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Abstract 
  

The rising use of multi-tenant FPGAs for cloud computing has created security concerns. 

Previous works have shown that malicious users can implement remotely, i.e., without 

physical access, voltage fluctuation sensors and mount successful power analysis attacks 

against cryptographic algorithms that share the same Power Distribution Network (PDN).  

 So far, masking and hiding schemes are the two main mitigation strategies against 

such attacks. One such work has shown that the use of an Active Fence of Ring Oscillators, 

with has a similar impact on the PDN as the cryptographic algorithm, if placed between two 

adversary users, can be an effective hiding countermeasure. Although this countermeasure 

is presented as platform independent, more recent platforms show different results against 

remote Side-Channel Attacks (SCAs).  

  This work presents the mapping of an intra-FPGA adversary scenario on two 

platforms, a ZedBoard and a Xilinx UltraScale+ MPSoC to assess the effectiveness of the Ring 

Oscillator Active Fence countermeasure. We compare different Active Fence configurations, 

with a varying number of Ring Oscillators, while using a new, resource efficient, activation 

method aiming to achieve noise injection hiding. The results show that by using our proposed 

Active Fence, which exhibits lower area overhead and, subsequently, lower power 

consumption than the algorithm under attack, the side-channel leakage is reduced to such a 

degree that the number of traces that need to be collected for a successful attack is more 

than ten times higher compared to no fence present. Moreover, this work presents 

quantitative results that FPGA cloud providers, may use to assess the benefits gained 

through the deployment of Active Fence mechanisms within their platforms prior to offering 

multi-tenant services. 
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Περίληψη 
 Η ανερχόμενη χρήση συστημάτων αναδιατασσόμενης λογικής από πολλαπλούς 

χρήστες σε περιβάλλοντα που βρίσκονται στο νέφος, έχει εγείρει προβληματισμούς σχετικά 

με την ασφάλεια των χρηστών. Προηγούμενες μελέτες έχουν δείξει πως κακόβουλοι 

χρήστες μπορούν να υλοποιήσουν απομακρυσμένα, δηλαδή χωρίς φυσική πρόσβαση, 

αισθητήρες κατανάλωσης ενέργειας και να πραγματοποιήσουν επιθέσεις κατά 

κρυπτογραφικών αλγορίθμων που βρίσκονται στο ίδιο δίκτυο τροφοδοσίας. 

 Μέχρι τώρα, τεχνικές masking και hiding, αποτελούν τις δυο βασικές κατηγορίες 

αντιμετώπισης τέτοιων επιθέσεων. Μια αντίστοιχη μελέτη αποδεικνύει πως ένας ενεργός 

φράχτης από κυκλικούς ταλαντωτές, ο οποίος έχει αντίστοιχο αντίκτυπο στο δίκτυο 

τροφοδοσίας με τον κρυπτογραφικό αλγόριθμο και τοποθετείται μεταξύ των 2 χρηστών, 

αποτελεί αποτελεσματικό αντίμετρο κατά των απομακρυσμένων κακόβουλων επιθέσεων. 

 Η συγκεκριμένη εργασία παρουσιάζει την  προσομοίωση ενός σεναρίου κακόβουλης 

επίθεσης, σε δύο πλατφόρμες, για την εκτίμηση της αποτελεσματικότητας του ενεργού 

φράχτη από κυκλικούς ταλαντωτές ως αντίμετρο. Συγκρίνουμε διαφορετικές υλοποιήσεις 

του ενεργού φράχτη, με διαφορετικό αριθμό από κυκλικούς ταλαντωτές, ενώ παράλληλα 

χρησιμοποιείται ένας νέος τρόπος ελέγχου του φράχτη με μικρό αριθμό πόρων, με σκοπό 

την απόκρυψη μέσω της εισαγωγής θορύβου στο σύστημα. Τα αποτελέσματα δείχνουν ότι 

με τη χρήση του προτεινόμενου ενεργού φράχτη, ο οποίος καταναλώνει μικρότερο αριθμό 

πόρων και επακόλουθα χαμηλότερη κατανάλωση ενέργειας από τον υπό επίθεση 

αλγόριθμο, η διαρροή δεδομένων μειώνεται σε τέτοιο βαθμό ώστε ο αριθμός των 

μετρήσεων που πρέπει να συλλεχθούν για μια επιτυχημένη επίθεση είναι πάνω από δέκα 

φορές υψηλότερη σε σύγκριση με την απουσία του ενεργού φράχτη. Επιπλέον, αυτή η 

εργασία παρουσιάζει ποσοτικά αποτελέσματα που οι πάροχοι υπηρεσιών νέφους με FPGAs 

μπορούν να χρησιμοποιήσουν για να αξιολογήσουν τα οφέλη που αποκομίζονται μέσω της 

χρήσης ενεργών φραχτών στις πλατφόρμες τους πριν από την προσφορά υπηρεσιών σε 

πολλαπλούς χρήστες. 

 

 

 

 

 

 

 



Christos Diktopoulos: Mitigating Side-Channel Attacks in the Context of Multi-Tenant FPGA Usage 

 
 

 

iii 

Acknowledgements 
 First of all, I would like to thank Prof. Sotirios Ioannidis (TUC, FORTH) for entrusting 

me with this assignment and for being my supervisor.   I would like to deeply thank him and 

Dr. Konstantinos Georgopoulos for their guidance and support during the work and writing 

of this thesis.  I would also like to express my gratitude to Prof. Apostolos Dollas (TUC) for 

being the third member of the committee and for evaluating my thesis. 

 Furthermore, I would like to express my deepest gratitude to all the members of the 

Microprocessors and Hardware Lab (MHL) for supplying the means that were needed for 

conducting this thesis remotely, amidst the COVID-19 crisis. I would especially like to thank 

Dr. Georgios Chrysos, ECE MSc Andreas Brokalakis, ECE MEng Efstratios Koutroulakis, ECE 

MEng Morianos Ioannis, ECE MEng Thomas Kyriakakis and ECE MEng Vasileios Amourgianos 

for their valuable input and technical support during the work of my thesis. 

 Finally, I would like to thank my family and friends for their support over the years.  

This thesis is dedicated to them 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Christos Diktopoulos: Mitigating Side-Channel Attacks in the Context of Multi-Tenant FPGA Usage 

 
 

 

iv 

Contents 

 
Abstract .................................................................................................................... i 

Περίληψη ................................................................................................................. ii 

Acknowledgements ................................................................................................. iii 

Contents .................................................................................................................. iv 

List of figures ........................................................................................................... vi 

List of tables .......................................................................................................... viii 

Acronyms - Abrevations ........................................................................................... ix 

Chapter 1: Introduction ............................................................................................ 1 

1.1 Background ................................................................................................................ 1 

1.2 Thesis contributions .................................................................................................. 2 

1.3 Thesis structure ......................................................................................................... 2 

Chapter 2: Related Work........................................................................................... 3 

2.1 Multi-Tenant Attack Model ....................................................................................... 3 

2.2 Power Distribution Network ..................................................................................... 3 

2.3 Electrical Level Attacks .............................................................................................. 4 

2.4 Remote Power Side-Channel Attack Sensors ............................................................ 5 

2.4.1 Ring Oscillator Sensors ....................................................................................... 5 

2.4.2 Time-to-Digital Converter Sensors ..................................................................... 5 

2.5 Advanced Encryption Standard Algorithm (AES) ...................................................... 8 

2.6 Corelation Power Analysis ....................................................................................... 11 

2.6.1 Attack Methodology ........................................................................................ 11 

2.7 Defence Mechanisms Against SCAs ........................................................................ 13 

Chapter 3: Platforms and Tools ............................................................................... 16 

3.1 Platforms ................................................................................................................. 16 

3.1.1 ZedBoard™ ....................................................................................................... 16 

3.1.2 ZYNQ UltraScale+ MPSoC ZCU104 ................................................................... 17 



Christos Diktopoulos: Mitigating Side-Channel Attacks in the Context of Multi-Tenant FPGA Usage 

 
 

 

v 

3.2 Basic Tools ............................................................................................................... 19 

3.2.1 Xilinx Vivado Design Suite 2020.2 .................................................................... 19 

3.2.2 Xilinx Vitis Unified Software Platform Documentation ................................... 19 

3.3 SCAbox UI: Vitis Bare-Metal App and Python Corelation Analysis App .................. 20 

3.3.1 Vitis Bare-Metal Application ............................................................................ 20 

3.3.2 Python Corelation Analysis Application ........................................................... 23 

3.4 The AXI protocol ...................................................................................................... 24 

3.5 UART serial connection ........................................................................................... 25 

Chapter 4: System Architecture............................................................................... 27 

4.1 Emulation Assumptions........................................................................................... 27 

4.2 Victim and Attacker Emulation ............................................................................... 27 

4.2.1 AES algorithm ................................................................................................... 27 

4.2.2 TDC – sensor Bank............................................................................................ 28 

4.2.3 Memory ............................................................................................................ 30 

4.2.4 Active Fence Architecture ................................................................................ 31 

4.2.5 Design Clocking ................................................................................................ 33 

4.2.6 Remaining Modules ......................................................................................... 33 

Chapter 5: Experimental Procedure ........................................................................ 39 

Chapter 6: Results and Evaluation ........................................................................... 40 

6.1 ZedBoard Platform Results...................................................................................... 40 

6.2 ZCU104 Platform Results ......................................................................................... 47 

Comparison of the two platforms ...................................................................................... 53 

6.3 Comparison with Similar Works .............................................................................. 54 

6.4 Results’ Evaluation Summarization ......................................................................... 60 

Chapter 7: Conclusions and Future Work................................................................. 61 

Chapter 8: References ............................................................................................. 63 

 



Christos Diktopoulos: Mitigating Side-Channel Attacks in the Context of Multi-Tenant FPGA Usage 

 
 

 

vi 

List of figures 
Figure 2.1.i: Adversary Model Block Diagram .......................................................................... 3 

Figure 2.4.i : Initial Delay Line of TDC and Timing Diagram ..................................................... 6 

Figure 2.4.ii: Three Scenarios of TDC Output........................................................................... 7 

Figure 2.4.iii: RemoteRemote Power Side-Channel Attack Sensors ........................................ 8 

Figure 2.5.i: AES Block Diagram ............................................................................................. 10 

Figure 2.6.i: AES Last Round................................................................................................... 12 

Figure 2.7.i: Adversary Model With Active Fence Block Diagram ......................................... 15 

Figure 3.1.i: ZedBoard Platform ............................................................................................. 16 

Figure 3.1.ii: ZedBoard Block Diagram ................................................................................... 17 

Figure 3.1.iii: ZCU104 Platform .............................................................................................. 18 

Figure 3.1.iv: ZYNQ UltraScale+ MPSoC ZCU104 Block Diagram ........................................... 18 

Figure 3.2.i: Vivado Desing Suite High-Level Design Flow ..................................................... 19 

Figure 3.2.ii: Xilinx Vitis Software/Hardware Build Process .................................................. 20 

