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Abstract

As time goes by renewable energy usage in the residential

market rises. Electric vehicles usage is in a remarkable up-

side and this constitutes enough excuse for researchers to

invest in upgrading the electricity grid. For that purpose,

the Power TAC competition provides a multi-agent simu-

lation platform for electricity markets. In this platform,

adversary brokers compete into buying and selling energy.

Their primary target is to obtain max profit. The plat-

form consists of retail, wholesale, balancing and tariff mar-

kets, which push the complexity of the broker’s strategy up.

Teams need to construct a broker that can manoeuvre with

flexibility among consumers, producers and markets in or-

der to accumulate profits. One such agent was TUC-TAC

2020, the agent that represented the Technical University

of Crete in the PowerTAC 2020 international competition,

and which was developed by a team of students in which

this thesis author participated. TUC-TAC was crowned

the PowerTAC 2020 champion, competing against 7 other

agents representing universities from 6 different countries.

In this thesis, we present TUC-TAC’s energy consumption

predictor module. The goal in our thesis was to predict

the consumption of our agent’s customers for the future
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iv Abstract

timeslots. The problem was mainly approached with Ma-

chine Learning as a regression problem. Neural Networks

were also implemented and tested. The predictor module is

integrated to the agent in order to provide information use-

ful for the decision making in the tournament environment.

All the different approaches are presented in detail with ex-

perimental results and comparisons. We believe that this

work can serve as a departure point to build even more

successful trading agents in the future.



Περίληψη

Με την πάροδο των χρόνων η χρήση ανανεώσιμων πηγών

ενέργειας σε κατοικίες αυξάνεται. Επίσης η χρήση των ηλε-

κτρικών αυτοκινήτων είναι σε αξιοσημείωτη αύξηση και αυτό

αποτελεί αιτία για επένδυση σε ερευνητικό κομμάτι ώστε να

αναβαθμιστεί το ηλεκτρικό δίκτυο. Για το λόγο αυτό ο δια-

γωνισμός Power Trading Agent (PowerTAC) παρέχει μια

πλατφόρμα προσομοίωσης πολλαπλών πρακτόρων για αγο-

ραπωλησίες ηλεκτρικής ενέργειας. Σε αυτή την πλατφόρμα

αντίπαλοι πράκτορες - μεσίτες ανταγωνίζονται στις αγοραπω-

λησίες. Ο κύριος σκοπός τους είναι να αποκομίσουν το μέγι-

στο δυνατό κέρδος. Η πλατφόρμα αποτελείται από χονδρικό

και λιανικό εμπόριο καθώς επίσης και από αγορά τιμολόγησης

αλλά και αγορά εξισορρόπησης τιμών, οι οποίες ανεβάζουν

την πολυπλοκότητα της στρατηγικής του μεσίτη. Η κάθε ο-

μάδα φτιάχνει το δικό της μεσίτη ο οποίος πρέπει να είναι ευ-

έλικτος ανάμεσα στους καταναλωτές, τους παραγωγούς και

τις αγορές αποσκοπόντας στο κέρδος. Για το σκοπό αυτό μια

ομάδα φοιτητών ΗΜΜΥ στην οποία συμμετείχε ο συγγρα-

φέας, δημιούργησε τον TUC-TAC 2020, τον πράκτορα που
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εκπροσώπησε το Πολυτεχνείο Κρήτης στον διαγωνισμό Pow-

erTAC 2020, ο οποίος στέφθηκε πρωταθλητής του διαγωνι-

σμού. Σε αυτή τη διπλωματική, παρουσιάζουμε τη στρατηγι-

κή του πράκτορα από την πλευρά της πρόβλεψης κατανάλω-

σης ενέργειας των πελατών. Ο στόχος είναι να παράγουμε

προβλέψεις της ζήτησης των πελατών του πράκτορά μας για

μελλοντικές χρονικές στιγμές. Το πρόβλημα προσεγγίστηκε

κυρίως με κλασικές μεθόδους Μηχανικής Μάθησης, συμπε-

ριλαμβανομένων και των Νευρωνικών Δικτύων. Το κομμάτι

των προβλέψεων ενσωματώνεται στον υπόλοιπο πράκτορα με

σκοπό να του παρέχει πληροφορίες που θα βοηθήσουν στη

λήψη αποφάσεων κατά τη διάρκεια του διαγωνισμού. ΄Ολες

οι διαφορετικές προσεγγίσεις περιγράφονται με λεπτομέρειες,

με πειραματικά αποτελέσματα και συγκρίσεις ώστε να κατα-

λήξουμε στην καλύτερη στρατηγική πρόβλεψης κατανάλωσης

για τους επερχόμενους διαγωνισμούς.
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Chapter 1

Introduction

1.1 Motivation

Data is one of the most valuable resources in our age. At the same time the data of one

person or a single timestamp have no value. Different data points of different people

in different situations are needed for a research to start. At the same time different

data may have different value for different companies. For example a dating site’s data

have no value to a grocery store. On the other hand Facebook’s1 data are very useful

for companies like Amazon2 and e-Bay3.

Secondly, even if a company has the data that fit to the company products it is not

guaranteed that it can be used to create profit for the company. In contrast with most

- if not all - of the resources, data flows endlessly. That makes it difficult and important

to sort them out and focus on what makes impact in each field.

Once you have utilized your data you can start using it for your interest focusing on

what you are learning and what is their reflection to your project. Therefore calling

data the most valuable resource is kind of inaccurate but it is not wrong. Data can be

gold in one man’s hands and coal in another’s.

1www.facebook.com
2www.amazon.com
3www.ebay.com

1



2 1 Introduction

The main motivation of our research was to observe data and select what to keep

and what to toss. The Smart Grid offers a pretty realistic environment with a lot of

different variables that also exist in the ”real world”. The PowerTAC is a real time

retail electricity trading competition in a simulation platform. Producers/prosumers

need to process data and learn in order to strategize in Smart Grid settings, where

they compete with each other. The objective of our project was to create a functional

predictor that takes the data of the competition’s environment as input, filters them

to keep what is useful and put them into Machine Learning/Deep Learning algorithms

to create predictions for the energy usage of our broker’s customers for the upcoming

hours or days.

1.2 Thesis Contributions

The aim of this project was to create a predictor module for the TUC-TAC agent to

participate in the PowerTAC 2020 competition. For that purpose, many different ap-

proaches were implemented. The predictor was approached as a regression problem,

starting with linear regression algorithm. More Machine Learning and Deep Learning

algorithms were also examined. Namely Linear Regression, kernel Regression, Polyno-

mial Regression, k-Nearest Neighbor, Regression via Feed Forward Neural Networks,

Regression via Recurrent Neural Networks were all the methods we used. None of

them came up with exceptional outcomes, although Regression via Feed Forward Neu-

ral Networks was the best overall.



1.3 Thesis Overview 3

1.3 Thesis Overview

The project described in this thesis represents the stages of the construction for the

predictor part of the TUC-TAC agent, an agent that represented the Technical Uni-

versity of Crete in the PowerTAC 2020 international competition with this strategy.

The overall strategy worked well, and TUC-TAC was crowned the PowerTAC 2020

champion, competing against 7 other agents representing universities from 6 different

countries.

