freeman 1979) we present a snap-
shot of the trading network developed during a random simulation run. In the example of Figure 3, each set-
tlement node in the trading network is depicted with a circle, where its size and color represents its relative
centrality value [0; 1], with white color corresponding to the minimum value (0) and black color corresponding
to the maximum centrality value (1). Figure 3a illustrates a trading network of settlements with high relative
graph centrality, while the one in Figure 3b shows the same network but with low relative graph centrality.

(a) (b)

Figure 3: (a) High and (b) low relative graph centrality indices of a trading network of settlement nodes, repre-
sented as circles and trading connections as links between them. Settlement nodes size and color represent
their centrality value, fromminimum (white) to maximum (black).

4.34 Besides the above relative graph centrality indices that will be used to evaluate the settlement trading network
structural evolution, the degree to which settlements in the network graph tend to cluster together is also ex-
amined in our work, by calculating the network’s average clustering coe�icient (Watts & Strogatz 1998):

C̃ =
1

n

n∑
i=1

Ci (13)

where n is the number of settlements in the trading network graph and Ci is the number of ties between set-
tlement Si’s neighbours, divided by the total number of possible trading edges between its neighbours. Ci
represents how connected settlement Si neighbours’ are. Thus, the network’s average clustering coe�icient C̃
measures the degree to which settlements tend to cluster together within the trading network.

Case Study: The Minoan Society in Central Crete, Greece

5.1 Several ancient civilizations existed in the Aegean Sea during the Bronze Age, with the island of Crete being
associatedwith the “Minoan” civilization, which came to dominate the islands and the shorelines of the Aegean
Sea. A significant shi� in the early Minoans human existence and lifestyle was brought when crop farming was
first developed. Previous reliance on a nomadic hunter-gatherer way of subsistence, was in time replaced by
reliance on the produce of cultivated lands (Hamilakis 1996). These developments are assumed to have had
great impact on the growth of settlements, encouraging the concentration of local population.

5.2 There is not enough information about what kind of relationships existed between the Minoans or how this
ancient civilization was organized before the “Post-palatial” (Late Minoan) period. The sophistication of the
Minoan culture and its trading capacity is evidenced by the presence of writing (mostly found on various types
of administrative clay tablets). The content of the Minoan texts that have been unearthed is predominantly
economic (inventories of goods or resources) and religious. Scholars argue that even if relations among (and
possiblywithin) the various towns and cities continued to be contentious and competitive, a common architec-
tural language was beginning to emerge (McEnroe 2010). This new architectural languagemarks the beginning
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of a specifically Minoan identity, which defines a clear indication that each household was not a self-su�icient,
totally independent production unit, but that it was involved in exchange. Moreover, for the later Neolithic and
Early Bronze Age, stylistic and petrographic analyses suggest a low-volume circulation of ceramic vessels, com-
patible with “gi� exchange” economies, over short and long distances between di�erent communities within
and occasionally beyond the island (Tomkins & Schoep 2010). This evidence allows us to conceivably model
such relations as resource exchanges.

5.3 We note, however, that we do not intend to generally reduce human relations to exchange, as if human ties
to society can be imagined in the same terms as a business deal (Graeber 2011). Nevertheless, even Aristotle
was speculating along similar lines in his treatise on Politics. At first, he suggested, families or householdsmust
have produced everything they needed for themselves. Gradually, some would presumably have specialized,
some growing corn, others making wine, swapping or trading one for the other (Aristotle 2014; Graeber 2011).
Therefore, althoughwe do not have a clear picture of how human relations (interactions) were actually formed
in prehistoric time periods, we need to have a conceivable conceptualmodel inmind, and that is donewith the
simplest possible way: to model trading among them as an exchange of resources— thus, giving us the ability
to encode the conceptual model as an ABM encompassing various spatial interaction models for the resource
exchange process, enabling us to explore a range of the its corresponding trading network structure in turn.

5.4 In addition, archaeologists argue thatMinoan palaces are considered to be one of the central factors in bringing
about social transformation in the Minoan civilization (Cherry 1986). In their view, the construction of Minoan
palaces came about through a socio-political “quantum leap” from Chiefdom to State. This leap involved also
the introduction ofwriting, the first centrally organized religion (the peak sanctuaries), and the development of
social hierarchy and interacting social networks. Moreover, the size of such “grand” public structures at several
sites requires both a considerable population and a social cohesion, and it can reasonably be assumed that
there were di�erent levels of importance, i.e. a hierarchy of sites (Driessen 2002).

5.5 Furthermore, a series of changes in the Aegean, and in particular in Cretan Bronze Age society, were triggered
by the ca. 1600 BCE Santorini eruption (Driessen 2019). These changes would have caused the breakdown of
theMinoan systemover the course of a fewgenerations, during 15th c. BCE. Archaeologists hypothesize that the
eruptionwould have initially causedmajor problems in food production and distribution, undermining central
authority and leading to a process of decentralization; this fragmentation would then have led incrementally
to internal conflict. Despite the many destructions and abandonments documented, Minoan culture survived.

5.6 Starting from the above archaeological information about the Minoan society, we shall try to assess the result-
ing trading network structure over time and its e�ect on the Minoan society social organization at the commu-
nity level, providing insights on settlement clustering and organization during the Bronze Age.

Model environment

5.7 The environment is considered to be the geographic area of thewider region of Knossos, located approximately
in central part of the island of Crete. As a result, known habitation sites of the Minoan period where identified,
categorized and geolocalized, acquired by the “Digital Crete” project9. Agents are located within a 40x30 km
area with one (1) hectare cell size for the grid space. Moreover, the environment has also associated data layers
representing topographical aspects of the model landscape, such as elevation, slope and aquifer locations,
contributing indirectly in agent’s decision-making process, like where to settle and/or cultivate (Figure 4).

Model instantiation

5.8 The estimated per hectare population for an agricultural Minoan settlement during the modeled era ranges
from 100 up to 400 (Isaakidou 2008). In this work, we assume a density coe�icient of 250 people per hectare,
that is, the maximum number of inhabitants per grid cell (Driessen 2002). Moreover, the number of household
individuals in a given settlement cell is initialized to a randomnumber between 1 and 10. As a consequence, the
maximum number of household agents per settlement’s cell is 25, i.e., 250 divided by the maximum number
of individuals per household, that is 10. Household and settlements number and location are initialized based
on archaeological record, i.e., the number of settlements per scenario is set to 21, which are located at known
habitation site locations.

5.9 Initial cell resources at a given simulation run are based on archaeological estimates on production yield per
hectare (ha) pondered by the agricultural regime employed by the agents. As already noted, agents agricultural
regimes, can be either “intensive", producing 1500 kg/ha or “extensive", leading to a production of 1000 kg/ha
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Figure 4: Modeling area and its topographical features at central Crete, Greece

on an annual basis (Halstead 1981; Jusseret 2010). In this work, we assume that household agents employ an
intensive agricultural strategy.