Figure 3.3.i: SCABox Starting Screen ...................................................................................... 21 

Figure 3.3.ii: SCABox TDC Senor Value Instruction ................................................................ 21 

Figure 3.3.iii: SCABox Read FIFO Instruction ......................................................................... 22 

Figure 3.3.iv: SCABox Multiple AES Encryptions Instruction ................................................. 23 

Figure 3.3.v: SCABox Python Application UI .......................................................................... 24 

Figure 3.4.i: AXI Interconect Block Diagram .......................................................................... 25 

Figure 3.5.i: UART Connection Block Diagram ....................................................................... 25 

Figure 4.2.i CARRY4 primitive ................................................................................................ 29 

Figure 4.2.ii CARRY8 primitive ............................................................................................... 30 

Figure 4.2.iii: Active Fence Block Diagram ............................................................................. 32 

Figure 4.2.iv: Ring Oscillator Sensor with Libaw-Craig Counter ............................................ 33 

Figure 4.2.v: ZedBoard Design Block Diagram ....................................................................... 34 

Figure 4.2.vi: ZCU104 Design Block Diagram ......................................................................... 35 

Figure 4.2.vii: ZedBoard Floorplaning .................................................................................... 36 

Figure 4.2.viii: ZCU104 Floorplaning ...................................................................................... 37 

Figure 6.1.i: Quantification vs. Time Samples. Average of 500 AES Iterations wihtout 

countermeasure (ZedBoard) .................................................................................................. 41 

Figure 6.1.ii: Pearson's Correlation Plots for the Second Key Byte with no Active Fence .... 42 



Christos Diktopoulos: Mitigating Side-Channel Attacks in the Context of Multi-Tenant FPGA Usage 

 
 

 

vii 

Figure 6.1.iii Quantification vs. Time Samples. Average of 500 AES Iterations with Active 

Fence (ZedBoard) ................................................................................................................... 43 

Figure 6.1.iv: Pearson's Correlation Plots for the Fourth Key Byte with 1024 RO Active Fence

................................................................................................................................................ 44 

Figure 6.1.v:  Pearson's Correlation Plots for the Fourth Key Byte with 4096 RO Active Fence

................................................................................................................................................ 45 

Figure 6.1.vi : ZedBoard CPA Results Plot .............................................................................. 47 

Figure 6.2.i: Quantification vs. Time Samples. Average of 500 AES Iterations without 

countermeasure (ZCU104) ..................................................................................................... 47 

Figure 6.2.ii: Quantification vs. Time Samples. Average of 500 AES Iterations with Active 

Fence (ZCU104) ...................................................................................................................... 48 

Figure 6.2.iii: Pearson's Correlation Plots for the Second Key Byte without Active Fence 

(ZCU104) ................................................................................................................................ 50 

Figure 6.2.iv: Pearson's Correlation Plots for the Fourth Key Byte with 5120 RO Active Fence 

(ZCU104) ................................................................................................................................ 51 

Figure 6.2.v: ZCU104 CPA Results Plot ................................................................................... 52 

Figure 6.4.i Comparisson of Each Platform ............................................................................ 59 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Christos Diktopoulos: Mitigating Side-Channel Attacks in the Context of Multi-Tenant FPGA Usage 

 
 

 

viii 

List of tables 
Table 4.2-1: ZedBoard Design Total Resource Utilization ..................................................... 38 

Table 4.2-2: ZCU104 Design Total Resource Utilization ........................................................ 38 

Table 6.1-1: ZedBoard CPA Results ........................................................................................ 46 

Table 6.2-1 : ZCU104 CPA Results .......................................................................................... 52 

Τable 6.2-2: ZedBoard Vs ZCU104 implementations………………………………………………………….53 

Table 6.3-1: ZedBoard Implementations Vs. Glamocanin et. al. Work ................................. 55 

Table 6.3-2:  ZCU104 Implementations Vs. Glamocanin et. al. Work ................................... 56 

Table 6.3-3: ZedBoard Implementations Vs. Krautter et. al. Work ....................................... 57 

Table 6.3-4: ZCU104 Implementations Vs. Krautter et. al. Work .......................................... 58 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Christos Diktopoulos: Mitigating Side-Channel Attacks in the Context of Multi-Tenant FPGA Usage 

 
 

 

ix 

Acronyms - Abrevations 

ACAP Adaptive Compute Acceleration Platform 

AES   Advanced Encryption Standard 

AMBA       Advanced Microcontroller Bus Architecture 

API  Application Programming Interface 

ARM  Advanced RISC (Reduced Instruction Set Computer) Machines 

AXI  Advanced eXtensible Interface 

CPA   Correlation Power Analysis 

FIFO  First In First Out 

FPGA  Field-Programmable Gate Arrays 

HD   High Density 

HP   High Performance 

HPC  High-Performance Computing 

HW   Hardware  

MIO  Multi-use I/O 

MPSoC  MultiProcessor System-on-Chip 

OS   Operating System 

PCB   Printed Circuit Board 

PDN  Power Distribution Network  

PL  Programmable Logic 

PS  Processing System 

PVT   Process, Voltage and Temperature  



Christos Diktopoulos: Mitigating Side-Channel Attacks in the Context of Multi-Tenant FPGA Usage 

 
 

 

x 

RO   Ring Oscillator 

RSA   Rivest–Shamir–Adleman 

SCA   Side-Channel Attack 

SoC  System-on-chip 

SPA   Simple Power Analysis 

TDC   Time-to-digital converter 

UART Universal Asynchronous Receiver/Transmitter 

US+   UltraScale+ 

 

 

 

 

 



Christos Diktopoulos: Mitigating Side-Channel Attacks in the Context of Multi-Tenant FPGA Usage 

 

Introduction 

1 1 

Chapter 1:  Introduction 

1.1 Background  
 
Field Programmable Gate Arrays (FPGAs) are able to provide high computing efficiency 

and flexibility as they combine the benefits of hardware compute engines with the 

reprogrammability offered by their self-reconfiguration capabilities. They are widely 

deployed as accelerator engines for numerous applications, from embedded to High-

Performance Computing (HPC) and cloud systems, with vendors offering multiple System-

on-Chip (SoC) solutions and cloud service providers such as Amazon AWS [1] providing 

compute instances with one or more FPGA devices.  

  The deployment of FPGAs in cloud services has significantly broadened their reach 

and FPGA-accelerated applications have been gaining sizable traction in the research, 

educational and commercial domains [2],[3],[4]. Nevertheless, this trend began facing an 

obstacle that needs to be surmounted such that the full potential of this type of technology 

can be taken advantage of.  

  Hardware accelerated functions often consume no more but a fraction of the 

available reconfigurable resources of modern FPGA devices. Cloud providers do not have the 

flexibility to provide numerous alternate FPGA devices to match each potential use-case and, 

therefore, for cost efficiency reasons, they tend to offer large devices that are able to 

accommodate the most demanding implementations. As such, more often than not, FPGA 

devices are significantly underutilised and shared in a highly inefficient way among different 

users.  

  It becomes, therefore, apparent that a solution to this problem is to share the 

reconfigurable resources between different applications and/or users, thereby, increasing 

utilisation and cost efficiency. In other words, the goal is to have multiple users cohabiting 

in the same compute instance, which, consequently, leads to a multi-tenancy scenario for 

cloud FPGA devices. Unfortunately, security concerns are raised as Side-Channel Attacks 

(SCAs) are known to be feasible when multiple circuits are implemented on the same fabric 

[5]. That is, neighbouring, albeit independent designs, can be exposed to a number of 

different attacks which pose significant risks [6],[7],[8]. The type of attack that our work 

focuses on, is the power side-channel attack, one of the most popular methods for 

implementing SCAs. 
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1.2 Thesis contributions 
 

  In that context, various countermeasures have been proposed, such as logical 

isolation [9], masking techniques [10], [11] and hiding techniques [12]. The work presented 

in this thesis emulates a 2-tenant FPGA adversary scenario between a malicious user 

implementing a power sensor against a 128-bit AES hardware module.  It evaluates the use 

of different Active Fence configurations, originally introduced by Krautter et al. [12], as an 

algorithm-independent hiding countermeasure against remote power SCAs. In addition, a 

new Active Fence control method that uses a small number of resources is proposed. The 

design and its configurations, are implemented and compared between two platforms. The 

AVNET ZedBoard™ equipped with the Xilinx Zynq®-7000 processor and 7-Series 

programmable logic and the Xilinx Zynq UltraScale+ MPSoC ZCU104 equipped with a quad-

core ARM® Cortex™-A5 and Xilinx UltraScale+ programmable logic, the most commonly used 

programmable logic by cloud providers. 

 

1.3 Thesis structure 
The remainder of this work is organized as follows: 

• Chapter 2: Related Work 

 

• Chapter 3: Platforms and Tools 

 

• Chapter 4: System’s Architecture 

 

• Chapter 5: Experimental Procedure 

 

• Chapter 6: Results and Evaluation 

 

• Chapter 7: Conclusions and Future Work 
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Chapter 2:  Related Work 

2.1 Multi-Tenant Attack Model 
FPGA-based side-channel attacks have been conducted under three 

different scenarios: 
1) Inter-Chip Attack: The Inter-Chip Side-channel proves that an untrusted chip inside a PCB 

can sense voltage variations induced by other chips through the power distribution 

network (PDN). In this exploit, an adversary FPGA is able to perform a CPA attack against 

an AES module and a SPA attack against an RSA module running on another FPGA fabric. 

2) Heterogeneous Chip Attack: Xilinx Zynq technology integrates a dual core ARM processor 

and a FPGA fabric within the same SoC. In [8], malicious ROs were implemented in the 

FPGA fabric to perform a SPA against an RSA algorithm running on a Linux OS inside the 

ARM CPU core. 

3) The main attack model that must be examined in a cloud multi-tenant FPGA scenario is 

the Intra-FPGA Attack, where the FPGA fabric is shared among two or more users for 

hardware module implementation [8], [13], [14]. Each user can program an arbitrary 

design in a partial region of the fabric. Nevertheless, despite the fact that empty slices 

and lines of empty DSP blocks [15] ensure logical isolation between the different users 

and designs, a malicious user can implement voltage sensors in his part of the FPGA fabric 

to remotely monitor voltage fluctuations induced by surrounding computation modules. 

