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Abstract: Electric power grids are a crucial infrastructure for the proper operation of any country and
must be preserved from various threats. Detection of illegal electricity power consumption is a crucial
issue for distribution system operators (DSOs). Minimizing non-technical losses is a challenging task
for the smooth operation of electrical power system in order to increase electricity provider’s and
nation’s revenue and to enhance the reliability of electrical power grid. The widespread popularity of
smart meters enables a large volume of electricity consumption data to be collected and new artificial
intelligence technologies could be applied to take advantage of these data to solve the problem of
power theft more efficiently. In this study, a robust artificial intelligence algorithm adaptive neuro
fuzzy inference system (ANFIS)—with many applications in many various areas—is presented in
brief and applied to achieve more effective detection of electric power theft. To the best of our
knowledge, there are no studies yet that involve the application of ANFIS for the detection of power
theft. The proposed technique is shown that if applied properly it could achieve very high success
rates in various cases of fraudulent activities originating from unauthorized energy usage.

Keywords: data mining; adaptive neuro fuzzy inference system (ANFIS); non-technical losses (NTLs);
power theft detection; smart grid; smart electricity metering; power distribution grids

1. Introduction

Nowadays, societies are even more dependent on electricity due to the extinction of fossil fuels
and revolutionary shifts to electric mobility. Electricity power losses occur naturally during the entire
operation of the electrical network grid, but the vast amount of losses is caused by electricity theft mainly
in the power distribution network. Detection of power theft is an important issue worldwide nowadays
in order to preserve the reliability and the more profitable operation of the electricity distribution power
grids. Nevertheless, power theft percentages are very small in industrialized countries, in absolute
terms they lead to a considerable amount of electrical energy that is not billed [1-3].

Technical losses are an inherent consequence of the operation in any electricity distribution network
and arise as the power flows through equipment such as cables, overhead lines and transformers.
Technical losses are also related to low power quality occurrence due to the voltage variations,
the frequency fluctuations as well as the power fluctuations because of the small time period demand
events, the long time period demand events or the seasonal power variations in general [4].

Non-technical power grid losses (NTLs) are defined as the energy that is distributed, but not
billed mainly due to illegal actions external of the power system and to conditions that technical losses
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computations fail to take into consideration. A large proportion of non-technical losses are due to
theft and frauds (meter tampering and illegal grid manipulations). NTLs are often non-countable
by the distribution system operators and due to the fact that they have no recorded information it is
too difficult or even impossible to be measured. The reasons of power theft are plenty such as high
price of the kilowatt-hour and secondary electricity charges, a low subsistence level of a consumer,
tax purposes, weak accountability of law enforcement, economic crisis and consequently increased
poverty, etc. [5,6].

There are many techniques for power theft to take place, such as tapping energy directly from an
overhead distribution feeder, grounding the neutral cable, putting a magnet on an electromechanical
meter, insert a disc in order to stop the coil rotation, hitting the meter to damage the rotating coil,
interchanging the input connection with the output connections, etc. [7].

Researchers adopt methods from different fields of knowledge with the most common ones being
machine learning, anomaly detection, cyber security and of course network analysis for power theft
detection purposes. The various NTLs detection schemes are organized in three large categories: data
oriented methods, network oriented methods and hybrid methods. Data oriented methods make use of
consumer related data only (for example energy consumption records, consumer type, etc.) while the
network oriented methods are based mainly on the power grid data (network topology or network real
time measurements). Hybrid methods use data from both categories. Various data oriented, network
oriented and hybrid methods can be found in the literature [1-3].

The most common data oriented methods in bibliography are indicatively: support vector
machines (SVM) [7-10], artificial neural networks (ANN) [11], Bayesian networks and decision
trees [12], extreme learning machines (ELM) [5], optimum-path forest (OPF) [13], fuzzy clustering [4]
and deep learning [14-19] or various combinations of those. Widely used algorithms such as
support-vector machines and artificial neural networks have a remarkable performance in detecting
the power theft while they are widely used in many research areas.