In Chapter 2, we present some basic background on fields important to this project,

namely Data Science, Machine Learning and Deep Learning/Neural Networks. In

Chapter 3 we describe the basic rules and the important component of the Power

TAC simulated environment along with some of the strategies that dominated in past

tournaments. In Chapter 4 we define each one of the algorithms that we used for the

predictor and describe how we used them in detail, describe the architecture of the

predictor, and the dataset creation process. Chapter 5 contains all the experimental

results and the comparison of the different prediction methods used. Finally, in Chapter

6 we review our project focusing on what we achieved and what could be improved in

the future.



Chapter 2

Theoretical Background

Predictive analytics is frequently talked about within the setting of Big Data. As data

gains more value, researchers and projects aim to take advantage of this situation,

analyzing and using available data to their benefit. In this chapter, terms as Data

Science, Machine Learning and Deep Learning are going to be discussed and clarified.

These tools are the foundations of this project.

4



2.1 Data Science 5

2.1 Data Science

Data is growing in importance for any project, as it is useful for business leaders to make

decisions based on statistical figures and trends. As the volume of data has increased,

Data Science [22] has become a multidisciplinary entity. It extracts knowledge and

insights from vast amounts of data using scientific approaches, procedures, algorithms

and frameworks.

The occurring data are not guaranteed to be structured. In Data Science concepts like

Data Mining, Machine Learning, and related strategies are combined to understand

and analyze real-world phenomena in the form of data. Data Science is an extending

Data Analysis, with areas including Data Mining, Statistics, and Predictive Analytics.

As seen in Figure 2.1, Data Science is an upcoming field that uses many concepts that

belong to other disciplines such as information science, statistics, mathematics, and

computer science. Some technologies used in Data Science include Machine Learning,

visualization, pattern recognition, probabilistic models, data analysis, and more.

Figure 2.1. Scientific fields relevant to Data Science
https://medium.com/



6 2 Theoretical Background

2.2 Machine Learning

Machine Learning (ML) [3] uses statistics to recognize patterns in huge datasets. Data

is very complicated and may include a lot of things such as numbers, characters, images

and so on. The first important step is to digitally store them without losing any

important information. After that, they can be processed through a Machine Learning

algorithm to create a unique model. These models lie in the background of many

famous services - recommendation systems like those from YouTube1 and Spotify2;

search engines like Google3; social media feeds like Facebook4 and Twitter5

In any case, the platform collects as much data as it can about each individual user -

what film genres they like to watch, what links they click, what status updates they

respond to - and uses Machine Learning to make a thorough prediction about what

the user might want next.

2.2.1 Neural Networks

Artificial Neural Networks [2] [5] are a type of Machine Learning algorithm inspired

by the structure of the human brain. They may solve issues by trial and error, much

like other types of Machine Learning algorithms. The output of a Neural Network is

determined by the correlations between the features. Deep Learning occurs when the

neurons are coupled in layers.

Nowadays, they can manage self driving vehicles, serve adverts, detect people, interpret

messages, and even assist artists in the creation of new paintings. Neural Networks are

used in many real-world problems today, such as speech and image recognition, spam

email filtering, finance, and medical diagnosis, to name a few.

1youtube.com
2spotify.com
3google.com
4facebook.com
5twitter.com
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Through trial and error, a learning process fine-tunes these connection strengths in

order to maximize the neural network’s effectiveness in solving a problem. The pur-

pose is to find patterns and correlations between the different data features and make

predictions of future values or a value for a reward function in order to solve a problem.

The number and configuration of neurons in a neural network, as well as the division

of labor amongst specialized sub modules, is frequently suited to each problem.

Neural Networks are only a subset of Machine Learning. A Neural Network has a big

variety of use in many different Machine Learning algorithms to process complex data

inputs into a space that computers can understand.

Figure 2.2 depicts a simple Neural Network. Data enters the Neural Network from the

input layer. All the calculations are performed in the hidden layers, and the response

is given at the output layer.

Figure 2.2. A simple Neural Network
https://simplecore.intel.com/



Chapter 3

PowerTAC: The Power Trading Agent Competition

PowerTAC is a simulated competition in a smart grid environment. In the emerging

smart grid [19], automated retail brokers are expected to compete with each other on

buying and selling power in both wholesale and retail markets. The critical point of

each broker’s strategy is achieving balance between their pricing strategies and demand,

because the data is dynamic and the problem is multi parametric. Both brokers and

customers are live members of this continuous price fluctuation. Wolf Ketter and John

Collins created the PowerTAC simulation platform [14], that gives the opportunity to

researchers to experiment with future energy market situations by creating competitive

agents that face each other in yearly PowerTAC international competitions. The first

PowerTAC competition was held in 2013.

8
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3.1 Competition Overview

In PowerTAC, competitors construct autonomous trading agents that aggregate energy

supply and demand targeting to earning profit. Brokers offer contracts to customers

competing with each other by offering the most attractive and profitable prices and

terms. This is known as the ”Customers Market” part of the competition. Terms may

contain fixed or varying prices for both consumption and production of energy. They

may also contain bonuses or withdrawal penalties. Contract’s pricing could be dynamic

in order to motivate customers’ investing in contracts that adjust to their needs.

Figure 3.1. Available broker interactions within a time slot



10 3 PowerTAC: The Power Trading Agent Competition

As seen in Figure 3.1, Brokers need to balance their strategies in both the wholesale

and the customers market. For that purpose they have a portfolio of their producers

and consumers. Planning is required in order to buy the amount of energy needed to

fulfil their customers needs. However, accuracy is not that easy to achieve in a dynamic

and competitive market, so brokers need to delicately manoeuvre between supply and

demand. The primary goal of each broker is to sign suppliers and customers to develop

a qualitative portfolio. A key factor for the brokers’ strategy is being able to predict

the consumption wage of their customers to avoid risks of imbalance between buying

and selling.
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3.1.1 Simulation Time

A PowerTAC game simulation takes about two hours of time in the real world. In

PowerTAC simulations, time is counted in time slots. A full game simulation runs

1440 time slots which can be converted to 60 simulated days. At any given time a

time slot is the ”current” time slot and there is also a set of future time slots for

which the market is open for trading. The brokers have to make their moves in time

to keep balance between demand and supply in each of the future time slot, otherwise

monetary penalties are imposed.

Figure 3.2. PowerTAC scenario outline
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3.1.2 Brokers in the Customer Market

Brokers are the real life analogy to energy retailers. Their goal is to acquire energy

from the producers and load capacity of the consumers. Brokers offer contracts with

specifications like time of use, tariffs with hourly/daily intervals, sign up bonuses, with-

drawal fees and dynamic prices. These are just a few of their interaction.

In more detail, brokers are able to publish new tariffs at any time or modify the exist-

ing terms by replacing their current tariff with new. In some cases, where terms allow

it, price can be adjusted. Additionally, brokers can perform trades in the wholesale

market by bidding for energy in the future time slots or make load curtailment to re-

duce overall energy in rush hours. Time also needs to be balanced and for that reason,

brokers are able to submit balancing orders in balancing markets.

Focusing on the back-end of a broker, a lot of information is available for brokers to

utilize, most of it coming from the bootstrap game file. Specifically, the bootstrap

phase is the initialization period of the game and only the default broker is active.