 

 

Figure 2.1.i: Adversary Model Block Diagram 

2.2 Power Distribution Network 
 PDNs deliver power from a main power source to the individual transistors inside an 

electronic chip ([16], [17]) and, therefore, are commonly found within FPGAs and MPSoC 
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chip packages. They are crucial components as they ensure that voltage is properly 

distributed among different parts of the chip so that transition delay remains as stable as 

possible. If the delay surpasses a certain limit, timing violations and errors may occur. As 

such, the power supply level must be as stable as possible. Moreover, some components of 

the chip and the PDN act as parasitic transistors and inductors [16]. Consequently, they have 

an impact on the circuit's switching activity because they generate inductive and resistive 

voltage drops. It becomes, therefore, possible to extract information from implemented 

designs simply by monitoring the switching activity on the chip, through the implementation 

of appropriate voltage sensors. [18] 

2.3 Electrical Level Attacks 
 Side-channel attacks are closely related to the existence of physically observable 

phenomenons caused by the execution of computing tasks in present microelectronic 

devices. For example, microprocessors consume time and power to perform 

their assigned tasks. They also radiate an electromagnetic field, dissipate heat, 

and even make some noise. There are plenty of information sources leaking from actual 

computers that can consequently be exploited by malicious adversaries. 

 Power analysis is a branch of side channel attacks where power consumption data is 

used as the side channel to attack the system. In electronic devices, the instantaneous power 

consumption is dependent on the data that is being processed in the device as well as the 

operation performed by that device. By capturing power consumption of a cryptographic 

alogrithm, the attacker can perform a statistical evaluation to test which key hypothesis 

results in intermediate values that indeed correspond to the observed power consumption. 

For Correlation Power Analysis (CPA), the correct key candidate will show the highest 

correlation when the attack is successful. Because the side-channel leakage is usually very 

small, many traces have to be recorded and evaluated. Thus, side-channel resilience is 

usually measured in the number of traces required for a successful attack. 

 Such attacks are widely studied and typically require physical access to the device to 

capture the power consumption, i.e., to connect the probe of an oscilloscope or to place an 

EM probe in the near vicinity of the device. Yet, recent work has shown remote attacks on 

multi-tenant FPGAs that break with this assumption, i.e., without any physical access to the 

device. Using the on-chip power distribution network as source or carrier of side-channel 

information, user programmable FPGA primitives can be utilized in order to implement 

an on-chip voltage sensor. 

 A circuit’s activity will result in voltage fluctuations across the PDN, independent of 

any logical connection. Given that, the propagation delay of a circuit depends on the supply 
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voltage, capturing the activity of a circuit becomes the task of measuring the speed of the 

circuit.  

2.4 Remote Power Side-Channel Attack Sensors 
Remote power side-channel attacks, namely the instigation of an attack from afar and 

with no physical access to the device, exploit voltage fluctuations on the power distribution 

network of the chip by implementing reconfigurable logic sensors on the fabric. These 

sensors are capable of capturing nanosecond voltage fluctuations [19] and, therefore, make 

it possible for malicious users to extract sensitive data from algorithms, such as the key of a 

cryptographic hardware module, even without any physical access to the chip [20], [8], [14]. 

Commonly, there exist two main types of voltage sensors for mounting remote 

power side-channel attacks. The Ring Oscillator (RO) based delay sensor and the taped delay-

line or Time-to-Digital Converter (TDC) sensor. 

2.4.1 Ring Oscillator Sensors 
RO sensors consist of a NAND gate, which uses as inputs an external enable signal 

and the output of the gate itself. When enabled, it creates an infinite oscillation and its 

propagation delay changes along with voltage variations, effectively changing its oscillation 

frequency. Therefore, measuring the frequency variations of the RO with digital counters, 

provides information on the power consumption [13]. 

2.4.2 Time-to-Digital Converter Sensors 
On the other hand, TDC-based sensors work by checking how far a signal can 

propagate through a path by adding latches between the logic elements of that path. The 

simplest path is a chain of buffers. As the delays of these buffers are sensitive to any joint 

process, voltage, and temperature (PVT) variations, they will become measurable by reading 

the latches. To do that, a signal is connected to both the input of the first buffer and the latch 

enable signals, which means that the signal on the wire will be faster than the same signal 

delayed through the buffer elements. A readily available and precisely timed signal is the 

clock signal itself. At half of the clock period, the latches will become disabled and keep the 

state how far the clock propagated through the buffer chain, which can then be processed 

further.  
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Figure 2.4.i : Initial Delay Line of TDC and Timing Diagram 
 

 

 

 

 

 The initial delay needs to be adjusted for less than a half of the clock period (the time 

when latches are enabled). Then, latches are connected between the last buffer elements, 

marked as the observable delay line, that fall within the expected delay variation that we 

want to observe with the sensor. This limited operating range is chosen based on the 

acceptable area overhead and expected operating range values. 
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Figure 2.4.ii: Three Scenarios of TDC Output 

 

 

Comparably, the circuitry required by RO sensors is less complex and they, therefore, 

require lower FPGA fabric resources to be implemented. Nevertheless, they offer less 

accuracy, since the use of counters for measuring oscillation frequency does not allow for 

nanosecond scale sampling. In addition, they are easy to detect and flag as malicious designs, 

hence, not that much preferable as an attack mechanism. In contrast, TDC sensors enable 

nanosecond scale measurement of the FPGA's internal voltage fluctuations and can be used 

as thermal sensors. Also, it is difficult for design tools to block their implementation. Thus, 

TDCs constitute a far more attractive implementation for power SCAs. 
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Figure 2.4.iii: RemoteRemote Power Side-Channel Attack Sensors 

 

2.5 Advanced Encryption Standard Algorithm (AES) 
 The Advanced Encryption Standard is a symmetric block cipher that process data 

blocks using cipher keys with lengths of 128, 192 and 256 bits [16]. Each data block consists 

of 4×4 array of bytes called the state. The AES is a round-based encryption algorithm. The 

number of rounds, Nr, is 10, 12, or 14, when the key length is 128, 192 or 256 bits, 

respectively. In the encryption of the AES algorithm, each round, except the final round, 

performs four transformations: AddRoundKey, SubBytes, ShiftRows and MixColumns, while 

the final round does not have the MixColumns transformation. The key used in each round, 

called the round key, is generated from the initial key by a separate key scheduling module. 

 The SubBytes transformation is a non-linear byte substitution, operating on bytes 

independently. The SubBytes is invertible and is constructed by the composition of the 

following two transformations:  

•  Inversion in the GF(28) field, modulo an irreducible polynomial m(x) given by:  

 

                       m(x) = x8 + x4 + x3 + x + 1                            (1) 

 

• Affine transformation defined as follows: Y = AX−1 + b, where A is a 8×8 fixed matrix 

and b is a 8×1 vector-matrix. 
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 The ShiftRows transformation is a circular shifting operation on the rows of the state 

with different numbers of bytes. As seen in below, the first row of the state is kept as it is, 

while the second, third and fourth rows cyclically shifted by one byte, two bytes and three 

bytes to the left, respectively.  

 

 

 The MixColumns transformation operates on the state column by column, treating 

each column as a four-term polynomial. The columns are considered as polynomials over 

GF(28) and multiplied x4 + 1 with a fixed polynomial a(x) given by: 

A(x) = {03}x3 + {01}x2 + {01}x + {02}                                                      

In matrix form, the MixColumns transformation can be expressed as: 

 

 

 The AddRoundKey is a XOR operation that adds a round key to the state in each 

iteration, where the round keys are generated during the Key Expansion phase.  

 The AES algorithm takes the cipher key and performs a Key Expansion routine to 

generate a key schedule. The Key Expansion generates a total Nb(Nr + 1) words, where  

Nb = 4. 
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Figure 2.5.i: AES Block Diagram 
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2.6 Corelation Power Analysis 
 The hypothesis of the correlation power analysis (CPA) is that the measured power 

traces of the target device are correlated to the operands and operations being processed 

at that time. This type of power analysis technique requires a power model to attack a 

cryptographic device. The adversary needs to build a hypothetical model of the 

cryptographic device under attack. He can recover secret data by analysing the power 

consumption usage during cryptographic operations. An efficient way to calculate the 

correlation coefficient, between theoretical predictions of the power consumption and real 

power measurements is to use the Pearson correlation function. 

 The Pearson correlation function is the most widely used way to compute the linear 

relationship between data. Whence, it is an excellent choice for statistical analysis tool when 

it comes to perform CPA attacks. 

Given N plaintexts/ciphertexts, P the predicted power calculated by a power model and W 

the equivalent real power traces measured when processing the cryptographic operation. 

The correlation coefficient is defined as: 

𝜌(𝑊, 𝑃) =
Cov(W, P)

√𝑉𝑎𝑟(𝑊) √𝑉𝑎𝑟(𝑃)
 

                                                                                               

where W and P, are N-dimension vectors, Cov denotes the covariance operation, and Var 

denotes the variance operation. 

 The Pearson correlation coefficient can take values from -1 to +1. A value of +1 shows 

that the W and P are perfectly linear related by an increasing relationship, a value of -1 shows 

that W and P are perfectly linear related by a decreasing relationship, and a value of 0 shows 

that W and P are not linear related by each other. 

 

2.6.1 Attack Methodology 
 The AES transforms 128-bit plaintext with the 128-bit key to 128-bit ciphertext. Each 

round has a round key: k1 to k10, computed from the original key k0. The attack is performed 

on the last round encryption because the latter has been isolated from the other rounds and 

has relatively clear power signals [14]. Since the AES Key Expansion is invertible, it is then 

possible to compute the initial secret key, k0, going backwards.  

 Then the power consumption of the last round encryption is predicted. Let C10 the 

output ciphertext of the last round and D10 the input data to this round. The ciphertext C10 is 

picked up to compute D10 by Inverse-ShiftRows and Inverse-SubBytes using the guessed keys 

K10 (256 possible values). 

𝐷10 = 𝑆𝑢𝑏𝐵𝑦𝑡𝑒𝑠−1(𝑆ℎ𝑖𝑓𝑡𝑅𝑜𝑤𝑠−1(𝐾10(𝑔𝑢𝑒𝑠𝑠) XOR 𝐶10))  
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After that, the prediction of power consumption of the last round is calculated by the 

Switching Distance (SD) between C10 and D10 as presented below. 

𝑃𝑝𝑟𝑒𝑑𝑖𝑎𝑐𝑡𝑒𝑑 = 𝑆𝐷(𝐷10, 𝐶10) 

 
 The Switching Distance model (SD) is based on the fact that 0→1 and 1→0 transitions 

consume different power in CMOS device. The Switching Distance of the transition 0→1 is 

assigned 1, the Switching Distance of the transition 1→0 is assigned Φ which is named 

Switching Distance factor. 

 The correlation coefficient between the measured power consumption, denoted 

Pmeasured, and the predicted power consumption Ppredicted is calculated as follows:  

𝜌(𝑃𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑, 𝑃𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑) =  
𝐶𝑜𝑣(𝑃𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑, 𝑃𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)

√𝑉𝑎𝑟(𝑃𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑)√𝑉𝑎𝑟(𝑃𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)
 

where Cov(Pmeasured,Ppredicted) is the covariance between the measured power consumption 

and the predicted power consumption, the Var(Pmeasured) and Var(Ppredicted) are the variance 

of the Pmeasured and the Ppredicted respectively.  

 The correlation coefficient measures the linear relationship between Pmeasured and 

Ppredicted. Its value will always be between -1 to 1, when the correct key guess appears, the 

correlation coefficient is supposed to be highest. 