The most common network oriented methods are the monitoring of the power flow of the
distribution grid [20] and the malicious meter inspection [21-24].

Hybrid oriented methods found in the bibliography are: SVM (support-vector machines) based
methods [25,26] and grid state estimation methods [27]. Machine learning techniques having already
indicated satisfactory performance in NTLs detection cases present several advantages. However,
tasks such as the quality of data, the choice of features to extract and the choice of metrics need
special attention due to the fact that they affect the performance of the classifier in each particular case,
see [3,28,29].

In this work the adaptive neuro fuzzy inference system (ANFIS) is proposed and applied in
cases that residential energy consumption patterns are used for power theft detection in a smart grid
environment. Electronic meters (smart meters) record electricity consumption from the consumers
several times per day and these records are used for monitoring, billing, power theft detection, etc.

The main contributions of this study are:

e The adaptive neuro fuzzy inference system (ANFIS) is proposed and applied for first time in
power theft detection for local low voltage power distribution network;

e  Thirteen different scenarios possible to occur in the real world are established and presented
analytically, in order to justify their importance in the proper operation of the power distribution
network and they are used in the simulated and discussed case studies in the following;

e  High success rates in power theft detection for most those realistic power theft scenarios were
achieved; The adaptive neuro fuzzy inference system (ANFIS) is proposed, implemented and has
achieved great success in classifying residential energy consumption patterns to be legal or illegal.

The rest of this study is organized as follows: Section 2 (the proposed machine learning model
framework) describes in brief the ANFIS algorithm used, presents the adopted power theft scenarios
and the steps followed for the ANFIS algorithm applications in the simulated case studies for the theft
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detection achievement. In Section 3 (performance and discussion) the simulations results and their
discussion is presented while in the Section 4 the conclusions of the study are summarized.

2. The Proposed Machine Learning Model Framework

2.1. The ANFIS Classification Method

The ANFIS classification method first proposed in [30], was introduced as the combination of
two different innovative techniques, i.e., of the ANNs and the fuzzy set theory, which have been
successfully applied to solve problems in different scientific fields. The benefits of this combination
makes ANFIS appropriate for the purposes of the present research. In more detail, ANFIS integrates
the capability of ANNSs to learn by example using the back-propagation training algorithm (BP) and
the deployment of a Sugeno fuzzy inference system (FIS) from the fuzzy logic approach [30,31].

The architecture of the ANFIS network is shown in Figure 1. Consist of five layers, the fuzzy layer,
the product layer, the normalized layer, the defuzzification layer and the summation layer, where the
output of each layer is denoted as Oy ;, where L=1,2, ..., 5[30]:
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Figure 1. Equivalent adaptive neuro fuzzy inference system (ANFIS) architecture of a two-input ANFIS
model with two rules.

Layer 1: Every node i here in is an adaptive inference node with a node function defined as
following:
O1,; = pa,(x); fori=1,2, or Oy; = up,_,(y); fori=3,4 (1)

where, x (or y) is the input to node 7, A; (or B;_,) is a linguistic variable associated with this node.
Here the membership function for A; can be any appropriate parameterized membership
function [32].
Layer 2: Every node in this layer is a fixed node labeled I, whose output is the product of all
the incoming signals representing the firing strength of a rule or in other words performing the fuzzy
AND operation:

Oz = w; = pp,(x) -up,(y); i=1,2 2)

Layer 3: Every node in this layer is a fixed node labeled N. The node i calculates the ratio of the
i—th rule’s firing strength to the sum of all rules’ firing strengths. The output of this layer is called
normalized fire strength:

O3 = w; = w;/(w; +wz); i=1,2 3)

Layer 4: Every node i in this layer is an adaptive node-with-node function defined as:

O4i = w;f; = wi(pix + qiy +1;) 4
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where w; is a normalized firing strength from layer 3 and (p;, g;, ;) is the parameter set of this node.
The parameters in this layer are referred as consequent parameters.

