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Abstract

The rising use of multi-tenant FPGAs for cloud computing has created security concerns.
Previous works have shown that malicious users can implement remotely, i.e., without
physical access, voltage fluctuation sensors and mount successful power analysis attacks
against cryptographic algorithms that share the same Power Distribution Network (PDN).

So far, masking and hiding schemes are the two main mitigation strategies against
such attacks. One such work has shown that the use of an Active Fence of Ring Oscillators,
with has a similar impact on the PDN as the cryptographic algorithm, if placed between two
adversary users, can be an effective hiding countermeasure. Although this countermeasure
is presented as platform independent, more recent platforms show different results against
remote Side-Channel Attacks (SCAs).

This work presents the mapping of an intra-FPGA adversary scenario on two
platforms, a ZedBoard and a Xilinx UltraScale+ MPSoC to assess the effectiveness of the Ring
Oscillator Active Fence countermeasure. We compare different Active Fence configurations,
with a varying number of Ring Oscillators, while using a new, resource efficient, activation
method aiming to achieve noise injection hiding. The results show that by using our proposed
Active Fence, which exhibits lower area overhead and, subsequently, lower power
consumption than the algorithm under attack, the side-channel leakage is reduced to such a
degree that the number of traces that need to be collected for a successful attack is more
than ten times higher compared to no fence present. Moreover, this work presents
guantitative results that FPGA cloud providers, may use to assess the benefits gained
through the deployment of Active Fence mechanisms within their platforms prior to offering

multi-tenant services.



Hepiinym

H avepyOUevn Xpron CUCTNUATWY avadlaTOOOOUEVNG AOYIKAG amo TOAAQTTAOUG

Xpnoteg o meplBarlovta nou Bpiokovtal oto VEDOG, EXEL eyeipel TPOBANUATIOUOUC OXETIKA
HE TNV acdAlela Twv xpnotwv. MNponyoUpeveg UEAETEC €xouv Oelel mwe kakoBoulol
XPNOTEG UIMOPOUV VoL UAOTIOLOOUV QMOMOKPUOUEVA, SnAadn xwplg ¢uoikn mpooBaon,
awodNTAPEC Katavalwong €VEPYELAC KOl VA  TIPOYUOTOTOW)O0UV €MIOECEL  KOTA
Kpunmtoypadkwyv aAyopiBuwv Tou PBpilokovtar oto (6o  Siktuo tpododooiag.

MéxplL Twpa, TeXVIKEG masking kal hiding, amoteAolv TiG Suo BACLKEG KATnyopleg
OVTLLETWITLONG TETOLWV eTIBETEWV. Mo avtioTolyn UEAETN AmMOSEIKVUEL WG EVAG EVEPYOC
dpaxTNG amod KUKAKOUC TOAQVIWTEG, O ONMOLOG €XEL AVIiOTOLXO avTtiktumo oto &iktuo
Tpododooiag pe Tov Kpumrtoypadlkd alyoplBuo Kal tomobeteital PeTaty Twv 2 xpnotwy,
OTOTEAEL ATMOTEAECUATIKO QVTIHETPO KOTA TWV QTOUOKPUOUEVWY KAKOBOUAWV EMIOECEWV.

H ouykekpLUEVN epyacio mMapouoLAleL TNV TPOCOUOLWaN EVOG Oevapiou KaKOBOUANG
eniBeong, oe V0 MAATPOPEC, YO TNV EKTIUNON TNG QMOTEAECUOTIKOTNTOC TOU EVEPYOU
dpaxtn amod KUKALKOUG TAAQVIWTEG WG AVTIUETPO. JuyKpivoupe SLaPOPETIKEC UAOTIOLOELG
TOU evepyoU ¢paxtn, HE SLAPOPETIKO aplOUO amd KUKALKOUC TAAQVTIWTEG, EVW MOPAAANAa
XPNOLLOTIOLELTOL £VOG VEOG TPOTIOC EAEYXOU TOU GPAXTN ME UIKPO aplOUO MOPpWYV, E OKOTIO
™V anokpuyPn HEow TG Eloaywyng BopuPou oto cvotnua. Ta anoteAéopata Seixvouv OTL
LLE TN XPrON TOU TIPOTELVOEVOU eVEPYOU GPAXTN, O OTOLOG KOTAVAAWVEL ULKPOTEPO apLOUO
MOPWV Kal emakolouBa YopnAotepn Katavalwon Eevépyelag Oomo Tov UMO emibeon
oAyoplBuo, n bdlappony debopévwy pelwveTal o TETolo Babud wote o aplBuog twv
HUETPAOEWV TIOU TIPEMEL va GUAAEXB0UV yla pla erttuxnuévn enibeon eival mavw amnd deka
dopéc vPnAOTEPN O OoUYKPLON LE TNV amouacia tou gvepyol dpaxtn. EmumAéov, auth n
epyacio mapouolalel TOCOTIKA ATTOTEAECHATA TTOU OL TIAPOXOL UTINPECLWV VEDOUG e FPGAS
UITopOoUV va XpNOLUOTIOL ooV yLa va afloAoyrioouV Ta opEAN o amokopilovtal HEow TNG
XPNongG evepywv $ppaxtwyv otig MAATHOPHUES TOUG TIPLV OO TNV Pocdopd UTINPECLWV OF

mtoAAamAoUG XprOTEC.
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Chapter 1: Introduction

1.1 Background

Field Programmable Gate Arrays (FPGAs) are able to provide high computing efficiency
and flexibility as they combine the benefits of hardware compute engines with the
reprogrammability offered by their self-reconfiguration capabilities. They are widely
deployed as accelerator engines for numerous applications, from embedded to High-
Performance Computing (HPC) and cloud systems, with vendors offering multiple System-
on-Chip (SoC) solutions and cloud service providers such as Amazon AWS [1] providing
compute instances with one or more FPGA devices.

The deployment of FPGAs in cloud services has significantly broadened their reach
and FPGA-accelerated applications have been gaining sizable traction in the research,
educational and commercial domains [2],[3],[4]. Nevertheless, this trend began facing an
obstacle that needs to be surmounted such that the full potential of this type of technology
can be taken advantage of.

Hardware accelerated functions often consume no more but a fraction of the
available reconfigurable resources of modern FPGA devices. Cloud providers do not have the
flexibility to provide numerous alternate FPGA devices to match each potential use-case and,
therefore, for cost efficiency reasons, they tend to offer large devices that are able to
accommodate the most demanding implementations. As such, more often than not, FPGA
devices are significantly underutilised and shared in a highly inefficient way among different
users.

It becomes, therefore, apparent that a solution to this problem is to share the
reconfigurable resources between different applications and/or users, thereby, increasing
utilisation and cost efficiency. In other words, the goal is to have multiple users cohabiting
in the same compute instance, which, consequently, leads to a multi-tenancy scenario for
cloud FPGA devices. Unfortunately, security concerns are raised as Side-Channel Attacks
(SCAs) are known to be feasible when multiple circuits are implemented on the same fabric
[5]. That is, neighbouring, albeit independent designs, can be exposed to a number of
different attacks which pose significant risks [6],[7],[8]. The type of attack that our work
focuses on, is the power side-channel attack, one of the most popular methods for

implementing SCAs.



1.2 Thesis contributions

In that context, various countermeasures have been proposed, such as logical
isolation [9], masking techniques [10], [11] and hiding techniques [12]. The work presented
in this thesis emulates a 2-tenant FPGA adversary scenario between a malicious user
implementing a power sensor against a 128-bit AES hardware module. It evaluates the use
of different Active Fence configurations, originally introduced by Krautter et al. [12], as an
algorithm-independent hiding countermeasure against remote power SCAs. In addition, a
new Active Fence control method that uses a small number of resources is proposed. The
design and its configurations, are implemented and compared between two platforms. The
AVNET ZedBoard™ equipped with the Xilinx Zynq®-7000 processor and 7-Series
programmable logic and the Xilinx Zynq UltraScale+ MPSoC ZCU104 equipped with a quad-
core ARM® Cortex™-A5 and Xilinx UltraScale+ programmable logic, the most commonly used

programmable logic by cloud providers.

1.3 Thesis structure
The remainder of this work is organized as follows:

e Chapter 2: Related Work

e Chapter 3: Platforms and Tools

e Chapter 4: System’s Architecture

e Chapter 5: Experimental Procedure

e Chapter 6: Results and Evaluation

e Chapter 7: Conclusions and Future Work
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Chapter 2: Related Work

2.1 Multi-Tenant Attack Model

FPGA-based side-channel attacks have been conducted under three

different scenarios:

1)

2)

3)

Inter-Chip Attack: The Inter-Chip Side-channel proves that an untrusted chip inside a PCB
can sense voltage variations induced by other chips through the power distribution
network (PDN). In this exploit, an adversary FPGA is able to perform a CPA attack against
an AES module and a SPA attack against an RSA module running on another FPGA fabric.
Heterogeneous Chip Attack: Xilinx Zynq technology integrates a dual core ARM processor
and a FPGA fabric within the same SoC. In [8], malicious ROs were implemented in the
FPGA fabric to perform a SPA against an RSA algorithm running on a Linux OS inside the
ARM CPU core.

