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by Anastasios BOKALIDIS

Μιά απο τις πιο ενδιαφέρουσες προκλήσεις του 21ου αιώνα, που έχουν να αντιμετω-
πίσουν οι επιστήμονες είναι η ραγδαία και συνεχόμενη αύξηση των δεδομένων. Πολ-
λοί τομείς της επιστήμης και της τεχνολογίας αντιμετωπίζουν προβλήματα στην δι-

αχείρηση και την επεξεργασία των τεράστιων δεδομένων. ΄Ενας απο αυτούς τους
είναι η Βιολογία. Η διαδικασία την φυλογεννετικής ανάλυσης των DNA, RNA,
πρωτεϊνών και άλλων τύπων φυλεγέννεσης, καταναλώνει αρκετό χρόνο, η οποία
μάλιστα παρουσιάζει και μια μη γραμμική αύξηση όσο αυξάνεται ο όγκος των δε-

δομένων χρήσης. Επιπλεόν δεν είναι μόνο ο χρόνος που απασχολεί τους επιστή-
μονες αλλά επίσης και τα υπολογιστικά συστήματα που χρειάζονται για τον παρα-

πάνω σκοπό. ΄Οχι μόνο οι προσωπικοί υπολογίστες δεν μπορούν να εξαλείψουν το
πρόβλημα, αλλά ακομή και οι υπερυπολογιστές μπορούν δεν μπορούν να καλύψ-
ουν τις ανάγκες μπροστά στον υπερόγκο δεδομένων. Οι πρώτοι έχουν επεξερ-
γαστές οι οποίοι δεν μπορούν να ξεπεράσουν ένα κατώφλι επιτάχυνσης και παρ-

αλληλισμού των εφαρμογών που θέλουμε, και οι δεύτεροι χρησιμοποιούνται μόνο
για ειδικές μελέτες και υπολογισμούς. Σε αυτή την εργασία, γίνεται μια μελέτη
πάνω σε έναν αλγόριθμο φυλογεννετικής ανάλυσης, RAxML, ο οποίος βασίζεται
πάνω στην μέθοδο της μέγιστης πιθανοφάνειας. Ο σκοπός αυτής της εργασίας
είναι να βελτιώσουμε επιταχύνοντας κάποιες συναρτήσεις του RAxML, οι οποίες
καταναλώνουν περισσότερο απο το 80% του συνολικού χρόνου εκτέλεσης και ει-
δικά όταν βρίσκονται υπό επεξεργασία μεγάλα αρχεία δεδομένων. Οπότε, πρώτο
βήμα είναι να μελετήσουμε πως συμπεριφέρεται ο RAxML ανάλογα με τα δεδομένα
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εισόδου και ως δεύτερο βήμα να σχεδιάσουμε και να κατασκευάσουμε επιταχυν-

τές όπου είναι απαραίτητοι για να βελτιώσουμε την απόδοση. Αυτοί οι επιταχυν-
τές σχεδιάζονται ώστε να εγκατασταθούν πάνω σε FPGAs αλλά και σε αντίσ-
τοιχες πλατφόρμες νέφους της Amazon. Τέλος, γίνεται μελέτη και σύγκριση των
αποτελεσμάτων του αρχικού αλγορίθμου με τους αντίστοιχους επιταχυντές μας

και επίσης παρουσιάζεται ένα θεωρητικό μοντέλο για το πως θα ήταν η βέλτιστη

συμπεριφορά των επιταχυντών μας και ποιά η βελτίωση που θα πρόσφεραν σε συνο-

λικό επίπεδο στον αλγόριθμο. . .
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One of the most interesting challenges through the 21st century, that re-
searchers have to encounter is the rapid and continuous increase of data.
Many fields of science and technology face problems in the management and
processing of vast data. One of them is Biology. The process of phylogenetic
analysis of DNA, RNA, Protein, and other types of phylogenies, consumes a
lot of time which performs a non-linear increase while the volume of the data
for processing tends to increase. In addition, it is not only the time which is
of concern to the scientists but also, the computing systems which are needed
for this purpose. Not even personal computers can eliminate this problem,
but also high-performance computers are inadequate to face up vast data.
The first ones have CPUs that can not surpass a threshold in speed up and
parallelism and the second ones are used only for special studies and compu-
tations. In this project, there is a study on a phylogenetic analysis algorithm,
RAxML, which is based on the maximum likelihood method. The purpose
of this project is to optimize by accelerating some functions of RAxML which
consume more than 80% of the total execution time and especially under
the processing of big data sets. So, the first step is to research the way that
RAxML behaves according to the input data and the second step is to de-
sign and construct hardware accelerators required for optimal performance.
These accelerators are designed to be mapped and routed on FPGAs and
also on similar platforms of the Amazons’ cloud. Finally, there is a study and
comparison between the results coming from the initial algorithm and the
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results that come from the accelerators. Moreover, a theoretical model is in-
troduced which shows the optimal performance of the accelerators and how
it can affect the overall performance of the algorithm. . .
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Chapter 1

Introduction

The first chapter contains information about the process of evolution and the
motivation of this work. In addition, there is a brief structure of this thesis.

1.1 Introduction

Biology is one of the main fields of science and its rapid evolution attracts
many people and other fields of science to be involved in it. Through bi-
ology, humankind has discovered species, organisms, diseases and other
living species, which contributed to the expansion of his knowledge about
ourselves and nature. One of the most remarkable achievements is that sci-
entists found out humans’ ancestors and their origins since the first eras of
mankind. Human DNA, as well as the DNA of other organisms, are inter-
connected creating a large tree of nature, a tree of life. Apart from DNA,
biologists achieved to analyse and compare more genetic materials such as
RNA, Proteins, Acids to interconnect not only the same organisms, but also
micro-organisms, viruses, bacteria, and fungi.

Although more species are discovered every day and they get into the tree
of life, the magnitude of big data problems gets tremendous dimensions. It
is not only the unique features of species that vary between others but also
some features that differentiate two units of the same species. So it is obvious
how data volume rapidly increases. So, according to this thesis, the evolution
grade of the tree of life is getting bigger while the number of species and their
unique features is differentiated, in other words, each newly inserted piece
of information burdens the problem separately.

Nowadays, many algorithms construct the tree of life and they vary in species,
implementation techniques, and variables, but all of them face the problem
of big data. Approximately, the time which is spent to analyze, compare
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and construct the trees of life is equal among these algorithms, passing on
them the same volume of data. Theoretically, the problem could have been
resolved, considering that high-performance processors-computer systems
have been integrated into our daily life. Even more, supercomputers that
have operations to speed up different types of algorithms could resolve this
issue. Although the above solutions seem to be optimistic, these technol-
ogy architectures focus on executing a wide variety of instructions and ap-
proach a fulfilling performance. The instructions of the algorithms demand
many operations such as additions, subtractions, and multiplications, to be
executed in a rapid and recurring way. In case that these operations are con-
verted to commands of one CPU, the CPU will execute the operations with
several unnecessary stages between them. Moreover, some CPU circuits can-
not be executed to meet a user’s requirements, because CPUs are constructed
in such a way so as to include all possible required stages in their execution,
whether it is a simple operation or a set of complex commands. As a conse-
quence, this delays every CPU execution.

Since 1984, the FPGA industry delivered the first reprogrammable logic de-
vice which urged scientists to invest in them. Till the beginning of 20th cen-
tury, FPGA devices were integrated in many technology fields. This over-
usage is credited to some capabilities of FPGA. That is the allocation of their
resources in an efficient way that users can design from a simple logic gate to
a complicated circuit, the low power efficiency, and their ability to be recon-
figured both locally and globally on their designs. So, exploiting the advan-
tages of FPGAs and recognizing the specificity of bioinformatics computing
systems, the contribution of this thesis is to:

• Find a solution to a problem that burdens the surveys on bioinformatics
and specific on phylogeny.

• Describe some possible accelerators of time-consuming functions.

• Design and construct units that implement the requisite computations
of the accelerator.

• Distribute and manage the available resource in order to surpass a sim-
ple CPU’s speed.

• Propose hardware platforms that can load and execute effectively the
demands of the accelerator.
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• Make this implementation able to be improved on future work, given
its restrictions.

1.2 Thesis Outline

• Chapter 2 - Theoretical Background: There is a reference on some prin-
ciples of Phylogenetics and how they are used in algorithms.

• Chapter 3 - Related Work: There is a reference on some relevant previ-
ously implemented works and a detailed reference on previous works
on the same topic as ours.

• Chapter 4 - Maximum Likelihood Method: The method of ML under
the use of protein data is described and its differentiation on RAxML.
There is also a reference to the PLL’s functions.

• Chapter 5 - Hardware Architecture Of Accelerator: The results of the
profiling on the PLL are presented and then the architecture of the ac-
celerators of the chosen functions.

• Chapter 6 - FPGA Implementation: There is a description of the tools
that are used for this work, the FPGA platforms that accelerators in-
stalled on, and a brief reference on OpenCL, which is used on the im-
plementation of the host.

• Chapter 7 - Results: The results that came from software executions are
compared with the results that came from hardware executions. There
is also a theoretical framework on how the design could perform with
the usage of a larger platform.

• Chapter 8 - Conclusions And Future Work: The conclusion which
came from the execution of the design and its implementation is de-
scribed and some ideas for improvement are also proposed.

∗∗It is of high importance to mention that a part of this thesis is presented on the
paper [1] which was submitted and verified on IEEE Micro this year.
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Chapter 2

Theoretical Background

In this chapter, the subject which is under discussion is the problem of iden-
tifying phylogenetic relationships, which are derived from different organ-
isms. In other words, how we can determine the evolutionary relationships
of these organisms with criteria, the amino acid sequence of some proteins
(or the sequence of the corresponding genes). Additionally, there is a refer-
ence on how the RAxML software works and its use in this study.

2.1 Phylogenetics - Basic Principles

Over the years, as many fields of science are being developed, Biology and
its fields try to make their revolution, and in order to achieve it there must
be a collaboration with computer science and new technology innovations.
On this topic, it can be assumed that there is a combination of different fields
of Biology with computer science, such as Bioinformatics and Phylogenetics
(part of Structural Biology). But, among these fields, Phylogenetics is the one
which concerns us on this thesis. Phylogenetics is a part of systematics that
addresses the inference of the evolutionary history and relationships among
or within groups of organisms (e.g. species, or more inclusive taxa). These
relationships are hypothesized by phylogenetic inference methods that eval-
uate observed heritable traits, such as DNA and protein sequences or mor-
phology, often under a specified model of the evolution of these traits. The
result of such an analysis is a phylogeny (also known as a phylogenetic tree)
— a diagrammatic hypothesis of relationships that reflects the evolutionary
history of a group of organisms.

Following the principles of Phylogenetics, biologists make a big effort to col-
lect all the appropriate data so as to draw out conclusions about the evo-
lutionary history of species, their ancestors, or maybe group some species
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according to common ancestors. Nevertheless, it is necessary to know what
we are going to compare. If we want to evaluate phylogenetics relationships
from the sequences of some genes, we have to compare corresponding genes,
so as to trace their homology. Called Homologous proteins (or genes) are
generally the proteins that have arisen through the evolution of a common
ancestor. The corresponding genes in different organisms are also referred
to as orthologues, and it is considered that any differentiation has occurred
due to specialisation. In contrast, homologous proteins, or genes, within the
same species are called paralogues, and we believe that they have arisen from
gene duplication and independent evolution within the kind. Finally, there
are the so-called xenologues genes, which are homologous genes that have
arisen from a process of horizontal gene transfer (usually from a prokaryotic
organism). An example of the first case is the alpha-chains of mammalians
hemoglobin (e.g. humans, chimpanzees, dogs, etc.), while for the second
case we could mention within the same species (e.g. humans), the alpha,
betta, gamma-chains of hemoglobin but also myoglobins.

2.2 Phylogeny - Phologenetic Trees

All the above theories are associated with the phylogenetic tree. A phylo-
genetic tree is a branching diagram or "tree" showing the evolutionary re-
lationships among various biological species or other entities—their phy-
logeny—based upon similarities and differences in their physical or genetic
characteristics. All living species on Earth are part of a single phylogenetic
tree, indicating common ancestry.
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FIGURE 2.1: A phylogenetic tree showing the three
life domains: bacteria, archaea, and eukaryota. URL:
https://commons.wikimedia.org/wiki/File:Phylogenetic_

Tree_of_Life.png

2.2.1 Types Of Trees

Phylogenetic Tree has some properties. First of all, the species represented in
it, are called taxa (singular - taxon). A node of the tree can contain more than
one taxon and they called sister groups while they have a common ancestor.
Moreover, into the tree some nodes might have a common ancestor with a
separate sister group, so they called outgroups of the sister group. Next trees
are classified as rooted or unrooted trees. A Rooted phylogenetic tree is a
directed tree with a unique node — the root — corresponding to the (usually
imputed) most recent common ancestor of all the entities at the leaves of the
tree. The root node does not have a parent node but serves as the parent of all
other nodes in the tree. The root is therefore a node of degree 2 while other
internal nodes have a minimum degree of 3 (where "degree" here refers to the
total number of incoming and outgoing edges). The most common method
for rooting trees is the use of an uncontroversial outgroup—close enough to
allow inference from trait data or molecular sequencing, but far enough to
be a clear outgroup. Unrooted trees 2.2b illustrate the relatedness of the leaf
nodes without making assumptions about ancestry. They do not require the
ancestral root to be known or inferred. Unrooted trees 2.2a can always be
generated from rooted ones by simply omitting the root. By contrast, infer-
ring the root of an unrooted tree requires some means of identifying ancestry.
This is normally done by including an outgroup in the input data so that the
root is necessarily between the outgroup and the rest of the taxa in the tree, or

https://commons.wikimedia.org/wiki/File:Phylogenetic_Tree_of_Life.png
https://commons.wikimedia.org/wiki/File:Phylogenetic_Tree_of_Life.png
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by introducing additional assumptions about the relative rates of evolution
on each branch, such as an application of the molecular clock hypothesis.

