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Abstract
Convolutional Neural Network Optimizations using Knowledge

Distillation for Applications on Hardware Accelerators

by Apostolos-Nikolaos VAILAKIS

Over the last decade, Convolutional Neural Networks have gained popu-
larity amongst the scientific community, due to their versatility and perfor-
mance in an all-growing domain of applications. Recent advances in com-
putational power have enabled researchers to develop and train CNNs of
exponential complexity, capable of solving problems previously considered
unattainable. From facial recognition, to climate analysis and self-driving
cars, CNNs constantly prove their value in the field of Machine Learning.
Deploying however such models in real-world applications presents a sig-
nificant challenge. While training complex CNNs requires high performance
computing systems, inference may need to be performed at much tighter
computational budgets. This has motivated the scientific community to de-
velop both hardware architectures capable of efficiently executing CNNs,
as well as methodologies for compressing networks. Hardware accelera-
tors focused on edge applications opt for lower precision arithmetics (net-
work quantization), which in turn simplifies the computational engines and
greatly reduces the memory footprint of the models. This however can result
in staggering accuracy losses. Recent advances in quantization-aware train-
ing techniques promise to mitigate these effects. Centered around DenseNet,
a state-of-the-art CNN developed for image classification, this study per-
forms an in-depth analysis of Quantization Aware Knowledge Distillation
(QKD), a promising technique which combines quantization-aware training
with knowledge distillation. Additionally, a comparison in inference perfor-
mance between a CPU, a GPU and a Xilinx DPU is conducted, the latter of
which employs 8-bit integer arithmetic. To achieve this, QKD is integrated
in Xilinx’s Vitis-AI workflow. Achieving a minimum of 9× latency speedup
and 4× power efficiency compared to all other platforms using Xilinx’s DPU,
indicates that effective model compression and quantization, coupled with
dedicated hardware architectures can produce highly capable systems for
edge applications.
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Chapter 1

Introduction

Artificial Intelligence (AI) and Machine Learning (ML) have become indis-
pensable tools for solving complex problems in all fields of software engi-
neering. Specifically, Deep Neural Networks (DNN), a type of machine learn-
ing algorithm, have increasingly gained popularity over the last decade due
to their versatility and outstanding performance. However, as the complex-
ity of the problem increases, so does the complexity of DNNs. Fortunately,
the structure of these models comes with high data parallelism. Therefore,
they can be expanded in the space domain, in other words, they can utilize
more hardware resources to cut down on needs from the time domain.

While training DNNs requires high performance computing systems, infer-
ence may need to be performed at much tighter computational budgets. For
example, facial recognition networks for image post-processing can be ex-
ecuted on high-power servers, but similar networks designed for edge ap-
plications, such as integrating facial recognition for enhanced auto-focus of
smartphone cameras, should be capable of efficiently running in mobile hard-
ware.

Deploying DNNs at the edge thus requires a series of optimizations, by com-
pressing the model, and more tightly coupling its characteristics with the
available hardware resources. Hardware however, can too be optimized for
deploying such models.

Another possible application constraint is inference latency, the elapsed time
between feeding a neural network some information, and receiving a result.
For example, image recognition networks are the backbone of autonomous
driving. Here, the delay introduced between an event being captured by the
imaging system, and the hardware completing the required computations,
contributes to the autopilot’s reaction time.
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1.1 Motivation

As previously mentioned, DNNs are best characterized by their exceptional
performance and increased computational requirements, making hardware
acceleration a necessity. Alhough inferencing such models using conven-
tional Central Processing Units (CPUs) is possible, doing so is considered the
least efficient solution.

Graphic Processing Units on the other hand are optimized for data parallel
throughput computations. making them vastly superior for large vector op-
erations required by DNNs. However, they can be costly to scale up, and
their power consumption may prove prohibitive for edge applications.

Application Specific Integrated Circuits (ASICs) line Google’s Tensor Pro-
cessing Unit (TPU)[] can provide the best performance in terms of data par-
allelism and energy efficiency. Unfortunately, such systems are expensive to
develop and trade flexibility for performance.

Field Programmable Gate Arrays (FPGAs) bridge the gap between flexibility
and performance. Although their speed cannot be compared to a purpose-
built ASIC, their flexibility allows for experimentation with different archi-
tectures that best fit task at hand.

Modern implementations of DNN accelerators for edge applications heavily
rely on lower arithmetic precision, which in turn hinders the model’s per-
formance. To mitigate this phenomenon, recent advances in Quantization-
Aware Training (QAT) yield promising results. Originally proposed by Kim
et al. [1] in 2019, Quantization-Aware Knowledge Distillation (QKD) is one
of the most promising methodologies to lower the arithmetic precision of a
model, while retaining its accuracy.

1.2 Scientific Contributions

In this work, an in-depth analysis of the QKD approach is performed in order
to recover key insights which include the impact of different network archi-
tecture complexities, as well as the impact of different weight quantization
settings, focusing on DenseNet [2], a state of the art Convolutional Neural
Network (CNN) designed for image classification.
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Furthermore, a performance analysis of three different platforms is conducted.
The platforms used in this work are an intel i5-8600K CPU, an RTX2060-
Super GPU, and a Xilinx DPU based accelerator implemented in the ZCU-
102 evaluation board, the latter of which is designed to perform calculations
for quantized neural networks. To achieve this, QKD is integrated in Xil-
inx’s Vitis-AI workflow, producing highly accurate models compatible with
Xilinx’s AI engine.

Final figures indicate that effective model compression and quantization,
coupled with dedicated hardware architectures can produce highly capable
systems. Designed to extract performance benefits associated with lower pre-
cision arithmetics, Xilinx’s DPU presents both latency and energy efficiency
advantages, despite being implemented on the oldest and slowest chip com-
pared to all other platforms. All the while retaining comparable accuracy,
on-par with full-precision based models.

1.3 Thesis Outline

• Chapter 2 - Theoretical Background: The theoretical background of
Machine Learning, with emphasis on Convolutional Neural Networks,
is described.

• Chapter 3 - Related Work: The related work on the field of Convo-
lutional Neural Network training and various quantization techniques
are explored. Additionally different hardware implementations of neu-
ral networks are presented.

• Chapter 4 - Robustness Analysis of CNNs: This chapter presents the
work done for the evaluation and characterization of various model
compression and quantization algorithms. A plethora of training method-
ologies as presented in chapters 2 and 3 are employed for building ef-
ficient and accurate image classification models, used as baseline for
further experimentation.

• Chapter 5 - FPGA Implementation: In this chapter, a set of modified
DenseNet models are prepared for execution on a Xilinx DPU using the
Vitis-AI development stack.

• Chapter 6 - Results: Metrics, such as the throughput, latency, energy ef-
ficiency, are compared between the various available technologies and
platforms.
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• Chapter 7 - Conclusions and Related Work: This chapter aims to present
the conclusions of this dissertation. Also, proposals for future work in-
dicated by the research are suggested.
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Chapter 2

Theoretical Background

2.1 Machine Learning

Machine learning is an application of artificial intelligence (AI) that provides
systems the ability to automatically learn and improve from experience with-
out being explicitly programmed. Machine learning focuses on the devel-
opment of computer programs that can access data and use it to learn for
themselves.

Image recognition, speech recognition and synthesis, medical diagnosis and
autonomous driving are just a few of the ever growing list of hard real-world
problems that have experienced constant breakthroughs in recent years due
to such algorithms.

In machine learning, algorithms are trained to find patterns and features in
massive amounts of data in order to make decisions and predictions based on
new data. Such algorithms can benefit from the increasing developments in
big data and are proving more useful as computing becomes more powerful
and affordable.

Machine learning is achieved through several methods, and can be divided
in two distinct types, based on the training data being unlabeled or labeled.
These learning methods are called unsupervised and supervised respectively.
Although supervised learning tends to yield better results when sufficient
labeled data are provided, generating such data can prove extremely difficult
and time consuming. Semi-supervised learning occurs when only part of the
given data are labeled, and can provide a good trade-of when supervised
learning is not feasible.
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2.1.1 Common types of supervised learning algorithms

Regression Algorithms

Used to understand relationships in data, regression algorithms like "Lin-
ear Regression" and "Logistic Regression" model dependencies and correlation
between output and input features of a training set. This enables them to
accurately predict the output value of new data.

Decision Trees

Based on a tree-like model, decision trees contain conditional control state-
ments to classify using a set of hierarchical decisions on the features. They
are used for applying those rules on a set of factors to recommend an action
or decision.

Instance-Based Algorithms

These algorithms compare new problem instances with instances seen in
training. For example K-Nearest Neighbor (KNN) stores all available cases
and classifies new cases by a majority vote of its K more similar instances.

2.1.2 Common types of unsupervised learning algorithms

Clustering Algorithms

Clustering analysis, divides the population of data points in groups, based
on a set of feature distinctions. It is a way to find meaningful structure in-
herent in a set of examples. A commonly used algorithm called K-Means is
a technique which tries to minimize the distance of the points in a cluster
with their centroid. Clustering can be used for example to classify plants and
animals among different species, to categorize different books on the basis of
topics and information and many more.

Association Algorithms

Association algorithms find patterns and relationships in data and identify
frequent if-then relationships called association rules which can be used for
prediction and decision making.
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2.2 Deep Learning

Deep Learning is a subfield of machine learning concerned with algorithms
inspired by the structure and function of the brain called artificial neural
networks (ANNs). ANNs consist of many interconnected computing units,
called neurons, and are functional approximates that map inputs to outputs.
Individual neurons have little intrinsic convergence, but when many neurons
work together, their combined effects can show remarkable learning perfor-
mance.

Nodes are the little parts of the system, similar to the neurons of the human
brain. When a stimulus hits them, a process takes place in these nodes. Some
of them are connected and marked, and some are not, but in general, nodes
are grouped into layers. The system must process layers of data between the
input and output to solve a task. The more layers it has to process to generate
the result, the deeper the network is considered.

The idea of neural networks was initially conceived in 1943 by neurophysi-
ologist Warren McCulloch and mathematician Walter Pitts. They proposed
the McCulloch-Pitts neuron, also known as the Threshold Logic Unit (TLU),
which takes inputs and returns whether their weighted sum is above a given
threshold. In 1949 in his book "The Organization of Behaviour" [3] Donald
Hebb took the idea further, proposing that neural pathways strengthen over
each succesive use. The first neural network by today’s standards was pro-
posed by Frank Rosenblatt. Named the Mark I Perceptron, it was a system
based on the McCulloch-Pitts neuron, and its weights would be ’learned’
through succesively passed inputs, while minimizing the difference between
desired and actual output.

Although they showed promising results, research on ANNs experienced
significant stagnation. The age now famously referred to as ‘the AI winter’
came with the realization that, as such networks deepen, they become expo-
nentially harder to fine-tune using conventional methods. The concept that
helped ANNs escape their early infancy is called Backpropagation. Along
with Gradient-Descend, they form the backbone of neural networks and are
the main methods through which networks adapt and ’learn’ the features of
a training set.
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2.2.1 Multi-Layer Perceptron (MLP)

Multi-Layer perceptrons [4] (sometimes refered to as vanilla networks) are
the simplest form of a deep artificial neural network. They consist of three
or more layers, an input layer, an output layer and at least one hidden layer.
Every layer is comprised of artificial neurons that take as input the output of
each neuron from the previous layer, whith an exception of the input layer,
which takes the input data of the network.

FIGURE 2.1: Simplified representation of a Multi-Layer Percep-
tron: URL.

2.2.2 Artificial Neurons

Based on the Threshold Logic Unit, artificial neurons [5] take the weighted
sum of their inputs as well as a given bias, and use it as the input of a pre-
determined activation function (transfer function).

The output y of an artificial neuron is defined as:

y = F(b +
I

∑
i=1

xi ∗ wi) (2.1)

Where I the number of neuron inputs xi, wi the weight of each input, b the
neuron bias and F the activation function.

https://www.researchgate.net/figure/Artificial-neural-network-architecture-ANN-i-h-1-h-2-h-n-o_fig1_321259051
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FIGURE 2.2: Artificial Neuron Model.

2.2.3 Activation (Transfer) Functions

The activation function [6] [7] [8] of a neuron is the component that intro-
duces non-linearity to the system. This is necessary to gain any advantages
from a multi-layer network architecture, since any multilayer perceptron not
using an activation function, or using a linear one, has an equivalent single-
layer network. Activation functions are chosen using a variety of criteria,
and can significantly impact the performance of the network, as well as its
complexity. The most common activation functions are:

• Binary Step function.

Binary step function is a threshold-based activation function and is
mainly used in binary classification problems. Originally used in the
McCulloch-Pitts neuron, the output of the neuron is activated when a
certain threshold is exceeded.

f (x) =

0 x <= 0

1 x > 0
(2.2)

• Sigmoid.

Also known as the logistic function, the function’s output ranges be-
tween 0 and 1. The function normalizes the output of each neuron, but
does not change in very high or very low inputs.

f (x) =
1

1 + e−x (2.3)

• TanH.
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Similar to Sigmoid, the hyperbolic tangent (tanh) allows for negative
values since it’s output ranges between −1 and 1

f (x) =
ex − e−x

ex + e−x (2.4)

• Recti-Linear Unit (ReLU)

ReLU is the combination of a linear and a binary step function. Due to
it’s simplistic implementation and non-linearity the function can yield
good results while significantly simplifying the network.

f (x) =

0 x <= 0

x x > 0
(2.5)

• Softmax

Based on the logistic function, softmax is often used as the last activa-
tion function of a multi-class neural network. It is very similar to the
sigmoid function, but normalizes it’s output to a probability distribu-
tion, ensuring that the sum of all outputs is 1

f (x)i =
exi

∑K
j=1 exj

(2.6)

Where K is the number of neurons in this layer, and x = (x1, . . . , xK)

the input vector of the layer.
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FIGURE 2.3: Common Activation Functions

2.3 Optimizing (Training) Neural Networks

Deep learning falls under the category of supervised learning. As such, a
training dataset needs to be constructed, which plays a significant role to the
network’s final performance.

The methodology used for effectively optimizing a neural network consists
of three main pillars, a loss function, backpropagation and an optimization
algorithm. Using these main ingredients an iterative process can be con-
structed to train the network.

After initializing randomly the weights of each layer, the iterative process
begins by feeding the training data through the network. This produces an
output, which is then compared to the expected label with the help of a loss
function. This loss function quantifies the error of the network, meaning the
degree to which the network can accurately classify the input. The problem
of training the network can now be described as the problem of minimizing
this error.

Given the output of the loss function, a set of error gradients w.r.t each of the
network’s weights is calculated using the backpropagation algorithm. These
gradients are then fed to an optimization algorithm, usually a derivative of
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gradient descent, which fine-tunes each weight to minimize the error, search-
ing for a local optimum.

This procedure is called an epoch. To achieve convergence the algorithm may
run for multiple epochs, preferably iterating through a random permutation
of the training set each time.

2.3.1 Gradient Descent

Gradient Descent [9] is an optimization algorithm used for finding a local
minimum of a differentiable function by iteratively moving in the direction
of steepest descent. It is by far the most popular optimization strategy in ma-
chine learning. Each iteration is calculated using the gradient of the function
and a given learning rate factor. The equation below describes each step the
algorithm takes. The current position is θt , while θt−1 is the previous one.
The η is the learning rate and the gradient term is the direction of the steepest
descent.

θt = θt−1 − η∇θ F(θt−1) (2.7)

Each step is proportional to the learning rate, which plays a significant role
in Gradient Descent. Taking small steps can result to the algorithm needing
an unecessarily large ammount of iterations before convergence is achieved.
On the other hand, increasing the learning rate may result in the algorithm
oscilating around the local minima.

FIGURE 2.4: Illustration of Gradient Descent: URL.

http://dsdeepdive.blogspot.com/2016/03/
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Gradient Descent struggles navigating ravines. Once fallen into one, the
algorithm oscillates across the slopes of the ravine, without making much
progress towards the local optimum. A simple way to minimize these oscil-
lations and accelerate in the relevant direction is the Momentum technique.

vt = γvt−1 − η∇θ F(θt−1) (2.8)

θt = θt−1 + vt (2.9)

Here a fraction of the update vector of the past time step is added to the
current update vector. This acts similarly to the momentum of a ball rolling
down a hill, promoting steps in a similar direction. A later revision of this
technique is called Nesterov Momentum. Here the gradient term of each step
is computed after adding the previous steps momentum. This helps mitigate
any large steps in the wrong direction the momentum may promote, since
the gradient will now take it into account. The revised iteration step rule is:

vt = γvt−1 − η∇θ F(θt−1 + γvt−1) (2.10)

θt = θt−1 + vt (2.11)

2.3.2 Loss Functions

Training of any sorts, whether it occurs on the physical or artificial domain,
requires sufficient evaluation of results. This is evident when for example
a person is practising on an instrument, or when someone is playing chess.
Simple repetition is not enough, people learn by their mistakes, and artificial
neural networks are trained using the same principle.