Its data consists of net demand and energy usage of each customer along with, data

useful for the brokers to create customer models and prepare for bidding and tariff

publications. Weather reports and forecasts (24 hours ahead) are also available during

all phases of the game and can be useful for customer models and predictions. Brokers

also have other brokers’ active tariffs and bids available which are useful to make

opponent models. On the other hand, transactions are private so other brokers cannot

use opponents’ transaction data.
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3.1.3 Brokers in the Wholesale Market

In the wholesale market, brokers buy and sell energy for the upcoming time slots. The

upcoming time slots are all the time slots from the next time slot up to the last of the

current simulated hour when the market clears and resets. The wholesale market in

PowerTAC operates as a periodic double auction (PDA) and represents a traditional

energy exchange like NordPool, FERC or EEX (wholesale trading in North America

and Europe).

PowerTAC cannot possibly simulate an existing wholesale market because of the ge-

ographic region covered. For that purpose, trying to make the market simulation as

real as possible they created three more entities to trade along with the brokers. The

first entity is ”Grid Genco”, representing the wide population of generating facilities

that supply the simulated city. The second one is the ”Grid Buyer”, which simulates

the regional demand based on real life metrics. The third and last entity is providing

liquidity to the market by mimicking a population of buyers and speculators only in

the wholesale market.
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3.1.4 Balancing Market

The balancing market mimics the operation of Independent System Operator (ISO) in

the United States and Transmission Systems Operator (TSO) in Europe. Note that

PowerTAC does not model the full hierarchy of the organizations mentioned above. In

more detail the balancing market is responsible for real time balance of supply and

demand. For that purpose it tries to motivate the brokers to balance their portfolios

instead of relying on the balancing market to do it for them. Whenever a broker ex-

ceeds the balance limits, the balancing market charges it for the missing energy at an

unreasonably high price acting as a penalty.

Figure 3.3. PowerTAC scenario outline
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3.1.5 Customer Models

Customers interact with the brokers in the tariff market. They differ with each other in

some specific characteristics according to their customer model. Each customer model

is specified with some information. These characteristics differ from one model to an-

other. In more detail, customer models differ in population size, for example there are

models that refer to households and models that refer to offices. They also may differ

in the power type they use, which indicates if a customer is producing, consuming or

doing both. Moreover, not all customer models are able to negotiate for tariff prices

or sign contracts with multiple brokers. These characteristics constitute the core set

of information for each customer model and are communicated to the brokers at the

beginning of each simulation.

3.1.6 Weather Reports

Each time slot agents receive weather reports and forecasts. The weather variables are

temperature, wind speed, wind direction and cloud coverage. Each forecast contains

the variables mentioned before for each upcoming hour for the next 24 hours in advance.

Given this data, brokers are able to create prediction models to estimate the usage of

their customers in the upcoming time slots. Weather data is based on real world

location in the past but agents are not aware of this information until the game is over.
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3.1.7 Distribution Utility

The Distribution Utility is responsible for issuing the transmission capacity fees. When-

ever a demand peak arises, each broker has to pay the amount of the total fee his

customers are responsible for. Distribution Utility is also responsible for issuing dis-

tribution fees to brokers, for distributing energy to customers. Therefore it is very

important for the agent to buy no more energy than the customers demand in order

to avoid paying fees for distribution or exceeding limits. The Distribution Utility also

publishes the tariffs when brokers have no deals made.

Figure 3.4. PowerTAC Tariff Specifications
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3.2 Related Work

As mentioned before, this thesis project focuses in the predictor module of the Pow-

erTAC agent. In 10 years of PowerTAC competitions many ideas were implemented,

but some of them were successful enough to be mentioned. The predictor module is

mainly useful in the tariff market where customers interact with the brokers in order

to sign the contract that gives them the most benefit.

3.2.1 Neural Networks

In order to predict the usage of each customer, agent VidyutVanika [7] implemented a

Neural Network (NN) with 2 hidden layers of size 7 each and 10 epochs of training over

the training data. The features of the data set were time of day, day of week and the

weather forecast variables. Each customer type has a different model that is updated

through the game as the broker gets more data. The agent finished in the second place

in the competition of 2018.

3.2.2 Regression Methods

Agent UDE [16] was consistently winning a place in the podium from 2016 to 2019 with

2 first places. Their prediction strategies were based on linear regression. Specifically,

Agent UDE17 focuses on features like the customer type and capabilities to predict

future demands. Apart from that, a seasonal autoregressive integrated moving average

(SARIMA) is computed to find any periodic behavior in the energy demand of the

customers. It is worth mentioning that Agent UDE predicts demand without taking

into account weather conditions, and focuses on past market data.
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3.2.3 Classification Methods

Mertacor2019 was the winner of the PowerTAC 2019 and the same team created the

agent that was the runner-up of the PowerTAC 2020 competition. Although the agent

is consistently one of the top in the tournament, the team is not focusing on the

consumption predictor module. Their prediction strategy in 2019 when Mertacor was

crowned winner was a simple classification method, used in order to approximately

calculate customers’ consumption.

3.2.4 Markov Decision Process

The Crocodile agent [10] is another consistently reliable agent. In the customer de-

mand prediction this agent implemented a Markov Decision Process (MDP) [18] for

the wholesale market and Reinforcement Learning (RL) for the retail market. This

selection was previously presented by many other agents too but the Crocodile agent

was mentioned because of its total good results.



Chapter 4

Implementation

The target of this project was to create a predictor module for the TUC-TAC agent

to participate in the PowerTAC 2020 competition. For that purpose, many different

approaches were implemented. The predictor was approached as a regression problem,

starting with linear regression algorithm. Machine Learning and Deep Learning algo-

rithms were also examined. In this chapter we will start by first describing the dataset

and its features. Moreover, the architecture of our predictor and all the methods used

are going to be explained in detail, starting with the underlying theory and moving on

to the application of the algorithms and our experimental results.

19



20 4 Implementation

4.1 Dataset Construction

The competition is taking place in the virtual environment of the smart grid. Despite

this, the instances and the data that the smart grid contains seem pretty real. In

more detail, the simulation consists of different customer models which differ in some

important factors. First of all the customers are divided into three main categories

according to the power type. These categories are consumers, who only buy energy

from our broker, producers, who only sell energy to our broker, and prosumers that

are a hybrid of the first two.

Additionally, customer models vary in population and capacity. Apart from the cus-

tomer model information, the simulation provides us with the energy usage of each

customer per time slot. Moreover, weather forecast and report are provided per time

slot and we also keep this data in track because we consider them valuable features for

the model construction. The features that are used in all the datasets for regression

algorithms are:

• hour

• day

• month

• year

• temperature

• wind speed

• wind direction

• cloud cover
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4.1.1 Bootstrap Phase

After referring to all the sources of data available, it is time to start selecting our

dataset’s features. For each one of the simulations our broker has access to one file

before the game containing the bootstrap phase data. The bootstrap phase of the

game is the initial phase where the game has not actually started, meaning that no

negotiations have been made yet, but the environment has been set-up. Its name has

the form finals2020** **.xml, where the stars are representing the unique game number

that works like a unique identity for the game. This file contains 336 timeslots and the

features that we are monitoring are:

• timeslot

• temperature

• wind speed

• wind direction

• cloud cover

• net usage (the total net usage of all the entities in the smart grid)

Net usage is actually our target variable and we use any past values of the available

variables to help the model make better predictions on the upcoming values. Up to

this point we have a dataset of features with shape of (336,5) and our target variable

with shape (336,1). This is all the available data we have if we want to make online

predictions. This is one of the cases we are going to discuss in this chapter but for now

lets move on to collecting and explaining all the data of a simulation.
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4.1.2 Post Game Collection

At the end of each game two more files are generated. They have the same name

format as the bootstrap file with a different file type. These files give us some extra

information. We can learn the location where the weather data were taken from, along

with the full time and date of the first timeslot of the game. Weather forecasts and

predictions for all the timeslots of the game are also available. We collect all this data

aiming to find possible correlations between the games that took place in the same

location or at the same dates.

