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Abstract

The classification of recyclable materials, particularly the recovery of plastic, is
critical not only for economic sustainability, but also for environmental sustainabil-
ity. Deep learning is a machine learning paradigm that employs artificial neural
networks with multiple layers to progressively extract higher level features from raw
input; a paradigm that in recent years has achieved extraordinary success in a wide
variety of applications, including the classification of materials. This thesis introduces
two novel ensemble neural network methods for image classification. Our methods
build  on the concept of “shared wisdom from data” in order to effectively classify
recyclable materials. Specifically, in the first part of this thesis we introduce the so-
called “Dual-branch Multi-output CNN” based on recent work in deep learning and
waste classification. This is a custom convolutional neural network composed of two
branches that aims to i) classify recyclables and ii) distinguish the type of plastic.
The proposed architecture consists of two classifiers that have been trained on two
distinct datasets in order to encode complementary characteristics of recyclable ma-
terials. Our approach allows the learning of disjoint label combinations, by making
use of the datasets’ joint utilization—but without requiring their mingling. In the
second part of this thesis, we propose a generic classification architecture based on
independent parallel CNNs that explicitly exploits a “mutual exclusivity” or “classi-
fiers’ mutually supported decisions” property that exists in many dataset domains
of interest, namely that an image in a given dataset may almost unquestionably be-
long to only one class. Our framework incorporates several purpose-built opinion
aggregation decision rules that are triggered when the mutual exclusivity property
is satisfied or not; and it makes use of “weights” that intuitively reflect each CNN’s
confidence in correctly identifying its corresponding class. Thus, our framework can
(a) take advantage of clearly defined class boundaries when they exist, and (b) suc-
cessfully assign items to classes when clearly defined class boundaries do not exist.
Our experiments, with two well-known problem-specific image datasets, confirm the
effectiveness of our ensemble neural network methods in the classification of recy-
clables.



Περίληψη
Η ταξινόμηση των ανακυκλώσιμων υλικών, ιδιαίτερα η ανάκτηση του πλαστικού,
είναι πολύ σημαντική όχι μόνο για την οικονομική βιωσιμότητα, αλλά και την οι-
κολογική βιωσιμότητα. Η βαθιά μάθηση αποτελεί μια κατηγορία αλγορίθμων μη-
χανικής μάθησης που χρησιμοποιούν τεχνητά νευρωνικά δίκτυα με πολλαπλά επί-
πεδα για τη σταδιακή εξαγωγή χαρακτηριστικών υψηλότερου επιπέδου από την
ακατέργαστη είσοδο. Πρόκειται για μια προσέγγιση που τα τελευταία χρόνια έχει
χρησιμοποιηθεί με εξαιρετική επιτυχία σε μια μεγάλη ποικιλία εφαρμογών, συ-
μπεριλαμβανομένης της ταξινόμησης υλικών. Η παρούσα μεταπτυχιακή διατριβή
εισάγει δύο καινοτόμες μεθόδους ταξινόμησης εικόνων βασισμένες σε συνεργατι-
κές δομές νευρωνικών δικτύων τις οποίες προτείνουμε. Οι μέθοδοι μας βασίζονται
στην έννοια της λεγόμενης “διαμοιραζόμενης σοφίας από δεδομένα”, ώστε να ταξι-
νομούν αποτελεσματικά τα ανακυκλώσιμα υλικά. Συγκεκριμένα, στο πρώτο μέρος
της παρούσας μεταπτυχιακής εργασίας παρουσιάζουμε το αποκαλούμενο « Dual-
branch Multi-output CNN» βασιζόμενοι σε σύγχρονες έρευνες στη βαθιά μάθηση και
στην ταξινόμηση αποβλήτων. Αυτό είναι ένα προσαρμοσμένο συνελικτικό νευρωνι-
κό δίκτυο που αποτελείται από δύο κλάδους και αποσκοπεί i) στο να ταξινομήσει
τα ανακυκλώσιμα υλικά και ii) στο να διακρίνει τον τύπο του πλαστικού. Η προ-
τεινόμενη αρχιτεκτονική αποτελείται από δύο ταξινομητές που έχουν εκπαιδευτεί
σε δύο ξεχωριστά σύνολα δεδομένων, προκειμένου να αξιοποιήσουν παραπλήσια
χαρακτηριστικά από τα ανακυκλώσιμα υλικά. Η προσέγγισή μας επιτρέπει την
εκμάθηση διαφορετικών συνδυασμών χαρακτηριστικών με ταυτόχρονη αξιοποίηση
των διαφορετικών συνόλων δεδομένων, χωρίς να απαιτεί την ανάμειξή τους. Στο
δεύτερο μέρος της εργασίας μας, προτείνουμε μια γενική αρχιτεκτονική ταξινόμη-
σης βασισμένη σε ανεξάρτητα παράλληλα συνελικτικά νευρωνικά δίκτυα (CNNs),
η οποία αξιοποιεί την ιδιότητα της «αμοιβαίας αποκλειστικότητας» ή αλλιώς των
«αμοιβαία υποστηριζόμενων αποφάσεων ταξινομητών» που χαρακτηρίζει πολλά
σύνολα δεδομένων από τομείς ενδιαφέροντος: εν συντομία, συχνά μια εικόνα που
περιλαμβάνεται σε ένα σύνολο δεδομένων ανήκει, κατά κοινή παραδοχή των ταξι-
νομητών, σχεδόν αποκλειστικά σε μία μόνο κλάση. Παρέχουμε με άλλα λόγια ένα
πλαίσιο λήψης αποφάσεων ταξινόμησης, το οποίο ενσωματώνει διάφορους προ-
τεινόμενους κανόνες απόφασης, που ενεργοποιούνται όταν η ιδιότητα αμοιβαίας
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αποκλειστικότητας ικανοποιείται ή όχι. Ταυτόχρονα, χρησιμοποιεί «βάρη» που α-
ντικατοπτρίζουν διαισθητικά το ποσοστό εμπιστοσύνης του κάθε CNN όσον αφορά
την ταξινόμηση ενός υλικού στην κλάση στην οποία το δίκτυο είναι εξειδικευμένο.
Έτσι, η προσέγγιση μας μπορεί (α) να εκμεταλλευτεί τα σαφώς καθορισμένα όρια
κλάσεων, όταν τέτοια υπάρχουν, και (β) να αναθέτει στοιχεία επιτυχώς σε κλάσεις,
ακόμα κι όταν δεν υπάρχουν σαφώς καθορισμένα όρια κλάσεων. Τα πειράματά
μας με δύο γνωστά σύνολα δεδομένων εικόνων από τον συγκεκριμένο τομέα εν-
διαφέροντος, επιβεβαιώνουν την αποτελεσματικότητα των προτεινόμενων μεθόδων
και αρχιτεκτονικών συνεργατικών δομών νευρωνικών δικτύων στην ταξινόμηση των
ανακυκλώσιμων υλικών.

Antonios Vogiatzis vii January 2022



Antonios Vogiatzis viii January 2022



Acknowledgements

First, I would like to thank my advisor Georgios Chalkiadakis for his trust and
guidance during the course of this thesis, and Michailis Zervakis for the help with
the computer vision domain.

My friends from Chania, Niko, Dimitri, Eriko and Maria for chatting interesting
ideas.

Last, but not least, I would like to thank my family for their love, support, and
constant encouragement.



Antonios Vogiatzis x January 2022



Contents

1 Introduction 1

1.1 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Background 7

2.1 Image Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 How Image Classification Works . . . . . . . . . . . . . . . . . . . 8

2.1.2 Adding deep learning . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Multi-class Image classification . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Recyclables Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.1 Datasets which used in Recyclables Classification . . . . . . . . . 12

2.4 Artificial Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4.1 The Architecture of an Artificial Neural Network . . . . . . . . . 13

2.4.2 Multi-layer ANN . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4.3 Convolutional Networks . . . . . . . . . . . . . . . . . . . . . . . 14

2.4.4 Activation Functions . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4.5 Pooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4.6 Fully Connected Layers . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4.7 Dropout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4.8 Backpropagation . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4.9 Gradient Descent Optimization algorithms . . . . . . . . . . . . . 23

2.5 Calibration of Neural Networks . . . . . . . . . . . . . . . . . . . . . . . 27

2.6 Transfer Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.6.1 Pre-trained Model Approach . . . . . . . . . . . . . . . . . . . . . 29

2.6.2 Pre-trained Models as Feature Extractors . . . . . . . . . . . . . . 29

Antonios Vogiatzis xi January 2022



CONTENTS

2.6.3 Fine Tuning the pre-trained weights . . . . . . . . . . . . . . . . 30

2.7 Ensemble Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.7.1 Categories of Ensemble Methods . . . . . . . . . . . . . . . . . . 33

2.7.2 Types of Voting Ensembles . . . . . . . . . . . . . . . . . . . . . 33

2.7.3 Extension of Voting Ensemble . . . . . . . . . . . . . . . . . . . . 35

2.7.4 Opinion Aggregation and Voting Mechanisms . . . . . . . . . . . 36

2.8 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.9 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.9.1 CNN Techniques for Waste Classification . . . . . . . . . . . . . . 40

2.9.2 Ensemble Techniques for Classification . . . . . . . . . . . . . . . 41

2.9.3 Other Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3 Dual Branch Multi-output Approach 43

3.1 Overview and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2 Proposed Classification Framework . . . . . . . . . . . . . . . . . . . . . 46

3.2.1 Dual-Parallel CNN for recyclable waste classification . . . . . . . 47

3.2.2 Training Process . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3.1 Experiment Datasets . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3.2 Evaluation Metrics selection . . . . . . . . . . . . . . . . . . . . . 52

3.3.3 Evaluation Performance . . . . . . . . . . . . . . . . . . . . . . . 53

3.3.4 Implementation in Tensorflow . . . . . . . . . . . . . . . . . . . . 54

3.3.5 Data augmentation . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3.6 Construction of Fine-tuned Pre-trained CNN . . . . . . . . . . . . 54

3.3.7 Entire Framework Implementation . . . . . . . . . . . . . . . . . 55

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.5 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . 68

4 Independent Parallel CNN Approach 69

4.1 Overview and Contribution . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2 System architecture and Decision Rules . . . . . . . . . . . . . . . . . . . 72

4.2.1 Mutually Supported Decisions Rule (MSDR) . . . . . . . . . . . . 75

4.2.2 Simple Max Rule and variants . . . . . . . . . . . . . . . . . . . . 77

4.2.3 Weighted Soft Voting . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.2.4 Negative Predictors Rule . . . . . . . . . . . . . . . . . . . . . . . 78

Antonios Vogiatzis xii January 2022



CONTENTS

4.2.5 SVM Correction Rule . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.2.6 Decision Rules Summary . . . . . . . . . . . . . . . . . . . . . . . 79

4.2.7 Re-adjusting the Classifier Weights . . . . . . . . . . . . . . . . . 83

4.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.3.1 Datasets and Data Augmentation Techniques . . . . . . . . . . . 85

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.4.1 Training on the Trash-net Dataset . . . . . . . . . . . . . . . . . . 90

4.4.2 Decisions Rules Evaluation on Trash-net . . . . . . . . . . . . . . 93

4.4.3 Training on the WaDaBa Dataset . . . . . . . . . . . . . . . . . . 99

4.4.4 Decision Rules Evaluation on WaDaBa . . . . . . . . . . . . . . . 102

4.5 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . 108

5 Conclusion 109

5.1 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . 109

5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

References 118

Antonios Vogiatzis xiii January 2022



CONTENTS

Antonios Vogiatzis xiv January 2022



List of Figures

2.1 Artificial Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Convolution applied to a 2D tensor 1 . . . . . . . . . . . . . . . . . . . . 17

2.3 Sparse connectivity vs Dense connectivity 2 . . . . . . . . . . . . . . . . . 18

2.4 End-to-end structure of a CNN . . . . . . . . . . . . . . . . . . . . . . . 22

2.5 Transfer Learning process . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.6 Feature Extraction approach . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.7 Transfer Learning Strategies . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.8 Ensemble Learning Voting Classifier . . . . . . . . . . . . . . . . . . . . . 34

2.9 Stacking Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.1 Dual-Branch Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2 The “Material Branch” - Trained in Trashnet . . . . . . . . . . . . . . . 48

3.3 Sequential CNN Architecture . . . . . . . . . . . . . . . . . . . . . . . . 51

3.4 Confusion Matrix for DenseNet121 on WaDaBa . . . . . . . . . . . . . . 58

3.5 Fine-tune Stacked Material Classifier Confusion Matrix . . . . . . . . . . 60

3.6 Fine-tune ResNet50 Material Classifier Confusion Matrix . . . . . . . . . 62

3.7 Fine-tune VGG16 Material Classifier Confusion Matrix . . . . . . . . . . 63

3.8 Fine-tune DenseNet121 Material Classifier Confusion Matrix . . . . . . . 64

3.9 Confusion Matrix of the Dual-Branch classifier for materials . . . . . . . 65

3.10 Confusion Matrix of the Dual-Branch classifier for plastics . . . . . . . . 66

3.11 Confusion Matrix for independent Material Classifier . . . . . . . . . . . 67

4.1 Proposed Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.2 Independent Parallel Network (FC = Fully Connected Layer) . . . . . . 73

4.3 Weight Optimization for the predictions after Applying Decision Rules . 74

4.4 SVM Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Antonios Vogiatzis xv January 2022



LIST OF FIGURES

4.5 Features of class, depicted as a Venn Diagram . . . . . . . . . . . . . . . 82

4.6 Decision Tree for different Decisions Rules . . . . . . . . . . . . . . . . . 88

4.7 Multi-class Baseline Classifier Confusion Matrix . . . . . . . . . . . . . . 91

4.8 Cardboard and Glass IP-Classifiers Confusion Matrix . . . . . . . . . . . 92

4.9 Metal and Paper IP-Classifiers Confusion Matrix . . . . . . . . . . . . . 92

4.10 Plastic IP-Classifier Confusion Matrix . . . . . . . . . . . . . . . . . . . . 93

4.11 Multi-class Baseline Network Confusion Matrix . . . . . . . . . . . . . . 95

4.12 Decision Rules Combination Confusion Matrix . . . . . . . . . . . . . . . 96

4.13 Baseline Classifier Confusion Matrix . . . . . . . . . . . . . . . . . . . . 100

4.14 PET and PE HD IP-Classifiers Confusion Matrix . . . . . . . . . . . . . 101

4.15 PP and PS IP-Classifiers Confusion Matrix . . . . . . . . . . . . . . . . . 101

4.16 Baseline Network Confusion Matrix . . . . . . . . . . . . . . . . . . . . . 104

4.17 Decision Rules Combination Confusion Matrix . . . . . . . . . . . . . . . 105

Antonios Vogiatzis xvi January 2022



List of Algorithms

1 Training process of the Dual-Branch CNN for the classification of waste

branch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2 Fine-tuned Pre-trained CNN Design . . . . . . . . . . . . . . . . . . . . . 55

3 Dual-Branch CNN Implementation . . . . . . . . . . . . . . . . . . . . . 56

4 Finding optimal Ensemble Weights process . . . . . . . . . . . . . . . . . 75

5 Train Independent Parallel Network With Decision Rules . . . . . . . . . 89

Antonios Vogiatzis xvii January 2022



LIST OF ALGORITHMS

Antonios Vogiatzis xviii January 2022



Chapter 1

Introduction

Image classification refers to a method which is capable of classifying an image according

to its visual content. For example, an image detection algorithm may be developed to

tell whether an image contains a human being or not. While it is simple for humans

to recognize an object, accurate image recognition is still a problem in computer vision

applications. An effective means of treating recyclable waste can be used to distinguish

recyclable products into types of recycling. The current recycling process often requires

recycling facilities to sort by hand. Consumers can also be confused about the correct way

to recycle materials. By using computer vision, we can predict the category of recycling

of an object based on an image of it. The classification of recyclable materials is an

interesting task that helps to protect the environment.

Material classification using neural networks and deep learning is in line with the

current era (the era of deep learning). Deep learning has seen tremendous success in a

variety of machine learning and computer vision applications. In contrast to traditional

machine learning approaches, which are unable to process data in its natural form, deep

learning allows multiple processing layers to learn features on their own. Deep convolution

networks have demonstrated outstanding performance in image and video processing.Due

to the dominance of deep learning (mostly deep neural networks) in various artificial

intelligence applications, ensemble learning based on deep neural networks (ensemble deep

learning) has recently demonstrated significant performance in improving learning system

generalization. However, because modern deep neural networks typically have millions

to billions of parameters, the time and space overheads for training multiple base deep

learners and testing with the ensemble deep learner are significantly higher than those
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1. INTRODUCTION

for traditional ensemble learning. To address this issue, it is critical to understand how

ensemble learning evolved during the deep learning era.

There are various approaches to solving machine vision problems available today.

Federated learning (FL) and split learning (SL) are two prominent approaches to dis-

tributed machine learning.Both use a model-to-data approach, which means that clients

train and test machine learning methods without sharing raw data. Because the machine

learning model architecture is split between clients and the server, SL provides better

model privacy than FL.Furthermore, because of the split model, SL is a better choice

for resource-constrained environments, such as waste recycling. All the aforementioned

learning approaches were used in this thesis to contribute to novel attacks/treatments

of the classification problem, along with voting mechanisms for classification tasks such

as a hard voting ensemble, which involves summing the votes for crisp class labels from

other models and predicting the class with the most votes, or a soft voting ensemble,

which involves summing the predicted probabilities for class labels and predicting the

class label with the largest sum probability.

