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Abstract

The widespread use of electric mobility technologies such as the Electric Vehicles

(EVs), poses certain challenges both from the technical, and the socioeconomic points of

view. In order to address these, research must utilize related data that originates from

realistic sources. However, in the typical case, such data contains private and sensitive

information that cannot be made available to the researchers. As a result, research

makes excessive use of the few datasets that are publicly available. At the same time, the

majority of the available data, contain only a few customers, while hundreds of thousands

are required. To overcome this obstacle, synthetic data can be used, which nevertheless

originates from models with relationships that sufficiently capture the properties of the

actual real-world datasets.

In this thesis, we design a dataset generator for the domain of EVs charging man-

agement in Smart Grid settings. The generator (i) takes as input anonymized data,

describing different energy generation and demand types, as well as charging profiles of

EVs and corresponding trip and type information; (ii) employs a variety of models—in

particular Histograms, Kernel Density Estimation, Generative Adversarial Networks, and

Frequency Tables—using this data as training sets; and thus (iii) generates new synthetic

data, not identical to the input, but adhering to the same principles, and relationships.

The proposed dataset generator also produces respective summarizations, which in-

cludes barplots and histograms to visualize the results, and different metrics in order to

quantify a ‘distance’ between the distributions under comparison. These summarizations

give us a complete picture of the generated data and they are particularly useful for

detecting correspondence issues. Last but not least, the dataset generator is available via

an online repository and it can readily be incorporated by third parties in their research

activities.
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Abstract in Greek

Η ευρεία χρήση ηλεκτρικών τεχνολογιών στον τομέα των μετακινήσεων, όπως τα Ηλε-

κτρικά Οχήματα (EVs), θέτει ορισμένες προκλήσεις τόσο από τεχνική όσο και από κοινω-

νικοοικονομική άποψη. Για να αντιμετωπιστούν οι συγκεκριμένες προκλήσεις, όσον αφορά

τον τομέα της έρευνας, γίνεται επιτακτική η ανάγκη χρήσης δεδομένων τα οποία προέρχο-

νται από ρεαλιστικές και αξιόπιστες πηγές. Ωστόσο, στην τυπική μέση περίπτωση, τέτοιου

είδους δεδομένα περιέχουν ιδιωτικές και ευαίσθητες πληροφορίες που δεν μπορούν να διατε-

θούν στους ερευνητές. Ακόμη και τα λίγα δημόσια διαθέσιμα δεδομένα δεν είναι αρκετά για

έρευνα στον τομέα, με αποτέλεσμα τα περισσότερα από αυτά να χρησιμοποιούνται υπερβο-

λικά. Συγχρόνως, η πλειονότητα των διαθέσιμων δεδομένων, περιέχει λιγοστούς πελάτες,

ενώ στην πραγματικότητα απαιτούνται εκατοντάδες χιλιάδες. Για να ξεπεραστεί αυτό το

εμπόδιο, μπορούν να χρησιμοποιηθούν συνθετικά δεδομένα, τα οποία ωστόσο προέρχονται

από μοντέλα με σχέσεις που αποτυπώνουν επαρκώς τις ιδιότητες των συνόλων δεδομένων

του πραγματικού κόσμου.

Στην παρούσα διπλωματική εργασία, σχεδιάζουμε μια γεννήτρια δεδομένων για τον το-

μέα της διαχείρισης φόρτισης ηλεκτρικών οχημάτων σε οικοσυστήματα έξυπνων δικτύων

ηλεκτροδότησης. Η γεννήτρια (α) λαμβάνει ως είσοδο ανώνυμα και με πιθανές ασυνέπειες

δεδομένα, που περιγράφουν διαφορετικούς τύπους παραγωγής και ζήτησης ενέργειας, καθώς

και διάφορα προφίλ φόρτισης ηλεκτρικών οχημάτων και αντίστοιχες πληροφορίες σχετικά με

την διαδρομή και τον τύπο των EVs (β) εφαρμόζει ποικιλία μοντέλων —συγκεκριμένα His-

tograms, Kernel Density Estimation, Generative Adversarial Networks, και Frequency

Tables —χρησιμοποιώντας αυτά τα δεδομένα ως σύνολα εκπαίδευσης και ως αποτέλεσμα

καταφέρνει να (γ) δημιουργεί νέα συνθετικά δεδομένα, όχι πανομοιότυπα με τα δεδομένα

εισόδου, αλλά τηρώντας τις ίδιες αρχές και σχέσεις.

Η προτεινόμενη γεννήτρια δεδομένων παράγει επίσης αντίστοιχα γραφήματα και ιστο-

γράμματα για την οπτικοποίηση των αποτελεσμάτων και διαφορετικές μετρήσεις προκει-

μένου να ποσοτικοποιηθεί η «απόσταση» μεταξύ των κατανομών που συγκρίνουμε. Μέσω

των συγκεκριμένων τρόπων απεικόνισης των αποτελεσμάτων, αποκτούμε μια πλήρη εικόνα

των παραγόμενων συνθετικών δεδομένων και μπορούμε εύκολα να εντοπίσουμε ζητήματα

αντιστοιχίας. Τέλος σημαντικό είναι πως η γεννήτρια δεδομένων είναι διαθέσιμη μέσω ενός

διαδικτυακού αποθετηρίου, και μπορεί εύκολα να ενσωματωθεί από τρίτους στις ερευνητικές

τους δραστηριότητες.
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Chapter 1

Introduction

Climate change is driving a transition towards fewer fossil fuel- consuming processes and

thus more sustainable societies.The important sector of mobility is currently facing a

transformation where Electric Vehicles (EVs) are promoted as an alternative to reduce

pollution; due to the absence of direct emissions during operation, EVs are a promising

technology that offers practical reductions of the CO2 emissions. This of course only

holds, provided that the additional energy that fulfills the increased demand originating

from EVs is produced by renewable sources.

EV deployment has been growing rapidly over the past ten years, and the global stock

of EV passenger vehicles passed 5 million in 2018, with an increase of 63% since 2017,

while the rising trend continues [1]. Successfully establishing electric mobility solutions

and maximizing the technological advantage from a societal aspect, requires a multilevel

approach that involves car manufacturers and owners, building and civil infrastructure

managers, and power system authorities to collaborate and maintain a common vision.

The operation of the EVs is two-folded: On the one hand, they can charge their

batteries, preferably using energy from renewable sources that are characterized by high

intermittency, operating in a Grid-to-Vehicle (G2V) mode [2]. On the other hand, they

can discharge their batteries, in this way operating as temporal storage devices[3] in a

Vehicle-to-Grid (V2G) mode [4], thus significantly increasing the storage capacity of the

electricity network and reducing the energy that is wasted when the demand is lower

than the supply. In both cases, the vehicles need to operate within the so-called Smart

Grid which is equipped with algorithms that have the ability to efficiently manage large

numbers of EVs [5, 6] both in the G2V [7, 8] and the V2G [9] operation of the EVs.
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1. INTRODUCTION

However, to that end, many challenges still arise in different levels, including the

technical and financial ones. For instance, huge challenges lie ahead for the operation

and design of the electricity distribution network [10]; the charging infrastructure needs to

be properly placed to service large numbers of customers [11]; a variety of critical elements

of vehicle-to-grid economics have to be accurately identified and dealt with [12]; while a

grand challenge indeed arises for artificial intelligence and multiagent systems research

[13], which is assigned the task, among others to optimize the aforementioned G2V/V2G

operations, while respecting various interoperability and privacy issues [6, 14]. From an

economic point of view the critical elements of vehicle-to-grid economics are explored in

the relatively recent report of the U.S Department of Energy in [12]. As such, there is a

profound need for thorough interdisciplinary research in this rising market. This in turn

calls for efficient and effective simulators, which will address data engineering needs and

enable the design of novel services or mechanisms with minimum technical or financial

risk.

Now, data collected from smart grid ecosystems as well as from electric vehicles can be

used for both academic and industrial purposes. Increased data input has been a major

concern in the energy informatics sector over the last decade [15]. Previous studies of

different EV datasets include statistical analysis of data collected in the Netherlands by

ElaadNL [16, 17] and analysis of EV energy consumption based on data collected by the

US Department of Energy [18]. However, studies require reliable data for understanding

behaviors, exploring flexibility, and extrapolating results for other similar cases or sites,

where data collection equipment is not yet available. The lack of reliable data to help

advance research is a known problem [19]. Even where efforts have been made to make

datasets publicly available [20, 21], some limitations still arise.

A first concern is the limited range and size of the available public datasets, which

prevents the application of sophisticated machine learning models that typically require

huge amounts of data for training. In addition, the data available may still be subject

to copyright and may not be freely shared for academic or public use. For example, elec-

tricity distribution system data obtained from Advanced Metering Infrastructure (AMI)

contains Personally Identifiable Information (PII), and sophisticated algorithms are re-

quired for anonymization [22] according to the legal framework [23].

In summary, although we live in the age of Big Data, in the typical case, most of

the data contains private and sensitive information that cannot be made available to the

Charalampidis Georgios 2 Technical University of Crete



1.1 Contributions

public. Even the few publicly available data is not enough for research in the domain

and as a result most of them is overly used. To overcome this obstacle, we design a

dataset generator for the domain of EVs charging management in Smart Grid settings.

The generator takes as input anonymized- possibly inconsistent and overused-data, de-

scribing different energy generation and demand types, as well as charging profiles of

EVs and corresponding trip and type information and it generates new synthetic data,

which nevertheless originates from models with relationships that sufficiently capture the

properties of the actual real-world datasets.

1.1 Contributions

It therefore becomes apparent that the lack of availability and difficulty in accessing

datasets that can be used to analyse smart grid ecosystems is a major obstacle to further

research in the field. Datasets related to EV driving and charging habits, in particular,

are notoriously hard to obtain, given also the current relatively small EVs penetration

rate in the automobile market. This is notwithstanding the fact that such data is of

utmost importance for EVs integration in the smart grid [24, 25]. As such, the need for

dataset generators like the one presented in this thesis is imperative.

Against this background, we address these difficulties by studying several anonymized

publicly available datasets and their properties, and subsequently creating a generation

mechanism that can produce new, synthetic data, which are however governed by the

same principles as the originals and which are available to the public at zero cost. More

specifically, our contributions are as follows:

• We combine several publicly available datasets to create novel ones to be used in

the data generation process.

• We design and implement a novel dataset generator that trains on available real

world data to create new datasets, different from the originals yet adhering to their

statistics and principles.

• We provide four different synthetic data generation methods, appropriate for dif-

ferent types of input data; and enhance these with a data smoothing ability.
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1. INTRODUCTION

• Our generator comes complete with data summarization and visualization capabil-

ities, which we use in order to offer a thorough evaluation of the various generation

methods.

• Our dataset generator is provided as a free-to-use web service for further evaluation

and use by the community.
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1.2 Outline

The rest of this thesis is structured as follows: Chapter 2 contains all the necessary the-

oretical background which constitutes the foundations of our approach. We present the

basic concept of the Smart Grid and we briefly describe the consepts of the Histograms,

Kernel Density Estimation, Generative Adversarial Networks and Frequency Tables. Fur-

thermore we summarize related work in the domain. In Chapter 3, we provide an overview

of the proposed dataset generation methods. At first, we analyze collected data and af-

terwards we present the pre-processing steps we took to guarantee data consistency.

Subsequently, we describe the different data generation methods we adopt and then, we

briefly describe the web-based User Interface. Chapter 4 consists of the experimental

setup and the experimental evaluation of our approach. Finally, Chapter 5 concludes

this thesis and outlines directions for future work.
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Chapter 2

Background & Related Work

2.1 Background

In this section we present the background required to read this thesis. We begin with an

introduction to the smart grid and we continue with the necessary theoretical background

related to the synthetic data generation techniques that we apply. Finally, we briefly

describe the main obstacles encountered in our approach.

2.1.1 Smart Grid Overview

Electricity is a vital commodity for modern society. Communities that lack electricity,

even for short periods of time, endanger public health as well as the economic prosperity of

their citizens [26]. Electricity networks, which are the means of transport and distribution

of energy, were sufficient for our uses a few decades ago, however, as more sophisticated

patterns of electricity generation and consumption emerge, their management becomes

more complex. Therefore, the need to renovate them becomes imperative, so that their

operation remains efficient and reliable [6].