After collecting all the data mentioned above for all the games of the 2020 finals, we

divided the data by location. We have three different locations, Denver Phoenix and

Minneapolis. The total number of datasets that we created is seven. There is one

dataset that contains all the collected data irrespectively of location. Three more

datasets contain one location each, and the last three contain all the possible couples

of locations.

Concluding, the features in all the mentioned data are the same eight:

• hour

• day

• month

• year

• temperature

• wind speed

• wind direction

• cloud cover



4.1 Dataset Construction 23

The number of datapoints differs from one dataset to another, specifically the data

shapes are:

• Denver(88604,8)

• Minneapolis(89376,8)

• Phoenix(79038,8)

• Denver & Minneapolis(177979,8)

• Denver & Phoenix(167641,8)

• Minneapolis & Phoenix(168413,8)

• Denver & Minneapolis & Phoenix(257016,8)
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4.1.3 Data Correlation

The next step was to examine the correlations of each feature with the target value.

Unfortunately, according to the scatter plot of Figure 4.1 none of the features mentioned

was related enough with the net usage value. This is visible in the last row/column

of the scatter plot below with the label ”mwh”. For that purpose, a lag feature was

added to our datasets. A lag feature is a feature that in timeslot t takes the value of

the target value in timeslot t− 1. Adding a second lag feature extends the lag giving

the value of the target in t− 2 and so on.

Figure 4.1. Scatterplot with all the features of the dataset
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4.2 Predictor’s Architecture

In order to maintain fast and reliable connection with the main agent we set up a

python server. In this communication, all the useful data are sent to the predictor

via json files and predictions are returned. The main functions of the predictor are

demonstrated in the diagram below and described in the next subsection.

Figure 4.2. Predictor’s architecture
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4.2.1 Main Algorithmic Components

In this section, the main components of the predictor, with their inputs and outputs,

are going to be described in detail. Regardless the algorithm used for the predictor the

compoments used are the same.

4.2.1.1 Preprocessing

The first stage is to take the bootstrap file, or any log files, in text form, extract the

useful information and create a dataset.

4.2.1.2 Create Lags

This component takes the dataset and the number of lag features as input and returns

the dataset with the lag features added.

Figure 4.3. Python Code for creating lag features
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4.2.1.3 Initialization

This component loads a big dataset and constructs 2 new ”fake” datapoints with the

minimum and maximum values for each feature. These datapoints are not actual

datapoints from past games. They are custom with purpose to set the minimum and

maximum values of each feature. That is really important because datapoint values

are scaled in the (0,1) before getting fit into the model. In order for the scale to work

properly same upper and lower limits are needed in every case.

4.2.1.4 Boot Training

This function is used only in the bootstrap phase of the game. We take bootstrap

dataset, load our pre-trained model, fit the bootstrap data in it and then save the

updated one.

4.2.1.5 Fit

This component is used when past data becomes available. In this function past dat-

apoints are given as input and the predictor fits them into the model to gain more

”knowledge”. This was decided because of the deviation between the predictions and

the real values. Actually this is the module where the model is getting retrained and

creates new weights because of the new values that are fitted in it. The output is a

new retrained model after some online training.
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4.2.1.6 Predict

In this function the input is the features of the datapoints we want predictions for. The

predictions are created according to the model’s weights and sent back to the broker.

However they are not fitted to the predictor model. In case we fit the predicted values

into the model, upcoming prediction are going to have even higher deviation from the

real values because the errors are going to be fitted as ”correct” values. In more detail

this is the component that makes the prediction based on the current predictor model.

Specifically, the models we created that are going to be described in the next section

are:

• Feed Forward Neural Networks for Regression

• Recurrent Neural Networks for Regression

• Linear Regression

• Kernel Regression

• k-Nearest Neighbor
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4.3 Artificial Neural Networks

Neural Networks are beneficial for situations with complex or poorly understood so-

lutions. They are suitable for solving problems with big amounts of data containing

multiple variables that are beyond human grasp. Neural Networks are useful for pattern

recognition, which means matching the inputs according to their statistical variation.

Our problem is one with high complexity given the many different variables that have

influence on the net usage value. In our situation we are implementing two differ-

ent types of Neural Networks, Feed Forward Neural Networks and Recurrent Neural

Networks. Feed Forward and Recurrent Neural Networks are going to be used for

Regression.
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4.3.1 Feed Forward Neural Networks (FFNNs)

The fundamental Deep Learning models are FFNNs, known as multilayer perceptrons

(MLPs). FFNNs’ purpose is to approximate a function f*. In our project FFNNs were

implemented for both Regression and Classification. The architecture of our Neural

Network is very similar to the Neural Network in Figure 4.4, the only difference is the

number of neurons. The input layer contains the features of our dataset, each feature

is represented from one neuron.

In our Regression case the features are 9, and thus we have 9 input layer neurons. Then

we have 2 hidden layers as presented in the Figure, but the size of each is 24. In these

layers the Neural Network makes calculations and decides the weights of the edges.

These weights represent the correlations between the features and target value. The

last layer is the output layer in which the result is posted. The output layer contains

only one neuron.

Figure 4.4. A simple FFNN Architecture with 2 hidden layers
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4.3.1.1 Feed Forward Neural Networks for Regression per Customer

The idea of having one FFNN for regression per customer, was one demonstrated in the

VidyutVanika agent [7] in 2019 Power TAC tournament. In more detail, a unique model

was trained on the NN for every customer type. At the end of each simulated day a

prediction was calculated for each customer type and all the predictions we aggregated

to summarise the total net usage of our customers. Theoretically this approach could

help limiting our miscalculations, because of error mutual neutralization.
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4.3.2 Recurrent Neural Networks (RNNs)

Recurrent Neural Networks are based on Feed Forward Neural Networks with an ex-

tension of memory (feedback). For that reason, RNNs are suitable for time series or

sequential data like Natural Language Processing (NLP). Their feedback asset gives

the opportunity to alter the input of the Neural Network by using past inputs. While

typical deep neural networks believe that inputs and outputs are independent of one

another, recurrent neural networks’ output is reliant on the sequence’s prior compo-

nents.

Figure 4.5. RNN unfolded
https://www.researchgate.net/figure/Recurrent-neural-networks-structure

In this figure we can see a simple architecture of a Recurrent Neural Network. On the

left, the figure represent the whole Neural Network with the input, the hidden layer

and the output. On the right side, the Neural Network is presented unfolded, showing

all the time steps.
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4.4 Linear Regression

Linear Regression is a predictive analytic technique that uses a statistical linear ma-

chine learning algorithm. Linear regression methods demonstrate a linear connection

between a dependent variable, y, and one or more independent variables, x, i.e., how the

value of the dependent variable, y, varies as the independent variable’s value changes.

Simplified, Linear Regression’s purpose is to create a projection that is as close as

possible to all the datapoints of the dataset.

For the implementation of linear regression we used the scikit-learn library [17]. For

the rest of the work we did pretty much the same things. We created the lag features,

observed the same metrics as in the regression with the NNs and split the datasets

with the same 90-10 principle.