To properly quantify the inaccuracy of a neural network when training it,
a loss function needs to be defined. Given a set of inputs, the purpose of
such function is to calculate the difference between the network’s outputs
and the ideal ones. When taining a model, the optimization algorithm tries
to minimize the loss function, by updating the model’s parameters in each
iteration. The choice of loss function must match the framing of the specific
predictive modeling problem, such as classification or regression. Some of
the most common loss functions used in machine learning are listed below
[8]. In the following examples we assume yt

i , yp
i as the target and prediction

output of the model respectively.
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Regression Loss Functions

A regression modeling problem involves predicting a real-valued quantity.

• Mean Squared Error Loss (MSE) [10].

Is the most commonly used regression loss function. MSE is the sum of
squared distances between our target variable and predicted values.

MSE =
∑n

i=1(y
t
i − yp

i )
2

n
(2.12)

• Mean Squared Logarithmic Error Loss (MSLE) [11].

Similar to MSE, MSLE is the sum of squared distances between the logs
of our target variable and predicted values. Here we assume yt > −1
and yp > −1.

MSLE =
∑n

i=1(log(yt
i + 1)− log(yp

i + 1))2

n
(2.13)

• Mean Absolute Error Loss (MAE) [12].

MAE is the sum of absolute differences between our target and pre-
dicted variables.

MAE =
∑n

i=1 |yt
i − yp

i |
n

(2.14)

Classification Loss Functions

Classification are those predictive modeling problems where examples are
assigned one of many predefined classes. To achieve this the model generates
a probability distribution

• Cross-Entropy Loss (CE) [13].

Cross-entropy loss measures the performance of a classification model
whose output is a set of probabilities for each class. Each predicted
class probability is compared to the desired output (0 or 1) and a loss is
calculated based on the log of their difference.

CE = −
n

∑
i=1

yt
i log((pi)), for n classes (2.15)

Where pi is the predicted probability of the ith class.
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• Kullback Leibler Divergence Loss (KLD) [14].

KLD is a measure of the divergence between two probability distribu-
tions. This loss function is more common with models that try to ap-
proximate a more complex function than simply multi-class classifica-
tion, but is used in this manner as well.

KLD =
n

∑
i=1

yt
i(log(yt

i)− log(yp
i )), for n classes (2.16)

2.3.3 Backpropagation

As previously mentioned, training a neural network using gradient descent
is an iterative process, which requires the calculation of the gradient of the
loss function with respect to the weights and biases of the entire network.
Traditional methods naively calculate the gradients with respect to each weight
individually, which is an extremely cumbersome process, and a barrier to
larger and more complex predictive models.

Popularized by David E. Rumelhart, Geoffrey E. Hinton & Ronald J. Williams
in their work "Learning representations by back-propagating errors" [15], back-
propagation is used as a general optimization method for performing au-
tomatic differentiation of complex nested functions. The name is short for
backward propagation of errors, which indicates the fact that the gradient is
calculated backwards through the network, beginning with the gradient of
the final layer of weights and ending with the gradient of the first layer of
weights.

For the basic case of a feedforward network, where nodes in each layer are
connected only to nodes in the immediate next layer (without skipping any
layers), and there is a loss function that computes a scalar loss for the final
output, backpropagation can be understood simply by matrix multiplication
[16] [17].

Denote:

x: Input vector.

y: Target output.

g: The network.

E: The loss function.
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L: The number of layers.

W l The weights of layer l, where wl
jk is the weight between the k-th node in

layer l − 1 and the j-th node in layer l.

f l Activation functions at layer l.

zl: The weighted input of each layer.

al: The output of layer l.

Is should be noted that bias terms are not treated specially, since they can be
represented as a weight with a fixed input of 1. Furthermore it is assumed
that, for the purpose of backpropagation, the loss and activation functions
along with their derivatives can be evaluated efficiently.

The network can now be represented as:

g(x) := f L(WL f L−1(WL−1 · · · f 1(W1x) · · · )) (2.17)

For each input, the loss function is dependent on the target output, and the
actual output of the network:

E(yi, g(xi)) (2.18)

Combining the above the error of a given input vector is:

E(y, f L(WL f L−1(WL−1 · · · f 2(W2 f 1(W1x)) · · · ))) (2.19)

During the forward pass of the network, the activation al as well as the
derivatives ( f l)′ can be cached for use during the backwards pass. Using
the chain rule, the derivatives of the loss in relation to the inputs can be con-
structed.

dE
daL ·

daL

dzL ·
dzL

daL−1 ·
daL−1

dzL−1 ·
dzL−1

daL−2 · · ·
da1

dz1 ·
∂z1

∂x
. (2.20)

The above represent the derivatives of the loss function, activation functions
and the matrices of the weights.

dE
daL · ( f L)′ ·WL · ( f L−1)′ ·WL−1 · · · ( f 1)′ ·W1. (2.21)
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To calculate the error gradient ∇, the matrices are transposed and the order
of multiplication is reversed.

∇xE = (W1)T · ( f 1)′ · · · · (WL−1)T · ( f L−1)′ · (WL)T · ( f L)′ · ∇aL E. (2.22)

This expression is the key to backpropagation. By evaluating it from right to
left the gradient in respect to each layer’s weights can be calculated stepwise.

2.3.4 Stochastic Gradient Descent (SGD) and Batching

As previously mentioned, training a neural network using Gradient Descent
requires calculating the error gradient using all the training data points be-
fore updating the parameters of the model. The method is also called Batch
Gradient Descent, where the term batch refers to the entire dataset. A vari-
ation of this scheme, called Stochastic Gradient Descent (SGD) replaces the
actual gradient calculated by the entire dataset by an estimate, calculated
from a randomly selected subset of the data.

In the simplest form of SGD, training a neural network involves calculating
the error gradient for each data point separately, and updating the network’s
weights accordingly. A variation of this method involves subsampling the
training set into mini-batches, which reduces the need for constantly updating
the model.

Although using this method results in a more noisy training process, this
variant of gradient descent can allow the model to avoid local minima, as
well as promote faster learning. Additionally, subsampling into mini-batches
makes the algorithm noticeably more memory efficient, suitable for cases
where the use of bigger datasets is limited by the computer’s memory ca-
pabilities.

2.3.5 Batch Normalization

A discussed previously, training a neural network is an iterative process.
Consequently, the distribution of each layer’s inputs change, as the param-
eters of the previous layer change during training. This phenomenon is re-
ferred to as Internal Covariate Shift, and is responsible for slower and more un-
stable training. To address this problem, Sergey Ioffe and Christian Szegedy
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[18] proposed normalizing the weighted layer inputs for each training mini-
batch.

The proposed solution calls for implementing this functionality in the form
of discrete layers, called Batch Normalization (BN) layers, which can then be
incorporated to the network’s architecture. With x the input values over a
mini-batch B = {x1, . . . , xm}, the BN layer calculates the mean µ (2.23) and
variance σ2 (2.24) of the input values across the batch. It then normalizes
the activation vector (2.25) and applies a linear transformation using γ and
β, two trainable parameters (2.26). These allow the network to adjust and
optimize each layer’s output distribution [19] [20].

µB ←
1
m

m

∑
i=1

xi (2.23)
σ2

B ←
1
m

m

∑
i=1

(xi − µB)
2 (2.24)

x̂i ←
xi − µB√

σ2
B + ϵ

(2.25)
yi ← γx̂i + β ≡ BNγ,B (xi) (2.26)

After the training process has been completed, the values µpop and σ2
pop are

computed using the entirety of the dataset, and fed directly to equation 2.25
to inference the network.

2.4 Model Overfitting

Training networks to generalize well to new data is a challenging problem.
The objective of a neural network is to have a final model that performs well
not only on the data used for training, but also on previously unseen inputs.
Simply increasing the complexity of the network, and thus it’s representative
capacity is not sufficient for a model to generalize well. A model should have
the capacity to learn the key features of the draining data, but should avoid
essentially memorizing the entire dataset. A network’s tendency to overfit it’s
weights hinders it’s ability to generalize on the problem and produce correct
results when encountering new data [21].

The above intuition can become more evident in the simpler case of approxi-
mating a set of data points using a polynomial function. In fig. 2.5 a number
of approximations using different degrees (and thus different complexity)
functions on the same data are illustrated. The first attempt underfits the
data using only a 2nd degree function, while the third one overfits the data
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using an 8th degree function. In both scenarios, the model cannot establish
the dominant trend within the training dataset, and will not generalize well
on new data.

(A) deg = 2 (B) deg = 4 (C) deg = 8

FIGURE 2.5: Trying to approximate a set of data points using
a polynomial function. A) A 2nd degree function is not suffi-
cient to effectively approximate the data (underfitting). B) Us-
ing a 4th degree function produces a good approximation. C)
An 8th degree function overfits the data and is greatly effected

by noise.

Mitigating overfitting is a major part of training efficient and useful neural
networks. Although a plethora of methods and configurations exist to com-
bat this phenomenon, a number of common methods can be found on most
state-of-the-art designs.

2.4.1 Early stopping

Early stopping [22] is the simplest way to stop the model from learning the
noise within the data. Although highly effective, it risks the possibility of
stopping too early, and thus underfitting the model.

2.4.2 Training with more data

Training the network with more examples forces it to generalize on the fea-
tures instead of relying on it’s capacity to memorize. Unfortunately this re-
quires the accumulation of more labeled data, which is not always be possi-
ble.

2.4.3 Data augmentation

Data augmentation [23] refers to the process of creating additional data by
reasonably modifying the data in the training set. For example image data
can be augmented by randomly flipping, rotating, zooming and cropping
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them. The introduced noise forces the model to become more stable and
generalize better.

2.4.4 Regularization

Techniques that seek to reduce overfitting by keeping the network’s weights
small are referred to as regularization methods.

Weight decay

The most common regularization method, weight decay [24], penalizes the
model during training based on the magnitude of the weights. To achieve
this, the square of all weights is added to the loss function, multiplied by a
small hyperparameter.

Loss = L(y′, y) + wd ∗ sum(w2) (2.27)

Where L the training loss function, y and y′ the expected and produced out-
puts of the network respectively, w the weights of the network and wd the
weight decay hyperparameter.

Dropout

Dropout was proposed by Nitish Srivastava et al. [25] in 2014 as a regulariza-
tion method that approximates training a large number of neural networks
with different architectures in parallel. To achieve this, during training, a
number of nodes in the network are randomly ignored, or dropped out in each
iteration. Although this method increases the time it takes for the model
to converge, dropout can significantly reduce overfitting and improve the
overall network performance. The probability of dropping a node in each
training iteration is defined as a hyperparameter and the whole method can
be implemented as a module to be placed after each weighted layer of the
network.
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(A) Standard Neural Net (B) After applying dropout

FIGURE 2.6: Dropout Neural Net Model. A) A standard neural
net with 2 hidden layers. B) An example of a thinned net pro-

duced by applying dropout to the network on the left.

2.5 Convolutional Neural Networks (CNNs)

The versatility of neural networks and their capability to classify complex
data structures have made them an integral part of computer vision. The
technology is already being used to solve many problems such as face and
object recognition, motion detection and analysis, image restoration and even
disease diagnosis using data from medical imaging. These advancements
have been achieved primarily over one particular algorithm, the Convolu-
tional Neural Network [26] [27] [28].

Following the design of feed-forward networks, CNNs use a series of train-
able convolution and subsampling filters to reduce the images into a form
which is easier to process, without losing important features. The output of
these convolution layers can then be fed to a Multi-Layered Perceptron for
final processing.

FIGURE 2.7: Typical CNN Architecture: URL.

https://en.wikipedia.org/wiki/Convolutional_neural_network#Building_blocks
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2.5.1 Convolution Layers

Convolution layers (as the name suggests) are the building blocks of CNNs
[29] [30]. They are responsible for reducing the amount of features while pre-
serving the most useful information. To achieve this, each convolution layer
uses a kernel, a small matrix of trainable parameters involved in carrying
out the convolution operation. The kernel is the heart of each layer, and de-
pends on its type and dimentionality, this will become more apparent when
the most common types of convolution layers are explored.

1D Convolution Layers

The simplest form of convolution layers, useful for understanding how they
work, is the one-dimentional. Assuming an input I of size 1× 5 and a kernel
K of 1× 3 the convolution is defined as:

I =
[

a b c d e
]

(2.28) K =
[

x y z
]

(2.29)

I ∗ K =
[

ax + by + cz bx + cy + dz cx + dy + ez
]

(2.30)

Note that the above convolution produces a matrix of size 1× 3. To keep the
size of the features constant, the input is usually padded with zeros. In this
example the input can be converted to I′:

I′ =
[
0 a b c d e 0

]
(2.31)

This way the convolution will produce an output of size 1× 5:

I′ ∗ K =
[
ya + zb ax + by + cz bx + cy + dz cx + dy + ez dx + ey

]
(2.32)

It should be noted that each convolution layer defines a stride. This equals to
the elements of the input the kernel skips before computing each partial con-
volution and influences the output’s shape. For example, in the operations
above, when a stride of 2 is used, the output size becomes 1× 2:

I ∗ K =
[

ax + by + cz cx + dy + ze
]

(2.33)
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2D Convolution Layers

Based on the aforementioned principles for 1-D convolution, one can easily
understand how the method can be applied in the 2-D domain. In this do-
main, the application of the layers on images and how the kernels achieve
feature extraction becomes more evident.

FIGURE 2.8: 2-Dimentional Convolution Layer: URL.

Assuming that a grayscale image can be represented as a two-dimentional
matrix, the objective of the convolution operation is to extract the high-level
features such as edges, from the input image. This can then be expanded to
color images, using a 2-D matrix for each color to construct a 3-dimentional
matrix of depth (or channels) z = 3. Although most common in computer
vision, the input of the convolution network is not limited to 3 channels, and
can be adapted for hyperspectral imaging, where multiple bands across the
electromagnetic spectrum are used.

A single layer of convolution is usually limited to low-level features, such as
edges, gradient orientation and color. By adding more layers, the network
can adapt to higher level features as well, producing a model with deeper
understanding for images.

To better visualize the capabilities of this technique, three different kernels
designed for edge detection are applied to the same image:

https://www.researchgate.net/profile/Ihab-S-Mohamed/publication/324165524/figure/fig3/AS:611103423860736@1522709818959/An-example-of-convolution-operation-in-2D-2.png
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(A) Original (B) Outline (C) Left Edge (D) Right Edge

FIGURE 2.9: Edge detection using convolution kernels

Following are the kernels used for each different kind of edge detection:

Koutline =

−1 −1 −1
−1 8 −1
−1 −1 −1

 (2.34)

Kle f t_edge =

−1 0 1
−2 0 2
−1 0 1

 (2.35) Kright_edge =

1 −0 −1
2 0 −2
1 0 −1

 (2.36)

Multi-Channel Convolution

Although the input of most convolution layers is multi-channel, the equiva-
lent 3D convolution (where the input, the kernel and the output are 3D ma-
trices) is rarely used for computer vision applications. Multi-channel convo-
lution is usually achieved with the use of multiple kernels, one per channel,
continued by summing the outputs to a single channel. Usually this is de-
noted using 3D input and kernel, but a 2D output.
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FIGURE 2.10: Multi-Channel 2D convolution with single-
channel output: URL.

To increase the output channels of a multi-channel convolutional layer, a
multiple of kernels can be used, one for each channel. This is usually de-
noted using 3D input and output, but a 4D kernel. Assuming the above,
each convolution layer is defined using an input of size

[input_height× input_width× input_channels] (2.37)

, a kernel of size

[kernel_height× kernel_width× input_channels× output_channels] (2.38)

and an output of size

[output_height× output_width× output_channels] (2.39)

FIGURE 2.11: Multi-Channel 2D convolution with multi-
channel output: URL.

https://towardsdatascience.com/a-comprehensive-introduction-to-different-types-of-convolutions-in-deep-learning-669281e58215
https://towardsdatascience.com/a-comprehensive-introduction-to-different-types-of-convolutions-in-deep-learning-669281e58215
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2.5.2 Subsampling Layers

To further downsample (pool) the output of a convolution layer, a subsam-
pling layer often immediately follows it [31]. This is done to decrease the size
of the features along both spatial dimentions of height and width. Subsam-
pling layers provide a way to effectively reduce the number of parameters
to be learned by the network, while impeding overfitting and the reliance of
precise positioning within feature maps.