 

 
Figure 2.6.i: AES Last Round 
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2.7 Defence Mechanisms Against SCAs 
 A number of countermeasures against power SCAs exist and can be considered in the 

context of multi-tenant cloud FPGAs. One such countermeasure is to perform checks on the 

user bitstreams, prior to programming the FPGA resources [21]. Checks can be performed 

for known malicious designs, such as voltage sensors, and upon detection the 

reconfiguration of the device can be blocked. One such instance, involves blocking designs 

that contain ROs, however, there are implementations of sensors that can bypass those 

checks and therefore the detection mechanisms must be updated frequently and the 

platform provider must be aware that it may not be possible to capture every possible 

malicious design. 

  Moving at the device level, a common countermeasure is the logical isolation 

between the different design instances. Empty slices surrounding each design, create an 

isolation barrier between them, known as a Passive Fence, aiming at preventing 

neighbouring designs from sharing device components as a result of their proximity at the 

physical level. Although this has been a documented design practice for improving security 

in FPGAs, these Passive Fences have proven to be entirely ineffective against attacks at the  

electrical level [9], [15], [22], [13]. Connections remain through the power distribution 

network and, therefore, side-channel attacks may be performed no matter the size or 

properties of the Passive Fence(s). Consequently, alternative countermeasures against 

power side-channel attacks need to be considered, making them one of the main topics of 

ongoing research on FPGA security. Presently there are two types of such countermeasures, 

i.e., Masking and Hiding. 

2.7.1.1 Masking 
 

 It applies algorithmic-level changes that focus on separating intermediate values and 

computations into different design module instances [10]. This way, the sensitive data can 

only be extracted by combining the values computed by each individual module. This 

method amplifies the noise exponentially, making attacks harder to mount, [23] and [24]. 

However, it comes with significant disadvantages. Each algorithm must be examined 

individually and a different implementation has to be devised. Furthermore, in numerous 

cases, e.g., non-linear functions, it may be impossible to divide up the computation 

effectively into individual parts. Lastly, this method creates an excessive area overhead and 

increases the complexity as well as the cost of the design[25]. 
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2.7.1.2 Hiding 
 The main goal of hiding is to reduce the Signal-to-Noise Ratio (SNR) at the electrical 

level and it follows two approaches. The first is based on the introduction of noise sources, 

aiming at artificially increasing the level of noise. Noise generators have been implemented 

in the past using, for instance, shift registers, BRAM write collision, and short-term short 

circuits[11]. The second approach involves the generation of correlated noise and clock 

randomisation to spread side-channel information. This second direction aims at equalising 

the instantaneous power consumption by balancing the overall consumption. However, as 

perfectly balanced computation paths are hard to achieve, a proposed design practice to 

accomplish them is to duplicate and invert the computations in the victim design, as 

proposed in [26] for a cryptographic module. The drawback of this practice is that it results 

in a large area overhead rendering it impossible to be used with architectures that need 

many resources. Hence, what has been considered as a solution to the cost of significant 

fabric resources when aiming for power equalisation, is the use of ROs. 

2.7.1.3 Active Fence Countermeasure 
  As an attack mechanism, RO are used to detect voltage fluctuations on the PDN of a 

chip, nevertheless, they can also be used for defence purposes by increasing the overall 

power consumption. Thus far, the only work on the use of ROs as a defence mechanism 

against remote power side-channel attacks is the RO Active Fence presented in [12]. Its 

presence can affect the voltage fluctuations and induce additional noise to what is being 

observed by a sensor implemented by a malicious co-tenant. Finally, by introducing an Active 

Fence between the different users, a two to three orders of magnitude leakage reduction is 

observed. 

 The activation and deactivation of the ROs is controlled and when they are enabled, 

they have a high switching activity, which leads to additional power consumption. Thus, at 

the expense of a relatively small area overhead, it is possible to efficiently inject a high 

voltage drop into the power grid, which equalises the PDN's voltage fluctuations, i.e., the 

indirect information leakage from the victim or target module. In the original scheme of [12], 

the fence size, in terms of hardware resources, is the same as those of the target module 

and its activation is controlled using either a TDC or a random generator. Nevertheless, these 

two approaches raise a number of issues. 

  First, an activation mechanism based on a TDC may be superfluous, which means that 

a simpler but equally effective design can be used for the same job. In addition, an activation 
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mechanism based on a random generator may be wasteful in terms of resources and power 

consumption as well as the fact that, by the authors' own admission, it is a worse solution 

when compared to the TDC activation method. Finally, the extent to which the fence size 

affects the outcome of the attack, has to be researched further. It may be possible for fences 

of less area overhead, compared to the one of the modules under attack, to remain effective 

and discourage potential attacks. 

 

 

 

 

Figure 2.7.i: Adversary Model With Active Fence Block Diagram 
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Chapter 3:  Platforms and Tools 

3.1 Platforms 
The two main platforms that were used to emulate and implement the adversary 

scenario are the following: 

3.1.1 ZedBoard™ 
 The ZedBoard™ [27], is a low-cost development board for the Xilinx Zynq®-7000 All 

Programmable SoC. The Zynq®-7000 family is based on the Xilinx SoC architecture. ZedBoard 

integrates a feature-rich dual-core ARM® Cortex™-A9 based processing system (PS) and 28 

nm Xilinx programmable logic (PL) in a single device. The ARM Cortex-A9 CPU is the heart of 

the PS and also includes on-chip memory, external memory interfaces, and a rich set of 

peripheral connectivity interfaces. Zedboard is supported by the zedboard.org community 

website where users can collaborate with other engineers also working on Zynq designs. The 

ZedBoard is supported by Xilinx's Vivado Design Suite, including the free WebPACK version. 

Some of its core features include : 

 

 

Figure 3.1.i: ZedBoard Platform 
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Figure 3.1.ii: ZedBoard Block Diagram 

 

 

3.1.2 ZYNQ UltraScale+ MPSoC ZCU104 
 The ZCU104 [28], provides a rapid prototyping platform using the XCZU7EV-

2FFVC1156 device. The ZU7EV contains PS hard block peripherals exposed through the multi-

use I/O (MIO) interface and several FPGA programmable logic (PL), high-density (HD), and 

high-performance (HP) banks. The ZU7EV device integrates a quad core Arm® Cortex™-A53 

processing system (PS) and a dual-core Arm Cortex-R5 real-time processor, which provides 

application developers an unprecedented level of heterogeneous multiprocessing. The 

ZCU104 evaluation board provides a flexible prototyping platform with high-speed DDR4 

memory interfaces, multi-gigabit per second serial transceivers, a variety of peripheral 

interfaces, and FPGA fabric for customized designs. 
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Figure 3.1.iii: ZCU104 Platform 

 

 

 

Figure 3.1.iv: ZYNQ UltraScale+ MPSoC ZCU104 Block Diagram 
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3.2 Basic Tools 
The tools that were used for the implementation of the design, the bitstream 

generation, the Bare Metal application are the following. 

3.2.1 Xilinx Vivado Design Suite 2020.2 
The Xilinx® Vivado® Design Suite enables implementation of the following Xilinx 

device architectures: Versal™ adaptive compute acceleration platform (ACAP), UltraScale™, 

UltraScale+™, and Xilinx 7 series FPGA. A variety of design sources are supported, including:  

•  RTL designs 

•  Netlist designs 

•  IP-centric design flows 

shows the Vivado tools flow. 

Vivado implementation includes all steps necessary to place and route the netlist onto device 

resources, within the logical, physical, and timing constraints of the design. 

 

Figure 3.2.i: Vivado Desing Suite High-Level Design Flow 

 

 

3.2.2 Xilinx Vitis Unified Software Platform Documentation 
For FPGA-based acceleration, the Vitis™ core development kit lets you build a 

software application using an API, to run hardware (HW) kernels on accelerator cards. The 

Vitis core development kit also supports running the software application on an embedded 

processor platform running Linux, such as on Zynq UltraScale+ MPSoC devices. For the 

embedded processor platform, the Vitis core development kit execution model also uses the 
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OpenCL API and the Linux-based Xilinx Runtime (XRT) to schedule the HW kernels and control 

data movement. 

             The Vitis software platform allows you to migrate data center applications to 

embedded platforms. The Vitis core development kit includes the v++ compiler for the 

hardware kernel on all platforms, the g++ compiler for compiling the application to run on 

an x86 host, and an Arm® compiler for cross-compiling the application to run on the 

embedded processor of a Xilinx device. 

 

Figure 3.2.ii: Xilinx Vitis Software/Hardware Build Process 

 

3.3   SCAbox UI: Vitis Bare-Metal App and Python Corelation Analysis App 
 To control the design and emulate the adversary scenario we modified and used the 

open-source code of the SCABoxApp. It consists of 2 main parts, the C code for the Bare-

Metal application that runs on the platforms’ processing systems and a Python application 

that communicates with the design through serial connection and conducts the Corelation 

Power Analysis attack.  

3.3.1 Vitis Bare-Metal Application 
 The Vitis Bare-Metal App runs on the processing systems of the boards. Its main 

purpose is to enable and control the UART communication between the user and the design. 

Through serial connection the user can send instructions to the PS and receive the outputs. 
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The hardware part that enables the communication of the PS with the rest of the design is 

the AXI protocol and the relevant implemented modules in the design.  

 The user can run a single AES encryption by entering a 128-bit text and a 128-bit key 

in hexadecimal format, or run multiple AES encryptions with random texts and a certain key 

and receive the ciphertext(s). While the AES encryption are occurring, the memory is enabled 

and stores sensor measurements. The number of measurements in each iteration can also 

be configured in the instructions.   

 The user can also enter instructions to get sensor values at any time, or read the FIFO 

data that are being displayed in a binary format.  

 

Figure 3.3.i: SCABox Starting Screen 

 

 

Figure 3.3.ii: SCABox TDC Senor Value Instruction 
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Figure 3.3.iii: SCABox Read FIFO Instruction 
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Figure 3.3.iv: SCABox Multiple AES Encryptions Instruction 

3.3.2 Python Corelation Analysis Application 
 After the implementation of the design, the bitstream generation and the 

programming of the boards with the bare-metal application, the remaining part to complete 

a side-channel attack is to collect the required data so that the Corelation Power Analysis 

attack can be performed.  

 The Python application of the SCAboxApp runs on any computer connected to the 

board’s UART connector via USB. It uses the instructions mentioned in Section 3.3.1 to run 

multiple AES iterations in chunks and gather sensor measurements. After each chunk has 

concluded, it performs a Corelation Power Analysis attack on the last cycle of each AES 

iteration as shown in Section 2.5 using the sensor’s data and the outputted ciphertext. The 

key used to perform the attack is known, so we can observe when we have gathered 

sufficient amount of data for the attack to be successful.  

 The application has a graphic interface that displays plots of the Corelation Analysis. 