In this thesis, we explore the problem of material classification by using deep learning

to select the right ways to classify recyclable materials for environmental purposes. In

particular, we developed two novel ensemble deep neural network methods for recyclable

classification. Our methods make use of an effective convolution model, which can help

to create useful applications for sorting trash materials without the need for human

interaction with recycling equipment. In addition, we make use of transfer learning

approaches, in particular the fine-tuning approach [1]. These transfer learning models

are coupled with ensemble learning to make the whole system more robust.

We are motivated by two use-case scenarios, and we put forward a different approach

for each. In one case, we have two datasets that have common features, and one is a

subcategory of the other. In more detail, these are the Trashnet dataset (which contains

glass, paper, metal, plastic, and trash material) [2] and the WaDaBa dataset [3] (which

contains different labelled types of plastic, but augmented with non-plastic material in

our case). We then propose that a Stacked Ensemble of CNNs branch is used for waste

sorting, and a traditional CNN branch be used for plastic classification. The approach

that we introduce, so called “Dual-branch Multi-output CNN”, is a custom convolutional

neural network composed of two branches aimed to i) classifying recyclables and ii)
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1.1 Thesis Contributions

distinguishing the type of plastic. In particular, our approach makes use of the joint

utilization of the datasets, making it possible to learn disjoint label combinations.

As a second use-case of interest, for the same datasets, we test a modification of

one-vs-rest classification mechanism that utilizes the mutual features of every class. The

proposed architecture consists of a set of independent dedicated binary classifiers, each

one with two output nodes, with each output node expressing the probability of the item

under consideration belonging to this class or not. We put forward a complete framework

of soft voting methods, partly inspired by social choice theory, with the potential of being

useful for a variety of datasets (as we can base our classification decisions on classifiers

that are individually best suited to different datasets). We evaluated our framework with

promising early results. Specifically, we show that our method allows for the effective

separation of items based on distinct class features and characteristics; and is able, in

its generality, which will become apparent below, to (a) take advantage of clear class

boundaries when they exist, and (b) effectively assign items to classes with increased

confidence, even when clear class boundaries do not exist.

1.1 Thesis Contributions

Our motivation was to find a method for the automated sorting of recyclable material.

It has the potential to make manufacturing facilities more efficient and to help eliminate

recyclable material, since staff can not typically process anything with 100% accuracy.

This will not only have positive impacts on the ecosystem but will also have significant

economic impacts.

Our classification problem involves capturing photos of a single object and classifying

it as a recycled content category in order to mimic a stream of products in a recycling

facility or a consumer taking a photo of a material to identify it. This research was con-

ducted as part of a wider research effort, specifically the ANASA project [4]. The ANASA

project aims to create, integrate, and commercialize an autonomous robotic system for

categorizing and separating recyclable materials. The development of an automated

procedure for recyclable waste separation will significantly contribute to increasing the

(currently low) recycling rates in Greece, to the benefit of local societies and the economic

enhancement of recycling activities throughout the country. Another need addressed in

this thesis is the scarcity of real-world datasets. One major component of the effort was
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the creation of datasets from independent small datasets, as well as the development

of multi-input systems that used many existing datasets and performed augmentation in

order to obtain data for our methods to train on. Finally, we used the methods developed

in this master’s thesis for object detection to meet the project’s requirements.The core

of our approach was, of course, the development of the aforementioned ensemble learning

methods.

We now present our main contributions in some more detail. First, we introduce a

novel two-branches multi-output CNN, which integrates multiple source information at

the final level, for recyclable waste classification. The need for this component arises from

the need to address and exploit the peculiarities of the data. We show, through extensive

testing, that our approach results in a significant improvement in performance. Transfer

learning is demonstrated, and material classification is significantly improved, by lever-

aging the output of the plastics classifier, whose performance boosts that of the overall

network.The success of our approach emphasizes the importance of utilizing information

derived from various attributes and experimental settings. As a result, we can effectively

learn from multiple sources and accumulate knowledge without mingling the data sam-

ples. At the classification level, the combination scheme exploits the individual results

of subnets in a way that boosts confidence in the final decision-making process. Our re-

sults show that we can effectively use independent datasets to achieve high classification

performance.

In the second part of our thesis we proposed an architecture that consists of a set

of independent dedicated binary classifiers, each one with two output nodes, with each

output expressing the probability of the item under consideration to belong to this class

or not. A key novel intuition is that when only one dedicated classifier puts a “large

enough” probability on an item belonging to its class, and all others believe the item

cannot be classified. Then we can be confident that the class to select as the output

of our system is indeed the one predicted by the k-th classifier. Typically, many image

datasets contain photos with wildly disparate attributes. This enables the training of

several classifiers with a high degree of confidence.

In more detail, the main contribution of this second aspect of our work is putting

forward a generic architecture that explicitly exploits a “mutual exclusivity property”

underlying many dataset domains of interest: the fact that in many cases an image in

a given dataset might almost unquestionably belong to one class only. Our proposed
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architecture is able to separate individual features specific to each class, from the pool

of shared features; and includes designed-to-purpose decision rules that are able to select

the final class of the item to be classified. To this end, and to allow for flexibility and

easy adaptation to the specific properties of the datasets of interest, our approach also

makes use of “weights” associated to each independent classifier, and which intuitively

mirror the confidence each dedicated classifier has in identifying its corresponding class.

An additional, in a sense “emergent” contribution, is the fact that the proposed

framework may be utilized to characterize a given dataset regarding its “homogeneity”

and “balancedness” properties. Two research papers were published as a result of this

work: Dual-Branch CNN for the Identification of Recyclable Materials [5] and A Novel

One-vs-Rest Classification Framework for Mutually Supported Decisions by Independent

Parallel Classifiers [6] with one of them [5] receiving the best student paper award in the

in the proceedings of the 2021 IEEE International Conference on Imaging Systems and

Techniques (IST-2021).

1.2 Thesis Overview

Finally, we provide a concise summary of our thesis’s content:

• In Chapter 2 we present all the background information needed for this thesis. We

provide an explanation of the terms and concepts used in Waste Sorting and Multi-

Class Classification, as well as the ensemble and transfer learning techniques that

will be used. Additionally, we will discuss the appropriate metrics for evaluating

the various strategies.

• In Chapter 3 we outline our Dual Branch CNN for classification of recyclables,

evaluate its performance and compare it with a specific baseline method.

• In Chapter 4 we describe our, one-vs-rest classification framework for mutually

supported decisions by independent parallel classifiers. The performance of the

proposed approach is assessed and compared to other benchmark approaches.

• Finally, Chapter 5 serves as an epilogue to this theory, summarizing our findings

and outlining recommendations for future improvements.
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Chapter 2

Background

In this chapter, we provide some necessary background information. The rest of this

chapter is organized as follows: In Section 2.1 we provide some information about what

it is, image classification and how deep learning incorporate in it. In Section 2.2 we explain

the case of Multi-class Image classification.In Section 2.3 we introduced the Recyclables

Classification domain. In Section 2.4 we provide all the necessary information about the

Architecture of an Artificial Neural Network and the basic components. Additionally,

we present a brief summary of Gradient Descent optimization algorithms. In Section 2.5

we explain a calibration technique for Neural Networks refers as Temperature Scaling. In

Section 2.6 we specify the Transfer Learning approach, that utilized in every network used

in this thesis. In Section 2.7 we introduced the Ensemble Learning techniques, especially

the Voting Mechanisms.In Section 2.8 we presented and analyzed the evaluation metrics

we used to access the performance of the proposed networks. In Section 2.9 we present

a selection of works that are related to this thesis.

2.1 Image Classification

The objective of image classification is to categorize and identify groups of pixels or vec-

tors inside an image using predefined rules. The law of categorization can be implemented

via one or more spectral or textural characterizations.

Image classification techniques are mainly divided into two categories: Supervised

and Unsupervised image classification techniques.
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Supervised image classification techniques employ previously identified reference sam-

ples (the ground truth) to train the classifier and then classify unknown input.

Thus, the supervised classification approach is the process of visually selecting training

data samples from an image and assigning them to pre-defined categories, such as plants,

roadways, natural resources, and houses. This is done in order to provide statistical

metrics that can be used to analyze the overall image.

A computer examines a pixel-based picture. It accomplishes this by treating the

picture as a collection of matrices, the size of which is determined by the image resolution.

Simply said, picture classification is the statistical examination of this data utilizing

algorithms from a computer’s perspective. Image classification is accomplished in digital

image processing by automatically categorizing pixels into specific groups, referred to as

“classes”.

2.1.1 How Image Classification Works

Image classification is a supervised learning problem: identify a set of target classes

(objects to be recognized in images) and train a model to recognize them using the

example photos labelled. Early computer vision models depend on raw pixel data as a

sample input. This meant that computers must first convert an image into discrete pixels.

The problem is that two images of the same object can appear to look very different.

However, raw pixel data on its own does not offer a sufficiently stable representation to

encompass the various variations of an entity as captured in a photograph. The position

of the object, the background behind the object, the ambient illumination, the orientation

of the camera and the focus of the camera will all cause variations in raw pixel data; These

differences are so severe that they cannot be resolved by averaging the RGB pixel values.

This influenced the accuracy of computer vision algorithms to categorise image objects

correctly.

To represent things more flexibly, traditional computer vision models integrated addi-

tional properties obtained from pixel data such as color histograms, textures, and forms.

The limitation of this strategy was that feature design became extremely time-consuming

due to the large number of inputs that needed to be adjusted. For instance, which colors

were most significant for a goat classifier? How flexible should the textures definitions
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be? Since the features required to be calibrated very finely, constructing robust models

remained challenging, and the accuracy suffered.

2.1.2 Adding deep learning

Machine learning-based image recognition takes use of algorithms’ ability to extract hid-

den information from a collection of structured and disorganized samples (Supervised

Learning). The most widely used machine learning approach is deep learning, which

employs a large number of hidden layers in a model.

Deep learning is a form of machine learning; a subset of artificial intelligence (AI)

that enables machines to learn from data. Deep learning includes the use of computing

structures called neural networks. In neural networks, input filters via hidden node layers.

These nodes each process the input and transmit the results to the next node layer. This

procedure is repeated until the computer reaches the output layer and responds. There

are several forms of neural networks, each with a distinct operation of the hidden layers.

Convolutional neural networks, or CNNs, are typically used in deep learning picture

classification. In CNNs, nodes in hidden layers do not always share their output with

another node in the next layer (known as convolutional layers).

Computers use deep learning to detect and extract characteristics in images. This

implies that they may develop an understanding of the traits they need to look for in

photos by analyzing numerous images. Thus, programmers are not required to input

these filters manually, but simply to tweak them.

2.2 Multi-class Image classification

The purpose of this study is to build an algorithm for the automatic classification of

potentially recyclable waste items, a task that is significantly challenging due to the

state (e.g. level of dirtiness, shape deformation, etc.) of the items during their sorting in

waste treatment facilities.

Image classification is a term referring to a technique for classifying images based on

their visual content. For instance, an algorithm for image classification may be built to

determine whether an image contains a human person. Although people easily recognize

objects, reliable image classification remains a challenge in computer vision applications.
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The majority of image recognition problems involve the use of a CNN to solve a

multi-class classification problem. In the machine learning publications, diverse methods

have been introduced for attempting to deal with numerous classes [7]; in deep learning,

the One-vs-All classification approach is commonly used.

Multi-class classification models are available in a variety of types, in the machine

learning domain. The most common classification method is One-Versus-One (OVO) or

One-Versus-Rest (OVR) utilize bi-class model [8, 9]. Others approaches include One-class

classification [10], error-correcting output codes [11, 12] and hierarchical methods [13].

As is usually used in the literature, the term “one-vs-rest” describes a generic classi-

fication paradigm that uses binary classification algorithms for multi-class classification.

It entails approaching the multi-class problem via the lens of many “binary” classifica-

tion ones. A dedicated “binary” classifier (that potentially uses a sigmoid function for

classification into the most probable of the two classes) is then trained on the original

dataset, and solves a “binary” classification problem; and final predictions are usually

made using the classifier that is the most confident, or using a simple or absolute ma-

jority rule. One advantage of this method is that machine-learning algorithms developed

for binary classification could easily be adapted to represent multi-class classification

problems. The disadvantage is that when the training data contains a disproportionate

number of negative examples to positive ones, the classifiers become unbalanced.

On the other hand, the “one-vs-one” is a categorical classification paradigm that

employs binary classification algorithms to perform pair-wise multi-class classification.

That is, the one-vs-one approach uses a “binary” classifier per pair of potential classes.

With the OvO scheme, the binary classifier is capable of distinguishing between examples

of one class and examples belonging to another class. Thus, when there are K classes,

the OvO approach requires training and storing k∗(k−1)
2

distinct classifiers, which can

be considered as a drawback when K is high. Then, final predictions are usually made

using the classifier that is the most confident, or using some weighted voting method [14].

These methods, however, have high computational costs.

Deep neural networks for Multi-class classification. Due to the fact that deep

neural networks are utilized for multi-class classification tasks, the output layer is typ-

ically chosen to use a “softmax” function, and one output unit for each separate class.

Therefore, since the final units share the same hidden layers (performing features ex-

traction), this is a one-vs-rest classification design. An interesting idea is the Attribute
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learning [15, 16], in which various attributes are forecast, and their fusion is used to

predict a class, is an enticing multi-class learning method.

2.3 Recyclables Classification

Waste classification may be handled in a variety of ways, examining either the civilian’s

behavior towards circular economy [17] or the operation conditions of the recycling facil-

ities [18]. The main trend in utilizing image classification in the recycle waste industry is

focused on the identification of the recyclable waste material and moreover on the type

in case of plastic material. The plastic waste recycling and recovery industry has a great

impact in the U.S. and Europe [19]. Thus, many attempts have been made, mainly in

the area of waste material identification using CNNs. An image classification approach

to classifying recyclable material into types of recycling may be an efficient means of han-

dling recyclable waste. The purpose of this thesis is to photograph one piece of recycling

or rubbish and classify it into six categories consisting of: glass, paper, metal, plastic,

cardboard, and trash. This study presents two novel image classification models that can

be used to distinguish recyclable materials.

Due to the rapid advancement of deep learning technology, a number of network mod-

els for classification have been developed, which is advantageous for achieving intelligent

waste categorization. However, there are significant issues with existing waste classi-

fication models, such as low classification accuracy or a significantly longer run time.

To address these issues, this article [20] proposes a waste classification approach based

on a multilayer hybrid convolutional neural network (MLH-CNN). This approach uses a

network structure similar to VggNet, but with fewer parameters and a higher classifica-

tion accuracy. The performance of the suggested model can be improved by adjusting

the number of network modules and channels. Subsequently, this article determines the

right parameters for classifying waste images and selects the optimum design as the final

model.

Another innovative strategy for improving the accuracy of waste classification driven

by CNNs was to apply data augmentation; nevertheless, fine-tuning the CNN’s fully

connected-hyper-parameters layer’s optimum was never used. Thus, in addition to data

augmentation, this study [21] intends to optimize the fully connected layer of DenseNet121
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using a genetic algorithm (GA) in order to increase the classification accuracy of DenseNet121

on “TrashNet” and offers the optimized DenseNet121.

2.3.1 Datasets which used in Recyclables Classification

Yang and Thung (2016) constructed a dataset of waste photos. Six classes are represented

in the dataset: glass, paper, cardboard, plastic, metal, and trash. Currently, the dataset

contains 2527 photos commonly called TrashNet [2]: 501 photographs of glass, 594 images

of paper, 403 images of cardboard, 482 images of plastic, 410 images of metal, and 137

images of trash. The photographs were shot by putting the object on a white whiteboard

and utilizing natural and/or fluorescent lights. The models, which included a support

vector machine (SVM) with scale-invariant feature transform and a ResNet50 with SVM,

were used to categorize garbage images in the TrashNet, with the two models achieving

a classification accuracy of 63% and 87%, respectively.

The WaDaBa database [3] has 4000 photos divided into five categories: PET (01-

polyethylene terephthalate), PE-HD (02-high-density polyethylene), PP (05-polypropylene),

and PS (06-polystyrene) (07). Each image is composed of a single object that has been

deformed to various degrees to approximate natural settings. After positioning the ob-

jects in the research posture, they were photographed using two different types of light

sources: a fluorescent lamp and an LED-bulb. There were ten images taken, each with a

different viewpoint of the turnover for each object (in the vertical axis). Following that,

the object was deformed in three different ways: small, medium, and large. Ten images

were taken for each category of destruction.

Another dataset that is used to classify recyclables is “Waste Classification Data”,

which comes in two versions [22]. The first is the categorization of samples into two broad

categories: organic and recyclable materials, which is expanded in the second version of

the dataset by the addition of a new category “N” - Nonrecyclable materials.

2.4 Artificial Neural Networks

Neural networks (NNs) are a computer technique that is loosely patterned on the biolog-

ical brain. Brains can be thought of as an interconnected neuron network that transmits
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complex patterns of electrical impulses: input signals are sent to dendrites, and the out-

put signal is fired via an axon in response to those inputs. Neural Networks emulate this

effect by employing artificial neurons that can be formally defined as a graph. NNs receive

input from the outside world through the input neuron and propagate forward-looking:

the input is transmitted to other neurons in the network, and each neuron modifies the

signal according to its internal rules until the signal passes through the entire struc-

ture and reaches the output neurons. Such systems 11learn” to perform tasks through

examples, often without having to be programmed with task-specific restrictions.