Figure 4.6. Fitting data into the model and predicting values
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4.5 Kernel Regression

Kernel Regression [1] is a data-fitting estimating approach. One wishes to discover a

regression function fa(x,w) that is the best-fit match to the available data at those data

points provided a dataset (Xi, Yj). One could also wish to extrapolate and approximate

beyond available data. Unlike linear or polynomial regression, where the underlying

assumption (e.g. normal distribution) is known, kernel regression does not make any

assumptions about the underlying distribution while estimating the regression function.

Kernel regression is classified as a non-parametric method because of this.

Kernel regression works by assigning each observational data point to a collection of

identical weighted functions known as Kernel local. The kernel will give each location

a weight based on its distance from the data point. The radius or width (or variance)

from a local data point X to a collection of nearby locations x is all that matters to

the kernel basis function. Kernel regression is a superset of local weighted regression

and closely related to Moving Average and k nearest neighbor (kNN).

Figure 4.7. Implementing the Gaussian Kernel and make a prediction
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4.6 k Nearest Neighbors (kNN)

The supervised machine learning method k-nearest neighbors (kNN) [1] may be used

to tackle both classification and regression problems. kNN, is arguably a ”real-world”

algorithm: People are influenced by those around them. Our behavior is influenced by

the companions with whom we grew up. In some respects, our parents influence our

personalities as well. If you grow up with people who love sports, it is highly likely that

you will end up loving sports. Of course, there are exceptions. kNN works similarly.

The majority voting principle is used by the kNN classifier to identify the class of a

data item. When the value of k is set to 5, the classes of the five nearest points are

examined. The majority class is used to make predictions. Similarly, the mean value

of the five nearest points is used in kNN regression.

kNN is an algorithm that works in both classification and regression tasks. It can work

really well in multiple class classification. It can also be implemented in non-linear

tasks as it makes no assumptions. On the other hand kNN becomes very slow as the

number of data points increases because the model needs to store all data points. This

means it is not memory efficient.
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4.7 A Heuristic approach

In this part of the project we tried to approach the problem by observing the data as

if Smart Grid was a reality. The idea was to check if real world assumptions exist in

the Smart Grid environment in order to set stricter limits to our predictor. We wanted

to check for habits that could lead into repetition in the usage. Different observations

were made from different perspectives.

At first, we compared the same groups of hours of different days, then days of weeks,

days of months, workdays, work hours, sleeping hours, weekends, first days of the

month last days of the month. Another perspective was to observe each one of the

three locations on its own to find some special features.

This heuristic search for patterns did not result in any major improvements in our

results, though we can certainly infer that ”life” in the Smart Grid does follow some

of the same habits with the real world, for example the peak usage is in the evening

and the lowest usage values in the morning.
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Experimental Results

In order to compare and contrast the results of each algorithm we had to evaluate

them given the same terms. The same datasets were used for all the algorithms and

the same accuracy metrics were scoped. Apart from the accuracy metrics, execution

time is also important in order for the module to be useful in the competition. All the

experiment result are going to be presented and explained by the type of the algorithm

used. After discussing the results of each algorithm, the next step is to compare and

contrast the results to each other, in order to end up with the algorithms that were

more appropriate and fit better to our kind of problem. The 3 main datasets used in

the experiments are Denver, Minneapolis and Phoenix, categorized by location. The

fourth is a combination of the 3 above. The dataset creation is explained in detail in

paragraph 4.1.2

37
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5.1 Monitored Metrics

In each one of the 6 regression algorithms implemented we are keeping track of some

metrics in order to compare and contrast the algorithms. Specifically we are measuring:

• Mean Absolute Percentage Error (MAPE): This value expresses the mean abso-

lute distance between the real target values and the predicted values. Smaller

error values mean bigger success in the algorithm predictions.

MAPE =
1

n

∑∣∣∣∣xi − yi
xi

∣∣∣∣

Where yi is the prediction and xi is the true value.

Rooted Mean Squared Error (RMSE): This error metric is very similar to MAPE but

it is not the same. RMSE is a quadratic scoring metric that tends to weigh bigger

errors more than smaller ones. That is not useful in all cases but in our approach is

very important because we are trying to avoid big divergence from the real values.

RMSE(θ̂) =

√
MSE(θ̂) =

√
E((θ̂ − θ)2) (5.2)

For an ubiased estimator the RMSE is the square root of the variance.
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R2(R Squared): This metric is used in statistical models to measure the coefficient of

determination. In other words it is a metric that monitors the correlation between the

independent variables (features) and the dependent variable (target value). The best

score for this variable is between 0 and 1.

If y is the mean of the observed data:

y =
1

n

∑
yi (5.3)

The sum of squares of residuals is:

SSres =
∑

(yi − fi)
2 =

∑
e2i (5.4)

The total sum of squares proportionally to the variance of data is:

SStot =
∑

(yi − y)2 (5.5)

Generally, the definition of the coefficient of determination is:

R2 = 1 − SSres

SStot

(5.6)

Execution Time in Seconds: It is very important for our strategy to use an algorithm

that executes as fast as possible in order to make our prediction within the given time

limit. In the Power TAC 2020 Tournament that was 10 seconds. The predictor has to

give the result in 5 seconds maximum to be sure that the main agent will receive it



40 5 Experimental Results

and take it in consideration.
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5.2 Linear Regression

The experiments contain data from the PowerTAC 2020 final. Data from 145 games

was merged into one big dataset containing about 257.000 datapoints. This data was

then divided into 3 smaller datasets based on the location of the game. The size of the

3 datasets is similar and they contain 80.000-90.000 datapoints each. It is important to

mention that according to PowerTAC rules the agent has no location knowledge before

the end of the simulation.

The following tables present Linear Regression results with each one of the 4 datasets,

3 small datasets based on location and 1 big dataset containing all the data combined.

The number of lag features is also examined and for that purpose 0,1,2 and 4 lag

features are tested for each dataset. The metrics that evaluate the performance of

each test case are time, MAPE, RMSE and R2. They were explained in detail in the

previous section.
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Linear Regression - Denver Dataset

Number of Lags 0 1 2 4

Time in seconds 0.1555933952 0.1535613537 0.1645598412 0.1866192818

MAPE 132.3196634 87.37115316 107.8967211 88.32220319

RMSE 323300.2508 2464983.433 2841246.4 2469051.99

R2 −1.2 ∗ 1016 −8.76 ∗ 1015 −9.04 ∗ 1015 −1.03 ∗ 1016

Linear Regression - Phoenix Dataset

Number of Lags 0 1 2 4

Time in seconds 0.1206541061 0.1326992512 0.1416511536 0.1670753956

MAPE 88.2980799 88.19853496 88.43660946 88.05734155

RMSE 38553.19332 40005.86636 40069.08924 40014.20918

R2 −10 ∗ 1010 −11 ∗ 1010 −11.1 ∗ 1010 −11 ∗ 1010

Linear Regression - Minneapolis Dataset

Number of Lags 0 1 2 4

Time in seconds 0.13935256 0.1790144444 0.181383152 0.1845057011

MAPE 113.1542341 113.0788475 113.0135115 113.2855544

RMSE 43758.80845 44893.71847 44875.036 44976.67736

R2 −16.4 ∗ 1010 −17.1 ∗ 1010 −17.2 ∗ 1010 −17.1 ∗ 1010

Linear Regression - Combined Dataset

Number of Lags 0 1 2 4

Time in seconds 0.3410875797 0.4218530655 0.4378292561 0.5106351376

MAPE 115.922184 79.63144835 113.7340657 90.55751338

RMSE 137017.8616 1200225.287 1710336.722 1378274.8

R2 −89.4 ∗ 1012 −9.76 ∗ 1015 −9.24 ∗ 1015 −8.76 ∗ 1015
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In Figure 5.1 we see barplots for the time, MAPE and RMSE metrics on the Denver

dataset. It has to be mentioned that the use of lag features lowers the error rates,

although the number of lags does not seem to make any remarkable difference.
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In Figure 5.2 we focus on the Minneapolis dataset. The error rates in general are lower

than in the Denver dataset but the result is still not interesting for good predictions.