Layer 5: The single node in this layer is a fixed node, which computes the overall output as the
summation of all the incoming signals:

Os; = Zwiﬁ- = (Z wifi]/z w; 5)

The training procedure of the network is carried out in two phases. During the forward propagation
of the signals (from the input to the output) the premise parameters (p;, g;, ;) remain unchanged and
the LSM algorithm extract the consequent parameters. On the other hand, during back propagation

(from the output to the input) the premise parameters are extracted using the gradient descent method
(GDM) [30].

2.2. Power Theft Scenarios

The consumers’ electricity consumption pattern may differ from the legal consumption due to
several factors. These factors can be temporary, periodic or permanent consumption changes which
are related mainly to the power theft occurrences. For the purposes of the present research three basic
power theft scenarios w.r.t legal consumption (Normal) were considered, as it is shown in Figure 2,
which are very close to the reality [25]. These are: (a) consumers with smart meter stealing a part of the
electricity (Partial theft) of their overall consumption (possibly power pass before the smart meter),
(b) consumers with abruptly increased consumption of electricity (Overload), (possible illegal activity
or power delivery to a building without legal authorization for power supply), (c) consumers with
smart meter stealing a part of the totally supplied electricity (periodic theft) during specific hours of
the day, which a high demand of electric power consumption occurs.
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Figure 2. Power consumption patterns for legal (continuous line) and illegal (dotted lines) consumers.

Furthermore, different percentages of power theft for the three basic scenarios and the combinations
of them were taken into account due to the fact that in an electricity provider database different types
of power theft are recorded [25,33,34]. The percentages for partial power theft (PT;) were considered
from 10%-90% of the overall consumption. For abruptly increased consumption (O) the percentages
are from 20%-100% of the overall consumption. For partial power theft specific times of the day (PDp,)
were considered two scenarios with 80% power theft in time periods that the consumers have a large
amount of consumption. These periods are from 12:00 p.m.-15:00 p.m. and from 20:00 p.m.-22:00 p.m.
for PD; and from 12:00 p.m.—15:00 p.m. for PD,. The scenario (M) is a combination of the above
power theft scenarios, as summarized in Table 1 below.
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Table 1. The proposed power theft scenarios based on realistic consumers’ behavior cases.

Scenario Power Theft (%)
i=1:10%-30%

2: 30%-50%

3: 50%~70%

4: 70%-90%

: 20%—40%

: 40%—-60%

: 60%-80%

: 80%-100%

: 80% from 12:00 p.m.-15:00 p.m. and 20:00 p.m.—22:00 p.m.

: 80% from 12:00 p.m.—15:00 p.m.

. PT3, 03

. PT3 ’ 03 ’ PDl

N PT3, 03, PDl, PDZ

.

PT;: Partially stealing

-

-

Oy: Abruptly increased consumption

~c ~ =
I
=W N =

PDpy,: Partially stealing electricity specific times of the day

N —

M : combination of PT;, Oy, PDp,

555|588
o
WN =

2.3. Electricity Consumption Data Preprocess and ANFIS Configuration

The dataset used is based on the real smart metering data of approximately 5000 Irish households
monitored for one and a half years [35]. After data preprocessing 3273 consumers have been chosen
in order to conduct the experiments. The consumption pattern (C;) for each consumer, consists of
the electricity consumption data logged at 30 min intervals. This dataset resulted from an electricity
consumer behavior trial scheduled and performed by the Irish Commission for Energy Regulation
(CER). For this reason and without loss of generality these energy consumption data were initially
considered as no containing power theft incidents [25,36].