5.10 Agent migration radius, that is, the distance that a household agent can migrate to in one time-step is set to
the full environmental area (approx. 40 km). An agent maymigrate only to a cell where known habitation sites
exist, based on the archaeological survey conducted in the specific geographic area. However, we assume a
resettlement cost rc for an agent i, which intuitively reflects the decay of potential resources at destination
location with increasing distance:

rci = 1− e−0.005·δ (14)

where δ is the distance (in km) of the agent to the respectivemigrating settlement location. The rate parameter
of C function above is defined as 0.005 in order to achieve a relatively gradual decay of destination resources
for an agent, i.e.model a resettlement cost of about 20% of agent resources at 40 km away.

5.11 As a final note, we consider a dynamic population growth, based on the amount of resources consumed by
a household agent during the year (Chliaoutakis & Chalkiadakis 2016). This results to a growth rate of about
0.1% when households consume adequate resources, which corresponds to estimated world-wide population
growth rates during the Bronze Age (Cowgill 1975; Jones 1999).

Simulation scenarios

5.12 We simulate trading across settlements which cultivate the landscape by employing an “intensive farming”
agricultural strategy, and deploying the “self-organization” social behaviour, as described in Section 3. Various
scenarios were taken into account for the experimental setup, with di�erent parameterization. Specifically, the
main simulation scenarios are for our:

• two spatial interaction models, the XTENT and Gravity ones, and

• two di�erent ways to characterize the importance of settlements, one based on Equation 4, and one
based solely on available archaeological data (“site category bias” below)

5.13 Wenote thatanaturaldisaster sub-model (Chliaoutakis etal. 2018) is also incorporated in theABM, inanattempt
to provide insights to whether the e�ects of the volcanic eruption of Thera (Santorini) a�ected the trading net-
work behaviour. The natural disaster sub-model takes e�ect at 1630 BCE, that is, approximately the date of the
eruption estimatedby earth scientists (Driessen 2019). Tsunami and volcanic ash impact on the artificial society
and their e�ects on agriculture and human life were considered during the conceptualization of the model.

5.14 Specifically, a 10 meters sea-level rise (including 2m rise on today’s elevation), with inundations of 300 meters
inland are assumed for defining tsunami a�ected areas on the ABM’s environmental grid, rendering associated
agricultural fields useless for up to 20 years. We assume that volcanic ash and pumice has the e�ect of limiting
the production of agricultural fields in the whole model area for up to 10 years. Specifically, ash and pumice
are considered to a�ect environmental cells inversely linear to elevation, since the volcanic ash layer is smaller
at higher elevations–i.e. the impact on agricultural output is 100% at zero elevation and 0% at locations with
maximum elevation of the area modeled.
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5.15 Furthermore, the human impact immediately a�er the Theran volcanic eruption, is assumed to consist of 15%
fatalities (a mortality rate due to the event) at the whole environmental area due to one or more earthquakes
that the eruption was preceded by, and also due to large amounts of ash and pumice that were emitted. Thus,
at the time of the catastrophic event, each individual in our model has a 15% probability of dying.

5.16 Simulation resultswere averaged for each (annual) time-step. Thus, for each scenario, results are averages over
30 simulation runs (repetitions) across a period of 2,000 years (cf. Table 1, Appendix B, for the conventional
chronology dates (BCE) of theMinoan period used in our ABM simulation scenarios). Moreover, in all figures be-
low, we depict shaded areas that correspond to 95% confidence intervals around lines corresponding to agent
or network characteristics. In order to assist the reader, in all figures the legends are also ranked in accordance
to the relative performance of the corresponding agent or trading network behavioural characteristic.

5.17 The random number generators introduced in parts of the model are obviously “pseudo-random". Thus, via
using the same random“seeds", onemay introduce the sameopportunities for agents in themodel simulations,
making thereby our simulations reproducible by any interested party. In terms of simulation time, the process
can be quite expensive, since a single run (composed of 2,000 yearly time steps) takes approximately 24 hours
on a single core 2.6 GHz computer. However, by employing additional computational power, the simulation
process can be sped up significantly; e.g., via allocating a dedicated single-core node of a grid computer to a
run, all simulation runsmentioned above can be completedwithin a few days. Specifically, we utilized the Grid
infrastructure of our university, by executing all the above 120 simulation runs on thirty (30) dual-core (2.6GHz)
nodes (with 4GB ram each) in just 2 days (as opposed to 4 months on a single-core computer).

5.18 We now proceed to discuss our findings regarding the trading network analysis performed on our area and era
of interest, based on the spatial interaction models enabled and the available archaeological data.

Simulation results

5.19 Webegin with presenting our findings regarding the e�ect of the di�erent spatial interactionmodels on house-
hold agent population, settlements number, and their size. Simulation results are presented in Figure 5 for both
the XTENT and Gravity models, considering a low percentage of stored surplus trading scheme, i.e. ps = 20%,
while agents in themodel can settle ormigrate only to known archaeological site locations at any specific time-
step. The 20% ps value is in our view a realistic assumption for the age and subsistence regimes studied, given
that no sea trade is modeled in this work.

(a) (b)

Figure 5: (a) Number of settlements and (b) settlements size over 2,000 yearly time-steps (Minoan period), con-
sidering the XTENT and Gravity spatial interaction models.

5.20 When the XTENT spatial interactionmodel is used, we observe that the number of settlements remains almost
constant until the end of the Early Minoan (EM) period, and then gradually increases over time, especially dur-
ing the Middle Minoan (MM) period and even more a�er the volcanic eruption and Late Minoan I (LM I) period
(Figure 5a). The number of agents (households) per settlement also appears to increase until the end of the EM
period, and then gradually drops in the MM period. Immediately a�er the volcanic eruption, settlement sizes
abruptly drop for a fewdecades, and start again to gradually increase during LM II and LM III periods (Figure 5b).

5.21 Then, when the Gravity model is employed, we observe a similar behaviour with that of XTENT for settlement
numbers and sizes, although the number of settlements is slightly lower than the XTENT model during the EM
period, and then slowly increases over time, until the end of the MM period (Figure 5a). For both spatial inter-
action models, however, we observe an increase on settlements number and a gradual decline in settlement
sizes during theMMperiod, due to the availability of a lotmore known site locations formigration (cf. Figure 14,
Appendix B). We also observe a relatively constant number of settlements a�er the volcanic eruption until the
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end of the LM period, with the XTENT model having higher numbers at about 80 settlements and the Gravity
model at about 40 settlements on average. On the other hand, the number of agents per settlement is slowly
increasing a�er the volcanic eruption until the end of the LM period, with the Gravity model achieving higher
numbers of household agents on average than the XTENTmodel (Figure 5b).