2.4.1 The Architecture of an Artificial Neural Network

An Artificial Neural Network (ANN), as shown in Figure 2.1 is a set connected neurons

in layers:

• Input layer: Introduces the initial data for further treatment into the system

through subsequent artificial neuron layers.

• hidden layer: A layer of weighted inputs from artificial neurons to produce the

output via activation function between input layers and output layers.

• Output layer: The last neuron layer generating the outputs for the network.

2.4.2 Multi-layer ANN

Due to their hidden layers (for example, Convolutional Network, Recurrent Neural Net-

work, etc...), multilayer ANNs can solve more complicated classification and regression

tasks.

There are many ways, neural multilayer networks can be set up. They typically have

at least one input layer, which sends weighted inputs to a number of hidden layers.

These advanced settings are also related to non-linear builds that use sigmoids and other

functions to direct artificial neurons firing or activation. Although some of these systems

are physically constructed with physical materials, most of them are designed with neural

activity software functions.
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Figure 2.1: Artificial Neural Network

2.4.3 Convolutional Networks

Convolutional [23] networks are a distinct type of neural network for processing data

that has a known grid-like topology, also known as convolutional neural networks or

CNNs. Time-series data, for example, can be thought of as a one-dimensional grid tak-

ing measurements at regular time intervals, whereas image data can be thought of as a

two-dimensional grid of pixels. Convolutional networks have demonstrated outstanding

performance in practical applications. The phrase “convolutional neural network” refers

to a network that makes use of a mathematical operation known as convolution. Con-

volution is a specialized type of linear operation. Convolutional networks are essentially

neural networks that employ convolution in place of traditional matrix multiplication in

at least one of their layers.

Convolution Operation

Convolution, in its simplest form, is the action of a real-valued argument on two functions.

Assume we are using a laser sensor to track the location of a satellite. Our laser sensor

outputs a single value x(t), the satellite’s position at time t. Both x and t are real-valued,

which means that we can obtain a different reading from the laser sensor at any point in

time.
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Now consider the possibility that our laser sensor is kind of noisy. We’d like to combine

multiple measurements in order to obtain a less noisy satellite location estimation. While

more recent observations are obviously more significant, we want this to be a weighted

average that prioritizes recent values. This is accomplished by the use of the weighting

function w(a), where a denotes the measurement time. If we perform this weighted

average operation at any point in time, we gain a new function that approximates the

satellite’s position smoothly:

s(t) =

∫
x(a)w(t− a)da (2.1)

This operation is called convolution. The convolution operation is usually demoted with

an asterisk:

s(t) = (x ∗ w)(t) (2.2)

Convolution is defined in general for any functions for which the aforementioned

integral is specified, and can be used for reasons other than weighted averages.

The first parameter (in this aforementioned paradigm, the function x) is often referred

to as the input, whereas the second argument (in the same paradigm, the function w)

is referred to as the kernel. The output is typically referred to as the feature map.

The concept of a laser sensor capable of performing measurements at any time is

unfeasible. When we work with data on a computer, time is typically discrete, and our

sensor will collect data at regular intervals. In our scenario, it makes more sense to

suppose that our laser performs the measurement once every second. The time index t,

on the other hand, can only take integer values. Given that x and w are now defined

only for the integer t, we may construct a discreet convolution:

s(t) = (x ∗ w)(t) =
∞∑

α=−∞

x(a)w(t− α) (2.3)

Input is typically a multidimensional array of data in machine learning tasks, while

kernel is normally a multidimensional array of parameters tweaked by the learning pro-

cess. We’re going to call these multidimensional arrays as tensors. Finally, we always

utilize convolutions that span many dimensions. For instance, consider the scenario of a
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two-dimensional image I as input tensor, and we apparently want to use a two-dimensional

kernel K as well:

S(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

K(i−m, j − n)I(m,n) (2.4)

Convolution is rarely used alone in machine learning; convolution is frequently employed

in conjunction with the other functions described in the following subsection 2.4.4. In

Figure 2.2 is shown an illustration of convolution applied to a 2-D tensor.
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Figure 2.2: Convolution applied to a 2D tensor 2

Convolution Components

Convolution integrates three main concepts that can help develop the machine learning

system: sparse interactions, parameters sharing and equivariant representa-

tions. Convolution also yield a way to work with variable size inputs. Now we’re going

to explain each of these ideas in turn.

Conventional neural network layers employ matrix multiplication of parameters, with

each input unit and output unit represented by a different parameter. This means that

each output unit is connected to each input unit. However, convolutional networks appear

to have sparse interactions. This is accomplished by maintaining a kernel that is smaller

than the input tensor. When processing a picture, for example, the input image may

contain thousands or millions of pixels, but we may discover minor, significant features

2taken from https://www.deeplearningbook.org/contents/convnets.html
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such as edges by utilizing kernels that are only tens or hundreds of pixels in size. This

requires us to keep fewer parameters, which reduces the model’s memory requirements

and improves its statistical performance. Additionally, it assures that the outcome is

calculated with fewer operations. For schematic demonstrations of sparse connection,

see Figure 2.3. In a deep convolutional network, units in the deeper layers can interact

with a bigger proportion of the input indirectly. This enables the network to explain

complicated relationships between a range of variables effectively by deriving interactions

from fundamental building elements that each represent only sparse interactions.

Figure 2.3: Sparse connectivity vs Dense connectivity 3

The term shared parameter refers to the fact that the same parameter is used by

multiple functions in the model. Each component of the kernel is utilized at each input

area in a convolutional neural network (except perhaps some boundary pixels, depend-

ing on the design decisions regarding the boundary). The shared parameter utilized in

convolution implies that, rather than learning a unique set of parameters for each area,

we learn a single set. Thus, convolution is significantly more efficient than dense matrix

multiplication in terms of memory limitations and statistical efficiency.

3taken from https://www.deeplearningbook.org/contents/convnets.html
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In the case of convolution, the specific type of shared parameter enables a property

known as translation equivariance to be applied to the layer. Equivariant means that if

the input changes, the output changes in the same way. Particularly, if f(g(x)) = g(f(x)),

a function f(x) is equivariant to a function g. In the case of convolution, if we consider g

to be a function that modifies the input, more precisely shifts it, the convolution function

is identical to g. Convolution is, of course, not equivalent to any other transformations,

such as a shift in the image’s scale or rotation. Other techniques are required to manage

these transitions.

2.4.4 Activation Functions

The node activation function regulates the output of this node in response to an input

or combination of inputs in artificial neural networks.

Sigmoid

A sigmoid feature is a mathematical function that has a characteristic “S” or sigmoid

curve [24]. The sigmoid function is widely used to refer to a specific case of the logistic

function, which produces a set of probability outputs ranging from 0 to 1. In binary

classification, sigmoid activation is a common feature.

Sigmoid(x) =
1

1 + e(−x)
=

ex

1 + ex
(2.5)

Tan-h

The hyperbolic tangent, or tan-h function, is a function that could be used in place of the

logistic sigmoid [25]. The tan-h function, like the Sigmoid logistic function, is a Sigmoid

function, but its range is [-1,+1]. This means that strongly negative tan-h inputs map

negative outputs. Similarly, strongly positive.

tanh(x) =
2

1 + e(−2x)
− 1 = 2× Sigmoid(2x)− 1 (2.6)
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Softmax

In contrast to Sigmoid activation functions, the Softmax activation function is utilized

for multi-class classification [26]. The Softmax function computes the event’s probability

distribution over “n” distinct events. As a general rule, this function determines the

probabilities of each target class over all potential target classes. Following that, the

determined probabilities are employed to regulate the data’s target class.

Softmax(x) =
ei∑
i e

(i)
(2.7)

ReLU

Rather than a sigmoid function, modern artificial neural networks make use of rectified

linear units (ReLUs) [26]. When the input is less than zero, the linear unit with the

rectified output is zero; otherwise, it is the raw input. This means that if the input value

is larger than zero, the outcome is identical to the input value.

ReLU(x) = max(0, x) (2.8)

Leaky ReLU

The leaky ReLU function operates similarly to ReLU [27], except that the latter is re-

placed with a small alpha value rather than the negative data from the inputs in order

to prevent the “dying ReLU” problem.

LeakyReLU(x) =

{
x, if x > 0
αx, otherwise

(2.9)
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In general, without the use of an activation function, non-linearity is not introduced

into a network. We can use an activation function to model a response variable that

varies nonlinearly in relation to its explanatory variables (target variable, class label, or

score). The term ”non-linear” refers to an output that cannot be recreated by a linear

combination of inputs. Another way to think about this is that without a nonlinear ac-

tivation function, artificial neural networks, regardless of their number of layers, behave

identically to a single layer Neural Network. Certain activation functions may have an

effect on the disappearing gradient problem (the problem with the disappearing gradient

occurs when the gradient becomes so small in prior layers of a deep-neural network that

it does little to improve the weights of the earlier layers).

2.4.5 Pooling

A standard convolutional layer is composed of three main structural levels. The layer

executes numerous convolutions in parallel to generate a series of linear activations in the

first step.Each linear activation is routed through a nonlinear activation function, such

as the softmax activation function, at the second level. This phase is sometimes referred

as detector stage. At the third level, we apply the pooling function to fine-tune the

layer’s output.

The pooling function substitutes the output of the network at a given position with

a detailed statistic of the neighboring outputs. For instance, the max pooling formula

measures the maximum performance inside a rectangular field. And there are quite a few

more pooling functions to pick one in any case , e.g average or L2 norm of a rectangular

neighborhood.

In all cases, pooling results in a representation that is roughly invariant to minor

input translations. The term “translation invariance” refers to the fact that the values of

the majority of pooled outputs remain constant when the input is converted by a small

volume. The usage of pooling can be interpreted as applying an immensely powerful

prior that the function the layer learns must be constant over time to minor translations.

Antonios Vogiatzis 21 January 2022



2. BACKGROUND

While pooling over spatial regions results in translation invariance, pooling over the

outputs of independently parametrized convolutions informs the features which transfor-

mations to become invariant. Due to the fact that pooling aggregates the reactions across

the neighborhood, it is possible to use many fewer pooling units than detector units.

Pooling is required for several tasks in order to manage inputs of varying sizes. For

instance, if we wish to identify images of varying sizes, the classification input layer must

be defined in size. This is usually accomplished by altering the offset between pooling

parts to ensure that the classification layer gets the same amount of overview statistics

regardless of the size of the input. For example, regardless of the size of the image,

the final pooling layer of the network can be set to provide four collections of summary

statistics, one for each quadrant of the image.

2.4.6 Fully Connected Layers

At the convolutional neural network’s end, one or more completely connected layers are

placed (when two layers are “fully connected”, each node in the first layer is connected

to every node in the second layer). Their objective is to perform a classification using

the transformed features. Typically, the last fully connected layer contains a softmax

activation function that generates a probability value ranging from 0 to 1 for each clas-

sification label predicted by the model. In Figure 2.4 we can see the overall end-to-end

Convolutional Neural Network3.

Figure 2.4: End-to-end structure of a CNN

3Figure 2.4 taken from https://developers.google.com/machine-learning/practica/image-

classification/convolutional-neural-networks
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2.4.7 Dropout

Dropout works by probabilistically omitting, or ”dropping out”, inputs to a layer. These

inputs might be variables from the data sample or activations from a previous layer. It

has the effect of simulating a huge number of networks with significantly diverse network

structures and, as a result, making nodes in the network more resilient to inputs in

general. We use dropout for handling the over-fitting problem of our network.

2.4.8 Backpropagation

Backpropagation [28] is a technique for determining the gradient required to calculate the

network weight in artificial neural networks. The term ”backward propagation of error”

refers to the process by which an output error is calculated and transferred backward

across network levels. It is used to train deep neural networks.

Due to backpropagation, the rule of delta may be applied to multi-layer feedforward

networks in order to iteratively calculate gradients for individual layers using the chain

rule. It is inextricably tied to the Gauss-Newton method and is being investigated as

part of continuing study into the neural background.

Backpropagation is a general concept for the approach referred to as automatic dif-

ferentiation. Backpropagation is frequently employed in the learning process to optimize

the mass of neurons using a downward gradient method in order to calculate the loss

function progression.

2.4.9 Gradient Descent Optimization algorithms

In optimization, gradient method is an algorithm to solve problems of the form:

min
x∈Rn

f(x) (2.10)

Search directions at the current point defined by the function gradient.

Gradient downward is a well-known method for optimizing neural networks. Each

modern Deep Learning library also offers implementations of numerous gradient-descent

optimization methods (see, for example, the documentation for lasagne, caffe, and keras).
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Gradient descent is a way to minimize an objective function J(θ) parameterized by a

model’s parameters θ ∈ Rd by updating the parameters in the opposite direction of the

gradient of the objective function ∇θJ(θ) w.r.t. to the parameters. The η learning rate

determines the steps to reach a (local) minimum. In other words, we walk downwards to

reach a valley in the pendulum of the surface created by the objective function.

Gradient descent is categorized into three versions based on the quantity of data

points utilized to determine the gradient. Depending on the amount of data, we trade

off the accuracy of the updated parameter for the time required to update it.

Batch gradient descent

Vanilla descent, known as the batch descent, calculates the cost function gradient

with respect to the full θ data set parameters:

θ = θ − η∇θJ(θ) (2.11)

Because the gradient levels for the entire dataset must be generated in order to pro-

duce a single update, batch gradient descent is slow and incompatible with memory-free

datasets.

Stochastic gradient descent

By contrast, Stochastic gradient descent (SGD) updates each training example x(i)

with a parameter, and label y(i):

θ = θ − η∇θJ(θ;x(i); y(i)) (2.12)

Batch gradient descent is not appropriate for integrating massive volumes of data

because gradients have to be recalculated for similar samples prior to updating each pa-

rameter. SGD reduces this redundancy by completing one update at a time. As a result,

it is often significantly faster and can also be utilized for online learning.

Mini-batch gradient descent

Finally, the mini-batch descent takes the best of the two worlds and makes an update

for every small batch of n training examples:

θ = θ − η∇θJ(θ;x(i:i+n); y(i:i+n)) (2.13)
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This means that a) it minimizes the parameter’s update variance, hence increasing its

stability, and b) the widely used sophisticated deep learning libraries for highly optimized

matrix optimization enable the gradient to be calculated very efficiently. Mini-batch sizes

typically range from 50 to 256, but might vary depending on the purpose. The chosen

algorithm for neural network training is mini-batch gradient descent.

Below are some algorithms that the deep-learning community often uses to optimize

the task.

Adagrad

Adagrad [29] is a gradient optimization algorithm that simply adjusts the rate according

to the parameters, with smaller updates for frequently occurring characteristics (i.e. low

learning rate) and greater updates for rarely occurring qualities (i.e. high learning rate)

(i.e. high learning rates). This is why it is appropriate for data processing that is

insufficient. When data are sparse and descriptive, this technique frequently increases

convergence performance in comparison to ordinary stochastic gradient descent. It has a

base learning rate η, but this is multiplied using the Gj,j diagonal elements of the outer

matrix of the product.

G =
t∑

τ=1

gτg
T
τ (2.14)

where gτ = ∇Qi(W ) the gradient, at iteration τ . The diagonal is given by

Gj,j =
t∑

τ=1

g2τ,j (2.15)

After each iteration, this vector is updated.

One of the primary advantages of Adagrad is the absence of the need to manually

modify the learning rate. For the majority of implementations, the default value is 0.01

and it is left at that.

The primary drawback of Adagrad is the aggregation of the square denominator

gradients: because each additional period is positive, the accumulated amount grows

throughout training. This decreases the learning rate until it reaches a point where no
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new knowledge can be acquired from the algorithm.

Adagrad customizes the general η learning rate for each step θi in its update rules,

based on past gradients calculated for θi:

θt+1,i = θt −
η√

Gt + ε
· gt (2.16)

Adadelta

Adadelta [30] is an Adagrad extension that reduces the aggressive monotonous learning

rate of Adagrad. Adadelta restricts the winder of accumulated previous gradients to a

specified size, w rather than all previous square gradients. The sum of gradients is defined

repeatedly as the decreasing mean of all gradients, which does not inefficiently save the

preceding gradients. The running average E[g2]t then only rely upon the previous average

and current gradient (as the fraction γ):

E[g2]t = γE[g2]t−1 + (1− γ)g2t (2.17)

The Adagrad update parameter, which we previously derived therefore takes shape:

∆θt = − η√
Gt + ε

× gt (2.18)

RMSprop

Geoff Hinton proposed RMSprop, an unpublished adaptive learning rate approach, in

Lecture 6e of his Coursera Class [31].

Both RMSprop and Adadelta have indeed been independently refined, but the ne-

cessity to deal with Adagrad’s dramatically lowered learning rates has arisen. In fact,

RMSprop is equivalent to the first vector of the Adadelta update:

E[g2]t = 0.9E[g2]t−1 + 0.1g2t (2.19)

θt+1 = θt −
η√

E[g2]t + ε
· gt (2.20)

Additionally, RMSprop divides the learning rate by an exponentially decreasing av-

erage of squares. Hinton advises that gamma be defined as 0.9, and that an excellent

default value for η be 0.001.