Nowadays, the electricity produced does not come only from thermal power plants that

burn fossil fuels, but much of the production comes from decentralized energy producers

that use renewable energy sources such as sunlight and wind. The targets set by 196

countries under the Paris Agreement [27] to reduce greenhouse gas emissions indicate

that the use of renewable energy sources will increase significantly in the near future.

However, due to their dependence on weather conditions, RES are by definition very
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unreliable, and in combination with the fact that storing electricity is quite an expensive

issue, their large-scale integration and efficient use of the modern electricity grid energy

becomes quite complex and difficult. Therefore, the amount of electricity produced must

be consumed at the time of its production. If the electricity balance (i.e. the difference

between production and consumption) is not maintained for long periods, the grid could

collapse with extremely serious consequences, as entire areas could be without electricity

for many hours [28, 6].

In addition to the evolution of electricity production, electricity consumption is also

changing rapidly. The increasing use of information technology and consumer electronics

has reduced tolerance for interruptions, voltage fluctuations and other power quality dis-

turbances [26]. However, the mass introduction of computers in every aspect of our daily

lives is reshaping the landscape of the energy sector (eg smart meters, electric vehicles)

and creating opportunities to overcome the difficulties of the past. Smart grid technology

that incorporates bidirectional data flow allows customers to adjust power consumption

using real-time information on electricity production, consumption and prices. This con-

trol over the use of electricity is called demand side management (DSM).

The aforementioned descriptions could be summarized in the following definition of

Smart Grid which was given by the U.S. Department of Energy [26]: Smart Grid is a

fully automated power delivery network that monitors and controls every customer and

node, ensuring a two-way flow of electricity and information between the power plant and

the appliance, and all points in between. Its distributed intelligence, coupled with broad-

band communications and automated control systems, enables real-time market trans-

actions and seamless interfaces among people, buildings, industrial plants, generation

facilities, and the electric network.

A Smart Grid is essentially a collection of smaller interconnected networks. These

networks are called microgrids [29] and vary in size, from countries and large cities to

small villages and neighborhoods. More specifically, a microgrid (Figure 2.1) is an inte-

grated autonomous energy system that contains distributed energy sources as previously

described, along with a number of electrical loads as well as storage units, such as electric

vehicles, batteries, etc.

In accordance with the above, but also with what we briefly described in the intro-

duction, it is obvious that EVs are directly related to the Smart Grid. On the one hand,

by charging their batteries using mainly energy from renewable sources, operating in
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Figure 2.1: Schematic overview of a Microgrid

Grid-to-Vehicle (G2V) mode[2]. On the other hand, by remaining connected to the grid

and discharging their batteries, in this way operating as temporal storage devices[3] in a

Vehicle-to-Grid (V2G) mode[4].

Therefore, the Smart Grid is a wide field of application of artificial intelligence meth-

ods, and action of multi-agent systems. However, most AI approaches require a lot of

data, which as we have already mentioned is difficult to find freely available as most of

them belong to large companies and/or are subject to third party copyrights. It therefore

becomes apparent that the lack of availability and difficulty in accessing datasets that

can be used to analyse smart grid ecosystems is a major obstacle to further research in

the field. Against this background, we create a generation mechanism that can produce

new, synthetic data, which are however governed by the same principles as the originals

and which are freely available to the public.

However, there were some constraints that we encountered during the implementation

of this thesis and which led us to make specific assumptions in order to approach as best

as possible the idea of the synthetic data generator. These constraints are due to the

different sources from which the original data comes and especially due to the nature of

the data themselves, as there are many differences in their structure and properties. The

various constraints are described in detail later in the present thesis, where necessary.
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2.1.2 Data Representation & Characterization Methods

2.1.2.1 Histrogram

The histogram is an approximate representation of the distribution of numerical data.

It was first introduced by Karl Pearson [30] and constitutes a graphical representation

that organizes a group of data points into ranges, specified by the user. The histogram

condenses data series into an easily interpreted visual by taking many data points and

grouping them into certain ranges or bins. In order to construct a histogram, the first

step is to ‘bin’ the range of values—that is, divide the entire range of values into a

series of intervals—and then count how many values fall into each interval. The bins are

usually specified as consecutive, non-overlapping intervals of a variable. The following is

an example of a histogram and the raw data from which it was made.

Suppose we have the data shown in Table 2.1, which represent the age of 20 people.

The histogram of the specified data set is shown in Figure 2.2.

Table 2.1: Dataset of the age of 20 people

28 56 33 69 36 38 42 92 47 56

49 23 56 58 52 61 33 65 73 45

20 30 40 50 60 70 80 90 100
Age

0

1
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3

4

5
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Figure 2.2: Histogram of Table 2.1
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As mentioned earlier, to construct a histogram from a continuous variable we first

need to split the data bins. In the example above, age has been split into bins, with each

bin representing a 10-year period starting at 20 years. Each bin contains the number

of occurrences of scores in the data set that are contained within that bin. Table 2.2

records the frequencies in each bin have been tabulated along with the scores (ages) that

contributed to the frequency in each bin.

Table 2.2: Analysis of the histogram in Figure 2.2

Bin Frequency Scores (Age) included in Bin

20-30 2 28, 23

30-40 4 33, 33, 36, 38

40-50 4 42, 45, 47, 49

50-60 5 56, 56, 56, 58, 52

60-70 3 61, 69, 65

70-80 1 73

80-90 0 -

90-100 1 92

Therefore, given an unknown probability distribution and sufficient data sampled from

it, it is possible to sample additional data approximating the unknown distribution with

a histogram. In subsection 3.3.1 we describe in detail how we use histogram sampling

technique, to generate synthetic data using multiple subsets of the original datasets.

2.1.2.2 Kernel Density Estimation

Kernel Density Estimation (KDE) is a non-parametric way to estimate the probability

density function of a random variable. Kernel density estimation is a fundamental data

smoothing problem where inferences about the population are made, based on a finite

data sample. Therefore given a sample of n independent, identically distributed (i.i.d)

observations (x1, x2, . . . , xn) of a random variable from an unknown distribution at any
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given point x, the kernel density estimate is given by:

p(x) =
1

nh

n∑
j=1

K

(
x− xj

h

)
(2.1)

where K(x;h) is the kernel function and h is the smoothing parameter, also called the

bandwidth. There is a wide range of kernel functions, such as Gaussian, Top Hat, Expo-

nential, Linear, Cosine, Epanechnikov and others.

In order to provide an into dive explanation of the KDE method, we will compare

it with the most common density estimation technique, to which we referred earlier, the

histogram. As we mentioned, a histogram is a simple visualization of data where bins

are defined, and the number of data points within each bin is tallied. A major problem

with histograms, however, is that the choice of binning can have a disproportionate effect

on the resulting visualization. For example, suppose we have created a data set of 20

points, that are drawn from two regular distributions. Figure 2.3 shows two histograms

for the specific data set, with different binning for each one of them. On the left, the

histogram makes clear that this is a bimodal distribution. By contrast, on the right, we

see a unimodal distribution with a long tail. Comparing the two histograms we probably

could not guess that they were built from the same data.

Figure 2.3: Histograms of a 20-point dataset (7 bins-left, 6 bins-right)
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Therefore it is obvious that histograms depend on end points of bins. We can think of

a histogram as a stack of blocks, one block per point (Figure 2.4). By stacking the blocks

in the appropriate grid space, we can recover the histogram. The problem with the two

binnings (Figure 2.3) stems from the fact that the height of the block stack often depends

not on the actual density of points nearby, but on coincidences of how the bins align with

the data points. This mis-alignment between points and their blocks is a potential cause

of the poor histogram results seen in this example.

KDE attempts to remove the dependence on the end points of the bins. Instead of

stacking the blocks aligned with the bins, each of the blocks is centered at each data point

it represents. Therefore the blocks will not be aligned, but the sum of their contributions

at each position along the x-axis gives the desired result. This is the basic idea behind

kernel density estimation, in one dimension.

The result of the above procedure is shown in Figure 2.5, which is a much more robust

reflection of the actual data characteristics than is the standard histogram. However, the

rough edges still do not best reflect the true properties of the data. In order to smooth

them out, we could replace the blocks at each location with a smooth function–like a

Gaussian–as shown in Figure 2.6. This smoothed-out plot, with a Gaussian distribution

contributed at the location of each input point, gives a much more accurate idea of the

shape of the data distribution, and is the one that has the least variance (i.e., changes

much less in response to differences in sampling).

Figure 2.4: 10 bins Histogram of the 20-point dataset shown in Figure 2.3
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Figure 2.5: KDE of the 20-point dataset shown in Figure 2.3-TopHat kernel

Figure 2.6: KDE of the 20-point dataset shown in Figure 2.3-Gaussian kernel

2.1.2.3 Generative Adversarial Networks

A Generative Adversarial Network (GAN) [31] is a class of machine learning frameworks

that constitute an approach to generative modeling using deep learning methods, such

as convolutional neural networks. Generative modeling is an unsupervised learning task

that involves automatically discovering and learning the regularities or patterns in input

data, in such a way that the model can be used to generate or output new examples that

could have plausibly been drawn from the original dataset.
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The GAN model architecture involves two sub-models: a generator model for generat-

ing new examples and a discriminator model for classifying whether generated examples

are real (from the domain), or fake (generated by the generator model). The two models

are trained together. Initially the generator generates a batch of samples, and these,

along with real examples from the domain, are provided to the discriminator and clas-

sified as real or fake. The discriminator is then updated to get better at discriminating

real and fake samples in the next round, and importantly, the generator is updated based

on how well, or not, the generated samples ‘fooled’ the discriminator.

In this way, the two models are competing against each other, they are adversarial in

the game theory sense, and are playing a zero-sum game,1 until, ideally, the discriminator

model is ‘fooled’ about half the time, meaning the generator model is generating plausible

examples.

Time-series Generative Adversarial Networks

Time-series Generative Adversarial Networks (TimeGANs) [33], are GAN based models,

able to generate time-series data that preserve temporal dynamics, in the sense that

new sequences respect the original relationships between variables across time. Unlike

other GAN architectures where unsupervised adversarial loss on both real and synthetic

data is implemented, TimeGAN introduces the concept of supervised loss: the model is

encouraged to capture time conditional distribution within the data by using the original

data as a supervision. In contrast to GAN, which as we mentioned consists of two sub-

models/networks, TimeGAN synthesizes sequential data composed by 4 networks that

play distinct roles in the data modelling process: the generator, the discriminator, and

recovery and embeddings models. In subsection 3.3.3 we describe in more detail the

TimeGan’s structure and how we use them in order to generate synthetic data.

1In game theory and economic theory, a zero-sum game is a mathematical representation of a situation

in which an advantage that is won by one of two sides is lost by the other. If the total gains of the

participants are added up, and the total losses are subtracted, they will sum to zero. [32]
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2.1.2.4 Frequency Tables

A frequency table is a chart that shows the popularity or mode of a certain type of data.

When examining the frequency, we count the number of times an event occurs within a

given scenario. A relative frequency table is a chart that shows the popularity or mode

of a certain type of data based on the population sampled. Therefore, when referring to

relative frequency, we refer to the number of times a specific event occurs compared to

the total number of events.

In other words, a relative frequency table shows the “popularity” of a particular value,

based on the input data. In order to find the relative frequency of each value, we count

how often a data value (or a range of values) appears in the original data, and then we

scale it by dividing it with the total number of counts across all values.

In order to understand how a Relative Frequency Table works in practice, let us take

a look at a simple example. Suppose we have a total of 500 electric vehicles, of specific

models. The first column of Table 2.3 lists all the available models, the second column

lists the frequency of their occurrence, while in the third column we have calculated their

relative frequency. Essentially, the relative frequencies give us the probability of getting

an observation from the corresponding category in a random draw. To confirm the above,

the sum of the 2nd column is equal to 500, while the sum of all relative frequencies is

equal to one. Finally Figure 2.7 visualizes the relative frequency distribution of Table 2.3.