Lag features do not really influence the error in this case.
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(d)

In the Phoenix case in Figure 5.3 the algorithm’s behavior is similar to the Minneapolis

case. The error rates are the same and the lag features seem to have no influence in

the results.
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(d)

When testing all the data combined in one dataset, the results are not so positive as seen

in Figure 5.4. In particular the error values are between those in Minneapolis/Phoenix

cases where the errors are comparatively low and those in Denver where the errors

values are high.

The execution time is surprisingly low. On the other hand R2 is taking big negative

values meaning that the algorithm is not appropriate for the problem. This conclusion

is also established from the error values that are far bigger than expected. The number
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of lag features does not seem to affect the results. The location seems to have stronger

influence, for example the Denver dataset is more difficult than the other two locations.
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5.3 Kernel Regression

The Kernel Regression implementation is based on the scikit-learn kernelRidge li-

brary [17]. On the other hand the the Gaussian Kernel Regression is based on a

custom library that builds a kernel based on the normal distribution. Both algorithms

need a lot of calculations meaning a lot of disk space. For that purpose parts of the

datasets were used in this set of experiments. Specifically only 1000 datapoints of each

datasets were used.

As in Linear Regression in the previous section, the experiments are divided in 4 cases

that differ on the dataset used. Each case has 4 subcases for 0,1,2 and 4 lag features

respectively. The only difference is that instead of using the whole dataset on each

case, only 1000 datapoints were used on each. In the case of the combined dataset, a

mixture of Denver, Minneapolis and Phoenix games was picked summarizing in 1000

datapoints. The selection is made by picking random datapoints.
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Kernel Regression - Denver Dataset

Number of Lags 0 1 2 4

Time in seconds 0.02892112732 0.03490591049 0.03191494942 0.03886342049

MAPE 23.45241761 23.55353204 23.91201191 23.70117376

RMSE 45890.10496 46108.36257 47120.71903 46479.5607

R2 −9.7 ∗ 1010 −11.6 ∗ 1010 −11.7 ∗ 1010 −1.14 ∗ 1011

Kernel Regression - Phoenix Dataset

Number of Lags 0 1 2 4

Time in seconds 0.06083798409 0.05781841278 0.06083774567 0.07280421257

MAPE 96.94789734 96.39241762 97.10063911 97.74946171

RMSE 43463.34958 43112.36615 43416.57335 43711.84864

R2 −13.5 ∗ 1010 −13.3 ∗ 1010 −13.4 ∗ 1010 −13.8 ∗ 1010

Kernel Regression - Minneapolis Dataset

Number of Lags 0 1 2 4

Time in seconds 0.06482481956 0.05781412125 0.06083774567 0.06183481216

MAPE 110.336603 109.0767338 110.0034238 109.513759

RMSE 43564.8169 43108.3365 43416.57335 43304.77903

R2 −13.9 ∗ 1010 −13.7 ∗ 1010 −13.4 ∗ 1010 −13.2 ∗ 1010

Kernel Regression - Combined Dataset

Number of Lags 0 1 2 4

Time in seconds 0.06482553482 0.05983972549 0.06083631516 0.06083726883

MAPE 45.40966703 45.31844791 45.25617342 45.48922863

RMSE 43208.1993 43160.6158 43141.20863 43306.35752

R2 −13.6 ∗ 1010 −13.4 ∗ 1010 −13.2 ∗ 1010 −13.5 ∗ 1010
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(d)

In this set of test cases, the Denver dataset was used. Neither the use of lag features

nor their number has influence on the error rates. As seen in Figure 5.5 the results are

almost identical in all tests.
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(d)

In Figure 5.6 the Minneapolis dataset is examined. Neither the use of lag features nor

their number has influence on the error rates in contrast with Linear Regression where

this dataset was ”easier” for the algorithm.
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Kernel Regre  ion

(d)

In Figure 5.7 the Phoenix dataset is examined. The lag features make no difference in

the final result and the error rates remain in the same level as in the previous cases.
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(d)

However the datapoints in the case of Figure 5.8 are taken from games with weather

data from different regions the errors remain the same and the lag feature make no

difference in the result.

The execution time value is surprisingly low, although it is not taken into consideration

because the datapoints were fewer in Kernel Regression than in the other algorithms.

On the other hand R2 is taking big negative values meaning that the algorithm is not

appropriate for the problem. This conclusion is also established from the error values
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that are far bigger than expected. Neither the number of lag features nor the the

location of the dataset seem to affect the result in a betterment.
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5.4 k-Nearest Neighbor

The kNN algorithm implementation is based on the scikit-learn kNeigbhorsRegressor

library [17] . The only parameter that was not set by default was the number of the

neighbors that was set to 5 after experiments. The bigger the number of neighbors the

bigger the number of data that is taken into account in each prediction.
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k-Nearest Neighbor (k=5) - Denver Dataset

Number of Lags 0 1 2 4

Time in seconds 1.890327692 2.073673725 2.143529654 2.389936686

MAPE 101.1554537 115.0820331 100.9810906 91.65961276

RMSE 1985458.199 2934467.888 2684891.427 2494569.154

R2 −4.99 ∗ 1010 −8.9 ∗ 1010 −11.1 ∗ 1010 −9.57 ∗ 1010

k-Nearest Neighbor (k=5) - Phoenix Dataset

Number of Lags 0 1 2 4

Time in seconds 1.270819664 1.406042576 1.644325972 2.187078714

MAPE 88.20591036 88.24906748 88.21756613 88.07735868

RMSE 40012.43432 40213.46465 40211.13649 40128.10281

R2 −10.7 ∗ 1010 −11.1 ∗ 1010 −11 ∗ 1010 −10.98 ∗ 1010

k-Nearest Neighbor (k=5) - Minneapolis Dataset

Number of Lags 0 1 2 4

Time in seconds 0.06482481956 0.05781412125 0.06083774567 0.06183481216

MAPE 113.6418978 113.7214863 113.7195862 113.5416415

RMSE 43564.8169 43108.3365 43416.57335 43304.77903

R2 −17.7 ∗ 1010 −17.5 ∗ 1010 −17.6 ∗ 1010 −17.28 ∗ 1010

k-Nearest Neighbor (k=5) - Combined Dataset

Number of Lags 0 1 2 4

Time in seconds 18.67766333 10.30611205 10.64899993 12.37453914

MAPE 90.00540394 80.42891163 104.0111056 86.00772028

RMSE 829837.8594 1209145.64 1639283.392 1308151.061

R2 −3.44 ∗ 1010 −9.16 ∗ 1010 −9.9 ∗ 1010 −1.06 ∗ 1010
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(d)

In Figure 5.9 kNN was implemented with the Denver dataset. The results show that

RMSE is not similar to MAPE as in the previous implementations. Based on theory,

this could mean that the predictions have bigger deviation in this case.
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(d)

In the Minneapolis case as shown in Figure 5.10 the error rates are similar with each

other. On the other hand the lag features bring no improvement in the error results.
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As shown in Figure 5.11, Phoenix dataset is the ”easiest” case for this the kNN algo-

rithm. Additionally, lag features make no impact to the error results.
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(d)

In Figure 5.12 we can see that RMSE takes really higher values than MAPE when

using kNN with the dataset containing datapoints from combined locations. Based on

theory, this could mean that the predictions have bigger deviation in this case.