The most commonly used subsampling layers are "Average Pooling" and "Max
Pooling"

Average Pooling

Average pooling is an operation that as the name suggests, calculates the
average for each subregion of a feature map. Subregions are usually non-
overlapping and are defined by the filter’s size and stride. This method of
downsampling extracts features more smoothly.

Max Pooling

Similar to Average Pooling, Max Pooling applies a max filter to each sub-
region and is more suitable for better preserving pronounced features like
edges.

FIGURE 2.12: Illustration of Max-Pooling and Average-Pooling
Layers : URL.

https://www.researchgate.net/figure/Illustration-of-Max-Pooling-and-Average-Pooling-Figure-2-above-shows-an-example-of-max_fig2_333593451
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Chapter 3

Related Work

3.1 Training Datasets

Neural networks, like most computational systems, follow the rule of garbage
in, garbage out. This effectively leads to the need of well formulated and use-
ful datasets for the networks to be trained upon. A number of datasets have
been generated over the years for research purposes, which are not only used
for their qualities, but also introduce a common point of reference for differ-
ent network architecture comparisons.

Usually, training datasets are separated into two distinct subsets. The first
subset is used for training a neural network, while the second one is used for
evaluating it’s accuracy. This is done to prevent "overfitting", which is the
tendency for the network to memorize the input dataset, instead of general-
izing based on it’s key features.

The most common datasets for image recognition are:

• MNIST

A monochromatic database of handwritten digits, it is usu ally the first
dataset someone encounters when learning about image recognition.
The Dataset consists of 60, 000 training and 10, 000 evaluation data points
which have been size normalized and centered in a fixed size image.
Each training image is associated with a label from 10 classes.

• Fashion-MNIST

Designed for clothing classification, Fashion-MNIST is intended as a
harder to classify drop-in replacement of MNIST. It shares the same
image size and structure of training and testing subsets, as well as the
same number of classes.
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• CIFAR-10

One of the most used datasets in image classification research, CIFAR-
10 consists of 50, 000 training and 10, 000 evaluation colour images of
everyday objects. Each image is sized 32x32 pixels and belongs to one
of 10 classes.

• CIFAR-100

Similar to CIFAR-10, CIFAR-100 contains 100 classes of 500 training and
100 evaluation images each. It is a much harder dataset for a network
to be trained upon not only for it’s increased number of classes, but also
for the reduced amount of images representing each class.

• ImageNet

Imagenet is an accumulation of more than 14 classified million images,
of which at least one million are annotated with bounding boxes. Since
2010 the ImageNet Large Scale Visual Recognition Challenge (ILSVRC)
is organized by the ImageNet project, where different network architec-
tures compete on classifying a ’trimmed’ subset of 1 thousand classes.

3.2 CNN Architectures

3.2.1 LeNet

One of the earliest convolutional neural networks, LeNet was proposed by
Yann LeCun et al. [32] in 1989 as a method for hand-written zip code recogni-
tion. It is constructed using two convolution layers, each followed by an av-
erage pooling subsampling layer, with the final subsampling layer connected
to a MLP of three layers. The network is trained on the MNIST dataset, hav-
ing an input of 32x32 monochromatic pixels.

3.2.2 AlexNet

Alexnet, designed by Alex Krizhevsky et al. [33], was the best performing
entry in the ImageNet Large Scale Visual Recognition Challenge (ILSVRC)
on September 30, 2012. The increased accuracy of the network came from
it’s increased depth (5 convolution layers, 3 max-pooling layers and 3 lin-
ear layers), paving the way for progressively deeper networks. It’s main
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disadvantage was it’s increased complexity, making it much more computa-
tional intensive, and prohibitively time consuming when training. This was
overcome by the researchers with the utilization of graphics processing units
(GPUs) during training.

3.2.3 VGG

The VGG network architecture was introduced by Simonyan and Zisserman
in 2014 [34]. It’s most common variants are VGG-16 and VGG-19, where ’16’
and ’19’ stand for the total number of trainable layers in the network. As is
evident, the upwards trend of depth is continued in this architecture, with
the network favoring simpler convolution layers, with smaller kernels than
AlexNet. The model was submitted to ILSVRC in 2014 and achieved 92.7%
top-5 test accuracy.

FIGURE 3.1: Representation of LeNet-5, AlexNet and VGG-16.

3.2.4 ResNet

While increasing network depth yields good results, training very deep neu-
ral networks becomes much harder. This is not only due to their increased
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complexity, but also due to the notorious vanishing gradient problem. As the
error gradient is back-propagated through the network, repeated multiplica-
tion may make the gradient infinitely small, effectively stopping the weights
of early layers from learning any new features.

To overcome this problem, Kaiming He et al. [35] proposed the idea of resid-
ual networks (ResNets), which introduce the use of ’identity shortcut connec-
tions’. These skip one or more layers, by summing the output of one layer,
with the output of an earlier one, before feeding the data forward, this way
each gradient has fewer layers to propagate through. The batch of layers
between each identity connection is called a ’residual block’

FIGURE 3.2: A Residual Block.

By mitigating the vanishing gradient problem, ResNet quickly became one
of the most popular architectures in various computer vision tasks.

FIGURE 3.3: A Residual Network with 34 weighted layers.

Pre-Activated Residual Blocks

A year after their proposal, the researchers refined the residual block, fo-
cusing on creating a "direct" path for propagating information [36]. Their
proposal demonstrated the advantages of a pre-activation variant of residual
block, by successfully training a 1001-layer deep ResNet.
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FIGURE 3.4: Left (a) original Residual Unit; (b) proposed Resid-
ual Unit. The grey arrows indicate the easiest paths for the in-
formation to propagate. Right training curves on CIFAR-10 of
1001-layer ResNet. Solid lines denote test error, and dashed
lines denote training loss. The proposed unit makes ResNet-

1001 easier to train.

3.2.5 DenseNet

Densely Connected CNN, or DenseNet, was proposed by Huang et al. [2] in
2016. It further exploits the effects of shortcut connections by connecting all
layers directly with each other. This way, each layer obtains additional in-
puts from all preceding layers and passes on its own feature-maps to all sub-
sequent layers. This architecture is then divided into discrete dense blocks
comprising multiple modules each.

FIGURE 3.5: A deep DenseNet with three dense blocks

Motivated by He et al. [36] and their work on pre-activated residual blocks,
the researchers define as a Composition Module the sequence of Batch Nor-
malization (BN) followed by a Rectified-Linear Unit and a 3× 3 Convolution
layer. To reduce the number of inputs on composition modules, and thus
improve computational efficiency, Bottleneck Modules are introduced to the
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design. These modules are composed of a Batch-Normalization (BN) fol-
lowed by a Rectified-Linear Unit and a 1× 1 Convolution layer. DenseNets
are formulated by connecting multiple Dense Blocks in series using Transi-
tion Blocks in between, to decrease feature-map sizes. Each transition block
is constructed using a bottleneck module, followed by an average pooling
layer.

Layers Output Size DenseNet-121 DenseNet-169 DenseNet-201 DenseNet-264

Convolution 112× 112 7 x 7 conv, stride 2

Pooling 56× 56 3 x 3 max pool, stride 2

DenseBlock 56× 56

[
1× 1 conv

3× 3 conv

]
× 6

[
1× 1 conv

3× 3 conv

]
× 6

[
1× 1 conv

3× 3 conv

]
× 6

[
1× 1 conv

3× 3 conv

]
× 6

Transition Layer
56× 56 1 x 1 conv

28× 28 2 x 2 average pool, stride 2

DenseBlock 28× 28

[
1× 1 conv

3× 3 conv

]
× 12

[
1× 1 conv

3× 3 conv

]
× 12

[
1× 1 conv

3× 3 conv

]
× 12

[
1× 1 conv

3× 3 conv

]
× 12

Transition Layer
28× 28 1 x 1 conv

14× 14 2 x 2 average pool, stride 2

DenseBlock 14× 14

[
1× 1 conv

3× 3 conv

]
× 24

[
1× 1 conv

3× 3 conv

]
× 32

[
1× 1 conv

3× 3 conv

]
× 48

[
1× 1 conv

3× 3 conv

]
× 64

Transition Layer
14× 14 1 x 1 conv

7× 7 2 x 2 average pool, stride 2

DenseBlock 7× 7

[
1× 1 conv

3× 3 conv

]
× 16

[
1× 1 conv

3× 3 conv

]
× 32

[
1× 1 conv

3× 3 conv

]
× 32

[
1× 1 conv

3× 3 conv

]
× 48

Classification Layer
1× 1 7 x 7 global average pool

1000D fully-connected, softmax

TABLE 3.1: DenseNet architectures for ImageNet. The growth
rate for all the networks is k = 32. Note that each “conv” layer
shown in the table corresponds the sequence BN-ReLU-Conv.

Since each module receives feature maps from all preceding modules, the ar-
chitecture promotes feature reuse, and the network can be thinner and com-
pact, presenting higher computational and memory efficiency. To prevent the
network from growing too wide, the authors used a hyper-parameter called
growth-rate (k) which defines the additional number of channels after each
convolution layer.

3.3 Adaptive Learning Rate

As previously mentioned, optimization algorithms for training neural net-
works are almost always dependent on a learning rate hyperparameter, which
impacts the training process significantly. It has been empirically observed
[37] that learning rate decay can help both optimization as well as general-
ization of the model. The method begins training the network using a large
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learning rate (usually larger than what would be used when training the net-
work with a static learning rate), which is then reduced multiple times during
the training procedure.

FIGURE 3.6: Figure taken by He et al [35]. Initial learning rate
is lr0 = 0.1, which is then divided by 10 at epochs 30 and 60.
Training error is shown by thin curves, while test error by bold

curves.

3.3.1 Time-Based Decay

Time based decay is defined as:

lr =
lr0

K ∗ E
(3.1)

Where lr is the learning rate used by the optimization algorithm, lr0 is the
initial learning rate, E is the current epoch and K is used as a hyperparameter
for tuning the decay rate.

3.3.2 Step Decay

Step decay schedule drops the learning rate by a factor every few epochs:

lr = lr0 ∗ K⌊
E
S ⌋ (3.2)

Where S is the step size for each decay K is used as a hyperparameter for
determining the decay size in each step. ()
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3.3.3 Exponential Decay

Exponential decay is defined as:

lr = lr0 ∗ e−K∗E (3.3)

(A) Time Decay (B) Step Decay (C) Expo Decay

FIGURE 3.7: Comparison of different learning rate decay meth-
ods. A) Time Decay using lr0 = 1 and K = 0.2. B) Step Decay
using lr0 = 1, K = 0.5 and S = 10. C) Exponential Decay using

lr0 = 1 and K = 0.1.

3.3.4 Learning Rate Warmup

A specific type of adaptive learning rate, warmup is a way to reduce early
overfitting by slowly ramping-up the learning rate in the course of one or
two epochs. Without it, the model may tend to skew badly towards the first
number of mini-batches it encounters, needing a few extra epochs to get the
convergence desired, as the model un-trains those early superstitions.

3.4 Knowledge Distillation (KD)

A highly effective network compression technique, Knowledge distillation
enables the simplification of cumbersome models without suffering large ac-
curacy losses. Proposed by Hinton et al. [38], KD is a promising methodol-
ogy to distill teacher models and partially transfer their knowledge to sim-
pler student models. This is achieved by matching the softened probability
distribution of each network’s output classes.

The softmax qi of the network’s output logits zi is calculated using the fol-
lowing equation:
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qi =
exp(zi/T)

∑ exp(zj/T)
(3.4)

With higher temperature T the probability targets get softer. The knowledge
learned from training a teacher model with normal softmax (i.e., T = 1) can
then be distilled and partially transfered to a student network by minimizing
the KD loss:

LKD(Wstudent) = aT2 ∗ CrossEntropy(Qτ
S, Qτ

T) + (1− a) ∗ CrossEntropy(QS, ytrue)

(3.5)

Qτ
S and Qτ

T are the softened targets of the student and teacher networks re-
spectively using the same temperature T and a tunes the weighted average
between the softened targets and the ground truth labels of the training set.

3.5 Quantization

Neural networks are traditionally developed using floating point arithmetic,
since it most closely represents the original mathematical models, but are
very resource intensive algorithms. Using lower precision representation of
weights and activations and in consequence lower precision math can greatly
increase the inference speed of a neural network while reducing it’s memory
footprint.

Lowering the precision of a neural network can be achieved in two ways, us-
ing a lower bit floating representation or migrating to integer arithmetic, the
latter of which is called quantization and usually achieves the highest compu-
tational improvements, especially when coupled with appropriate hardware.

Data Type Bits Minimum (αq) Maximum (βq)

int16 16 -32768 32767

uint16 16 0 65535

int8 8 -128 127

uint8 8 0 255

int4 4 -8 7

uint4 4 0 15

TABLE 3.2: Most common integer data types used in quantized
networks.
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Assuming a floating point value x ∈ [α, β] ∈ R, the quantization process
maps the value to a b-bit integer xq ∈ [αq, βq] ∈ Z.

xq = clip(round(
1
s

x + z), αq, βq)

(3.6)
x = s(xq − z) (3.7)

Where s and z are the scale and zero point respectively.

s =
β− α

βq − αq
(3.8)

z = round(
βαq − αβq

β− α
) (3.9)

On the above equations αq and βq are dependent on the quantization data
type (table 3.2) and α and β are usually acquired from the training dataset of
the network. Depending on the implementation, α and β can represent the
range of possible values for the entirety of the weighted layers, or a different
range can be acquired per-layer, or even per-channel.

In practice, α and β are an estimation, and the network will have a chance
to encounter values outside this range when in use, resulting in a quantized
value outside the range of [αq, βq]. To mitigate that in 3.6, a clipping function
is necessary, where clip(x, a, b) is defined as:

clip(x, a, b) =


a x < a

x a ≤ x ≤ b

b x > b

(3.10)

A special case of the above called symmetric quantization is achieved when
using signed integers for weight and activation representation and zero point
z = 0. This means that the quantization process is mapping floating point
numbers in the range [−r, r] where:

r = max(|α|, |β|) (3.11)

Although very promising, quantization of a neural network presents some
significant drawbacks. By lowering the precision of a model’s weights and
activations, it’s representative power is diminished, which in turn can result
to substantial losses in accuracy. To combat this phenomenon, a plethora of
quantization techniques have been proposed by multiple researchers, aiming
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at retrieving the losses in accuracy while preserving any reduction in com-
putational cost and memory footprint.

3.5.1 Post-Training Quantization

The simplest and most common way of quantizing a neural network is after
the training process has been completed. Unfortunately this method can re-
sult in significant accuracy losses, since the model is not aware of the inherent
quantization error while training.

3.5.2 Quantization-Aware Training (QAT)

Although a more complex, and as a result more computational intensive
method, quantization-aware training aims to minimize the quantization er-
ror, by applying every quantization transformation in the training process.
Here, the range [αq, βq] can be treated as a trainable parameter to be opti-
mized. To speed up the training process, it is common for QAT to initialize
the network by partially training it using floating point arithmetics before
quantization.

Quantizing a neural network can induce regularization on its features, which
as previously mentioned, NN models can benefit from. This phenomenon
can result on some networks presenting small accuracy improvements when
correctly trained using QAT.

Model Floating-Point
Baseline

Quantization-
Aware Training

Post-Training
Quantization

MobileNet V1 1.0

224

71.03% 71.06% 69.57%

MobileNet V2 1.0

224

70.77% 70.01% 70.2%

ResNet V1 50 76.3% 76.1% 75.95%

TABLE 3.3: Comparison of top-1 % accuracy between baseline,
quantization-aware trained and post-training quantized mod-
els. Note the small improvement over the baseline model of

Mobilenet V1 when using QAT (source).

https://blog.tensorflow.org/2020/04/quantization-aware-training-with-tensorflow-model-optimization-toolkit.html
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3.6 Quantization-Aware Knowledge Distillation

As the name suggests, Quantization-Aware Knowledge Distillation (QKD)
aims at combining Knowledge Distillation with Quantization-Aware Train-
ing, carefully coordinating the two techniques to achieve greater accuracy
compared to simply applying them consecutively on the quantized model.

Originally proposed by Kim et al. [1], the process of QKD is divided in three
phases:

3.6.1 Phase 1: Self-Studying (SS)

After training using it’s full precision representation, the student network
is quantized and fine tuned using Quantization Aware Training (QAT). All
weights and activations are “fake quantized” during both the forward and
backward passes of training: that is, float values are rounded to mimic inte-
ger values, but all computations are still done with floating point numbers.
This serves as a good starting point for the next phases.