Table 2.3: Relative Frequency Table of 500 EVs

EV models Frequency Relative Frequency

Tesla model S 115 0.23

Peugeot e-208 70 0.14

Nissan Leaf 105 0.21

BMW i3 55 0.11

Tesla model X 80 0.16

Opel Corsa-e 45 0.09

Honda e 30 0.06

Charalampidis Georgios 16 Technical University of Crete



2.2 Related Work
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Figure 2.7: Bar-plot of Table 2.3

2.2 Related Work

To address the limitations we discussed in the introduction, various researchers have

turned to creating synthetic datasets. The resulting data can be considered equivalent,

as it is generated from probabilistic models that are trained on the actual data, while

maintaining the confidentiality of the original data set.

In [34] the authors focus on the problem of how expensive and time-consuming the

creation of labeled training datasets is, when incorporating machine learning techniques.

To tackle these shortcomings, they propose a paradigm for the computational creation

of training sets, known as data programming. In data programming, users express weak

supervision strategies as noisy and perhaps conflicting programs (labeling functions) that

label subsets of the data. Data programming is considered a way for creating machine

learning models by non-specialists, especially in cases where training data is limited or

unavailable. Data programming is a technique attracting interest in various fields. For

example [35] applies data programming to the problem of cross-modal weak supervision

in medicine, where weak labels derived from text are used to train models over a different

target modality (i.e., images).

In a more relevant work to ours, [36] generates smart meter data with relatively small
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datasets as input, by training autoregressive time series models. However, this approach

requires hand-crafted features such as time series “deseasonalization”. Accurate modeling

of the underlying causes is a process that requires several assumptions to be made (e.g.,

the Markov property), which are not necessarily true, thus affecting the reliability of

the generated data. In [37], the authors develop a probabilistic time series model for

the creation of synthetic data for smart grid ecosystems by learning the probability

distribution of real time-series data using a Deep Generative Adversarial Network (GAN)

model. They then use this model to create synthetic data of end-user energy consumption.

Flammini et al. [38] used beta mixture models to represent multi-modal probability

distributions and to analyze EV-related variables. Based on the derived results, the

authors draw interesting results and suggestions, without, however, including a process

of producing and evaluating samples from the models they used. In addition, the use of

probability density functions based on Gaussian Mixture Models (GMMs) to represent

key charging characteristics of EVs (e.g., arrival times) can be used to sample random

arrivals. This technique was applied in [16], where real data from 221 EVs of the largest

test in the United Kingdom and Europe (My Electric Avenue1) were used. Another

method involves the use of a stochastic simulation methodology to create a program of

daily travel and charging profiles for a population of electric vehicles [39].

Authors in [40] introduce ACN-Data, a dynamically populated dataset of EVs charg-

ing in workplaces, which includes over 30,000 sessions. Gaussian mixture models are

incorporated to learn and predict user behavior, and, combined with historical data, the

size of on-site solar generation is adjusted to minimize charging costs. Although ACN-

Data seems to be a useful and reliable tool, it only includes workplace EV charging data

and does not provide any EVs trip related or production and consumption data. This

is also the case for the work of [41], where a review of available EV charging data is

included.

To the best of our knowledge, only two cases of EV-specific data generation have

been reported in the literature so far. The first one, RAMP-mobility [42], relies on user

input that indicates specific properties of the data, e.g., population characteristics, peak

intervals duration, etc., and generates mobility and demand data for a number of EVs,

following a stochastic model. The second one, emobpy [43], which is closer to the approach

that we adopt, receives in the input relative frequencies calculated using real data, to

1https://www.ssen.co.uk/myelectricavenue/
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generate time series of vehicle mobility, driving energy consumption, grid connectivity,

and electricity demand of charging tasks.

Based on the previously presented works, we conclude that despite the efforts to

produce synthetic data and make them available to the public free of charge, the lack of

data on smart grids and especially regarding EVs, remains a major obstacle for further

research in the field. The limited volume of the available data is a crucial problem, while

at the same time most of it may still be subject to copyright and, thus, not freely available.

In any case, it is quite difficult to gain access, let alone datasets that combine different

types of data. Our work enables everyone to have free access to a range of synthetic data,

which is produced according to the end-users preferences. The next section presents the

data generator in detail. At first, we analyze collected data and afterwards we present the

pre-processing steps we took to guarantee data consistency. Subsequently, we describe the

different data generation methods we adopt and then, we briefly describe the web-based

User Interface.

In our approach, apart from offering three different data generation methods to choose

from, we also include energy supply and demand time series of configurable intervals,

that describe sources other than EVs. This is crucial information to consider, if we take

into account that the Smart Grid is a MAS setting with different types of stakeholders,

each pursuing different goals. For example, if the goal is to maximize the utilization

of renewable sources, the levels of specific types of production must be examined, in

parallel with the aggregate demand, which does not result by EVs alone; or to balance the

aggregate demand and supply, G2V/V2G schemes must analyze and exploit the flexibility

of other consuming tasks as well. Moreover, the models are fitted automatically, asking

the user only for the minimum configuration input (e.g., the time horizon, the population

of EVs, etc.), nevertheless allowing for more customizations if preferable, such as changing

the input dataset used for training, or selecting a different data generation method. This

is important because, as we argued earlier, it is often very difficult to obtain and analyze

real world data from different sites and different users, in order to calculate the input

required by other approaches. Furthermore, it is offered as a freely available service to

be used by the community.
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Chapter 3

Our Approach on Synthetic Data

Generation

In this chapter we present our approach on synthetic data generation. At first we give

an overview of workflow components in our system and we decribe must the required

configuration parameters to be set by the user in order to generate data. Furthermore,

we present the input and output data of our system, as well as the preprocessing to which

the first ones must be submitted in order to be properly entered into the dataset generator.

Next, we describe in detail the synthetic data generation techniques we apply, and then,

we briefly present the web-based user interface of our system. Finally we present the

limitations we encountered and the assumptions we were called upon to make in order

to create a tool that produces synthetic data, which are close to the originals and at the

same time are as realistic as possible.

3.1 Method Overview

This section provides a description of the input data, and an overview of our approach.

To begin, the original data collected, and consequently the resulting generated data, from

our approach, is divided into two main categories:

• Energy Production and Consumption Data

• EVs’ and Drivers’ Behavior Data
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The first category includes data related to the total consumption of both renewable

and non-renewable energy for a given region’s infrastructure and the equivalent energy

production. The second category consists of data related to EVs and their characteristics,

as well as the specifications of the available EV chargers. Also, the input dataset consists

of data related to drivers’ driving behavior, in terms of the number and time of day they

choose to charge, as well as the trips they make. At this point it is worth mentioning that

since it is difficult to find consistent charging and trip events, one has to enforce particular

constraints, in order to adhere to realistic situations, as we detail in subsection 3.2.2.

Figure 3.1: Schematic overview of workflow components in our system

Figure 3.1 shows the workflow and the components of our system, starting with the

original input data, and resulting to the final output data, i.e., the generated dataset.

First, data is preprocessed to align values, generate compatible timestamps, and perform

the required transformations and merging (see, Section. 3.2). Then the possibility of

additional smoothing is given, which is described in detail in subsection 3.3.5 For the

case of energy production and consumption data, the preprocessed dataset is fed directly
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to the generation methods of Sec. 3.3 and we obtain the results in the output. For

the case of EVs’ and drivers’ behavior data, an additional step is required, that is to

compute the frequency tables of specific variables of interest (e.g., travel speed, time

of connection, etc.). Finally, the calculated frequencies, along with specific constraint

checks, are used to generate the corresponding dataset. Detailed information about the

generation methods used, is provided in Section 3.3. Furthermore, our dataset generator

is available for download via a github repository.1

3.1.1 User Configurations of the Dataset Generation

To generate data, the user can either (a) use a web-based GUI that helps with configuring

the generator more easily, (described in Section. 3.4); or (b) by using generation script

templates and setting values to a few required configuration parameters via JSON files

and the command line.

For the latter, the user must specify: the number of EVs; the length of the time

horizon; the desired data generation technique among the available ones; the categories

of EVs to be included in the generated dataset; the types of EV chargers to be considered.

For the first way, after filling in the appropriate variables, such as:

• The number of EVs

• The length of the time horizon

• The desired data generation technique among the available ones

• The categories of EVs to be included in the generated dataset

• The types of EV chargers to be considered

• The additional smoothing parameters, if desired

This information contains all required configurations for initiating the generation

process. When everything is set, the user can begin the data generation process by

executing the “MyMain.py” script. The results, i.e. the generated dataset in the form

of ‘.csv’ files, and the summarizing figures, are provided in the corresponding folders.

1the repository will be available soon
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Furthermore, any number of original datasets—different from the default, public one

that we include—can also be incorporated for the training of the generation models.

This is particularly helpful for organizations that need to protect private data, but are

still in need to share anonymized information with third parties. In what follows, we give

a detailed description of the input and output data, as well as of the various constraints

we impose in order to ensure the soundness of the produced results.

3.2 Data Acquisition and Preprocessing

Most of the data related to EVs and Smart Grid is collected by utilitiy or multinational

companies. However, these companies have a legal obligation not to share it publicly.

Nevertheless, as we have already mentioned, the availability of such data is necessary for

further research in the domain. There are several ways that in combination with the tool

we present, could make realistic data available to the public.

For example, companies could anonymize a small portion of their customers data,

perhaps a few hundred, to make anonymous data publicly available, and then anybody

could use the data generator to produce data representing thousands of customers. Ad-

ditionally, in case that the company does not want to publish real data, even if it is

anonymous, it could publish a representative sample of them. For example, a company

holds data for thousands of consumers. It could employ the K-means algorithm [44] in

order to group the data into clusters and then provide any researchers requestings data

with the centers of the clusters, rather than the actual measurements. In addition a

researcher could work in a way similar to ours. That is, to collect various data from

different sources, and then combine it through the data generator in order to produce

new data.

This section describes our datasets, and the functionality of the ‘Data PreProcessing’

module, where all data is pre-processed. The original data comes from different sources

and has different formats. Therefore, we need to apply specific transformations, and then

combine it properly in order to end up with the final input files. Table 3.1 provides links

to the original data sources as well as a brief description of the data sets, while Table 3.2

provides an overview of the form of input and output data (see Figure 3.1).
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Table 3.1: Original datasets used

Company/Platform Dataset Description

My Electric Avenue

https://eatechnology.com/resources/projects/my-electric-avenue/

EV driving behavior and charging data from up to 200 EVs,

monitored on low voltage distribution networks

ENTSOE transparency platform

https://transparency.entsoe.eu/dashboard/show

Measurements concerning the Actual Generation per Production Type

and the Actual Total Load for all European regions for the recent years

Mendeley Data platform

https://data.mendeley.com/datasets/tb9yrptydn/2
Electric passenger cars with their specifications

Tesla

https://www.tesla.com/en_EU/support/european-union-energy-label
Technical features of Tesla models

Spirit Energy

https://www.spiritenergy.co.uk/kb-ev-understanding-electric-car-charging
Specifications of EV’s chargers

Table 3.2: Description of input and output data

Data Category Input of ‘Data Preprocessing’ Component Output of Dataset Generator

Production

and

Consumption

Data

Production: DayTimeOfMeasurement (start-end),

Lignite, FossilGas, Solar, Wind

Consumption: DayTimeOfMeasurement (start-end), ActualTotalLoad

*irrelevant or/and incomplete elements are omitted (e.g. Area, FossilOil etc.)

Year, MonthOfYear, DayOfWeek,

TimeOfDay, LigniteGen,

FossilGasGen, SolarGen,WindGen,

TotalLoad, ImportExport

EVs

and

Drivers

Behavior

Data

EVs specs: CarModel, BatteryCapacity, MaximumDCChargingPower,

MeanEnergyConsumption,Category

Chargers specs: ChargerType, ChargerRating, ACDC, RatedPower

Drivers Behavior-Charging events: ParticipantID

BatteryChargeStartDate, BatteryChargeStopDate,

StartingSoC, EndingSoC

Drivers Behavior-Trip events: ParticipantID, TripStartDateTime,

TripStopDateTime, TripDistance, PowerConsumption

*irrelevant elements are omitted (e.g. Length, Wheelbase etc.)

Date, DriverID, Year, MonthOfYear,

DayOfWeek, TimeOfDay, EVModel,

BatteryCapacity, Category,

MeanEnergyConsumption,

MaxDCPower, Status,StartingSoC,

EndingSoC, ChargerType,

ChargerPower,ChargingTime,

ChargingConsumption,

TripTime, TripDistance,

TripConsumption

3.2.1 Energy Production and Consumption Data

In this category, we have time-series data following the structure and format of the

ENTSOE transparency platform (see Table 3.1). This includes real measurements con-

cerning the Actual Generation per Production Type and the Actual Total Load for all

European regions for the recent years. This information is available online, free of charge.