Antonios Vogiatzis 26 January 2022



2.5 Calibration of Neural Networks

Adam

Adaptive Moment Estimation (Adam) [32] is another method for calculating adaptive

learning rates for each parameter. Adam keeps a decaying average of the prior squared

paths vt as well as an exponentially decaying average of the previous paths mt. The

decaying averages of past mt and past squared gradients vt have been calculated in the

following manner:

mt = β1mt−1 + (1− β1)gt
vt = β2vt−1 + (1− β2)g2t

(2.21)

mt and vt are the first (average) and second (uncentered) moment of gradient, therefore

the name of the method. Due to the fact that mt and vt are initialized as vectors of zeros,

Adam’s creators observe that they are skewed toward zero, particularly in the primary

phases and, more specifically, when decadence rates are low (i.e. β1 and β2 are close to

1).

By calculating first and second instant biases, they counteract these biases

m̂t =
mt

1− (β1)t

v̂t =
vt

1− (β2)t

(2.22)

These parameters are then used as we saw in Adadelta and RMSprop, which gives

the Adam update rule:

θ(t+1) = θt −
η√
v̂t + ε

· m̂t (2.23)

Default values of 0.9 are proposed by the authors for β1, 0.999 for β2, and 10−8 for

ε. They demonstrate empirically that Adam is effective and compares favorably to other

adaptive learning methods.

2.5 Calibration of Neural Networks

On datasets such as CIFAR100, more sophisticated and complex models, such as ResNet,

are more accurate than their simpler versions. But while they are better at classifying

images, we do not have as much faith in their confidence. Most neural networks for

classification use softmax as the last activation: it generates a distribution of probabilities
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for each target class (i.e. cat, dog, boat, etc.). These probabilities add up to one. We may

assume that if our model assigns a score of 0.8 to the target “dog” for a given picture, our

model is certain at 80 per cent that this is the right target. Over 100 images that have

been detected as dogs, we can expect about 80 images to be true dogs, while the remaining

20 were false positives. Deeper models were more accurate than the shallower models, but

their confidences were decorrelated with “actual confidence”. This inconsistency between

the confidence of the model and the actual accuracy is called miscalibration.

To cope with the miscalibration we employ Temperature Scaling [33] that is the sim-

plest but the most effective way. In more detail ,instead of compute the standard softmax

activation function like Equation 2.7 we modify the function like this:

Softmax(x) =
eyi/T∑
i e
yi/T

(2.24)

All logits (values before the final activation, here softmax) are divided by the same

temperature value T . Analogous to [34], this temperature “relax” the probabilities.

Extreme probabilities (high confidence) soften more than smaller probabilities (low con-

fidence).

2.6 Transfer Learning

Transfer learning (TL) is a machine learning (ML) research area that focuses on storing

the knowledge gained while solving one problem and applying it to a different but related

problem.

It is a widely utilized strategy in deep learning in which pre-trained models are used

as the basis for computer vision and natural language tasks, given the enormous amount

of computation and time required to construct neural network modeling on these issues,

as well as the enormous skills gained. Transfer learning is an optimization technique

which allows incremental progress or improved performance when modeling the second

task.

We first train a base network on a known dataset and task, and then repurpose or

transmit the learned features to a second target network for evaluation on a fresh dataset

and task. This solution would continue to work since the features are general, i.e. they

apply to both the base and target jobs, rather than just the base task (Figure 2.5).
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2.6.1 Pre-trained Model Approach

1. Select Source Model: From the available models, a pre-trained source model

is picked. Multiple research institutions publish models on huge and demanding

datasets, which can be added to the pool of potential models from which to choose.

2. Reuse Model: Depending on the modeling methods employed, the model pre-

trained model can then be utilized as a starting point for a model on the second

priority task.

3. Tune Model:Alternatively, depending on the task given, the model may need to

be changed or optimized based on the input-output pair data.

Model A

Large Dataset of Object Images

Knowledge to

detect various

objects like

hats, cats,

mats etc

Small dataset of recycled objects

Model B

Results

trained on

Transfer of knowledge

trained on

Figure 2.5: Transfer Learning process

2.6.2 Pre-trained Models as Feature Extractors

Typically, features in machine learning are hand-crafted by academics and domain ex-

perts. Luckily deep learning could automatically extract features. This does not of course

mean feature engineering and domain intelligence is no longer relevant - you do have to
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consider which features to incorporate into your network. Neural networks can learn

which features are really important, and which features are not.

Afterwards the learned representation can also be used for other tasks. Simply using

the initial layers to spot proper feature representation, but do not use the network data

because it is too task-specific. Rather, feed data into the network and use the output

layer as one of the intermediate layers. The layer can then be interpreted as a raw data

representation (Figure 2.6).

Old classifier

softmax

fc2

fc1

conv3

conv2

conv1

Data and lables (e.g. ImageNet)

TRANSFER

New Classifier (Trashnet)

fc1

conv3

conv2

conv1

Target data and labels

features

Figure 2.6: Feature Extraction approach

2.6.3 Fine Tuning the pre-trained weights

In the above case, we did not attempt to modify the weights, rather they were used as it

is for feature extraction. But this is not what we want in case the images are bit different.

We would like the model to relearn some or all of the features it has learned.

We may use the new dataset to fine-tune the CNN that has already been trained.

Consider how comparable the new dataset is to the pre-training dataset. Due to the
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similarity between the two datasets, the same weights could be used to extract the new

dataset’s features.

• If the new dataset is very small, it is preferable to train only the final layers of

the network in order to avoid overfitting, while keeping the other layers unchanged,

following the below steps:

1. The final layers of the pre-trained network should be removed.

2. Add new layers

3. Only the newly formed layers require retraining.

• If the new dataset is quite large, retrain the entire network using weights from the

previously trained network.

The above 3 methods are summarized and shown schematically in the Figure 2.7.

1. Strategy 1: Initialized only the weights from pre-trained network and allow all

layer to train.

2. Strategy 2: Fine-tuning some “later” layers while all the other early layers being

frozen.

3. Strategy 3: Freeze all the layers expect from the final layers which are the custom

full connected layers (Feature Extractors).
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Figure 2.7: Transfer Learning Strategies

2.7 Ensemble Learning

Ensemble learning is a technique for intentionally creating and combining several models,

such as classifiers or experts, to tackle a particular computational intelligence problem.

Ensemble learning is typically used to improve the efficiency of a model (classification,

prediction, feature approximation, etc) or to mitigate the tendency of a weak model.

Ensemble Learning can also be used to assign confidence to the model’s decisions, to

pick optimal (or near-optimal) features, to combine data, to do incremental learning,

non-stationary learning, and to perform error correction. While we focus on Ensemble

Learning applications for classification, many of the basic concepts discussed below can

simply be expanded to work on approximation or prediction-related subjects as well.

The Ensemble-based design is accomplished by integrating a number of models (hence-

forth classifiers). As a result, these systems are sometimes referred to as multiple clas-

sifier systems or ensemble systems. There are some situations in which the use of the

Ensemble-based Method makes mathematical sense, which are described in depth below.

For example, before committing to a medical operation, we normally ask for the advice

of multiple doctors, read customer feedback before buying an item (especially expensive

travel ticket ), assess potential workers by reading their references, etc. In each situation,
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a final decision is determined by weighing the individual perspectives of a diverse group

of experts. The fundamental objective is to avert the undesired option of an unneeded

medical procedure, a bad merchandise, or even an unskilled worker.

2.7.1 Categories of Ensemble Methods

Ensemble approaches split into two distinct groups, namely sequential ensemble tech-

niques and parallel ensemble techniques. Another criteria for grouping ensemble methods

are the homogeneity, there are the Homogeneous and Heterogeneous methods.

Sequential ensemble techniques yield a sequence of basic learners, e.g. Adaptive

Boosting (AdaBoost). The sequential development of base learners fosters interdepen-

dence. The model’s efficiency is then enhanced by increasing the weights assigned to

previously skewed learners.

In parallel ensemble techniques, base learners are developed in a parallel format,

e.g. random forest [35]. Parallel approaches employ parallel generation of basic learn-

ers to foster independence between these learners. The independence of base learners

significantly reduces the inaccuracy introduced by the use of averages.

The Homogeneous Ensemble Approach is a mixture of the same classifier forms.

But for each classifier, the dataset is different. This would make the unified model operate

more precisely after aggregating the effects of each model. That Ensemble System form

work for a wide number of datasets. In the homogeneous process, the method of selection

of features is the same for the separate training data. Computationally, it’s costly.

The Heterogeneous Ensemble approach combines multiple classifiers or machine

learning techniques, each of which is trained on the same data. This strategy is effective

for smaller data sets. In heterogeneous terms, the process of picking a feature with

identical training data is different. The Ensemble Approach achieves its cumulative

outcome by aggregating the results of each integrated model.

2.7.2 Types of Voting Ensembles

The Voting Ensemble (or “Majority Voting Ensemble”) is a machine learning ensemble

that combines the predictions of multiple models. It is an approach which can be used

to enhance model performance, particularly to the point where it outperforms all other

models in the ensemble. The voting ensemble algorithm works by combining the forecasts
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of multiple models. It is suitable for classification and regression tasks. This involves

estimating the average sample predictions in the case of regression. When it comes to

classification, the guesses for each category are summed together and the label with the

most votes is chosen.

The Voting Ensemble approach is a powerful tool that comes in handy when a single

model exhibits bias [36, 37, 38]. Additionally, the Voting Ensemble may produce a higher

overall score than the best base estimator, as it aggregates the predictions of different

models and attempts to compensate for the individual models’ flaws. Making the base

estimators as diverse as possible is one technique to increase the ensemble’s efficiency.The

base estimators will be different pre-trained models, fine-tuning in the same dataset as

shown in Figure 2.8.

Figure 2.8: Ensemble Learning Voting Classifier

Two different voting schemes are typical among voting classifiers:

• Hard Voting: Every single classifier will vote for a class, and the majority will

win. In mathematical terms, the desired target label of the set is the mode of

distribution of independently predicted labels.

• Soft voting:Each classifier assigns a probability to each data point that it belongs

to a particular target class. Predictions are summarized and weighted according to

the classifier value. The vote is then cast on the preferred label with the highest

weighted probability.
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The voting ensemble does not ensure that its results will be superior than those

of any other model utilized in the ensemble. If any proposed method in the ensemble

outperforms the voting ensemble, it is assumed that it will be used instead of the voting

ensemble. A voting ensemble is incredibly beneficial for machine learning models that

use stochastic learning methods and generate a unique final model each time they are

trained on the same dataset. For instance, neural networks that use stochastic gradient

descent to find the optimal solution. Another example in which voting ensembles are

particularly effective is when numerous instances of the same machine learning algorithm

are combined with slightly varied hyperparameters.

2.7.3 Extension of Voting Ensemble

The disadvantage of the voting framework is that it treats all models equally, which

implies that every model has contribute equally to prediction. This is a problem if certain

models perform poorly in some situations but perform admirably in others. To address

this issue, a voting ensemble extension that utilizes a weighted average or a weighted

voting system for the contributing models has been proposed in the literature. Typically,

this is called blending [12]. Another expansion is to use a machine learning model to

determine when and how much to assist each model when making predictions. This is

refereed as stacked generalization, stacking [39].

Voting ensemble extensions::

• Weighted Average Ensemble (blending)

• Stacked Generalization (stacking)

Stacking

Stacking (or stacked generalization) creates a series of models employing a variety of

learning methodologies (e.g., one neural network, one decision tree, ...), in contrast to

bagging or boosting, which train multiple versions of the same learner (e.g. all decision

trees). For example, think of the scenario where m models are trained on a dataset of n

samples. We intend to train m binary classifiers hj sequentially in order to later combine

them for the purpose of selecting new instances x as their weighted majority vote :
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The model outputs are used to calculate the final prediction for any instance x:

ŷ(x) =
m∑
j=1

wj · hj(x) (2.25)

where the introduced a level-1 meta-learner, for optimizing the weights wi of the

level-0 base learners. That is, the individual m predictions associated with each training

instance xi are forwarded as training data to the level-1 learner, as shown in figure 2.9.

Figure 2.9: Stacking Architecture

2.7.4 Opinion Aggregation and Voting Mechanisms

Weighted voting games originated in the areas of computational social choice [40], and

cooperative game theory [41].They model decision-making scenarios in which a set of

electors must make a binary (yes/no) decision on a specific issue; a numeric weight is

assigned to each elector and a decision is made if the total of the weights of the electors in

favour of it matches or exceeds a certain threshold called a quota. Weighted voting games

have many implementations outside the principle of social choice. For example, they can

be used to model settings where each player has a certain amount of a given resource

(say, time, money, or manpower) and there is a target that can be accomplished by any

coalition that has a certain amount of that resource [42]. Weighted voting games can be

viewed as a method of representation for yes/no voting schemes (i.e., simple cooperative
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games). They provide a condition on the yes/no voting system that is both necessary

and adequate to ensure that such a system can be interpreted as a weighted voting game.

Social choice theory is a theoretical framework for analyzing the process of merging

individual preferences and opinions in order to attain a collective decision or, in some

cases, social welfare. The analysis begins with a set of seemingly plausible axioms of

social choice and builds a social welfare function [43] using components of formal logic

for generality.

2.8 Evaluation Metrics

1. k-Fold Cross-Validation: The process takes a single input, k, which specifies the

number of groups to separate a data sample into. As such, it is frequently referred

to as k-fold cross-validation. When a specific number for k is chosen, it may be used

in place of k in the model comparison, such as k=10 for a ten-fold cross-validation.

Cross-validation is primarily used in applied machine learning to measure a model’s

capacity to learn from previously unseen data. It is a common strategy since it is

straightforward and generally results in a less biased or positive estimate of the

model’s ability than other methods, such as a basic split train/test. The following

is the primary way [44]:

• Randomly shuffle the dataset.

• Divide the sample into k distinct groups

• For each individual group:

– Consider the group as a stand-in or test data set.

– Utilize the remaining groups as a source of training data.

– On the training set, fit a model and evaluate it on the test set.

– Keep the evaluation score and throw away the model

• Summarize the model’s ability by examining a sample of model evaluation

scores

2. Classification report through sklearn: A classification report is used to eval-

uate the accuracy of an algorithm’s predictions. How many of your guesses were
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correct and how many were incorrect. There are four distinct ways of determining

whether or not the forecasts are accurate:

(a) TN / True Negative: when a case was negative and predicted negative

(b) TP / True Positive: when a case was positive and predicted positive

(c) FN / False Negative: when a case was positive but predicted negative

(d) FP / False Positive: when a case was negative but predicted positive

• Precision refers to a classifier’s ability to avoid labeling a negative instance

as positive. It is defined as the ratio of true positives to the sum of true and

false positives for each class. Out of all the positive classes we have predicted

correctly, how many are actually positive. Precision = TP
(TP+FP )

• The Recall of a classifier refers to its ability to identify all positive examples.

It is described in terms of the ratio of true positives to the sum of true positives

and false negatives for each class. How much we predicted accurately out of

all the positive classes. Recall = TP
(TP+FN)

• The F1-score is a weighted harmonic mean of precision and recall such that

the best score is 1.0 and the worst is 0.0. Generally speaking, f1-score is a

quantity that tries to combine precision and recall in one number to penalize

models that despite having high accuracy for example have low recall for one

class. To compare classifier models, the weighted average F1 should be used

as a guide, not the global accuracy. F1 − Score = 2 ∗ (Recall∗Precision)
(Recall+Precision)

• Support: The number of real occurrences of the class in the provided dataset

is called support. Support does not vary between models; rather, it serves as

a diagnostic tool for the evaluation process.

• Accuracy: How frequently does the classifier get it right on average.

Accuracy = (TP+TN)
(Total)

• The Macro-average technique can be used to determine the system’s overall

performance across data sets. macro-avg =
(
∑#classes

n=1 Pn)

(#classes)

• Weighted-average:Calculate metrics for each label and determine their weighted

average in terms of support (the number of true instances for each label).
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3. Confusion matrix: A confusion matrix is a set of outcomes from classification

problem predictions. The number of correct and wrong predictions is reported using

count values and broken down by class. The confusion matrix demonstrates how

confused the classification model becomes when making predictions. It provides

insight into not only the classifier’s errors, but also the types of errors made.

4. Sensitivity-Specificity Metrics:

• Sensitivityrefers to the quantity of positive prediction and summarizes the

accuracy with which positive classes are forecasted. Sensitivity = TP
(TP+FN)

• Specificity relates to the predictability of the negative class and is a comple-

ment to sensitivity, or the true-negative rate. Sensitivity = TN
(FP+TN)

Sensitivity is a more relevant aspect in cases of imbalanced classification.

5. Probabilistic Metrics for Imbalanced Classification: Probabilistic metrics

are structured for quantifying the uncertainty of predictions. These are important

for problems where we don’t care whether the model is right or wrong, but want

the model to correctly reflect the ambiguity in its forecast. Probabilistic definitions

of error, including probability, are used to calculate the divergence from the true

probability. These indicators are particularly helpful when we want to determine

the efficiency of the classifier, whether it has misidentified the correct class with

high or low probability [45]. The Brier score is a popular measure of predicted

probabilities:

BS =
1

N

N∑
t=1

(ft − ot)2 (2.26)

where ft is the predicted value and ot is the observed. N is the number of ob-

servations. Brier score measures the mean square error between the estimated

probabilities and the observed values (actual).