The main attack model that must be examined in a cloud multi-tenant FPGA scenario is
the Intra-FPGA Attack, where the FPGA fabric is shared among two or more users for
hardware module implementation [8], [13], [14]. Each user can program an arbitrary
design in a partial region of the fabric. Nevertheless, despite the fact that empty slices
and lines of empty DSP blocks [15] ensure logical isolation between the different users
and designs, a malicious user can implement voltage sensors in his part of the FPGA fabric

to remotely monitor voltage fluctuations induced by surrounding computation modules.

FPGA FABRIC

User 1

Plaintext

Cryptographic Module

(AESIRSA) Cyphertext

Logical Isolation (empty DSPs)

User 2

Malicious Sensor

(TDC/RO)

>
Voltage
Measurements

Figure 2.1.i: Adversary Model Block Diagram

2.2 Power Distribution Network

PDNs deliver power from a main power source to the individual transistors inside an

electronic chip ([16], [17]) and, therefore, are commonly found within FPGAs and MPSoC

Related Work



chip packages. They are crucial components as they ensure that voltage is properly
distributed among different parts of the chip so that transition delay remains as stable as
possible. If the delay surpasses a certain limit, timing violations and errors may occur. As
such, the power supply level must be as stable as possible. Moreover, some components of
the chip and the PDN act as parasitic transistors and inductors [16]. Consequently, they have
an impact on the circuit's switching activity because they generate inductive and resistive
voltage drops. It becomes, therefore, possible to extract information from implemented
designs simply by monitoring the switching activity on the chip, through the implementation

of appropriate voltage sensors. [18]

2.3 Electrical Level Attacks
Side-channel attacks are closely related to the existence of physically observable

phenomenons caused by the execution of computing tasks in present microelectronic
devices. For example, microprocessors consume time and power to perform
their assigned tasks. They also radiate an electromagnetic field, dissipate heat,
and even make some noise. There are plenty of information sources leaking from actual
computers that can consequently be exploited by malicious adversaries.

Power analysis is a branch of side channel attacks where power consumption data is
used as the side channel to attack the system. In electronic devices, the instantaneous power
consumption is dependent on the data that is being processed in the device as well as the
operation performed by that device. By capturing power consumption of a cryptographic
alogrithm, the attacker can perform a statistical evaluation to test which key hypothesis
results in intermediate values that indeed correspond to the observed power consumption.
For Correlation Power Analysis (CPA), the correct key candidate will show the highest
correlation when the attack is successful. Because the side-channel leakage is usually very
small, many traces have to be recorded and evaluated. Thus, side-channel resilience is
usually measured in the number of traces required for a successful attack.

Such attacks are widely studied and typically require physical access to the device to
capture the power consumption, i.e., to connect the probe of an oscilloscope or to place an
EM probe in the near vicinity of the device. Yet, recent work has shown remote attacks on
multi-tenant FPGAs that break with this assumption, i.e., without any physical access to the
device. Using the on-chip power distribution network as source or carrier of side-channel
information, user programmable FPGA primitives can be utilized in order to implement
an on-chip voltage sensor.

A circuit’s activity will result in voltage fluctuations across the PDN, independent of

any logical connection. Given that, the propagation delay of a circuit depends on the supply
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voltage, capturing the activity of a circuit becomes the task of measuring the speed of the

circuit.

2.4 Remote Power Side-Channel Attack Sensors
Remote power side-channel attacks, namely the instigation of an attack from afar and

with no physical access to the device, exploit voltage fluctuations on the power distribution
network of the chip by implementing reconfigurable logic sensors on the fabric. These
sensors are capable of capturing nanosecond voltage fluctuations [19] and, therefore, make
it possible for malicious users to extract sensitive data from algorithms, such as the key of a
cryptographic hardware module, even without any physical access to the chip [20], [8], [14].

Commonly, there exist two main types of voltage sensors for mounting remote
power side-channel attacks. The Ring Oscillator (RO) based delay sensor and the taped delay-

line or Time-to-Digital Converter (TDC) sensor.

2.4.1 Ring Oscillator Sensors
RO sensors consist of a NAND gate, which uses as inputs an external enable signal

and the output of the gate itself. When enabled, it creates an infinite oscillation and its
propagation delay changes along with voltage variations, effectively changing its oscillation
frequency. Therefore, measuring the frequency variations of the RO with digital counters,

provides information on the power consumption [13].

2.4.2 Time-to-Digital Converter Sensors
On the other hand, TDC-based sensors work by checking how far a signal can

propagate through a path by adding latches between the logic elements of that path. The
simplest path is a chain of buffers. As the delays of these buffers are sensitive to any joint
process, voltage, and temperature (PVT) variations, they will become measurable by reading
the latches. To do that, a signal is connected to both the input of the first buffer and the latch
enable signals, which means that the signal on the wire will be faster than the same signal
delayed through the buffer elements. A readily available and precisely timed signal is the
clock signal itself. At half of the clock period, the latches will become disabled and keep the
state how far the clock propagated through the buffer chain, which can then be processed

further.

Related Work
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Figure 2.4.i : Initial Delay Line of TDC and Timing Diagram

The initial delay needs to be adjusted for less than a half of the clock period (the time
when latches are enabled). Then, latches are connected between the last buffer elements,
marked as the observable delay line, that fall within the expected delay variation that we
want to observe with the sensor. This limited operating range is chosen based on the

acceptable area overhead and expected operating range values.

Related Work
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Figure 2.4.ii: Three Scenarios of TDC Output

Comparably, the circuitry required by RO sensors is less complex and they, therefore,
require lower FPGA fabric resources to be implemented. Nevertheless, they offer less
accuracy, since the use of counters for measuring oscillation frequency does not allow for
nanosecond scale sampling. In addition, they are easy to detect and flag as malicious designs,
hence, not that much preferable as an attack mechanism. In contrast, TDC sensors enable
nanosecond scale measurement of the FPGA's internal voltage fluctuations and can be used
as thermal sensors. Also, it is difficult for design tools to block their implementation. Thus,

TDCs constitute a far more attractive implementation for power SCAs.

Related Work
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Figure 2.4.iii: RemoteRemote Power Side-Channel Attack Sensors

2.5 Advanced Encryption Standard Algorithm (AES)
The Advanced Encryption Standard is a symmetric block cipher that process data

blocks using cipher keys with lengths of 128, 192 and 256 bits [16]. Each data block consists
of 4x4 array of bytes called the state. The AES is a round-based encryption algorithm. The
number of rounds, Nr, is 10, 12, or 14, when the key length is 128, 192 or 256 bits,
respectively. In the encryption of the AES algorithm, each round, except the final round,
performs four transformations: AddRoundKey, SubBytes, ShiftRows and MixColumns, while
the final round does not have the MixColumns transformation. The key used in each round,
called the round key, is generated from the initial key by a separate key scheduling module.

The SubBytes transformation is a non-linear byte substitution, operating on bytes
independently. The SubBytes is invertible and is constructed by the composition of the
following two transformations:

e Inversion in the GF(28) field, modulo an irreducible polynomial m(x) given by:

m(x) =x8+x4+x3+x+1 (1)

e Affine transformation defined as follows: Y = AX-1 + b, where A is a 8x8 fixed matrix

and b is a 8x1 vector-matrix.



The ShiftRows transformation is a circular shifting operation on the rows of the state
with different numbers of bytes. As seen in below, the first row of the state is kept as it is,
while the second, third and fourth rows cyclically shifted by one byte, two bytes and three

bytes to the left, respectively.

S0 S4 Sg S12 So S4 Sg S12

51 S5 S9 513 | shiftRows | S5 S9 S13 51

7

S2 S S10 S14 S10 S14 52 56

S3 S7 S11 Si5 | S15 53 S7 S11 |

The MixColumns transformation operates on the state column by column, treating
each column as a four-term polynomial. The columns are considered as polynomials over
GF(28) and multiplied x* + 1 with a fixed polynomial a(x) given by:

A(x) = {03p3+ {01}x%+ {01}x + {02}

In matrix form, the MixColumns transformation can be expressed as:

s'. | [02 03 01 01] s,
s'. | |01 02 03 01 s,
s'. | 1ol 01 02 03]s,
s, | |03 01 01 02]s,,

The AddRoundKey is a XOR operation that adds a round key to the state in each
iteration, where the round keys are generated during the Key Expansion phase.

The AES algorithm takes the cipher key and performs a Key Expansion routine to
generate a key schedule. The Key Expansion generates a total Nb(Nr + 1) words, where
Nb = 4.
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Figure 2.5.i: AES Block Diagram
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2.6 Corelation Power Analysis
The hypothesis of the correlation power analysis (CPA) is that the measured power

traces of the target device are correlated to the operands and operations being processed
at that time. This type of power analysis technique requires a power model to attack a
cryptographic device. The adversary needs to build a hypothetical model of the
cryptographic device under attack. He can recover secret data by analysing the power
consumption usage during cryptographic operations. An efficient way to calculate the
correlation coefficient, between theoretical predictions of the power consumption and real
power measurements is to use the Pearson correlation function.

The Pearson correlation function is the most widely used way to compute the linear
relationship between data. Whence, it is an excellent choice for statistical analysis tool when
it comes to perform CPA attacks.