5.22 Overall, a higher number of settlements is observed a�er the EMperiod, with an in-parallel decline on the num-
ber of households (agents) per settlement. The increasing trend of settlement numbers is in line with the ar-
chaeological record, at least until the LM I period, when actual settlement numbers abruptly decline until the
beginningof theLM II period (seeFigure 14 inAppendixB), and then start to increaseagainuntil the LM III period.

(a) (b)

Figure 6: (a) Population and (b) average storage of household agents over 2,000 yearly time-steps (Minoan pe-
riod), considering the XTENT and Gravity spatial interaction models.

5.23 We also report that the overall household agent population is constantly increasing at a dynamic population
growth rate from about 820 initial agents to about 3450 and 2950 agents for the XTENT and Gravity spatial in-
teraction models, respectively, with only an abrupt and short decline immediately a�er the volcanic eruption
(Figure 6a). Furthermore, the stored surplus of the agents is gradually decreasing during the whole simulation
period, fromabout one ton to one half of a ton per household for both the XTENT andGravity spatial interaction
models,withonly anabrupt increase immediately a�er the volcanic eruptionof Thera; and thenagain gradually
decreases until the end of the LM period (Figure 6b). This “shock” on the average storage of households imme-
diately a�er the volcanic eruption appears to ultimately a�ect the settlement trading network, since changes
in clustering and centralization rates are observed during the LM period, as will be explained later on.

5.24 Let us now proceed on the study of the structural behaviour of our settlement trading network. In Figure 7 we
present the average relative in-degree and out-degree network graph centralities during the 2,000 years simu-
lation period. When the XTENTmodel is employed, the relative in-degree graph centrality gradually drops from
about 25% to 20% until the end of the EM period (see Figure 7a) while the relative out-degree graph centrality
gradually increases from about 20% up to 55% in the same time period (see Figure 7b). Therea�er the relative
out-degree graph centrality gradually declines to about 40%until the end of theMMperiod, abruptly declines10
immediately a�er the volcanic eruption to about 20% and then again increases to up to 30% until the end of
the LM period. Relative in-degree graph centrality is kept almost constant to about 20% until the end of the LM
period, with an abrupt and short decline immediately a�er the volcanic eruption.

(a) (b)

Figure 7: (a) Relative in-degree and (b) relative out-degree graph centrality indexes of the trading network over
2,000 yearly time-steps (Minoan period), considering the XTENT and Gravity spatial interaction models.

5.25 Low relative in-degree graph centrality rates observed during the EM and MM periods (under XTENT) suggest
that there are no clearly “prominent” settlements, meaning that, there are no central attractors considering
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the other settlements in the trading network. On the other hand, the in-parallel high relative out-degree graph
centrality rates during the sameperiod, indicate that there are a few settlements that are considered influential
in terms of resource distribution. Therefore, one could assume that a settlement organization of distributing
resourcesby these influential settlements in the tradingnetwork is implied, at least before thevolcanic eruption
of Thera or the LM period.

5.26 Using theGravitymodel, the relative in-degreegraphcentrality gradually increases fromabout40%to75%until
the end of LM period, however, with an abrupt fall and rise immediately a�er the volcanic eruption (Figure 7a).
By contrast, the relative out-degree graph centrality slowly decreases from about 30% to 15% during the whole
period,withanabruptdecline immediately a�er the volcanic eruption (Figure7b). Thesehigh relative in-degree
graph centrality rates (under Gravity) suggest that there are only a few “prominent” settlements in the network,
implying the possibility of a settlement hierarchy where resources are traded towards these important settle-
ments by other settlements in the trading network. Notice however that this assumes an “attractiveness” of the
sites given theirWi importance defined via Equation 4, and not the known category of the archaeological sites.
In the next section, we see that the “conclusions” obtained with the Gravity model are quite di�erent when the
real sites’ category is taken into account; and that in that case they are more in agreement with those of the
XTENTmodel.

5.27 Moreover, the relative graph centrality based on betweenness is considerably low regarding both XTENT and
Gravity models, as presented in Figure 8a. This means that most of the trading connections can bemade in the
trading network without the aid of an intermediary settlement. Thus, there do not appear to exist settlements
with much potential of controlling the inter-settlement trade. As such, there is a need to further study if there
are other group formation phenomena at work, which need to be captured.

5.28 Studying the average clustering coe�icient of the trading network graph (Figure 8b), we observe that when
the Gravity model is employed, it is relatively low (below 40%) until the beginning of LM period, while it is
relatively high a�er the volcanic eruption (more than 40%) until the end of the LM period. When the XTENT
model is employed for the trading process, we observe that the average clustering coe�icient of the network
graph gradually declines from about 50% to 10% until the end of middle EM period; however, it then gradually
increases to about 40% until the end of the LM period, with an abrupt and short fall immediately a�er the
volcanic eruption.

(a) (b)

Figure 8: (a) Relative betweenness graph centrality and (b) average clustering coe�icient of the trading network
over 2,000 yearly time-steps (Minoan period), considering the XTENT and Gravity spatial interaction models.

5.29 Thus, for both the XTENT and Gravity models, the observed settlement trading clustering behaviour a�er the
volcanic eruption until the end of LM period, implies a more dense trading activity between settlements at the
time, raising the possibility of more settlement clusters in the trading network. Assuming that such settlement
clusters were around large towns, cities, or palaces, this trading network clustering behaviour has a correspon-
dence to the archaeological record (Figure 14, Appendix B): just two cities are known to have existed during the
EM period (Archanes and Knossos), while several large towns, cities and palaces were flourishing in the area
during the MM and LM periods (Knossos,Malia, Archanes and Galatas).

5.30 Finally, for interest,wealsoconductedadditional experiments considering thesamesimulationscenarios, how-
ever, with a higher percentage of stored surplus trading scheme, i.e. ps =80%. Simulation results exhibit similar
behaviourwith no remarkable di�erences, besides the average storage per household agent, where even lower
amounts of resources stored are observed for the scenario of trading a higher portion of stored surplus. Corre-
sponding results figures are presented in Appendix C, since their behaviour is entirely similar with simulation
scenarios considering a lower percentage of stored surplus trading scheme. This similarity in the trading be-
haviour observed in the results where ps = 80% is justified, since the trading network structure naturally takes
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into account only the number and density of trading interactions between settlements, and not the volume of
resources exchanged within the trading network as well.

5.31 In all of the above simulation scenarios, we used attributes relating to settlement’s population and lifetime
during the simulationperiod for calculating theweight of the importanceWi of a settlement i, givenEquation4.
In the following simulation scenarios, we fix the Wi values with known archaeological site categories. This
will enable us compare the settlements trading network and the organization structure developed, based on
archaeological estimates on settlement types, with the one autonomously developed during the simulations
described above.