The advantage of the Brier score is that it is organized in such a way that it

favors the positive over the negative. The Brier score is calculated by evaluating

the model’s ability to predict the positive class and its accuracy in doing so. The

mean squared error is calculated as the average of all squared errors between two

numbers.
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2.9 Related Work

The sections that follow explain several advancements in the classification of recyclable

materials using machine learning algorithms, most notably CNN approaches, to provide

context for the current work.

2.9.1 CNN Techniques for Waste Classification

A study conducted by Rahmi Arda Aral, Seref Recep Keskin and others explored different

well-known Deep Learning models an after fine-tuned them to find the most efficient ap-

proach [46]. They implemented data augmentation due to relatively few images available

for boosting classification accuracy. After tried different optimizer and DL architecture,

they achieve 95% with Adam optimizer.

In CompostNet [47] is a waste classification system which utilize a deep learning

network to classify compostable, recyclable, and landfill materials. The system provide

two different design approaches, a custom model and one augmented pre-trained image

classification model (MobileNetV2). The novelty of this approach is that come to an app

version which enable the user to take a picture of any material and identify the correct

class for better sorting in the waste receptacles.They demonstrate that even with a small

dataset, a model based on transfer learning is capable of accurately classifying waste

pictures.

Another similar application is the SpotGarbage [48] which employ a pre-trained

Alexnet network modify to output a binary probability to classify a material can be

either garbage or not-garbage. In details, they introduce an Android app, which employs

a CNN called GarbNet to not only detect but also localize garbage in real world images.

The authors proposed an optimization in the network architecture.

A Multi-layer Hybrid approach which uses Deep Learning models to identify wastes as

recyclable or others material [49] are utilized a CNN-based algorithm for extracting image

features and several multi-layer perceptrons (MLP) to reinforce these images features with

other features information. A 90% classification accuracy is achieved under two distinct

scenarios in comparison with only image classification CNN-based method.

The goals of this study [50] were to identify a wide range of recyclable materials,

which affects waste management and recycling systems. Using intelligent systems instead
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of humans to sort recycled materials is an important necessity for an economical and sus-

tainable recycling industry. In order to ensure efficiency, they worked with well-known

deep neural network architectures. The suggested model, RecycleNet, is a meticulously

designed deep convolutional neural network model optimized for recycling object classi-

fication. This unique model reduces the number of parameters in a 121-layer network

known as DenseNet121 from seven million to just three million.

2.9.2 Ensemble Techniques for Classification

In this work [51] an architecture for remote Sensing Data Classification proposed using

feature fusion, referred as two-tunnel CNN framework. In details the authors integrated

two different CNN-based method train in separate datasets by concatenate the final

outputs layer from each branch conclude to a new join layer that combined different

features. Experiments show that this approach outperform the existing method.

In the work of Hinata and Takahashi [52] a complicated network approach refer as

EnsNet consists of one main CNN and numerous Fully Connected Sub-Networks are

proposed for classification purposes. All the Sub-Networks with the base CNN construct

a feature map in the last convolutional layer, and a majority vote rule are in charge of

the final selection of class. All SubNetorks train independent of others ant take part in

an ensemble in final layer. Experiments shown that achieves the lowest error rate among

some of the state-of-the-art models.

A novel approach present ii this work [53], they describe a One-vs-One (OvO) training

methodology for neural networks that trains each output unit to differentiate between a

specific pair of classes. Additionally, as compared to the One-vs-All classification scheme,

this approach results in a greater number of output units. To determine the suggested

approach’s advantages, they compared it to the results of One-vs-One and One-vs-All

class classifiers on three different plant recognition datasets and a dataset including photos

from several monkey classes. Two deep convolutional neural network (CNN) architectures

are developed from scratch or using pre-trained weights: Inception-V3 and ResNet-50.

This experiment demonstrates that when all CNNs are generated from scratch, the One-

vs-One classification outperforms the One-vs-All classification. However, fine-tuning the

two pre-trained CNNs using the One-vs-All system gets the best results, as each of them

was fine-tuned using the One-vs-All scheme.
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2.9.3 Other Techniques

In the work [54] presents a triple-histogram classification model for the classification of

plastic waste. The key objective of this paper is the automated segregation of waste. A

gradient based features vector will be used to differentiate between four different classes:

PE-HD and PET, PS, and PP.

In the approach of [55] the authors seeks to describe the four types of garbage waste

comprised of glass, paper, metal and, plastic. They use a garbage data set that includes

400 samples of each class. The models used in the experiment are Pre-trained VGG-16,

AlexNet, Support Vector Machine, K-Nearest Neighbor and Random Forest (RF). In

their study present results that their models achieved an accuracy of 93%.

In the study of [56] the authors presents a method for automatically sorting two

types of materials: polycoat containers and PET (Polyethylene Terephthalate) bottles.

This article presents a high-speed approach for automatically recognizing regions inside

a picture that may include these elements and extracting such parts. These regions are

merged to form complete containers, which are classed as polycoat or PET bottles. The

model is trained on the histogram of image pixels using a linear support vector machine

(SVM). The proposed approach achieved a recognition rate of 93% and is capable of

real-time operation at high frame rates utilizing a field-programmable gate array.

Antonios Vogiatzis 42 January 2022



Chapter 3

Dual Branch Multi-output Approach

The classification for the achievements of recyclable materials, and in particular plastic, is

critical both for the economy and for the achievement of climate balance. In this chapter

we present a novel image classification model that can be used to distinguish recyclable

materials, building on recent work in deep learning and waste classification.

The approach that we introduce is the so called “Dual-branch Multi-output CNN”,

a custom convolutional neural network composed of two branches aimed to i) classify

recyclables and ii) distinguish the type of plastic. In particular, our approach makes

use of the joint utilization of the available datasets, making it possible to learn disjoint

label combinations. The proposed architecture is composed of two independent clas-

sifiers operating on two different datasets. In our work, the Densenet121, ResNet50,

VGG16 architectures [57, 58, 59] were used on the Trashnet dataset [2], along with data

augmentation techniques, as well as on the WaDaBa dataset [3] with physical variation

techniques. Several experiments are used to assess their effectiveness in the classification

of waste material images.

3.1 Overview and Contributions

The aim of this study is to develop an algorithm for the automated classification of

potentially recyclable waste items, a task that is challenging due to the condition (e.g.

degree of dirtiness, shape deformations, etc.) of the items during their sorting in waste

treatment facilities. A second objective is to better identify the form of plastic used, as

this type of plastic comprises a number of different chemical mixtures (e.g. PET, PP,
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PS, HDPE, etc.). Additionally, the fact that current methods of optical separation of

recyclable waste face difficulties in distinguishing all recyclable materials at once without

using hyper-spectral imaging [56, 55, 54], provides a stronger incentive for our work. Our

long-term goal is to increase the productivity and revenue of waste treatment plants. To

this end, we build on recent advances in deep learning neural net architectures [60].

In detail, we receive images of each recyclable material and annotate each one with

two labels. The first label distinguishes one of five objects-namely glass, paper, metal,

plastic, and trash. The second label categorizes specific “plastic subclasses”, that is,

PET, PE-HD, PP, PS and a non-plastic. The final output is the characterization of the

material with one of these two labels.

To accomplish this classification task, we build a novel Dual-Branch Parallel CNN

architecture. In our study, we combine numerous features from various data sources,

which is useful for classification, and the joint utilization data helps make this possible.

A crucial factor is that a combination of the Trashnet dataset (which contains glass,

paper, metal, plastic and trash materials) [2] and the WaDaBa dataset [3] (which contains

different labelled forms of plastic, but supplemented with non-plastic material in our case)

would lead to a more robust model, one with potentially higher classification accuracy

compared to using Trashnet alone.

As such, our Dual-Branch Multi-output CNN approach features two different classi-

fiers, each one trained on unique branches. One branch is trained with the recyclable

waste materials (from Trashnet), and the other with images of plastic types (from the

augmented WaDaBa). We follow the classifications of the recyclable waste classifier,

but increase our confidence on those classifications or revise them entirely based on

the classification of the plastic classifier. In this sense, if the “Trashnet branch” has a

large “confidence” (probability) of classifying an object as “plastic” and the “WaDaBa

branch” assigns a large probability to a certain type of plastic, then we may favor this

particular class of plastic with increased confidence. Similarly, if the “Trashnet branch”

predicts that any material is in the non-plastic class (e.g. “glass”), and the “WaDaBa

branch” confirms this prediction by agreeing that this material is “non-plastic”, then we

have greater confidence in the prediction. On the other hand, if the “Trashnet branch”

predicts a non-plastic class with low probability p and the “WaDaBa branch” predicts

a certain plastic form with a probability greater than p then we use the information

from the “WaDaBa branch” as the basis for our classification. The last case is when the
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“Trashnet branch” predicts a plastic class with a probability p and the “WaDaBa branch”

predicts a non-plastic form with a probability, q then we compare the probabilities q and

p and if p (“plastic”) is higher than q (“non-plastic’) we choose the plastic class for the

final label, and respectively the non-plastic in the opposite case.

Since the “Trashnet branch” (i.e., the waste classifier) of the Dual-Branch architec-

ture plays a vital role in the initial material detection, it consists of a Stacked ensemble

of CNNs attempting to achieve better accuracy with less false predictions. By inte-

grating different architectures [61], Stacked Ensemble learns the optimal combination of

predictions from a variety of well-performing machine learning models as explained in

subsection 2.7.3.

Our problem formulation shares certain characteristics with the incremental learning

of networks from diverse datasets that cannot be brought together. This is the case, for

instance, in medical multicenter datasets of different modalities, or of the same type but

addressing different properties of the population. In these domains, the concept of shared

wisdom from the data forms the trade-off between learning efficiency and privacy level

[62, 63]. Towards this direction, the concept of Federated learning implements different

training of networks at each data site and then performs an averaging combination of these

networks at the final central point [64]. Alternatively, the concept of Split learning, splits

a neural network into multiple components, and the trains them separately at a different

site, up to the level of feature extraction, whereas all networks are combined towards

a final centralized classification network [62]. Our approach of Dual-Branch learning

builds on these paradigms and formulates different classifier networks as in Federated

learning, with adaptive combination at the classifier label, similar to Split learning.

We compare our approach to a framework that employs two separate CNNs, each

involved in a different classification assignment, which are run in sequence. We con-

duct comprehensive experiments on our benchmark datasets, which demonstrate that

our proposed network achieves over 97% accuracy, and in some cases manages to exceed

the accuracy results of state-of-the-art methods for our benchmark datasets.

Our contributions in this chapter can be summarized as follows:

• We expand on the concept of shared wisdom from data and explore how various

datasets can be combined to improve accuracy and create a stable network archi-

tecture.
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• We introduce a novel two-branches multi-output CNN, which integrates multiple

source information at the final level, for recyclable waste classification. The need

for this component arises from the need to address and exploit the peculiarities of

the data.

• We show that our method results in a major increase in efficiency of the main con-

stituent branch of the network. In addition, material classifier accuracy is greatly

improved by leveraging the output of the plastic classifier.

• Moreover, our classifiers can substantially outperform the performance of state-of-

the-art networks operating on our benchmark datasets.

• The success of our approach effectively highlights the importance of exploiting

emerging information for ongoing action.

3.2 Proposed Classification Framework

Our proposed classification framework is the Dual-Parallel CNN for waste Classification,

shown in Fig. 3.1. This includes a Stacked ensemble of CNNs branch for waste sorting

and a classic CNN branch for plastic classifying. In our experiments we pit this against

a CNN pipeline, where explicitly after the first CNN predicts waste classes, the second

CNN predicts the form of plastic 3.3.
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Figure 3.1: Dual-Branch Architecture

3.2.1 Dual-Parallel CNN for recyclable waste classification

The CNN architecture we put forward in this work, consists of two branches corresponding

to two independent classifiers4, depicted in Fig. 3.1. The first of these is a dedicated

branch for a plastic classifier trained with the WaDaBa dataset, albeit supplemented

with an extra class consisting of non-plastic images from the Trashnet dataset for the

classifying four types of plastic or not plastic at all. For a more comprehensive vision

of the network, we use a CNN network which has been pretrained on ”Imagenet”; and

then replaced the final fully connected layers with 2 dense layers of 512 neurons. The

output of the convolutional layer is passed through a softmax with temperature scaling

Equation 2.24 activation function. The final network is fine-tuned using the WaDaBA

images samples.

The second branch is an independently trained Stacked Ensemble of different CNN

architectures, specializing in classifying (potentially recyclable) waste into five classes.

This branch was trained on Trashnet. The base-learners are 3 different pretrained CNNs

(DenseNet121, ResNet50, VGG16). The outputs of each model can then be combined.

4The network branches at least twice (sometimes more) in the multi-output classification to create

several sets of fully connected heads at the network’s end. The network then predicts a series of class

labels for each head, allowing it to learn label combinations with disjoint labels. We have at least two

heads attached to the same body, each in charge of a separate, specialized classification task.
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We use a straightforward merge of concatenation, where a single 15-element vector is

generated from the five class probabilities predicted by each of the three models. We

then establish a hidden layer to translate this “input” to the meta learner and the output

layer to produce its own probabilistic prediction. Finally, we create a stacked neural

network generalization model based on a list of trained sub-models, Fig. 3.2.

Figure 3.2: The “Material Branch” - Trained in Trashnet

In each branch, a series of convolution, activation, batch normalization, pooling and

drop-out operations are performed until the final output is reached. The branch at the

bottom of the network is a slightly shallower (not as deep) than the branch at the top of

the network (Fig. 3.1). Predicting plastic type is much easier than predicting the waste

category and therefore the plastic branch is shallower.

Now, it is important to assess the transfer learning capability of a given architecture.

To test transfer learning , in one of our experiments we created a mixed test set from

the two Datasets for our Dual-Branch CNN. In detail, the testing set is fed with images

from five classes: (a) glass, (b) paper, (c) metal, (d) trash, (e) plastic. These consist of

image samples from the Trash-net dataset except the plastic class which take samples

from WaDaBa dataset. The purpose of DualBranch CNN is to test the transfer learning

capability of this architecture from one dataset to another.

Our experimentation showed that transfer learning does not reach in this particular

case the performance of the separately trained classifiers. The reason behind this is that

the “material classifier” branch (or “Trashnet branch”) is trained with Trashnet images
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that may be labeled as “trash”, while they depict plastic, and are thus similar to the

plastic images originating from the WaDaBa dataset. Naturally, the Trashnet branch

decides that these are “trash”, as shown in the confusion matrix we report. This phe-

nomenon mirrors a wider, key problem faced in transfer learning: namely, the challenge

to be able to classify correctly images that might look very similar to training data that

originated from a class with a different, misleading label.

To counter this problem, we equip our Dual-Branch CNN with an additional step

performed after we receive the two-labels output. In this step we exploit the known

fact that we have a classifier specialized in plastic separation, and use this knowledge

to increase our confidence in the “material class” (Trashnet branch) predictions, or even

revise these completely, given the output of the “plastic” classifier (WaDaBa branch).

Specifically, we convert the double-labeled result of the proposed system into a final

one-label result as follows. If the “Trashnet branch” has predicted “plastic”, and the

“WaDaBa branch” gives a greater probability for a certain type of plastic, then we

assign this probability as the probability of “plastic” - and predict that particular type

of plastic. However, if the “Trashnet branch” has predicted any other particular class

with probability p, but the “WaDaBa branch” predicts a certain type of plastic with a

greater than p probability, then we depend our final classification on this “assumed-to-be-

expert-on-plastic” prediction, and assign the material to be classified in the corresponding

“plastic type” class predicted by WaDaBa.

Finally, if the “Trashnet branch” has predicted the item is in some particular non-

plastic class with probability q, while the “WaDaBa branch” has assigned the item a

probability q′ ≥ q for it to be in its “non-plastic” category, then we are more confident in

identifying the material class as the one predicted by the “Trashnet branch”, and produce

exactly that class as our final prediction for the input image.

3.2.2 Training Process

First, the distinct branches of the Dual-Branches architecture are trained on their sepa-

rate data using fine-tuning that requires a pre-trained model. Fine-tuning can configure

the weights of the pretrained model to minimize the computation time.

The Stacked Ensemble CNN material classifier and the CNN plastic classifier are first

trained on individual training set. More precisely, as defined in Algorithm 1, two separate
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Algorithm 1 Training process of the Dual-Branch CNN for the classification of waste

branch

1: Initialize all weights

2: for #epochs

3: Stage 1:

4: • Train the material classifier branch

5: • Train the plastic classifier branch

6: for #epochs

7: Stage 2:

8: • Merge the separated trained models

9: • Test two-branch CNN

branches are first trained in stage 1 using a large learning rate (lr=0.01). When the two

components are combined in stage 2, the pre-trained models extract the respective classes

from the training data pairs and we obtain the two-class output labels.

Additionally, we used data augmentation techniques in order to generate samples of

images and thus enrich the initial training dataset. The augmentation transformations

we use are a) random flipping, b) random rotating, c) gaussian distortion, d) shearing

and skewing, e) random zooming in order to render variations within the dataset, so

it can correctly generalize the unseen data. All data is scaled to 0-1 order to expedite

the convergence time. On the other hand, fine-tuning is typically used to transfer a

pretrained model for large-scale data to small-scale and related data. In consideration of

the characteristics extracted from each branch which are relevant for a particular branch,

we use the transfer learning strategy of [65] to train the two separate branches in a specific

and very similar training set.