Given N plaintexts/ciphertexts, P the predicted power calculated by a power model and W
the equivalent real power traces measured when processing the cryptographic operation.
The correlation coefficient is defined as:

Cov(W, P)
JVar(W) /Var(P)

p(W,P) =

where W and P, are N-dimension vectors, Cov denotes the covariance operation, and Var
denotes the variance operation.

The Pearson correlation coefficient can take values from -1 to +1. A value of +1 shows
that the W and P are perfectly linear related by an increasing relationship, a value of -1 shows
that W and P are perfectly linear related by a decreasing relationship, and a value of 0 shows

that W and P are not linear related by each other.

2.6.1 Attack Methodology
The AES transforms 128-bit plaintext with the 128-bit key to 128-bit ciphertext. Each

round has a round key: ki to kig, computed from the original key kO. The attack is performed
on the last round encryption because the latter has been isolated from the other rounds and
has relatively clear power signals [14]. Since the AES Key Expansion is invertible, it is then
possible to compute the initial secret key, ko, going backwards.

Then the power consumption of the last round encryption is predicted. Let Cio the
output ciphertext of the last round and Diothe input data to this round. The ciphertext Cio is
picked up to compute D1g by Inverse-ShiftRows and Inverse-SubBytes using the guessed keys
K10 (256 possible values).

D,y = SubBytes ™' (ShiftRows™*(Kyo(guess) XOR C10))



After that, the prediction of power consumption of the last round is calculated by the
Switching Distance (SD) between Ci0 and D1 as presented below.

Pprediacted =SD (D10' C10)

The Switching Distance model (SD) is based on the fact that 0>1 and 1->0 transitions
consume different power in CMOS device. The Switching Distance of the transition 0->1 is
assigned 1, the Switching Distance of the transition 10 is assigned @ which is named
Switching Distance factor.

The correlation coefficient between the measured power consumption, denoted
Pmeasured, and the predicted power consumption Ppredicted is calculated as follows:

Cov (Pmeasured' Ppredicted)

\/VQr(Pmeasured)\/Var(Ppredicted)
where CoV(Pmeasured,Ppredicted) is the covariance between the measured power consumption

p(Pmeasured' Ppredicted) =

and the predicted power consumption, the Var(Pmeasured) and Var(Ppredicted) are the variance
of the Pmeasured and the Ppredicted respectively.

The correlation coefficient measures the linear relationship between Pmeasured and
Pporedicted- Its value will always be between -1 to 1, when the correct key guess appears, the

correlation coefficient is supposed to be highest.

Input Round 10 (Do)

3 v

= SubBytes

!

E < ShiftRows

= Subkey
guessed

Ciphertext (Cyo)

Figure 2.6.i: AES Last Round



2.7 Defence Mechanisms Against SCAs
A number of countermeasures against power SCAs exist and can be considered in the

context of multi-tenant cloud FPGAs. One such countermeasure is to perform checks on the
user bitstreams, prior to programming the FPGA resources [21]. Checks can be performed
for known malicious designs, such as voltage sensors, and upon detection the
reconfiguration of the device can be blocked. One such instance, involves blocking designs
that contain ROs, however, there are implementations of sensors that can bypass those
checks and therefore the detection mechanisms must be updated frequently and the
platform provider must be aware that it may not be possible to capture every possible
malicious design.

Moving at the device level, a common countermeasure is the logical isolation
between the different design instances. Empty slices surrounding each design, create an
isolation barrier between them, known as a Passive Fence, aiming at preventing
neighbouring designs from sharing device components as a result of their proximity at the
physical level. Although this has been a documented design practice for improving security
in FPGAs, these Passive Fences have proven to be entirely ineffective against attacks at the
electrical level [9], [15], [22], [13]. Connections remain through the power distribution
network and, therefore, side-channel attacks may be performed no matter the size or
properties of the Passive Fence(s). Consequently, alternative countermeasures against
power side-channel attacks need to be considered, making them one of the main topics of
ongoing research on FPGA security. Presently there are two types of such countermeasures,

i.e., Masking and Hiding.
2.7.1.1 Masking

It applies algorithmic-level changes that focus on separating intermediate values and
computations into different design module instances [10]. This way, the sensitive data can
only be extracted by combining the values computed by each individual module. This
method amplifies the noise exponentially, making attacks harder to mount, [23] and [24].
However, it comes with significant disadvantages. Each algorithm must be examined
individually and a different implementation has to be devised. Furthermore, in numerous
cases, e.g., non-linear functions, it may be impossible to divide up the computation
effectively into individual parts. Lastly, this method creates an excessive area overhead and

increases the complexity as well as the cost of the design[25].



2.7.1.2 Hiding
The main goal of hiding is to reduce the Signal-to-Noise Ratio (SNR) at the electrical

level and it follows two approaches. The first is based on the introduction of noise sources,
aiming at artificially increasing the level of noise. Noise generators have been implemented
in the past using, for instance, shift registers, BRAM write collision, and short-term short
circuits[11]. The second approach involves the generation of correlated noise and clock
randomisation to spread side-channel information. This second direction aims at equalising
the instantaneous power consumption by balancing the overall consumption. However, as
perfectly balanced computation paths are hard to achieve, a proposed design practice to
accomplish them is to duplicate and invert the computations in the victim design, as
proposed in [26] for a cryptographic module. The drawback of this practice is that it results
in a large area overhead rendering it impossible to be used with architectures that need
many resources. Hence, what has been considered as a solution to the cost of significant

fabric resources when aiming for power equalisation, is the use of ROs.

2.7.1.3 Active Fence Countermeasure
As an attack mechanism, RO are used to detect voltage fluctuations on the PDN of a

chip, nevertheless, they can also be used for defence purposes by increasing the overall
power consumption. Thus far, the only work on the use of ROs as a defence mechanism
against remote power side-channel attacks is the RO Active Fence presented in [12]. Its
presence can affect the voltage fluctuations and induce additional noise to what is being
observed by a sensor implemented by a malicious co-tenant. Finally, by introducing an Active
Fence between the different users, a two to three orders of magnitude leakage reduction is
observed.

The activation and deactivation of the ROs is controlled and when they are enabled,
they have a high switching activity, which leads to additional power consumption. Thus, at
the expense of a relatively small area overhead, it is possible to efficiently inject a high
voltage drop into the power grid, which equalises the PDN's voltage fluctuations, i.e., the
indirect information leakage from the victim or target module. In the original scheme of [12],
the fence size, in terms of hardware resources, is the same as those of the target module
and its activation is controlled using either a TDC or a random generator. Nevertheless, these
two approaches raise a number of issues.

First, an activation mechanism based on a TDC may be superfluous, which means that

a simpler but equally effective design can be used for the same job. In addition, an activation
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mechanism based on a random generator may be wasteful in terms of resources and power
consumption as well as the fact that, by the authors' own admission, it is a worse solution
when compared to the TDC activation method. Finally, the extent to which the fence size
affects the outcome of the attack, has to be researched further. It may be possible for fences
of less area overhead, compared to the one of the modules under attack, to remain effective

and discourage potential attacks.

FPGA FABRIC

User 1

Plaintext

Cryptographic Module

(AESI RSA) Cyphertext

Ring-Oscillator Active Fence

Logical Isolation (empty DSPs)

User 2

Malicious Sensor
(TDC/RO) ™ Voitage

Measurements

Figure 2.7.i: Adversary Model With Active Fence Block Diagram
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Chapter 3: Platforms and Tools

3.1 Platforms
The two main platforms that were used to emulate and implement the adversary

scenario are the following:

3.1.1 ZedBoard™
The ZedBoard™ [27], is a low-cost development board for the Xilinx Zyng®-7000 All

Programmable SoC. The Zynq®-7000 family is based on the Xilinx SoC architecture. ZedBoard
integrates a feature-rich dual-core ARM® Cortex™-A9 based processing system (PS) and 28
nm Xilinx programmable logic (PL) in a single device. The ARM Cortex-A9 CPU is the heart of
the PS and also includes on-chip memory, external memory interfaces, and a rich set of
peripheral connectivity interfaces. Zedboard is supported by the zedboard.org community
website where users can collaborate with other engineers also working on Zynq designs. The
ZedBoard is supported by Xilinx's Vivado Design Suite, including the free WebPACK version.

Some of its core features include :

Figure 3.1.i: ZedBoard Platform

Platforms and Tools
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Figure 3.1.ii: ZedBoard Block Diagram

3.1.2 ZYNQ UltraScale+ MPSoC ZCU104
The ZCU104 [28], provides a rapid prototyping platform using the XCZU7EV-

2FFVC1156 device. The ZU7EV contains PS hard block peripherals exposed through the multi-
use 1/0 (MIO) interface and several FPGA programmable logic (PL), high-density (HD), and
high-performance (HP) banks. The ZU7EV device integrates a quad core Arm® Cortex™-A53
processing system (PS) and a dual-core Arm Cortex-R5 real-time processor, which provides
application developers an unprecedented level of heterogeneous multiprocessing. The
ZCU104 evaluation board provides a flexible prototyping platform with high-speed DDR4
memory interfaces, multi-gigabit per second serial transceivers, a variety of peripheral

interfaces, and FPGA fabric for customized designs.