The authors of the original proposal, opted for trainable uniform quantiza-
tion scheme, because of it’s hardware-friendly characteristics. To achieve
this, two trainable parameters for the interval values of each layer’s weights
and input activations are used (IW and IX respectively).

3.6.2 Phase 2: Co-Studying (CS)

In this phase the teacher network (full-precision) and student network (low-
precision) are jointly trained in an online manner by minimizing LKD(Wteacher)

and LKD(Wstudent) respectively:

LKD(Wteacher) = aT2 ∗ CrossEntropy(Qτ
T, Qτ

S) + (1− a) ∗ CrossEntropy(QT, ytrue)

(3.12)

LKD(Wstudent) = aT2 ∗ CrossEntropy(Qτ
S, Qτ

T) + (1− a) ∗ CrossEntropy(QS, ytrue)

(3.13)

3.6.3 Phase 3: Tutor-Studying (TS)

Finally the teacher network’s state is freezed and only the student network is
trained minimizing LKD(Wstudent) in an offline manner.
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Algorithm 1: Quantization-aware Knowledge Distillation

Input: Training Data;
Pre-trained FP weights for teacher model TF;
Pre-trained FP weights for student model SF;
Low-bit student model weights SL;
Weight interval values IW ;
Activation interval values IX;
Number of epochs for each phase P1; P2; P3;

Output: Trained low-bit student weight and interval values S′L, I′W and
I′X

1 Phase 1: Self-Studying;
2 Init SL with SF ; Init IW , IX using min-max values of weights and one

batch of activations;
3 for Epoch = 1, . . . , P1 do
4 Update SL , IW and IX by minimizing Ls

ce;
5 end
6 Phase 2: Co-Studying;
7 Init S′L, I′W and I′X with SL, IW and IX;
8 for Epoch = 1, . . . , P2 do
9 Update TF by minimizing LKD(Wteacher);

10 Update S′L, I′W and I′X by minimizing LKD(Wstudent);

11 end
12 Phase 3: Tutoring;
13 for Epoch = 1, . . . , P3 do
14 Update S′L, I′W and I′X by minimizing LKD(Wstudent);
15 end
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Chapter 4

Tools and Platforms

4.1 Deep Learning Software Tools

The popularization of DNNs has resulted in the creation of multiple software
frameworks for easier and more efficient development. These frameworks
provide a good abstraction, relieving the model designer from the tedious
work of implementing all the aspects of their design, allowing for more ex-
perimentation. Some of the most popular ones are described below.

4.1.1 TensorFlow & Keras

As of this writing, TensorFlow and Keras are considered to be the most popu-
lar machine learning frameworks. Developed by the Google Brain Team and
released in 2015, TensorFlow is an open-source framework not limited to, but
predominantly used for machine learning applications. Offering a complete
end-to-end solution, TensorFlow allows for easy deployment across a vari-
ety of platforms (CPUs, GPUs, TPUs) and devices such as desktops, clusters
and edge devices. As a complementary tool, Keras API is designed on top
of TensorFlow to enable fast experimentation with it’s user friendliness and
easy expandability.

4.1.2 PyTorch

Based on the Torch library [39], PyTorch is an open-source neural network
framework developed by Facebook’s AI Research Lab (FAIR) and released in
2016. Its highly polished and easy to use python interface, along with its flex-
ibility, has increased the framework’s popularity particularly in academia.
This is due to the more ’pythonic’ nature of the framework, offering a flatter
learning curve compared to TensorFlow, especially to researchers who are
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already familiar with the language. Although PyTorch does not match the
deployment capabilities of TensorFlow, mainly due to the latter’s popularity
in the tech industry, it too provides a plethora of compatible platforms and
devices.

4.1.3 TensorBoard

Training a neural network requires effective visualization of a number of met-
rics such as loss, accuracy, learning rates etc. TensorBoard is a set of tools for
tracking and visualizing metrics, visualizing model graphs and even display-
ing images, text and data, making it an indispensable tool for developers.
Although it is a product of the TensorFlow ecosystem, TensorBoard can be
utilized as a stand-alone tool by most frameworks in Python.

4.2 Neural Networks on Hardware

As previously mentioned, neural networks can achieve world-leading per-
formance on various regression and classification tasks. As DNNs increase in
size and capabilities, so does their appetite for computational power. DNNs
are comprised by a variety of operations, the majority of which are series
of Multiply-Accumulate (MAC) across large vectors of data. Choosing a
platform to calculate these operations is very application dependent; CPUs,
GPUs, TPUs and even FPGAs are viable options, but not all platforms are
suitable in all situations, and no solution can be regarded as all-fitting.

Training a neural network is usually considered the most computationally
intensive phase of its life-cycle. Here GPUs and purpose-built TPUs are con-
sidered the best solution, since both are designed for high-volume, parallel
vector computations. Fortunattely most networks are trained once before
their deployment, making the inference phase a greater point of interest for
optimizations.

Although inferencing neural networks is much less computationally inten-
sive, the requirements of each application can significantly influence the model’s
deployment strategy. An example of this can be found in modern A.I. as-
sisted smartphones, where the user can "wake-up" the assistant using a set of
simple voice commands, and then dictate an action or ask a question. Here,
the relatively easy task of voice recognition is performed locally, using the de-
vice’s onboard CPU. After that, the generated text is transmitted to a server
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for Natural Language Processing (NLP) [40], which is a much more com-
plicated task, requiring bigger DNNs, which in turn require hardware like
GPUs or TPUs to execute in reasonable time.

4.2.1 CPU

Although they offer excellent speed for sequential tasks, and can even sup-
port technologies such as Single Instruction Multiple Data (SIMD) [41], CPUs
are not optimized for large vector operations required by DNNs. Neverthe-
less, due to their flexibility and availability, they offer easy deployment of
DNNs on most systems.

4.2.2 GPU

As the name suggests, GPUs are designed to efficiently render graphics,
which are essentially series of matrix calculations. To achieve that, GPUs
are optimized for data parallel throughput computations. A GPU consists
of multiple Processor Clusters (PC) that contain multiple Streaming Multi-
processors (SM), which are designed to support instruction-level parallelism
using multiple small computational cores. Although these cores are limited
in their capabilities compared to ones found in a CPU, they can be enumer-
ated in the thousands in a single die, making them ideal for tasks with high
parallelism characteristics.

Another design characteristic of GPUs is their increased memory bandwidth
compared to CPUs which chat reach 10× on modern hardware. Usually com-
plemented by onboard V-RAM, High Bandwidth Memory (HBM) becomes
indispensable when dealing with large datasets.

Most of modern deep learning frameworks support GPU acceleration, usu-
ally based on the CUDA architecture. Compute Unified Device Architecture
is a prallel computing platform and API provided by NVIDIA to enable the
use of GPUs for general-purpose applications. NVIDIA additionally pro-
vides the CUDA Deep Neural Network (cuDNN), a set of highly tuned im-
plementations of common routines used in deep learning such as convolu-
tion, pooling and activation layers, to be used by other deep learning frame-
works.
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4.2.3 TPU

Developed by Google in conjunction with their machine learning framework
TensorFlow, Tensor Processing Units (TPUs) are application specific inte-
grated circuits (ASICs) designed to accelerate certain TensorFlow operations
for deep learning. TPUs where internally deployed by the company in 2015
and later made available for third-party use in 2018, either through their
cloud services or as stand-alone chips.

TPUs where originally intended for use in data centers for serving large
amounts of inferencing requests or training very large models. Recently, the
company has developed a line of edge-devices offered through their brand
"Coral". These devices provide forward-pass acceleration for quantized net-
works aimed at IoT and low-power applications.

Compared to GPUs, TPUs use less flexible cores, which excel in large tensor
operations making them better suitable for deep learning operations. More
precisely, a TPU core consists of a Matrix Multiply Unit (MXU) for matrix
multiplications of mixed-precision 16-32 bit floating point arithmetic and a
Vector Processing Unit for tasks like activations etc. using float32 and int32
computations.

FIGURE 4.1: TPU Cores and Chips URL

Multiplication of two matrices can be defined as a series of dot-products be-
tween their lines and columns.

Z = X ∗Y (4.1)

https://codelabs.developers.google.com/codelabs/keras-flowers-data/#2
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Z[A, B] = X[A, 0] ∗Y[0, B]+X[A, 1] ∗Y[1, B]+X[A, 2] ∗Y[2, B]+ · · ·+X[A, n] ∗Y[n, B]
(4.2)

Calculating the dot-products using a GPU is accomplished by assigning each
one to a core. Assuming matrixes of size 128× 128, the multiplication would
require 128∗ 128 = 16384 (16K) dot-products, exceeding the available amount
of cores in even the largest GPUs. On the contrary, MXUs consist of 16K
simple MAC cores, the bare minimum required for dot-product operations,
allowing them to calculate multiplications of 128× 128 matrices in one go.
Additionally, using a systolic-array architecture, MXUs can propagate the in-
termediate sums between adjacent compute units, without the need for stor-
ing/retrieving them to and from the memory, presenting significant speed
and power advantages over GPUs.

FIGURE 4.2: Architecture of a Matrix Multiplier Unit (MXU)
URL

Although TPUs present significant advantages over conventional methods
for deep learning applications, they too suffer from most drawbacks of ASICs.
Optimizing a system for a limited set of operations can quickly make it obso-
lete. As the field of deep learning progresses, new methods and requirements
for state-of-the art networks are introduced. Unfortunately, ASICs are expen-
sive to design and produce.

https://cloud.google.com/blog/products/ai-machine-learning/an-in-depth-look-at-googles-first-tensor-processing-unit-tpu
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4.2.4 FPGA

Field Programmable Gate Arrays (FPGAs) are essentially devices compris-
ing a large number of logic gates whose interconnection can be defined dy-
namically and hense be "programmed" to emulate a given logic architecture.
These devices close the gap between flexible but not optimized CPUs and
hard to develop and produce ASICs such as TPUs.

FPGAs often incorporate RAM blocks as well as digital signal processors
(DSPs) on the same chip to accelerate most complex digital computations.
Additionally, many FPGAs come with embedded processors, called "hard
cores" to form a system-on-chip (SoC). These cores are usually in charge of
communications, scheduling and data pre/post-processing, leaving the en-
tirety of the FPGAs resources for accelerating the task in hand.

Unfortunately, FPGAs are usually limited by the size of their internal mem-
ory, leaving the need for slower DRAM when dealing with large datasets.
This is a significant disadvantage compared to GPUs and TPUs which are
provided with HBM. Additionally, their reprogrammable nature requires sup-
plementary logic and extended datapaths, hindering their ability for higher
clock speeds. Regardless their drawbacks, FPGAs can still present significant
advantages when dealing with irregular architectures, enabling developers
to structrure the hardware design to best suit the model. They also provide
a fast and reliable way of emulating and validating hardware designs before
moving to more expensive platforms such as ASICs.

Manually defining the connections between tens or hundreds of thousands
of logic elements on an FPGA is not realistic. Most vendors provide solutions
for developing harware application using higher level design tools. Design-
ers can use structural representations of their design, describe hardware as
functinal I/O behaviour, or a combination of both. Using Hardware Descrip-
tion Languages (HDL) a netlist can then be generated, which is a full repre-
sentation of logical ports and their connections.

Nevertheless, designing complex accelerators for sophisticated algorithms
using hardware description languages can be too time-consuming. To aid in
development, many vendors offer tools for translating high-level functions
into HDL code, which allow for faster design and better analysis of an archi-
tecture before translating it to a netlist. Additionally, highly optimized and
verified hardware blocks of popular functions are made available as libraries.
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4.3 Vitis AI

Aiming at faster and easier deployment of neural networks on their devices,
Xilinx provides a design suite called Vitis-AI. The suit comprises a plethora
of optimized IP cores, tools, libraries, models, and example designs, and pro-
vides a workflow to design and deploy networks on Xilinx Deep Learning
Unit (DPU).

FIGURE 4.3: Vitis AI Stack.

4.3.1 Xilinx DPU

The DPU is designed as a programmable engine optimized for deep neural
networks. It consists of several IP cores implemented on the hardware with-
out requiring any place and route. Similar to a TPU, it accelerates common
workloads for deep learning inference algorithms for computer vision appli-
cations. The DPU comes with its proprietary specialised Vitis-AI instruction
set for efficient implementation of deep learning networks [42].

4.3.2 Vitis-AI Quantizer

The architecture of Xilinx DPU is based on quantized weights and activa-
tions for higher performance and energy efficiency. Vitis-AI provides tools
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for quantizing models of different deep learning frameworks (Caffe, Tensor-
flow and Pytorch). The Vitis AI quantizer takes a floating-point model as
input, performs pre-processing like fusing batch-norm and weighted layers,
and then quantizes the weights/biases and activations to the given bit width.

Calibrating the quantized layers is achieved using a small number of unla-
beled data. Alongside simple model quantization, the toolkit provides var-
ious optimization functionalities such as Quantization-Aware Training for
minimizing the quantization error using the entirety of the training dataset.

Finally, the quantizer generates a proprietary quantized network model which
can then be compiled by the Vitis AI compiler and deployed to the DPU [43].

4.3.3 Vitis-AI Compiler

Vitis-AI provides a domain specific compiler optimized for neural network
computations (VAI-C) for efficiently mapping the quantized network model
on the DPU instruction sequence. Using the quantized model from the pre-
vious step, VAI-C generates internal computation graph (XIR), and corre-
sponding control flow and data flow information. It then performs multiple
kinds of compilation optimizations and transforming techniques, including
computation nodes fusion, efficient instruction scheduling, full reuse of DPU
on-chip data, etc. [44].

FIGURE 4.4: Vitis AI Compiler Framework.

4.4 Specifications of Utilized Platforms

This work focuses on the impact of quantization algorithms on the accuracy
of models, as well as the performance of different computational platforms
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for inferencing them. This requires a set of different platforms to be evalu-
ated, to better understand the impact of lower precision arithmetics, as well
as utility of custom architecture. Following are the specifications of the plat-
forms used for final experimentation.

4.4.1 Intel i5-8600K

The Intel i5-8600K CPU [45], released in late 2017, is a desktop processor tar-
geted for medium to high workloads. Along with multi-threading capabili-
ties, the device offers a set SIMD instructions (SSE4 [46]) to improve vector
operation performance. In this work, the platform is evaluated with both
floating-point and 8-bit integer arithmetic CNNs to compare the impact of
its SIMD capabilities. Its specifications are presented in table 4.1.

Cores / Threads 6/6

Max Turbo Frequency 4.3 GHz

TDP 96W

Max Memory Bandwidth 41.6 GB/s

Lithography 14 nm

Instruction Set Extentions SSE4.1, SSE4.2, AVX2

TABLE 4.1: Intel i5-8600K processor specifications.

4.4.2 Nvidia RTX-2060 Super 8GB

Released in 2019, the device is equipped with multiple CUDA cores and
high-bandwidth memory, making it suitable for deep learning applications.
The device’s architecture is designed for floating-point arithmetic operations,
and thus is only evaluated using full-precision models. It’s specifications are
represented in table 4.2.

CUDA Cores 2176

Tensor Cores 32

GPU Memory 8GB GDDR6

Boost Clock 1650 MHz

Memory Interface 256-bit

Memory Bandwidth 448GB/s

Power Consumption 175W

TABLE 4.2: NVIDIA RTX 2060 Super specifications [47].
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4.4.3 Xilinx Zynq UltraScale+ MPSoC

Released in 2015 the Zynq UltraScale+ XCZU9EG MPSoC (Multi Processor Sys-
tem On Chip) combines a processing system (PS) and user programmable
logic (PL) into the same device. The MPSoC provides high speed DDR4
SODIMM and component memory interfaces, FMC expansion ports, multi-
gigabit per second serial transceivers, a variety of peripheral interfaces, and
FPGA logic. The processing system (PS) in a Zynq UltraScale+ MPSoC fea-
tures the Arm Cortex-A53 MPCor 64-bit quad-core processor and Cortex-R5
dual-core real-time processor. Specifically, the MPSoC offers [48]:

Power Consumption 45W

HD banks 5 banks, total of 120pins

HP banks 4 banks, total of 208pins

MIO banks 3 banks, total of 78pins

PS-side GTR 6 Gb/s transceivers 4 PS-GTRs

PL-side GTH 16.3 Gb/s transceivers 24 PL-GTHs

Logic cells 599,550

CLB flip-flops 548,160

Max. distributed RAM 8.8 Mb

Total Block-RAM 32.1 Mb

DSP slices 2,520

TABLE 4.3: Zynq UltraScale+ MPSoC ZCU9EG Features and
Resources.