To conduct an attack, the user defines the number of AES iterations (n), the number of 

chunks(c) and the target of the attack. n*c gives us the total number of iterations that will 
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be run in a single attack. The target of the attack can either be the USB port of the board that 

runs the design or a directory with stored binary files of previous attacks. Filtering can be 

also applied on the acquired data, but is not necessary for the attack to be successful. 

 

Figure 3.3.v: SCABox Python Application UI 

 

3.4 The AXI protocol 
 The AXI is a point-to-point interconnect that designed for high-performance, high-

speed microcontroller systems. The AXI protocol is based on a point-to-point interconnect 

to avoid bus sharing and therefore allow higher bandwidth and lower latency. AXI is arguably 

the most popular of all AMBA interface interconnect. 

 The essence of the AXI protocol is that it provides a framework for how different 

blocks inside each chip communicate with each other. It offers a procedure before anything 

is transmitted, so that the communication is clear and uninterrupted. That way, different 

components can talk to each other without stepping on each other. The procedure for the 

AXI protocol is as follows: 

• Master & slave must “handshake” to confirm valid signals 

• Transmission of control signal must be in separate phases 

• Separate channels for transmission of signals 

• Continuous transfer may be accomplished through burst-type communication 

 

By working with the master and slave devices, the AXI protocol works across five 

addresses that include read and write address, read and write data, and write response. 
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Since each channel has its own unique signal, it can send the handshake response 

uninterrupted so that it can be received and put into order. That way, the channel that has 

priority will be responded to first and so forth. The source must provide a valid signal and 

one that gets a proper response from the receiver. 

By having the transmission performed in separate phases, it allows the transfer of 

information to be performed in an orderly manner. This means that a handshake or 

agreement is reached first, then the information is moved from the source to the recipient. 

And that’s how the AXI protocol works to move information between different sources 

without interference. 

 
Figure 3.4.i: AXI Interconect Block Diagram 

 

3.5 UART serial connection 

 UART stands for Universal Asynchronous Receiver/Transmitter. In UART 

communication, two UARTs communicate directly with each other. The transmitting UART 

converts parallel data from a controlling device like a CPU into serial form, transmits it in 

serial to the receiving UART, which then converts the serial data back into parallel data for 

the receiving device. Only two wires are needed to transmit data between two UARTs. Data 

flows from the Tx pin of the transmitting UART to the Rx pin of the receiving UART. 

 

Figure 3.5.i: UART Connection Block Diagram 

 

https://www.circuitbasics.com/wp-content/uploads/2016/01/Introduction-to-UART-Basic-Connection-Diagram.png
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UARTs transmit data asynchronously, which means there is no clock signal to synchronize 

the output of bits from the transmitting UART to the sampling of bits by the receiving UART. 

Instead of a clock signal, the transmitting UART adds start and stop bits to the data packet 

being transferred. These bits define the beginning and end of the data packet so the 

receiving UART knows when to start reading the bits. 

 When the receiving UART detects a start bit, it starts to read the incoming bits at a 

specific frequency known as the baud rate. Baud rate is a measure of the speed of data 

transfer, expressed in bits per second (bps). Both UARTs must operate at about the same 

baud rate. The baud rate between the transmitting and receiving UARTs can only differ by 

about 10% before the timing of bits gets too far off. Both UARTs must also must be 

configured to transmit and receive the same data packet structure. 
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Chapter 4:  System Architecture 
 In this chapter, there is an extensive description of the hardware designs that were 

implemented in this thesis, including the parameters and the thought process of the full design.  

 We emulate a multi-tenant scenario, where the fabric is shared among two users. A 

malicious user implements voltage fluctuation sensors to perform a Correlation Power Analysis 

(CPA) attack against a victim user's AES hardware module. The victim sends plaintext and 

receives the cyphertext, while the malicious user receives sensor measurements. 

  The attacker and victim modules are separated by columns of unused slices and DSP 

blocks. This ensures passive isolation between the users. Subsequently, we implement our Active 

Fence countermeasure between the two users and nearer the AES module. In both of the 

platforms, most of the implemented modules’ code is identical. The hardware modules that are 

different between the platforms, are the implementations of the TDC sensors and the PS relevant 

modules. That is because the platforms use different architecture libraries. Finally, the resource 

utilisation of each platform is also different. 

4.1 Emulation Assumptions 
To consider the attack successful and achieve the key retrieval, we make some 

assumptions and compromises that do not contradict a possible real scenario. More 

specifically: 

• The malicious user has access to the ciphertext. This is possible if a public channel is used 

by the victim for data transfers. 

• The 128-bit key of the AES does not change throughout the attack. 

• The AES module works with lower operating frequency than the sensor, so that there is 

more information for each AES cycle. 

• The sensor readings are aligned exactly to each encryption. When a command is given to 

the AES for encryption, a start signal enables the memory to store sensor values, until a 

stop signal is sent at the end. This could be avoided using trace alignment techniques on 

the sensor traces. 

 

 

4.2 Victim and Attacker Emulation 

4.2.1 AES algorithm 
On the victim's side, both platforms used the open-source, 128-bit AES core 

implemented in SCABox [29] by Gravelier et al ([13]). The module ciphers and deciphers 128-
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bit words using a 128-bit key and produces a valid output every 11 clock cycles, one for 

loading the data and ten for each round of the AES. The 128-bit key is defined as a constant 

in the VHDL code, but can also be changed through the bare-metal application commands. 

An AXI wrapper is used for the communication of the module with the PS.  Using serial 

communication, we send 128-bit plaintexts and receive the 128-bit ciphertexts. 

4.2.2 TDC – sensor Bank 
 The implemented TDC sensor is different for each platform, because of the different 

architecture libraries that they use. The ZedBoard™ Uses the 7 series architecture library, 

while the ΖCU104 uses the UltraScale+ architecture library. 

4.2.2.1 ZedBoard™ sensor Implementation 
The TDC sensor implemented on the ZedBoard platform consists of an initial delay 

line of 16 open latches and 16 LUTS acting as buffers, placed alternately, followed by 16 more 

LUTS/buffers. The initial delay line is driven by the clock signal and drives the input of the 

observable/sampled delay line.  

The observable delay line consists of a carry chain line of CARRY4 primitives included 

in the 7 series architecture library. Furthermore, registers at each byte output of the carry 

chain sample the delay line.  CARRY4 primitives are used for carry chain counters, adders and 

subtractors. They consist of 4 multiplexers in line as shown in Fig.4.2.i. They are useful to 

implement a long chain of buffers with small area overhead and are also more sensitive in 

voltage fluctuations than LUTS and Latches, thus they offer a good choice for TDC sensors. 8 

CARRY4 primitives and 32 registers create a 32-bit wide observable delay line of the TDC 

sensor, enough to capture the magnitude of the voltage transitions occurring. The registers 

are driven by the clock signal that also drives the initial delay line. 
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Figure 4.2.i CARRY4 primitive 

4.2.2.2 ΖCU104 sensor Implementation 
The TDC sensor implemented on the ZCU104 board consists of an initial delay line of 

64 open latches and 64 LUTS acting as buffers, placed alternately, followed by 64 more 

LUTS/buffers. The initial delay line is driven by the clock signal and drives the input of the 

observable/sampled delay line.  

The observable delay line consists of a carry chain line of CARRY8 primitives included 

in the UltraScale+ architecture library. Furthermore, registers at each byte output of the 

carry chain sample the delay line. They consist of 8 multiplexers in line as shown in Fig.4.2.ii. 

They have the same use as the CARRY4 primitive used in the ZedBoard design. They can also 

be configured as 2 CARRY4 modules. 8 CARRY4 primitives and 32 registers create a 32-bit 

wide observable delay line of the TDC sensor, enough to capture the magnitude of the 

voltage transitions occurring. The registers are driven by the clock signal, shifted 45°.  

 

In both platforms, the sensor bank consists of 8 TDC sensors followed by an adder.  

Each sensor has a range of 32 values. The adder encodes the output binary value of each 

adder to the corresponding decimal value and adds them. The final output of the bank drives 

the data input port of the FIFO memory. 

The TDC sensors require different implementation in each platform, because of the 

different fabric architectures. The delays of each board’s primitives differ; thus, the sensors’ 
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initial delay lines require different length to produce similar result. In the same manner, the 

registers of the observable delay line use different clock signals. 

 

 

Figure 4.2.ii CARRY8 primitive 

4.2.3 Memory 
A hardware FIFO memory, generated with the Vivado Memory Generator tool, is used 

to store the TDC sensor measurements. The memory has a size of 270 Kbits. One AES 
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iteration corresponds to 500, 32-bit TDC sensor measurements, thus it can store up to 17 

AES iterations before being full. 

 The memory is being controlled by simple FSM machine, as shown below.  

 

Figure 4.2.3: Memory Controller FSM 

 

4.2.4 Active Fence Architecture 
Our Active Fence is implemented using banks of ROs. LUT2 primitives are used as 2-

input NAND gates to implement the RO with an enable signal. Moreover, we map RO banks 

between the attacker and the victim, placing them in a densely packed uniform array, as this 

represents the most effective way[12]. 

As previously mentioned, the goal of the Active Fence proposed in [12] was to 

neutralise the effect of the victim's core on the instantaneous power consumption. This, 

nonetheless, can potentially result in relatively big area overheads, depending on the 

algorithm that needs protection since the Active Fence needs to occupy as many resources 

as the victim's algorithm, in order to have an equally strong influence on the PDN. Our focus 

is now different since we are trying to establish the level of effectiveness for various fence 

sizes, all with smaller number of resources occupied than the module under protection, for 

increasing noise levels. In our case the AES-core occupies 4271 CLBs as LUTs, CARRYs and 

MUXs and 2026 registers. Our work tests the fence using six different configurations, with 

1024, 2048, 3072, 4096, 5120 and 6144 LUTS as ROs divided in 16 banks, using 64, 128, 192, 

256, 320 and 384 ROs per bank respectively.  
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Figure 4.2.iii: Active Fence Block Diagram 

 

 A single RO is used to control our proposed Active Fence countermeasure. Although 

ROs have a lower resolution than TDCs as power sensors, they use significantly less resources 

[2]. Therefore, in this instance, where we are interested in introducing noise injection and 

not in hiding through the power consumption matching between the active fence and the 

protected module, we prefer an efficient countermeasure with a low cost of resources. That 

is the reason why we do not need a high-resolution sensor for controlling the fence. Despite 

the lower resolution, a single RO remains sensitive to adequate transitions in power 

consumption and can, therefore, effectively control the fence activation. Additionally, the 

quantisation error of a single RO can work in favour of this goal, meaning that the variable 

frequency can lead to more unpredictable activation patterns and, thus, in random noise 

injection.  