Our main input consists of ‘.csv’ files, having n ∈ N rows and c ∈ N columns. Each row

corresponds to a series of measurements for a configurable time interval, e.g. an hour of

the day, while each column contains information about, (a) the particular date and time,

(b) the measurements of the actual generation per production type (e.g. Fossil Gas, Solar,

Wind), and (c) the total load consumption. All measurements refer to kilowatt-hours

Charalampidis Georgios 25 Technical University of Crete

https://eatechnology.com/resources/projects/my-electric-avenue/
https://transparency.entsoe.eu/dashboard/show
https://data.mendeley.com/datasets/tb9yrptydn/2
https://www.tesla.com/en_EU/support/european-union-energy-label
https://www.spiritenergy.co.uk/kb-ev-understanding-electric-car-charging


3. OUR APPROACH ON SYNTHETIC DATA GENERATION

(kWh). The output file has a similar format (see Table 3.2). For example, given hourly

measurements and a time horizon of 30 days, the number of rows would be 30 · 24 = 720,

while the columns correspond to the particular date (i.e., year, month, day of week, time

of day) and the different production/consumption measurements from each type. More

information about energy production and consumption data is given in table A.1.

3.2.2 EVs and Drivers Behavior Data

As we see in Table 3.1, the data related to electric vehicles comes from many different

sources and differs significantly from the previous case, with the main difference being

that in this category we have a non time-series format. For the characteristics of elec-

tric vehicles, the input dataset comes mainly from the online, publicly available Mendeley

Data platform, while this data can easily be augmented with additional information from

other sources. For example, we also add some technical features of Tesla models available

from the official website of Tesla in Europe, which were not included in the initial Mende-

ley dataset. All the above information is publicly available online. The combination of

these two data sources provides information regarding EV technical characteristics, such

as the equipped battery specification and the overall energy consumption of the EV.

A different input ‘.csv’ file (see Table 3.3), produced during preprocessing, is used to

dictate the specifications of the available chargers. This is based on information from

the website of “Spirit Energy” (Table 3.1), and it contains the different types of chargers

(AC or DC, Regular socket, Single phase, or 3 phases), their charging speed and their

rated power. Finally, the data related to the drivers’ driving behavior comes from the

‘My Electric Avenue’ project (see Tables 3.1 and 3.1). There, participants monitored

the usage of over 200 EVs, a number of low voltage networks, and the switching of the

EVs to support those networks. The trial participants’ charging and driving behavior

was recorded using the EVs’ telematics systems. We utilize two files from that project:

the first one contains information about the times each EV charged, as well as the state

of charge for each time an EV is connected and charged; and the second one, contains

distance, times, and power consumption information for each of the recorded drivers’

trips.
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3.2.3 Data Preprocessing

As already mentioned the original data has different formats, therefore, we need to apply

specific transformations, and then combine it properly in order to end up with the final

input files. In Table 3.3 we present the original and preprocessed data and we give a brief

description of the preprocessing as well.

Table 3.3: Data files before and after preprocessing

Original Data Source Preprocessing Preprocessed Data

EVChargeData.csv
My Electric Avenue

(see Table 3.1)

Remove incomplete elements

Normalize state of charge values

(Starting SoC & Ending SoC) to the [0, 1] interval

Add column SoC Diff

Add column ChargeTime

EVChargeData PreProcessed.csv

(see Table A.4 in the Appendix A)

EVTripData.csv
My Electric Avenue

(see Table 3.1)

Remove incomplete elements

Add column TripTime

Add column Velocity

EVTripData PreProcessed.csv

(see Table A.5 in the Appendix A)

Actual Generation 2017.csv

Actual Generation 2018.csv

Actual Generation 2019.csv

Actual Generation 2020.csv

Total load 2017.csv

Total Load 2018.csv

Total Load 2019.csv

Total Load 2020.csv

ENTSOE

transparency platform

(see Table 3.1)

Remove irrelevant or/and incomplete elements

Transform the information about

the day and time to a time series format

(e.g. Date, Year, MonthOfYear, DayOfWeek, TimeOfDay)

Merge Actual Generation and Total Load files

according to year &

add column ImportExport

(Creation of Entsoe 2017.csv, Entsoe 2018.csv,

Entsoe 2019.csv, Entsoe 2020.csv)

Merge all files

Entsoe PreProcessed.csv

(see Table A.1 in the Appendix A)

FEV-data-Excel.xls

Mendeley

data platform

(see Table 3.1)

Remove irrelevant elements (e.g. Length, Wheelbase etc.)

Fill in missing information about technical features

of some Tesla models

(source Tesla company, see Table 3.1)

Add column Category

EV specs PreProcessed.csv

(see Table A.2 in the Appendix A)

Spirit Energy

(see Table 3.1)
Create the .csv file with chargers specifications

Charging Specs.csv

(see Table A.3 in the Appendix A)

As a first step of the generation process, we preprocess the acquired data files and

assign them appropriate timestamps. That is, we transform the information about the

day and time in a format that is consistent across all generated files, i.e. to a time series

format (e.g.Date, Year, MonthOfYear, DayOfWeek, TimeOfDay).

Next, we focus on EV characteristics. For this, we incorporate the data from the

Mendeley platform in its original format, and fill in some missing information about

the technical features of some EV models which is nevertheless available from other

online sources, as described in the previous section. In addition, we include the new

column ‘Category’, that signifies different EV types according to battery capacity. All
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aforementioned data is combined into a single file, and another one holds the information

of the EV chargers (see Table 3.3). Tables A.2 and A.3 in the Appendix A contain

detailed information on the aforementioned files.

As for the data related to the charging events, the corresponding file (see Table 3.3)

contains the exact dates and times that charging events start and end, as well as the EV

battery status at the beginning and at the end of a charging event, noted as Starting SoC

and Ending SoC, respectively. Again, here we need to assign compatible timestamps to

each event, and also to normalize state of charge (SoC) values to the [0, 1] interval. The

normalization was based on the equation:

New value =
x−min

max−min
(3.1)

where x is the old value, min and max are the minimum and maximum values of the

original set, i.e. 0 and 12 respectively. Each row of the file represents a charging event/ac-

tion, and each column includes data related to the charging events, i.e. the exact time

of charging events, duration of charges, and the status of the battery. Finally, we create

two new columns: SoC Diff, which contains the difference ‘Ending SoC - Starting SoC ’,

indicating what percentage of the battery was charged during a charging event; and

ChargingTime, expressing the duration (in minutes) of each charge, as calculated from

its start and end timestamps. Additional information about preprocessed charging data

files can be found in Table A.4 in the Appendix A.

Regarding the data related to the trip events, the file (see Table 3.3) has the same

format as that of the charging events: each row represents a trip event/action and each

column, the exact time of a trip event, the duration of the trip, the trip distance and

the power consumed during each trip respectively. By extension, we followed similar

techniques in order to pre-process the data. So we converted the start and end dates of

the trip events into the appropriate format and from them we calculated the duration

of each event (in minutes), in a new column called TripTime. Lastly, we calculate the

velocity of the vehicles through a simple time-distance relationship, assuming that the

vehicle performs linear motion with constant speed. Table A.5 in the Appendix A,

contains additional information about preprocessed trip data files.

In terms of the generated synthetic data output files (Ev’s and Drivers Behavior Data

in Table 3.2), their number is proportional to the number of drivers that the user has
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specified as a configuration. For each one, the number of rows corresponds to measure-

ments for a particular time interval, and each column represents the characteristics of

each driver’s EV, detailed information about charging events (i.e., exact time of charg-

ing event, duration of charge and status of the battery), and the characteristics of the

charger with which a charging event takes place (i.e., AC or DC, single-phase or 3-phase,

charger’s charging speed and rated power). Finally, detailed information on trip events

is provided (i.e., exact time of a trip event, the duration of a trip, the distance travelled

and the power consumed during each trip). In addition, since the columns of the output

files refer to both charging and trip events, in case we have a charging event, the columns

related to the trip event are empty and vice versa. If neither event takes place, all afore-

mentioned columns are left empty. Detailed information about drivers behavior output

files can be found in Table A.7 in the Appendix A. In this table we give the example of

a specific driver, in the 3 possible status modes. (idle mode, charge event, trip event).

The other data category, energy production and total consumption, originates from

the ENTSOE platform and comes in the form of 8 ‘.csv’ files, 4 for actual generation and

4 for total load, one for each year, from 2017 to 2020 (see Table 3.3). Our preprocessing is

performed on a yearly basis. First we convert the timestamp to the appropriate format,

i.e. in the following 4 columns: Year, Month of Year, Day of Week and Time of Day.

We then combine the production and consumption data into a common data-frame and

remove all incomplete rows (if any). Then, we insert a new column that holds the im-

balance between the aggregates of consumption and production. If the resulting number

is positive, then this indicates that energy is imported from neighbouring regions, other-

wise, it is exported. Table A.1 in the Appendix A contains additional information about

production and consumption preprocessed and output files.
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3.3 Data Generation Techniques

In this section, we present our dataset generation process, which uses different statistical

methods to produce synthetic data. There are two desired types of data to generate: 1)

energy consumption and production, 2) EVs and drivers behavior data. For the former,

we adopt three different generation methods that can be used interchangeably:

• Histogram Sampling

• KDE Sampling

• TimeGAN

At this point we should mention that regarding the Production and Consumption

Data, the user has the ability to apply additional smoothing on them. More information

on the data smoothing techniques we use is given in Subsection 3.3.5, while Section 4.1

provides a detailed presentation of the results obtained with and without additional

smoothing.

Since the drivers’ behavior data do not come in a time series format, the application

of the aforementioned methods (Histogram Sampling, KDE Sampling and TimeGAN )

is not meaningful. Therefore, we also put forward a Frequency Tables Method, which

requires no such assumption for the input. Algorithm 1 gives the general picture of the

operation of our system, while algorithms 2 and 3 describe the dataset generation process

for the production and consumption data and the drivers’ behavior data respectively. In

what follows, we give detailed descriptions of each method.

Algorithm 1 Dataset Generation

1: Read the input json file with user’s options

2: Create the output folder ▷ All generated files stored here.

3: Generate Energy Production & Consumption Data, Algorithm 2

4: Generate Drivers’ Behavior Data, Algorithm 3
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3.3.1 Histogram Sampling

In the Histogram Sampling case, we create a dataframe with size respective to the time

period given by the user, and then fill in all the columns related to the date and time

variables. Next, we define what measurements of the original data we need to consider

for each column/variable. By analyzing and plotting the time-series of each variable for

intervals of one week, we sought to find peaks, periodicity and irregularities within this

time period. Therefore after visual inspection, we recorded how variables are related to

the month, day and time, and so we group each column based on the time dependence it

was shown to have by this analysis. For the total load consumption we take into account

the month, day and hour, while for Solar and Fossil gas generation we keep the month

and time of day; and finally, for the Lignite and Wind generation, for which no pattern

was observed for the day and time, we take into account only the corresponding month of

the year. Therefore, every time we want to generate new data we take into account the

specific time dependencies of the variables, without having to repeat the above process.

Subsequently, having a series of measurements in each group, we create a histogram

with a default number of bins. In general, we can construct a histogram with an arbitrary

number. The more the bins, the more precise the sampling will be, but at the same time,

most of the bins should contain a sufficient number of counts to be statistically signifi-

cant. By conducting exploratory experiments, we converged to an empirically “optimal”

number of bins such that they have an average population of at least 5 elements.

To generate values using a histogram, we first calculate the corresponding cumulative

distribution, and then sample a random number from a uniform distribution between 0

and 1. This random sample indicates a point in the x-axis of the CDF, from which we

find the respective y-axis value, which constitutes our final synthetic dataset value. In

this way, for each row of data we sample a new value for the selected column. The process

is repeated for every column of the preprocessed file (see Table 3.3).