ZCU102 Evaluation Board

The ZCU102, seen in figure 4.5, is a general purpose evaluation board for
rapid prototyping based on the Zynq UltraScale+ XCZU9EG MPSoC. High
speed DDR4 SODIMM and component memory interfaces, FMC expansion
ports, multi-gigabit per second serial transceivers, a variety of peripheral in-
terfaces, and FPGA logic for user customized designs provides a flexible pro-
totyping platform.
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FIGURE 4.5: The ZCU102 Evaluation Kit. [49]

This thesis is focused on edge applications, where computational and power
resources are usually limited. Since the platform features a single MPSoC,
and due to the greater support provided by Xilinx for it’s own evaluation kit,
this work utilizes a ZCU102 board for further experimentation. However,
transferring the resulting designs to devices of the same MPSoC family re-
quires minimum effort. An example device designed for High Performance
Computing (HPC), the Quad-FPGA Daughter Board is presented in 4.4.3.

Quad FPGA Daughter Board

Developed by the Foundation of Research and Technology Hellas (FORTH)
[50], the QFDB, seen in figure 4.6, is the HPC Testbed Prototype built for Ex-
aNeSt [51] project, which is now a part of the EuroExa research project. It
is equipped with 4 Zynq UltraScale+ XCZU9EG MPSoCs, a part of the same
family as the one used on the ZCU102 board, making the conveyance of a
hardware design from one platform to the other a relatively easy task. Ev-
ery FPGA node is connected to a 32MB QSPI memory and to a 16GB DDR4
SODIMM, able to transfer data at a rate of 160 Gbps, with the total avail-
able memory of 64 Gb on the board. The board is also equipped with a 256
GB SSD/NMVe (2 TB devices are available today), connected to one of the
MPSoCs. The FPGA nodes are connected in an all-to-all intra-node topology
with 2 High Speed Serial Links (HSSL) using GTH transceivers as well as 24
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Low-voltage differential signaling (LVDS) pairs. Finally one of the MPSoCs
is connected to the outside world with 10 HSSLs at 10.3125 Gbps, also using
GTH transceivers.

FIGURE 4.6: QFDB Architecture (Left) and actual board
(Right). [52]

4.5 Thesis Approach

Network quantization for faster and less power demanding deep learning
applications is frequently a core component in custom hardware AI acceler-
ators. As mentioned above, Xilinx DPUs take advantage of quantized net-
works to better utilize the available hardware. Unfortunately, lowering the
arithmetic precision of a network can result in significant accuracy loss, mo-
tivating the developers of Vitis-AI to include tools for automated quantiza-
tion optimizations like QAT. This thesis aims to explore the performance of
different CNN architectures on Xilinx DPUs, as well as implement QKD al-
gorithms to further optimize the quantized models.
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Chapter 5

Robustness Analysis of CNNs

This chapter presents the work done for the evaluation and characterization
of various model compression and quantization algorithms. A plethora of
training methodologies as presented in chapters 2 and 3 are employed for
building efficient and accurate image classification models, used as baseline
for further experimentation.

5.1 Software

All experiments are performed using the Pytorch framework (see 4.1.2). Py-
torch is chosen for it’s flexibility, as well as it’s integration with the Xilinx
Vitis-AI toolbox. For convenience, a set of utilities where developed for pars-
ing configuration files. Defining the various experiments using configuration
files promotes code reuse and simplifies experimentation.

5.1.1 Datasets and Dataloaders

To promote code readability and modularity, Pytorch provides two data prim-
itives: torch.utils.data.Dataset and torch.utils.data.DataLoader. The
former stores the samples and their corresponding labels, and the latter wraps
an iterable around the Dataset to enable easy access to the samples [53].

Dataloaders provide a convenient way of effectively managing large datasets.
Their functionality includes but is not limited to handling mini-batching,
multi-process data loading and custom data loading order (e.g. shuffling)
[54].
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Using the Dataset primitive, Pytorch libraries provide numerous pre-loaded
datasets for various applications (images, audio, text etc.) for faster proto-
typing and benchmarking. In this work, the datasets MNIST, CIFAR-10 and
CIFAR-100 are used, provided by the framework’s Torchvision package [55].

5.1.2 Optimizers

A variety of optimization algorithms are provided in the torch.optim pack-
age [56]. Based on the Optimizer class the algorithms provided include
but are not limited to Stochastic Gradient Descent (SGD), Averaged Stochas-
tic Gradient Descent (ASGD) and Adaptive Moment Estimation (ADAM).
Each optimizer requires the model’s trainable parameters, as well as a set of
optimizer-specific options such as the learning rate, weight decay, etc. In this
work, all models are trained using SGD, which provides options for Weight-
Decay and Nesterov-Momentum (see 2.3.1)

5.1.3 Learning Rate Schedulers

For implementing adaptive learning rate methods (see 3.3), Pytorch provides
a set of scheduler implementations to adjust the learning rate based on the
number of epochs [57]. The available schedulers include but are not lim-
ited to Time-Decay, Step-Decay, Expo-Decay and Decay-On-Plateau, which
reduce the learning rate when a metric has stopped improving. Each sched-
uler requires a .step() function to be called for each learning rate update,
which is usually done after a training epoch has finished.

5.1.4 Loss Functions

Pytorch provides multiple implementations of standard loss functions to be
used for training and evaluating a model [58]. These include but are not
limited to Mean Square Error (MSE), Cross Entropy Loss (CE) and Kullback
Leibler Divergence Loss (KLD). In this work, all models models are trained
using Cross Entropy Loss, except for knowledge distillation applications.

Knowledge Distillation Loss Function

As previously indicated, Knowledge Distillation is achieved by matching the
softened probability distribution of two network output classes. To achieve
this, a custom loss function is required. This work’s implementation follows
the LKD proposed by Haitong [59] where the first component is implemented
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using the built-in KL-Divergence loss function of Pytorch to better utilize the
underlying C-backend for efficiency. This way LKD is now defined as:

LKD(Wstudent) = aT2 ∗ KLDiv(Qτ
S, Qτ

T) + (1− a) ∗ CrossEntropy(QS, ytrue) (5.1)

5.1.5 Quantization Schemes

PyTorch supports multiple approaches to quantizing a deep learning model
[60]. The framework distinguishes the quantization process in two different
schemes: Static Quantization and Fake Quantization.

Static Quantization

Commonly used after a network has been trained using floating point weight
representations, static quantization converts the model to integer arithmetic
following a given configuration. The configuration class (QConfig) describes
how to quantize a layer or a part of the network by providing settings for
activations and weights respectively. Based on this configuration and a small
evaluation dataset, the framework calibrates the quantization parameters
(see 3.5) using Observer classes, which determine the scale s and zero point
z.

Fake Quantization

For quantization-aware training purposes Pytorch supports fake quantization-
modules that are inserted after each network layer and effectively model
their output with lower arithmetic representation. Using this method, all
computations are initially carried out in floating point. Then, the modules
calculate quantization errors in both the forward and backward passes, which
can be used for optimizing the network. At the end of quantization-aware
training, PyTorch provides conversion functions to convert the trained model
into lower precision.

5.1.6 Pytorch CUDA Integration

Pytorch provides integration for CUDA compatible GPUs. In this work, all
experiments where implemented using an NVIDIA RTX-2060 Super [47]. The
device is equipped with multiple CUDA cores and high-bandwidth memory,
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making it suitable for deep learning applications. More detailed specifica-
tions can be found in 4.4.

5.1.7 Configuration Files

Configuration files are written in YAML [61], a human friendly data serializa-
tion standard for all programming languages. The files contain all the infor-
mation needed to run an experiment such as network configuration, dataset,
epochs, optimizer, loss function etc. The same file can be used for training
a network using different methodologies, or evaluating the resulting model.
Finally, all algorithms are designed to receive a directory path containing the
configuration file. This directory is used for storing the final model, interme-
diate checkpoints, as well as logging.

5.1.8 Base Classes

For the entirety of training and validating the models, a small set of base
classes is required. These are:

Validator

The validator is responsible for evaluating the accuracy of a network without
calculating the backproagation gradients for optimizing the model. It is most
commonly used between training epochs. The class constructor requires a
network object, the validation dataset, as well as the loss function. The class
implements the validate() method, which evaluates the network using the
provided dataset.

TrainerSS

The essentials of training a neural network have been covered in chapter
2.3. In this work, optimizing a model using only a training dataset is de-
scribed using the term "Self-Studying" (SS). The TrainerSS constructor re-
quires a network object, a dataloader, an optimizer object, a loss function, a
Validator instance for evaluating the network’s performance after each epoch
and a warmup parameter. All trainer classes implement the train_epoch()

method, which trains the network using the entirety of the given dataset.
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Algorithm 2: TrainerSS.train_epoch()
Input: Network, Dataloader, Optimizer, Loss Function, Validator,

Warmup, Current Epoch;
Output: Optimized Network, Training Loss, Training Accuracy,

Validation Loss, Validation Accuracy;
1 Correct← 0;
2 Running_Loss← 0;
3 Total ← Total amount of training inputs;
4 for Inputs, Labels← Dataloader do
5 Zero the Optimizer parameters;
6 Outputs← Network(Inputs);
7 Increment Correct whith the amount of Inputs correctly labeled;
8 Loss← Loss_Function(Outputs, Labels);
9 Running_Loss← Running_Loss + Loss;

10 Use Backpropagation to calculate the Error Gradients;
11 Use the Error Gradients to optimize the network;
12 if Current_Epoch < Warmup then
13 Step Warmup scheduler;
14 end

15 end
16 Training_Loss← Running_Loss/Total;
17 Training_Accuracy← Correct/Total;
18 Validation_Loss, Validation_Accuracy← Validator.validate() ;

TrainerTS

Following the proposal of Kim et al. [1], TrainerTS implements "Tutor-Studying"
which is essentially Knowledge Distillation (see 3.4). The TrainerTS construc-
tor requires a student network object, a set of corresponding outputs from
the teacher network which are used as labels, a dataloader, an optimizer ob-
ject, a Validator instance for evaluating the network’s performance after each
epoch, the hyperparameters used in LKD and a warmup parameter. For op-
timizing the student network, the trainer utilizes a custom loss function as
described in 5.1.4
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Algorithm 3: TrainerTS.train_epoch()
Input: Student Network, Teacher Outputs, Dataloader, Optimizer,

Validator, Warmup, α, T, Current Epoch;
Output: Optimized Student Network, Training Loss, Training Accuracy,

Validation Loss, Validation Accuracy;
1 Correct← 0;
2 Running_Loss← 0;
3 Total ← Total amount of training inputs;
4 for Inputs, Labels, Indexes← Dataloader do
5 Zero the Optimizer parameters;
6 Outputs← StudentNetwork(Inputs);
7 Increment Correct whith the amount of Inputs correctly labeled;
8 Teacher_Outputs_Batch← Get corresponding Teacher_Outputs using

their Index;
9 Loss← LKD(Outputs, Labels, Teacher_Outputs_Batch, α, T);

10 Running_Loss← Running_Loss + Loss;
11 Use Backpropagation to calculate the Error Gradients;
12 Use the Error Gradients to optimize the network;
13 if Current_Epoch < Warmup then
14 Step Warmup scheduler;
15 end

16 end
17 Training_Loss← Running_Loss/Total;
18 Training_Accuracy← Correct/Total;
19 Validation_Loss, Validation_Accuracy← Validator.validate() ;

TrainerCS

TrainerCS is responsible for the "Co-Studying" phase of Quantization-Aware
Knowledge Distillation (see 3.6). Compared to TrainerTS, the module needs
to calculate both the student and teacher outputs to update their weights
in an online manner. The TrainerCS constructor requires a student network
object, a teacher network object, a dataloader, two different optimizer objects
for the student and teacher respectively, a Validator instance for evaluating
the student network’s performance after each epoch, the hyperparameters
used in LKD and a warmup parameter.
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Algorithm 4: TrainerCS.train_epoch()
Input: Student Network, Teacher Network, Dataloader, Student

Optimizer, Teacher Optimizer, Student Validator, Warmup, α, T,
Current Epoch;

Output: Optimized Student Network, Optimized Teacher Network,
Training Loss, Training Accuracy, Validation Loss, Validation
Accuracy;

1 Correct← 0;
2 Running_Loss← 0;
3 Total ← Total amount of training inputs;
4 for Inputs, Labels, Indexes← Dataloader do
5 Zero the Student Optimizer parameters;
6 Zero the Teacher Optimizer parameters;
7 Student_Out← StudentNetwork(Inputs);
8 Teacher_Out← TeacherNetwork(Inputs);
9 Increment Correct whith the amount of Inputs correctly labeled by

the student network;
10 Student_Loss← LKD(Student_Out, Labels, Teacher_Out, α, T);
11 Teacher_Loss← LKD(Teacher_Out, Labels, Student_Out, α, T);
12 Running_Loss← Running_Loss + Student_Loss;
13 Use Backpropagation to calculate both the Student’s and the

Teacher’s Error Gradients;
14 Use the Error Gradients to optimize both the Student and the Teacher

networks;
15 if Current_Epoch < Warmup then
16 Step Warmup scheduler;
17 end

18 end
19 Training_Loss← Running_Loss/Total;
20 Training_Accuracy← Correct/Total;
21 Validation_Loss, Validation_Accuracy← Validator.validate() ;

5.1.9 Quantization

In this work both weights and activations of all networks quantized to 8-bit
representation use the following quantizers:
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8-bit Activation Quantizer

Activations are quantized to unsigned integers in the range of [0, 255]. The
scale factor for quantization as well as the zero-point are determined using
the running average minimum and average maximum values of each Tensor.

8-bit Weights Quantizer

Weights are quantized to signed integers in the range of [−128, 127]. The
scale factor for quantization as well as the zero-point are determined identi-
cally to the activations quantizer.

Additionally, all networks quantized to 4-bit representation use the following
quantizers:

4-bit Activation Quantizer

Activations are quantized to unsigned integers in the range of [0, 15]. The
scale factor for quantization as well as the zero-point are determined using
the running average minimum and average maximum values of each Tensor.

4-bit Weights Quantizer

Weights are quantized to signed integers in the range of [−8, 7]. The scale
factor for quantization as well as the zero-point are determined identically to
the activations quantizer.

5.1.10 Data Augmentation

As described in 2.4.3, data augmentation can reduce model overfitting by
introducing noise in the training process. This technique is employed when
training on the CIFAR-10 and CIFAR-100 datasets using a series of transforms
provided by the framework’s Torchvision package [62]. These are:

1. Random Crop: 4 pixels of zero-padding is applied in each direction
and then a random crop is performed to extract a 32× 32 image.

2. Random Horizontal Flip: The image is randomly flipped horizontally
using a probability value of p = 0.5.

3. Random Rotation: The image is randomly rotated between a range of
[−15, 15] degrees.



5.2. Methodology 61

5.2 Methodology

Deep learning requires repetitive experimentation. Hyperparameter tuning,
different training methods and multiple model variations can exponentially
increase the amount of tests needed before a robust and accurate network is
produced. Unfortunately, training a model is by itself a time-consuming pro-
cess, especially when large networks and complex training methods are in-
volved. This work approaches the problem by evaluating a training method
on smaller networks, before gradually increasing both the model complexity,
as well as the training dataset size.

5.2.1 Models

DNN

The simplest network used for experimentation, DNN is a deep neural net-
work of a single hidden layer. The model comes in four variations: DNN-1200,
DNN-800, DNN-300 and DNN-30. As the name suggests, each variation’s hidden
layer has 1200, 800, 300 and 30 neurons respectively.

KL_MLP

KL_MLP is a deep multi-layer perceptron utilizing two hidden layers. Similar
to DNN, the network comes in two variations for knowledge-distillation ex-
perimentations: KL_MPL_Teacher and KL_MPL_Student. Both DNN and KL_MLP

networks are trained on the MNIST dataset (see 3.1)

Model
Features

Input Layer Layer 1 Layer 2 Layer 3 Output

KL_MLP_Teacher 28 * 28 1200 1200 1200 10
KL_MLP_Student 28 * 28 300 300 300 10

TABLE 5.1: KL_MLP model variants.

DenseNet

Approaching state-of-the-art architectures, DenseNet (see 3.2.5) is the biggest
network used in this work’s experiments. Along with the configurations pro-
vided in the original paper, three additional smaller variants where created
for exploring the impact of network compression and the effectiveness of
Knowledge Distillation. Their specifications are presented in rable 5.2. All
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DenseNet variants are trained on the CIFAR-10 and CIFAR-100 datasets (see
3.1).