For the purposes of the present research a random selection of 1000 consumers from the total
3273 were considered as illegal consumers and consequently it was necessary to apply the power
theft scenarios in their electricity consumption data in order to generate the power theft cases which
are referred in Table 1 above. As a result, thirteen datasets were constructed corresponding to each
of the power theft scenarios of Table 1. In order to select the appropriate ANFIS parameters the
criterion applied was the misclassification error to be minimized. Trial and error implementations
on the type of membership functions (MF), the number of the MF were performed in order to select
the optimal parameters for each applied ANFIS modelj,j=1,2,... ., 12, 13 corresponding to each
scenario of Table 1 and they are shown in Table 2. Due to the 10-fold cross validation method used for
the validation of the ANFIS classifier, the consumers dataset is randomly divided by a factor of 10 [37].
Thus, 10 random subdatasets of the total (3273) consumers are created, resulting approximately 327
consumers randomly put in each subdataset.

Table 2. Configurations of the applied ANFIS algorithm structure.

Model ANFIS
Generalized
ME type bell-shaped
Number of MFs 4
Output MF Constant
Training dataset 327
Checking dataset 327
Testing dataset 327
Number of epochs 200

In Figure 3 the procedure followed for the detection of fraudulent consumers is presented in a
form of block diagram. For the whole consumption (one and a half year) of each consumer among
the 3273 consumers, a number of common classification features are calculated and tested. These
features are: The mean, the median, the skewness, the entropy, the variance, the standard deviation,
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the kurtosis, the energy and the load factor of the data, the calculation formulas of which are presented
analytically in Table 3 below.

— M —Normal;
Feature [ | o
. | Extraction [Media i
Cp : & Load factor] ANFISJ Oj’k
Selecti [ D
| Selection |envopy M
—1VLjn

Figure 3. Block diagram of the proposed power theft classification model.

Table 3. Definition of the classification features necessary to be extracted from the electricity consumption data.

Features Definition
1 N
mean N 121 Xi
1=
median The middle value of observations
skewness E(X_‘WS
03
N
entropy - -21 P(x;)log, (P(x;))
1=
N 2
.. 1
standard deviation o ; |xi — H|
kurtosis ’5("_‘“)4
0—4
N 2
i 1
variance St §1|Xi _ H|
1;0 5
Energy T
1=—00
1 N
Load factor WE] i

max(x)

In order to select the appropriate number and type of features which maximize the classification’s
process the well-known neighborhood component analysis (NCA) is used [32]. Applying feature
selection and computing the ranking importance of features ends up to four top scoring features as
inputs, i.e., the mean, the median, the entropy and the load factor of the data, as it is shown in Figure 4.
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Figure 4. Ranking of the selected classification features.
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Afterwards, the datasets for each power theft scenario divided randomly in 10 subdata matrices
(by using the aforementioned 10-fold cross validation method) were inserted into each ANFIS; model
for the analysis and the classification of the consumers in legal and illegal, respectively.

3. Performance and Discussion

In this section, the performance of the conducted simulations of the thirteen power theft scenarios
of Table 1 is discussed in order to assess the robustness of the proposed ANFIS algorithm. In Figures 5-7
the worst confusion matrices are shown of the 10-fold validation method applied for each power
theft scenario created to evaluate the power theft detection performance of the ANFIS algorithm.
The confusion matrices indicated four result types: (a) TP (true positive) is a fraudster consumer
correctly classified as fraudster; (b) FN (false negative) is a fraudster consumer incorrectly classified as
non-fraudster; (c) FP (false positive) is a consumer non-fraudster incorrectly classified as fraudster; (d)
TN (true negative) is a consumer non-fraudster correctly classified as non-fraudster.

350 -
V) TP
1P
3004 BEZ FN
EEHTN
£ 250
£ 224 225
2 s ; B
52001 i % HH
: . i
5 150 ] o FH
£ it it
Z 100+ EEC PR = > B
62 i HH i
Sl 38 F] % i
0 - g 4 g E% 13 4 20 g
PTI PT, PT, PT,

Power-Theft Scenario PT,

Figure 5. Confusion matrix for partial power theft scenarios (PT;).
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Figure 6. Confusion matrix for overload power theft scenarios (Oy).
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Figure 7. Confusion matrix for periodic and mix scenarios (PDp, Mp).