(A) (B)

FIGURE 2.2: Sample of (A) a rooted tree and (B) an unrooted
tree.

After classifying a phylogenetic tree as a rooted or unrooted tree, we can
then ascribe on it some other attributes. Both rooted and unrooted trees can
be either bifurcating or multifurcating. A rooted bifurcating tree has exactly
two descendants arising from each interior node (that is, it forms a binary
tree), and an unrooted bifurcating tree takes the form of an unrooted binary
tree, a free tree with exactly three neighbors at each internal node. In contrast,
a rooted multifurcating tree may have more than two children at some nodes
and an unrooted multifurcating tree may have more than three neighbors at
some nodes. Moreover, both rooted and unrooted trees can be either labeled
or unlabeled. A labeled tree has specific values (names or codes of taxa, level
of taxa on the tree hierarchy, frequencies of appearance) assigned to its leaves,
while an unlabeled tree, sometimes called a tree shape, defines a topology
only.

2.2.2 Enumerating trees

The number of possible trees for a given number of leaf nodes depends on the
specific type of tree, but there are always more labeled than unlabeled trees,
more multifurcating than bifurcating trees, and more rooted than unrooted
trees. The last distinction is the most biologically relevant; it arises because
there are many places on an unrooted tree to put the root. For bifurcating
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labeled trees, the total number of rooted trees is:

Nrooted =
(2n− 3)!

2n−2(n− 2)!
(2.1)

For bifurcating labeled trees, the total number of unrooted trees is:

Nunrooted =
(2n− 5)!

2n−3(n− 3)!
(2.2)

Among labeled bifurcating trees, the number of unrooted trees with n leaves
is equal to the number of rooted trees with n-1 leaves. The number of rooted

Labeled leaves Binary unrooted
trees

Binary rooted
trees

1 1 1
2 1 1
3 1 3
4 3 15
5 15 105
6 105 295
7 295 10,395
8 10,395 135,135
9 135,135 2,027,025

10 2,027,025 34,459,425

TABLE 2.1: All possible trees with and without root resulting in
species species

trees grows quickly as a function of the number of tips. For 10 tips, there are
more than 34× 106 possible bifurcating trees. The conclusion is that, as the
number of species increases, the possible trees increase significantly, making
it difficult to identify the authentic phylogenetic tree that contains all known
species so far.

2.3 Implementation Of Phylogenies With The Use

of Software

Following the principles of phylogenetics and its fields of study, scientists
are trying to develop stable algorithms based on mathematical, biological
models, and using different types of valid input data they can evaluate and
construct the tree of life. Past efforts came up positive and nowadays there
is a wide variety of algorithms demonstrating the evolution of species. It is
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estimated that there are more than 200 algorithms that focus on the evolu-
tion of the tree of life, each one uses a different mathematical model. Many
of them are available on different websites such as in the Department of
Genome Sciences, sector of the Medicine school of University of Washington (
http://evolution.genetics.washington.edu/phylip/software.html ). In
this thesis, the using algorithm is RAxML (Randomized Axelerated Maxi-
mum Likelihood)[2].

2.4 RAxML

RAxML is a maximum likelihood criterion (ML)-based program and its goal
is to identify which tree, out of all possible trees, best estimates the true evo-
lutionary history of the data analyzed. It can use a variety of different charac-
ter sets (PHYLIP type (.phy) [3]), including nucleotide, amino acids, binary,
and multi-state character data.

The first step of the search strategy employed by RAxML is the alignment
of input sequences (better previously aligned) and the generation of a start-
ing tree. This starting tree is constructed by adding the sequences one by
one in random order, and identifying their optimal location on the tree [4].
The random order in which sequences are added is likely to generate several
different starting trees every time a new analysis is run (especially for data
sets with more than a few sequences), which allows better exploration of the
tree space. Moreover, RAxML optimizes the length of the tree’s branches
and then calculates the score of the likelihood for each subtree under the ML.
The second step of the search strategy involves a method known as lazy sub-
tree rearrangement (LSR) [5]. Briefly, under LSR, all possible subtrees of a
tree are clipped and reinserted at all possible locations as long as the num-
ber of branches separating the clipped and insertion points is smaller than
N branches. RAxML estimates the appropriate N value for a given data set
automatically. The LSR method is first applied on the starting tree, and sub-
sequently multiple times on the currently best tree as the search continues
until no better tree is found. Finally, after some optimization, all best trees
are compared among them and the final best tree is generated.

It is important to be mentioned that the computation load of the maximum
likelihood criterion is increased dramatically while the number of species
and their length of sequences are increased. This is a problem that still re-
mains even though some newer versions have been published, implemented

http://evolution.genetics.washington.edu/phylip/software.html
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with SSE, AVX, PThreads, and MPI. In this thesis, there is an effort to opti-
mize this overall load by achieving a significant factor of parallelism of tasks
and good management of available resources.
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Chapter 3

Related Work

Bioinformatics applications are characterized by immense computational loads
and extremely large datasets. This is a problem that arises from the rapid in-
crease of genetic data discovered by scientists, and they vary in many struc-
ture states which prevent the results of comparisons from coming out of one
differentiation. Compact computing systems used in time, could not surpass
a threshold of speedup on those processes, directing scientists to find some
other innovation. By the time FPGAs came to the surface and started to be
used in frequent and multipurpose problems, bioinformatics turned to using
them.

Testing and verifying their tasks and designs on FPGAs, some important
speedups are observed. However, FPGAs have not constituted the unique
solution. Passing the times, GPUs were upgraded and started to obtain a
standalone functionality, which was specialized on the task level parallelism.
So, using these technologies some problems started to get solved. The fol-
lowing sections describe some of the basic problems that are met on bioinfor-
matics and especially on the algorithms that are used for implementing their
surveys.

3.1 Sequence Comparison

One basic problem that was resolved is the Sequence Comparison on some
bioinformatics algorithms. Sequence comparison algorithms compute the
degree of matching between two or more biomolecular sequences. Biologists
may use sequence comparison results either as a proxy to infer sequence ho-
mology or as part of larger computational pipelines. One basic algorithm
used for this purpose is BLAST (Basic Local Alignment Search Tool) [6],
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used to find similarities between genetic sequences (queries) and sequence
databases. Dollas et al. [7] [8] [9], has proposed several different architec-
tures and implementations of standalone FPGA-based platforms for BLAST
achieving a great speedup of execution time. In addition to the TUC archi-
tectures, other research groups have looked into the BLAST algorithm [10]
[11] [12] [13]. Another similar algorithm with BLAST is CAST [14] an itera-
tive algorithm for the complexity analysis of sequence tracts. In these algo-
rithms, the most important factor that affects execution speed and the quality
of their results is the occurrence of low complexity regions (LCRs) in protein
sequences. So, to reduce it, there was an FPGA-based approach of CAST by
[15] where the execution time was accelerated by exploiting some inherent
parallel characteristics.

3.2 Multiple Sequence Alignment

Apart from sequence comparison algorithms, there are some for Multiple Se-
quence Alignment (MSA) which bring scientists in trouble. Some of them are
MAAFT[16] and T-Coffee[17] algorithms which are progressive MSA meth-
ods based on the Fast Fourier Transform (FFT). Their phase of sequence align-
ment takes up to 80% of the total execution time. So, Lakka et al. [18]
proposed an FPGA-based IP core for each algorithm that implements this
phase and achieves speedups 10x to 50x faster than sequential execution for
MAAFT and 1× to 10× for T-Coffee.

3.3 Prediction of RNA and protein secondary struc-

ture

Prediction of RNA and protein secondary structure is of great importance in
Medicine and Biology as it may highlight structural and functional properties
of molecules. Analyzing the algorithms correlates with this procedure, the
weak spots came to the surface, such as the excessive execution time and the
huge search space. So, for some algorithms such as Zuker [19] and Predator
[20] , Smerdis et al. [21] [22] designed FPGA-based IP blocks to accelerate
and eliminate these spots, achieving a speedup of 3x up to 10x for Zuker and
30x up to 50x for Predator.
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3.4 Gene identification

Another issue that is of concern to scientists is Gene identification. It is one
of the most important steps in the process of understanding the information
contained in (complete) genome sequences. The gene prediction problem
refers to the identification of biologically functional stretches of sequences
(genes) in genomic DNA. An algorithm used for this purpose, Glimmer [23] ,
got under analysis and profiling by Chrysos et al. [24] who proposed a recon-
figurable architecture implementing this algorithm. The result was execution
speedups from 1.14x up to 2.37x when it was compared with the official soft-
ware implementation on a general-purpose PC.

3.5 Phylogenetic Trees

In previous Chapter 2, the definition and some principles of phylogeny were
described. It was also shown that increasing the number of species (data),
the number of trees under comparison reaches major values. For this pur-
pose, the survey on phylogenetic trees is a significant burden on scientists’
shoulders. To reach a solution, scientists focus on Phylogenetic Likelihood
Function (PLF) which is the most widely used optimality criterion to score
and, thus, choose among distinct evolutionary scenarios (phylogenetic trees).
The PLF is used by many program packages like RAxML[2], GARLI[25], Mr-
Bayes[26], PAML[27], and PAUP[28].

A series of reports for the optimization of PLF, made by Alachiotis et al.
[29] [30]. The more recent work was an optimized reconfigurable system
for computing the PLF on DNA data that extends its usage in RAxML algo-
rithm. The main goal of this work was to implement some pipeline stages
to operate each different state of data. Next, integrating a scaling unit and
designing proper host-side management, it reached a finished system. The
targeted platforms were Virtex 6 SX475T-2 FPGA and Virtex 5 SX95T FPGA.
Overall, an improvement of approximately 57% was achieved, comparing
the execution on FPGA and the execution on PC with the version of AVX in-
trinsics. In addition, one similar work was conducted by Alachiotis et al. [31]
and was compared with the OpenMP version of RAxML

As PLF is not only specialized in RAxML, Stephanie Zierke and Jason D
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Bakos [32], presented an FPGA acceleration of PLF for Bayesian MCMC in-
ference methods, using the MrBayes 3 tool as a framework for designing
the co-processor. MrBayes uses the PLF to evaluate the likelihood of trees
(which consumes nearly all of the execution time) and uses the Metropolis-
coupled Markov chain Monte Carlo (MCMC) search to move through the
tree space. In this application, three components are designed which are in-
volved in computing the log-likelihood of a tree. Each step depends on the
previous so they must be performed sequentially but can be parallelized us-
ing a single deep pipeline. So, connecting them properly and reducing I/O
times, a range of 4.7 to 8.7 speedup vs software execution time was achieved
(speedup based on datasets).

Another technology used for accelerating PLF or part of it, is Intel Many
Integrated Core (MIC). Kozlov et al. [33] describe an optimized implemen-
tation of the PLF kernel for the novel Intel Many Integrated Core (MIC) ar-
chitectures. Using a MIC-based accelerator (Xeon Phi 5110P), they achieved
speedups ranging from 1.9x to 2.8x for different PLF kernels, compared to a
highly optimized AVX implementation running on a dual socket Xeon E5-
2680 system. By integrating the optimized PLF into the phylogenetic infer-
ence program RAxML-Light [34], the overall execution times were reduced
by up to a factor of two. To assess the scalability on multiple Xeon Phi
cards, a hybrid MPI-OpenMP version of the ExaML [35] code was devel-
oped. When ExaML is executed on two coprocessors on the same node, we
obtain speedups of up to a factor of 3.7 (vs. a CPU baseline) and 1.8 (vs. a
single MIC). As expected, speedups increase with growing dataset size and
become stable for alignments that require processing of 1-2 million sites per
MIC card.

The technologies used on surveys on phylogenetic trees are not restricted
only on FPGA-based platforms and acceleration cards but also extend to
GPUs, a rapidly evolving hardware component. Fernando Izquierdo-Carrasco,
Nikolaos Alachiotis and Simon Berger [4] developed a generic Vectorization
Scheme and a GPU kernel for Phylogenetic Likelihood Library (see Chapter
4). They presented a novel scheme for vectorizing computations and orga-
nizing conditional likelihood arrays (CLAs) in such a way that they do not
need to be transferred at all between the GPU and the CPU. There was also a
comparison between the performance of the GPU implementation for DNA
data with a highly optimized x86 version of the PLL that relies on manually
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tuned AVX intrinsics into the RAxML-Light. The metrics for the calculations
sprang by timekeeping floating-point computations of which the amount in-
creased with the squared number of states (a range of 1.024 through 262.144).
That GPU implementation accelerated the likelihood computations by a fac-
tor of two compared to the currently fastest available x86 implementation.