In cases where the values that we sample refer to Solar Gen, we perform an additional

check as values are expected to be equal to zero during night time and low during cloudy

days. However, mainly due to faulty measurements, there are rare cases where the

original values are quite close to zero, but different than zero, thus forming non-zero

probability mass for a positive value to come up, even during night hours. Thus, to avoid

large inconsistencies with non-zero values during hours when it is not plausible (e.g.,
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during night hours), in cases where the sample has a value less than a minimum level

(as this is inferred by the original datasets), we treat it as zero. As we saw in practice,

this intervention helps towards a better fit between the real data in the input and the

generated data in the output, as shown in our experimental results in Chapter 4.

3.3.2 KDE Sampling

In this case we calculate the kernel density estimates of the original Production and

Consumption data of the whole time horizon, using Python’s machine learning library

scikit-learn.

Therefore given a sample of n independent, identically distributed (i.i.d) observations

(x1, x2, . . . , xn) of a random variable from an unknown distribution at any given point x,

the kernel density estimate is given by:

p(x) =
1

nh

n∑
j=1

K

(
x− xj

h

)
(3.2)

where K(x;h) is the kernel function and h is the bandwidth. In our approach we use

Gaussian kernel:

K(x;h) ∝ exp(− x2

2h2
), (3.3)

since it is one of the most widely used kernel functions. Having set a specific range in

bandwidth, we tune the bandwidth parameter via cross-validation and select the param-

eter value that maximizes the log-likelihood of data. Therefore, similarly to Histogram

Sampling, after selecting the corresponding subset of data (x1, x2, . . . xn), where n is the

the subset’s length), we sample a new value for the selected column and the process is

repeated for all columns. Also, as described earlier, in the case of Solar Gen we perform

the corresponding checks.
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3.3.3 Time-series GANs

As we have already mentioned, Time-series Generative Adversarial Networks (TimeGANs)

are GAN based models, that synthesize sequential data composed by 4 networks that play

distinct roles in the data modelling process: the generator, the discriminator, and recov-

ery and embedding models.1 In terms of losses, three types are considered:

• Reconstruction loss, which refers to embeddings and the comparison between the

original and reconstructed (generated) data.

• Supervised loss, which is responsible for the approximation of the time dimension

in the latent space.

• Unsupervised loss, which reflects the relationship between generator and discrimi-

nation networks (min-max game)

Given the network architecture and the losses defined above, there are 3 training

phases: first, we train the autoencoder on the provided sequential data to optimally

reconstruct it; then, the supervisor is trained using real data sequencies to capture the

historic temporal relationships; and finally, the combined training of the four networks,

while minimizing all three loss functions.

Note that, in the case of TimeGAN, the time dimension of the input data matches

that of the output. Thus, in this case, the input data must be further pre-processed. The

preprocessing includes the following steps:

1) Normalization of time-series data to the range [0,1]. The normalization parameters

are stored as a separate model to be used at the end of the synthesizing process to

recover the generated data values.

2) Rolling windows creation - following the original paper recommendations [33], we

create rolling windows with overlapping sequences of 24 data points.

3) Shuffling the observations in order for them to meet the independent and identically

distributed (i.i.d.) property.

1To implement TimeGAN we used part of the code publicly available in the github repository ydata-

synthetic, which develops various GANs using Tensorflow 2.0 [45].

Charalampidis Georgios 33 Technical University of Crete



3. OUR APPROACH ON SYNTHETIC DATA GENERATION

At this point we must mention that due to the structure of the model, the generated

data is the same size as the input data. Therefore, since the input data we use is data of

1 to 4 years, this method can be used to generate 1, 2, 3 or 4 years of data respectively.

However, input data with a different time horizon can be used, as long as it has the same

format as ours.

Algorithm 2 Generate Production & Consumption Data

1: Create dataframe df according user’s time horizon

2: if method = HIST then ▷ The method is chosen by the user.

3: Apply HIST method ▷ Histogram Sampling, see Section 3.3.1

4: else if method = KDE then

5: Apply KDE method ▷ KDE Sampling, see Section 3.3.2

6: else if method = TimeGAN then

7: Apply TimeGAN method ▷ TimeGAN, see Section 3.3.3

8: Save df to .csv file

9: if AdditionalSmoothing = True then ▷ User set parameter.

10: Take the smoothing parameters (rolling window) for each variable

11: Apply smoothing on df and save smoothed data to new .csv file ▷ Data

Smoothing, see Section 3.3.5

12: Create figures and metrics for Smoothed Generated Data

13: Create figures and metrics for Generated Data

3.3.4 Frequency Tables Method

We now discuss the Frequency Tables method, used to generate the drivers’ behavior

data. Here, the data is generated based on Frequency tables and files including informa-

tion regarding the EV characteristics. The Frequency tables are used to determine the

probability of an event happening at a particular time instant, by counting the original

dataset values. To construct them, we read the files related to the charging and trip

events, and create 2 for each of the following 5 variables:
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• Charge Start Hour: The hour that a charging event begins

• Daily Charges: The number of daily charges an EV makes

• Starting SoC: The EV’s SoC when a charging event begins

• Ending SoC: The SoC when a charging event ends

• Trip Velocity: The average speed of the EV during a trip

More specifically, the two files we create for each of the above variables (see Frequency

Tables in Figure 3.1) correspond to a relative frequency table for weekdays and another

one for weekends. As described in detail in subsection 2.1.2.4, the relative frequency

indicates the number of times a specific value (or range of values) has been observed,

compared to the total number of measurements. This, each of the relative frequencies

correspond to the weight of a specific value, which we use later during the sampling

process. The larger the weight, the greater the probability the specific value will appear

in our synthetic data.

We now proceed to the description of the main process for this part of our system. As

outlined in Alg. 3, it is repeated for each EV, until the number of EVs/drivers chosen by

the user is completed. First, we create a dataframe according to the time period given

by the user and then we fill in all the columns related to the date and time variables,

just as described earlier. Then we calculate the number of days that correspond to the

time period entered by the user and for each one of them, we sample the number of daily

charges from the corresponding frequency table. Then we sample charging events from

the respective frequency tables, and fill in the cells of the dataframe. A charging event

chEvi, where i = 1, ...N , is the number of the total charging events for a specific EV, is

represented by a triple chEVi = (hi, stSi, enSi) in R3, where hi denotes the Charge Start

Hour, stSi denotes the Starting SoC and enSi denotes the Ending SoC. We must also

point out that some data (DriverID and the specs of the EV) is sampled only once for

each driver and remains unchanged throughout the file.
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Algorithm 3 Generate Drivers’ Behavior Data

1: for each EV do ▷ Number of EVs is chosen by the user

2: Create dataframe df according user’s time horizon

3: Fill in the columns of df related to date and time

4: Create an empty dataframe df s ▷ To store variables that will be

sampled only once (DriverID & EV specs)

5: Calculate numOfDays ▷ The number of days corresponds to user’s

time horizon

6: Sample the num of daily charges for every numOfDays

7: Create Sample Storage for weekdays, Algorithm 4

Sampling Charge Data(0, numOfDays ∗ 4, 0, df s, 0, 2, 0)

8: Store DriverID & EV specs to df s

9: Create Sample Storage for weekends: Algorithm 4

Sampling Charge Data(0, numOfDays ∗ 4, 0, df s, 0, 2, 1)

10: if checksMode = Strict then ▷ choosing a checksMode

11: StrictConstraintsDataGeneration(), Alg. 5 ▷ See Section 3.3.4

12: else if checksMode = Looser then

13: Apply Looser Constraints mode ▷ See Section 3.3.4

14: else if checksMode = Min then

15: Apply Absolutely Necessary Constraints mode ▷ See Section 3.3.4

16: for the whole df do

17: Find 2 consecutive charges

18: if Starting SoCof2nd < Ending SoCof1st then

19: CreateTripEvent(), Algorithm 6

20: Save df to .csv file

21: Merge all .csv files to 1 file

22: Create figures and metrics for Generated Data

Each time a new charging event is sampled, we check if the corresponding starting time

is later than the end of the previous charging event’s end. Also, the Starting SoC should

be less than the Ending SoC of the preceding event’s. However, in order to avoid constant

data sampling from various Frequency Tables, every time we need data related to charg-

ing events, we create a storage of samples. Through a method (Sampling Charge Data())

we sample the maximum number of charging data that correspond to the number of
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days we calculated earlier (i.e. sampling data(n) = charging data for 1 charge ×
4charges a day ×Ddays).

Algorithm 4 Sampling Charge Data()

1: procedure Sampling Charge Data(check, samples

minHour, df s, checkSoC, preEndingSoC, isWeekend) ▷

When we use this function to create the data storage, the input parameters

are defined as follows: (0, numOfDays ∗ 4, 0, df s, 0, 2, 0/1)

2: if isWeekend = 0 then

3: Read data from Weekdays Frequency Tables

4: else

5: Read data from Weekend Frequency Tables

6: Sample the Charge Start Hour for samples

7: for row in dataframe do ▷ means for each sample

8: if checkSoC = 1 then ▷ when func used in alorithm 2

9: Sample Starting SoC < preEndingSoC

10: else ▷ when use func for data storage

11: Sample Starting SoC

12: Sample Ending SoC < Starting SoC

13: if check = 0 then ▷ when use func for data storage

14: Sample EV specs with ▷ 1 sample

15: (Model,BatteryCap,Category,EnergyCons,MaxDCPower)

16: else ▷ When func used inside alorithm 2

17: Use specs from df s

18: Sample charger specs (ChargerType,ChargerPower) for samples

19: Calculate ChargingHours:

20: chargeRate← ChargerPower

21: if ChargerPower ≥ 50 then

22: chargeRate← min(chargePower,MaxDCPower)

23: batteryLoad← Ending SoC − Starting SoC

24: ChargingHours← (batCapacity ∗ batteryLoad) /chargeRate
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Algorithm 4 shows how Sampling Charge Data() works in case of the initial creation of

the aforementioned storage of samples. Therefore, if the conditions are met, we randomly

pick a sample from the storage, otherwise we try to pick a new sample that meets our

requirements. If there is no such sample, we call the Sampling Charge Data() method but

with different arguments. The method works as in the previous case with the difference

that it returns only 1 new charging sample that meets our requirements.

With the respective configuration parameter, the user can choose among the different

dataset generation algorithms. Now, since the generation process is based on random

sampling, it is probable that the output might not adhere to real-world constraints in

some cases, e.g. an EV discharging more that it would be possible between charging

events, or a charge event appearing before the previous being completed. For this reason,

to better control the level of constraints that will be enforced throughout the generation

process, we provide three different modes:

• Strict constraints, where the time intervals that the EVs charge are finely dispersed

throughout the day

• Looser constraints, where charges must be completed within the same day

• Absolutely necessary constraints, i.e. there are no time restrictions regarding when

an EV begins charging.

In all these modes, we operate based on the number of daily charges. We now give a

brief description of the Strict constraints mode (shown in Algorithm 5). Initially, if the

number of daily charges is equal to 1 then no special action is required, we just fill in

the dataframe, according to the sample we have chosen. If the number of daily charges

is 2, then we divide the day into two 12-hours and carry out the 1st charge. If the end

of the charge is within the first 12-hours, then we take a new sample and carry out the

2nd charge. In case the number of charges is equal to 3, we first divide the day into three

8-hour periods, and carry out the 1st charge. If the end of the charge is within the first

8-hour period, we take a new sample and perform the 2nd charge. Similarly, we check if

the end of the current charge is within the second period and we perform the 3rd charge.

However, in case the 1st charge is not completed within the first period, we check if it

is completed within the second, so that then at least the 2nd charge can be performed.

The same rationale applies for 4 or more daily charges, where we perform similar steps.
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For the looser constraints, the only check that is performed before sampling the next

charging event, is that the previous charge should have been completed before 23:00 of

the same day. Finally in the absolutely necessary constraints, there is no extra rule, apart

from that the Starting SoC during a charging event must be lower than the Ending SoC

of the preceding one. In all 3 modes we sample different data for the weekdays and

different for the weekends, by using the corresponding Frequency tables as input.

After filling the basic dataframe with the charging events, it is then rescanned in

order to fill in the necessary trip events between the successive charging events (see Al-

gorithm 6). The rationale behind this part is that if there is power consumption between

two consecutive charges, a trip event must have intervened. The only variable that is

sampled and is related to a trip event, is the velocity of the EV. The trip information

is thus filled in by sampling the velocity and by calculating the remaining parameters

related to EVs (i.e., TripTime, TripConsumption and Ending SoC ).