 We measure the RO’s frequency using an 8-bit Libaw–Craig ring counter. The sensor 

uses only one LUT for the RO, eight flip-flops for the counter and an 8-bit register. The output 

register drives an encoder with sixteen possible values while the ROs of the fence have been 

divided into sixteen banks. It is worth noting that despite the fact that the sensor has a range 

of sixteen values, it is not necessary for all of them to be reached. That is a function of the 

power consumption transitions and their variance, meaning that there may be instances 

where this variance does not become high-enough to lead to the activation of all sixteen 

sensor values. As a result, some of the RO banks may never be activated or deactivated, 

however, this does not constitute a limitation to our results.  
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Figure 4.2.iv: Ring Oscillator Sensor with Libaw-Craig Counter 

4.2.5 Design Clocking 
The design implemented on the ZedBoard platform is driven by three clock domains 

that are outputted by the PS, while the design implemented on the ZCU104 is driven by four 

clock domains, that are outputs of a clock manager that is driven by the 100MHz PS main 

clock output. A 50 MHz clock drives the AXI interconnect and a 10 MHz clock is used for the 

AES core, for both platforms. Also, a 200 MHz clock drives the sensor delay line. In the 

ZCU104 platform, a 45° shifted 200 MHz clock drives the sensor's output register and the 

memory. Finally, the UART baud rate for the serial communication is set to 115200 for the 

ZedBoard, and 460800 for the ZCU104. 

4.2.6 Remaining Modules 
The remaining modules include the PS IP Core and the AXI protocol modules included 

in the Vivado IP library for each platform. The AXI modules enable the communication 

between the hardware modules and the PS, while the PS core enables the UART 

communication of the design, outputs the main clock(s) and runs the bare metal application 

of Vitis.  

All the hardware modules were tested with the Vivado simulation tool separately to 

validate their correct functionality before being combined in a single design. 

The remaining part of this chapter displays the Block Diagram, the FPGA floorplan 

and the resource utilization of the design for each platform.  
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Figure 4.2.v: ZedBoard Design Block Diagram 
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Figure 4.2.vi: ZCU104 Design Block Diagram 
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Figure 4.2.vii: ZedBoard Floorplaning 
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Figure 4.2.viii: ZCU104 Floorplaning 
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  CLBs as REGISTERs as CLOCK as 

# Module RAM36 CARRYs LUTs MUXFs SRLs SDRs LATCHes BUFFER PLL 

1 AES 0 6 3323 942 0 2026 0 1 0 

2 MEM 7.5 13 185 0 0 238 0 0 0 

3 MEM ctrl 0 0 6 0 0 3 0 0 0 

4 TDCs bank 0 38 2506 640 0 1505 512 0 0 

5 RO sensor 0 0 2 0 0 16 0 0 0 

6 Active Fence 0 0 

1024/ 

2048/ 

3072/ 

4096/ 

5120/ 

6144 

0 0 0 0 0 0 

7 
PS8 AXI 

Periph 
0 8 1461 2 45 1393 0 0 0 

8 RST PS8 0 0 19 0 1 34 0 1 0 

9 CLK WIZ 0 0 0 0 0 0 0 4 1 

10 ZYNQ PS Occupies 1 ADVANCED PROCESSOR 1 0 

     

Table 4.2-2: ZCU104 Design Total Resource Utilization 

0 Module FLOP_LATCHes CARRYs LUTs MUXFs CLOCK BMEM DMEM IO CLK HARD_IP 

1 AES 2025 11 3324 942 0 0 0 0 0 0 

2 MEM 238 26 183 0 0 7.5 0 0 0 0 

3 MEM ctrl 3 0 6 0 0 0 0 0 0 0 

4 TDCs bank 1633 79 1325 208 0 0 0 0 0 0 

5 RO sensor 0 0 2 0 0 0 0 0 0 0 

 

 

6 

 

 

Active 

Fence 

0 0 

1024/ 

2048/ 

3072/ 

4096/ 

5120/ 

6144 

0 0 0 0 0 0 0 

7 
PS7 AXI 

Periph 
610 12 589 2 0 0 65 0 0 0 

8 RST PS7 33 0 20 0 0 0 1 0 0 0 

9 
Processing 

system7 
0 0 0 0 0 0 0 130 3 1 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 

Table 4.2-1: ZedBoard Design Total Resource Utilization 
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Chapter 5:  Experimental Procedure 
 In this chapter, there is a step-by-step description of the experimental process. 

 As a first step we use the VHDL and Verilog code of the modules, the Vivado IP library 

and the Vivado connection automation tool to create a Block Design in the Vivado 2020.2. After 

the simulation, the synthesis and the implementation of the design, we generate the bitstream 

and export the hardware specification (.xsa) file. 

 Using the Xilinx Vitis 2020.2 we import the .xsa file exported by Vivado to generate the 

correct device platform and create an application project that runs on this platform. We import 

the .c code files for the Bare-Metal application, define the needed libraries and directories for 

the compiler and build the Vitis project. If there are no errors, we establish connection with the 

board connected to the computer and download the application and the design to the board. 

 At this point, we have created and downloaded a working setup to emulate a two-tenant 

power Side-Channel attack scenario. By connecting to the board’s serial port, we test the basic 

instructions to see if the design is fully functional.   

 Lastly, we run the Python application. We define the number of AES iterations, the 

number of chunks and the serial port of the board as the target to conduct a Corelation Power 

Analysis. We then observe and evaluate the results. We repeat the whole process for each active 

fence configuration in both boards.  

  We conduct each attack multiple times, as the results may differ, especially when the 

active fence countermeasure is present. We take into account the worst-case scenario, meaning 

the attack that is successful with the least acquired traces.  
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Chapter 6:  Results and Evaluation 
In this chapter, we present and evaluate the results of each platform. Then we compare 

the results between the platforms and between similar works. The plots analysed in this 

chapter are the SCABox python application plots and plots made by the results of the 

conducted attacks. The SCABox python application displays three plots that are useful for 

our conclusions: 

• The Quantification Vs. Time Saples plot, which displays the temporal average of the TDC 

measurements, i.e., the time samples, of all the AES iterations 

• The Pearson’s Correlation Vs. Traces Acquired plot, which displays the Pearson’s 

Correlation of the 256 possible values of a byte, in relation to the number of the AES 

iterations, i.e., the traces that have been collected 

• The Pearson’s Correlation Vs. Time Samples plot, which displays the Pearson’s 

Correlation of the 256 possible values of a byte, in relation to the temporal average of 

the TDC measurements, i.e., the time samples of the AES iterations. 

The emulation experiments implemented on the two platforms operate on the premise 

that a malicious entity uses the intercepted ciphertext to create a power consumption 

hypothesis for each key byte value per AES encryption. Then, by gathering TDC sensor data, 

it becomes possible to calculate the correlation between each hypothesis and the actual 

measurements, selecting the value with the highest correlation as the most probable to be 

true. The configuration of an Active Fence of ROs between two adversary users adds noise 

to the sensors' readings, which increases the size of data that needs to be acquired and 

processed and, subsequently, the time for the most probable value to reach the true key 

byte.   

 Based on the above, we implemented six different Active Fence configurations, using 

a different number of ROs each time, i.e., 1024, 2048, 3072, 4096, 5120 and 6144. These 

numbers correspond to approximately 17%, 33%, 50%, 67%, 83% and 100% of the total AES 

module resources, respectively. The attacks for each configuration were ran multiple times, 

measuring the minimum number of the AES iterations, i.e., the least data needed to be 

gathered for the most probable byte value hypothesis to reach the true key byte value.  

6.1  ZedBoard Platform Results 
 We first need to verify that our design is fully functional, meaning that we can 

conduct a successful, remote, power side-channel attack against the AES hardware core 

without any countermeasures.   
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Figure 6.1.i: Quantification vs. Time Samples. Average of 500 AES Iterations wihtout 
countermeasure (ZedBoard) 

 

 By observing the plot of Figure 6.1.i we see that there are 11 distinct spikes, one for 

every AES cycle. The measurements between those spikes show a similar, repeated pattern. 

This is due to the same calculations that happen at each AES cycle and the divergence 

between them is because of the different data that are being processed. This means that the 

AES functionality is capturable by the TDC sensors and that each time the AES 128-bit output 

register is overwritten at the end of each cycle, a high voltage drop occurs and is captured 

by the sensor. 

 Although the cryptographic module’s behaviour is observable in the plot of the TDC 

sensor measurements, this does not mean that the statistical evaluation of the data can 

successfully lead to the extraction of the key. Multiple AES iterations need to be captured 

for the Correlation Power Analysis to have a good result for any of the key’s bytes.  

 The first byte of the key that is successfully extracted, is the second byte (byte 1 of 

15). The value of the second byte, 0x32, has the highest correlation amongst the other 255 

possible values after almost 2000 captured AES iterations, but it becomes clear that this is 

the most possible true value after 3500 captured AES iterations, as shown Figure 6.1.ii: 

Pearson's Correlation Plots for the Second Key Byte We see that after the 3500 AES 

iterations/traces point, its correlation has diverged enough from the corelation of the other 

values.  

 The first byte that is extracted will be the same only if the key and the ciphered text 

are the same for every run. For our experiments, we use the same key, but randomly 

generated texts as input of the AES, thus the sequence of the extracted bytes may differ. 



Christos Diktopoulos: Mitigating Side-Channel Attacks in the Context of Multi-Tenant FPGA Usage 

 
 

Results and Evaluation 

42 

After the first, the rest of the bytes are also extracted as more traces are acquired. We focus 

only on the number of traces of the first extracted byte because it is the least useful amount 

of data that the malicious user needs to collect for the attack to have effect.  

   

 

Figure 6.1.ii: Pearson's Correlation Plots for the Second Key Byte with no Active Fence 

  

 For the implementation without any countermeasures, the first byte was extracted 

at 3500 acquired AES iterations, i.e., 1750000 TDC measurements, which corresponds from 

5.72 to 6.68MB of sensor data, 46.875KB of plaintexts and 46.875KB of ciphertexts.   
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 We add the Active Fence countermeasure and observe its effect on the design by 

conducting the attack multiple times. We increase the total number of ROs by 1024 for each 

configuration. We first evaluate the active fence with 1024 ROs  

 
Figure 6.1.iii Quantification vs. Time Samples. Average of 500 AES Iterations with Active Fence 

(ZedBoard) 

 

 If we compare the Quantification vs. Time Samples plot of the Active Fence (Figure 

6.1.iii) with the one with no countermeasure present two observations emerge. The first is 

that the magnitude of the plot for the design with the Active Fence is lower. This means that 

the countermeasure is successful at hiding the functionality of the AES core on some level, 

not quantifiable by this plot though. By enabling and disabling the ROs, the Active Fence 

influences the PDN, and makes the power consumption transitions of the AES less 

detectable. 

 The second observation, is the high frequency behaviour that occurs between the 

high magnitude spikes, that is not present in the design without the countermeasure. This 

behaviour translates to noise in the sensor’s readings by the Active Fence. The high 

frequency oscillation of the ROs injects noise to the system that interferes with the sensor’s 

measurements. We conduct the power side-channel attack with the 1024 RO Active Fence. 