3.6 Thesis Approach

This thesis aims to develop accelerators for Phylogenetic Likelihood Library
used in RAxML. The difference between this work and the previous ones is
that it focuses on the usage of PLF with protein sequence input datasets while
all the previous ones focused on DNA sequence datasets whose structure is
more simple and accurate. Cumulatively, all works referred to on this chap-
ter are shown in 3.1, while the bold one is our work. The final calculation
of PLF, with the protein sequences as input, requires 5 times as many stages
(it is the difference between nucleotides and amino acids) and as a sequence
requires more operations and computation time. This is the stimulus and the
goal to find the spots that slow down the total execution time and bind the
majority of available resources. Achieving it, the next step is to design accel-
erators for them. These hardware accelerators are routed and placed onto a
reconfigurable computing platform (FPGA) and then on a cloud-based recon-
figurable computing platform (FPGA). The purpose of these two implemen-
tations is that users that want to use the whole algorithm for the construction
of a tree of life, can even have quicker results using a recommended or indi-
vidual FPGA or executing it remotely on the cloud-based FPGA.
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Technology Algorithms Data

FPGA

BLAST[6] DNA
CAST[14] Proteins

MAAFT[16] DNA
T-Coffee[17] DNA

Zuker[19] Proteins, RNA
Predator[20] Proteins, RNA
Glimmer[23] Genes

Bayesian[26] (PLF) DNA
RAxML[2] (PLF) DNA

RAxML (PLF) Proteins
Intel
MIC

RAxML-Light[34] (PLF) DNA
EXaML[35] (PLF) DNA

GPU RAxML-Light (PLF) DNA
EXaML (PLF) DNA

TABLE 3.1: Accelerated Algorithms on different technologies
according to their processing Data



17

Chapter 4

Maximum Likelihood Method

In this chapter, the Maximum Likelihood Method is described and also how
this method can be computed. There is also a reference on some amino acid
models used in RAxML and consecutively for the execution of ML. In addi-
tion, there is a brief description of the functions of PLL (Phylogenetic Likeli-
hood Library) that implements the ML.

4.1 Maximum Likelihood

Maximum likelihood is a general statistical method for estimating unknown
parameters of a probability model. A parameter is descriptor of the model. A
familiar model might be the normal distribution of a population with two pa-
rameters: the mean and variance. In phylogenetics, there are many parame-
ters, including rates, differential transformation costs, and, most importantly,
the tree itself. The Likelihood is defined to be a quantity proportional to the
probability of observing the data given the model, P(D|M). Thus, if we have
a model (i.e. the tree and parameters), we can calculate the probability of
the observations that would have actually been observed as a function of the
model. We then examine this likelihood function to see where it is greatest,
and the value of the parameter of interests (usually the tree and/or branch
lengths) at that point is the maximum likelihood estimate of the parameter.
In this case, Maximum Likelihood can be used as an optimality measure for
choosing a preferred tree or set of trees. It evaluates a hypothesis (branching
pattern), which is a proposed evolutionary history, in terms of the probabil-
ity that the implemented model and the hypothesized history would have
given rise to the observed data set. Essentially, a pattern that has a higher
probability is preferred to one with a lower probability.



Chapter 4. Maximum Likelihood Method 18

4.2 Models of Amino Acid Replacement

In this thesis, all the models used for the study of ML, assume that all amino
acid sites in an alignment evolve independently and according to the same
Markov process [36]. This means they are stationary and homogeneous so
that the amino acid frequencies and the model of evolution are assumed con-
stant through time and across all sites in an alignment. Additionally, they
have the property to be time-reversible, implying that their evolution of go-
ing forward and backward in time, is the same.

The probability of amino acid i being replaced by amino acid j over time T is
Pij(T), where i and j take the values 1, 2, . . . , 20, representing the 20 different
amino acids, as shown on 4.1. These probabilities can be written as 20×20
matrices, P(T), called replacement matrices, and are essential in most meth-
ods to infer protein phylogenies [37]. These matrices are expected to cap-
ture the biological and physicochemical properties of amino acids. They are
used in distance-based methods to estimate the evolutionary distance—the
expected number of substitutions per site—between sequence pairs. In the
maximum likelihood (ML) method, they are used to compute substitution
probabilities along tree branches and hence the likelihood of the data. These
matrices are calculated as P(T) = exp(TQ), where Q is the rate matrix, with
off-diagonal elements Qij being the instantaneous rates of change of amino
acid i to amino acid j and with diagonal elements Qii being fixed so that the
row sums of Q equal 0. The off-diagonal elements of the matrix Q can be
described by the off-diagonal elements of the matrix product

so Q can be defined by two sets of components, sij and πi. The variables sij

represent the exchange abilities of amino acid pairs (i, j) and the πi values
represent the equilibrium or stationary frequencies of the 20 amino acids.
These frequencies may all be set to values estimated from the original data
used to estimate the sij, but as these applications are currently rare in phy-
logenetics, these frequencies derive empirically from phylogenetic analysis
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of several similar data sets and are assumed to be constant. It must be men-
tioned that there are many different models of amino acid sequences such
as JTT, DAYHOFF, WAG, LG, MTREV, RTREV, CPREV and all of them have
their own frequencies. For this purpose, the referred models have been tested
and there was no difference in execution times or implementations, so we
randomly selected all data sets to follow the WAG model and their frequen-
cies, and the probabilities of amino acids are shown in the next table4.1.

Amino Acids Frequencies
Amino Acid Letter Code Frequency
Alanine Ala - A 0.0866279
Arginine Arg - R 0.043972
Asparagine Asn - N 0.0390894
Aspartic acid Asp - D 0.0570451
Cysteine Cys - C 0.0193078
Glutamine Gln - Q 0.0367281
Glutamic acid Glu - E 0.0580589
Glycine Gly - G 0.0832518
Histidine His - H 0.0244313
Isoleucine Ile - I 0.048466
Leucine Leu - L 0.086209
Lysine Lys - K 0.0620286
Methionine Met - M 0.0195027
Phenylalanine Phe - F 0.0384319
Proline Pro - P 0.0457631
Serine Ser - S 0.0695179
Threonine Thr - T 0.0610127
Tryptophan Trp - W 0.0143859
Tyrosine Tyr - Y 0.0352742
Valine Val - V 0.0708956

TABLE 4.1: Amino acid frequencies (Pi). Source : https://www.
ebi.ac.uk/goldman-srv/WAG/wag.dat

4.3 Calculating Tree’s Probability

Following the Maximum Likelihood method, the probability of the tree can
be estimated by calculating a score for each assumption made for all data.
This method follows Felsenstein’s Pruning Algorithm (FPA) [38] which offers
a practical and rapid calculation of the maximum likelihood. This algorithm
proceeds by removing one pair of amino acids at a time from the tree, leaving
behind a single fictional amino acid population each time. After p-1 such
removals, we have p-1 independent trees. Their joint likelihood is equal to

https://www.ebi.ac.uk/goldman-srv/WAG/wag.dat
https://www.ebi.ac.uk/goldman-srv/WAG/wag.dat
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the likelihood of the original tree. To analyze and understand it, we start
with a simple example.

FIGURE 4.1: A-B-C tree

For each site N of Amino Acid sequence, there is a supposed tree with root
A and three vectors A, B, C , on figure 4.1. ML using the FPA tries to estimate
the reliability of the tree according to the given data.

According to the figure, it assumed that B and C have A as common ances-
tor. In order to find the accuracy of this case, the likelihood of root A must
be calculated. For each site N of B and C, the likelihood of site A must be
calculated under the next equation.

L
(
XAj = i

)
=

[
∑
z

Piz (SAB) L
(
XBj = z

)] [
∑
z

Piz (SAC) L
(
XCj = z

)]
(4.1)

In equation 4.1 the variable X represents an amino acid sequence as a vector,
variable j represents the site of sequence X and the variables i,z represent
the states of twenty amino acids. P symbolises the replacement matrix of
transitions of state i to z one for a given length S. L symbolises the likelihood
of sequence X sited on j, for all z and i states. If a sequence X is known , then
the likelihood is equal to 1, under the condition that state j and z are similar.
Contrariwise, the likelihood is equal to 0. Each sequence of A,B,C split into
N ∗ 80 vectors for each site N of amino acid sequence. Each separate vector
consists of 4 sites and each of them contains 20 probabilities corresponding
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to the 20 amino acids. Finally, the probabilities of N vectors frames a 4× 20
matrix for each site of N sequences.

FIGURE 4.2: Calculation of sequence A, assumed being ances-
tor of B and C

In the above figure, it was randomly selected site i+1 of A, B and C likeli-
hood matrices. Each one contains 20 sites corresponding to the 20 different
amino acids. In the case of B, the site of i+1 corresponds to the amino acid A
(Alanine) and that is the reason for having the value of 1 while the remain-
ing 19 amino acids have the value of 0. In the same way, matrix C has on its
i+1 site the amino acid K (Lysine) and it is the only one with value 1. The
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substitution matrix of the B sequence is called Left and contains all proba-
bilities of transformation of the sites of B, for a given branch length s1. On
the other side, this matrix is called Right and matches to the sites of C, for a
given branch length s2. So , according to the equation 4.1, the likelihood of
site i+1 is calculated as :

LA
i+1(A) =

[
PAA(s1)LB

i+1(A) + PAR(s1)LB
i+1(R) + . . . + PAY(s1)LB

i+1(Y) + PAV(s1)LB
i+1(V)

]
x
[
PAA(s2)LC

i+1(A) + PAR(s2)LC
i+1(R) + . . . + PAY(s2)LC

i+1(Y) + PAV(s2)LC
i+1(V)

]
LA

i+1(R) =
[
PRA(s1)LB

i+1(A) + PRR(s1)LB
i+1(R) + . . . + PRY(s1)LB

i+1(Y) + PRV(s1)LB
i+1(V)

]
x
[
PRA(s2)LC

i+1(A) + PRR(s2)LC
i+1(R) + . . . + PRY(s2)LC

i+1(Y) + PRV(s2)LC
i+1(V)

]
...

...

LA
i+1(Y) =

[
PYA(s1)LB

i+1(A) + PYR(s1)LB
i+1(R) + . . . + PYY(s1)LB

i+1(Y) + PYV(s1)LB
i+1(V)

]
x
[
PYA(s2)LC

i+1(A) + PYR(s2)LC
i+1(R) + . . . + PYY(s2)LC

i+1(Y) + PYV(s2)LC
i+1(V)

]
LA

i+1(V) =
[
PVA(s1)LB

i+1(A) + PVR(s1)LB
i+1(R) + . . . + PVY(s1)LB

i+1(Y) + PVV(s1)LB
i+1(V)

]
x
[
PVA(s2)LC

i+1(A) + PVR(s2)LC
i+1(R) + . . . + PVY(s2)LC

i+1(Y) + PVV(s2)LC
i+1(V)

]
(4.2)

After these calculations, the likelihoods of the common ancestor A are multi-
plied with the base frequencies π of the 20 different amino acids. Finally, the
total probability of the tree is computed by multiplying the probabilities of
its i sites of common ancestor A between them. The mathematical equation
of this process follows as :

L(i) = ∑
j

πj ∗ L
(

XA
i = j

)
, where j = A, R, N, · · ·Y, V (4.3)
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FIGURE 4.3: Calculation of final likelihood of common ancestor
A

As it is shown in the above figure the final likelihood is calculated by mul-
tiplication of all 20 likelihoods of i sites and it is estimated by the equation:

L = ∏
i

L(i) (4.4)

However, since all entries pi j of the substitution probability matrix are ≤ 1,
the individual L 4.2 values and the L(i) can be very small, a fact that may
bring on arithmetic overflows. To cope with this problem, a logarithmic ap-
proach, like Michael Otts implementation [39] on the case of nucleotides, is
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used instead of the multiplication of equation 4.4. So the last step of the Like-
lihood calculation of common ancestor A can be referred as :

L = ∑
i

log(L(i)) (4.5)

4.4 Adjustments on ML for RAxML

As it was shown in the previous sections, the Left and Right matrices are
20× 20. However, for every different estimation of a 3-node tree, these ma-
trices tend to change due to their heterogeneity. This practically means that
every vector has different frequencies for the substitution of their amino acids
during an interval dt. In detail, every vector N differs on the substitution
frequencies of their amino acids from the rest vectors, ending on vast data
usage. Due to this vast volume, Yang suggested a model which is called
the Discrete Γ Model. Discrete Γ Model uses a new substitution matrix with
20× 20× 4 dimensions, for the whole length N of all sequences. These matri-
ces were generated to accumulate uniformly all different substitution matri-
ces of all i sites of N vectors. In this thesis, the Discrete Γ Model is used
and combined with the GTR model through RAxML, results in the GTR-
GAMMA model [40] [41].
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FIGURE 4.4: Substitution Matrix 4 × 20 × 20 of Discrete Γ
Model. On the single 20× 20 matrix P symbolizes the proba-
bility and the other two letters the correlation of all amino acids

following the table 4.1

According to the above figure, the new Γ substitution matrix consists of 4
substitution matrices of 20× 20 for a given branch length. Integrating this
new matrix, results in a significant reduction of data volume under process,
without any increase in operation volume. To expand, each N vector is not
represented by each own substitution matrix but by a unified substitution
matrix for all N vectors. This conclusion derives from the following equation:

L
(
XAj = i

)
=

[
∑
z

PLkiz (SAB) L
(
XBj = z

)] [
∑
z

PRkiz (SAC) L
(
XCj = z

)]
(4.6)

Comparing equation 4.6 and 4.1, there are quite similar. The only difference
is that, for each i site of A under its likelihood computation, the likelihoods
of B and C sequences are multiplied by different substitution matrices k.
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FIGURE 4.5: Calculation of sequence A, assumed being ances-
tor of B and C under RAxML modulations

On the above figure, different substitution matrices are used, PLe f tk(s1) and
PRightk(s1) for every twenty likelihoods of i sites of B and C. Following equa-
tion 4.6 and with the use of new Left and Right matrices, the final operations
for the computation of maximum likelihood can be derived by:



Chapter 4. Maximum Likelihood Method 27

Li+1(A) =
[
PL2AA(s1)LB

i+1(A) + PL2AR(s1)LB
i+1(R) + . . . + PL2AY(s1)LB

i+1(Y) + PL2AV(s1)LB
i+1(V)

]
x
[
PR2AA(s2)LC

i+1(A) + PR2AR(s2)LC
i+1(R) + . . . + PR2AY(s2)LC

i+1(Y) + PR2AV(s2)LC
i+1(V)

]
Li+1(R) =

[
PL2RA(s1)LB

i+1(A) + PL2RR(s1)LB
i+1(R) + . . . + PL2RY(s1)LB

i+1(Y) + PL2RV(s1)LB
i+1(V)

]
x
[
PR2RA(s2)LC

i+1(A) + PR2RR(s2)LC
i+1(R) + . . . + PR2RY(s2)LC

i+1(Y) + PR2RV(s2)LC
i+1(V)

]
...