The execution time value is affordably high. On the other hand R2 is taking big

negative values meaning that the algorithm is not appropriate for the problem. This

conclusion is also established from the error values that are far bigger than expected.
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Neither the number of lag features nor the the location of the dataset seem to affect

the result in a betterment.
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5.5 Feed Forward Neural Networks

In order to implement the predictor we constructed a NN with the specific parameters

and architectural choices shown below:

• 2x Hidden Layers with 24 Neurons each

• Neurons in Input Layer: 9

• Neurons in Output Layer: 1

• Dropout rate: 0.01

• Batch size: 4

• Epochs: 20

• Activation function: ReLU

• Loss function: Mean Square Error (MSE)

• Optimizer: Adam

We trained our predictor over this NN with the datasets of the final’s games we men-

tioned before. We used 90% of each dataset for training and the rest 10% for validation.

After each dataset training the trained model is saved and before each new training

it is loaded from the disk. Apart from run-time in seconds, we also take into account

the values of Mean Absolute Percentage Error (MAPE), Rooted Mean Squared Error

(RMSE) and R2 in all of our regression tests.
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Feed Forward Neural Networks - Denver Dataset

Number of Lags 0 1 2 4

Time in seconds 40.49097848 43.15828609 40.13764596 43.57588983

MAPE 787.6988213 788.5284147 788.5284103 788.5284147

RMSE 8617125.456 8617699.477 8617699.476 8617699.477

R2 -0.03100420 -0.03114166 -0.0311416628 -0.03114166

Feed Forward Neural Networks - Phoenix Dataset

Number of Lags 0 1 2 4

Time in seconds 38.9809854 40.10076928 40.75147986 40.77733421

MAPE 15.66595918 12.00935788 12.01431429 12.21444924

RMSE 8746.375705 6866.879798 6854.433279 6959.471637

R2 0.5871592541 0.7455249624 0.7464466206 0.7386160991

Feed Forward Neural Networks - Minneapolis Dataset

Number of Lags 0 1 2 4

Time in seconds 39.75426078 41.02068686 41.04674196 41.74451375

MAPE 21.59211174 15.22535977 15.20030723 15.44645988

RMSE 10670.03115 7869.551916 7810.690478 7934.404433

R2 0.4020565181 0.6747414129 0.6795888525 0.6693584497

Feed Forward Neural Networks - Combined Dataset

Number of Lags 0 1 2 4

Time in seconds 132.4048605 122.1000404 130.2168057 134.2977023

MAPE 30.29053432 12.9430265 11.8170175 11.99306198

RMSE 30996.79874 14340.57089 13555.45095 13659.0026

R2 -4.382113205 -0.152 -0.029 0.0451
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(d)

In Figure 5.13 the error rates, for Feed Forward Neural Networks on the Denver dataset,

are too high. On the other hand the R2 values shown in the table are close to 0, which

is the best value seen until now. Lag features do not seem to influence the result.
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(d)

In figure 5.14 we can see the best results so far. The error rates are comparatively low

and the lag features seem to have influence in this success. The R2 values are close to

1 which the target value of this metric.
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As shown in Figure 5.15 there is another successful experiment where the error rates

are low and the first lag feature lowers them even more. Adding more lag features does

not seem to improve matters.
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Figure 5.16 depicts the results of the combined dataset through FFNN. It is surprising

that the error rates are comparatively lower than in the Denver dataset but still too

high compared with the 2 other datasets. The execution time is also really high but

that was expected due to bigger number of datapoints.

The value of R2 is between 0 and 1 meaning that, based in theory, the algorithm works

successfully and can relate the features with the target variable. The location seems

to affect the results, because in the experiments that use datapoints only from Denver
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the errors are much bigger than the experiments with the other locations. Considering

the lag features, experiments with 2 and 4 lag features seem to have the smallest

errors. However, increasing the lag features to more than 4 (as we tried in additional

experiments), increases the execution time but does not decrease the errors. The

execution time takes prohibitively high values. This means that we should either pre-

train our model or train it online with a smaller dataset. Another way to combat some

complexity would be to make our Neural Network less complex, but that would most

probably cost us in accuracy.
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5.6 Recurrent Neural Networks

In order to implement the predictor we constructed a Recurrent NN using the LSTM

algorithm with specific architecture:

• 3x Hidden Layers with 24 Neurons each

• Neurons in Input Layer: 9

• Neurons in Output Layer: 1

• Dropout rate: 0.01

• Batch size: 8

• Epochs: 10

• Activation function: ReLU

• Loss function: Mean Square Error (MSE)

• Optimizer: Adam

We trained our predictor over this NN with the datasets of the final’s games we men-

tioned before. We used 90% of each dataset for training and the rest 10% for validation.

After each dataset training the trained model is saved and before each new training

it is loaded from the disk. Apart from run-time in seconds, we also take into account

the values of Mean Absolute Percentage Error (MAPE), Rooted Mean Squared Error

(RMSE) and R2 in all of our regression tests.
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Recurrent Neural Networks - Denver Dataset

Number of Lags 0 1 2 4

Time in seconds 58.8414479 59.48851445 59.83600238 59.81850654

MAPE 641.2501379 630.6928129 625.2851191 621.0355086

RMSE 7412129.789 7387129.123 7344749.79 7312129.334

R2 -0.031004299 -0.031141662 -0.031141662 -0.031141662

Recurrent Neural Networks - Phoenix Dataset

Number of Lags 0 1 2 4

Time in seconds 56.53477681 57.07219443 57.64762034 58.17401793

MAPE 12.93810114 9.728833672 9.723125586 9.729327761

RMSE 7956.789448 6566.123445 6498.789887 6547.333559

R2 -0.6853433563 -0.7500329415 -0.7190772563 -0.7392615246

Recurrent Neural Networks - Minneapolis Dataset

Number of Lags 0 1 2 4

Time in seconds 56.89601111 57.16239751 57.97746658 58.57463387

MAPE 18.16392356 14.74989204 14.65144122 14.7480879

RMSE 8996.375705 6746.879798 6658.433279 6884.471637

R2 -0.0319787871 -0.0567520541 -0.0492601775 -0.0307545423

Recurrent Neural Networks - Combined Dataset

Number of Lags 0 1 2 4

Time in seconds 176.5713931 180.015196 183.5863291 186.9637094

MAPE 24.37575432 11.05935515 10.79769823 10.98042558

RMSE 24117.87496 12254.46617 11157.62516 11448.25842

R2 -4.381976114 -4.382 -0.0459 -0.0014
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time MAPE RMSE
Location:Denver, Lags:0