Layers Output Size DenseNet-21 DenseNet-37 DenseNet-63

Convolution 112× 112 7 x 7 conv, stride 2

Pooling 56× 56 3 x 3 max pool, stride 2

DenseBlock 56× 56

[
1× 1 conv

3× 3 conv

]
× 1

[
1× 1 conv

3× 3 conv

]
× 2

[
1× 1 conv

3× 3 conv

]
× 3

Transition Layer
56× 56 1 x 1 conv

28× 28 2 x 2 average pool, stride 2

DenseBlock 28× 28

[
1× 1 conv

3× 3 conv

]
× 2

[
1× 1 conv

3× 3 conv

]
× 4

[
1× 1 conv

3× 3 conv

]
× 6

Transition Layer
28× 28 1 x 1 conv

14× 14 2 x 2 average pool, stride 2

DenseBlock 14× 14

[
1× 1 conv

3× 3 conv

]
× 3

[
1× 1 conv

3× 3 conv

]
× 6

[
1× 1 conv

3× 3 conv

]
× 12

Transition Layer
14× 14 1 x 1 conv

7× 7 2 x 2 average pool, stride 2

DenseBlock 7× 7

[
1× 1 conv

3× 3 conv

]
× 2

[
1× 1 conv

3× 3 conv

]
× 4

[
1× 1 conv

3× 3 conv

]
× 8

Classification Layer
1× 1 7 x 7 global average pool

1000D fully-connected, softmax

TABLE 5.2: Custom DenseNet architectures. The growth rate
for all the networks is k = 32.

5.3 Baseline Experiments

The following experiments aim to determine each network’s accuracy using
floating point arithmetic. All networks where trained on their corresponding
datasets multiple times to determine the best hyperparameter combinations.
The resulting models will then serve as a baseline for exploring quantization
and knowledge distillation techniques.

5.3.1 DNN

All variants of DNN are trained using identical hyperparameters. The net-
works are trained for 160 epochs using 64 images per mini-batch. The learn-
ing rate is chosen to be lr = 0.1 which is then divided by 2 at epochs 40, 80
and 120, additionally a warmup period of 2 epochs is chosen. The optimizer
uses Nesterov momentum m = 0.9 and weight decay wd = 5 ∗ 104. The
results are shown in table 5.3.
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Model Top-1 Train Acc % Top-1 Test Acc %

DNN-1200 99.96 98.68
DNN-800 99.96 98.73
DNN-300 99.94 98.67
DNN-30 99.17 97.86

TABLE 5.3: DNN test results on MNIST.

As is evident, the best performing variant for MNIST classification is DNN-800
exceeding the test accuracy of DNN-1200. This can be attributed to model
over-fitting, since both DNN-800 and DNN-1200 produce the same train accu-
racy.

5.3.2 KL_MLP

Similar to DNN, all variants of KL_MLP are trained using identical hyperparam-
eters. The networks are trained for 100 epochs using 64 images per mini-
batch. The learning rate is chosen to be lr = 0.1 which is then divided by
2 at epochs 20, 40 and 60, additionally a warmup period of 2 epochs is cho-
sen. The optimizer uses Nesterov momentum m = 0.9 and weight decay
wd = 5 ∗ 104. The results are shown in table 5.4.

Model Top-1 Train Acc % Top-1 Test Acc %

KL_MLP_Teacher 98.61 98.45
KL_MLP_Student 99.96 98.39

TABLE 5.4: KL_MLP test results on MNIST.

5.3.3 DenseNet

For the purposes of this work, five different variants of DenseNet are eval-
uated for classifying the CIFAR-10 and CIFAR-100 datasets. All variants are
trained using identical hyperparameters for both datasets. The networks are
trained for 200 epochs using 64 images per mini-batch. The learning rate is
chosen to be lr = 0.1 which is then divided by 5 at epochs 60, 120 and 160,
additionally a warmup period of 2 epochs is chosen. The optimizer uses Nes-
terov momentum m = 0.9 and weight decay wd = 5 ∗ 104. The results are
shown in tables 5.5 and 5.6.
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Model Top-1 Train Acc % Top-1 Test Acc %

DenseNet-21 98.93 92.14
DenseNet-37 99.9 93.92
DenseNet-63 99.98 94.47
DenseNet-121 99.98 94.48
DenseNet-201 99.98 95.23

TABLE 5.5: DenseNet test results on CIFAR-10.

Model Top-1 Train Acc % Top-1 Test Acc %

DenseNet-21 82.59 68.86
DenseNet-37 96.04 73.98
DenseNet-63 99.24 76.76
DenseNet-121 99.73 77.66
DenseNet-201 99.83 77.60

TABLE 5.6: DenseNet test results on CIFAR-100.

5.4 Knowledge Distillation Experiments

Following are the different experiments conducted for fine-tuning the im-
plementation of Knowledge Distillation using the TrainerTS algorithm (see
5.1.8).

5.4.1 DNN

Knowledge Distillation is performed on DNN by assigning the DNN-800 variant
as a teacher, and the variants DNN-300 and DNN-30 as students. All models are
trained for 160 epochs using 32 images per mini-batch. The initial learning
rate is set to lr = 0.1 and divided by 5 in epochs 40, 80 and 120 with a warmup
period of 2 epochs. Additionally the optimizer uses Nesterov momentum
m = 0.9 and weight decay wd = 5 ∗ 104. For both networks, 5 different values
for hyperparameter α in LKD are tested, while T is set to T = 20 for DNN-300
and T = 3 for DNN-30. The different hyperparameters used for knowledge
distillation, along with the resulting accuracy of each model is presented in
table 5.7.



5.4. Knowledge Distillation Experiments 65

Model α Top-1 Train Acc % Top-1 Test Acc %

DNN-300

0.5 99.87 98.62
0.4 99.91 98.58
0.3 99.94 98.64
0.2 99.95 98.62
0.1 99.96 98.69

DNN-30

0.5 99.14 97.91
0.4 99.26 97.79
0.3 99.37 97.99
0.2 99.50 98.06
0.1 99.51 97.81

TABLE 5.7: DNN Knowledge-Distillation test results on
MNIST.

Both networks present small improvements compared to their baseline per-
formance. However, the advantages of Knowledge Distillation are clearer on
DNN-30, where the maximum improvement is observed using α = 0.2. This
indicates that the method is most beneficial in models with small representa-
tive power.

5.4.2 KL_MLP

In this experiment, Knowledge Distillation is applied from KL_MLP_Teacher

to KL_MLP_Student. The model is trained for 10 epochs using 64 images per
mini-batch. The optimizer is configured using a learning rate value of lr =

0.1, a warmup period of 1 epoch, Nesterov momentum m = 0.9. LKD is
configured using the hyperparameters α = 0.7 and T = 20. A comparison
between the baseline networks and the resulting model is presented in table
5.8.
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Model Training Top-1 Train Acc % Top-1 Test Acc %

KL_MLP_Teacher Baseline 98.61 98.45
KL_MLP_Student Baseline 99.96 98.39
KL_MLP_Student KD 99.87 98.46

TABLE 5.8: KL_MLP Knowledge Distillation test results on
MNIST.

Although the observed improvement is small, it should be noted that the
baseline models presented minor accuracy differences. Nonetheless, train-
ing the student model using knowledge distillation achieves higher accuracy
compared to the baseline teacher model.

5.4.3 DenseNet

For CIFAR-10 classification, Knowledge Distillation is applied from DenseNet-63

to DenseNet-21. All models are trained for 200 epochs using 64 images per
mini-batch. The optimizer uses Nesterov momentum m = 0.9, weight decay
wd = 5 ∗ 104 and is initialized with learning rate lr = 0.01 using a warmup
period of 2 epochs. Multiple combinations of hyperparameters are tested,
with the best results presented in table 5.9.

LR Scheduler Steps T a Top-1 Train Acc % Top-1 Test Acc %

60, 120, 160 20 0.7 99.63 92.36
60, 100, 120, 140, 160 20 0.7 99.34 92.74
60, 100, 120, 140, 160 20 0.8 99.29 92.71
60, 100, 120, 140, 160 8 0.7 99.41 92.32

TABLE 5.9: DenseNet-21 Knowledge Distillation test results on
CIFAR-10. Column 1 denotes the sequence of epochs where the

learning rate is divided by 5.

Again, Knowledge Distillation presents a small but consistent performance
increase over the baseline models.
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5.5 Post-Training Quantization

In this section, the impact of post-training quantization on the baseline mod-
els is explored. All experiments are conducted using fake-quantization, uti-
lizing the quantizers described in 5.1.9. The final results are depicted in table
5.10.

Model Dataset Top-1 Test Accuracy
Baseline 8-bit Quant. 4-bit Quant.

DNN-1200 MNIST 98.68 98.68 98.05
DNN-800 MNIST 98.73 98.74 97.92
DNN-300 MNIST 98.67 98.65 98.15
DNN-30 MNIST 97.86 97.88 95.91
KL_MLP_Teacher MNIST 98.45 98.46 98.13
KL_MLP_Student MNIST 98.39 98.34 97.74
DenseNet-21 CIFAR-10 92.14 91.90 62.69
DenseNet-37 CIFAR-10 93.92 93.76 72.51
DenseNet-63 CIFAR-10 94.47 94.46 74.59
DenseNet-121 CIFAR-10 94.98 94.93 75.80
DenseNet-201 CIFAR-10 95.23 95.15 78.08
DenseNet-21 CIFAR-100 68.86 68.41 17.75
DenseNet-37 CIFAR-100 73.98 73.76 23.54
DenseNet-63 CIFAR-100 76.76 76.62 39.93
DenseNet-121 CIFAR-100 77.66 77.50 32.97
DenseNet-201 CIFAR-100 77.60 77.48 38.30

TABLE 5.10: Post-Training Quantization impact on baseline
models.

Examining the performance figures reveals two significant trends. As ex-
pected, 4-bit representation yields the greatest degradation of accuracy across
all models. However 8-bit representation results vary from minuscule im-
provements, to small but significant deterioration of performance. This can
be attributed to quantization’s regularization characteristics, aiding some mod-
els to generalize better on the problem.
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5.6 Quantization-Aware Training

Following are the different experiments conducted for fine-tuning the imple-
mentation of Quantization-Aware training using the TrainerSS algorithm
(see 5.1.8). QAT is performed using the baseline models generated in 5.3,.
The networks are fake-quantized and further trained for a small number of
epochs.

5.6.1 KL_MLP

All models are trained for 30 epochs using 64 images per mini-batch. The
optimizer is initialized with learning rate lr = 0.01 using a warmup period
of 2 epochs. Additionally, Nesterov momentum is set to m = 0.9 and weight
decay to wd = 5 ∗ 10−4. The resulting performance metrics are presented in
table 5.11

Model Bit-Width Top-1 Train Acc % Top-1 Test Acc %

KL_MLP_Teacher 8 98.72 98.46
KL_MLP_Teacher 4 98.21 98.13
KL_MLP_Student 8 99.94 98.35
KL_MLP_Student 4 99.10 97.74

TABLE 5.11: KL_MLP QAT test results on MNIST.

As is evident by the test results, QAT only improved the accuracy of KL_MLP_Student
in 8-bit representation. However, it should be noted that the models did not
suffer from the quantization process in the first place.

5.6.2 DenseNet

For 8-bit quantization all models are trained for 60 epochs using 64 images
per mini-batch. The optimizer is initialized with learning rate lr = 10−6

using a warmup period of 1 epoch which is then divided by 5 in epochs 20
and 40. Additionally, Nesterov momentum is set to m = 0.9 and weight
decay to wd = 5 ∗ 10−4. The resulting performance metrics are presented in
table 5.12.
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Model Dataset Top-1 Train Acc % Top-1 Test Acc %

DenseNet-21 CIFAR-10 98.68 92.13
DenseNet-37 CIFAR-10 99.84 93.97
DenseNet-63 CIFAR-10 99.99 94.50
DenseNet-121 CIFAR-10 99.98 94.92
DenseNet-21 CIFAR-100 82.05 68.78
DenseNet-37 CIFAR-100 95.55 73.84

TABLE 5.12: DenseNet 8-bit QAT test results.

Quantization-Aware training yields small but significant performance im-
provements across all cases. Furthermore, most quantized models show
promising results, by surpassing the accuracy of their baseline counterparts.

For 4-bit quantization the variants are trained for 140 epochs using 64 images
per mini-batch. The optimizer is initialized with learning rate lr = 10−3

using a warmup period of 1 epoch which is then divided by 5 per 20 epochs.
Additionally, Nesterov momentum is set to m = 0.9 and weight decay to
wd = 5 ∗ 10−4. The resulting performance metrics are presented in table 5.13.

Model Dataset Top-1 Train Acc % Top-1 Test Acc %

DenseNet-21 CIFAR-10 93.63 88.9
DenseNet-37 CIFAR-10 92.83 89.23
DenseNet-63 CIFAR-10 96.17 90.54
DenseNet-121 CIFAR-10 96.68 91.46

TABLE 5.13: DenseNet 4-bit QAT test results.

The usefulness of QAT is better showcased in 4-bit quantization schemes.
Here, the algorithm achieves over 25% performance increase compared to
post-training quantization.

5.7 Quantization-Aware Knowledge Distillation

To compare the performance between QKD and traditional QAT, each exper-
iment consists of the following method combinations (See 3.6):
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1. Baseline: The network is trained and evaluated in full-precision repre-
sentation.

2. Quantized: The network is trained in full-precision and evaluated in
low-precision representation.

3. SS: The network is trained using only the "SS" phase, effectively acting
as "QAT".

4. SS + TS: The network is trained using the "SS" phase and then the
knowledge from the original teacher network is distilled.

5. QKD (SS + CS + TS): The three phases are combined to implement
Quantization aware Knowledge Distillation (QKD).

The following experiments use 8-bit quantization.

5.7.1 MNIST

In this experiment, MNIST classification is achieved using the KL_MLP net-
works. The optimizer uses learning rate lr = 0.01 and Nesterov momentum
m = 0.9 in all experiments except the "TS" phase of QKD where the learn-
ing rate is set to lr = 0.1. Similarly all "TS" and "CS" phases use LKD() with
T = 20 and a = 0.7. The student network is trained for 30 epochs in "SS"
phase, 50 epochs in "CS" phase and 40 epochs in "TS" phase.

Method Top-1 Train Acc % Top-1 Test Acc %

Baseline 99.96 98.39
Quantized 99.89 98.34
SS 99.94 98.35
SS+TS 99.96 98.63
QKD (SS+CS+TS) 99.99 98.79

TABLE 5.14: KL_MLP Performance comparison of training
methods.

The experimental results on MNIST are shown in table 5.14. The teacher
network achieved top-1 accuracy of 98.45%. We can see that due to the regu-
larization provided both by quantization and knowledge distillation the stu-
dent performs better than the teacher network using QKD training.
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5.7.2 CIFAR-10

For CIFAR-10 classification, the networks Densenet-21 and Densenet-63 are
used as student and teacher networks respectively. All experiments used
SGD optimizer with Nesterov momentum m = 0.9, weight decay wd = 5 ∗
10−4 and mini-batch of size 64. The hyperparameters used in each phase are:

• SS Phase

The quantized student network is trained for 60 epochs using learning
rate lr = 10−6, which is initialized using one warmup epoch and then
divided by 5 in epochs 20 and 40.

• CS Phase

The Co-Studying phase is executed for 100 epochs using lr = 10−4

which is divided by 5 in epochs 40, 60 and 80. Knowledge Distilla-
tion is performed both from teacher to student and vice versa using the
loss hyperparameters T = 8 and α = 0.7.

• TS Phase

Tutor-Studying is performed for 100 epochs using lr = 10−3 which is
divided by 5 in epochs 40, 60 and 80. Knowledge Distillation is per-
formed from teacher to student using the loss hyperparameters T = 8
and α = 0.7.

Method Top-1 Train Acc % Top-1 Test Acc %

Baseline 98.93 92.14
Quantized 98.41 91.90
SS 98.68 92.13
SS+TS 98.96 92.26
QKD (SS+CS+TS) 99.00 92.50

TABLE 5.15: DenseNet Performance comparison of training
methods for CIFAR-10.

The experimental results on CIFAR-10 are shown in table 5.15. The teacher
network achieved baseline top-1 accuracy of 94.47%. It is evident in this case
that simple QAT is not sufficient to compensate for the quantization losses.
However, SS + TS and QKD show significant improvements, surpassing the
baseline accuracy of the student model, with QKD performing the best.
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Using the hyperparameters as described above a set of experiments where
carried out for model variants DenseNet-21, DenseNet-37, DenseNet-63 and
DenseNet-121 to compare between QAT and QKD performance for 8-bit and
4-bit quantization. The resulting metrics are presented in figure 5.1, where it
can be observed that QKD consistently outperforms QAT.