...

Li+1(Y) =
[
PL2YA(s1)LB

i+1(A) + PL2YR(s1)LB
i+1(R) + . . . + PL2YY(s1)LB

i+1(Y) + PL2YV(s1)LB
i+1(V)

]
x
[
PR2YA(s2)LC

i+1(A) + PR2YR(s2)LC
i+1(R) + . . . + PR2YY(s2)LC

i+1(Y) + PR2YV(s2)LC
i+1(V)

]
Li+1(V) =

[
PL2VA(s1)LB

i+1(A) + PL2VR(s1)LB
i+1(R) + . . . + PL2VY(s1)LB

i+1(Y) + PL2VV(s1)LB
i+1(V)

]
x
[
PR2VA(s2)LC

i+1(A) + PR2VR(s2)LC
i+1(R) + . . . + PR2VY(s2)LC

i+1(Y) + PR2VV(s2)LC
i+1(V)

]
(4.7)

It is noticed that a different substitution matrix between k=[1:4] corresponds
to each i site of B and C sequences. In detail, during the study on i site of B
and C, the matrix PL1 and PR1 are used. Forwarding to the i+1 site, PL2 and
PR2 are used, and so on.

In addition, after computing all likelihoods of site i, RAxML uses another
20× 20 matrix in combination with likelihoods for some further calculations.
It is called Eigen Vector (EV) and as its initials indicate, it is the eigenvectors
of the relationship P(s)=eQs. The reason why RAxML performs these addi-
tional operations on the GTR-GAMMA model is to simplify the calculations
at the root of tree A as well as the duration of optimizing the length of the
tree branches [42]. Practically, the process which uses EV is a multiplication
followed by the addition of the twenty likelihoods of i site with the whole
EV. The mathematical equation is shown below:

L
(
XAj = i

)
= ∑

K
∑
z

EVK(z)L
(
XAj = K

)
(4.8)

Parameter K symbolizes the twenty likelihoods of one i site of the vector A
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and consequentially twenty eigenvectors of matrix EV. As it is distinguished
in equation 4.8 each likelihood of position i of the vector A is multiplied by
twenty of eigenvectors in the EV array and then the result is added cumu-
latively, creating the final probabilities of the vector A. More specifically, the
table of EV vectors is as follows:

FIGURE 4.6: EigenVectors EV Matrix

Looking at the above figure, it is obvious that each twenty elements of Z1, Z2,
Z3, and Z4 of the EV matrix correspond to a different value of k. Below, it is
schematically described:
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FIGURE 4.7: Final operations between Eigenvectors and Likeli-
hoods

To the end of the above processes, remains the last step, a scaling process
which follows the 4.5 to avoid arithmetic overflows and get more accurate
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results.

4.5 Phylogenetic Likelihood Library

The Phylogenetic Likelihood Library (PLL) is a parallelized and highly op-
timized software library derived from RAxML. The current PLL code com-
prises implementations of state-of-the-art algorithms and data structures along
with low-level technical and hardware-dependent optimizations. The library
can calculate (and optimize) the likelihood on a phylogenetic tree for a plethora
of statistical models and data types. In this case, the data type is amino acids
(AA) and there is the usage of the GTR-GAMMA model as it was previously
mentioned. For computing the likelihood on a tree and for optimizing some
requisite and useful parameters, the below core functions are needed:

• The newview() or PLF (phylogenetic likelihood) function updates a con-
ditional likelihood vector given two child nodes and given two transition
probability matrices P for the respective branch lengths leading to these child
nodes. It is also the main computation core for the ML as described in previ-
ous subsections.
• The evaluate() function is called at the virtual root that has been placed into
the unrooted tree for scoring it. Given the two conditional likelihood arrays
at either end of the rooted branch and the branch length, this function evalu-
ates and computes the overall log-likelihood of the tree.
• The coreDerivative() function computes the first and second derivative of
the likelihood function at a given branch.
• The sumGAMMA() function pre-computes the element-wise product of
the ancestral probability vectors to the left and the right of the branch under
optimization. This product is then re-used repeatedly by iterations of coreD-
erivative() and allows to save time by avoiding redundant computations.
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Chapter 5

Hardware Architecture Of
Accelerator

The Fifth chapter refers to some features of the profiling made for PLL func-
tions and why it urged us to focus on some of them. Moreover, it describes
in detail the architecture of the accelerators and the framework on which are
mapped. The next sub sections analyze the whole implementation of the ker-
nels which contains the fetch units of input-output data, the processing units,
and the communication from the host to kernels and vice versa.

5.1 Profiling of PLL

As this work is directed to improve the execution times of PLL functions, it
was necessary to delve deeper and find the most time-consuming parts of
PLL. The profiling of RAxML was implemented on the PLL functions of the
algorithm, considering both the sequential version and the AVX versions of
it. The used tools for the profiling were some manual timers and counters
into the requisite functions and a Linux-based tool callgrind which was able
to give us details about timings in an overall framework.

Between the functions of PLL, two of them were found that consume the
biggest percentage of total execution time, Phylogenetic Likelihood Function
(PLF or NewViewGTRGAMMAPROT) and SumGAMMAPROT. In the fol-
lowing pie charts 5.1 and 5.2, the results of the profiling are depicted. It must
be referred that these functions consist of three cases. The first one is when
input data derive from 2 nodes-leaves, the second one is when data come
from a node-leave and an inner node, and the third one is when data come
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from 2 inner nodes. Moreover, the following pie charts correspond to the
sum of all total calls of these functions.

FIGURE 5.1: Min percentage-PLF
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FIGURE 5.2: Max percentage-PLF

As it is distinguished PLF consumes the biggest percentage of the total execu-
tion time, with a range of 84.89%-87.71%. Both sequential and AVX version of
this function reaches this range, as the total time is depended by the selected
executable version of the algorithm. SumGAMMAPROT consumes a little
but significant percentage of the total execution time, with a range of 2.37%-
4.81%. This percentage might be seen low, but on runs, with big data sets,
it can be equal to plenty of hours. It is mentioned that SumGAMMAPROT
does not have an AVX implementation and its runtime depends on the run-
time of the other functions. So using the AVX version, SumGAMMAPROT
can reach the percentage of 13.4% as it will consume the same time while the
other functions with AVX implementations will consume less time.

Looking into the inner cases, we found that the third case (inner-inner) is
that one that delays the total execution time, occupying the biggest percent-
age of all three cases. The remaining two are equal. Moreover, the third case
requires more operations in order to export the output data, which leads us
to simplify the load and try to distribute it on multiple resources, in order
to run concurrently. So according to these results, we decided to implement
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FPGA-based accelerators for the above two functions, and their third case
that input data derive from two inner nodes of a tree.

Completing the profiling of the selected functions, it would be useful to cal-
culate and estimate the theoretical speedup both of each function and whole
RAxML, given that we could design an ideal system. Adopting Amdahl’s
law

Slatency (s) =
1

1− p
(5.1)

Slatency (s) =
1

(1− p) + p
s

(5.2)

the ideal theoretical speedup of PLF would be x1.82, making to run in par-
allel only the proportion that is occupied by the inner-inner case. Achieving
this speedup, then the whole RAxML could benefit from a speedup of x1.63.
If parallelism was applied for all cases of PLF, then using the first leg 5.1 of
Amdahl’s law, we could achieve an x7.7 speedup of RAxML.

Following the same process for SumGAMMAPROT, making to run in par-
allel only the proportion that is occupied by the inner-inner case, the theoret-
ical maximum speedup of this function would be x1.92. With this theoretical
speedup, RAxML could not bring a significant acceleration, but only a factor
of x1.02. This fact leads us to estimate a practical low speedup even though
the designs would be ideal without any deviance.

5.2 DAER Architecture

Placing this application into computational intensive applications, its map-
ping procedure requires two main implementation parts. The first one is
Data Plane, as an example, efficient interconnected units that accelerate pro-
cessing. The second part is the Access Plane, as an example, efficient ways to
access data and transfer them to/from the accelerator. Data plane construc-
tion is well understood and using High Level Synthesis (HLS) tool it is easy
to be implemented. However, the access plane is more challenging while
data fetching for big data is even more complex and time-consuming than
processing.

So in order to avoid this problem, a Decoupled Access-Execute architecture



Chapter 5. Hardware Architecture Of Accelerator 35

and framework for Reconfigurable accelerators (DAER) [43] was used. Fol-
lowing DAER, the application is split into two parts, the part of data process-
ing which is used solely for performing calculations, and the data fetching,
which is used for memory transactions of input and output data.

The general architecture of DAER is depicted in figure 5.3 and can be used
for mapping one or several accelerators, with or without inter-accelerator
communication. The architecture of the accelerator is depicted in figure 5.4.

FIGURE 5.3: Proposed Decoupled Access-Execute Architecture
for Reconfigurable accelerators (DAER).

The first part of DAER architecture is the fetch units, which are connected
both to the CPU and the memory. The CPU connection is used only for pass-
ing parameters regarding the application’s memory traces, i.e. starting mem-
ory addresses, array sizes, etc. The memory connection is used for fetching
input data and sending back the results computed by the processing units.
The second part of our architecture is the processing units, which consist
of logic and/or arithmetic operations. The processing units work as sim-
ple data-flow engines. It communicates directly with the fetch units through
FIFO-based links. These streams are used for passing data to the processing
units and sending back the results. Both units are amenable to code-specific
acceleration through HLS directives. In addition, they can be instantiated
multiple times according to the needs of the mapped application and avail-
able resources. Hence the application code is split into two parts, one that
performs memory accesses, and one that implements the main algorithmic



Chapter 5. Hardware Architecture Of Accelerator 36

workload. The memory access dependencies are resolved by distributing
memory accesses to separate pipelined fetch units, which can send read re-
quests and receive data, concurrently.

FIGURE 5.4: Decoupled Access-Execute Architecture On Our
Designs

5.3 Kernel Architecture

The architecture of these two accelerators consists of fetch units for the trans-
fer of the data in and out of the kernel and the processing units. Both accel-
erators have the same fetch units as the input and output data are the same
datatype. They only differ on the processing units as each one provides dif-
ferent procedures in the RAxML.

5.3.1 Fetch Units

Both Kernels of this project use Fetch Units. They need two Fetch Units for
the two input streams (for this purpose x1,x2 values) and another one for
the output stream (x3 value). Each Fetch Unit consists of two fetch func-
tions, BurstMem and BurstConv. The use of BurstMem is to pass input val-
ues to streams. Input values and streams are ap_uint<512> type. Afterward,
these streams get under processing in the BurstConv function. There, input
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streams are converted into DataType streams which make them able to trans-
fer packages of double values into the processing units instead of one value
per cycle.

To achieve the best and feasible conversion, it was necessary to know the
maximum bandwidth of FPGAs’ streams, the number of essential input val-
ues needed to produce the outcome of an alignment pattern, and the type
of values. Moreover, the best Pipeline Initiation Interval (II) can be calcu-
lated. In the current case and considering the available standards for this
project, the above calculation is made following the next steps. First, the val-
ues needed for calculations and storage are double type, which means their
size is 8 bytes or 64 bits. Afterward, for protein data and under the GAMMA
model, 80 values are required per alignment site. Therefore the size of input
data is 80 values x 64 bits = 5120 bits. The maximum bandwidths of the plat-
forms’ streams are 512 bits and 128 bits. So dividing the total size of input
data with the streams’ bandwidths, the outcome is 5120 bits / 512 bits = 10
and 5120 bits / 128 bits = 40. This number means that using 10 ap_uint<512>
input values (or 40 input values), 80 double type values can be transferred to
the processing units.

Ending the Fetch units, after the production of output values by the process-
ing units, similar fetch functions are used to invert the output data to the
initial type and then transfer them to global memory again.

5.3.2 Processing Units

In this subsection, the architecture of the two accelerators is described in de-
tail and there are schematics of the whole data flow inside them. The architec-
tures were built under the hardware constraints we had. It is mentioned that
the functionality of PLF and SumGAMMAPROT were described in Chapter
4.