Platforms and Tools
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Figure 3.1.iii: ZCU104 Platform
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Figure 3.1.iv: ZYNQ UltraScale+ MPSoC ZCU104 Block Diagram

Platforms and Tools

[ 18



3.2 Basic Tools
The tools that were used for the implementation of the design, the bitstream

generation, the Bare Metal application are the following.

3.2.1 Xilinx Vivado Design Suite 2020.2
The Xilinx® Vivado® Design Suite enables implementation of the following Xilinx

device architectures: Versal™ adaptive compute acceleration platform (ACAP), UltraScale™,
UltraScale+™, and Xilinx 7 series FPGA. A variety of design sources are supported, including:
e RTL designs

* Netlist designs

e |P-centric design flows

shows the Vivado tools flow.
Vivado implementation includes all steps necessary to place and route the netlist onto device

resources, within the logical, physical, and timing constraints of the design.

. IP Integration
High-Level DSP Design (System . Custom IP
C Sources  — Synthesis ™ Generator) > (Embe[?sd;dJ)Logm, nil
----------------------- IP Packaging
Y Y Y
J ! IP Catalog
Sources-RTL,
Metlist, — RTL System-Level Integration
Constraints
i Third-Party IP
Synthesis Design Analysis
Constraints
Implementation Simulation
Debugging
- Cross Probing
Programming ECO

and Debug

Figure 3.2.i: Vivado Desing Suite High-Level Design Flow

3.2.2 Xilinx Vitis Unified Software Platform Documentation
For FPGA-based acceleration, the Vitis™ core development kit lets you build a

software application using an API, to run hardware (HW) kernels on accelerator cards. The
Vitis core development kit also supports running the software application on an embedded
processor platform running Linux, such as on Zynq UltraScale+ MPSoC devices. For the

embedded processor platform, the Vitis core development kit execution model also uses the
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OpenCL APl and the Linux-based Xilinx Runtime (XRT) to schedule the HW kernels and control
data movement.

The Vitis software platform allows you to migrate data center applications to
embedded platforms. The Vitis core development kit includes the v++ compiler for the
hardware kernel on all platforms, the g++ compiler for compiling the application to run on
an x86 host, and an Arm® compiler for cross-compiling the application to run on the
embedded processor of a Xilinx device.

Source Code

C/C++ with Host FPGA RTL or C/C++
OpenCL API Application Kernels

Build Target
: Selection
Compile Compile
CcPU . . FPGA
Build Steps . . Build Steps
Link Link
Host Application b4 FPGA
Executable Q Binary
(.exe) (.xclbin)

Figure 3.2.ii: Xilinx Vitis Software/Hardware Build Process

3.3 SCAbox UI: Vitis Bare-Metal App and Python Corelation Analysis App
To control the design and emulate the adversary scenario we modified and used the

open-source code of the SCABoxApp. It consists of 2 main parts, the C code for the Bare-
Metal application that runs on the platforms’ processing systems and a Python application
that communicates with the design through serial connection and conducts the Corelation

Power Analysis attack.

3.3.1 Vitis Bare-Metal Application
The Vitis Bare-Metal App runs on the processing systems of the boards. Its main

purpose is to enable and control the UART communication between the user and the design.

Through serial connection the user can send instructions to the PS and receive the outputs.

Platforms and Tools
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The hardware part that enables the communication of the PS with the rest of the design is
the AXI protocol and the relevant implemented modules in the design.

The user can run a single AES encryption by entering a 128-bit text and a 128-bit key
in hexadecimal format, or run multiple AES encryptions with random texts and a certain key
and receive the ciphertext(s). While the AES encryption are occurring, the memory is enabled
and stores sensor measurements. The number of measurements in each iteration can also
be configured in the instructions.

The user can also enter instructions to get sensor values at any time, or read the FIFO

data that are being displayed in a binary format.
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- Uuantizations

Type man to display information about built-in commands
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Figure 3.3.i: SCABox Starting Screen
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Figure 3.3.ii: SCABox TDC Senor Value Instruction
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Figure 3.3.iii: SCABox Read FIFO Instruction



JdevjttyUSB1 - PUTTY

Figure 3.3.iv: SCABox Multiple AES Encryptions Instruction

3.3.2 Python Corelation Analysis Application
After the implementation of the design, the bitstream generation and the

programming of the boards with the bare-metal application, the remaining part to complete
a side-channel attack is to collect the required data so that the Corelation Power Analysis
attack can be performed.

The Python application of the SCAboxApp runs on any computer connected to the
board’s UART connector via USB. It uses the instructions mentioned in Section 3.3.1 to run
multiple AES iterations in chunks and gather sensor measurements. After each chunk has
concluded, it performs a Corelation Power Analysis attack on the last cycle of each AES
iteration as shown in Section 2.5 using the sensor’s data and the outputted ciphertext. The
key used to perform the attack is known, so we can observe when we have gathered
sufficient amount of data for the attack to be successful.

The application has a graphic interface that displays plots of the Corelation Analysis.
To conduct an attack, the user defines the number of AES iterations (n), the number of

chunks(c) and the target of the attack. n*c gives us the total number of iterations that will



be runin a single attack. The target of the attack can either be the USB port of the board that

runs the design or a directory with stored binary files of previous attacks. Filtering can be

also applied on the acquired data, but is not necessary for the attack to be successful.

coms - COM23 - 2103514871408

#/€|3| +lalz

T G TR RO S [ top [ R

Figure 3.3.v: SCABox Python Application Ul

3.4 The AXI protocol
The AXI is a point-to-point interconnect that designed for high-performance, high-

speed microcontroller systems. The AXI protocol is based on a point-to-point interconnect
to avoid bus sharing and therefore allow higher bandwidth and lower latency. AXl is arguably
the most popular of all AMBA interface interconnect.

The essence of the AXI protocol is that it provides a framework for how different
blocks inside each chip communicate with each other. It offers a procedure before anything
is transmitted, so that the communication is clear and uninterrupted. That way, different
components can talk to each other without stepping on each other. The procedure for the

AXI protocol is as follows:

e Master & slave must “handshake” to confirm valid signals
e Transmission of control signal must be in separate phases
o Separate channels for transmission of signals

e Continuous transfer may be accomplished through burst-type communication

By working with the master and slave devices, the AXI protocol works across five

addresses that include read and write address, read and write data, and write response.
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Since each channel has its own unique signal, it can send the handshake response
uninterrupted so that it can be received and put into order. That way, the channel that has
priority will be responded to first and so forth. The source must provide a valid signal and
one that gets a proper response from the receiver.

By having the transmission performed in separate phases, it allows the transfer of
information to be performed in an orderly manner. This means that a handshake or
agreement is reached first, then the information is moved from the source to the recipient.
And that’s how the AXI protocol works to move information between different sources

without interference.

Write Address (AW)
Write Data (W)

Write Response (B)

Read Address (AR)

I Read Data (R)

Figure 3.4.i: AXI Interconect Block Diagram

3.5 UART serial connection

UART stands for Universal Asynchronous Receiver/Transmitter. In UART
communication, two UARTs communicate directly with each other. The transmitting UART
converts parallel data from a controlling device like a CPU into serial form, transmits it in
serial to the receiving UART, which then converts the serial data back into parallel data for
the receiving device. Only two wires are needed to transmit data between two UARTSs. Data

flows from the Tx pin of the transmitting UART to the Rx pin of the receiving UART.

UART 1 UART 2

Tx Tx

Rx Rx

Figure 3.5.i: UART Connection Block Diagram
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UARTs transmit data asynchronously, which means there is no clock signal to synchronize
the output of bits from the transmitting UART to the sampling of bits by the receiving UART.
Instead of a clock signal, the transmitting UART adds start and stop bits to the data packet
being transferred. These bits define the beginning and end of the data packet so the
receiving UART knows when to start reading the bits.

When the receiving UART detects a start bit, it starts to read the incoming bits at a
specific frequency known as the baud rate. Baud rate is a measure of the speed of data
transfer, expressed in bits per second (bps). Both UARTs must operate at about the same
baud rate. The baud rate between the transmitting and receiving UARTs can only differ by
about 10% before the timing of bits gets too far off. Both UARTs must also must be

configured to transmit and receive the same data packet structure.



Chapter 4: System Architecture

In this chapter, there is an extensive description of the hardware designs that were
implemented in this thesis, including the parameters and the thought process of the full design.

We emulate a multi-tenant scenario, where the fabric is shared among two users. A
malicious user implements voltage fluctuation sensors to perform a Correlation Power Analysis
(CPA) attack against a victim user's AES hardware module. The victim sends plaintext and
receives the cyphertext, while the malicious user receives sensor measurements.

The attacker and victim modules are separated by columns of unused slices and DSP
blocks. This ensures passive isolation between the users. Subsequently, we implement our Active
Fence countermeasure between the two users and nearer the AES module. In both of the
platforms, most of the implemented modules’ code is identical. The hardware modules that are
different between the platforms, are the implementations of the TDC sensors and the PS relevant
modules. That is because the platforms use different architecture libraries. Finally, the resource
utilisation of each platform is also different.