Site category bias

5.32 Let us first assume a simple, broad classification of settlement types rather than specific site categories, which
corresponds roughly to the site hierarchy put forward by Driessen (2002), based on archaeological estimates:
village (or settlementorhamlet), corresponding to less than3.5hacatchment size, hosting fewer than88house-
holds / 875 inhabitants onaverage; city (or large townor town), corresponding to less than25hacatchment size,
having fewer than 625 households / 6250 inhabitants on average; and palace (or capital town), corresponding
to greater than 25 ha catchment size, with more than 625 households / 6250 inhabitants on average. Based
on this classification of settlement types, instead of using Equation 4, we expressWi of any settlement point
location i as a weight in [0; 1], by mapping the corresponding known archaeological site type 11 as follows:

• Wi = 0.5when the corresponding archaeological site category is a village,

• Wi = 0.7when the corresponding archaeological site category is a city, and

• Wi = 0.9when the corresponding archaeological site category is a palace

5.33 As such, the “attractiveness” or the probability of trade for any settlement in the trading network, is biased by
the corresponding known archaeological site category. Thus, in the following simulation scenarios, settlement
importance is based on archaeological evidence on the settlement type at any given time-step and geographic
location. The rest of the experimental setup is exactly the same as the simulation scenarios discussed in the
previous section.

5.34 To begin with, simulation results on agent settlements number and size are presented in Figure 9 for both the
XTENT and Gravity models. We observe that the number of settlements remains relatively constant until the
end of the EM period, similarly to the previous scenarios, where settlement importance was calculated by its
own dynamic characteristics, i.e., population.

(a) (b)

Figure 9: (a) Number of settlements and (b) settlements size over 2,000 yearly time-steps (Minoan period), con-
sidering known archaeological site categories for both the XTENT and Gravity spatial interaction models.

5.35 Regarding the XTENTmodel, we observe a similar behaviourwith scenarios not being biased by site categories,
where a gradual increase of settlement numbers over time is noticed, especially during theMMperiod and even
more a�er the volcanic eruption and LM I period (Figure 9a). Similarly, the number of agents per settlement
increases until the end of the EM period, and then declines during the MM period. This is due to the high mi-
gration rates (because of population growth) observed to more (known) settlement locations available during
that period. Moreover, settlement sizes abruptly drop immediately a�er the volcanic eruption, however, then
gradually increase until the end of LM period (Figure 9b).
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5.36 When theGravitymodel is employed, weobserve a similar behaviourwith the XTENTmodel in settlement num-
bers and sizes, although the number of settlements slightly declines at the end of theMMperiod, and drops fur-
ther immediately a�er the volcanic eruption; and then remains relatively constant until the endof the LMperiod
(Figure 9a). Thus, in contrast to the previous scenarios, where no bias by known archaeological site categories
was introduced, an entirely di�erent behaviour is now observed. That is, a significant di�erence in settlement
numbers is observed, growing up to about 115 settlements during the end of the MM period, and holding up to
about 90 settlements until the end of the LM period, while just a number of about 25 and 40 was observed in
the previous scenarios (cf. Figure 5a). We note that this trend in settlement numbers is surprisingly very similar
to the one that exists in the archaeological record for the specific environmental area during the whole Minoan
period (cf. Figure 14, Appendix B), with the only di�erence being a substantial decline reported at the end of
LM I period in the archaeological record — and which was due to unknown “external” events.12 Higher values
in settlement numbers exist in the archaeological record, suggesting that a higher population growth rate (>
0.1%) probably should have been used during our simulations (we chose to follow Cowgill (1975)).

5.37 On the other hand, the numbers of agents per settlement tends to increase until the end of the EM period, and
then abruptly declines at the beginning of the MM period from about 120 to 30 households and further decline
during the MM III period down to 25. The number of households per settlement, however, is slowly increasing
a�er the volcanic eruption until the end of the LM period, with the Gravity model not being able to achieve
higher numbers of household agents per settlement on average than the XTENTmodel (Figure 9b).

5.38 We also report that the overall number of households (i.e., the agent population) is constantly increasing dur-
ing the whole time period, same as in the scenarios without bias from known archaeological site categories,
being able to even achieve higher population sizes, with only an abrupt and short decline immediately a�er
the volcanic eruption (cf. Figure 15 in Appendix C). We note that we observe higher population sizes a�er the
Theran eruption when site category bias is used and the trading network is simulated via the Gravity model (as
opposed to XTENT).

(a) (b)

Figure 10: (a) Relative in-degree and (b) relative out-degree graph centrality indexes of the trading network over
2,000 yearly time-steps (Minoan period), considering known archaeological site categories for both the XTENT
and Gravity spatial interaction models.

5.39 Regarding the structural behaviour of the settlement trading network, the relative in-degree and out-degree
graph centralities are presented in Figure 10. The XTENT model exhibits a very similar behaviour to the one
without known site types bias (cg. Figure 7). Interestingly, theGravitymodel is nowshowing a similar behaviour
to the XTENT model, that is, it exhibits lower rates of in-degree and higher rates of relative out-degree central-
ity. The low relative in-degree graph centrality rates during the EM and MM periods, imply that there are no
“prominent” settlements. By contrast, the high relative in-degree graph centrality rates observed in the trading
network a�er the volcanic eruption and during the LM period, suggest that there are certain “prominent” set-
tlements in the trading network. On the other hand, the low relative out-degree graph centrality rates during
the LMperiod, indicate that there aremany settlementswith a similar degree of “influence” in termsof resource
distribution. Therefore, one could assume that a settlement hierarchy where resources are traded towards the
(few) most important settlements in the trading network is implied during the LM period.

5.40 Moreover, the relative betweenness network centrality is low for both XTENT and Gravity models, as presented
in Figure 11a, even lower than scenarioswithout site category bias (cf. Figure 8a), suggesting even less potential
for control on the flow of resources traded between settlements. However, there is a structural basis for assum-
ing that certain settlements with the highest relative betweenness centrality in the society are “di�erent” from
the other settlements in the area, at least during the EM and MM period.

5.41 Regarding the average clustering coe�icient of the tradingnetwork graph (Figure 11b), weobserve that theGrav-
ity model has again a similar behaviour to the XTENT model, that is, it gradually declines from about 50% to
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(a) (b)

Figure 11: (a) Relative betweenness graph centrality and (b) average clustering coe�icient of the tradingnetwork
over 2,000 yearly time-steps (Minoan period), considering known archaeological site categories for both the
XTENT and Gravity spatial interaction models.