A) PLF

As previously referred, maximum likelihood calculation is corresponded by
the PLF or else NewViewGTRGAMMAPROT. Below, there is a pseudo code
of this function and it is a good reference to start and build the accelerator.
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Algorithm 1 PLF , based on a three vector tree with root A

for i = 0 : N do
X1[80]← B(i)vector
X2[80]← C(i)vector
X3[80]← A(i)vector
for j = 0 : 3 do

for k = 0 : 19 do
for l = 0 : 19 do

//Calculation of left distance (B→ A)

Tmpx=x1 ← X1[j ∗ 4 + l] ∗ Le f t[j ∗ 400 + k ∗ 20 + l]
Umpx=x1 ← ∑19

i=0 Tmpx=x1

//Calculation of right distance (C → A)

Tmpx=x2 ← X2[j ∗ 4 + l] ∗ Right[j ∗ 400 + k ∗ 20 + l]
Umpx=x2 ← ∑19

i=0 Tmpx=x2

//Multiplication of summarized umpx1 and umpx2

x1px2j[k]← Umpx=x1 ∗Umpx=x2

for k = 0 : 19 do
for l = 0 : 19 do

//Multiplication of EV and x1px2→ X3

X3[j ∗ 4 + l]+ = x1px2j[k] ∗ EV[k ∗ 20 + l]

//Continue with the scaling
scale← 0
addscale← 0
for l = 0 : 79 do

scale+ = (ABS(X3[l] < minlikelihood)

if scale 6= 0 then
X3 ← X3 ∗ f actorM
addscale+ = wgt[i]

else
X3 ← X3

This algorithm could implement the 4.1 example. The two inputs X1 and
X2 are representing B and C vectors and output X3 represents the A vector.
As the study examines the usage of amino acids, each vector contains N*80
elements. The other three matrices Left, Right and EV are the substitution
matrices and the eigenvectors used by the GTR-GAMMA model which was
described in Chapter 4.
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Analyzing the pseudo-code, it can be distinguished that the procedure to
calculate the final maximum likelihood is divided into two parts. The first
one is the calculation of x1px2 which corresponds to the likelihood, a prod-
uct that comes up from multiplications of two inputs with their substitution
matrices. The second one is the final and complete calculation of maximum
likelihood accompanied by the scaling process. So, making this observation,
on this architecture, these two parts were designed separately and constitute
two different process units.

Starting with the first part, the Calculation Of Likelihood, it is observed
that in the innermost loop, the products of the multiplications of X1 ∗ Le f t
and X2 ∗ Right are stored into two values Tmpx1 and Tmpx2. As these multi-
plications can be concurrently executed, we designed and adjusted a circuit
to achieve the best flow of the under execution data. We can see that for each
j site of input matrices, 20 elements are multiplied with the corresponding
substitution matrix which contains 20× 20 elements. This means that every
site is multiplied 20 times :

1st twenty values of a site for j=0 are multiplied with k=[0:19] elements
2nd twenty values of a site for j=1 are multiplied with k=[0:19] elements
3rd twenty values of a site for j=2 are multiplied with k=[0:19] elements
4th twenty values of a site for j=4 are multiplied with k=[0:19] elements

Unrolling the above relations we can see that each element of the 4 different
twenties are multiplied by 20 different elements :

TMPX1,2[0] = X1,2[j*4 + 0] * Left,Right[j*400 + k*20 + 0]
TMPX1,2[1] = X1,2[j*4 + 1] * Left,Right[j*400 + k*20 + 1]
TMPX1,2[2] = X1,2[j*4 + 2] * Left,Right[j*400 + k*20 + 2]
TMPX1,2[3] = X1,2[j*4 + 3] * Left,Right[j*400 + k*20 + 3]
TMPX1,2[4] = X1,2[j*4 + 4] * Left,Right[j*400 + k*20 + 4]
TMPX1,2[5] = X1,2[j*4 + 5] * Left,Right[j*400 + k*20 + 5]
TMPX1,2[6] = X1,2[j*4 + 6] * Left,Right[j*400 + k*20 + 6]
TMPX1,2[7] = X1,2[j*4 + 7] * Left,Right[j*400 + k*20 + 7]
TMPX1,2[8] = X1,2[j*4 + 8] * Left,Right[j*400 + k*20 + 8]
TMPX1,2[9] = X1,2[j*4 + 9] * Left,Right[j*400 + k*20 + 9]

TMPX1,2[10] = X1,2[j*4 + 10] * Left,Right[j*400 + k*20 + 10]
TMPX1,2[11] = X1,2[j*4 + 11] * Left,Right[j*400 + k*20 + 11]
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TMPX1,2[12] = X1,2[j*4 + 12] * Left,Right[j*400 + k*20 + 12]
TMPX1,2[13] = X1,2[j*4 + 13] * Left,Right[j*400 + k*20 + 13]
TMPX1,2[14] = X1,2[j*4 + 14] * Left,Right[j*400 + k*20 + 14]
TMPX1,2[15] = X1,2[j*4 + 15] * Left,Right[j*400 + k*20 + 15]
TMPX1,2[16] = X1,2[j*4 + 16] * Left,Right[j*400 + k*20 + 16]
TMPX1,2[17] = X1,2[j*4 + 17] * Left,Right[j*400 + k*20 + 17]
TMPX1,2[18] = X1,2[j*4 + 18] * Left,Right[j*400 + k*20 + 18]
TMPX1,2[19] = X1,2[j*4 + 19] * Left,Right[j*400 + k*20 + 19]

Understanding how the multiplications are generated and executed, we go
forward to the next diagram which shows the flow of data combined with
operations:

FIGURE 5.5: Multiplications For The Calculation of UMP for
X1,X2 input vectors

Figure 5.5 is abstract and matches for both X1 and X2 while LR is either Left
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or Right substitution matrix and TMP is a unique vector for each input vec-
tor. Storing each product of these multiplications in a different value, make it
easier to accumulate all values in order to sum them and progress the other
calculations. The next step is the summation of the 20 elements of each TMP,
which produce the two values, umpx1 and umpx2 required for the compu-
tation of the initial likelihood x1px2. After the calculation of UMPX1 and
UMPX2, a multiplication between them follows to get x1px2.

FIGURE 5.6: Summation of TMP vector to produce UMPX1 and
UMPX2 and their multiplication for X1pX2

The result of the above multiplication is not the likelihood for a whole site j
but a likelihood of an element of the 20 of each site. To completely calculate
the likelihood for a site j, we need to set all above circuits as a single one
and iterate it k=[0:19] times. This iterations springs from the middle loop of
algorithm 1 and its purpose is to insert for every k, 20 new elements of the
Substitutions matrices to the 5.5 circuit and calculate 20 new values in TMP
which result in another x1px2 value. As a reminder, the Γ model provides
us two new substitution matrices with 4× 20× 20 dimensions. Comparing
these dimensions with the above figures, it is easy to understand that the di-
mension 4 corresponds to the four different sites of a vector, the first dimen-
sion 20 corresponds to the 20 multiplications on 5.5 and the last dimension
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20 corresponds to the k times that new twenty values will proceed for the
multiplications. Ending all k values, the 20 likelihoods of an entire site are
ready to proceed to the next operations.

FIGURE 5.7: Calculation of likelihoods for a j site

Looking again on the algorithm 1, it is distinguished that, provided that 20
likelihoods of a j site have been produced then they proceed to the next phase
of the final calculation to export a completely calculated site. Into our acceler-
ators, there is a variance. Instead of completing all required calculations for a
whole site per j time, we first take out x1px2 values for the whole vector that
is 4× 20 values. That is also the reason why on figure 5.7 we depict x1px2 as
a vector with j ∗ 20 length. So, the processing unit of Likelihood Calculation
is completed and a top-view flow of data is shown below:
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FIGURE 5.8: Data Flow of Processing Unit : Likelihood Calcu-
lation

The second processing unit of PLF is the EV Final Calculation of vectors
likelihood. Here is the spot that eigenvectors are useful to make the required
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optimizations. Following the equation 4.8, this process consists of multipli-
cations and summations and there is the usage of EV matrix and X1pX2, pro-
duced by the previous processing unit. Moreover, the algorithm 1 shows that
every element of a j site of X3 vector is equal with a sum of twenty multipli-
cations between each element of X1pX2 vector with twenty elements of EV
matrix. It is recalled that through the first processing unit we produce twenty
values for each j site of the input vector, which is in overall 80 values for a
whole vector. Next diagram shows the vectors’ likelihood is produced:

FIGURE 5.9: Multiplication Of EV with X1pX2 and a recursive
addition for X3

As we can see in the above figure, every element of a j site must be put
through this process and be multiplied with certain values from the EV ma-
trix. Following as an example the previous processing unit, we can also exe-
cute 20 units of the circuit 5.9 for all elements of a j site concurrently. There is
a graphic representation below:
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FIGURE 5.10: Final Calculation of a j site of X3 vector

It should be clarified that the above circuit calculates the final likelihood of
a site provided that the k loop runs out all its 20 iterations, which means all
required values from EV and X1pX2 matrices are going to be accessed. In
this way, the calculation of the final likelihood of all N vectors is coming to
an end. The only left part of the whole process is the scaling process.

Into the scaling process, a whole vector is going under comparison with a
constant value of RAxML which corresponds to a minimum likelihood. For
all 80 elements of a vector, if the absolute value of an element is less than
the minimum likelihood then a scale counter is increased. At the end of this
comparison of all elements of a vector, if the counter is zero means that all
previous calculations are accurate and acceptable. On the contrary, if the
counter is not zero means that some elements of the vector can’t reach the
requirements to go forward and need some extra process. There, a value
named addscale is kept by adding, the corresponding to the ith vector wgt
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value, which is flowed out by the wgt input stream. Finally, if there is a
hit on the scale counter, the whole vector is multiplied by a constant factor
and then proceeds to the exit; differently, the vectors’ data remain without
any interference and go forward to exit. In addition, ending the access of
all N vectors, there is another output scalerIncrement which is equal to the
addscale value.

FIGURE 5.11: Scaling process of X3 vector

Completing all sub-processes, the final connection among them is figured
below:
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FIGURE 5.12: Data Flow of Processing Unit : EV Final Calcula-
tion

Finally, having complete the structure of all basic and required functions, the
data flow of the main core can be engraved. Having as a reference the figures
5.3 and 5.4 next diagram shows in detail the data flow. It starts when fetch
units retrieve data from global memory, then forwards to the main processes
and calculations and finally ends to transfer of data form fetch unit back to
global memory. It is mentioned that the connection between the different
processes is designed with streams except for these which transfer constant
values and buffers. Moreover, the set of processes is separated into different
steps-phases of execution and this fact will be analyzed in the next Chapter.
Finally, all values out of the main core are meant to be stored in global mem-
ory and they are the objects of transfers among the main core and memory.
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FIGURE 5.13: Data Flow of Main Core
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B) SumGammaPROT

To understand the data flow of this function and build the architecture, we
took as reference the pseudo-code of the function SumGammaPROT:

Algorithm 2 SumGamma Calculation

for i = 0 : N do
X1[80]← Le f t(i)vector
X2[80]← Right(i)vector
X3[80]← Sum(i)vector
for j = 0 : 3 do

for k = 0 : 19 do
//Calculation of Sum
X3[j ∗ 4 + k]← X1[j ∗ 4 + k] ∗ X2[j ∗ 4 + k]

The processing unit of this function consists of a main multiplication of 2
vectors, the left one and the right one. In detail, into the outer loop of this
process unit which is executed N times, there are 3 inner loops, be imple-
mented concurrently under the assignment of loop pipeline. The first one
(addressed to input data) and the last one (addressed to output data) help in
the transfer of the data from fetch units to the processing unit. The middle
and the innermost one is the multiplication of the left and right inputs which
produce the output result. In the next figure, the data flow of the processing
unit is clearly figured.
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FIGURE 5.14: SumGAMMA - Flow Chart

Stepping into the multiplication process, it is obvious that some operations
can be executed in parallel. In detail, 80 (4× 20) values of x1 and x2 input
vectors insert this process and they are multiplied among them. So, these 20
multiplications can be executed concurrently, and consecutively all 80 values
in 4 iterations. The final procedure can be described as :
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FIGURE 5.15: SumGAMMA - Detailed Data Flow

Completing the above process then the data flow of the main core is ready to
be designed in the same way as PLF and is shown below:
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FIGURE 5.16: Data Flow of Main Core
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Chapter 6

FPGA Implementation

6.1 Tools Used

The two accelerators, described in the previous chapter, were implemented
and optimized for FGPA platforms using Xilinx Vivado Design Suite - HL
System and Xilinx SDx Environment [44] [45], both on edition 2018.3. Vi-
vado Design Suite is a software suite developed by Xilinx for its FPGA de-
vices for analysis and synthesis of Hardware Description Language (HDL)
designs, written in VHDL or Verilog. SDx Environment consists of SDAccel,
SDSoc, and SDNet, and offers GPU-like and familiar embedded application
development and runtime experiences for C, C++, and/or OpenCL devel-
opment, targeting FGPA platforms and FPGA based acceleration cards. The
basic tools used in this work are Xilinx SDAccel and SDSoc while Xilinx Vi-
vado HLS and Xilinx Vivado IDE are prerequisite tools to handle the first
ones, making them able to be used separately to interfere in some synthesis
phases of SDAccel and SDSoc.

6.1.1 Vivado High Level Synthesis (HLS)

Xilinx Vivado High-Level Synthesis (HLS) [46], is a tool included in the Xil-
inx Vivado Design Suite, allowing for a higher level of abstraction design of
HDL systems. Vivado HLS synthesizes C/C++, SystemC and OpenCL func-
tions into IP blocks, generating their VHDL and Verilog HDL designs that
can then be implemented into hardware systems using Vivado and its Block
Design tool.