The first byte that is extracted with the least acquired AES iterations is the fourth byte, as 

shown in Figure 6.1.iv. The correct byte value is extracted after 12500 AES iterations have 

been acquired.  

 By comparing the results with the Pearson’s Correlation plots of the design with no 

countermeasure, we again can make three significant observations. The first and most 

obvious, is that the needed iterations for the most probable value to reach correct key byte 

value have risen to 12500, making the attack at least 3.57x harder to mount.  
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 The second thing we can observe by comparing the plots is that the correlation of the 

correct byte value is lower when the Active Fence is present in the design. Also, the 

divergence between the values’ correlation is smaller, making the most probable value to 

less certain to be the true value.  

 Both the above observations emerge from the Pearson’s Correlation Vs. Traces 

Acquired plots. The third observation is shown in the Pearson’s Correlation Vs. Time Samples 

Plot. The Time Sample with the highest Correlation has a lower correlation value than the 

one in the design without the countermeasure. This again means that the time sample with 

the highest correlation is less probable to be the correct one.  

 The 12500 iterations correspond to 23,84MB of the TDC measurements, 195.31KB of 

plaintext and 195.31KB of ciphertext. 

 

Figure 6.1.iv: Pearson's Correlation Plots for the Fourth Key Byte with 1024 RO Active Fence 
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 We present the plots of one more Active Fence configuration, as the observations 

that are to be made are concluded by these three implementations. With 4096 RO Active 

Fence, the correct key byte value of the first extracted byte, reaches the highest correlation 

at 94000 collected AES iterations.  

 In this implementation the byte value and time sample with the highest correlation 

have a really small gap from the other byte values and time samples. This means that while 

we know that the byte value with the highest correlation is the correct one, an attacker in a 

real scenario cannot be certain that he has extracted the correct key byte value. 

 

 

 
Figure 6.1.v:  Pearson's Correlation Plots for the Fourth Key Byte with 4096 RO Active Fence 

 

 We avoid to map the last two Active Fence configurations on the ZedBoard Platform. 

The parallel activity of these many ROs can have a negative effect on the overall functionality 

of the platform. The high frequency oscillation of the ROs increases the temperature and has 



Christos Diktopoulos: Mitigating Side-Channel Attacks in the Context of Multi-Tenant FPGA Usage 

 
 

Results and Evaluation 

46 

a straining effect on the fabric’s logic components, degrading the life expectancy of the 

board. Furthermore, the size of the ZedBoard’s FPGA fabric discourages the implementation 

of such a big grid of ROs.  As we have extracted enough information to support the 

conclusions of this thesis, there is no reason to test the last two configurations.  

 Βy analyzing the CPA results plot (Figure 6.1.vi) , we notice that as the ROs increase, 

the iterations required to extract the first byte not only increase, but they increase at a higher 

rate. A major contributor to this is that as the number of ROs per bank is increased, each 

activation level injects more noise to the system. In addition to that, the fence itself increases 

the total power consumption, affecting the oscillator sensor. This results in a greater range 

of the sensor's values, thus, in more levels of activation and a higher quality of noise injection 

in total. 

 The complete results of the ZedBoard platform are shown on Table 1.  

 

Countermeasure AES Iterations 
Increase Over the   

Implementation 

Without Active 

Fence 

TDC Data 
Plaintext/Ciphertext 

Data 

None 3500 6.68 MΒ 54.69 KB 

1024 ROs Active 

Fence 
12500 3.57x 23.84 MB 195.31 KB 

2048 ROs      

Active Fence 
31000 8.86x 59.18 MB 484.37 KB 

3072 ROs      

Active Fence 
54000 13.43x 

102.99 

MB 
843.75 KB 

4096 ROs      

Active Fence 
94000 26.86x 

179.29 

MB 
1.43 MB 

5120 ROs      

Active Fence 
- - - - 

6144 ROs      

Active Fence 
- - - - 

 
Table 6.1-1: ZedBoard CPA Results 
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Figure 6.1.vi : ZedBoard CPA Results Plot 

 

6.2  ZCU104 Platform Results 
 We follow the same process for the ZCU104 platform.  We first confirm that our setup 

is fully functional by conducting an attack without any countermeasures present.  

 
Figure 6.2.i: Quantification vs. Time Samples. Average of 500 AES Iterations without 

countermeasure (ZCU104) 

 

 As in Section 6.1, the Quantification Vs. Time Samples plot of the design on the 

ZCU104 (Figure 6.2.i) shows that the behaviour of the AES hardware module is capturable by 

the sensor as there are 11 distinct spikes with siminlar behaviour between them.  

 

3500

12500

31000

54000

94000

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

0 1024 2048 3072 4096

It
e

ra
ti

o
n

s

Ring Oscillators

ZedBoard CPA Results

AES Iterations for the Extraction of the first byte



Christos Diktopoulos: Mitigating Side-Channel Attacks in the Context of Multi-Tenant FPGA Usage 

 
 

Results and Evaluation 

48 

 By comparing the plots we see that there differences between the two platforms. 

First, the magnitude of the ZCU104 platform plot, is one order of magnitude lower that the 

one of the ZedBoard, which means that the functionallity of the AES hardware module has a 

smaller effect on the PDN of the ZCU104 platform. This has been anticipated as the ZCU104’s 

FPGA fabric is of newer architecture and larger scale than the one on the ZedBoard. The 

presense of the PS of the ZCU104 also has a hiding effect on the overall system. It also 

introduces the high frequncy noise that is apparent in the plot.    

 Finally, we also see that the differences of the 11 AES cycles is less distinctable. This 

also proves the above conclusion that the partial functionallity of the AES has a smaller effect 

on the PDN while running on the US+ fabric of the ZCU104.  

  

 
Figure 6.2.ii: Quantification vs. Time Samples. Average of 500 AES Iterations with Active Fence 

(ZCU104) 

 

 We test the different Active Fence configurations on the ZCU104 platform as in 

Section 6.1. The observations and conclusions that are derived by the the Pearson’s 

Correlaition plots of the attack on the ZCU104 plots are the same as the ones on the 

ZedBoard plots.  

 By comparing the Quantification vs. Time Samples plots between the design with and 

without the Active Fence countermeasure (Figure 6.2.i vs. Figure 6.2.ii) we see that the 

values of the seccond plot, are of lower magnitude. We can also observe sign wave behaviour 

on the plot of the design with the Active Fence pesent. This shows that the countermeasure, 

as in the ZedBoard platfrom, injects noise to the design and achieves hiding of the AES 

functionality, altering the measurements. 

 After the mapping of each Active Fence configurations we reach the following 

observations and conclusions. As the number of the ROs increases for each configuration, 
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we observe a significant increase in the AES iterations that need to be collected to extract 

the first true byte value through the Power Analysis.  

 Furthermore, the correct byte values have a lower correlation, and their correlation 

has a smaller divergence between the other values’ correlation, as the number of ROs 

increases, making them less probable to be true. This can be observed by comparing the 

plots between Figure 6.2.iii and Figure 6.2.iv.  

 The power analysis of the ZCU104 implementation without any countermeasures 

(Figure 6.2.iii) achieves extraction of the second byte (1 of 15) after the collection of 60000 

AES iterations. This corresponds to  114.44MB of collected TDC measurements,  937.5KB of 

plaintexts and 937.5KB of ciphertexts.  

 The power analysis of the ZCU104 implementation with a 5120 Active Fence (Figure 

6.2.iv) achieves extraction of the second byte (1 of 15) after the collection of 760000 AES 

iterations. This corresponds to  1.42GB of collected TDC measurements,  11.6MB of 

plaintexts and 11.6MB of ciphertexts. 

 At  the configuration of the 6144 RO Active Fence we reach a cut off point. We were 

not able to achieve the extraction of any key byte, even with 106 collected AES iterations, 

which correspond to 1.86GB of collected TDC measurements, 15.25MB of plaintexts and 

15.25MB of ciphertexts. As explained in Section 6.1, using an Active Fence with this amount 

of ROs for a long period of time can be straining for the board and may cause even the 

corruption of the fabric’s logic components. Thus, we didn’t push the tests of the 6144 to 

more than 106 AES iterations.  

 Βy analyzing the CPA results plot (Figure 6.2.v) , we notice that we have the same 

phenomenon in both platfroms.  As the ROs increase, the iterations required to extract the 

first byte not only increase, but they increase at a higher rate, meaning that the increase of 

the ROs in the Active Fence results in a greater range of the sensor's values, thus, in more 

levels of activation and a higher quality of noise injection in total. 
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Figure 6.2.iii: Pearson's Correlation Plots for the Second Key Byte without Active Fence (ZCU104) 
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Figure 6.2.iv: Pearson's Correlation Plots for the Fourth Key Byte with 5120 RO Active Fence 

(ZCU104) 
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Countermeasure 
AES 

Iterations 

Increase Over the   

Implementation 

Without             

Active Fence 

TDC data 
Plaintext/Ciphertext 

Data 

None 65000 123.98 MΒ 0.99 MB 

1024 ROs Active 

Fence 
100000 1.54x 23.84 MB 1.53 MB 

2048 ROs      

Active Fence 
170000 2.62x 190.73 MB 2.59 MB 

3072 ROs      

Active Fence 
220000 3.38x 

324.25.99 

MB 
3.36 MB 

4096 ROs      

Active Fence 
480000 7.38x 707.45 MB 7.32 MB 

5120 ROs      

Active Fence 
770000 11.85x 1.1 GB 11.75 MB 

6144 ROs      

Active Fence 
> 106 > 15.38x > 1.44 GB 15.26 MB 

 
Table 6.2-1 : ZCU104 CPA Results 

 

 

 
Figure 6.2.v: ZCU104 CPA Results Plot 
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Comparison of the two platforms 
 

 

 

Design 
AES 

Iterations 
Design 

AES 

Iterations 

Percentage Over 

ZedBoard 

Implementations 

ZedBoard no 

countermeasure 
3500 

ZCU104 no 

countermeasure 
65000 

1757.14% 

(18.57x) 

ZedBoard           

1024 ROs             

Active Fence 

12500 

ZCU104         

1024 ROs             

Active Fence 

100000 
700% 

(8x) 

ZedBoard           

2048 ROs         

Active Fence 

31000 

ZCU104         

2048 ROs      

Active Fence 

170000 
448.39% 

(5.48x) 

ZedBoard           

3072 ROs         

Active Fence 

54000 

ZCU104         

3072 ROs      

Active Fence 

220000 
307.41% 

(4.07x) 

ZedBoard           

4096 ROs         

Active Fence 

94000 

ZCU104         

4096 ROs      

Active Fence 

480000 
304.26% 

(4.04x) 

ZedBoard           

5120 ROs          

Active Fence 

- 

ZCU104         

5120 ROs      

Active Fence 

770000 - 

ZedBoard           

6144 ROs          

Active Fence 

- 

ZCU104          

6144 ROs      

Active Fence 

> 106 - 

 
Table 6.2-2 ZedBoard Vs ZCU104 implementations 
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 In both platforms, the Active Fence configurations help to achieve hiding by noise 

injection, without mitigating the attack completely. In comparison of the results, the 

countermeasure seems to have a better result on the ZedBoard platform as it makes the 

attack 26.86x more difficult to mount with a 4096 RO Active Fence, while the on the ZCU104 

the 5120 RO Active Fence achieves a 11.85x. Furthermore, increasing the ROs of the Active 

Fence on the ZedBoard, seems to increase the AES iterations that need to be collected for 

the extraction of at least one byte, at a higher rate than the Active Fence implemented on 

the ZCU104.   