4.1 Emulation Assumptions

To consider the attack successful and achieve the key retrieval, we make some

assumptions and compromises that do not contradict a possible real scenario. More

specifically:

e The malicious user has access to the ciphertext. This is possible if a public channel is used
by the victim for data transfers.

e The 128-bit key of the AES does not change throughout the attack.

e The AES module works with lower operating frequency than the sensor, so that there is
more information for each AES cycle.

e The sensor readings are aligned exactly to each encryption. When a command is given to
the AES for encryption, a start signal enables the memory to store sensor values, until a
stop signal is sent at the end. This could be avoided using trace alignment techniques on

the sensor traces.

4.2 Victim and Attacker Emulation

4.2.1 AES algorithm
On the victim's side, both platforms used the open-source, 128-bit AES core

implemented in SCABox [29] by Gravelier et al ([13]). The module ciphers and deciphers 128-



bit words using a 128-bit key and produces a valid output every 11 clock cycles, one for
loading the data and ten for each round of the AES. The 128-bit key is defined as a constant
in the VHDL code, but can also be changed through the bare-metal application commands.
An AXI wrapper is used for the communication of the module with the PS. Using serial

communication, we send 128-bit plaintexts and receive the 128-bit ciphertexts.

4.2.2 TDC - sensor Bank
The implemented TDC sensor is different for each platform, because of the different

architecture libraries that they use. The ZedBoard™ Uses the 7 series architecture library,

while the ZCU104 uses the UltraScale+ architecture library.

4.2.2.1 ZedBoard™ sensor Implementation
The TDC sensor implemented on the ZedBoard platform consists of an initial delay

line of 16 open latches and 16 LUTS acting as buffers, placed alternately, followed by 16 more
LUTS/buffers. The initial delay line is driven by the clock signal and drives the input of the
observable/sampled delay line.

The observable delay line consists of a carry chain line of CARRY4 primitives included
in the 7 series architecture library. Furthermore, registers at each byte output of the carry
chain sample the delay line. CARRY4 primitives are used for carry chain counters, adders and
subtractors. They consist of 4 multiplexers in line as shown in Fig.4.2.i. They are useful to
implement a long chain of buffers with small area overhead and are also more sensitive in
voltage fluctuations than LUTS and Latches, thus they offer a good choice for TDC sensors. 8
CARRY4 primitives and 32 registers create a 32-bit wide observable delay line of the TDC
sensor, enough to capture the magnitude of the voltage transitions occurring. The registers

are driven by the clock signal that also drives the initial delay line.
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Figure 4.2.i CARRY4 primitive

4.2.2.2 ZCU104 sensor Implementation
The TDC sensor implemented on the ZCU104 board consists of an initial delay line of

64 open latches and 64 LUTS acting as buffers, placed alternately, followed by 64 more
LUTS/buffers. The initial delay line is driven by the clock signal and drives the input of the
observable/sampled delay line.

The observable delay line consists of a carry chain line of CARRY8 primitives included
in the UltraScale+ architecture library. Furthermore, registers at each byte output of the
carry chain sample the delay line. They consist of 8 multiplexers in line as shown in Fig.4.2.ii.
They have the same use as the CARRY4 primitive used in the ZedBoard design. They can also
be configured as 2 CARRY4 modules. 8 CARRY4 primitives and 32 registers create a 32-bit
wide observable delay line of the TDC sensor, enough to capture the magnitude of the

voltage transitions occurring. The registers are driven by the clock signal, shifted 45°.

In both platforms, the sensor bank consists of 8 TDC sensors followed by an adder.
Each sensor has a range of 32 values. The adder encodes the output binary value of each
adder to the corresponding decimal value and adds them. The final output of the bank drives
the data input port of the FIFO memory.

The TDC sensors require different implementation in each platform, because of the

different fabric architectures. The delays of each board’s primitives differ; thus, the sensors’
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initial delay lines require different length to produce similar result. In the same manner, the

registers of the observable delay line use different clock signals.
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Figure 4.2.ii CARRY8 primitive

4.2.3 Memory
A hardware FIFO memory, generated with the Vivado Memory Generator tool, is used

to store the TDC sensor measurements. The memory has a size of 270 Kbits. One AES
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iteration corresponds to 500, 32-bit TDC sensor measurements, thus it can store up to 17
AES iterations before being full.

The memory is being controlled by simple FSM machine, as shown below.

read 1='0'

write 1='1"'

write i='l'

rst="'1' = read__if;’ 1'

Figure 4.2.3: Memory Controller FSM

4.2.4 Active Fence Architecture
Our Active Fence is implemented using banks of ROs. LUT2 primitives are used as 2-

input NAND gates to implement the RO with an enable signal. Moreover, we map RO banks
between the attacker and the victim, placing them in a densely packed uniform array, as this
represents the most effective way[12].

As previously mentioned, the goal of the Active Fence proposed in [12] was to
neutralise the effect of the victim's core on the instantaneous power consumption. This,
nonetheless, can potentially result in relatively big area overheads, depending on the
algorithm that needs protection since the Active Fence needs to occupy as many resources
as the victim's algorithm, in order to have an equally strong influence on the PDN. Our focus
is now different since we are trying to establish the level of effectiveness for various fence
sizes, all with smaller number of resources occupied than the module under protection, for
increasing noise levels. In our case the AES-core occupies 4271 CLBs as LUTs, CARRYs and
MUXs and 2026 registers. Our work tests the fence using six different configurations, with
1024, 2048, 3072, 4096, 5120 and 6144 LUTS as ROs divided in 16 banks, using 64, 128, 192,
256, 320 and 384 ROs per bank respectively.
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a. 1 RO bank activated b. n-1 RO banks activated

Figure 4.2.iii: Active Fence Block Diagram

A single RO is used to control our proposed Active Fence countermeasure. Although
ROs have a lower resolution than TDCs as power sensors, they use significantly less resources
[2]. Therefore, in this instance, where we are interested in introducing noise injection and
not in hiding through the power consumption matching between the active fence and the
protected module, we prefer an efficient countermeasure with a low cost of resources. That
is the reason why we do not need a high-resolution sensor for controlling the fence. Despite
the lower resolution, a single RO remains sensitive to adequate transitions in power
consumption and can, therefore, effectively control the fence activation. Additionally, the
guantisation error of a single RO can work in favour of this goal, meaning that the variable
frequency can lead to more unpredictable activation patterns and, thus, in random noise
injection.

We measure the RO’s frequency using an 8-bit Libaw—Craig ring counter. The sensor
uses only one LUT for the RO, eight flip-flops for the counter and an 8-bit register. The output
register drives an encoder with sixteen possible values while the ROs of the fence have been
divided into sixteen banks. It is worth noting that despite the fact that the sensor has a range
of sixteen values, it is not necessary for all of them to be reached. That is a function of the
power consumption transitions and their variance, meaning that there may be instances
where this variance does not become high-enough to lead to the activation of all sixteen
sensor values. As a result, some of the RO banks may never be activated or deactivated,

however, this does not constitute a limitation to our results.
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Figure 4.2.iv: Ring Oscillator Sensor with Libaw-Craig Counter

4.2.5 Design Clocking
The design implemented on the ZedBoard platform is driven by three clock domains

that are outputted by the PS, while the design implemented on the ZCU104 is driven by four
clock domains, that are outputs of a clock manager that is driven by the 100MHz PS main
clock output. A 50 MHz clock drives the AXI interconnect and a 10 MHz clock is used for the
AES core, for both platforms. Also, a 200 MHz clock drives the sensor delay line. In the
ZCU104 platform, a 45° shifted 200 MHz clock drives the sensor's output register and the
memory. Finally, the UART baud rate for the serial communication is set to 115200 for the

ZedBoard, and 460800 for the ZCU104.

4.2.6 Remaining Modules
The remaining modules include the PS IP Core and the AXI protocol modules included

in the Vivado IP library for each platform. The AXI modules enable the communication
between the hardware modules and the PS, while the PS core enables the UART
communication of the design, outputs the main clock(s) and runs the bare metal application
of Vitis.

All the hardware modules were tested with the Vivado simulation tool separately to
validate their correct functionality before being combined in a single design.

The remaining part of this chapter displays the Block Diagram, the FPGA floorplan

and the resource utilization of the design for each platform.
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0 Module FLOP_LATCHes | CARRYs | LUTs | MUXFs | CLOCK | BMEM | DMEM 10 CLK HARD_IP
1 AES 2025 11 3324 942 0 0 0 0 0 0
2 MEM 238 26 183 0 0 7.5 0 0 0 0
3 MEM ctrl 3 0 6 0 0 0 0 0 0 0
4 | TDCs bank 1633 79 1325 208 0 0 0 0 0 0
5 | RO sensor 0 0 2 0 0 0 0 0 0 0
1024/
2048/
3072/
0 0 0 0 0 0 0 0 0
Active 4096/
® Fence 5120/
6144
PS7 AXI
7 610 12 589 2 0 0 65 0 0 0
Periph
8 RST PS7 33 0 20 0 0 0 1 0 0 0
Processing
9 0 0 0 0 0 0 0 130 3 1
system?7
Table 4.2-1: ZedBoard Design Total Resource Utilization
CLBs as REGISTERSs as CLOCK as
# Module RAM36 CARRYs LUTs MUXFs SRLs SDRs LATCHes BUFFER PLL
1 AES 0 6 3323 942 0 2026 0 1 0
2 MEM 7.5 13 185 0 0 238 0 0 0
3 MEM ctrl 0 0 6 0 0 3 0 0 0
4 TDCs bank 0 38 2506 640 0 1505 512 0 0
5 RO sensor 0 0 2 0 0 16 0 0 0
1024/
2048/
3072/
6 | Active Fence 0 0 0 0 0 0 0 0
4096/
5120/
6144
PS8 AXI
7 0 8 1461 2 45 1393 0 0 0
Periph
8 RST PS8 0 0 19 0 1 34 0 1 0
9 CLK Wiz 0 0 0 0 0 0 0 4 1
10 ZYNQ PS Occupies 1 ADVANCED PROCESSOR 1 0

Table 4.2-2: ZCU104 Design Total Resource Utilization




Chapter 5: Experimental Procedure

In this chapter, there is a step-by-step description of the experimental process.