FIGURE 5.1: QAT and QKD Performance on CIFAR-10 for 8-bit
and 4-bit quantization schemes

5.7.3 CIFAR-100

For CIFAR-100 classification, the networks Densenet-37 and Densenet-121
are used as student and teacher networks respectively. All experiments used
SGD optimizer with Nesterov momentum m = 0.9, weight decay wd = 5 ∗
10−4 and mini-batch of size 64. The hyperparameters used in each phase are
identical to those used on CIFAR-10 experiments.

Method Top-1 Train Acc % Top-1 Test Acc %

Baseline 96.04 73.98
Quantized 95.20 73.76
SS 95.55 73.81
SS+TS 95.31 73.78
QKD (SS+CS+TS) 95.38 73.84

TABLE 5.16: DenseNet Performance comparison of training
methods for CIFAR-100.

The experimental results on CIFAR-100 are shown in table 5.16. The teacher
network achieved top-1 accuracy of 77.66%. Again SS + TS and QKD show
similar improvements to CIFAR-10, with QKD performing the best.
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5.8 Memory Footprint

In this section, the memory footprint of all quantized networks are evaluated
and compared to the baseline floating-point models.

Model # Parameters Model Size (MB)
Floating Point 8-bit Quant. 4-bit Quant.

Densenet-21 419420 1.60 0.40 0.20

Densenet-37 1008964 3.85 0.96 0.48

Densenet-63 2353676 8.98 2.24 1.12

Densenet-105 5358244 20.44 5.11 2.56

Densenet-121 7048548 26.89 6.72 3.36

Densenet-201 18277220 69.72 17.43 8.72

KL_MLP_Teacher 2395210 9.14 2.28 1.14

KL_MLP_Student 328810 1.25 0.31 0.16

dnn-30 24790 0.09 0.02 0.01

dnn-300 328810 1.25 0.31 0.16

dnn-800 1276810 4.87 1.22 0.61

dnn-1200 2395210 9.14 2.28 1.14

5.9 Conclusions

Quantizing a neural network can significantly degrade it’s representative
power, and thus reduce it’s effectiveness. In this work, we prove that both
QAT, as well as QKD can minimize the negative effects of quantization on
a neural network, with the latter proving the most effective. Additionally,
all experiments on QKD suggest that the additional CS phase as originally
proposed by Kim et al. [1] contributes significantly to the training process.
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Chapter 6

FPGA Implementation

In chapter 5, different methodologies for model quantization and compres-
sion where evaluated. Utilizing the aforementioned techniques, a set of mod-
ified DenseNet models are prepared for execution on a Xilinx DPU using the
Vitis-AI development stack (4.3).

The workflow consists of the following steps:

• Modify the original models to fit the constraints of Vitis-AI.

• Train the networks with QKD using the Vitis-AI quantizer.

• Create a Xilinx Internal Representation (XIR) of the trainied model us-
ing the Vitis-AI compiler.

• Load the DPU IP-Core in the ZCU-102 development board and infer-
ence the compiled model.

6.1 DenseNet Modifications

Deploying the different variants of DenseNet in a Xilinx DPU requires a set
of modifications to be implemented. These modifications aim to prepeare the
model for the Vitis-AI toolchain.

As mentioned in 4.3.2, Vitis-AI Quantizer performs a variety of optimiza-
tions. One of these optimizations is Batch-Norm "fusion", which is performed
on the trained model as a last step to eliminate Batch-Norm layers. Since
Batch-Norm layers utilize the statistics of the entire training dataset (which
are immutable regardless the network’s input) in inference time, they essen-
tially perform a static linear translation of their input (2.3.5). This translation
can be "fused" in the features of a previous weighted layer, reducing the final
size of the model.
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The original model proposed by Huang et al. [2] utilizes "pre-activated"
residual blocks (3.2.4) by implementing each "conv" block as a sequence of
BN-ReLu-Conv (3.1), which offers significant advantages when training ex-
tremely deep residual networks. Unfortunately such a sequence cannot be
fused after the training process is completed to eliminate the Batch-Norm
(BN) layers. Additionally the original model contains "Transition" layers
which consist of BN-Conv sequences, which too cannot be fused.

Another complication emerges when attempting to implement this type of
residual block in a Vitis-AI environment. Xilinx DPUs do not support stand-
alone activation layers, but instead integrate them as a part of weighted lay-
ers. Trying to compile a sequence of BN-ReLu-Conv using the Vitis-AI com-
piler produces a series of subgraphs aimed at executing the ReLu operation
in software, introducing significant bottleneck to the critical path.

To overcome the aforementioned issues, the original model is modified to uti-
lize the more conventional approach of Conv-BN-ReLu sequences for dense-
blocks and Conv-BN for transition layers. To compare the impact of these
modifications in the final test accuracy of the model the baseline experiments
where repeated using the same hyper-parameters as before. The results are
displayed in tables 6.1 and 6.2.

Model Variant Top-1 Train Acc % Top-1 Test Acc %

Baseline Modified Baseline Modified

DenseNet-21 98.93 98.8 91.87 92.27

DenseNet-37 99.9 99.98 93.92 94.49

DenseNet-63 99.98 99.89 94.47 94.18

DenseNet-121 99.99 99.99 94.48 95.52

DenseNet-201 99.98 100 95.23 95.58

TABLE 6.1: Modified DenseNet evaluation on Cifar-10.

Model Variant Top-1 Train Acc % Top-1 Test Acc %

Baseline Modified Baseline Modified

DenseNet-21 82.59 81.42 68.86 68.9

DenseNet-37 96.04 94.27 73.08 73.66

DenseNet-63 99.24 98.89 76.76 76.12

DenseNet-121 99.73 99.71 77.66 77.9

DenseNet-201 99.83 99.91 77.06 78.21

TABLE 6.2: Modified DenseNet evaluation on Cifar-100.
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The modified version of DenseNet proposed in this work achieves compa-
rable accuracy metrics to the original. This is to be expected since the use
of pre-activated dense blocks presented significant advantages in cases of ex-
tremely deep ResNet architectures, which are not present in our experiments.

Finally, the Vitis-AI quantizer requires all operations of the model to be de-
fined as PyTorch modules. In our case, all dense block intermediate output
additions, as well as flattening the output of the last convolution layer to
be accepted from the final fully-connected layer where replaced with corre-
sponding modules. This does not change the functionality of the network,
but is necessary to proceed with quantization.

6.2 Vitis-AI Toolchain

Xilinx offers the Vitis-AI toolchain in the form of ’Docker containers’. A
Docker container is a standard unit of software that packages code and all
its dependencies so the application runs quickly and reliably from one com-
puting environment to another [63]. Xilinx provides Vitis-AI in two major
variants, ’CPU’ and ’GPU’. This refers to the capabilities of the various ML
frameworks that are included in the containers, the latter of which can utilize
CUDA enabled GPUs to accelerate the training process. Although the ’CPU’
variant is available pre-built by Xilinx, the ’GPU’ version must be built using
the provided Docker ’recipe’ [64]. In this work, the ’GPU’ version of Vitis-AI
is used, since the models must be trained using the Vitis-AI Quantizer.

6.2.1 Vitis-AI Quantizer

Vitis-AI provides a PyTorch plugin named ’vai_q_pytorch’ [65], designed to
replace the original quantizers of the framework. In this work, the workflow
of ’Quantize Finetuning’ [66] provided by Xilinx is extended to implement
both QAT and QKD algorithms as described in chapter 5. Following are the
necessary modifications to the original algorithms.

• Replace PyTorch fake quantizers with vai_q_pytorch quantizers. To
do so, vai_q_pytorch is set to ’calibration’ and ’qat_proc’ mode, which
models the error gradients to enable quantization-aware training. Ad-
ditionally, the quantizer constructor requires the expected input shape
to be provided, which is easily derived from a random training sample.
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• Save the trained model, along with additional quantization info re-
quired by vai_q_pytorch.

• Export the trained quantized model along with the quantization info
required by Vitis-AI compiler. To achieve this, vai_q_pytorch requires
a final evaluation of the network using a single input vector and batch
size of 1.

The resulting quantized models used in the following experiments are pre-
sented in table 6.3.

Model Method Dataset Top-1 Train Acc % Top-1 Test Acc %

DenseNet-21 QAT CIFAR-10 98.25 92.01

DenseNet-21 QKD CIFAR-10 99.05 92.47

DenseNet-37 QAT CIFAR-100 91.97 73.97

DenseNet-37 QKD CIFAR-100 95.11 74.27

TABLE 6.3: VAI Quantizer Model Accuracy.

6.2.2 Xilinx DPUCZDX8G

Xilinx provides a plethora of DPU IP cores. The DPUCZDX8G has been
optimized for MPSoC devices and can be integrated as a block in the pro-
grammable logic (PL) of Zynq-7000 SoC and Zynq UltraScale+ MPSoCs with
direct connections to the processing system (PS). It is designed to implement
a neural network based on given instructions and accessible memory loca-
tions for input images as well as temporary and output data. The architecture
is designed for 8-bit integer arithmetic. Additionally, the DPU is accompa-
nied by software running on the application processing unit (APU) to service
interrupts and coordinate data transfers [67].

The DPUCZDX8G has the following features:

• One AXI slave interface for accessing configuration and status registers.

• One AXI master interface for accessing instructions.

• Supports individual configuration of each channel.

• Supports optional interrupt request generation.
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(A) DPU Top-Level Block Diagram URL (B) DPU Hardware Architecture URL

FIGURE 6.1: Xilinx DPU Architecture

The detailed hardware architecture of the DPU is shown in figure 6.1. It
is composed of a high performance scheduler module, a hybrid computing
array module, an instruction fetch unit module, and a global memory pool
module. Instructions for the operation of the computation engine are stored
and fetched from the off-chip memory. To reduce the amount of external
memory bandwidth and achieve higher throughput, the accelerator uses on-
chip memory to buffer input, intermediate, and output data, reusing as much
as possible. The computation engine comprises a deep pipeline of processing
elements (PEs), which are in turn based on the fine-grained building blocks
such as multipliers, adders, and accumulators found in Xilinx devices.

DSP Double Data Rate

To further improve the performance of the accelerator, the Double Data Rate
(DDR) technique is used to double the throughput of the chip’s DSPs. There-
fore, two input clocks for the DPU are needed: One for general logic and
another at twice the frequency for DSP slices [68].

https://www.xilinx.com/html_docs/vitis_ai/1_3/dpu_over.html
https://www.xilinx.com/html_docs/vitis_ai/1_3/prod_spec.html
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FIGURE 6.2: Difference between DPUCZDX8G without DSP
DDR (Left) and DPUCZDX8G Enhanced Usage (Right).

DPU Configuration

The IP Core comes with a variety of user-configurable parameters to opti-
mize resource usage. Different configurations can be selected for DSP slices,
LUT, block RAM, and UltraRAM usage based on the amount of available
programmable logic resources. Additionally, a selection of various features
can be enabled such as average pooling, channel augmentation, depthwise
convolution and softmax. Furthermore, multiple DPUCZDX8G cores (up to
4) can will be instantiated in a single DPUCZDX8G IP to achieve higher per-
formance.

The DPUCZDX8G IP can be configured with a variety of convolution archi-
tectures, each of them offering different parallelism of the convolution unit.
The convolution architecture utilizes parallelism in three distinct dimensions:
pixel parallelism (PP), input channel parallelism (ICP), and output channel
parallelism (OCP).
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FIGURE 6.3: DPU Computation Parallelism.

The different variants of DPUCZDX8G architectures can be found in table
6.4. Each variant offers different levels of parallelism, peak operations per
clock cycle and consequently resource requirements. It should be noted that
in each clock cycle, the convolution array performs a multiplication and an
accumulation, which are counted as two operations, so operations per cycle
is equal to PP ∗ ICP ∗OCP ∗ 2.

Arch PP ICP OCP Ops/Cycle LUT Register Block RAM DSP

B512 4 8 8 510 27893 35435 73.5 78

B800 4 10 10 800 30468 42773 91.5 117

B1024 8 8 8 1024 34471 50763 105.5 154

B1152 4 12 12 1152 33238 49040 123 164

B1600 8 10 10 1600 38716 63033 127.5 232

B2304 8 12 12 2304 42842 73326 167 326

B3136 8 14 14 3136 47667 85778 210 436

B4096 8 16 16 4096 53540 105008 257 562

TABLE 6.4: DPUCZDX8G Architectures specifications and re-
source utilization for single core IP on ZCU-102 using Block-

RAM.

RAM Usage

The DPU utilizes on-chip memory to buffer weights, bias, and intermediate
features. DPUCZDX8G provides a RAM Usage option, which determines the
total amount of on-chip memory used in different architectures for all cores
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in the IP. High RAM usage results to larger resource utilization, but implies
higher performance in each core. The differences in resource requirements
are illustrated in table 6.5.

Architecture Low RAM Usage High RAM Usage

B512 73.5 89.5

B800 91.5 109.5

B1024 105.5 137.5

B1152 123 145

B1600 127.5 163.5

B2304 167 211

B3136 210 262

B4096 257 317.5

TABLE 6.5: Number of BRAM36K blocks in different architec-
tures for each DPUCZDX8G core.

Channel Augmentation

The DPUCZDX8G provides architecture variants with high input channel
parallelism. It is not uncommon for networks to feature smaller number
of channels in some layers, and thus not completely utilize the parallelism
offered. However, when the number of input channels is larger than the
channel parallelism, then channel augmentation may be utilized, to improve
efficiency. Again, channel augmentation costs extra logic resources, as illus-
trated in table 6.6.

Architecture Extra LUTs

B512 3121

B800 2624

B1024 3133

B1152 1744

B1600 2476

B2304 1710

B3136 1946

B4096 1701

TABLE 6.6: Extra LUTs of DPUCZDX8G with Channel Aug-
mentation.
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Depthwise Convolution

The DPUCZDX8G provides functionality for accelerating depth-wise convo-
lutions [69]. This type of convolution is performed in two steps, with a sepa-
rate convolution for each channel (using as many kernels as input channels),
followed by a pointwise convolution (a standard convolution with kernel
size 1x1). The parallelism of depthwise convolution is half that of the pixel
parallelism. Depth-wise convolution costs extra logic resources, as illustrated
in table 6.7.

Architecture Extra LUTs Extra Block RAMs Extra DSPs

B512 1734 4 12

B800 2293 4.5 15

B1024 2744 4 24

B1152 2365 5.5 18

B1600 3392 4.5 30

B2304 3943 5.5 36

B3136 4269 6.5 42

B4096 4930 7.5 48

TABLE 6.7: Extra resources of DPUCZDX8G with Depthwise
Convolution.

Average Pool

The AveragePool option determines whether the average pooling operation
will be performed on the DPUCZDX8G or not. The supported sizes range
from 2x2, 3x3, ..., to 8x8, with only square sizes supported. The extra re-
sources with Average Pool is listed in table 6.8.

Architecture Extra LUTs

B512 1507

B800 2016

B1024 1564

B1152 2352

B1600 1862

B2304 2338

B3136 2574

B4096 3081

TABLE 6.8: Extra LUTs of DPUCZDX8G with Average Pooling.
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Relu Type

The ReLU Type option determines which kind of ReLU function can be used
in the DPUCZDX8G. By default, the accelerator supports ReLu and ReLu6.
Additionally LeakyRelu can be enabled with a small additional cost of re-
sources (347 to 706 extra LUTs).

Softmax

This option enables the DPUCZDX8G to execute softmax layers, which can
be more than 150x times faster than a software implementation. The maxi-
mum labels of hardware softmax is 1023. The extra resources with Softmax
enabled are 9580 extra LUTs, 8019 extra FlipFlops, 4 extram BRAM blocks
and 12 extra DSPs.

DSP Usage

The default configuration of DPUCZDX8G utilizes DSP48E slices for multi-
plication and accumulation operations in the convolution modules. The IP
provides an additional option to disable the use of DSPs for accumulation
named ’Low DSP Usage’. This reduces the usage of DSPs but requires an
additional amount of LUTs and registers for accumulation operations. The
extra logic utilization compared of high and low DSP usage is shown in table
6.9.