Algorithm 5 StrictConstraintsDataGeneration()

1: if DailyCharges = 1 then

2: Case Charges 1 ▷ fills our dataframe, based on the charging sample we

have chosen.

3: else if DailyCharges = 2 then

4: Divide the 24-hours into 2 12-hours.

5: Case Charges 1 ▷ Do 1st Charge

6: if endOfCharge is in 1st 12-hour then

7: Take sample from the storage. ▷ Start STEP 1

8: if sample NOT meets our requirements then

9: Sampling Charge Data(1, 1, prevHour,

10: df s, 1, prevEndSoC, 0/1)

11: Case Charges 1 ▷ End STEP 1
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12: else if DailyCharges = 3 then

13: Divide the 24-hours into 3 8-hours.

14: Case Charges 1 ▷ Do 1st Charge

15: if endOfCharge is in 1st 8-hour then

16: Repeat STEP 1 ▷ Do 2nd Charge

17: if endOfCharge is in 2nd 8-hour then

18: Repeat STEP 1 ▷ Do 3rd Charge

19: if endOfCharge is in 2nd 8-hour then

20: Repeat STEP 1 ▷ Do 2nd Charge

21: else if DailyCharges = 4 then

22: Divide the 24-hours into 4 6-hours.

23: Case Charges 1 ▷ Do 1st Charge

24: if endOfCharge is in 1st 6-hour then

25: Repeat STEP 1 ▷ Do 2nd Charge

26: if endOfCharge is in 2nd 6-hour then

27: Repeat STEP 1 ▷ Do 3rd Charge

28: if endOfCharge is in 3rd 6-hour then

29: Repeat STEP 1 ▷ Do 4th Charge

30: if endOfCharge is in 3rd 6-hour then

31: Repeat STEP 1 ▷ Do 3rd Charge

32: if endOfCharge is in 2nd 6-hour then

33: Repeat STEP 1 ▷ Do 2nd Charge

34: if endOfCharge is in 3rd 6-hour then

35: Repeat STEP 1 ▷ Do 3rd Charge

36: if endOfCharge is in 3rd 6-hour then

37: Repeat STEP 1 ▷ Do 2nd Charge
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Algorithm 6 CreateTripEvent()

1: Calculate battCons ▷ Battery Consumption during trip event

2: Calculate kmDriven ▷ Km driven during trip event

3: if weekday then

4: Sample velocity from corresponding Frequency Table for weekdays

5: else

6: Sample velocity from corresponding Frequency Table for weekend

7: tripT ime← kmDriven/velocity

8: Calculate availT ime ▷ Time between 2 consecutive charges

9: if tripT ime < availT ime then

10: Calculate reqV elocity ▷ The velocity required to complete the trip

11: try

12: if weekday then

13: Sample velocity > reqV elocity from corresponding Frequency Ta-

ble for weekdays

14: else

15: Sample velocity > reqV elocity from corresponding Frequency Ta-

ble for weekend

16: catch ValueError

17: velocity ← reqV elocity

18: end try

19: For the time intervals of the trip event, fill in the columns of dataframe

related to trip event, i.e. Status, Starting Soc, Ending Soc, TripT ime,

TripDistance, TripConsumption
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3.3.5 Data Smoothing & Curve Matching

As mentioned earlier, regarding the Production and Consumption Data, the user has the

ability to apply additional smoothing on them. The main smoothing method we use is

the moving average technique.

The moving average, also known as rolling mean, is commonly used with time se-

ries to smooth random short-term variations and to highlight other components (trend,

season, or cycle) present in the data. There are many types of moving averages, such

as, the simple moving average (SMA), the cumulative moving average (CMA), and the

exponential moving average (EMA). In our case we use the SMA. The simple moving

average is the unweighted mean of M data points. The selection of M (sliding window)

depends on the amount of smoothing desired since increasing the value of M improves

the smoothing at the expense of accuracy. For a sequence of values, we calculate the

simple moving average at time period t as follows:

SMAt =
xt + xt−1 + xt−2 + ...+ xM−(t−1)

M
(3.4)

where x is the variable (e.g. Wind Gen in our dataset) and t is the current time period

(e.g. the time horizon of our dataset). We calculate the simple moving average by using

the “pandas.Series.rolling” method. This method provides rolling windows over the data.

On the resulting windows, we can perform calculations using a statistical function (in

this case the mean). The size of the window (number of periods) is specified by the user,

as described in section 3.4.

In addition, to produce data even closer to the originals, we perform a pre-smoothing

procedure, which is described below. First we check the CSV file of the generated data

(Production and Consumption Data in Figure 3.1 and Table A.1 in the Appendix A). For

each value of a specific variable (e.g. Wind Gen) we calculate the mean of the values for

a time horizon of 24 hours, 12 hours before and 11 hours after the specific time interval.

Then we randomly select a value from the original data set, which corresponds to the

month, day and time we are in, and we calculate in the same way the corresponding mean.

Afterwards, we compare the two means, having already calculated their difference. If the

mean of the original data is greater than that of the generated ones, we add the difference

to the value we have; otherwise we subtract it. The process is applied to the entire file,

for each variable. Thus, by applying these two techniques-processes the time series curves

of the generated data seem to be more in line with those of the original’s.
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3.4 Web-Based User Interface

The previous sections presented in detail the functions of our system, as well as the tech-

niques are used to produce synthetic data. In addition to the basic functions described,

we have created a web-based user interface (UI), which helps the user to easily handle

our Dataset Generator. The UI uses a backend web server, implemented in Flask1–a

Python micro web framework– while the frontend part was implemented using mainly

HTML and JavaScript. Essentially the UI runs locally and specifically on port 5004. So

the user firstly runs the Flask App.py file and then opens a new tab of a web browser,

at ‘localhost: 5004’. This is the URL of the UI, which can be used to perform all the

procedures described in section 3.3.

More specifically, the user first selects the time horizon for the data set (start and

end date) and one of the 3 available techniques for the generation of Production and

Consumption Data. He then enters the number of EVs, as well as the percentages of the

EV categories (A, B and C), which correspond to the number of EVs–from each category–

that will be in the dataset. Afterwards, the user, for each category of EV chargers (Slow,

Fast and Rapid) sets the probability of selecting a charger of a specific category, during

the generation of the dataset. In a fairly large data set, these probabilities also reflect

the percentages of each category on the total amount of the chargers. After that the user

can select to apply additional smoothing to the generated Production and Consumption

Data, by setting the rolling window for each variable. Subsequently the user enters the

name of the folder from which he wants the input data to be retrieved. The default name

is ‘InputData’, and it contains our original data. Finally, the user selects the ‘Generate

Data’ button and once all the necessary values have been filled in correctly, the generation

of the synthetic data and the corresponding figures and statistics begins.

In addition to the above, the user can generate figures and statistics for data he

has already created. On the second page of the UI, the user just have to select the

folders from which the original and generated data will be retrieved and by pressing the

corresponding submit button, the figures and statistics in which the selected data are

compared are automatically created.

1https://flask.palletsprojects.com/en/2.0.x/
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(a)

(b)

Figure 3.2: Screenshots of the web-based user interface
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3.5 Assumptions and Limitations

Through the various methods we use, we managed to create a tool that produces synthetic

data, which are close to the originals and at the same time are as realistic as possible. In

our attempt to maintain this balance we have encountered various limitations and we had

to make specific assumptions to deal with many of them. However, these limitations do

not prevent us from generating realistic synthetic data sucessfully. The main limitations

of our approach are described below:

• The calculated velocity values were too many and different from each other, so

the resulting ‘FrequencyTable TripVelocity.csv’ file was quite large and difficult to

use. Therefore we rounded up and grouped them by 5 units. Thus without any

significant deviation from the original data, the velocity values ended up being from

20 to 100 and rounded every 5 km/h.

• The frequency table of Starting SoC includes all the possible values less than 1.

This is because it does not make sense for someone to charge his EV if the battery

is fully charged.

• 3rd category EVs are not allowed to use slow chargers, as the low rated power of

chargers in combination with the large battery capacity of EVs results in unrealistic

charging time (depending on the case, it can exceed 20 hours).

• In case the time interval between 2 consecutive charges is not enough to accomplish

a trip event with some of the available velocity values, then the minimum speed

required for the trip completion is calculated and is assigned as the EV’s velocity

in that trip. Therefore, in some cases the velocity of a trip event might exceed 100

km/h, which is the maximum velocity of a car in the original dataset.

• The start time of the generated datasets is defined as the time interval from 00:00

to 01:00 of the start date entered by the user. Respectively, the end time of the

generated datasets is defined as the time interval from 23:00 to 23:59 of the previous

date from the end date entered by the user. For example, if the user enters the

time period ‘01/01/2021- 01/02/2021’ the files he will receive will contain data that

have been generated until 31/01/2021, 23:59. However, because there is a case for
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a trip or charging event to start on 31/01/2021 and end on 01/02/2021, the last

date included in the generated datasets is set at 01/02/2021, 23:59.

Charalampidis Georgios 46 Technical University of Crete



Chapter 4

Experimental Evaluation

In this chapter we present the results from our experimental evaluation. To evaluate the

performance of our approach and illustrate its validity, we compare the distributions of the

original data considered as input, to those of the synthetic resulting from the generation

process. Intuitively, the difference should not to be too large, so as to imply different

underlying models. To obtain a picture of this, first, we rely on visual inspections, where

the distributions (in the case of energy production and consumption data), and the

difference between relative frequencies-weights (in the case of EVs and drivers behavior

data) are plotted against each other for each measurement type. This way, the user can

detect large deviations and act accordingly to what each application setting dictates, i.e.

either ignore irrelevant differences, or apply more constraints.

Our experimental evaluation spans on a maximum of 4 years time horizon, including

100 EVs. HIST refers to the histogram approach, KDE to the kernel density estimation,

and TimeGAN to the generative adversarial network approach. For the case of production

and consumption data, the fitting of the models and the generation of the synthetic

datasets takes 7 minutes for the HIST method, while KDE requires 3 to 4 hours, and

TimeGAN less than a minute. However, in the case of the TimeGAN method, whenever

data generation is done for the first time and there is no training model, the production

time–including model training–is around 6 hours. For the EV and Drivers Behavior

dataset, the Frequency Tables method required 30 minutes. Experiments were performed

on an Intel Core i7-5500U CPU 2.40GHz processor, with 8GB RAM. Subsequently, we

describe in detail the experimental evaluation for each of the two data categories.
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4.1 Experimental Evaluation - Energy Production

and Consumption Data

To quantify a ‘distance’ between the distributions under comparison, we employ the

Kolmogorov - Smirnov D statistic [46]. The Kolmogorov – Smirnov statistic quantifies

a distance between the empirical distribution functions (CDF) of two samples, in our

case between original and generated data. Consequently apart from testing statistical

significance in difference, it can also be used for measuring the effect size of the generation

process. The results are shown in Table 4.1. In terms of the K-S statistic, we observe

that the overall performance of each method depends on the size of the output data. As

is expected in probabilistic methods, a larger sample size leads to closer fits and better

results in general.

Initially, in both cases, when we use one year and four year of input data respectively,

the KDE and Histogram sampling methods have almost the same results, and both

outperform TimeGAN by a relatively large margin. More specifically, in the cases of

KDE and HIST, the value of K-S statistic for all columns is really small, meaning that

the data generated is very close to the original, something that is also clearly reflected in

the histograms.

In case we use only one year of data as input, for the HIST and KDE, we could sample

any number of measurements, so we use the original 4 year data, while we generate data

via sampling only for 1 year. So, it is somewhat expected that with fewer samples we

will achieve slightly worse distribution fit. As for the TimeGAN method, it seems that

there is only a small effect due to the size of the original data, since increasing it does

not improve performance significantly. So one-year data seems to be enough, in order to

learn - as far as it can - the original relationships between variables across time.