As a first step we use the VHDL and Verilog code of the modules, the Vivado IP library
and the Vivado connection automation tool to create a Block Design in the Vivado 2020.2. After
the simulation, the synthesis and the implementation of the design, we generate the bitstream
and export the hardware specification (.xsa) file.

Using the Xilinx Vitis 2020.2 we import the .xsa file exported by Vivado to generate the
correct device platform and create an application project that runs on this platform. We import
the .c code files for the Bare-Metal application, define the needed libraries and directories for
the compiler and build the Vitis project. If there are no errors, we establish connection with the
board connected to the computer and download the application and the design to the board.

At this point, we have created and downloaded a working setup to emulate a two-tenant
power Side-Channel attack scenario. By connecting to the board’s serial port, we test the basic
instructions to see if the design is fully functional.

Lastly, we run the Python application. We define the number of AES iterations, the
number of chunks and the serial port of the board as the target to conduct a Corelation Power
Analysis. We then observe and evaluate the results. We repeat the whole process for each active
fence configuration in both boards.

We conduct each attack multiple times, as the results may differ, especially when the
active fence countermeasure is present. We take into account the worst-case scenario, meaning

the attack that is successful with the least acquired traces.



Chapter 6: Results and Evaluation

In this chapter, we present and evaluate the results of each platform. Then we compare
the results between the platforms and between similar works. The plots analysed in this
chapter are the SCABox python application plots and plots made by the results of the
conducted attacks. The SCABox python application displays three plots that are useful for
our conclusions:

e The Quantification Vs. Time Saples plot, which displays the temporal average of the TDC
measurements, i.e., the time samples, of all the AES iterations

e The Pearson’s Correlation Vs. Traces Acquired plot, which displays the Pearson’s
Correlation of the 256 possible values of a byte, in relation to the number of the AES
iterations, i.e., the traces that have been collected

e The Pearson’s Correlation Vs. Time Samples plot, which displays the Pearson’s
Correlation of the 256 possible values of a byte, in relation to the temporal average of
the TDC measurements, i.e., the time samples of the AES iterations.

The emulation experiments implemented on the two platforms operate on the premise
that a malicious entity uses the intercepted ciphertext to create a power consumption
hypothesis for each key byte value per AES encryption. Then, by gathering TDC sensor data,
it becomes possible to calculate the correlation between each hypothesis and the actual
measurements, selecting the value with the highest correlation as the most probable to be
true. The configuration of an Active Fence of ROs between two adversary users adds noise
to the sensors' readings, which increases the size of data that needs to be acquired and
processed and, subsequently, the time for the most probable value to reach the true key
byte.

Based on the above, we implemented six different Active Fence configurations, using
a different number of ROs each time, i.e., 1024, 2048, 3072, 4096, 5120 and 6144. These
numbers correspond to approximately 17%, 33%, 50%, 67%, 83% and 100% of the total AES
module resources, respectively. The attacks for each configuration were ran multiple times,
measuring the minimum number of the AES iterations, i.e., the least data needed to be

gathered for the most probable byte value hypothesis to reach the true key byte value.

6.1 ZedBoard Platform Results
We first need to verify that our design is fully functional, meaning that we can

conduct a successful, remote, power side-channel attack against the AES hardware core

without any countermeasures.
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Figure 6.1.i: Quantification vs. Time Samples. Average of 500 AES Iterations wihtout
countermeasure (ZedBoard)

By observing the plot of Figure 6.1.i we see that there are 11 distinct spikes, one for
every AES cycle. The measurements between those spikes show a similar, repeated pattern.
This is due to the same calculations that happen at each AES cycle and the divergence
between them is because of the different data that are being processed. This means that the
AES functionality is capturable by the TDC sensors and that each time the AES 128-bit output
register is overwritten at the end of each cycle, a high voltage drop occurs and is captured
by the sensor.

Although the cryptographic module’s behaviour is observable in the plot of the TDC
sensor measurements, this does not mean that the statistical evaluation of the data can
successfully lead to the extraction of the key. Multiple AES iterations need to be captured
for the Correlation Power Analysis to have a good result for any of the key’s bytes.

The first byte of the key that is successfully extracted, is the second byte (byte 1 of
15). The value of the second byte, 0x32, has the highest correlation amongst the other 255
possible values after almost 2000 captured AES iterations, but it becomes clear that this is
the most possible true value after 3500 captured AES iterations, as shown Figure 6.1.ii:
Pearson's Correlation Plots for the Second Key Byte We see that after the 3500 AES
iterations/traces point, its correlation has diverged enough from the corelation of the other
values.

The first byte that is extracted will be the same only if the key and the ciphered text
are the same for every run. For our experiments, we use the same key, but randomly

generated texts as input of the AES, thus the sequence of the extracted bytes may differ.
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After the first, the rest of the bytes are also extracted as more traces are acquired. We focus

only on the number of traces of the first extracted byte because it is the least useful amount

of data that the malicious user needs to collect for the attack to have effect.
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Figure 6.1.ii: Pearson's Correlation Plots for the Second Key Byte with no Active Fence

For the implementation without any countermeasures, the first byte was extracted

at 3500 acquired AES iterations, i.e., 1750000 TDC measurements, which corresponds from

5.72 to 6.68MB of sensor data, 46.875KB of plaintexts and 46.875KB of ciphertexts.
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We add the Active Fence countermeasure and observe its effect on the design by
conducting the attack multiple times. We increase the total number of ROs by 1024 for each
configuration. We first evaluate the active fence with 1024 ROs
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Figure 6.1.iii Quantification vs. Time Samples. Average of 500 AES Iterations with Active Fence
(ZedBoard)

If we compare the Quantification vs. Time Samples plot of the Active Fence (Figure
6.1.iii) with the one with no countermeasure present two observations emerge. The first is
that the magnitude of the plot for the design with the Active Fence is lower. This means that
the countermeasure is successful at hiding the functionality of the AES core on some level,
not quantifiable by this plot though. By enabling and disabling the ROs, the Active Fence
influences the PDN, and makes the power consumption transitions of the AES less
detectable.

The second observation, is the high frequency behaviour that occurs between the
high magnitude spikes, that is not present in the design without the countermeasure. This
behaviour translates to noise in the sensor’s readings by the Active Fence. The high
frequency oscillation of the ROs injects noise to the system that interferes with the sensor’s
measurements. We conduct the power side-channel attack with the 1024 RO Active Fence.
The first byte that is extracted with the least acquired AES iterations is the fourth byte, as
shown in Figure 6.1.iv. The correct byte value is extracted after 12500 AES iterations have
been acquired.

By comparing the results with the Pearson’s Correlation plots of the design with no
countermeasure, we again can make three significant observations. The first and most
obvious, is that the needed iterations for the most probable value to reach correct key byte

value have risen to 12500, making the attack at least 3.57x harder to mount.
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The second thing we can observe by comparing the plots is that the correlation of the
correct byte value is lower when the Active Fence is present in the design. Also, the
divergence between the values’ correlation is smaller, making the most probable value to
less certain to be the true value.

Both the above observations emerge from the Pearson’s Correlation Vs. Traces
Acquired plots. The third observation is shown in the Pearson’s Correlation Vs. Time Samples
Plot. The Time Sample with the highest Correlation has a lower correlation value than the
one in the design without the countermeasure. This again means that the time sample with
the highest correlation is less probable to be the correct one.

The 12500 iterations correspond to 23,84MB of the TDC measurements, 195.31KB of
plaintext and 195.31KB of ciphertext.
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Figure 6.1.iv: Pearson's Correlation Plots for the Fourth Key Byte with 1024 RO Active Fence

Results and Evaluation

[ 44




Christos Diktopoulos: Mitigating Side-Channel Attacks in the Context of Multi-Tenant FPGA Usage

We present the plots of one more Active Fence configuration, as the observations
that are to be made are concluded by these three implementations. With 4096 RO Active
Fence, the correct key byte value of the first extracted byte, reaches the highest correlation
at 94000 collected AES iterations.