10%until the endofmiddle EMperiod, and gradually increases tomore than 50%until the endof the LMperiod,
with an abrupt and short fall immediately a�er the volcanic eruption. The low clusterization thus observed in
the trading network until the end of the EMperiodmay suggest that the trading network connections are losing
density until the end of the EM period. The network’s clusterization appears to be recovered in the MM period,
and evenmore in the LM period, indicating the possibility of more dense settlement clusters in the trading net-
work,where resources are traded towards the fewmost important settlementswithin these clusters (thosewith
high relative in-degree graph centrality). There seems to be a correspondence with the archaeological record,
enhancing such a possibility— since several towns, cities or palaces are recorded during theMMand LMperiod,
while just a two towns exist during the EM period, as previously noted.

5.42 Concluding this section, we remind here the reader that the Gravity model is able to better capture the trend
in settlement numbers that exist in archaeological record. This is a reason to believe that, in this case, Grav-
ity allows us to better interpret the structure and dynamics of the formed trading network. The “unchanged”
behaviour of the XTENT model is justified, since it favours the distance between settlements rather than their
importance. Thus, it shouldbeused in caseswhere settlements importance is not known, or cannot beproperly
modeled.

Conclusions and Future Work

6.1 In this work, we presented an archaeology-related ABM to simulate trading interactions across settlements of
an artificial past society. The ABM was formally built upon MAS-originating concepts, adopting a utility-based
agentdesign. Wemodel inter-community trading interactionsby incorporatinga trading sub-model, employing
twowell-known spatial interactionmodels, XTENT and Gravity. The simulations’ aimwas to assess the sustain-
ability of the artificial society in terms of population size, number and distribution of agent communities with
respect to both spatial interaction models; to analyse the resulting trading network structure during its evo-
lution over time; and to draw interesting conclusions (or, rather, sketch out interesting hypotheses) about the
settlements’ hierarchy, via annotating our results with the archaeological record.

6.2 As a case study we considered the Bronze Age Minoan civilization and as the ABM’s environmental area we
considered the geographic area of the wider region around Knossos, located in the central part of the island of
Crete, Greece. Simulation results show thatwhen settlements’ importance is knownor properly inferred (based
on archaeological data or evidence), modeling a trading network relying on the Gravity model can produce
settlementpatterns similar to theone that exist inarchaeological record for theareaunder study (seeFigure9a).
On the other hand, if solely settlement locations are known, then the XTENT model can produce acceptable
results on simulating the trading activity between them.

6.3 Simulation results show that, when the importance of settlements is weighted based on the type of known
archaeological habitation sites, high relative out-degree centrality rates are observed in the trading network,
alongwith low clustering during the end of the EM period. This observation suggests that a small number of in-
fluential centres might have existed, linked to a settlement hierarchy where resources are distributed by these
centres to other settlements in the network — but with no clearly prominent centres to which resources are
directed. Interestingly, a�er the catastrophic event of the volcanic eruption of Thera and during the LM period,
the trading network connections are becomingmuch denser, and resources are now being distributed towards
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only a few prominent settlements in the network. We note that these results are in line with archaeological
theories suggesting a�er the MM period the actual settlements hierarchy was transformed, with subsequent
radical changes in their trading network, a�ected by settlement numbers and sizes as well as natural disaster
events (as also indicated by Figures 10 and 11 in ourwork here). Specifically, archaeologists argue that indepen-
dent political units and centres of the EMand earlyMMperiod, were incorporated into a “Knossian” state during
lateMMand early LMperiods by being demoted to secondary centreswhile otherswere promoted from tertiary
to secondary centres (Driessen 2019). Thus, large and comparatively well integrated polities that existed until
the end of the MM period in Central Crete were incorporated into a larger political framework and a territorial
state headed by Knossos (Driessen 2002). Given the above simulation results, our ABM appears to be able to
provide support for those theories to some extent.

6.4 In terms of future work, we need to runmore scenarios with a variety of initialization setups. In addition, we in-
tend to equip the ABMwith additional modules (vegetation data, geological information, other archaeological
evidence or scenarios of interest) and further types of utility-generating activities (fishing, hunting, animal hus-
bandry, cra�ing), to allow the further integration of qualitative and social factors into our model (Roux 2019).
Specifically, we intend to run simulation scenarios where additional resources during the trading process are
available from external sources, by building a more elaborate trading model that will also include maritime
trade (and its e�ects in coastal settlements) or trade based on the proximity to religious centres or peak sanc-
tuaries; of course, these components will be also a�ected di�erently by the natural disaster sub-model, when
it is enabled (i.e. the volcanic eruption of Thera, in this case study). We also intend to represent the dynamic
trading network as a “weighted” directed network graph, in order to take into account the amount or volume
of resources exchanged during trade, rather than solely the number or density of trading interactions between
settlements in the network. Finally, we intend to run simulation scenarios on (artificial) past societies in dif-
ferent geographical space and time, where su�icient archaeological data is available for testing and assessing
ABM results with respect to related archaeological hypotheses regarding their social organization.

Acknowledgements

The authors wish to thank the Laboratory of Geophysical - Satellite Remote Sensing & Archaeo - environment
(GeoSat ReSeArch) of the Institute for Mediterranean Studies (IMS) / Foundation of Research & Technology
(FORTH) for providing archaeological data for the ABM. We particularly thank the archaeologists Dr. Sylviane
Déderix, Dr. Gianluca Cantoro and Dr. Stefania Michalopoulou for their valuable comments, suggestions and
fruitful discussions.

Model Documentation

A detailed model description, following the ODD (Overview, Design concepts, Details) protocol (Grimm et al.
2006) is provided in Appendix D. The ABM was developed using the NetLogomodeling environment (Wilensky
1999). Thesourcecode isavailableathttps://www.comses.net/codebases/50cf5d2a-0f37-4d4d-84e0-715e641180d9.

Notes

1ABM refers to both agent-based “modeling” and “model(s)”.
2A heterarchy is a system of organization where its elements are “unranked” (non-hierarchical) or possess

the potential to be ranked by a number of di�erent ways (Crumley 1995).
3We could not conduct further analysis or validation of the specific ABM, since the URL of the ABM source

code no longer exists.
4Wenote that by doing sowedonotmean to argue that utility is themain factor driving humanbehaviour or

the advance of human societies. Nevertheless, utility-based agents and utility theory have long been adopted
as useful tools in the MAS community (Russell & Norvig 2002; Wooldridge 2009). Therefore, we believe that
demonstrating that such notions can be incorporated in archaeology ABMs, aswedo in this paper, is interesting
from the point of view of the MAS, ABM, and computational archaeology communities alike.
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5Households were considered to be the main social unit of production during the period and in the society
under study (Whitelaw 2007).

6For details on the definition ofR youmay refer to Chliaoutakis & Chalkiadakis (2016).
7More accurately socio-economic social organization paradigms.
8The distance factorDi,j is measured as the Euclidean (linear) distance for simplicity. This distance can be

alternatively measured as the Least Cost Path between two settlement locations, considering slope and eleva-
tion as cost surfaces, however, with significantly higher computational cost.