102

103

104

105

106

107

lo
g

58.84

641.25

7412129.79
Recurrent Neural Network

(a)

time MAPE RMSE
Location:Denver, Lags:1

102

103

104

105

106

107

lo
g

59.49

630.69

7387129.12
Recurrent Neural Network

(b)

time MAPE RMSE
Location:Denver, Lags:2

102

103

104

105

106

107

lo
g

59.84

625.29

7344749.79
Recurrent Neural Network

(c)

time MAPE RMSE
Location:Denver, Lags:4

102

103

104

105

106

107

lo
g

59.82

621.04

7312129.33
Recurrent Neural Network

(d)

As seen in figure 5.17 the error rates are really high. RMSE is higher than MAPE

meaning that the predictions have big divergence from the real values. Moreover the

lag features have no impact in lowering the errors. The R2 value is slightly below 0.
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time MAPE RMSE
Location:Minneapolis, Lags:0

102

103

104

lo
g

56.90

18.16

8996.38
Recurrent Neural Network

(a)

time MAPE RMSE
Location:Minneapolis, Lags:1

102

103

lo
g

57.16

14.75

6746.88
Recurrent Neural Network

(b)

time MAPE RMSE
Location:Minneapolis, Lags:2

102

103

lo
g

57.98

14.65

6658.43
Recurrent Neural Network

(c)

time MAPE RMSE
Location:Minneapolis, Lags:4

102

103

lo
g

58.57

14.75

6884.47
Recurrent Neural Network

(d)

In Figure 5.18 we can see that Minneapolis dataset is ”easier” than Denver for the

Recurrent Neural Networks. The errors have comparatively low values and the lag

features make an obvious difference to the results. The R2 value is slightly below 0.
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time MAPE RMSE
Location:Phoenix, Lags:0

101

102

103

104

lo
g

56.53

12.94

7956.79
Recurrent Neural Network

(a)

time MAPE RMSE
Location:Phoenix, Lags:1

101

102

103

lo
g

57.07

9.73

6566.12
Recurrent Neural Network

(b)

time MAPE RMSE
Location:Phoenix, Lags:2

101

102

103

lo
g

57.65

9.72

6498.79
Recurrent Neural Network

(c)

time MAPE RMSE
Location:Phoenix, Lags:4

101

102

103

lo
g

58.17

9.73

6547.33
Recurrent Neural Network

(d)

As shown in figure 5.19 Phoenix dataset works very well with the Recurrent Neural

Networks. The error values are comparatively low and the lag features lowers them

even more. R2 value is close to -1, which is not great but not very disappointing either.
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time MAPE RMSE
Location:Combined, Lags:0

102

103

104

lo
g

176.57

24.38

24117.87
Recurrent Neural Network

(a)

time MAPE RMSE
Location:Combined, Lags:1

101

102

103

104

lo
g

180.02

11.06

12254.47
Recurrent Neural Network

(b)

time MAPE RMSE
Location:Combined, Lags:2

101

102

103

104

lo
g

183.59

10.80

11157.63
Recurrent Neural Network

(c)

time MAPE RMSE
Location:Combined, Lags:4

101

102

103

104
lo
g

186.96

10.98

11448.26
Recurrent Neural Network

(d)

The value of R2 is close to 0 meaning that the algorithm works successfully and can

relate the features with the target variable. The location seems to affect the results,

because in the experiments that use datapoints only from Denver the errors are much

bigger than the experiments with the other locations. Considering the lag features,

experiments with 2 and 4 lag features seem to have the smallest errors. However,

increasing the lag features to more than 4, increases the execution time but does not

decrease the errors. The execution time takes prohibitively high values, almost double

than that of the FFNN. This means that we should either pre-train our model or train
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it online with a smaller dataset. Another way to earn combat time complexity would

be to make our Neural Network less complex but that would most probably cost us in

accuracy.
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5.7 Comparison between the Algorithms

None of the algorithms was as successful as we expected, however some of them have

interesting results that could improved with further research. This conclusion emanates

from the values of the R2 metric. This metric had irrelevant values in almost all

algorithms except for the FeedForward Neural Networks where it was between 40 and

75 percent, for the non-Denver games.

LinRegr KernRegr kNN FFNN RNN
0

2

4

6

8

1e6 Error rates for Denver Dataset

MAE
RMSE

Figure 5.21. Error rates of all the algorithms with the Denver Dataset

Despite that Figure 5.21 fools the eyes, none of the algorithm could approach good

predictions for the Denver datasets. Kernel Regression had the best results but these

predictions diverge about 90% on average from the real values.
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LinRegr KernRegr kNN FFNN RNN
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10000

20000
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40000

Error rates for Phoenix Dataset

MAE
RMSE

Figure 5.22. Error rates of all the algorithms with the Phoenix Dataset

LinRegr KernRegr kNN FFNN RNN
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20000
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Error rates for Minneapolis Dataset

MAE
RMSE

Figure 5.23. Error rates of all the algorithms with the Minneapolis Dataset

In both figures 5.22 and 5.23 the results are clear. Both Deep Learning Algorithms

work far better than the Machine Learning Algorithms. The error rates are about 5

times smaller, while in a closer view FFNNs are better in comparison to RNNs.
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LinRegr KernRegr kNN FFNN RNN
0.0

0.2

0.4

0.6

0.8
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1e6 Error rates for Combined Dataset

MAE
RMSE

Figure 5.24. Error rates of all the algorithms with the Combined Dataset

Finally, in Figure 5.24 Deep Learning Algorithms remain reliable, while Machine Learn-

ing Algorithms grow even higher error rates.
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Conclusions

This project’s target was to create an energy usage predictor module for the TUC-TAC

agent for the PowerTAC 2020 tournament. The problem was approached with Machine

Learning Regression Algorithms. Neural Network models were also implemented. The

input data was relevant to time, date, weather conditions and past usage. Creating an

energy predictor with the use of Machine Learning for the Smart Grid was a complex

task.

Although the target of this project was not fully accomplished, useful conclusions and

intuitions were extracted from the process. Starting from the feature selection and

the data analysis our scope has to widen our view instead of focusing only on the

weather condition data. Furthermore, a lot of different algorithms were implemented

and compared with each other. The results shows that Neural Networks are more

suitable than the other regression methods. This was perhaps to be expected for a

complex problem such as ours. Possible improvements and additions are going to be

discussed in the next paragraph.
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6.1 Future Work

Despite the fact that numerous methods were implemented for this project, there is

plenty of room for improvements and additions in the project. Starting from the fea-

ture selection, selecting features like customer type, customer usage, customer workdays

could improve the model of the predictor. This would work like creating an entity for

the customers, with the prospect of making the data clearer for the Neural Networks to

operate on. Furthermore, the predictor could improve with the addition of extra mod-

ules. Net usage is not the only variable that is interesting and useful to predict. More

variables, like the buying and the selling price are important for the agent, and thus

could be of importance to prediction algorithms. Last but not least hyper-parameter

tuning would be crucial. This change is important for reliability reason and could also

upgrade the performance.
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Appendix A

Abbreviations

ML Machine Learning

AI Artificial Intelligence

DL Deep Learning

RL Reinforcement Learning

ANN Artificial Neural Network

NN Neural network

FFNN Feed-Forward Neural Network

MSE Mean Squared Error

DNN Deep Neural Network

RNN Recurrent Neural Network

LSTM Long Short Term Memory

NLP Natural Language Processing
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