The aforementioned observations are also reflected in the histograms presented in the

figures 4.1 - 4.5. For example, in Figure 4.2 we observe that in all 3 cases, the results

when producing 4-year data (Figures 4.2(b), 4.2(d) , 4.2(f)) are better, compared to when

producing 1-year data (Figures 4.2(a), 4.2(c) , 4.2(e)). However in the case of HIST and

KDE, the generated data is very close to the original, while the distributions of the data

produced by the TimeGAN method are quite different from those of the originals. At

this point it is worth mentioning in particular the case of the Solar Gen. Fig. 4.3 and

Table 4.1 make apparent the big difference in the behavior of the TimeGAN method
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Table 4.1: K–S statistic of Production and Consumption Data. Best performance results

indicated in bold.

Output Data time-horizon Method Lignite Gen FossilGas Gen Solar Gen Wind Gen Total Load Average

4 years of data

HIST 0.005 0.005 0.03 0.004 0.005 0.01 (1%)

KDE 0.004 0.004 0.036 0.004 0.004 0.01 (1%)

TimeGAN 0.08 0.038 0.459 0.06 0.035 0.134 (13.4%)

1 year of data

HIST 0.011 0.011 0.031 0.009 0.009 0.014 (1.4%)

KDE 0.001 0.006 0.038 0.01 0.007 0.014 (1.4%)

TimeGAN 0.052 0.072 0.464 0.068 0.044 0.14 (14%)

compared to the other two methods, in terms of solar generation. Solar Gen, produced

by TimeGAN, has the largest discrepancy between original and generated data, both

compared to the other two methods and to the other columns of the same method. This

is probably due to the difficulty of simulating solar activity, an important issue which we

partially solved with our intervention in the KDE and HIST methods, as it is described

in subsection 3.3.1.
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(a) HIST - 1 year of data

0 1000 2000 3000 4000

Lignite_Gen(MW)

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

D
en

si
ty

Original data
Generated data

(b) HIST - 4 years of data
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(c) KDE - 1 year of data
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(d) KDE - 4 years of data
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(e) TimeGAN - 1 year of data
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(f) TimeGAN - 4 years of data

Figure 4.1: Histograms of column Lignite Gen
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(a) HIST - 1 year of data
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(b) HIST - 4 years of data
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(c) KDE - 1 year of data
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(d) KDE - 4 years of data
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(e) TimeGAN - 1 year of data
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Figure 4.2: Histograms of column FossilGas Gen
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(a) HIST - 1 year of data
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(b) HIST - 4 years of data
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(c) KDE - 1 year of data
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(d) KDE - 4 years of data
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(e) TimeGAN - 1 year of data
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Figure 4.3: Histograms of column Solar Gen
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(a) HIST - 1 year of data
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(b) HIST - 4 years of data
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(c) KDE - 1 year of data
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(d) KDE - 4 years of data
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(e) TimeGAN - 1 year of data
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Figure 4.4: Histograms of column Wind Gen
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(a) HIST - 1 year of data

3000 4000 5000 6000 7000 8000 9000 10000

Total_Load(MW)

0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

0.00030

0.00035

D
en

si
ty

Original data
Generated data

(b) HIST - 4 years of data
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(c) KDE - 1 year of data
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(d) KDE - 4 years of data
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(e) TimeGAN - 1 year of data
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Figure 4.5: Histograms of column TotalLoad Gen
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4.1.1 Time-Series Evaluation - Data Smoothing

As we explained earlier in Section 4.1, the distributions of the original and generated

the data are very close, according to the histograms and statistical measurements we

perform. In the cases of Histogram and KDE Sampling in particular, they are almost

identical. However if we observe the time series of the variables for shorter intervals,

e.g. for a time horizon of 1 week (Figure 4.6), in some cases we observe relatively large

deviations. For this reason we give the user the ability to apply additional smoothing to

the generated data (Section 3.3.5), so that the time series curves of the generated data

becomes more in line with those of the original’s.

In what follows, we present the time series of data generated by the Histogram Sam-

pling technique. Afterwards, we compare the histograms and the time series of some

of the most characteristic variables before and after the application of rolling average,

for different values in the rolling window, as well as after the application of the overall

smoothing method. We chose HIST method, as as we have already mentioned it is the

most efficient (along with the KDE) and the fastest of our methods.

To begin, Figure 4.6 presents the time series of energy production and consumption

data for each variable. More specifically in Figures 4.6(a) and 4.6(b), where a periodicity

is observed, the curves of the generated data are very close to those of the original.

Generated data also perform relatively well in the case of Fossil Gen (see Figure 4.6(c)).

In contrast, in the cases of Wind and Lignite generation (see Figure 4.6(d) and 4.6(e)

respectively), which do not show any periodicity, the results are much worse.

From the histograms of the Fossil Gas Generation (Figures 4.7, 4.8), we observe that

the larger the rolling window, the greater the discrepancy between the distributions of

the original and the generated data1. In Figure 4.7(d), where we have a rolling window of

24 intervals, the data have been overly smoothed resulting in a large degree of distortion.

In Figure 4.8(b) we have obviously better results, while in Figure 4.8(d), where the Pre-

Smoothing technique has also been used, the results seem to be even better.

In Figure 4.9 we can see the time series for Wind Generation, which as we have men-

tioned does not follow a time pattern. Therefore the results after smoothing are obviously

improved, since there are no more continuous and abrupt fluctuations in values, however

1Note that increasing the value of rolling window improves the smoothing at the expense of accuracy

(see Subsection 3.3.5)
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the curve of the generated data does not seem to follow the pattern of the originals. Total

Load Consumption (Figure 4.10) and Solar Generation are the two variables that are best

simulated, since as we have already mentioned, there is a periodicity. In Solar Gen it is

clearer, and for this reason we did not consider it necessary to do additional smoothing

and present it in our results. As for Total Load, there is a partial improvement on the

time series after the smoothing, however in the histograms we observe what we have

analyzed before, that is, a greater deviation between the distributions.

Therefore we conclude that the choice of additional data smoothing has the corre-

sponding price, which is the heterogeneity between the distributions of generated-original

data. If the user wants to have a more general good picture in his data, that is, to be

evenly distributed in relation to the originals, then he should avoid smoothing. On the

contrary, if the user is not particularly interested in the uniformly distributed data, but

wants to focus on more realistic time series, therefore the best hourly results, then addi-

tional smoothing will have a better performance.

At this point it should be mentioned that for time series curves, different results may

occur during their creation, as the time horizon of 1 week is randomly selected from the

total time horizon of the data set. Therefore the values of variables such as Lignite and

Wind, in which no periodicity is observed, may vary considerably between weeks, even

between days.
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(c) Fossil Gas Generation
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(d) Wind Generation
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Figure 4.6: Time-Series of Production and Consumption Data, HIST method
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Figure 4.7: Fossil Gas Generation. (a)(b) Raw Data, (c)(d) Smoothed Data,rolling=24,

(e)(f) Smoothed Data,rolling=12
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Figure 4.8: Fossil Gas Generation. (a)(b) Smoothed Data,rolling=6, (c)(d) Smoothed

Data,rolling=6,Pre-Smoothing
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Figure 4.9: Wind Generation. (a)(b) Raw Data, (c)(d) Smoothed Data,rolling=12, (e)(f)

Smoothed Data,rolling=12,Pre-Smoothing
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Figure 4.10: Total Load Consumption. (a)(b) Raw Data, (c)(d) Smoothed

Data,rolling=3, (e)(f) Smoothed Data,rolling=3,Pre-Smoothing
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4.2 Experimental Evaluation - EVs and Drivers Be-

havior Data

For the case of EVs and drivers behavior, where the generated data has undergone a

major transformation and therefore differs greatly in their format, we compare in terms

of the absolute difference between their relative frequencies-weights, depicted by bar-

plots. The results are presented in Table 4.2 and they are calculated from experiments

with 100 EVs in a time horizon of 1 year. StrictChecks refers to the Strict constraints

mode, LooserChecks to the Looser constraints, andMinChecks to the absolutely necessary

constraints mode.

As for the differences between the bar-plots of the original and generated data, at

first glance the overall performance of MinChecks mode is better than the other two

modes. However, by observing each variable/column individually, we realize that the

results intepretation is a bit more intricate. First, the column DailyCharges has the

largest difference between the original-generated data for the StrictChecks method and

the smallest for the MinChecks method. This is also illustrated in Fig. 4.11: in the

StrictChecks mode we have mainly 1 to 2 charges, in rare cases 3 and very rarely 4

charges, while for LooserChecks and MinChecks the number of total daily charges is

distributed similarly to the original data.

Table 4.2: Difference of Drivers Behavior Data Frequency Tables. Best performance

results indicated in bold.

Method DailyCharges ChargeStartHour Starting SoC Ending SoC DailyTrips TripStartHour Average

StrictChecks 0.419 0.057 0.079 0.231 0.821 0.345 0.325

LooserChecks 0.095 0.232 0.077 0.227 0.619 0.465 0.286

MinChecks 0.072 0.173 0.067 0.221 0.057 0.453 0.26

The specific results are meaningful, considering that in the StrictChecks mode, we

first visit a number of constraints regarding the number of charges. As mentioned in

Section 3.3.4, in order for the next charge to take place, the previous one must have

been completed at a certain time point during the day. Conversely, in the LooserChecks

mode, the only check that is done before attempting the next charge is that the previous

one has to be completed before 23:00 on the same day, while in MinChecks no check is

Charalampidis Georgios 62 Technical University of Crete



4.2 Experimental Evaluation - EVs and Drivers Behavior Data

performed. Consequently, the more constraints we apply wrt charges–i.e., the narrower

the time period during which a charge can be made–the fewer charges will be performed

daily. At the same time, however, the strict constraints of the first method give us better

control over the variables ChargeStartHour and TripStartHour and therefore optimize

the results for the respective columns, while all three modes have similar performance

with respect to the StartingSoC and the EndingSoC variables.
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Figure 4.11: Barplots of Drivers Behavior Frequency Tables
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Finally Figure 4.12 shows the total energy consumption during charging and trip

events of 100 EVs for a time horizon of 1 week, for each one of the 3 modes. Initially we

observe a phase difference between Charging and Trip Consumption, which makes sense,

as a vehicle can not charge its battery at a charging station and travel at the same time.

In addition, we notice that there are some energy losses. Considering that in our data

(both in the original and in the generated), the majority of drivers, fully charge their

EV battery at each charge (Figure 4.11(d)), then according to [47] if charging continues

beyond 80% of SoC, losses are almost double compared to the suggested SoC area (i.e.

20%–80%). Moreover, battery losses occur due to a number of additional factors. Namely,

the electrical power conversion from the AC supply to the DC Liion battery for which

losses can reach 5% for an AC power of 11 kW [48], wiring losses, several undesired

internal electrochemical reactions, an inadequate operation of the BMS and cell warming

due to internal resistance [49]. At this point we can not omit the regenerative braking

factor. Regenerative braking is a process where during the trip an amount of energy is

going into the battery and therefore we have partial energy recovery [50].
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Figure 4.12: Time-Series of EVs Consumption-Generated Data
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Trip-Related Data

The present work does not focus on the mobility part of the data, but inevitably, in

the context of generating data related to EVs we also export the relevant information.

However focusing on the charging part (which is why we provide 3 different constraint

modes) the data related to trip events is not so consistent. For example, due to the direct

dependence of daily trips with daily charges,1 the number of the former as well as the

start time of a trip, differ significantly between generated and original data.

In particular, the smaller the number of daily charges, the fewer daily trips will be

performed. Considering that in the generated data we mainly produce 1-2 daily charges,

sometimes 3 and fewer times 4, then, respectively, only 1 or 2 daily trips will be generated,

fewer times 3 and very rarely 4 or more. Due to this, the daily trips generated distribu-

tions that are quite different than the original one (see Table 4.2 and Figure 4.13(a)). In

Figure 4.13(b) we also observe large discrepancies, due to the aforementioned correlation

between charging and trip events. More information on this topic, as well as ideas for

future work are given in Chapter 5.
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Figure 4.13: Barplots of Drivers Behavior Frequency Tables related to Trips

1Recall that we first sample the charging events (e.g. number of daily charges), and then fill the trip

number and details, as inferred from the sampled charges.
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4.3 Discussion

Our results above show that in cases where we create a relatively large number of Pro-

duction and Consumption data using the KDE and Histogram sampling methods, the

overall picture of the generated data is very close to the original. However, when observ-

ing the time-series of specific variables, e.g. in the cases of Lignite and Wind generation,

that exhibit no periodicity, we see that the methods tested are less effective in produc-

ing similar time series patterns as the original data.1. In addition, we report that the

TimeGAN method, despite its positive evaluation in the literature [33] which was the

motivating factor for including it in our current implementation, generates time series

whose patterns are quite different than the ones in the original data for all generated

variable types.