9See http://digitalcrete.ims.forth.gr
10Short “jumps” observed in the figures immediately a�er the volcanic eruption are not real, but a result

of the Savitzky–Golay smoothing filter applied on the data (Savitzky & Golay 1964). The filter increases the
precision of the data without distorting their tendency, by fitting successive sub-sets of adjacent data points
with a low-degree polynomial with the method of linear least squares.

11We remind the reader that all potential settlement locations correspond to actual settlement sites.
12Archaeologists assume that awave of fire destructions a�ectedCretan settlements during and at the endof

LM IB, that have variously been attributed to internal revolt, Mycenaean invasion, or to amajor natural disaster
involving earthquakes (Driessen 2019).

Appendix A: Visualizing settlements attraction areas

In the following two figures, each settlement is depictedwith a unique coloured circle, where its size represents
its importancewith respect to its type (village, town or city in this example), while itsmain trading territory, i.e.,
landscape cells that are mostly attracted to it, is depicted with the same color.

Figure 12: Visualization of “territories” of 30 di�erent settlements (of type village, town or city) within themod-
eling area, considering the XTENT spatial interactionmodel, considering β = 1.5 andm = 0.005. In particular,
settlement 8 (of type village), located near the centre of the modeling area, will most probably trade with set-
tlement 32 (city) or even settlement 10 (village), since it is attracted to settlements that are relatively close in
range, undervaluing the importance of settlements that are further away.
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Figure 13: Visualization of “territories” of 30 di�erent settlements (of type village, town, city) within themodel-
ing area, considering theGravity spatial interactionmodel, consideringλ = 0.2. Now, settlement 8 (village)will
most probably tradewith settlement 32 (city) or even settlement 30 (town), since it is attractedwith settlements
of high importance, that is of type city or town, despite its distance from them.

Appendix B: Case study’s archaeological record

Chronology (Platon) Relative chronology Manning (1995) McEnroe (2010) Simplified date

Protominoan Age EM (Early Minoan)
Phase I EM I 3100 - 2700 3100 - 3100 - 2700
Phsae II EM II 2700 - 2200 - 2200 2700 - 2200
Phase III EM III 2200 - 2050 2200 - 2200 - 2000
Minoan Age (Palace period) MM (Middle Minoan)
Pre-palace MM IA 2050 - 1925 - 1900 2000 - 1900
Old-palace Phase I MM IB 1925 - 1900 1900 - 1900 - 1875
Old-palace Phase II MM IIA 1900 - - 1875 - 1800
Old-palace Phase II MM IIB -1750 - 1750 1800 - 1720
New-palace Phase I MM IIIA 1750 - 1700 1750 - 1720 - 1680
New-palace Phase I MM IIIB 1700 - 1675 - 1700 1680 - 1650

LM (Late Minoan)
New-palace Phase II LM IA 1675 - 1600 1700 - 1580 1650 - 1550
New-palace Phase II LM IB 1600 - 1490 1580 - 1490 1550 - 1470
New-palace Phase III LM II 1490 - 1435 1490 - 1360 1470 - 1405
Post-palace Phase I LM IIIA 1435 - 1360 1360 - 1405 - 1325
Post-palace Phase II LM IIIB 1360 - 1200 - 1200 1325 - 1190
Post-palace Phase II LM IIIC 1200 - 1100 1200 - 1100 1190 - 1100

Table 1: Absolute and relative chronology and dates for the Minoan period (BCE) suggested by archaeologists,
along with the simplified (conventional) date used in the ABM simulation scenarios.
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Figure 14: Settlement numbers that exist in the archaeological record for our case study’s area during the Mi-
noan period. Archaeological sites information was provided by the Laboratory of Geophysical-Satellite and
Remote Sensing and Archaeo-environment of IMS-FORTH, and available through the “Digital Crete” project.

Appendix C: Results from additional simulation scenarios

(a) (b)

Figure 15: (a) Household agents and (b) population sizes over 2,000 yearly time-steps, considering known ar-
chaeological site categories for both the XTENT and Gravity spatial interaction models, with a low percentage
(20%) of stored surplus trading scheme.

(a) (b)

Figure 16: (a) Population and (b) average storage of household agents over 2,000 yearly time-steps (Minoan
period), considering the XTENTandGravity spatial interactionmodels, with ahigher percentage (80%)of stored
surplus trading scheme.
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(a) (b)

Figure 17: (a) Number of settlements and (b) settlements size over 2,000 yearly time-steps (Minoan period),
considering the XTENT andGravity spatial interactionmodels, with a higher percentage (80%) of stored surplus
trading scheme.

(a) (b)

Figure 18: (a) Relative in-degree and (b) relative out-degree graph centrality indices of the trading network over
2,000 yearly time-steps (Minoan period), considering the XTENT and Gravity spatial interaction models, with a
higher percentage (80%) of stored surplus trading scheme.

(a) (b)

Figure 19: (a) Relativebetweennessgraphcentrality and (b) averageclustering coe�icientof the tradingnetwork
over 2,000 yearly time-steps (Minoan period), considering the XTENT and Gravity spatial interaction models,
with a higher percentage (80%) of stored surplus trading scheme.

Appendix D: ODD protocol for the ABM

Themodel description follows the ODD (Overview, Design concepts, Details) protocol for describing individual-
and agent-basedmodels (Grimm et al. 2006), as updated by Grimm et al. (2020).

Purpose and patterns

Purpose: The purpose of the model is to explore the social organization of an artificial sedentary past soci-
ety and how di�erent social organization paradigms a�ect population sustainability and settlements distribu-
tion patters. In this work, we study how inter-settlement organization and interactions a�ect the structural
behaviour of the dynamic trading network formulated over time. Specifically, we are addressing the following
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questions: How a Minoan settlement trading network would look like in the wider area of Knossos, and how
does the trading network’s dynamics evolve in response to environmental changes and the anticipated social
crisis caused by the volcanic eruption of Thera island? For this purpose, we consider two di�erent approaches
for modeling trading interaction probability, corresponding to “attractiveness” among settlements, based on
the distance between them and their “importance". As a case study, we consider the “Minoan” civilization and
provide in the process insights and potentially support for archaeological hypotheses regarding the settlement
organization in the wider area of Knossos in Central Crete, Greece, during the Bronze Age.