Finally, we compare the proposed Dual-Parallel CNN with the sequential implemen-

tation of the two CNN networks. The first network is used for material classification and

the second one for the plastic type categorization as shown in Figure 3.3.

3.3 Experimental Setup

In this section, we will discuss how we collect data, set up the environment, and construct

the CNN architecture that we proposed using Tensorflow and Python.
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Figure 3.3: Sequential CNN Architecture

We experiment to the identification of recyclables materials, using two datasets. The

approaches is decomposed in 4 parts:

• Data Pre-processing

• Evaluation Metrics selection and Fine Tuning

• Classification Framework Design

• Training and Testing of the selected method

In the below subsections we describe the datasets, metrics, and parameter fine tuning

used in our work here,

3.3.1 Experiment Datasets

As mentioned above, we test our network on two datasets:

1. Plastic Waste DataBase of Images - WaDaBa

2. Augmented Trashnet Dataset
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Plastic Waste DataBase of images WaDaBa

The WaDaBa consists of 3960 images obtained after transformations, such as change of

perspective, damage effect, and light sources shifting. The specific categories of plastic

waste are the: a) PET, b) PE-HD, c) PP, d) PS [3].

Augmented Trash-net dataset

The Trash-net data collection consists of images of six classes: glass, paper, cardboard,

plastic, metal and trash. The dataset currently consists of 2527 images [2]. We picked

five labels for classification, i.e. Paper, Plastic, Metal, Glass, Trash and used data aug-

mentation that resulted to a dataset of 10,000 images equally divided among the 5 classes.

3.3.2 Evaluation Metrics selection

In order to examine the efficiency of the proposed two channel parallel CNN for recyclable

waste classification in comparison to the sequential CNN classifier we take into account

the number of feature maps and the fully connected layers in the network. Each classi-

fication prediction of the proposed system is compared to the manually classified label,

which is described as the “truth”. The efficiency of the proposed model is evaluated with

accuracy, precision and recall. Cross-validation is one of the most commonly used data

re-sampling techniques for calculating the true model prediction error and tuning the

model parameters. In our study, we used 4-fold cross-validation. All the aforementioned

metrics described in section 2.8.

A Classification report is used to measure the quality of predictions from a classifi-

cation algorithm. In addition, we report confusion matrix for the experiments. There

are four ways to check if the predictions are right or wrong: 1) precision, 2) recall, 3)

f1-score, 4) accuracy.

Parameter and Fine Tuning

Classification performance is closely linked to the design architecture of the deep learning

network. We tried three different architectures for the CNN network of our “WaDaBa

(plastic) branch”. Specifically, we tried the Visual Geometry Group network (VGG16)

[13]; the Densely Connected Convolutional Network [16]; and the Deep Residual Learning

Antonios Vogiatzis 52 January 2022



3.3 Experimental Setup

for Image Recognition [15]. The bottom three layers, i.e. full connection, classify, and

data input layers, are removed following the “fine-tune” approach described in subsec-

tion 2.6.3 from Transfer Learning Strategies.

The rate of learning is one of the factors that determines the convergence of speeds

that may affect the performance of training. The learning rate is set at 0.01 with Adam’s

policy [14]. Different learning rates were tested on WadaBa dataset and our empirical

study showed that the accuracy of classification may not be improved if a higher learning

rate is used. Since the fine-tune strategy can significantly reduce the complexity of the

computation, the low-level features are extracted by pre-trained layers, which then fit

into the custom layers for the task of classification. In fact, fine-tune helps to achieve

higher classification accuracy and to build a more robust network.

3.3.3 Evaluation Performance

We will present in this section the different evaluation metrics of the two approach that

we use and the measurements that we display. There are 2 types of CNN Networks:

• Dual Branch CNN: consists of two independent branch (classifiers) that fuse in

the final level and provide one final output.

• Sequential CNN: consists of two CNN (classifiers), operating sequentially, with

a double outcome at the end.

We choose some metrics to evaluate the performance of the classification models in

each fold (we use 4-fold validation) which were described in section 2.8 of training period

in the validation set:

• Accuracy

• Precision

• Recall

• f1-score

• Sensitivity

• Specificity
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3.3.4 Implementation in Tensorflow

Our coding employed Python and Tensorflow through Keras high-level application pro-

gramming interface. The Tensorflow is an open source machine intelligence library that

uses a dataflow graph. Keras is written in Python and is capable of running at the top

of Tensorflow and Theano, which focuses on allowing fast experiments. All tests are

conducted on Windows 10, Intel i7-9700, 32 GB ram, and Nvidia GTX 1080 GPUs.

3.3.5 Data augmentation

We implemented python Augmentor [66] package for data augmentation, increasing the

number of data for the Trashnet and WaDaBa datasets. The following general procedure

is followed:

• We instantiate a Pipeline object which contain the initial image data set.

• Define a number of transformations to perform on this data set (operations are

added sequentially in order to generate a pipeline).

• Augmentor applies operations to images stochastically as they pass through the

pipeline, according to a user-defined probability value for each operation.

Augmented Operations

The operations we applied in our Datasets are the following: a) Perspective skewing:

includes changing the image such that it appears to be viewed from a different viewpoint,

b) Elastic distortions: allowing to distort an image while keeping the aspect ratio of the

image intact, c) Rotating: simply rotate the images by arbitrary degrees, d) Mirroring:

mirroring images (translating them through the x any y axes),

3.3.6 Construction of Fine-tuned Pre-trained CNN

Dual-Branch architecture consists of two Independent Branches (classifiers). As men-

tioned earlier, one branch consists of 3 fine-tune pre-trained CNN architecture, we tested

the performance of three architecture in this branch. In order to do this, we pre-trained

each one of them for material classification. The second branch consists of a single
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pre-trained CNN. Every one of these fine-tune pre-trained architecture follow the below

process during training.

The Process 2 is shown the steps which required to train each of the CNN architectures

used in the material and the plastic branches.

Process 2 Fine-tuned Pre-trained CNN Design

1: Download a CNN pre-trained on the ImageNet dataset

2: Fine-tune Stage:

3: • Remove the fully connected nodes at the end of the network

4: • Replace the fully connected nodes with newly custom one following by a “Relaxed

Softmax” activation function.

5: • Initialized the first CONV layer with pre-trained weights

6: • Start training all the network.

7: Call Adam Optimizer to minimize the loss function

3.3.7 Entire Framework Implementation

We sum up our approach in this area and describe the classification Framework proposed.

Our classification approach is based on a fine-tuned pre-trained CNN with models fusion

as an ensemble approach. Process 3 described all the steps building the Unified proposed

Architecture.

For testing the Dual-Branch CNN network we construct a unique hold-out dataset

consists of images from the 2 dataset, with images that none of the 2 have seen during

the training stage

In “Trashnet” branch, we integrated 3 CNN architecture, namely ResNet50, DenseNet121

and VGG16. On “WaDaBa” branch, we employ a VGG16 architecture.

3.4 Results

We evaluated the three CNN architectures for the “plastic branch” with images from

the four plastic classes in the WaDaBa dataset, and from an extra class for non-plastic

samples taken from Trash-net. The number of samples per class is displayed in Table

3.1. The CNN models’ accuracy is demonstrated in Table 3.2. DenseNet121 is the
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Process 3 Dual-Branch CNN Implementation

1: Material Classifier Training Stage:

2: for e = 0 in range (n models) do

3: Trained (using Process 2) and save a number of models on “Trashnet”

4: end for

5: Load all the models

6: Construct stacked ensemble model integrating the load models

7: Train stacked ensemble model on “Trashnet” dataset (Material Classifier).

8: Plastic Classifier Training Stage:

9: Train a CNN model on “WaDaBa” dataset (Plastic Classifier).

10: Merge the independent Branches constructing the unified network

11: Test on the Dual-Branch network on hold-out dataset.

network exhibiting the highest accuracy. Note that the accuracy of all models surpasses

the 75.68% accuracy of the only known-to-date model used on WaDaBa [54]. We use

4-stratified fold validation for generalization. A confusion matrix for DenseNet121 on

the augmented WaDaBa dataset described above is shown in Fig. 3.4 and the respective

Confusion matrix on Table 3.3. We observe there that almost all instances from each

actual class are mapped to the corresponding predicted classes.

Class Number of samples

Name Train Validation

PE HD 1650 550

PET 450 152

PP 480 160

PS 390 130

non-plastic 1264 316

Table 3.1: Number of Train/Val Samples for the WaDaBa Dataset
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Deep Learning model 4-fold accuracy

DenseNet121 99.33% (+/- 0.17%)

VGG16 99.25% (+/- 0.30%)

ResNet50 99.12% (+/- 0.17%)

Table 3.2: Accuracy for the CNN models on the WaDaBa Dataset

Material Precision Recall f1-score support Specificity Sensitivity

PET 99% 100% 94% 550 99% 100%

PE HD 100% 99% 95% 152 100% 98%

PP 96% 97% 98% 160 99% 96%

PS 98% 97% 97% 130 99% 96%

non plastic 100% 100% 100% 316 100% 100%

accuracy 99% 1308

macro avg 99% 98% 98% 1308

weighted avg 99% 99% 99% 1308

Table 3.3: Classification Report for DenseNet121 architecture on WaDaBa
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Figure 3.4: Confusion Matrix for DenseNet121 on WaDaBa
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Now, in order to test the Stacked Ensemble CNN used for the “Trashnet (material)

branch”, we use 87.5% of the samples in the augmented Trashnet dataset for training and

testing the base learners, as shown in Table 3.4; and keep the remaining 12.5% as a hold-

out set for testing the Stacked Ensemble CNN. We test the pre-trained base learners, and

the performance of each of these architectures is shown in Table 3.5. We then evaluated

the “Trashnet branch” model to assess whether it can exhibit a better performance. Its

accuracy is shown in Table 3.6, and the corresponding confusion matrix in Fig. 3.5. Here

again, the algorithm provides a good match between the actual and the predicted class

for each instance, while the 4-fold cross validation accuracy remains high to each one of

the three proposed DL models. We note that the Stacked Ensemble model’s accuracy

surpasses, by more than 2%, several state of the art models [46, 50] applied on Trashnet.

Class Number of samples

Name Train Validation

Glass 1500 500

Metal 1500 500

Paper 1500 500

Plastic 1500 500

Trash 1500 500

Table 3.4: Number of Train/Val Samples for the Trashnet Dataset

Deep Learning model 4-fold accuracy

DenseNet121 96.73% (+/- 0.59%)

VGG16 96.22% (+/- 0.61%)

ResNet50 96.21% (+/- 0.22%)

Table 3.5: Accuracy for the base-learner models on the Trash-net Dataset
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Material Precision Recall f1-score support Specificity Sensitivity

glass 95% 94% 95% 250 99% 94%

metal 98% 97% 97% 250 99% 97%

paper 96% 98% 97% 250 99% 98%

plastic 96% 94% 95% 250 99% 94%

trash 98% 100% 99% 250 99% 100%

accuracy 97% 1250

macro avg 97% 97% 97% 1250

weighted avg 97% 97% 97% 1250

Table 3.6: Classification Report for Stacked Network architecture

Figure 3.5: Fine-tune Stacked Material Classifier Confusion Matrix
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Here we will analyze the performance of base-learners architecture regardless of the

stacked ensemble. The evaluation metrics which we display are the metrics that explained

in section 2.8. Firsly in figure 3.6 we can see the confusion matrix of ResNet50 architecture

test on Trashnet and in table 3.7 the respectively confusion matrix. Respectively in table

3.8 and confusion matrix in fig. 3.7 the same metrics for the VGG16 architecture. Finally

the DenseNet121 Architecture are the best among the 3 which tested, the classification

report is shown in table 3.9 with the appropriately confusion matrix in fig. 3.8.

Material Precision Recall f1-score support Specificity Sensitivity

glass 92% 95% 93% 500 98% 94%

metal 95% 96% 96% 500 98% 96%

paper 98% 97% 98% 500 99% 97%

plastic 97% 92% 94% 500 99% 92%

trash 98% 98% 98% 500 99% 98%

accuracy 96% 2500

macro avg 96% 96% 96% 2500

weighted avg 96% 96% 96% 2500

Table 3.7: Classification Report for ResNet50 as base-learner
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Figure 3.6: Fine-tune ResNet50 Material Classifier Confusion Matrix

Material Precision Recall f1-score support Specificity Sensitivity

glass 92% 94% 93% 500 98% 94%

metal 95% 97% 96% 500 98% 97%

paper 100% 94% 97% 500 99% 94%

plastic 95% 95% 95% 500 99% 95%

trash 96% 99% 98% 500 99% 99%

accuracy 96% 2500

macro avg 96% 96% 96% 2500

weighted avg 96% 96% 96% 2500

Table 3.8: Classification Report for VGG16 as base-learner
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Figure 3.7: Fine-tune VGG16 Material Classifier Confusion Matrix

Material Precision Recall f1-score support Specificity Sensitivity

glass 99% 94% 96% 500 99% 95%

metal 97% 98% 98% 500 99% 98%

paper 98% 98% 98% 500 99% 98%

plastic 96% 98% 97% 500 99% 98%

trash 98% 99% 99% 500 99% 99%

accuracy 98% 2500

macro avg 98% 98% 98% 2500

weighted avg 98% 98% 98% 2500

Table 3.9: Classification Report for DenseNet121 as base-learner
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Figure 3.8: Fine-tune DenseNet121 Material Classifier Confusion Matrix
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Finally, we created a new (different to the one described above) hold-out set which

involves replacing the plastic class images in the original (Trashnet) hold-out set with

plastic images originating from WaDaBa. In the multi-output classification, the network

branches at least twice (sometimes more) to build several sets of fully-connected heads

at the end of the network. The network then predicts a series of class labels for each

head, making it possible to learn disjoint label combinations. We have at least two heads

attached to the same body who each oversee a different, specialized classification tasks.

We use the two independent networks (branches) as a “frozen classifier” to determine

images and calculate multiple outputs obtaining the multi-output classifications. Then,

we perform the final one-label classification step to predict the class of the input image.

Fig. 3.9 and 3.10 summarize the performance of the proposed classification scheme in

material separation and plastic identification, respectively.

Figure 3.9: Confusion Matrix of the Dual-Branch classifier for materials
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Figure 3.10: Confusion Matrix of the Dual-Branch classifier for plastics

By contrast, Fig. 3.11 demonstrates the independent performance of the material

classifier (i.e., the “Trashnet branch”). In particular, we observe the inability of the

material branch to correctly identify several plastic items that are erroneously classified

as trash, paper, or metal as appeared. This underscores the need for our proposed extra

step, the one that combines the two results into one final output. Intuitively, the final

extra step manages to enhance the performance of the material classifier, based on the

excellent performance of the “WaDaBa branch” in the separation of plastics.

Finally, to test the transfer learning ability of our proposed Dual Parallel CNN ar-

chitecture, and showcase its ability to combine different datasets to improve accuracy,

we employ a second, mixed, hold-out set, different to the Hold-Out set #1 mentioned

above. This mixed Hold-Out set #2 contains only 411 images, and is built by replacing

the plastic images of the original (augmented TrashNet) hold-out set with 154 plastic im-

ages originating from WaDaBa; while the 257 images used for the other materials come

from TrashNet but are different to the ones used in Hold-Out set #1 above (which had
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Figure 3.11: Confusion Matrix for independent Material Classifier

1250 images in total). As such, this is a rather demanding transfer learning experiment.

To accomplish this task, we use the two independently trained networks (branches) as

“frozen” classifiers to determine example images and obtain the multi-output classifi-

cations. Then, we perform the final one-label classification step to predict the class of

the input image. Tables 7 & 8 summarize the performance of the overall classification

scheme in material separation and plastic identification, respectively. The overall model’s

accuracy is 90.02%.
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3.5 Conclusions and Future Work

In Chapter 3 we presented a dual-branch CNN architecture for the classification of re-

cyclables, which achieves incremental learning from disjoint datasets. Our architecture

takes advantage of the combined knowledge of its sub-nets across the various datasets,

with local training only on the site of each dataset. Thus, we can learn from multiple

sources and accumulate knowledge without mingling the data samples. The combination

scheme at the classification level exploits the individual outcomes of subnets in a way

that increases confidence in final decision making process. Our results indicate that we

can indeed achieve efficient use of independent datasets, as to obtain accurate classifica-

tion performance. Moreover, our classifiers outperform state-of-the-art ones used on our

evaluation datasets. In subsequent stages of this research, we intend to use this approach

in real-time applications, as an adaptively modified Federated learning scheme.
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Chapter 4

Independent Parallel CNN

Approach

The aim of our in this chapter work is to solve a single label multi-class classification prob-

lem which has been decomposed into as many parallel binary classifiers as the different

classes. Our approach can be thought of a belonging in the one-vs-rest of classification

methods family.5

The rest of this chapter is organized as follows. In Section 4.1 we provide an overview

of our approach and highlight the contributions of the specific architecture. In the Section

4.2 we describe the architecture of our system and analyze all the required notation for the

decision rules employ in voting mechanism. In the section, 4.3 we present the experiments

on datasets that we will conduct and the respective cases to be explored. Finally, in the

4.4 we show the results of the proposed architecture and discuss the outcome and the

models’ behavior in different cases.