The classification performance metrics used for the evaluation of the results are: the accuracy
(ACCQC), the F1 score, the precision or positive predictive value (PPV), the recall or true positive rate (TPR),
the specificity, the area under curve (AUC), which are defined as follows by the Equations (6)—(11):

TP + TN

ACCUrACY = 5 TN T EN + FP ©)
Pl S 7
Precision = % ®)

Recall = TPZ——PFN 9
Specificity = TNT——I:]FP (10)
AUC = Recall + Specificity (1)

2

In Figures 8-11 the evaluation metrics (accuracy, F1, precision, recall) are shown graphically for

the cases of partial power theft of the overall consumption (PT; scenarios of Table 1) and for overload
power theft for different power theft percentages (O scenarios of Table 1).
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Figure 8. Accuracy metric for partial power theft and overload scenarios.
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Figure 9. F1 metric for partial power theft and overload scenarios.
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Figure 10. Precision metric for partial power theft and overload scenarios.
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From the above figures it is clearly shown that the percentages of power theft detection are
generally very high. Moreover, it is worth noting that the ANFIS algorithm has equally good results
for mixed scenarios (My, scenarios of Table 1) and for periodic power theft scenarios (PDp, scenarios
of Table 1) as shown in Figure 12 and Table 4. In Figure 12 and in Table 4 the AUC metric and the
reminder performance metrics are presented for the power theft incidents of Table 1 in comparison
with the support-vector machine (SVM) [38] and the radial-basis-function neural network (RBF) [39]
results, respectively. In order to obtain comparative results, the SVM and RBF classifiers are trained
and evaluated with exactly the same dataset, the same power theft scenarios and with the 10-fold
validation technique.

1.0 1
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AUC Score
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e
o
1

?
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é
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/
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[ | BV %4
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1 2

bt
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Figure 12. Area under curve (AUC) metric for the ANFIS, radial-basis-function neural network (RBF),
support vector machines (SVM) classifiers for all the power theft scenarios of Table 1.

Table 4. Classification performance metrics calculation for each power theft scenario (13 in total).

Accuracy Recall F1 Precision
ANFIS SVM RBF ANFIS SVM RBF ANFIS SVM RBF ANFIS SVM RBF

O 0.87 0.72 0.80 0.74 0.13 0.57 0.78 0.22 0.64 0.81 0.69 0.72
O, 0.94 0.79 0.84 0.89 0.42 0.68 0.90 0.55 0.72 0.92 0.79 0.77
O3 0.98 0.85 0.90 0.96 0.61 0.83 0.96 0.71 0.84 0.97 0.85 0.85
(O 0.98 0.89 0.95 0.96 0.74 0.93 0.97 0.81 091 0.98 0.90 0.90
PT, 0.87 0.69 0.80 0.66 0.00 0.50 0.75 0.09 0.61 0.86 1.00 0.78
PT, 0.97 0.91 0.95 0.93 0.71 0.91 0.95 0.83 0.92 0.97 0.99 0.93
PT5 0.99 0.97 0.98 0.98 091 0.98 0.98 0.95 0.97 0.98 1.00 0.96
PTy 1.00 0.99 0.99 1.00 0.97 1.00 1.00 0.98 0.98 0.99 1.00 0.97
PDy 0.99 0.96 0.98 0.97 0.89 0.97 0.98 0.94 0.96 0.99 0.99 0.96
PD, 0.95 091 0.95 0.89 0.72 0.90 0.92 0.84 091 0.96 0.99 0.94
M; 0.93 0.88 0.73 0.96 0.65 0.14 0.88 0.76 0.23 0.82 0.93 0.82
M, 0.83 0.87 0.83 0.92 0.59 0.48 0.66 0.73 0.63 0.52 0.96 0.94
M3 0.69 0.77 0.77 0.89 0.27 0.27 0.44 0.42 0.41 0.29 0.97 091

In more detail, it can be observed from Table 4 and Figure 12 that for almost all the power theft
scenarios the applied ANFIS method has a better performance in comparison with the other two widely
used algorithms, i.e., the SVM and the RBE.