Simulation results show that modeling a trading network by favouring settlements importance rather than the
distancebetween them, aswith theGravitymodel, canproduce settlement patterns similar to the one that exist
inarchaeological record for theareaunder study. However, suchaspatial interactionmodel shouldbedeployed
only when settlements importance is known or properly inferred. In such case, the trading network structure
also suggests that a small number of influential centres could have existed until the Early Minoan period. This
fact may suggest a settlement hierarchy where resources are distributed by these influential settlements to
others in the network, however, with no clearly prominent centres to which resources are directed. In addition,
a�er the volcanic eruption of Thera and during the Late Minoan period, the trading network connections are
becoming much denser, with resources being distributed towards only a few settlements in the network.

Patterns: Archaeological estimates for the era and space under study are provided as input in the model, as
well as archaeological survey data; in particular, known habitation site locations and types, such as village, city
or palace. In our simulation experiments, agents in our environmental grid are allowed to settle ormigrate only
to cells that actual archaeological habitation sites existed at the specific time (step). Therefore, the patterns ob-
served on settlement numbers during our simulations against the ones observed in the archaeological record,
allow us to evaluate the suitability of two di�erent spatial-interaction models, that we used for modeling the
interaction probability (attractiveness) among settlements.

Entities, state variables and scales

Entities: The are threemain entities that are included in themodel: households, settlements and environmen-
tal cells. Agents correspond to households, each containing up to a maximum number of individuals (house-
hold population). Each household agent resides in a cell within the environmental grid, with the cell potentially
shared by a number of agents. Adjacent cells occupied by agents make up a settlement — and there is at least
one occupied cell in a settlement. Each agent cultivates a number of cells located next to the settlement. The
number of cells that a given household needs (and is able) to cultivate at a given location, depends on the num-
ber of its individuals, and its agricultural regime, i.e., “intensive” or “extensive” agriculture.

State variables: The main state variables for a household, besides the current number of its individuals and
the settlement that the household belongs to, are: current utility, minimum resources needed, surplus of re-
sources stored, a list of its current cultivating patches, a boolean variable (true/false) for consideringmigrating
to another location, the number of cells that needs to cultivate, the number of years (annual time-steps) that
the agent exists within the settlement and in the environment, and others.

The main state variables for a settlement are: a list of the household agents within the settlement; the total
number of households and its population (number of people); the weight of its importance; the total amount
of resources received by other settlements during trade; the number of years that the settlement exists in the
environment; the in-degree, out-degree and betweenness centrality values; and the clustering coe�icient re-
garding the settlement’s position on the trading network.

State variables for environmental cells include static variables, such as elevation and slope data derived from
a today’s Digital Elevation Model (DEM) of the modeling area; the land-productivity for the patch (amount of
resources) that is based on settlement’s population; the land-suitability that is based on the slope value of the
corresponding cell; the utility of an aquifer for the respective cell; the agricultural production (agent reward)
of the cell that is based on land suitability and productivity; the initial resources of the cell; and several other
parameters denoting if the cell is also an aquifer location, or if a known archaeological habitation site existed in
the current time-step (along with site type and derived importance), or if it is currently cultivated, and others.

Scales: Household agents and resources are located within a 40x30 km area, with a 100x100 m (1 ha) cell size
for the grid space. Thus, the landscape consists 120K cells. The time slot investigated is 2,000 years (ca. 3100 –
1100 BCE), with annual time-steps.
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Process overview and scheduling

Processes: At every time-step, corresponding to a period of one year, household agents first harvest resources
located in nearby cells (corresponding to the fields they are cultivating). They then checkwhether their harvest
satisfies theirminimumperceivedneeds. In sucha case, potential surplus is added toany stored resourcequan-
tities for a specific number of years (user defined parameter). If not, they might ask others for help (depending
on the social organization behaviour in e�ect), or theymight even eventually considermoving to another loca-
tion or settlement, depending on the expected utility for these actions.
Moreover, we assume that each (household) agent within a settlement is socially contracted as a community
member to give away a portion of its stored surplus (e.g., 20%) to be communally pooled as the corresponding
settlement trading resources and be traded away by the settlement later on. Then, the settlement can trade
and exchange resources with any other settlement based on the probability of interaction or “attractiveness”
with the other settlement, thus ultimately transforming the trading network structure.
Furthermore, population size a�ects the land productivity, in two ways: positively, since the continuous occu-
pation or cultivation of an area by a large populace leads to experience and subsequent higher crop yield; and
negatively, since it also leads to overexploitation of resources, thus,induce a lower crop yield. Population levels
at a given area are a�ected bymigration, as well as natural population change by birth and death of household
population. Lower amount of resources reduces birth rate and thus leads to a reduced population size and
threatens household agents with extinction.
We also consider a natural disaster that takes e�ect at a specific year (1630 BCE, estimated by earth scientists)
that is, approximately the date of the volcanic eruption of the Thera (the nearby island of Santorini) in an at-
tempt to provide insights to whether the natural disaster a�ected the trading network behaviour and how.
Schedule: The model is developed to cover the needs of the potential organization of an artificial Minoan so-
ciety, both in the household and settlement level, based on archaeological evidence and data. At every time-
step, the following processes take place: first, we get and set known archaeological habitation sites locations
and types information on environmental cells from the associated archaeological sites dataset; the respective
information need to be available to agents that consider migrating (process) to another location. Then, envi-
ronmental updates regarding resources andpotential cultivation area for thehouseholds agents are scheduled.
Cultivation (and harvesting) process follows, where the agricultural production, that is agents reward, for each
cultivated field is calculated, based on land suitability and productivity. Household agents expected utility is
calculated from all their actions (currently cultivation andmigration), immediately a�er considering the social
organization paradigm deployed within the settlement. A�erwards, the trading process (resources exchange)
across settlements in the model environment is scheduled, based on the spatial interaction model employed
(XTENT or Gravity), thus further updating household agents utility along with the trading network structure.
Then, updates regarding agents storage, utility, and their associated characteristics are scheduled, followed
by updates on population size, a�ected by a dynamic population growth rate of 0.1%, when households con-
sume adequate resources. Moreover, population size is further updated along with available agricultural re-
sources, if the natural disaster sub-model is enabled, by simulating the e�ects on agriculture and human life of
the volcanic eruption of Thera, based on archaeological evidence and estimates. Finally, observer actions, that
is plotting graphs and recording necessary variables to output files, take place at the end of every time step.