HLS accepts non-hardware-optimized code, and its goal is to optimize them.
So, provides a set of directives that can instruct the synthesis procedure to
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implement a specific behavior, optimization, and resource management. Di-
rectives are optional and do not affect the input code’s behavior. They are
also not specialized into some certain programming language while they
generalized for all acceptable ones. Their correct usage can improve the IP’s
performance while the wrong one can hurt it. Furthermore, constraints, like
clock period, clock uncertainty, and FPGA target, are added to the HLS syn-
thesized IP blocks to direct directives to resources and ensure the desired
behavior and performance.

Having complete the appropriate interference a C/C++ testbench should be
used to debug the code’s behavior prior to synthesis. In testbench, all in-
put data are fed, and then the output data are checked for their correctness.
Verification of the exported IP block is done using the C/RTL Cosimulation
functionality, which uses the same C/C++ testbench, but replaces the func-
tion’s call with the exported IP block call.

Synthesis Report

A synthesis report is generated whenever HLS successfully synthesizes an
IP Block, showing some useful performance and resource utilization metrics.
This report is generated for both total IP Block but also every individual in-
stance of it. So, using this package of synthesis reports, a designer can easily
find whether their goal was achieved and optimized, or else target the bot-
tleneck to further optimize their design in terms of both performance and
resources. Some of the metrics are presented and explained below:

• Latency: The number of clock cycles required for a complete run of a
function or loop.

• Iteration Latency: The number of clock cycles required for running a
single iteration of a function or loop.

• Iteration/Initiation Interval (II): The number of clock cycles required
before a module can accept new input or a loop can initiate a new iter-
ation.

• Pipelined: Tag that mentions if a module or loop is implemented using
a pipelined architecture.

• Area: The utilization of hardware resources required of instances or
whole IP’s implementation into the target FPGA. The hardware resource
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types are Block RAM (BRAM) and Ultra RAM (URAM), Digital Sig-
nal Processing (DSP) units, Flip Flops (FF), and Lookup Tables (LUT).
There is also a detailed report, showing the number of hardware re-
sources required for every hardware component type, which include
DSPs, Expressions, First-In-First-Out (FIFO) queues, Instances, Memo-
ries, Multiplexers, and Registers.

Optimization Directives

As mentioned above, HLS provides a set of directives allowing us to optimize
the designs and subsequently to instruct its behavior. These directives can be
added directly into the input code in form pragmas which is an identifier for
the preprocessor. Alternatively, we can select them into the GUI of HLS. The
directives that are used in this work are presented below:

• Interface: Maps the top-level function’s arguments to RTL ports to con-
figure the IP block’s functionality.The interface directive specifies each
argument’s port type. Here two port types are used s_axilite and m_axi.

• Dataflow: Enables parallel execution of functions and loops, increasing
throughput and latency. It is used on our top level function.

• Pipeline: Reduces the number of clock cycles a function or loop can
accept new inputs, by allowing the concurrent execution of operations.
Moreover, it accepts as parameter an Initiation Interval (II) value, trying
to target this number in clock cycles by unrolling all functions on the
selected area (in some cases it substitutes the Unroll directive). In this
project, having calculated the optimal Initiation Interval, we passed II
= 10 as target.

• Inline: Removes a function as a separate entity in the hierarchy. After
inlining, the function is dissolved into the calling function and in some
times achieves to reduce latency and initiation interval due to lower
function call overhead. Into this work this directive is used for some
functions that transform I/O data.

• Array Partition: Partitions an array into multiple smaller arrays or as-
signs each array’s element to its register. This partitioning increases the
read and write ports of the array on the hardware level, allowing for
parallel I/O and computations. There are three different types of par-
titioning an array, Complete, Block and Cyclic. Complete partitioning,
decomposes the array into individual registers which means that there
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is an instant access to all of them. Block partitioning, creates smaller
arrays from consecutive blocks of the original array. This effectively
splits the array into N equal blocks where N is the parameter factor
and should be an perfect divided integer with the number of elements.
Cyclic partitioning creates smaller arrays by interleaving elements from
the original array. The array is partitioned cyclically by putting one ele-
ment into each new array before coming back to the first array to repeat
the cycle until the array is fully partitioned. In other words, array is
split into given factor sub-arrays and elements are stored sequentially
into each one new sub-arrays.

• Resource: Specifies the resource (core) is used to implement a variable.
It is used in this project to assign some arrays as BRAMs or URAMs.

6.1.2 Vivado SDx

As it was referred above, SDx Development Environment consists of three
environments and they are used to accelerate applications. For this study,
only SDSoc and SDAccel is used. SDSoC Development Environment is used
for Zynq Ultrascale+ MPSoC and Zynq-7000 SoC families, while the SDAc-
cel Development Environment for Data Center and PCI-e based accelerator
systems. Both environments were required because there are two different
implementations on different platforms.

SDSoc

Using SDSoc [47]the designer should use some directives (sds as prefix) in
order to create and synchronize its host with the kernel. They are shown
below:

• Data access_pattern: Specifies the data access pattern in the hardware
function so as to determine the hardware interface to synthesize. Us-
ing the Sequential pattern a streaming interface is generated, otherwise,
using a random pattern, a RAM interface is generated.

• Data copy: Means that data are explicitly copied between the host pro-
cessor memory and the hardware function.

• Data zero_copy: Means that the hardware function accesses the data
directly from shared memory through an AXI master bus interface.
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• Data mem_attribute: Tells the compiler whether the arguments have
been allocated in physically contiguous memory. Using the pattern
PHYSICAL_CONTIGUOUS means that all memory corresponding to
the associated array is allocated using sds_alloc. Otherwise, the default
value is passed which is NON_PHYSICAL_CONTIGUOUS and means
that all memory corresponding to the associated ArrayName is allo-
cated using malloc or as a free variable on the stack.

• Data sys_port: Used in order to assign the arguments to specific mem-
ory ports.

SDAccel

On the contrary to SDSoc [48], handling the SDAccel environment there is no
need to use the sds directives. The main optimized kernel code remains the
same and the only change is on the host code. OpenCL instructions are used
in order to pass/pull up the input/output arguments and data to the kernel
and global memory and after that to synchronize the appropriate tasks. In
the previous chapter 5 on section 5.3, it is described how OpenCL is used in
this work and some design attributes we can handle with OpenCL.

6.1.3 Vivado IDE

Xilinx Vivado Integrated Design Environment (IDE) [49] is the basis for all
Xilinx tools. It can compile, synthesize, implement, place and route FPGA
hardware designs written in high-level languages such as C/C++, and HDLs
such as VHDL and Verilog. Moreover, using the IP Integrator tool, hardware
systems can be designed by graphically connecting IP blocks and configure
them through their GUI with no coding involved.

The way that SDx Develepment Environment and Vivado IDE connect is
that after optimizing and synthesizing the kernel and the host code on SDx,
then this code passes to Vivado IDE as Rtl system and following the steps of
synthesizing, implementation and place & route, it finally generates the bit-
stream of application, ready to be installed on the target platform. During the
phase of implementation and place & route, Vivado IDE follows some design
strategies, either default by system or strategies by designers’ choice. These
strategies consist of some steps such as OPT_DESIGN, PLACE_DESIGN,
PHYS_OPT_DESIGN, ROUTE_DESIGN, and POST_ROUTE_DESIGN. Each
step focuses on a different implementation or logic optimization process and
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there are many alternate directives and options for them [50]. To interfere
and change these steps through the SDx environment, it is needed to assign
these instructs on the xocc (Xilinx OpenCL Compiler) with the parameter -xp
which enables the passing of parameters and properties of Vivado IDE to the
running project. Below, the directives used for each step are referred:

• OPT_DESIGN = ExploreArea: Runs multiple passes of optimization
with an emphasis on reducing combinational logic.

• PLACE_DESIGN = SSI_BalanceSLRs: Partitions across Super Logic
Regions (SLRs) while attempting to balance Super Logic Lines (SLLs)
between SLRs. In other words, trying to balance resources on all SLRs
of the platform.

• PHYS_OPT_DESIGN = AggresiveFanoutOpt: Uses different algorithms
for fanout-related optimizations with more aggressive goals.

• ROUTE_DESIGN = AlternateCLBRouting: Chooses alternate routing
algorithms that require extra runtime but may help resolve routing con-
gestion.

• POST_ROUTE_DESIGN = AggressiveExplore: Higher and aggres-
sive placer effort in detail placement and post-placement optimization
goals.

6.2 FPGA Platforms

The accelerators of this work were implemented on two FPGA platforms.
The first one is the ZCU102 evaluation board and the second one is F1 in-
stance on Amazon Web Services (AWS) Elastic Compute Cloud (EC2), which
was the main target of this thesis. Both two accelerators passed the synthesis
phase and functional correctness on these two platforms and were evaluated
according to their resource usage.

6.2.1 ZCU102

ZCU102 evaluation board [51] is targeted by xczu9eg-ffvb1156-2-e FPGA and
includes 4GB of DDR4 for the Processing System, 512MB of DDR4 for the
Programmable Logic, 2× 64MB Quad-SPI Flash, and an SDIO card interface.
Its CPU frequency is 1200(MHz) while feeds six clock domains with 75, 100,
150, 200, 300, 400, 600 MHz.
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TABLE 6.1: Platform’s Software Components

System Configuration Domain Details
a53_linux linux on cortex-a53

a53_standalone standalone on psu_cortexa53_0
r5_standalone standalone on psu_cortexr5_0

TABLE 6.2: Used Resources on ZCU102.

II Frequency BRAMs DSPs LUTs REGs

TOTAL 4,320 6,840 2,364,480 1,182,240

SumGAMMAPROT 80 200 MHz 1.81% 3.49% 6.86% 5.91%

PLF 160 100 MHz 10.64% 17.54% 61.59% 25.67%

6.2.2 AWS EC2 F1 Instance

Amazon Elastic Compute Cloud (Amazon EC2) [52] is a web service that
provides secure, resizable compute capacity in the cloud. It is designed to
make web-scale cloud computing easier for developers. It contains a lot of
features and platforms to fulfill all designers’ demands. Some of them are
FPGA instances, GPU compute instances, GPU graphics instances, high I/O
instances, and more. It is also offered to customers private data storage, the
capability of pausing, and resuming their instances and also unlimited times
of reconfigure.

For this project, the f1.2xlarge instance was chosen to implement the designs.
This platform targets the Virtex UltraScale+ AWS VU9P F1 Acceleration De-
velopment Board with VU13P. This high-performance acceleration platform
features four channels of DDR4-2400 DIMMs (64GB), the expanded partial
reconfiguration flow for high fabric resource availability, and Xilinx DMA
Subsystem for PCI Express with PCIe Gen3 x16 connectivity. Its runtime is
OpenCL. Moreover, its CPU frequency is 2.3GHz on basic mode and it can
reach the peak of 2.7GHz on turbo mode. It also feeds two main clock do-
mains with 250 and 500 MHz while there are more substitutes.

Both accelerators passed the synthesis phase and their usage of total resources
according to their initiation interval and clock frequency are presented in the
table 6.3.
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TABLE 6.3: Used Resources on AWS F1 instance.

II Frequency BRAMs DSPs LUTs REGs

TOTAL 4,320 6,840 2,364,480 1,182,240

SumGAMMAPROT 10 350 MHz 1.26% 1.17% 1.78% 1.71%

PLF

20 100 MHz 19.25% 50.48% 85,35% 53.05%
40 100 MHz 14.79% 25.24% 49.57% 36.28%
80 150 MHz 8.09% 12.62% 39.79% 25.62%

160 150 MHz 4.74% 6.47% 19.31% 8.87%

6.3 OpenCL Host

OpenCL (Open Computing Language) is a framework for writing programs
that execute across heterogeneous platforms consisting of central process-
ing units (CPUs), graphics processing units (GPUs), digital signal processors
(DSPs), field-programmable gate arrays (FPGAs), and other processors or
hardware accelerators. OpenCL specifies programming languages (based on
C99 and C++11) for programming these devices and application program-
ming interfaces (APIs) to control the platform and execute programs on the
compute devices. OpenCL provides a standard interface for parallel comput-
ing using task- and data-based parallelism.

The OpenCL API defines the memory model to be used by all applications
that comply with the standard. This hierarchical representation of memory
is common across all vendors and can be applied to any OpenCL applica-
tion. The vendor is responsible for defining how the OpenCL memory model
maps to specific hardware. The OpenCL memory model is shown overlaid
onto the OpenCL device model in the following figure :
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FIGURE 6.1: OpenCL Memory Model
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For devices using an FPGA, the physical mapping of the OpenCL memory
model is the following:

1. Host memory is any memory connected to the host processor only.

2. Global and constant memories are any memory that is connected to
the FPGA. These are usually memory chips that are physically con-
nected to the FPGA. The host processor has access to these memory
banks through infrastructure in the FPGA base device.

3. Local memory is memory inside of the FPGA. This memory is typically
implemented using block RAM elements in the FPGA fabric.

4. Private memory is memory inside of the FPGA. This memory is typi-
cally implemented using registers in the FPGA fabric to minimize la-
tency to the compute data path in the processing element.