Architecture Extra LUTs Extra Block RAMs Fewer DSPs

B512 1418 2515 -32

B800 1903 4652 -40

B1024 1445 3069 -64

B1152 2550 4762 -48

B1600 1978 3520 -80

B2304 3457 6219 -96

B3136 1661 3900 -112

B4096 2525 7359 -128

TABLE 6.9: Resources of Low DSP Usage Compared to High
DSP Usage.
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6.3 DPUCZDX8G Implementation

Xilinx offers a pre-compiled version of DPUCZDX8G with 3 DPU Cores con-
figured at 300Mhz for deployment on a ZCU102 evaluation board. Addi-
tionally Channel Augmentation, Softmax, LeakyRelu enabled. The resource
utilization for its implementation on a ZCU-102 is depicted in table 6.10. As
mentioned in 6.2.2, the device is designed for 8-bit integer arithmetic, and
thus only quantized versions of CNN models are used for performance eval-
uation.

PL/DSP Clock Frequency 300/600 MHz
LUT 58.60%
BRAM Usage 84.45%
DSP Usage 66.90%
Power Consumption 22.8W

TABLE 6.10: DPUCZDX8G Resource Requirements on ZCU-
102.

Compiling the final model required by DPUCZDX8G is achieved using the
XIR-based toolchain (vai_c_xir). The XIR based compiler takes the quan-
tized model as the input. First, it transforms the input models into the XIR
format. A unified representation that eliminates most of the variations among
different frameworks. Then, various optimizations are applied on the graph.
Additionally, the compiler breaks up the graph into several subgraphs on the
basis of whether the operation can be executed on the DPU. The compiler re-
quires an additional architecture file of the target DPU. This is exported by
the configured DPU core and represents its capabilities.

6.4 Evaluating The Model

Xilinx provides a series of C++ and Python APIs called VART which stands
for "Vitis-AI Runtime" [70]. The API features asynchronous submission and
collection of jobs to the accelerator. In this work, the python version of the
API is used to evaluate the final models.

The python script developed for model evaluation deserializes the generated
XIR model, initializes a number of threads with the required subgraphs and
data and waits for the threads to finnish their execution. This is achieved
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using Python’s threading library [71]. Finally a set of performance metrics
are calculated based on the time of execution and accuracy of the model.

Algorithm 5: DPU Runner

Input: Dataset, Model, Thread_Count;
Output: Throughput, Time, Test Accuracy;

1 Images, Labels← Dataloader(Dataset);
2 Total ← Count(Images);
3 Graph← VART_XIR_Deserializer(Model);
4 DPU_Runners← [];
5 Threads← [];
6 Predictions← [];
7 foreach i in (1, . . . , Thread_Count) do
8 runner ← VART_Create_Runner(Graph);
9 DPU_Runners.append(runner);

10 end
11 foreach i in (1, . . . , Thread_Count) do
12 Threads.append(DPU_Runners[i], Subset(Images, i));
13 end
14 Start_Time← time();
15 foreach i in (1, . . . , Thread_Count) do
16 Threads[i].start();
17 end
18 foreach i in (1, . . . , Thread_Count) do
19 Threads[i].join();
20 end
21 Stop_Time← time();
22 foreach i in (1, . . . , Thread_Count) do
23 Labels.append(Threads[i].results);
24 end
25 Correct← Predictions = Labels;
26 Test_Accuracy← Correct/Total;
27 Time← Stop_Time− Start_Time;
28 Throughput← Total/Time ;

The image provided by Xilinx is based on PetaLinux [72], and comes with all
the necessary VART libraries. It can be flashed in a micro-sd card and used
to boot the evaluation board. Additionally, the necessary python script, com-
piled XIR models and datasets are transferred to the memory card. After the
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Peta-Linux have booted, root access to the system can be acquired through
SSH [73].
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Chapter 7

Results

7.1 Performance Metrics

7.1.1 Latency

Latency, is the time required for accomplishing a single task. In this work,
latency is defined as the time taken for a specific platform to process a single
image.

7.1.2 Throughput

In general terms, throughput is defined as the number of tasks accomplished
in a unit time. The higher the throughput, the higher the rate at which some-
thing in processed. In this work, throughput is defined as the number of
images classified per second.

Throughput =
Images

Time(sec)
(7.1)

7.1.3 Power and Energy Consumption

In physics, power is the amount of energy transferred or converted per unit
time. In the International System of Units (SI) it is measured in Watts (W).

P =
W
∆t

(7.2)

Where W is the work and ∆t is the elapsed time.

Measured in Joules (J), energy consumption is defined as the energy required
for accomplishing a specific task in a specific time amount. It is
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E = P ∗ T (7.3)

Where P is the required power and T is the time needed to complete the task.

In this work, the Energy Consumption/Image metric is calculated as shown
in equation 7.4. The minimum value of the energy consumption based on
latency or throughput is selected to represent the optimal case for each plat-
form.

EnergyConsumption
Image

= min{TotalPower ∗ Latency,
TotalPower
Throughput

} (7.4)

7.2 Overall Performance

This sections aims to quantify and compare the performance of three differ-
ent platforms. Although all models have been trained on both CIFAR-10 and
CIFAR-100 datasets, the overall performance metrics are based only on the
latter. Both datasets comprise images of identical dimensions and thus both
perform similar.

Benchmarking on CPU and GPU is achieved using PyTorch. The framework
can configure the number of workers to be used for its inference procedure.
Workers are orchestration processes designed to run in parallel, loading data
to RAM and inferencing the images. As a rule of thumb, the number of work-
ers used to inference a network should be equal to the number of threads in
a CPU. Alternatively, inferencing with a GPU requires only one CPU worker.
Using multiple workers in this case can create communication bottlenecks
and hinder performance. In this work, CPU experiments used six workers
(as many threads provided in an i5-8600K) and a single worker for GPU ex-
periments.

7.2.1 CPU FP Representation

Full-precision performance metrics on the CPU where acquired for models
DenseNet-21, DenseNet-37, DenseNet-63, DenseNet-121 and DenseNet-201.
Inference latency (fig. 7.1) is smallest for a batch size of single images. How-
ever throughput (fig. 7.2) is maximized in the range of 8 to 32 images per
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batch depending on the model. In that range, the minimum energy con-
sumption per image is also observed (fig. 7.3).

FIGURE 7.1: CPU Latency.

FIGURE 7.2: CPU Throughput.

FIGURE 7.3: CPU Energy Consumption.
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7.2.2 CPU 8-bit Representation

Performance metrics on the Quantized CPU where acquired for the modi-
fied versions of DenseNet-21, DenseNet-37, DenseNet-63, DenseNet-121 and
DenseNet-201, as defined in 6.1. Inference latency (fig. 7.4) is smallest for a
batch size of single images. However throughput (fig. 7.5) is maximized for
batch sizes exceeding 128 images ber bach, depending on the model. In that
range, the minimum energy consumption per image is also observed (fig.
7.6).

FIGURE 7.4: Quantized CPU Latency.

FIGURE 7.5: Quantized CPU Throughput.
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FIGURE 7.6: Quantized CPU Energy Consumption.

7.2.3 GPU

Performance metrics on the GPU where acquired for models DenseNet-21,
DenseNet-37, DenseNet-63, DenseNet-121 and DenseNet-201. Inference la-
tency (fig. 7.7) increases for batch sizes 16 and greater. Compared to CPU
performance, the platform presents a lower limit in latency requirements,
and thus decreasing the batch size below 8 does not yield faster inference.

As expected, throughput (fig. 7.8) benefits from the increase in batch sizes,
where it plateaus in the range of 512 to 1024 images per batch. In that range,
the minimum energy consumption per image is also observed (fig. 7.9).

FIGURE 7.7: GPU Latency.
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FIGURE 7.8: GPU Throughput.

FIGURE 7.9: GPU Energy Consumption.

7.2.4 Xilinx DPU

Performance metrics on the DPU where acquired for the modified versions
of DenseNet-21, DenseNet-37 and DenseNet-63 as defined in 6.1. Xilinx DPU
cores are designed to operate with one image per batch.

As mentioned in ??, the python script developed for inferencing the DPU
features multi-threading capabilities using Python’s threading library. Each
thread orchestrates the necessary memory transactions and submits a job to
the DPU scheduler.

Inference latency is presented in figure 7.10. Similar to CPU, minimum la-
tency is observed with one thread. However, throughput (fig. 7.11) is max-
imized in the range of 5 to 8 images per batch depending on the model. In
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that range, the minimum energy consumption per image is also observed
(fig. 7.12).

FIGURE 7.10: DPU Latency.

FIGURE 7.11: DPU Throughput.

FIGURE 7.12: DPU Energy Consumption.
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7.2.5 Comparisons

The throughput and latency speedups, as well as the energy efficiencies for
every platform, are calculated compared to the full-precision CPU metrics.
Since all platforms demonstrate optimal latency and throughput performance
in different batch sizes or count of threads, energy efficiency is calculated for
both cases. ’QCPU’ denotes the evaluation of quantized networks using the
CPU. The final results are presented in tables 7.1, 7.2 and 7.3.

Platform CPU QCPU GPU DPU

Throughput (images/s) 665.26 1717.07 5995.64 3674.32
Throughput Speedup 1.00x 2.58x 9.01x 5.52x
Latency (ms) 6.59 7.92 6.7 0.69
Latency Speedup 1.00x 0.83x 0.98x 9.55x
Energy Con/Img (best latency) 626.05 752.4 1172.5 15.73
Energy Efficiency (best latency) 1.00x 0.83x 0.53x 39.80x
Energy Con/Img (best throughput) 142.8 55.33 29.19 6.21
Energy Efficiency (best throughput) 1.00x 2.58x 4.89x 23.00x

TABLE 7.1: DenseNet-21 Performance Results.

Platform CPU QCPU GPU DPU

Throughput (images/s) 360.65 1020.56 5890.41 2250.92
Throughput Speedup 1.00x 2.83x 16.33x 6.24x
Latency (ms) 8.98 10.45 8.27 1.11
Latency Speedup 1.00x 0.86x 1.09x 8.09x
Energy Con/Img (best latency) 853.1 992.75 1447.25 25.42
Energy Efficiency (best latency) 1.00x 0.86x 0.59x 33.56x
Energy Con/Img (best throughput) 263.41 93.09 29.71 10.13
Energy Efficiency (best throughput) 1.00x 2.83x 8.87x 26.00x

TABLE 7.2: DenseNet-37 Performance Results.
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Platform CPU QCPU GPU DPU

Throughput (images/s) 216.19 458.19 4499.56 1317.68
Throughput Speedup 1.00x 2.12x 20.81x 6.10x
Latency (ms) 11.83 13.74 10.39 1.78
Latency Speedup 1.00x 0.86x 1.14x 6.65x
Energy Con/Img (best latency) 1123.85 1305.3 1818.25 40.58
Energy Efficiency (best latency) 1.00x 0.86x 0.62x 27.69x
Energy Con/Img (best throughput) 439.43 207.34 38.89 17.3
Energy Efficiency (best throughput) 1.00x 2.12x 11.30x 25.40x

TABLE 7.3: DenseNet-63 Performance Results.

The final results of the various performance metrics are also depicted using
bar charts in figures 7.13, 7.14 and 7.15 for better visibility.

FIGURE 7.13: DenseNet-21 Inference Performance.

FIGURE 7.14: DenseNet-37 Inference Performance.
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FIGURE 7.15: DenseNet-63 Inference Performance.

It can be observed that, for DenseNet-21 classification, the GPU performs
best in terms of data throughput. However, both CPU and DPU yield better
latency results, with the DPU exceeding a 9× speedup compared to all other
platforms.

Energy consumption metrics paint an interesting picture. Here, the DPU per-
forms the best on both cases (best throughput and best latency) by an order
of magnitude. However, based on the throughput and latency requirements,
CPU and GPU energy efficiencies differ significantly. Both platforms depend
greatly on data parallelism to maximize their throughput, and thus demon-
strate their highest efficiency in these working conditions. In this case, and
although the GPU is the most power-hungry device, it exceeds the energy
efficiency of the CPU due to its high-parallelism architecture.

Additionally, it should be noted that evaluation of quantized networks on
CPU using SIMD instructions yields significant throughput speedups com-
pared to full-precision, almost reaching 4×. Interestingly, although latency
performance is positively effected, the speedup is minuscule.

By comparing the final results between the inference of DenseNet-21, DenseNet-
37 and DenseNet63, it is evident that, as the model size and complexity in-
creases, so does the overall performance of the GPU compared both to CPU
and DPU. It is safe to assume that larger models will hinder the performance
of all platforms. However, the GPU used in these experiments, with 8 gi-
gabytes of high-speed memory, 2176 CUDA cores and 32 Tensor Cores will
degrade with a smaller rate.

Although a few concrete observations can be made using the final results, the
technology dissimilarity of the compared platforms should be noted. The
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RTX 2060 Super is a fairly new GPU, launched in the mid 2019. The Intel
i5-8600K CPU was released in late 2017, and the ZCU102’s MPSoC, the Xil-
inx Zynq Ultrascale+ ZU9, launched in 2015. Hence, a fairer comparison
between more similar platforms should be conducted.
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Chapter 8

Conclusions and Future Work

This chapter aims to present the conclusions of this dissertation. Also, pro-
posals for future work indicated by the research are suggested

8.1 Conclusions

The versatility of Convolution Neural Networks and their capability to clas-
sify complex data structures have made them an integral part machine learn-
ing applications, from image and sound recognition, to medical data analy-
sis and many more. With the research community continuing to successfully
explore new applications of such models in various industries, hardware ca-
pable of executing these models in a fast and energy efficient way is needed.

However, constraining the neural network to better fit certain hardware limi-
tations can greatly increase the overall performance. This thesis’ purpose was
to explore a variety of methodologies for model compression and quantiza-
tion, and their impact on accuracy. To achieve this, both Quantization Aware
Training and Quantization Aware Knowledge Distillation algorithms where
implemented and applied on a set of DenseNet variants. Training method-
ologies, quantization schemes and hyperparameter-tuning techniques where
studied to produce quantized models, often exceeding the accuracy metrics
of their non-quantized counterparts.

Finally, a comparison was made between three different platforms, a CPU, a
GPU, and a Xilinx DPU, the latter of which was implemented on a ZCU102
FPGA evaluation board, and used quantized models. To achieve this, all
quantization techniques had to be implemented on Xilinx’s Vitis-AI frame-
work to prepare the final models for evaluation.
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The final performance metrics show that advanced quantization methodolo-
gies can produce neural networks of comparable capabilities, that enable
cheaper and less power demanding hardware to outperform platforms of
higher specifications.

8.2 Future Work

This thesis touches on a plethora of quantization training methods and avail-
able hardware implementations for neural network inference. However, a
vast amount of literature on this subject exist, and continues to be expanded
as of the time of this writing. Some the future work regarding this topic is
presented below.

8.2.1 Incremental Quantization

Incremental Network Quantization, another quantization technique proposed
by Zhou et al. [74] in 2017, promises lossless quantization of CNN networks
by incrementally quantizing them in the training process. This could be used
to augment Quantization Aware Knowledge distillation.

8.2.2 Quantization Scheme

Although this work touched briefly on 4-bit quantization, yielding promis-
ing results, further exploration of 2-bit and 1-bit quantized models is needed
[75] [76]. Extremely lowering the arithmetic precision, and compensating
with larger models can produce networks more suitable hardware accelera-
tion. However, since most CNN accelerators in the market are based on 8-bit
and 4-bit quantization, testing such a proposition requires custom hardware
architecture.

8.2.3 Tested Platforms

In this work, quantized models where evaluated using a Xilinx DPU imple-
mentation, which is based in 8-bit quantization. However, as mentioned in
4.2.3, Google provides its own implementation of NN hardware acceleration.
In addition to its main line of TPUs, google has developed a series for edge
applications, called Coral [77], which too use 8-bit quantization for model
inference. Evaluating the quantized models on this architecture can provide
more useful data.
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Additionally, a pre-compiled version of DPUCZDX8G offered by Xilinx is
utilized for all experiments. However, as is mentioned in 6.2.2, the IP Core
comes with a variety of user-configurable parameters to optimize resource
usage. A customized implementation could be explored, reducing the amount
of enabled features to only those required for inferencing DenseNet architec-
tures, and increasing the total amount of available DPU cores.

Finally, although this dissertation draws inspiration from edge applications
of CNNs, High Performance Computing (HPC) systems can too benefit from
quantized neural networks. As described in 4.4.3, the Quad-FPGA Daughter
Board (QFDB) utilizes the same MPSoC used in ZCU102 evaluation boards,
and thus is compatible with the Xilinx DPU IP used for our experiments. The
platform displays promising potential, and can use the benefits of quantized
neural networks to meet HPC performance requirements, if the available re-
sources are utilized efficiently.

8.2.4 Model Sizes

As mentioned in 7.2.5, it is evident that, as the model size and complexity
increases, so does the overall performance of the GPU compared both to CPU
and DPU. This phenomenon should be explored by evaluating larger models.
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