We note that our dataset generator can be used for the verification of multiagent

systems and other G2V/V2G approaches. The heterogeneity of such models and related

environments implies dynamic changes and fluctuations in the various measurements

and exchanged values. Thus, to make sure that an experimental approach is robust and

resilient in various application sites, it is crucial to test it using a number of different

datasets, with varying, yet realistic behaviors, which is often very hard to obtain. Also,

datasets that have a different form with respect to their time series patterns, but follow

similar models, are also of interest, since they can be used to examine attack patterns

and mitigations, among other security issues. To the best of our knowledge, not much

related research exists, and we believe that the proposed dataset generator constitutes a

valuable tool for this domain of research too.

1Of course, it has to be noted that a perfect match is in many cases not desirable, due to privacy-

related concerns.
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Chapter 5

Conclusion and Future Work

The EVs sector has been evolving dramatically the last decade and the existance of

efficient algorithms that will be able to manage different EV activities is crucial. However,

the development and evaluation of such algorithms frequently depends on the availability

of large datasets. Such datasets, though, are usually either not large enough, or not

freely available. This thesis addresses a pressing problem and need in the Smart Grid,

via developing a dataset generator for EVs charging management. Our generator takes as

input several publicly available datasets which contain data that describe different energy

generation and demand types, as well as charging profiles of EVs and corresponding trip

and type information. It then fits Histograms, Kernel Density Estimates, Generative

Adversarial Networks, and Frequency Tables using the predifned data as training sets.

Finally, it generates new synthetic data, which is not identical to the input, but adheres

to the same principles, and relationships. The generator also accompanies the output

datasets with corresponding summarizations, useful for detecting consistency issues. Our

dataset generator will be made freely available for further evaluation and use by the

community.

In terms of future work, we aim to evaluate the application of additional data analysis

techniques for datasets that exhibit some periodicity in their values; and at the same time,

to explore ways to more accurately simulate data that does not appear to be periodic,

such as wind generation. Since in this thesis we focus on the charging and energy demand

aspects, there is still room for improvement with respect to trip and mobility related data

generation, towards more realistic and complete datasets. In this regard, our goal is to

integrate in the existing work positioning and trajectories data of EVs and to use variable
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speed (instead of the constant we use now) for our calculations. In addition, we could

balance the difference between trips-charging events, by giving the user the ability to

choose in which order the events will take place, i.e. the trip events first and then the

charging ones or vice versa. So the user will be able to focus on either energy or mobility

domain.

Additionally, as far as the web-based part is concerned, we aim to attach our project

to a server, so that it is easily accessible by anyone and can be used without having to be

downloaded. At the same time, by entering some personal information, such as an email

address, the user will be able to receive a link to download the desired datasets, as soon

as they are generated. There is also the possibility of improving some of the features

of the GUI, such as adding an interactive representation of the results.For example, the

generated plots could be displayed and also take advantage of mouse over events to display

the statistics directly, e.g. the differences between the distributions.

Furthermore, apart from its main function, our dataset generator could also serve as a

tool towards the verifiability of various multiagent systems, as explained in our discussion

in Section 4.3. Finally, we intend to extend our dataset generator to cover the V2G mode

of EV operation, which is crucial for the efficient integration of renewables into the Grid.
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A. DATA DECRIPTION TABLES

Table A.1: Energy Production and Consumption Data (CSV File Example)

Column Name Description Example

Date
The date in appropriate format

(yyyy-mm-dd)
2021-01-01

Year The year corresponding to each date 2021

Month of Year The month corresponding to each date 1

Day of Week

The number corresponding to

the day of the week

(1 to 7, Monday to Sunday)

5

Time of Day

The number corresponding to the

one-hour period of the day

(1-24, 1 is for 00:00 to 01:00 and so on)

5

Lignite Gen(MW)
Energy produced from

Fossil Brown coal/Lignite (in megawatts)
1798.0

FossilGas Gen(MW)
Energy produced from Fossil Gas

(in megawatts)
1944.0

Solar Gen(MW) Energy produced from Sun (in megawatts) 0

Wind Gen(MW) Energy produced from Wind (in megawatts) 246.0

Total Load(MW) Actual total Load (in megawatts) 5036.0

Import Export(MW)

The sum of the produced energy,

from all its sources, must be equal to

the total energy load.

This column lists the difference:

TotalLoad - (LigniteGen + FossilGasGen

+ SolarGen + WindGen).

If the sign is positive then it means that

energy / load is imported in micro grid

or regional levels. Otherwise,

energy-load is exported.

1048.0
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Table A.2: EV’s Technical Characteristics (CSV File Example)

Column Name Description Example

CarModel The model of each EV Nissan Leaf

BatteryCapacity

(kWh)

The battery capacity of the EV

(in kilowatt hours)
40.0

Maximum DC Charging Power

(kW)

The maximum charging capacity

of the EV, with direct current,

(in kilowatts).

Maximum charging capacity

cannot exceed this value,

even if the charging station

allows this.

50

MeanEnergyConsumption

(kWh/100km)

The mean energy consumption

(in kilowatt hours per 100 kilometers)
18.5

Category

Letters A, B or C.

EV models are separated into three categories,

dependingon their battery capacity.

Category A:17<= BatteryCapacity<40

Category B:40<= BatteryCapacity<70

Category C:BatteryCapacity >=70

2

Table A.3: Charger’s Specifications (CSV File Example)

Column Name Description Example

ChargerType
The type of the charger.

(Regular socket, Single phase or 3 phase)
Single Phase 32A

ChargerRating
Rating depending on charging speed

(Slow, Fast, Rapid)
Fast

AC DC
Type of charger depending on current type

(AC or DC)
AC

Rated Power(kW)

Rated power of the charger (in kilowatts)

TimeToCharge =

BatteryCapacity(kWh)/ Rated Power(kW)

7.4
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A. DATA DECRIPTION TABLES

Table A.4: EV’s Preprocessed Charging Data (CSV File Example)

Column Name Description Example

ParticipantID Driver’s ID as given from “My Electric Avenue” data GC10

BatteryChargeStartMonth The month of year that the charging event started (1-12) 2

BatteryChargeStartDay The date of month that the charging event started (1-31) 16

BatteryChargeStartHour The hour of the day that the charging event started (1-24) 18

BatteryChargeStopMonth The month of year that the charging event stopped (1-12) 2

BatteryChargeStopDay The date of month that the charging event stopped (1-31) 16

BatteryChargeStopHour The hour of the day that the charging event stopped (1-24) 19

ChargingTime(min) The total duration of the charging event (in minutes) 40.0

Starting SoC

The initial State of Charge of the battery,

i.e. when the car was connected to the charger.

(0 to 1, 0 corresponds to empty battery and 1 to full).

0.17

Ending SoC

The final State of Charge of the battery,

i.e. when the car was disconnected to the charger.

(0 to 1, 0 corresponds to empty battery and 1 to full).

0.92

SoC Diff

The difference: Ending SoC- Starting SoC,

essentially the specific value shows us what percentage

of the battery was charged during charging event.

0.75
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Table A.5: EV’s Preprocessed Trip Data (CSV File Example)

Column Name Description Example

ParticipantID Driver’s ID as given from “My Electric Avenue” data GC10

TripStartMonth The month of year that the trip event started (1-12) 11

TripStartDay The date of month that the trip event started (1-31) 6

TripStartHour The hour of the day that the trip event started (1-24) 10

TripStopMonth The month of year that the trip event stopped (1-12) 11

TripStopDay The date of month that the trip event stopped (1-31) 6

TripStopHour The hour of the day that the trip event stopped (1-24) 12

TripTime(min) The total duration of the trip event (in minutes) 4.0

TripDistance(m)
The distance (in meters) was covered

during the trip event
1177.0

PowerConsumption(Wh)
The power consumed by the EV

during the trip event (in Watthours)
366.0

Velocity(km/h)

The velocity of the vehicle during the trip

(in kilometers per hour) considering that

it ideally performs linear motion with

constant speed u=dx/dt.

Values are from 20 to 100.

18.0
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A. DATA DECRIPTION TABLES

Table A.6: Frequency Tables (CSV Files Example)

Type/Variable

(examples)

Column Names

Values Frequency Weights

Daily Charges

(1,30381,0.66...1)

The different values

that correspond

to the number of

the daily charges that

a driver can make.

(1 to 4).

The frequency of

occurrence of the

corresponding

variable,

i.e. how many times

it appears on the

original dataset.

The weight corresponds

to the respective value.

The weight is essentially

the same as the relative

frequency of the value.

The higher the weight,

the greater the

probability that the

specific value

will appear in the

produced dataset

and vice versa.

Charge Start Hour

(17,6903,0.09...5)

The different values

that correspond

to the start time

of a charging event.

(1 to 24).

Starting SoC

(0.58,9149,0.12...4)

The different values

that correspond

to the initial

State of Charge

of the battery

(0 to 1).

Ending SoC

(1.0,50720,0.66...5)

The different values

that correspond

to the final

State of Charge

of the battery (0 to 1).

Trip Velocity

(30,50780,0.16...7)

The different values

that correspond

to the velocity of the

vehicle during a trip event

(20 to 100, and

rounded every 5 km/h).
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Table A.7: Behavior Data of a given Driver in all 3 different Status Modes (CSV File

Example)

Column Name Description Example 1 Example 2 Example 3

Date The respective date 2021-01-01 2021-01-01 2021-01-01

DriverID
The driver’s ID, in form “DRx”, where

x is 1 for the 1st driver, 2 for the 2nd and so on.
DR1 DR1 DR1

Year The year corresponds to each date 2021 2021 2021

Month of Year The month corresponds to each date 1 1 1

Day of Week
The number corresponds to the day of the week

(1 to 7, Monday to Sunday)
5 5 5

Time of Day

The number corresponds to the one-hour

period of the day

(1-24, 1 is for 00:00 to 01:00 and so on)

1 1 1

EV Model The model of each EV Jaguar I-Pace Jaguar I-Pace Jaguar I-Pace

Battery Capacity(kWh) The battery capacity of the EV (in kilowatt hours) 90.0 90.0 90.0

Category

Letters A, B or C.

EV models are separated into three categories,

dependingon their battery capacity.

Category A:17<= BatteryCapacity<40

Category B:40<= BatteryCapacity<70

Category C:BatteryCapacity >=70

3 3 3

Mean Energy Consumption(kWh/100km)
The mean energy consumption

(in kilowatt hours per 100 kilometers)
21.2 21.2 21.2

Max DC Power(kW)

The maximum charging capacity of the EV,

with direct current, (in kilowatts).

Maximum charging capacity cannot exceed

this value, even if the charging station allows this.

100 100 100

Status

Values 0 to 2,

0: inactivity state

1: charging event happens

2: trip event happens

0 1 2

Starting SoC

The initial State of Charge of the battery

when the one hour interval begins

(0 to 1, 0 corresponds to empty battery and 1 to full).

N/A 0.67 1.0

Ending SoC

The final State of Charge of the battery

when the one hour interval ends

(0 to 1, 0 corresponds to empty battery and 1 to full).

N/A 1.0 0.95

Charger Type

The type of the charger.

(Regular socket, Single phase or 3 phase,

AC or DC)

N/A 3 phase-DC N/A

Charger Power(kW)

Rated power of the charger (in kilowatts)

TimeToCharge =

BatteryCapacity(kWh)/ Rated Power(kW)

N/A 120.0 N/A

Charging Time(mins)
The total duration of the charging event

(in minutes)
N/A 18 N/A

Consumption Charging(kW)

The energy consumed by the EV

(in kilowatts) during the corresponding

charging period, i.e. on each row

N/A 36.0 N/A

Trip Time(mins)

The duration of the trip event

(in minutes) which corresponds to

the interval of each one hour, i.e. on each row.

N/A N/A 60

Trip Distance(km)

The distance covered by the EV

(in kilometers) which corresponds

to the interval of each one hour, i.e. on each row.

N/A N/A 40

Trip Consumption(kwh)

The power consumed by the EV,

corresponds to the interval of

each one hour, i.e. on each row.

N/A N/A 8.48
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