5As is usually used in the literature, the term “one-vs-rest” describes a generic classification paradigm

that uses binary classification algorithms for multi-class classification. It involves tackling the multi-class

problem as multiple “binary” classification ones. A dedicated “binary” classifier (that potentially uses

a sigmoid function for classification into the most probable of the two classes) is then trained on the

original dataset, and solves a “binary” classification problem; and final predictions are usually made

using the classifier that is the most confident, or using a simple or absolute majority rule.

On the other hand, the “one-vs-one” is a categorical classification paradigm that employs binary

classification algorithms to perform pair-wise multi-class classification. That is, the one-vs-one approach

uses a “binary” classifier per pair of potential classes. Then, final predictions are usually made using the

classifier that is the most confident, or using some weighted voting method [14]
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4.1 Overview and Contribution

Specifically, our proposed architecture consists of a set of independent dedicated binary

classifiers, each one with two output nodes, with each output node expressing the proba-

bility of the item under consideration to of belong in this class or not. Our method allows

for the effective separation of items based on distinct class features and characteristics;

and is able, in its generality which will become apparent below, to (a) take advantage of

clear class boundaries when these exist, and (b) to effectively assign items to classes with

increased confidence, even when clear class boundaries do not exist.

Our key intuition is that when only one of the independent dedicated classifiers, say

k, puts a “large enough” probability on the item under consideration belonging to its

class, while all others believe the item cannot be classified in their respective class, then

we can be confident that the class to select as the output of our system is indeed the one

predicted by the k-th classifier. We act upon this intuition via a decision rule we put

forward and which implements it.

Arguably, there are many settings and problems where the assumption behind this

approach is valid and helpful. For instance, many image datasets typically contain images

with drastically different characteristics, allowing for the training of different classifiers

with high confidence levels. Examples include a) recyclable materials: for instance,

glass objects are very different from plastic, making it easy to differentiate between the

materials; b) facial recognition problems: e.g., the color of the skin and the shape of

the eyes are powerful characteristics which facilitate the required separation; c) X-ray

datasets: in such images, the bone and tissue density provide strong signals that denote

certain medical conditions.

Of course, there exist many cases in which features might be such that it is harder

to distinguish among classes. That is, either the class boundaries are unclear, or the

confidence of certain classifiers is low. The latter could occur, for instance in the case

of highly unbalanced datasets. Our approach is generic enough to tackle such cases, via

the incorporation of (i) classifier-specific “confidence-related weights”, and (ii) several

alternative decision rules and methods we propose, on top of the main decision rule

mentioned earlier.

In more detail, the main contribution of our work in this chapter is putting forward

a generic architecture that explicitly exploits a “mutual exclusivity property” underlying
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many dataset domains of interest: the fact that in many cases an image in a given dataset

might almost unquestionably belong to one class only. In such cases, one would expect

the predictions of dedicated independent binary classifiers to “support each other”: if

the glass classifier would predict “glass”, while the plastic classifier would predict “not

plastic”. We start from this observation, and build on it to provide a generic architecture

that employs an independent parallel network of CNNs to provide accurate classification

even if the aforementioned assumption does not hold. Our proposed architecture is able

to separate individual features specific to each class, from the pool of shared features; and

includes designed-to-purpose decision rules that are able to select the final class of the

item to be classified. To this end, and to allow for flexibility and easy adaptation to the

specific properties of the datasets of interest (e.g., on a dataset’s degree of “balancedeness”

with respect to the types of images it contains), our approach also makes use of “weights”

associated to each independent classifier, and which intuitively mirror the confidence each

dedicated classifier has in identifying its corresponding class. Moreover, we propose the

use of proper scoring rule, the brier score [67], for the automated re-adjustment of the

aforementioned weights.

An additional, in a sense “emergent” contribution, is the fact that the proposed

framework may be utilized to characterize a given dataset regarding its “homogeneity”

and “balancedness” properties. That is, the framework can be used to apply a series of

decision rules, potentially with varying weights and parameters and based on different

intuitions and scenarios of interest, An exploratory qualitative and quantitative dataset

analysis process can then be effectively carried out for each dataset, in parallel with and

also following the classification decisions optimization one: by taking into account the fre-

quency with which the conditions for the application of a specific decision rule is valid,

one can analyze the dataset to decide its status—e.g., the degree by which contained

items’ classes are related to each other. This exploratory dataset analysis, can be used

to further drive the modeling process, for instance addressing certain questions regarding

the choice of model parameters. For image classification problems, this may yield insights

regarding the distributions of features, or for identifying meaningful trends of predictors

in different classes. Notice that the same intuitions apply for generic classification prob-

lems: one can assess the use of simple “decision rules” to acquire meaningful knowledge

regarding the dataset at hand, and further optimize the classification model.
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4.2 System architecture and Decision Rules

We begin this section by describing the architecture of our system. The big picture of

this architecture is shown in Figure 4.1

Figure 4.1: Proposed Architecture

There is a set SC of M classifiers, one dedicated for each class, following the one-vs-

rest classification method for decomposing the multi-class problem to M dedicated binary

classifiers. In departure to what is the norm6 in one-vs-rest classification approaches,

the output of the network is a probability vector, each element of which contains the

independent probabilistic estimate of each classifier representing its degree of certainty

regarding an item belonging to its respective class. This vector will then be acted upon

by the decision rules we put forward, and which we will be presenting in detail below, in

order to come up with a final classification decision.

To explain further, Figure 4.2 depicts graphically the Independent Parallel Architec-

ture in which we apply the different Decision Rules. The output of the architecture is a

final vector of fYi probabilities, signifying the degree of certainty by classifier i regarding

an item belonging to its respective class; and our decision rules will be acting on this

vector. We explain the fYi probabilities, along with other required notation, immediately

below :

Below we provide the notation required to explain the Decision Rules.

• i ∈M, |M | >= 2,M : set of different classes

• pYi : the dedicated classifier’s output probability for (yes)

• pNi : the dedicated classifier’s output probability for (no) [pNi = 1− pYi ]

6The One-versus-All (or OvA) Strategy is a technique for categorizing numerous (more than two)

classes using Binary (Two-Class) Classifiers (such as Support Vector Machines). Making choices entails

applying all classifiers to an unknown sample and predicting the label for which the associated classifier

provides the highest confidence score:
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Figure 4.2: Independent Parallel Network (FC = Fully Connected Layer)

• wi : the dedicated classifier’s weight, with
∑M

i=1wi = 1

• fYi = wi · pYi class i’s final weighted probability ; fNi = 1− fYi

• f̂Yi : the normalized fYi values of all classifiers ; f̂Ni = 1− f̂Yi

• f̃Yi : the normalized fYi values of classifiers which output fYi > fNi ; f̃Ni = 1− f̃Yi

• f̄Yi : the custom fYi values of classifiers which output fYi > fNi

• csk : the selected class according to a given decision rule k

• T : a required confidence threshold7

We note that deciding the wi weights of each classifier is an interesting engineering

problem: weights can represent our confidence to the specific classifier; or, more accu-

rately, to the ability of the classifier to be effective on the particular dataset, given the

features and other characteristics of the dataset—such as the number of its items, the

degree of its items’ homogeneity (e.g., features’ distribution) and the number of items

belonging to each possible class, and so on. As mentioned earlier, a dataset analysis

process can be carried out multiple time for a particular dataset to determine wi’s: once

before classification to determine the original wi weights, and then again also again in

an iterative fashion, in order to re-determine the wi following a given number of classifi-

cations, as shown in Algorithm 4 depicting the iterative modeling optimization process

7The default T value used in our experiments is 80%.
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required here. Figure 4.3 also shows the application of the decision rules on the f vector,

and the iterative weight optimization process.

Figure 4.3: Weight Optimization for the predictions after Applying Decision Rules

Here, we will explained the algorithm 4, which used to compute the optimal weights

for each independent classifier. Below we provide some information required to explain

the algorithm.

• Weights are initialized at first iteration equally and may be optimize after the

training phase.

• All weighted wi output sum to 1.

• After the initial prediction we optimize the weights followed the algorithm steps.

• We use the Nelder-Mead [68] algorithm8 for weights optimization in the experiments

8The Nelder-Mead optimization method is named after its creators, John Nelder and Roger Mead.

The method was introduced in their 1965 work ”A Simplex Method For Function Minimization,” and

has since been a commonly used standard approach for function optimization. It is suitable for functions

with numerical inputs that are either one-dimensional or multidimensional. Nelder-Mead is a pattern

Antonios Vogiatzis 74 January 2022



4.2 System architecture and Decision Rules

Algorithm 4 Finding optimal Ensemble Weights process

1: Input: (a) Predictions probability of each model pYi , (b) initial equal weights wi,

(c) initial label

2: Output: fYi vector

3: while Condition != True do

4: fYi = wi · pYi
5: initial label = predict class

6: if predict class probability > current probability then

7: adjust the weights wi

8: else

9: keep the same weights wi

10: end if

11: end while

12: return pYi ∗ wi

In more details about the weight optimization step, there are techniques to bypass the

optimization process entirely by utilizing knowledge gained during the training phase. A

such case is to compute a priori information from representative samples that could be

used to reinforce or dilute weightage values for a particular class, such as a) the frequency

of any decisions rule are valid, b) the number of samples of every class, c) some evaluation

metrics. In subsection 4.2.7 we proposed such a type of technique which adapt proper

weight based on Brier Score.

With this overall architecture and notation at hand, we now proceed to describe our

main opinion aggregation-based decision rule, namely the Mutually Supported Decisions

Rule (MSDR) mathematically, along with variants we propose and which are used when

the conditions for MSDR’s application do not hold.

4.2.1 Mutually Supported Decisions Rule (MSDR)

As mentioned earlier, our main decision rule is based on the key intuition that the findings

of the various independent, dedicated classifiers are mutually supported, thus we term

search optimization method, which implies that it does not require or use function gradient information

and is thus acceptable for optimization scenarios in which the function’s gradient is unknown or cannot

be estimated properly.
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it “the Mutually Supported Decisions Rule (MSDR)”. We expect MSDR to be highly

successful as a classification rule, when only one classifier (k) predicted fYk > fNk , and all

the others believe the item cannot be classified in their class, i.e., fYi < fNi ,∀i 6= k. We

can then be confident that the class cs to select as our output is indeed the one predicted

by the k-th classifier.

In Equation 4.1 below we show our first of three MSDR variants. We represent the

class selected by this decision rule by cs1, since it is the class returned by our first decision

rule:

cs1 = k, ∃k : fYk > fNk and fYk ≥ T and ∀j 6= k fYj < fNj (4.1)

That is, cs1 is returned if one classifier only answers “yes” to the question on whether

it believes the item belongs to the class of items it is trained to identify, and believes this

with a confidence that exceeds a prespecified threshold. Therefore, we give this MSDR

variant the name “MSDR-ONE-YES-THRESHOLD-YES” decision rule.

Now, we employ two alternative courses of action in case the main condition (fYk > fNk
for just one k) holds in Equation 4.1 above, but the threshold is not met. The first is to

pick the class the k classifier predicts anyway. This is captured by Equation 4.2, which

thus constitutes our “MSDR-ONE-YES-THRESHOLD-NO-PICK-YES” decisions rule:

cs1.1 = k, ∃k : fYk > fNk and fYk < T and ∀j 6= k fYj < fNj (4.2)

The second alternative course of action for MSDR is to disallow the deterministic

determination of the outcome by k. Instead, we normalize the fYi values of all classi-

fiers to respective f̂Yi values so as to sum to 1, and then randomly sample the class to

be selected out of this distribution. This is our “MSDR-ONE-YES-THRESHOLD-NO-

PICK-RANDOM” decision rule, shown below:

cs1.2 = arg randomi∈SC
(f̂Yi ), ∃k : fYk > fNk and fYk < T

and ∀j 6= k fYj < fNj
(4.3)

Now, if the main MSDR condition of having only one dedicated classifier predicting

its corresponding class does not hold, we use alternative rules and methods to pick a class

to output as the one predicted by our system. These rules and methods are described in

the following sections.
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4.2.2 Simple Max Rule and variants

When more than one classifiers have predicted a fYi > fNi probability, we can simply select

the corresponding class with maximum probability, as long as a confidence threshold is

met:

cs2 = argmax
i

fYi where i : fYi > T (4.4)

That is, we simply select the class cs2 corresponding to the classifier with maximum

fYi across all classifiers, as long as fYi > T . This is the “MANY-YES-THRESHOLD-

YES-PICK-MAX” rule.

Now, if the threshold is not met, we do not possess the required confidence level to

decide, so we can either (a) accept the class with the highest probability, i.e., the one

selected by the following “MANY-YES-THRESHOLD-NO-PICK-MAX” rule:

cs2.1 = argmax
i

fYi (4.5)

or (b) we can normalize the fYj values of only the classifiers which output fYj > fNj to f̃Yj

so as to sum to 1, and then we randomly sample the selected class out of this distribution.

This is the “MANY-YES-THRESHOLD-NO-PICK-RANDOM”:

cs2.2 = arg randomj(f̃
Y
j ) (4.6)

As mentioned, the f̃Yj vector contains the normalized softmax elements of the classi-

fiers’ final output probability ∀j ∈ CS with fYj > fNj . So, the chosen class cs2.2 is randomly

selected from this particular subset of classes, according to their f̃Yj probabilities.

4.2.3 Weighted Soft Voting

When more than one classifiers have predicted a fYi > fNi probability, we implement a

weighted soft voting method utilizing class-specific weights wi, and calculate new custom

probabilities only for these classifiers.

We predict the custom probabilities f̄Yi only for the classifiers which output fYj > fNj

with the help of the others classifiers which output fYj < fNj . That is, for every classifier
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which outputs fYi > fNi the custom probability f̄Yi is calculated according to the equation

below:

f̄Yi = wi · pYi +
∑

j:fYj <f
N
j

wj · pNj , ∀i : fYi > fNi (4.7)

and then we pick the highest among them, which thus constitutes our “MANY-YES-

WEIGHTED-SOFT-VOTING” decisions rule:

cs3 = argmax
i:fYi >f

N
i

f̄Yi (4.8)

As mentioned, the f̄Yj vector contains the custom probabilities elements of the classi-

fiers’ final output probability, ∀j ∈ M with fYj > fNj . So, the chosen class cs3 is selected

from this particular subset of classes, according to their f̄Yj probabilities.

4.2.4 Negative Predictors Rule

Now, when all classifiers predict fYi < fNi —i.e., when they are all “pessimistic” or “neg-

ative” regarding the item under consideration falling in their corresponding class—we

simply choose the class with highest fYi probability :

cs4 = argmax
i:fYi <f

N
i

fYi , used when all i predict fYi < fNi (4.9)

This is the “ALL-NO-PICK-MAX” decision rule.

4.2.5 SVM Correction Rule

We also propose the following method to assist us with decision-making when there are

many classifiers that predict an image to belong in the class they specialize in, or when

there is only one such classifier, but the threshold is not met.

That is, we also implement we build M ·(M−1)
2

SVMs following the “one-vs-one” classi-

fication paradigm 8. These SVMs are trained along with our M independent Classifiers.

Thus, we have an SVM for every pair-wise classifier, which is trained with the actual

8The One-vs-One strategy splits a multi-class classification into one binary classification problem per

each pair of classes.
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one-hot label for the image, and the predicted label from the M independent parallel

Classifiers, as shown in Figure 4.4. These SVMs are used for the final decision mak-

ing instead of our “MANY-YES” or the “MSDR-ONE-YES-THRESHOLD-NO” decision

rules variants.

In other words, we also propose and evaluate the following classification method,

which can also be seen as a decision rule variant:

Figure 4.4: SVM Architecture

cs5 =

{
k, fYk > fNk and fYk ≥ T and ∀j 6= i fYi < fNi
argmaxi f(SVMj), else

(4.10)

Thus, if more than one classifier predicted, fYi > fNi we pick the higher probability

from the SVMk, with (k) being one class from the pair of classes in the corresponding

SVM.

4.2.6 Decision Rules Summary

The approach and decision rules, discussed in this chapter, can be summarized in the

following Table 4.1:
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Name of Decision Rule Description Equation

MSDR-ONE-YES-

THRESHOLD-YES

Only one classifier consider the item to belong in

one class and also confident enough
4.1

MSDR-ONE-YES-

THRESHOLD-NO-

PICK-YES

Only one classifier consider the item to belong in

one class but not confident, so pick the class (k)
4.2

MSDR-ONE-YES-

THRESHOLD-NO-

PICK-RANDOM

Only one classifier considers the item to belong in

one class but is not confident, so we pick randomly

among all classifier outcomes after normalization

4.3

MANY-YES-

THRESHOLD-YES-

PICK-MAX

More than one classifier consider the item to

belong in one class, and we simply pick the one

with the highest fi score if exceeds the confidence

threshold

4.4

MANY-YES-

THRESHOLD-NO-

PICK-MAX

More than one classifiers consider the item to

belong in one class, and we simply pick the highest

score since no classifier exceed the confidence score

4.5

MANY-YES-

THRESHOLD-NO-

PICK-RANDOM

More than one classifiers consider the item to

belong in one class, and we select randomly among

only these after normalize

4.6

MANY-YES-

WEIGHTED-SOFT-

VOTING

More than one classifiers consider the item to

belong in one class, and we select the higher

custom probability among only these classifiers

4.8

ALL-NO-PICK-MAX

All classifiers consider the item to not belong in

their class, and we simply pick the one with the

highest fYi probability

4.9

Table 4.1: Cumulative Decision Rules Description.
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The decision rules above can help resolve indecisive cases such as the ones in the

examples of Table 4.2 and Table 4.3.