Subsequently, the connected Host with the above Kernels was implemented
by the following steps. First of all, the host is responsible for the allocation
and deallocation of buffers in Global Memory and there is a handshake be-
tween host and device over control of the data stored in this memory. So it’s
mandatory to seek and get information successfully about the used device.
Then, it’s easy to create the program and the kernel by finding the appro-
priate binary file and kernel core. Passing successfully the above steps, it is
time to create Buffers to import our data. There must be a correct allocation
of the data and their data sizes, otherwise, it might cause a data loss or mis-
use of memory. Moreover, if multi-memory controllers are used, it is also
necessary to assign buffers’ flags with DDR4 banks. After the correct allo-
cation of Buffers then it’s time to enqueueMigratMemObjects from the host
to global memory. The next step is the set up of the arguments of the kernel
core followed by kernel’s enqueueTask. By the time the kernel is launched
to process the data, the host loses access rights to the buffer in global mem-
ory, the device takes over and is capable of reading and writing data from the
global memory until the kernels’ execution is completed. Upon completion
of the operations associated with the kernel, the device conveys the control of
the global memory buffer back to the host processor. Finally, as host obtains
again the control of the buffer, it can read and write data from/to the buffer,
transfer data back to the host memory, and deallocate the used buffer.
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Chapter 7

Results

In this chapter, the results that came from the profiling and the final imple-
mentation are presented. There is also a reference on how the datasets were
generated and their role in the different executions of RAxML.

7.1 Datasets

As it was mentioned in a previous Chapter, RAxML uses mostly Phylip(.phy)
files as input datasets. These datasets can be found on different surveys and
scientific databases if users need real data. Otherwise, there are many pro-
grams that generate such files. In our case, in order to generate the inputs
datasets, MS, a program for generating samples under neutral models by
Richard R. Hudson [53] was used. The reason for choosing it was that, ms of-
fers some extra parameters, such as mutation rate, that can adapt the random
data in a way that some taxa can have similarities between them. This helps
RAxML to evaluate and compute some data that are not completely foreign.

The datasets that were generated for the profiling of the software execution
times, included 10, 25, 50, and 100 taxa each one with different alignment
patterns equal to powers of 2 (1024,2048,....,262144). This choice was made as
we wanted to test random big values and also to evaluate the performance
of RAxML with the use of a uniform range of data sets. Moreover, the mu-
tation rate for all these datasets was 1 and 10. We chose these values for the
mutation rate because, as this value gets bigger, the taxa become less foreign
between them. Low values of mutation rate make taxa quite similar and can
also reduce the alignment patterns by a factor of 1 to 40 percent of the initial
number. This fact is met when the alignment factor is low and the taxa are
few.
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7.2 Software Performance

Our implementation was compared with the timings obtained by running
the software (RAxML) on a server with the specifications shown on table 7.1:

CPU : Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20 GHz
Architecture : x86_64

Thread(s) / Core : 2
Core(s) / Socket : 10

Socket(s) : 2
RAM : 251GB

TABLE 7.1: Server’s hardware specifications

On the following results, the total execution time of RAxML and the execu-
tion time of functions SumGAMMAPROT and NewViewGTRGAMMAPROT
are shown. It must be mentioned that the timings below are the accumulation
of the total calls of these functions during the whole execution of RAxML.
The titles of the figures below 7.1 - 7.9, state the length of a taxon used for
each execution. In addition, all presented timings correspond to a mutation
rate equal to 10 because there is no coherence of similar amino acids of the
different taxa, a fact that makes all alignment patterns available and there are
no cutbacks that bring an actual accuracy.
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FIGURE 7.1: 1.024 Alignment Patterns-SW

FIGURE 7.2: 2.048 Alignment Patterns-SW
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FIGURE 7.3: 4.096 Alignment Patterns-SW

FIGURE 7.4: 8.192 Alignment Patterns-SW
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FIGURE 7.5: 16.384 Alignment Patterns-SW

FIGURE 7.6: 32.768 Alignment Patterns-SW
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FIGURE 7.7: 65.536 Alignment Patterns-SW

FIGURE 7.8: 131.072 Alignment Patterns-SW
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FIGURE 7.9: 262.144 Alignment Patterns-SW

Comparing the above results, it can be observed that both the total execution
time and the functions’ time increase proportionally (approximately 2x) with
the increase of the number of alignment patterns. In addition, a similar reac-
tion is observed when the number of taxa increases and that happens with a
bigger rate (>2x). However, the audit findings of the above runs are that, as
the already implemented AVX version of RAxML offers a significant accel-
eration, it is still consuming too much time when surpassing a threshold of
32K alignment patterns and a number of taxa 100. This fact leads us to have
as a threshold the execution time of the AVX implementation and present the
performance of hardware according to it.

7.3 Hardware Performance

7.3.1 ZCU102

The hardware kernel of function SumGAMMAPROT was the first one tested
on targeted platform ZCU102 with II equal to 80 and a clock frequency of 200
MHz.
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FIGURE 7.10: Execution Times Of SumGAMMAPROT Com-
pared with Sequential Version

1024 2048 4096 8192 16384 32768 65536 131072 262144
10 x0.49 x0.56 x0.63 x0.59 x0.58 x0.54 x0.54 x0.49 x0.50

25 x0.52 x0.53 x0.54 x0.52 x0.52 x0.49 x0.46 x0.43 x0.39

50 x0.50 x0.50 x0.49 x0.47 x0.47 x0.40 x0.37 x0.35 x0.37

100 x0.46 x0.45 x0.43 x0.38 x0.35 x0.35 x0.35 x0.35 x0.37

TABLE 7.2: Performance of SumGAMMAPROT Hardware Ker-
nel Compared with Sequential on ZCU102

Analyzing the above results and performance, we distinguish that this ker-
nel cannot accelerate the initial function. The performance of this kernel
reaches half of the execution time on the CPU. That is caused due to the
time-consuming setup of the DMA controller and the transfer of data, times
that reach 40% of the total execution time. Theoretically using the equation

Time = N × I I × ClkPeriod (7.1)

, we calculated that achieving an ideal transfer of data we could achieve an
approximate 2x speedup of the initial function in case that the number of
Alignment Patterns (N) is bigger than 500K, a value N that is unusual com-
pared with real data sets. So the conclusion is that this function is better to
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be used by the CPU while the processing load is low and can be handled by
CPU’s resources and secondly there is no time waste during the transfer of
data.

The hardware kernel of function NewViewGTRGAMMAPROT with II equal
to 160, clock frequency 100 MHz ran on ZCU102 and gave the following re-
sults on figures 7.11,7.12 and tables 7.3, 7.4:

FIGURE 7.11: Execution Times Of
NewViewGTRGAMMAPROT Compared with Sequential

Version

1024 2048 4096 8192 16384 32768 65536 131072 262144
10 x2.83 x2.84 x3.01 x2.80 x2.80 x2.68 x2.68 x2.42 x2.17

25 x2.91 x2.78 x2.71 x2.63 x2.51 x2.33 x2.11 x1.83 x1.49

50 x2.78 x2.65 x2.46 x2.36 x2.22 x1.90 x1.57 x1.48 x1.39

100 x2.58 x2.37 x2.18 x1.83 x1.66 x1.57 x1.42 x1.27 x1.20

TABLE 7.3: Performance of NewViewGTRGAMMAPROT
Hardware Kernel Compared with Sequential on ZCU102
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FIGURE 7.12: Performance of Speedup for
NewViewGTRGAMMAPROT Compared With Sequential

Version-ZCU102

FIGURE 7.13: Execution Times Of
NewViewGTRGAMMAPROT Compared with AVX Ver-

sion
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1024 2048 4096 8192 16384 32768 65536 131072 262144
10 x0.43 x0.44 x0.44 x0.44 x0.74 x0.55 x0.53 x0.50 x0.47

25 x0.43 x0.43 x0.43 x0.43 x0.50 x0.47 x0.46 x0.46 x0.43

50 x0.43 x0.42 x0.42 x0.41 x0.47 x0.45 x0.45 x0.44 x0.43

100 x0.40 x0.40 x0.39 x0.37 x0.45 x0.44 x0.42 x0.41 x0.40

TABLE 7.4: Performance of NewViewGTRGAMMAPROT
Hardware Kernel Compared with AVX on ZCU102

Analyzing the above results and performance, we note that this kernel brings
an acceleration of the initial sequential function but it cannot even reach its
AVX version. Regarding the acceleration that is achieved, there is a 2.5-3x
speedup on 1K alignment patterns, and as they increase the speedup de-
creases. When there is a low value of alignment patterns, there is a good
trade between DMA setup and processing time. This means that the load
of the initial function with these parameters can be distributed to our de-
sign and bring acceleration. Another observation is that, while the number
of taxa increases, the total speedup decreases. This is caused because there
is a loss of time during the supernumerary recurrent calls of the DMA and
kernel through the whole execution of RAxML. Finally, we calculated theo-
retically, like in the previous kernel, this performance provided we have an
ideal DMA, and it showed that there is a similar and equal performance with
the experimental one.

It must be noted that it was impossible to predict and calculate the perfor-
mance of the designs under the usage of bigger data because RAxML has
uncertainty on how many times it can call these functions in order to pro-
duce the results and the total execution time was tremendous.
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7.3.2 AWS F1 Instance

The first kernel that tested on AWS F1 Instance was SumGAMMAPROT.
Achieving a clock with 350 MHz and the optimal II equal to 10, the results of
execution times of the kernel and the setup times of data (Transfer Device to
Host and via versa, Setting Arguments) are shown in the below figures 7.14,
7.15:

(A) 1024 Alignment Patterns (B) 2048 Alignment Patterns

(C) 4096 Alignment Patterns (D) 8192 Alignment Patterns

(E) 16384 Alignment Patterns (F) 32768 Alignment Patterns

FIGURE 7.14: Execution Times Of SumGAMMAPROT kernel
On AWS F1 (1)
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(A) 65536 Alignment Patterns (B) 131072 Alignment Patterns

(C) 262144 Alignment Patterns

FIGURE 7.15: Execution Times Of SumGAMMAPROT kernel
On AWS F1 (2)

In figure 7.16 we present the total execution times(Set up Time + Kernel Time)
on the targeted platform for all these alignment patterns on the x-axis and
with a different number of taxa on each data set. The dotted lines represent
the sequential execution times of these data sets on the selected server. There
is no comparison with AVX running times because there is not an AVX ver-
sion of this function. On the table 7.5 the total performance of hardware is
also shown.
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FIGURE 7.16: Total Execution Time Of SumGAMMAPROT
Kernel on AWS F1

1024 2048 4096 8192 16384 32768 65536 131072 262144
10 x0.04 x0.05 x0.14 x0.22 x0.49 x0.61 x0.88 x1.08 x1.13

25 x0.04 x0.05 x0.12 x0.20 x0.44 x0.56 x0.74 x0.93 x0.88

50 x0.04 x0.05 x0.11 x0.17 x0.40 x0.46 x0.60 x0.76 x0.83

100 x0.04 x0.04 x0.10 x0.14 x0.29 x0.39 x0.56 x0.76 x0.83

TABLE 7.5: Performance of SumGAMMAPROT Hardware Ker-
nel On AWS F1

It is observed that although we achieved the optimal requirements of the ker-
nel of function SumGAMMAPROT, we could not achieve an actual speedup
of it. As it is shown on 7.16, the executing times on hardware are approach-
ing the software ones without surpassing them. The only case that it can
exceed the software executing time is when the data sets contain sequences
with more than 500K alignment patterns, a value that is too big according to
real data used by scientists. The fact that there is not a actual acceleration is
revealed on figures 7.14, 7.15 and 7.16. Although the execution time of the
Kernel decreases with the growth of the number of alignment patterns, the
setup timings increase. This fact means that there is a slow transfer of the
data to the device while the kernel itself processes the data more quickly.
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The second kernel that tested on AWS F1 Instance was the one that corre-
sponds to the function of NewViewGTRGAMMAPROT. Achieving a clock
of 150 MHz and the II equal to 160, the results of execution times of the ker-
nel and the setup times of data (Transfer Device to Host and via versa, Setting
Arguments) are figured below 7.17, 7.18:

(A) 1024 Alignment Patterns (B) 2048 Alignment Patterns

(C) 4096 Alignment Patterns (D) 8192 Alignment Patterns

FIGURE 7.17: Execution Times Of
NewViewGTRGAMMAPROT kernel On AWS F1 (1)
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(A) 16384 Alignment Patterns (B) 32768 Alignment Patterns

(C) 65536 Alignment Patterns (D) 131072 Alignment Patterns

(E) 262144 Alignment Patterns

FIGURE 7.18: Execution Times Of
NewViewGTRGAMMAPROT kernel On AWS F1 (2)

In figure 7.19a we present the total execution times(Set up Time + Kernel
Time) on the targeted platform for all these alignment patterns on the x-axis
and with a different number of taxa on each data set. The dotted lines repre-
sent the sequential execution times of these data sets on the selected server.
In figure 7.19b the dotted lines represent the AVX version execution times of
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these data sets on the selected server. Moreover on tables 7.6, 7.7 the detailed
performance of hardware kernel are presented.