In this implementation the byte value and time sample with the highest correlation
have a really small gap from the other byte values and time samples. This means that while
we know that the byte value with the highest correlation is the correct one, an attacker in a

real scenario cannot be certain that he has extracted the correct key byte value.
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Figure 6.1.v: Pearson's Correlation Plots for the Fourth Key Byte with 4096 RO Active Fence

We avoid to map the last two Active Fence configurations on the ZedBoard Platform.
The parallel activity of these many ROs can have a negative effect on the overall functionality

of the platform. The high frequency oscillation of the ROs increases the temperature and has
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a straining effect on the fabric’s logic components, degrading the life expectancy of the
board. Furthermore, the size of the ZedBoard’s FPGA fabric discourages the implementation
of such a big grid of ROs. As we have extracted enough information to support the
conclusions of this thesis, there is no reason to test the last two configurations.

By analyzing the CPA results plot (Figure 6.1.vi) , we notice that as the ROs increase,
the iterations required to extract the first byte not only increase, but they increase at a higher
rate. A major contributor to this is that as the number of ROs per bank is increased, each
activation level injects more noise to the system. In addition to that, the fence itself increases
the total power consumption, affecting the oscillator sensor. This results in a greater range
of the sensor's values, thus, in more levels of activation and a higher quality of noise injection
in total.

The complete results of the ZedBoard platform are shown on Table 1.

Increase Over the Plaintext/Ciphertext
Countermeasure | AES Iterations TDC Data
Implementation Data
Without Active
None 3500 6.68 MB 54.69 KB
Fence
1024 ROs Active
12500 3.57x 23.84 MB 195.31 KB
Fence
2048 ROs
31000 8.86x 59.18 MB 484.37 KB
Active Fence
3072 ROs 102.99
54000 13.43x 843.75 KB
Active Fence MB
4096 ROs 179.29
94000 26.86x 1.43 MB
Active Fence MB
5120 ROs
Active Fence
6144 ROs
Active Fence

Table 6.1-1: ZedBoard CPA Results
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Figure 6.1.vi : ZedBoard CPA Results Plot

ZCU104 Platform Results
We follow the same process for the ZCU104 platform. We first confirm that our setup

is fully functional by conducting an attack without any countermeasures present.
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Figure 6.2.i: Quantification vs. Time Samples. Average of 500 AES Iterations without
countermeasure (ZCU104)

As in Section 6.1, the Quantification Vs. Time Samples plot of the design on the

ZCU104 (Figure 6.2.i) shows that the behaviour of the AES hardware module is capturable by

the sensor as there are 11 distinct spikes with siminlar behaviour between them.
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By comparing the plots we see that there differences between the two platforms.
First, the magnitude of the ZCU104 platform plot, is one order of magnitude lower that the
one of the ZedBoard, which means that the functionallity of the AES hardware module has a
smaller effect on the PDN of the ZCU104 platform. This has been anticipated as the ZCU104’s
FPGA fabric is of newer architecture and larger scale than the one on the ZedBoard. The
presense of the PS of the ZCU104 also has a hiding effect on the overall system. It also
introduces the high frequncy noise that is apparent in the plot.

Finally, we also see that the differences of the 11 AES cycles is less distinctable. This
also proves the above conclusion that the partial functionallity of the AES has a smaller effect
on the PDN while running on the US+ fabric of the ZCU104.
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Figure 6.2.ii: Quantification vs. Time Samples. Average of 500 AES Iterations with Active Fence
(zcu104)

We test the different Active Fence configurations on the ZCU104 platform as in
Section 6.1. The observations and conclusions that are derived by the the Pearson’s
Correlaition plots of the attack on the ZCU104 plots are the same as the ones on the
ZedBoard plots.

By comparing the Quantification vs. Time Samples plots between the design with and
without the Active Fence countermeasure (Figure 6.2.i vs. Figure 6.2.ii) we see that the
values of the seccond plot, are of lower magnitude. We can also observe sign wave behaviour
on the plot of the design with the Active Fence pesent. This shows that the countermeasure,
as in the ZedBoard platfrom, injects noise to the design and achieves hiding of the AES
functionality, altering the measurements.

After the mapping of each Active Fence configurations we reach the following

observations and conclusions. As the number of the ROs increases for each configuration,
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we observe a significant increase in the AES iterations that need to be collected to extract
the first true byte value through the Power Analysis.

Furthermore, the correct byte values have a lower correlation, and their correlation
has a smaller divergence between the other values’ correlation, as the number of ROs
increases, making them less probable to be true. This can be observed by comparing the
plots between Figure 6.2.iii and Figure 6.2.iv.

The power analysis of the ZCU104 implementation without any countermeasures
(Figure 6.2.iii) achieves extraction of the second byte (1 of 15) after the collection of 60000
AES iterations. This corresponds to 114.44MB of collected TDC measurements, 937.5KB of
plaintexts and 937.5KB of ciphertexts.

The power analysis of the ZCU104 implementation with a 5120 Active Fence (Figure
6.2.iv) achieves extraction of the second byte (1 of 15) after the collection of 760000 AES
iterations. This corresponds to 1.42GB of collected TDC measurements, 11.6MB of
plaintexts and 11.6MB of ciphertexts.

At the configuration of the 6144 RO Active Fence we reach a cut off point. We were
not able to achieve the extraction of any key byte, even with 10° collected AES iterations,
which correspond to 1.86GB of collected TDC measurements, 15.25MB of plaintexts and
15.25MB of ciphertexts. As explained in Section 6.1, using an Active Fence with this amount
of ROs for a long period of time can be straining for the board and may cause even the
corruption of the fabric’s logic components. Thus, we didn’t push the tests of the 6144 to
more than 10° AES iterations.

By analyzing the CPA results plot (Figure 6.2.v) , we notice that we have the same
phenomenon in both platfroms. As the ROs increase, the iterations required to extract the
first byte not only increase, but they increase at a higher rate, meaning that the increase of
the ROs in the Active Fence results in a greater range of the sensor's values, thus, in more

levels of activation and a higher quality of noise injection in total.
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AES Increase Over the Plaintext/Ciphertext
Countermeasure TDC data
Iterations Implementation Data
Without
None 65000 . 123.98 MB 0.99 MB
Active Fence
1024 ROs Active
100000 1.54x 23.84 MB 1.53 MB
Fence
2048 ROs
170000 2.62x 190.73 MB 2.59 MB
Active Fence
3072 ROs 324.25.99
220000 3.38x 3.36 MB
Active Fence MB
4096 ROs
480000 7.38x 707.45 MB 7.32 MB
Active Fence
5120 ROs
770000 11.85x 1.1GB 11.75 MB
Active Fence
6144 ROs
>10° > 15.38x >1.44 GB 15.26 MB
Active Fence
Table 6.2-1 : ZCU104 CPA Results
ZCU104 CPA Results
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770000
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S 500000
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5 400000
~ 300000 220000
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200000 100000
65000
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Figure 6.2.v: ZCU104 CPA Results Plot
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Comparison of the two platforms

Percentage Over
AES AES
Design Design ZedBoard
Iterations Iterations .
Implementations
ZedBoard no ZCU104 no 1757.14%
3500 65000
countermeasure countermeasure (18.57x)
ZedBoard Z2CU104
700%
1024 ROs 12500 1024 ROs 100000 (8%)
X
Active Fence Active Fence
ZedBoard ZCU104
448.39%
2048 ROs 31000 2048 ROs 170000
(5.48x)
Active Fence Active Fence
ZedBoard ZCU104
307.41%
3072 ROs 54000 3072 ROs 220000
(4.07x)
Active Fence Active Fence
ZedBoard ZCU104
304.26%
4096 ROs 94000 4096 ROs 480000
(4.04x)
Active Fence Active Fence
ZedBoard ZCU104
5120 ROs - 5120 ROs 770000 -
Active Fence Active Fence
ZedBoard Z2CU104
6144 ROs - 6144 ROs > 106 -
Active Fence Active Fence

Table 6.2-2 ZedBoard Vs ZCU104 implementations




In both platforms, the Active Fence configurations help to achieve hiding by noise
injection, without mitigating the attack completely. In comparison of the results, the
countermeasure seems to have a better result on the ZedBoard platform as it makes the
attack 26.86x more difficult to mount with a 4096 RO Active Fence, while the on the ZCU104
the 5120 RO Active Fence achieves a 11.85x. Furthermore, increasing the ROs of the Active
Fence on the ZedBoard, seems to increase the AES iterations that need to be collected for
the extraction of at least one byte, at a higher rate than the Active Fence implemented on
the ZCU104.

Although the Active Fence seems to have a higher quality effect on the ZedBoard,
there is a big difference in the absolute number of AES iterations for each case, between the
two platforms. As shown in Table 6.3-1, to achieve the extraction of one of the key bytes
without the presence of any countermeasures on the ZedBoard, we need to capture only
3500 AES iterations. The same design mapped in the ZCU104 platform achieves the
extraction of the first byte at 65000 AES iterations, meaning that the attack on the later
platform is at least 18.57x harder to mount from the start. This gap closes as the ROs increase
in every Active Fence configuration, but the absolute numbers still have a big divergence,
meaning that the Active Fence countermeasure may achieve better hiding and higher quality
noise injection in the ZedBoard platform but it is much harder to mount a successful attack
on the ZCU104 platform with the Active Fence present.

This happens because as the AES hardware module has a smaller effect on the
ZCU104 platform’s PDN, so does the Active Fence countermeasure. It does not affect the
power consumption of the overall design and the sensor’s readings with the same rate as it
does on the ZedBoard designs. Thus, the same Active Fence configuration achieves different

level of hiding and noise injection on each platform.