Design concepts

Our model employs a utility-based agent design that act autonomously towards utility maximization, that can
also build and maintain complex social structures. The utility-based agent architecture, introduced by Multi-
Agent Systems, can provide a more general performance measure of the agent “well-being", since it allows a
comparison of the di�erent agent actions-states to exactly howwell the agent is in any given time-step (rational
utility maximizer). The model also includes several other design concepts:
Emergence: The main outcomes of the model are trading interaction patterns. In particular, how dense the
whole settlement trading network is and if it exhibits an accumulative or distributive behaviour in terms of re-
sources towards a few important or influential settlements, respectively. These outcomes emerge fromarchae-
ological data introduced in themodel, i.e., the spatial distribution of available knownarchaeological habitation
site locations where agents are only allowed to settle or migrate to and, to a lesser extent, from the way settle-
ments importance is defined andmodeled, a�ecting settlements interaction probability.
Adaptation: Household agents exhibit an adaptive behaviour: deciding whether or not to migrate to another
location and, if so, selecting a new location based on the agent’s expected utility for the new location; and also
a structural adaptation behaviour when the self-organization social paradigm is employed.
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The decision of whether to move depends on satisfying the only in-built goal of the household agent, that is,
to stay alive; If an agent does not receive the minimum level of resources it requires (utility threshold) for a
specified number of years in a row (and the storage is empty), then it considers migrating to another location
(or settlement).

When the self-organization social organization paradigm is employed by the households within a settlement,
they interact with one another ("gi�” exchange) for the proper allocation of resources. This is achieved by
adapting the social structure through changes to their relations (re-organization) continuously over time, thus
improving their performance as a “group” (vitality of the settlement).

Sensing: Household agents are assumed to know their own attributes, such as their current utility, surplus
stored, etc., and its current relation with other households in the same settlement. Agents have also an explicit
knowledge of the environment within a radius that is user-defined (model parameter), although we assume a
full environmental view for the agents due to the small area modeled (maximum 40 km).

Interaction: There are two main types of interactions in the model, agent - environment and agent -agent in-
teractions. The former describes the interaction of household agents with their environment, while the later
describes their interaction with other households (or settlements) in the modeling area.

The interactions related to agent - environment actions that are currently implemented in ourmodel, are culti-
vation andmigration actions. Both actions depend on the agricultural production of an environmental cell that
is a�ected by land suitability, expressed as a decay with increasing slope, and land productivity representing
soil fertility and a�ected by current population size of the settlement (and inspired by the logistic map equa-
tion). We note here, that household agents are making a decisions for cultivating a specific number of cells,
based on their number of individuals and the agricultural practice in e�ect, thus allowing them to achieve an
acceptable level of resources instead ofmaximizing it. With this assumptionwe are able achieve an appropriate
trade-o� against utility maximization consideration introduced by the agent design. Likewise, a resettlement
cost is also introduced during migration decision-making, that is defined as a decay of expected resources at
migrate location with increasing distance. Re-settlement cost is intuitively reflecting costs associated with the
relocation of the household agent.

The agent - agent interactions are structured in two levels, intra-settlement interactions that are defined based
on thesocial organizationparadigmemployedby thehouseholdagentswithinasettlement, and inter-settlement
interactions, defined by the spatial interaction model deployed.

Stochasticity: Stochasticity is used in two ways. First, the model can be initialized stochastically, regarding
the initial number of settlements in themodel, initial number of households, number of household individuals,
and amount of resources in each cell. These initialization methods are stochastic so that each simulation run
for each scenario produces di�erent results. In this work, in particular, only the number of settlements is not
stochastically initialized, but rather based on actual number and locations of known archaeological habitation
sites at the beginning of our simulation (ca. 3100 BCE). Moreover, there is also an inherent stochasticity intro-
duced by the (NetLogo) modeling environment regarding the way that agents are executing related processes
in the model; households agents or settlements are executing each and every process in a random order.

Second, population dynamics are stochastically defined and based on the dynamic population growth rate
(model parameter) that is a�ected by the amount of resources (thus utility) consumed by the household agent
during each year. In addition, settlements are trading resources with one another based on their “attractive-
ness” (interaction probability) that is a�ected by the distance between them and their (weight of) importance,
and thus the spatial interaction model in e�ect.

Collectives: This model includes two kinds of collectives: households that are representing groups of inhabi-
tants, and settlements representing groups of households. The collectives are represented as specific entities
with their own state variables and behaviours, as defined above at Entities, State Variables, and Scales. These
collectives are included in the model because are essential in modeling an artificial human society from the
bottom up.

Observation: The model was tested and analysed by recording all entities and model variables, and observe
and validate their values process by process. Moreover, at the graphical user interface (GUI) of our model some
of these variables are traced at every time-step for quick evaluation, such as the number of households and
settlements, population size, average utility and storage (and per settlement), agent migrations and average
migrations per (annual) time step, relative graph centrality (in-degree, out-degree, betweenness) and central-
ization (clustering coe�icient), and others. In any case, all non-static variables are recorded and provided in
output files for further statistical analysis.
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Initialization

Thenumberofhouseholdsandpopulationsize foreachhouseholdagentare randomly initialized fromasample
of a uniform distribution, depending on the maximum number of inhabitants per cell (ha) and individuals per
household agent. The amount of resources for each environmental are also randomly initialized from a sample
of a normal distribution. In this work, initialization of state variables is intended to be case-specific, that is,
an artificial Minoan society at a specific geographical territory of the island of Crete, Greece (the wider area
between the archaeological sites of Knossos and Malia). Therefore, the number of settlements is initialized to
twenty one (21) placed at specific environmental cells, that correspond to specific geographical locations of
known archaeological habitation sites locations, that are provided as input spatial data file (shapefile).

Themaximumnumber of inhabitants per cell (ha) is set to 250 people and themaximumnumber of individuals
per household is set to 10. Regarding the environmental resources, theminimumamount of resources required
per individual per year was set to 250 kg, while households employ an intensive agricultural practice leading
to a production of maximum 1,500 kg /ha. All these parameters are based on archaeological estimates for the
periodandareaunder study (Halstead 1981; Isaakidou2008; Jusseret 2010). Moreover, environmental cells state
variables, such as elevation and (derived) slope (raster DEM), or aquifer locations (shapefile) are also provided
as input spatial data files to the model.

Various scenarios are taken into account for the experimental setup, with di�erent parameterization regarding
the two spatial interaction models, XTENT and Gravity, and the two di�erent ways to characterize the impor-
tance of settlements; based on population and the settlement’s lifetime or solely on available archaeological
data provided as input to the model.

Input data

As alreadynoted, an agentmaymigrate only to a cellwhere knownarchaeological habitation sites existed in the
specific time step, based on the archaeological survey conducted in the specific geographic area. The specific
geographical locationsof knownarchaeological habitation sites locations (and types) areprovidedas input spa-
tial data file (shapefile) and used by the model during the simulation to map known site locations to available
migrate locations for the household agents.

Submodels

Besides the settlements trading submodel, two other submodels are included in our ABM: the social organi-
zation of household agents within a settlement, in particular the self-organization social behaviour, and the
natural disaster submodel. Detailed descriptions for the last two submodels are provided in previous work and
versionsof ourABM.Please refer toSection4 for the trading submodel and toChliaoutakis&Chalkiadakis (2016)
for the self-organization algorithm and Chliaoutakis et al. (2018) for details on the volcanic eruption submodel.
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