 Although the Active Fence seems to have a higher quality effect on the ZedBoard, 

there is a big difference in the absolute number of AES iterations for each case, between the 

two platforms. As shown in Table 6.3-1, to achieve the extraction of one of the key bytes 

without the presence of any countermeasures on the ZedBoard, we need to capture only 

3500 AES iterations. The same design mapped in the ZCU104 platform achieves the 

extraction of the first byte at 65000 AES iterations, meaning that the attack on the later 

platform is at least 18.57x harder to mount from the start. This gap closes as the ROs increase 

in every Active Fence configuration, but the absolute numbers still have a big divergence, 

meaning that the Active Fence countermeasure may achieve better hiding and higher quality 

noise injection in the ZedBoard platform but it is much harder to mount a successful attack 

on the ZCU104 platform with the Active Fence present. 

 This happens because as the AES hardware module has a smaller effect on the 

ZCU104 platform’s PDN, so does the Active Fence countermeasure. It does not affect the 

power consumption of the overall design and the sensor’s readings with the same rate as it 

does on the ZedBoard designs. Thus, the same Active Fence configuration achieves different 

level of hiding and noise injection on each platform.   

6.3 Comparison with Similar Works 
 We compare this work with two other works. First, we compare it to the work of 

Krautter et. al.  [12] as it is the first and only work so far to implement Active Fences against 

remote power SCAs. This work was conducted on the open-source FPGA development board 

Radiona ULX3S [30] in a version that integrates a Lattice ECP5 12F FPGA with 12K LUT 

elements with various other components such as an Espressif ESP32 IoT microcontroller 

module. 

 The second work that we compare it with is by Glamocanin et. al. [14]. It is the most 

recent work that evaluates a platform used by cloud providers, similar to the ZCU104, against 

remote power side-channel attacks, without the presence of any active countermeasure. 

This work was conducted on an Amazon EC2 F1 instance [1]. 
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Design 
AES Itera-

tions 

Active Fence 

Resourse 

Utilization 

Percentage of 

AES 

Design 
AES 

Iterations 

Percentage 

Over ZedBoard 

Implementa-

tions 

ZedBoard no 

countermeasure 
3500 

Glamo-

canin et. 

al. 

200000 

5614.29% 

(57.14x) 

ZedBoard     

1024 ROs             

Active Fence 

12500 17% 
1500% 

(16x) 

ZedBoard      

2048 ROs      

Active Fence 

31000 33% 
545.16% 

(6.45x) 

ZedBoard      

3072 ROs      

Active Fence 

54000 50% 
270.37% 

(3.7x) 

ZedBoard     

4096 ROs      

Active Fence 

94000 67% 
112.77% 

(2.13x) 

ZedBoard     

5120 ROs      

Active Fence 

- - - 

ZedBoard     

6144 ROs      

Active Fence 

- - - 

 
Table 6.3-1: ZedBoard Implementations Vs. Glamocanin et. al. Work 
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Design 
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Percentage 

Over ZCU104 

Implementa-
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ZCU104 no 

countermeasure 
65000 

Glamo-

canin et. 

al. 

200000 

207.69% 

(3.08x) 

ZCU104        

1024 ROs             

Active Fence 

100000 17% 
100% 

(2x) 

ZCU104         

2048 ROs      

Active Fence 

170000 33% 
17.65% 

(1.18x) 

ZCU104         

3072 ROs      

Active Fence 

220000 50% 
-9.09% 

(0.91x) 

ZCU104         

4096 ROs      

Active Fence 

480000 67% 
-58.33% 

(0.42x) 

ZCU104         

5120 ROs      

Active Fence 

770000 83% 
-74.03% 

(0.26x) 

ZCU104        

6144 ROs      

Active Fence 

> 106 100% 
> -80% 

(0.2x) 

 
Table 6.3-2:  ZCU104 Implementations Vs. Glamocanin et. al. Work 
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Implementa
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ZedBoard no 

countermeas

ure 

3500 

Krautter 

et. al. no 

counter-

measure 

1800 
-48.57% 

(0.51x) 

ZedBoard     

1024 ROs             

Active Fence 

12500 17% 

Krautter 

et. al. 

TDC 

Active 

Fence 

300000 100% 

2300% 

(24x) 

ZedBoard      

2048 ROs      

Active Fence 

31000 33% 
867.74% 

(9.67x) 

ZedBoard      

3072 ROs      

Active Fence 

54000 50% 
455.56% 

(5.56x) 

ZedBoard     

4096 ROs      

Active Fence 

94000 67% 
219.15 % 

(3.19x) 

ZedBoard     

5120 ROs      

Active Fence 

- - - 

ZedBoard     

6144 ROs      

Active Fence 

- - - 

 

Table 6.3-3: ZedBoard Implementations Vs. Krautter et. al. Work 
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counter-

measure 

65000 

Krautter 

et. al. no 

counter-

measure 
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-97.23% 

(0.03x) 

ZCU104    

1024 ROs      

Active Fence 

100000 17% 

Krautter 

et. al. 

TDC 

Active 

Fence 

300000 100% 

200% 

(3x) 

ZCU104    

2048 ROs      

Active Fence 

170000 33% 
76.47% 

(1.76x) 

ZCU104    

3072 ROs      

Active Fence 

220000 50% 
36.36% 

(1.36x) 

ZCU104    

4096 ROs      

Active Fence 

480000 67% 
-37.5% 

(0.62x) 

ZCU104    

5120 ROs      

Active Fence 

770000 83% 
-61.04% 

(0.39x) 

ZCU104    

6144 ROs      

Active Fence 

> 106 100% 
> -70% 

(0.3x) 

 

Table 6.3-4: ZCU104 Implementations Vs. Krautter et. al. Work 
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Figure 6.3.i Comparisson of Each Platform 

 

 

 

 Glamocanin et. al. [14], does not report the exact number of captured AES iterations 

for extracting the first correct value of the key, but report that the third byte of the key is 

extracted after around 200000 AES traces have been collected. Thus, we compare it with our 

experimental results based on this information as it is the only work so far to mount a remote 

SCA on an US+ FPGA fabric. 
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6.4  Results’ Evaluation Summarization 

The results and evaluation of this work can be summarized as follows:  

• The required iterations to extract any byte of the key, increase along with the 

number of ROs. 

• The correct value of each byte has a lower correlation compared to the other 255 as 

the number of ROs increases. 

• The Active Fence countermeasure achieves hiding and injects noise to the system, 

without utilizing as may resources as the module under attack. 

• The Active Fence countermeasure has a different effect, depending on the platform. 

On the ZedBoard platform an Active Fence utilizing only 67% of the AES’ resources, 

makes the attack up to 26.86x more difficult to mount. On the ZCU104 platform, the 

same Active Fence makes it 7.38x. 

• An RO sensor can effectively control the Active Fence. It is less effective than using 

a TDC power sensor but uses significantly less resources as can be observed in Table 

4.2-1 and Table 4.2-2. The TDC sensor enabled Active Fence of Krautter et. al. [12] 

utilizes 100% of the AES core resources and achieves more than 166x leakage 

reduction while the RO sensor enabled Active Fence on the ZedBoard, utilizing 67% 

of the AES’ resources, makes the attack up to 26.86x more difficult to mount.   

• Larger platforms, of newer technology and architecture, are less vulnerable to SCAs. 

By adding the Active Fence and other countermeasures, an SCA can become almost 

unmountable on such platforms. To mount successfully extract even one key byte 

on the ZCU104 and EC2 F1 platforms without countermeasures, at least 65000 AES 

iterations need to be collected compared to the 1800 and 3500 AES iterations that 

are needed on the Radiona ULX3S and ZedBoard, respectively. The Active Fence on 

a ZCU104 achieves only 15.38x leakage reduction at maximum resource utilization 

but the absolute number of the AES iterations is more than 106, while the TDC sensor 

enabled Active Fence of Krautter et. al. achieves 166x leakage reduction with 300000 

AES iterations, 70% less Iterations than the ZCU104 implementation.  
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Chapter 7:  Conclusions and Future Work 
 FPGA devices have a multifaceted range of applications and are subsequently moving 

to cloud instances as more and more applications are deployed there. In these 

environments, cost efficiencies are paramount and the highest degrees of utilisation are 

sought by providers. In that context, sharing the FPGA resources between different users is 

the next logical step, thus creating multi-tenant use-case scenarios. Security issues though 

that plague those sharing efforts prevent a wide deployment of the concept and measures 

to prevent side-channel attacks are sought. 

 This is the focus of this work. More specifically, we evaluate different Active Fence 

configurations on two different platforms, with one of them using same transistor 

technology (US+) as the one commonly used in the cloud service providers' platforms. This 

defence mechanism has the potential of ensuring low exposure to power side-channel 

attacks on unsuspecting users trying out their designs on the cloud FPGAs. For 

demonstration purposes, we use a specific type of setup comprised of a TDC as the attacker's 

sensor and an AES module as the victim's design. In that, context, different Active Fences of 

different sizes have been tried out and insightful observations have been made. 

 First, we quantify a relationship between Active Fence size and size of data traces 

required for a successful attack. Our work shows that with the correct choice of Active Fence 

configuration and platform, the amount of data traces required for key extraction can be 

many times greater compared to no countermeasures present. This leads to prohibitively 

large amount of data and time for the attack, while using an Active Fence that requires less 

resources than the module under attack. Additionally, even though the two most efficient 

Active Fence configurations occupy almost as many resources as the algorithm, not all of the 

fence's ROs are used, and that is due to the activation method. This shows that we can 

implement Active Fences with smaller area overhead, that can increase the noise to a 

sufficient level and make the attacker almost unable to succeed in extracting the key of the 

cryptographic module. 

 Future work may assess and point out the most efficient combination of Active Fence 

configuration, activation technique and platform, in terms of performance. Furthermore, the 

present emulation has accounted for a two-tenant, Intra-FPGA, scenario with some 

compromises. We do not take into account possible masking techniques that may be used 

for each algorithm or the possibility of more users on the platform. Our work may be 
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extended, using algorithmic level countermeasures and/or with more than two tenants, 

malicious or not. 

 Finally, although different platforms have been evaluated against remote power side-

channel attacks, power level countermeasures that are algorithm independent have not 

been tested widely. A wide evaluation of different platforms and countermeasures, could 

help the service providers chose the best combination of the two, providing the most secure 

solution. 
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