Especially the proposed ANFIS method outperforms the other algorithms in cases of low power
theft percentage such as PT1, O, In case of mixed scenarios such as My, and M3 the lower performance
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than the other two is due to the increment of FP incidents. On the other hand, the proposed method
has better performance in case of recall metric due to the low EN rate.

Table 5 presents the training root mean square error (RMSE) in all cases of power theft incidents
after running the ANFIS model for each case and shows that the ANFIS model was trained successfully.

Table 5. Root mean square error (RMSE) calculated for the ANFIS training stage.

Power Theft Scenario RMSE
PTy, PT,, PT3, PTy 0.640, 0.350, 0.184, 0.082
01,0y, 03,04 1.184,0.844,0.631, 0.537
PD;, PD, 0.660, 1.518
My, Mp, M3 0.531, 0.850, 1.436

Table 6 presents the main characteristics and the best performances of previous approaches,
which many them have common characteristics with the proposed method, such us the database
(Irish [35]) and some similar power theft scenarios. In the present work, more power theft scenarios
with respect to those examined in [16,17,25,33,34,36], which represent additional realistic power theft
cases, are studied.

Table 6. Comparison among the different power theft classification and detection methods.

Data Number of Sampling . .
Ref Source Consumers Time (Min) 1 ML Algorithm Accuracy Precision Recall AUC
[25] Irish ~5000 30 SVM - - 0.94 -
[36] Irish ~5000 30 CFSFDP - - - 0.98
[33] - - 15 PNN, LM 0.96 - - -
K-means, KNN,
[34] Endesa 57,304 288 LR, XGBoost - - - 0.91
o Mean shift,
[6] Artificial 1100 15 DBSCAN - - 0.96 -
IEEE 123
[17] bus 12,180 - CNN, LSTM - 0.97 0.97 -
feeder
State
[16] Grid of 17,120 - CNN, LSTM 0.89 0.90 0.87 -
China
ANFIS Irish 3273 30 ANFIS 0.99 0.99 0.99 0.99

! measurements were taken every 15 or 30 or 288 min.

4. Conclusions

This study presents an artificial intelligence (AI) method for efficient power theft detection based
on real smart electricity meter data, where the most significant classification features are inserted
into the adaptive neuro fuzzy inference system classifier. Numerous simulations were performed
and thirteen different incidents of power theft, extracted from the real-world experience, are studied.
Real smart-electricity-metering data from Irish households are taken into account and high AUC
scores were achieved. Except for the AUC metric, other classification success metrics such as ACC, F1
score, precision, recall and specificity, were used for the further evaluation of the proposed method.
Additionally, a comparison with other extensively used classification methods for power theft detection,
such as the SVM and the RBF is performed using exactly the same power theft scenarios and the same
Irish smart electricity meter data, verifying by this way the efficiency and superiority of the ANFIS
structure and algorithm in the effective power theft detection.

In conclusion, the proposed ANFIS structure and algorithm gave very encouraging results for the
successful detection of power theft in power distribution grids. Almost every power theft scenario
was considered herein. In future research, more power theft scenarios could be investigated to take
into consideration consumers with high demand of electricity such us commercial and industrial
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consumers. Moreover, the interconnection of RES (renewable energy sources) as distributed generation
(i.e., photovoltaic, wind turbines, small hydro, etc.) connected to the power distribution grid could
crucially affect the power theft phenomenon and should be investigated.
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