6.3 Comparison with Similar Works
We compare this work with two other works. First, we compare it to the work of

Krautter et. al. [12] as it is the first and only work so far to implement Active Fences against
remote power SCAs. This work was conducted on the open-source FPGA development board
Radiona ULX3S [30] in a version that integrates a Lattice ECP5 12F FPGA with 12K LUT
elements with various other components such as an Espressif ESP32 loT microcontroller
module.

The second work that we compare it with is by Glamocanin et. al. [14]. It is the most
recent work that evaluates a platform used by cloud providers, similar to the ZCU104, against
remote power side-channel attacks, without the presence of any active countermeasure.

This work was conducted on an Amazon EC2 F1 instance [1].



Percentage
Active Fence
. AES lItera- . AES Over ZedBoard
Design . Resourse Design .
tions Iterations Implementa-
Utilization .
tions
Percentage of
ZedBoard no 5614.29%
3500 AES
countermeasure (57.14x)
ZedBoard
1500%
1024 ROs 12500 17%
(16x)
Active Fence
ZedBoard
545.16%
2048 ROs 31000 33%
(6.45x)
Active Fence
ZedBoard
Glamo- 270.37%
3072 ROs 54000 50%
canin et. 200000 (3.7x)
Active Fence |
al.
ZedBoard
112.77%
4096 ROs 94000 67%
(2.13x)
Active Fence
ZedBoard
5120 ROs - - -
Active Fence
ZedBoard
6144 ROs - - )
Active Fence

Table 6.3-1: ZedBoard Implementations Vs. Glamocanin et. al. Work




Active Fence

Percentage

. AES ltera- . AES Over ZCU104
Design . Resourse Design .
tions Iterations Implementa-
Utilization .
tions
Percentage of
ZCU104 no 207.69%
65000 AES
countermeasure (3.08x)
Z2CU104
100%
1024 ROs 100000 17% (2x)
X
Active Fence
Z2CU104
17.65%
2048 ROs 170000 33%
. (1.18x)
Active Fence
Z2CU104
Glamo- -9.09%
3072 ROs 220000 50% .
. canin et. 200000 (0.91x)
Active Fence |
al.
Z2CU104
-58.33%
4096 ROs 480000 67%
(0.42x)
Active Fence
Z2CU104
-74.03%
5120 ROs 770000 83%
. (0.26x)
Active Fence
Z2CU104
> -80%
6144 ROs > 10° 100%
(0.2x)

Active Fence

Table 6.3-2: ZCU104 Implementations Vs. Glamocanin et. al. Work




Percentage
AES Over
. Active . AES Active
Design Itera- Design . ZedBoard
. Fence Iterations Fence
tions Implementa
Resourse Resourse .
-tions
Utilization Utilization
Krautter
ZedBoard no Percentage Percentag
et. al. no -48.57%
countermeas 3500 of AES 1800 e of AES
counter- (0.51x)
ure
measure
ZedBoard
2300%
1024 ROs 12500 17%
(24x)
Active Fence
ZedBoard
867.74%
2048 ROs 31000 33%
(9.67x)
Active Fence
ZedBoard
Krautter 455.56%
3072 ROs 54000 50%
et. al. (5.56x)
Active Fence
TDC 300000 100%
ZedBoard .
Active 219.15%
4096 ROs 94000 67%
Fence (3.19x)
Active Fence
ZedBoard
5120 ROs - - -
Active Fence
ZedBoard
6144 ROs - -
Active Fence

Table 6.3-3: ZedBoard Implementations Vs. Krautter et. al. Work




Percentage
AES Over
. Active . AES Active
Design Itera- Design . ZCU104
. Fence Iterations Fence
tions Implementa
Resourse Resourse .
-tions
Utilization Utilization
Krautter
ZCU104 no Percentage Percentag
et. al. no -97.23%
counter- 65000 of AES 1800 e of AES
counter- (0.03x)
measure
measure
Z2CU104
200%
1024 ROs 100000 17% (3x)
X
Active Fence
ZCU104
76.47%
2048 ROs 170000 33%
(1.76x)
Active Fence
Z2CU104
Krautter 36.36%
3072 ROs 220000 50%
et. al. (1.36x)
Active Fence
TDC 300000 100%
Z2CU104
Active -37.5%
4096 ROs 480000 67%
Fence (0.62x)
Active Fence
Z2CU104
-61.04%
5120 ROs 770000 83%
. (0.39x)
Active Fence
Z2CU104
>-70%
6144 ROs > 106 100%
. (0.3x)
Active Fence

Table 6.3-4: ZCU104 Implementations Vs. Krautter et. al. Work
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Figure 6.3.i Comparisson of Each Platform

Glamocanin et. al. [14], does not report the exact number of captured AES iterations
for extracting the first correct value of the key, but report that the third byte of the key is
extracted after around 200000 AES traces have been collected. Thus, we compare it with our
experimental results based on this information as it is the only work so far to mount a remote

SCA on an US+ FPGA fabric.
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6.4 Results’ Evaluation Summarization

The results and evaluation of this work can be summarized as follows:

The required iterations to extract any byte of the key, increase along with the
number of ROs.

The correct value of each byte has a lower correlation compared to the other 255 as
the number of ROs increases.

The Active Fence countermeasure achieves hiding and injects noise to the system,
without utilizing as may resources as the module under attack.

The Active Fence countermeasure has a different effect, depending on the platform.
On the ZedBoard platform an Active Fence utilizing only 67% of the AES’ resources,
makes the attack up to 26.86x more difficult to mount. On the ZCU104 platform, the
same Active Fence makes it 7.38x.

An RO sensor can effectively control the Active Fence. It is less effective than using
a TDC power sensor but uses significantly less resources as can be observed in Table
4.2-1 and Table 4.2-2. The TDC sensor enabled Active Fence of Krautter et. al. [12]
utilizes 100% of the AES core resources and achieves more than 166x leakage
reduction while the RO sensor enabled Active Fence on the ZedBoard, utilizing 67%
of the AES’ resources, makes the attack up to 26.86x more difficult to mount.
Larger platforms, of newer technology and architecture, are less vulnerable to SCAs.
By adding the Active Fence and other countermeasures, an SCA can become almost
unmountable on such platforms. To mount successfully extract even one key byte
on the ZCU104 and EC2 F1 platforms without countermeasures, at least 65000 AES
iterations need to be collected compared to the 1800 and 3500 AES iterations that
are needed on the Radiona ULX3S and ZedBoard, respectively. The Active Fence on
a ZCU104 achieves only 15.38x leakage reduction at maximum resource utilization
but the absolute number of the AES iterations is more than 10°, while the TDC sensor
enabled Active Fence of Krautter et. al. achieves 166x leakage reduction with 300000

AES iterations, 70% less Iterations than the ZCU104 implementation.



Chapter 7: Conclusions and Future Work
FPGA devices have a multifaceted range of applications and are subsequently moving

to cloud instances as more and more applications are deployed there. In these
environments, cost efficiencies are paramount and the highest degrees of utilisation are
sought by providers. In that context, sharing the FPGA resources between different users is
the next logical step, thus creating multi-tenant use-case scenarios. Security issues though
that plague those sharing efforts prevent a wide deployment of the concept and measures
to prevent side-channel attacks are sought.

This is the focus of this work. More specifically, we evaluate different Active Fence
configurations on two different platforms, with one of them using same transistor
technology (US+) as the one commonly used in the cloud service providers' platforms. This
defence mechanism has the potential of ensuring low exposure to power side-channel
attacks on unsuspecting users trying out their designs on the cloud FPGAs. For
demonstration purposes, we use a specific type of setup comprised of a TDC as the attacker's
sensor and an AES module as the victim's design. In that, context, different Active Fences of
different sizes have been tried out and insightful observations have been made.

First, we quantify a relationship between Active Fence size and size of data traces
required for a successful attack. Our work shows that with the correct choice of Active Fence
configuration and platform, the amount of data traces required for key extraction can be
many times greater compared to no countermeasures present. This leads to prohibitively
large amount of data and time for the attack, while using an Active Fence that requires less
resources than the module under attack. Additionally, even though the two most efficient
Active Fence configurations occupy almost as many resources as the algorithm, not all of the
fence's ROs are used, and that is due to the activation method. This shows that we can
implement Active Fences with smaller area overhead, that can increase the noise to a
sufficient level and make the attacker almost unable to succeed in extracting the key of the
cryptographic module.

Future work may assess and point out the most efficient combination of Active Fence
configuration, activation technique and platform, in terms of performance. Furthermore, the
present emulation has accounted for a two-tenant, Intra-FPGA, scenario with some
compromises. We do not take into account possible masking techniques that may be used

for each algorithm or the possibility of more users on the platform. Our work may be



extended, using algorithmic level countermeasures and/or with more than two tenants,
malicious or not.

Finally, although different platforms have been evaluated against remote power side-
channel attacks, power level countermeasures that are algorithm independent have not
been tested widely. A wide evaluation of different platforms and countermeasures, could
help the service providers chose the best combination of the two, providing the most secure

solution.
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