(A) Hardware - Sequential Version

(B) Hardware - AVX Version

FIGURE 7.19: Execution Times Of
NewViewGTRGAMMAPROT Kernel
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1024 2048 4096 8192 16384 32768 65536 131072 262144
10 x0.47 x0.81 x1.45 x2.08 x2.66 x3.05 x3.35 x3.16 x2.90

25 x0.48 x0.80 x1.31 x1.95 x2.39 x2.65 x2.63 x2.39 x1.99

50 x0.46 x0.76 x1.19 x1.75 x2.11 x2.16 x1.95 x1.93 x1.86

100 x0.42 x0.68 x1.05 x1.36 x1.58 x1.78 x1.77 x1.66 x1.61

TABLE 7.6: Performance of NewViewGTRGAMMAPROT
Hardware Kernel Compared With Sequential Version

1024 2048 4096 8192 16384 32768 65536 131072 262144
10 x0.07 x0.12 x0.21 x0.33 x0.71 x0.62 x0.67 x0.65 x0.63

25 x0.07 x0.12 x0.21 x0.32 x0.47 x0.54 x0.57 x0.60 x0.58

50 x0.07 x0.12 x0.20 x0.30 x0.45 x0.52 x0.56 x0.58 x0.57

100 x0.07 x0.11 x0.19 x0.28 x0.43 x0.51 x0.53 x0.53 x0.54

TABLE 7.7: Performance of NewViewGTRGAMMAPROT
Hardware Kernel Compared With AVX Version

While we analyze the above results, we observe that with the current Kernel,
clock frequency 150 MHz and II equal to 160, we achieve an acceleration com-
paring with the sequential version of NewViewGTRGAMMAPROT. This is
obvious when the alignment patterns surpass the 4K of alignment patterns.
Starting with an acceleration factor of x1.13 on 4.096 alignment patterns and
100 taxa, we then brought off a factor of x3.18 on 262.144 alignment patterns
and 10 taxa. As an observation, our kernel can bring significant acceleration
using a range between 4K and 262K of alignment patterns. Out of this range,
there is a minor or no acceleration, due to the big time of transfer of data and
we can not benefit from it. In detail under the boundary of 4K, it fails to accel-
erate due to the slow process of data. On the other hand, up to the boundary
of 262K, the transfer of data tends to consumes too much time on the pro-
cessing part. The following figure 7.20 shows the graduated acceleration of
the kernel function to the number of alignment patterns.
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FIGURE 7.20: Performance of Speedup for
NewViewGTRGAMMAPROT Compared With Sequential

Version-AWS F1

Going into the comparison of the current kernel and AVX version, 7.19b and
7.7, it is observed that there is no acceleration. This fact happens because the
architecture of AVX intrinsics is better than our kernel with the existing II
and clock frequency.

7.4 Performance Model

As it is obvious through the study of the above results, our kernel cannot ac-
celerate the function SumGAMMAPROT when it is standalone, because the
transfer of the data to the kernel, requires more time than to process them.

On the other hand, the implemented kernel for NewViewGTRGAMMAPROT
has successfully achieved an acceleration of the sequential version of the ini-
tial software function both on the ZCU102 and AWS F1. However, as we set
as threshold the performance of the AVX version, there is a need to make
some optimizations.

As we mentioned in previous chapters, the optimal II of our kernel on tar-
geted platform AWS F1 is 10 while on ZCU102 is 40. That comes from com-
putations when we factor the accumulated data size we transfer and the max-
imum or used bandwidth of the platform.

I I =
#O f ValuesPerDataPack× SizeO f Value× #O f ValuesPerSite

MaximumBandwidth
(7.2)
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However, the initial target of this thesis was AWS F1 so the following re-
sults correspond to this platform and not on ZCU102. Moreover, the AWS
f1 platform offers us more hardware resources and better specifications than
ZCU102. Going forward and step by step, we achieved to reach the com-
plete level of synthesis of the kernel for NewViewGTRGAMMAPROT, with
II equal to 80, 40, 20 and with clock frequency 100 MHz each one. Following
these timing features, we studied and designed a timing model that could
simulate an approximate performance framework. The results are figured
below:

FIGURE 7.21: Model of the Kernels Performance using 10 taxa

1024 2048 4096 8192 16384 32768 65536 131072 262144
80 x0.70 x0.98 x1.24 x1.41 x2.54 x1.93 x1.92 x1.82 x1.71

40 x0.84 x1.28 x1.75 x2.13 x3.94 x3.06 x3.09 x2.93 x2.77

20 x0.93 x1.51 x2.21 x2.84 x5.45 x4.33 x4.43 x4.23 x4.00

TABLE 7.8: Performance of Model of
NewViewGTRGAMMAPROT Hardware Kernel Compared

With AVX Version (10 Taxa)
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FIGURE 7.22: Model of the Kernels Performance using 25 taxa

1024 2048 4096 8192 16384 32768 65536 131072 262144
80 x0.70 x0.98 x1.22 x1.36 x1.70 x1.67 x1.66 x1.67 x1.59

40 x0.84 x1.28 x1.73 x2.05 x2.64 x2.65 x2.66 x2.69 x2.56

20 x0.93 x1.51 x2.18 x2.74 x3.65 x3.75 x3.81 x3.88 x3.71

TABLE 7.9: Performance of Model of
NewViewGTRGAMMAPROT Hardware Kernel Compared

With AVX Version (25 Taxa)
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FIGURE 7.23: Model of the Kernels Performance using 50 taxa

1024 2048 4096 8192 16384 32768 65536 131072 262144
80 x0.69 x0.95 x1.18 x1.31 x1.60 x1.60 x1.61 x1.61 x1.56

40 x0.83 x1.24 x1.67 x1.96 x2.49 x2.54 x2.58 x2.59 x2.52

20 x0.93 x1.47 x2.11 x2.63 x3.44 x3.60 x3.70 x3.74 x3.65

TABLE 7.10: Performance of Model of
NewViewGTRGAMMAPROT Hardware Kernel Compared

With AVX Version (50 Taxa)
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FIGURE 7.24: Model of the Kernels Performance using 100 taxa

1024 2048 4096 8192 16384 32768 65536 131072 262144
80 x0.66 x0.90 x1.10 x1.20 x1.55 x1.57 x1.53 x1.47 x1.47

40 x0.79 x1.17 x1.56 x1.80 x2.40 x2.49 x2.45 x2.38 x2.37

20 x0.88 x1.38 x1.97 x2.41 x3.32 x3.52 x3.51 x3.43 x3.43

TABLE 7.11: Performance of Model of
NewViewGTRGAMMAPROT Hardware Kernel Compared

With AVX Version (100 Taxa)

As we can see on the above figures 7.21-7.24 and the corresponding tables
7.8-7.11, optimizing and reaching a lower II, a significant acceleration could
be achieved. The above comparison is between the execution times on hard-
ware and the AVX version of the function. It is obvious that a number of taxa,
lower than 100, have approximately the same performance. Achieving the II
equal to 80 the acceleration factor comes approximately up to x1.5 when the
alignment patterns are more than 4K and reaches x4-5 while they are enlarg-
ing. On the other hand, when the number of taxa is bigger than 100, the
acceleration factor starts to decrease by some decimals. This small reduction
is caused due to the time-consuming transfer of data to the device and back-
ward to the host. Moreover, it is not alarming because the acceleration factor
still remains on the same level as the previous values with a smaller number
of taxa. In the meantime, the performance of the process of the data into the
kernel still brings a speed up. It must be highlighted that all these results



Chapter 7. Results 86

derive from our simulation model corresponds to the total execution time of
NewViewGTRGAMMAPROT (Set up time + Transfer Data + Kernel process
time). Finally, on the next figures 7.25 and 7.26, the final and graded perfor-
mance of our model are presented, according to the achieved II, the number
of taxa and number of alignment patterns.

(A) 1024 Alignment Patterns (B) 2048 Alignment Patterns

(C) 4096 Alignment Patterns (D) 8192 Alignment Patterns

FIGURE 7.25: Final Performance Of Speedup of
NewViewGTRGAMMAPROT kernel (1)
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(A) 16384 Alignment Patterns (B) 32768 Alignment Patterns

(C) 65536 Alignment Patterns (D) 131072 Alignment Patterns

(E) 262144 Alignment Patterns

FIGURE 7.26: Final Performance Of Speedup of
NewViewGTRGAMMAPROT kernel (2)

7.5 Analysis and Final Performance

Summarizing all the above results, the final performance of RAxML can be
estimated using Amdahl’s law. Capturing the best speedup factor from the
above cases and platforms, the feasible speedup of RAxML is calculated:

• On ZCU102, the accelerator for the function SumGAMMA(3rd case)
could not achieve a speedup so it cannot bring a speedup on RAxML.
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• On ZCU102, the accelerator for the PLF(3rd case), brought a maximum
speedup factor x3.01, compared with the sequential version of the code.
Although our goal is not to accelerate the sequential version, it is use-
ful to know how this speedup affects the whole performance. With
this speedup factor, PLF can be accelerated by x1.43, and consecutively
RAxML can be accelerated by x1.36.

• On AWS F1 instance, the accelerator for the function SumGAMMA(3rd

case) achieved a maximum speedup factor x1.13, using big data sets
≥ 131K. The whole top function can benefit from it and be accelerated
by x1.06. Then RAxML is only affected by an x1.003 factor which is too
little to bring a significant acceleration.

• On AWS F1 instance, the accelerator for the PLF(3rd case), brought a
maximum speedup factor x3.35, compared with the sequential version
of the code. The whole PLF benefits from it and is accelerated by x1.46
while RAxML is accelerated by x1.38.

As we can see all these acceleration factors can not surpass the optimal ones
analyzed and mentioned in chapter 5. That was expected while on the initial
theoretical computations we did not count on the communication param-
eters. With regards to the final results that we obtained and whether we
achieved our goal, the following paragraphs are going to analyze them.

When we estimated theoretically the optimal performance of RAxML with
an accelerated function of SumGAMMAPROT, the result was that the over-
all speedup of RAxML could be maximum x1.02. Our accelerator used on
ZCU102 could not bring an optimization while itself on AWS F1 gave an
x1.003. These values are too low which shows us that functions that occupy
a small percentage, like 5% of total time, can not bring an intended outcome
on these two FPGAs. Moreover, we can assume that functions with a small
number of operations, are better to be executed by CPUs.

As regards the PLF, the theoretical maximum estimation was x1.63 accelera-
tion of RAxML. Our accelerator mapped on ZCU102 brought an acceleration
x1.36 on RAxML while itself mapped on AWS F1 brought an acceleration
x1.38. These factors regard the comparison with the sequential version of
RAxML. On the contrary, our goal was to surpass the performance of the
AVX version of PLF. These two platforms seem to be inadequate enough to
support the optimal implementation of our accelerators and that is due to the
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number of their resources. Moreover, ZCU102 has an ARM processor which
is very slow enough to support such systems. In the meanwhile, on the AWS
F1 instance, we did not meet any problems with its processor. The common
problem that we met on both platforms was the transfer of data. While the
data sets and their number of alignment patterns increase, it is necessary to
find other solutions, such as double or triple buffering, to transfer and export
the data from/to the kernel.

Assuming that we could map, place & route our accelerator on a bigger plat-
form, then we could achieve a better II on our accelerator for PLF, a fact that
could bring an improved performance compared with our threshold which
is the AVX version. Following the theoretical model in the previous section,
these acceleration factors could be achieved, installing the accelerators on
a bigger platform. Moreover, we can hit the following acceleration factors
when the number of alignment patterns in datasets is greater than 4K. So,
in the case that we achieve an II=80, the maximum speedup would be x2.54
which brings an x1.31 speedup on RAxML. With II=40 the accelerator brings
a maximum speedup x3.94 and accordingly RAxML is accelerated by x1.41.
Finally, with II=20 the accelerator brings a maximum speedup of x5.45, and
correspondingly RAxML is being accelerated by x1.47.
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Chapter 8

Conclusions and Future Work

In this chapter, this thesis’s workload is being summed up and evaluated.
Also, directions for future work, possible extensions, and optimizations are
being given.

8.1 Conclusions

Over the last years, scientists who work in the field of bioinformatics, give
their best to solve the significant problems that arise from the excessive in-
crease of data. On this effort, there is a contribution by technology innova-
tions and services, such as GPUs, FPGAs, and clouds, which help scientists
to find new guidelines on their way to the solutions.

In general, our thesis’s goal was to provide a solution for the above prob-
lem, trying to reduce the total required time for the processing data of an
algorithm. Specifically, we managed to accelerate the total execution time of
some time-consuming functions of an algorithm that use as input data amino
acid sequences, trying to process them and develop an evolution-relation tree
between them.

In this thesis we achieved to :

• Examine and analyze the optimal performances of our systems, taking
advantage of the specifications of the given platforms such as the clock
frequencies, memory access patterns, and bandwidths.

• Design hardware kernels with as far as possible the minimum provided
resources of the targeted platforms.

• Accelerate the initial functions (both their sequential and AVX versions),
using these kernels, by a significant factor.
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• Propose one of the least implemented accelerators of an algorithm that
targets the usage and processing of proteins or amino acids data. That
fact is high of importance because most of the related previous works
focused on DNA data. Although the processing of amino acid data has
more constraints we achieved to deal with it.

8.2 Future Work

This thesis’ designs offered a reliable acceleration on the target functions of
RAxML and the platform on AWS F1 instance is easily accessible by every-
one. However, all this work opens a frame with proposals for the accelera-
tors’ optimization. Some of them are presented below:

• A Better and sufficient technique for the transfer of the data from Host
to Device and vice versa on all accelerators.

• Execute the current kernel of NewViewGTRGAMMAPROT on a larger
platform to achieve the optimal II of 10 and export the conclusion for
the accelerator.

• Although there were sufficient data sets for the executions of RAxML
and the accelerators, it could be a good idea to gather real data sets from
scientists to run them and show the performance of the accelerators.

• It would be a significant optimization if a better way of recalling the
kernel and transfer data without time losses during the total run of
RAxML was designed.

• Integration of the other two cases (tip-tip & tip-inner) of these functions
into the kernels and with a larger targeted platform. Alternatively, they
might be used as standalone kernels.

• Dealing with difficulties due to the worldwide pandemic this year, the
access on the first platform was minimum. On other conditions, more
data sets could run to present a better and more gradient performance
of our accelerators. This could be an apropos remark.
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