Probability, T=90%
Classifier: fYi Case 1 Case 2 Case 3

1 0.9 0.3 0.23

2 0.4 0.84 0.3

3 0.3 0.4 0.8

4 0.35 0.3 0.4

5 0.2 0.35 0.3

Table 4.2: Different MSDR predictions cases with Threshold 90%

In Table 4.2 we can see 3 cases in which we apply a different “MSDR” decision rule.

In more detail, given the fYi for every classifier, i ∈ [1, 5], we select the appropriate rule.

For example in case 1 we select the classifier-1 predicted class following the equation 4.1

due to the fact that the classifier’s probability reaches the 90% Threshold; in case 2 the

one classifier that predicted fYi > fNi , here classifier-2, has not reached the threshold,

and we pick simply the higher probability following the Equation 4.2. Finally, in case

3, we normalize all probabilities and sample following the Equation 4.3), since there is

no one classifier which surpass the Threshold. Cases 2-3 both fall under the category

“MSDR-ONE-YES-THRESHOLD-NO” but a different rule applies.

Probability, T=90%
Classifier: fYi Case 4 Case 5 Case 6

1 0.8 0.3 0.63

2 0.4 0.84 0.3

3 0.92 0.4 0.86

4 0.35 0.67 0.4

5 0.2 0.35 0.78

Table 4.3: Different MANY-YES predictions cases with Threshold 90%
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In the Table 4.3 we can see 3 cases in which we apply a different “MANY-YES”

decision rule. In more detail, given the fYi for every classifier, i ∈ [1, 5], we select the

appropriate rule. For example in case 4 we select the classifier-3 predicted class following

the Equation 4.4 due to the fact that the classifier’s probability exceeds the Threshold

90% and we pick the higher probability among the classifier which predicted fYi > fNi .

In case 5 we select the class of classifier 2 following Equation 4.5, here classifier-2 output.

Finally in case 6, we normalize all probabilities from classifiers which predicted fYi > fNi

(green cells) and sampling following Equation 4.6.

Figure 4.5: Features of class, depicted as a Venn Diagram

Figure 4.5 depicts graphically the different cases of the classification mechanism. In

more detail, the 3 cases from Table 2 are the pink areas which we have clear boundaries

among all different class. In these cases we have only one classifier to believe that the

object belongs to its own class. If this classifier output exceeds the confidence level we

are in case 1, if not we choose between case, 2 or 3 as alternative methods.

On the contrary, the blues areas belongs to more than one class (especially green to

all classifiers) and the features may classify to uncertain outcome with more than one

classifier predicted that the object belongs to its own class. In these cases we have the

case 4-6 from Table 4.3. In more detail, in case 4 we pick the max probability on these

classifiers if it exceeds the confidence level. If the confidence score is not reached we
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simply pick the “most confident” among these classifiers’ that have predicted the item

belongs to their class, (case 5), or normalize only their respective probabilities and sample

from the normalized distribution (case 6).

4.2.7 Re-adjusting the Classifier Weights

Here we address a simple automated method for modifying the classifier’ weights. The

approach evaluates our classifiers’ effectiveness according to a classic criterion from the

scoring rules literature, and uses the results to adjust their original weights.

Specifically, we propose to employ the Brier Score [67], which is a strictly proper 10

scoring rule function that evaluates the accuracy of probabilistic predictions [69].

Strictly proper scoring rules have many applications, and often appear in the mech-

anism design literature to help guarantee that agents declare their true preferences: if

they do so they are rewarded, or are “punished” by the rule otherwise [70, 71]. In our

case here, strict propriety is desirable since we wish to reward classifiers that produce

accurate predictions: only predictions that are truly accurate receive the maximum score

assigned by the rule.

We champion the use of the Brier rule, since it is applicable to assignments where

forecasts must allocate probability to a set of mutually exclusive discrete outcomes or cat-

egories. The Brier score computed the mean squared error between the model’s expected

probabilities and the actual values. The score quantifies the magnitude of the prediction

error and is optimized for binary classification problems. It evaluates the probability for

the positive class, where the positive class is coded as 1, and negative class 0. As such,

it is a key measurement for unbalanced classification problems [72].

The Brier score may be thought of as a cost function. In our case if the classifier

makes the wrong prediction with high probability, it should incur a significant penalty.

The lower the Brier score, the lower the average “penalties” assigned to the classifier.

10Formally, if P is the true underlying distribution of the random variable x, a scoring rule S is

strictly proper if S(P, x) ≥ S(P̂ , x), with the equality holding if and only if P̂ = P . (By contrast, the

scoring rule is said to be proper if S(P, x) ≥ S(P̂ , x), but the prediction P̂ = P is not the only one that

maximises S(P̂ , x))
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The typical formulation of the Brier score is :

BS =
1

N

N∑
i=1

(pi − oi)2 (4.11)

In our case, pi in Equation 4.11is the prediction probability for i′ image sample, the term

oi is equal to 1 if the image sample classify correct and 0 if not, and N is the number

of predicting images samples. The Brier score is a proper scoring rule [73] and therefore

the optimum score corresponds to a perfect prediction.11

In conclusion, we propose the use of the Brier score to determine the predictive accu-

racy of binary prediction models, and as such to enable the calibration of such models.

The calibration follow the rule of thumb that we normalize the Brier Scores probability

BSi of all the classifiers to sum to 1, and then we adjust the dedicated weights according

to this distribution.

4.3 Experiments

In this section, we will be describing the experiments conducted to evaluate our approach.

Our goals in this section can be summarized as follows:

1. To assess the performance variations of the different decision rules

2. To characterize the dataset “status” regarding its “homogeneity” and “balanced-

ness” properties.

Additionally, we intend to do an assessment of the potential of this framework to

readjust the weights to achieve an even better prediction accuracy as future work

For evaluating our decision rules, we will run tests with two types of Datasets: a)

balanced and b) unbalanced. In more details, we consider a balanced dataset to have

11There are some decompositions of the Brier score that offer a greater insight into the behavior of the

binary classifier. Especially a convenient formulation is BS = uncertainty - resolution + reliability [74,

75, 76], where uncertainty is the marginal uncertainty about labels, resolution measures the divergence

of individual forecasts from marginal, and reliability measures calibration as an average violation of long-

term true label frequencies. Drawbacks: Brier score is insensitive to predicted probabilities associated

with in/frequent events [69]. Since it does not adequately differentiate among minor shifts in forecast

that are important for rare events.
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equal samples of images in every class. This does not apply for the “unbalanced dataset”.

Specifically, the term “unbalanced data” refers to the case where the number of obser-

vations for every class in a classification dataset is unequal, in the sense that there is

major and/or significant variance among the examples in each class of the problem [72].

Improvements in learning from unbalanced data have been inspired by various real-life

applications in which we encounter the issue of unequal data representation. The mi-

nority class is the more important one, and therefore we need methods to increase its

representation in the results [77]. Unbalanced classifications pose a challenge to predic-

tive modeling, since most of the machine learning techniques used mostly for classification

are based on the expectation of an equal number of instances for each class. This results

in models with poor predictive efficiency, especially for the minority class [78]. This is a

problem because the minority class is more important, generally speaking, and therefore

the problem is more susceptible than the majority class to errors in classification for the

minority class [79].

It is also the case that the assessment is easier for balanced datasets because there is

no implicit bias in that case.

4.3.1 Datasets and Data Augmentation Techniques

In this subsection, we describe two originally unbalanced datasets (Trash-net and WaD-

aBa) and in order to produce balanced versions of these we employ data augmentation

techniques, to obtain an augmented Trash-net and an augmented WaDaBa respectively

as referred in Chapter 3.

Trash-net and Augmented-Trash-net

• The Trash-net data collection consists of images of six classes: glass, paper, card-

board, plastic, metal and trash. The dataset currently consists of 2527 images and

is a slightly unbalanced dataset. We pick only the first five classes, i.e. Paper,

Plastic, Metal, Glass, Cardboard.

• The Augmented Trash-net was created after we picked five labels for classifica-

tion, i.e. Paper, Plastic, Metal, Glass, Cardboard from the original trash-net and

used data augmentation as previous explained in subsection 3.3.5 that resulted in

an augmented dataset of 10,000 images equally divided among the 5 classes.
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Plastic Waste DataBase of images WaDaBa

• As explained in Chapter 3.3.1 the WaDaBa consists of 3960 images obtained after

transformations, such as change of perspective, damage effect, and light sources

shifting. The specific categories of plastic waste are the: a) PET, b) PE-HD, c) PP,

d) PS. The PET class has as many images as all the other classes combined. So

we have a case of outnumber samples of one class over the remaining classes, and

is a highly unbalanced dataset.

• In a similar manner to what we did for the augmented trash-net we used data

augmentation on the original WaDaBa dataset to result to a dataset of 8800 images

equally divided among the 4 classes referred as augmented WaDaBa.

Cases to be explored

• Slightly Unbalanced: A problem of unbalanced classification where the distribu-

tion of examples is uneven by a small number.

To obtain the needed custom dataset for this case, we created a dataset subnet.

Our chosen dataset is the TrashNet data collection [2], which contains images of

six different types of waste: glass, paper, cardboard, plastic, metal, and trash. We

concentrate our efforts on images labeled as belonging to one of the five initial

classes (i.e., we exclude Trash). The final experiment dataset contains 799 images:

140 images of cardboard, 165 images of glass, 142 images of metal, 190 images of

paper, and 162 images of plastic; it is thus “slightly” unbalanced. To begin, we

train a baseline CNN model on a “slightly unbalanced” training set of 530 TrashNet

images. We then train the binary Independent Parallel (IP) CNN classifiers on their

respective sub-datasets of the training set (specifically, the training set contains

87 cardboard, 112 glass, 89 metal, 135 paper, and 107 plastic images). Both the

baseline and IP CNNs are based on the ResNet50 architecture (but with the baseline

CNN performing multiclass classification, i.e., having as many output units as the

number of classes).

The training on this custom dataset presented in subsection 4.4.1 and the evaluation

of the decision rules in subsection 4.4.2.
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• Highly Unbalanced: An unbalanced classification problem where the distribution

of examples is uneven by a large number.

To obtain the needed custom dataset for this case, we created a dataset subnet.

Our chosen dataset is the WaDaBa data collection [3], which contains images of

four different types of plastic: PET, PE HD, PS, and PP with PET class having

as many images as all others combined. The final experiment dataset contains

1222 images: 630 images of PET, 203 images of PE HD, 210 images of PP, and

179 images of PS; it is thus “highly” unbalanced. To begin, we train a baseline

CNN model on a “highly unbalanced” training set of 915 WaDaBa images. We

then train the binary Independent Parallel (IP) CNN classifiers on their respective

sub-datasets of the training set (specifically, the training set contains 523 PET, 134

PE HD, 144 PP, and 114 PS images). Both the baseline and IP CNNs are based

on the ResNet50 architecture (but with the baseline CNN performing multiclass

classification, i.e., having as many output units as the number of classes).

The training on this custom dataset presented in subsection 4.4.3 and the evaluation

of the decision rules in subsection 4.4.4.

In the experiments, there are three possible outcomes which will need to map with

an acceptable decision rule. First, if there are clear margins across all classes, then the

“MSDR” rules will be sufficient. Secondly, if there are shared features between two

or more classes, there is a need for “MANY-YES” rules or special case of “Weighted-

soft-voting”. Finally, if no classifier is able to classify the object as part of its own

corresponding class, hence this requires the use of “ALL-NO-PICK-MAX” rule.

In Figure 4.6, we analyze the various combinations of decision rules that we will ex-

amine in order to construct an appropriate combination of decision rules to address the

required three spots. First it should be mentioned that 3 categories of cases should be

covered as mentioned above. Specifically the case of the discrete boundaries that only

one classifier produces (fYi > fNi ), when this is not the case we need to cover the case

of multiple classifiers that have (fYi > fNi ) and the worst case that we do not have any

classifiers with (fYi > fNi ). Thus, we can see there are 4 potential combinations which

follow the “MSDR-ONE-YES-THRESHOLD-YES” with two alternatives for the case of
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“THRESHOLD-NO”, followed by “MANY-YES-THRESHOLD-YES” with two alterna-

tives (“MANY-YES-THRESHOLD-NO-PICK-MAX” and “MANY-YES-THRESHOLD-

NO-PICK-RANDOM”) for the case of “THRESHOLD-NO” and in the last part comple-

mented with “ALL-NO-PICK-MAX” rule for the case that all classifiers predict that

the item does not belong in their respective class. All the combinations mentioned

above are tested in this thesis, but there is one that remains untested. Finally, we have

one extra combination after “MSDR-ONE-YES-THRESHOLD-YES” the “MANY-YES-

WEIGHTED-SOFT-VOTING” followed by “ALL-NO-PICK-MAX” in the combination.

Figure 4.6: Decision Tree for different Decisions Rules

In more detail, we will refer as a combination number (e.g. Comb 2) a specific sequence

of decision rules that maps to each of the three main Discrete Families of decision rules.

In Table 4.4 we describe these combinations.
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CombinationsDiscrete Family

of Rules
Specific Decision Rules

1 2 3 4 5

THRESHOLD-YES • • • • •
THRESHOLD-NO-PICK-YES • •MSDR-ONE-YES

THRESHOLD-NO-PICK-RANDOM • •
THRESHOLD-YES-PICK-MAX • • • •
THRESHOLD-NO-PICK-MAX • •

THRESHOLD-NO-PICK-RANDOM • •
MANY-YES

WEIGHTED-SOFT-VOTING •
ALL-NO PICK-MAX • • • • •

Table 4.4: Decision Rules participation on different combinations

4.4 Results

In this section, we will build and assess our proposed approach for the datasets under

consideration. In the Process 5 we outline the process of training and then testing the

IP Network described in Figure 4.2 with applying different combinations of rules as shown

in Figure 4.6. We test this approach on every dataset we depict in subsection 4.3.1.

Process 5 Train Independent Parallel Network With Decision Rules

1: Modify the dataset for training IP classifiers

2: Baseline Model Training:

3: • Train a baseline model with the typical multi-class representation

4: IP classifiers Training:

5: • Train #classes independent binary CNN to act as classifiers in the respective

sub-dataset.

6: Evaluation Phase:

7: • Testing the baseline model and the IP network with different decision rules com-

binations

8: Evaluate different combinations of decisions rules, assessing the frequency of each

rule.
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4.4.1 Training on the Trash-net Dataset

The dataset comprises five classes, such as Cardboard, Metal, Glass, Plastic, Paper.

Since the ratio of images per class is not equal, it is a slightly unbalanced. The accuracy

of each Independent classifier is shown in Table 4.5 in comparison to the multi-class

baseline CNN model accuracy. In Table 4.6 the sensitivity and specificity metrics for the

individual class provide by the baseline CNN model. We can see that the overall accuracy

from Baseline CNN is 3% lower for the “smaller” accuracy on independent classifiers.

However, its sensitivity for each class is usually higher than of the IP classifiers. This is

due to the larger number of samples processed by the baseline CNN model, as well as

the fact that the baseline model learns features for every class, rather than just two, as

an independent classifier, allowing it to learn more accurate boundaries between classes.

The Brier Score for the IP classifiers stays below 7% with the best possible Brier score

to be 0, for total accuracy.

Model Name 4-fold Accuracy Specificity Sensitivity Brier Score

Multi-Class Baseline CNN 89.58% (+/- 1.24%)

IP Cardboard classifier 96.94% (+/- 0.88%) 99.3% 78.3% 4.3%

IP Glass classifier 93.40% (+/- 0.64%) 97.1% 78.2% 6.8%

IP Metal classifier 93.30% (+/- 1.04%) 97.2% 84.1% 6.2%

IP Paper classifier 96.42% (+/- 0.48%) 98.2% 87.3% 4.1%

IP Plastic classifier 93.68% (+/- 1.13%) 98.3% 79.4% 5.6%

Table 4.5: Metrics for every independent classifier in Training phase

Class Name Specificity Sensitivity

Cardboard class 98.1% 93.1%

Glass class 92.2% 91.0%

Metal class 96.3% 85.2%

Paper class 98.2% 91.2%

Plastic class 98.3% 78.3%

Table 4.6: Specificity and Sensitivity of the multi-class Baseline Model for each Class

The confusion matrix of baseline multi-class CNN are shown in Figure 4.7. For

comparison, the corresponding confusion matrices during training for each IP Network
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are shown in Figure 4.8 for Cardboard and Glass classifiers, in Figure 4.9 for Metal and

Paper classifiers and the remaining Plastic class on Figure 4.10.

Figure 4.7: Multi-class Baseline Classifier Confusion Matrix
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(a) Cardboard (b) Glass

Figure 4.8: Cardboard and Glass IP-Classifiers Confusion Matrix

(a) Metal (b) Paper

Figure 4.9: Metal and Paper IP-Classifiers Confusion Matrix
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Figure 4.10: Plastic IP-Classifier Confusion Matrix

4.4.2 Decisions Rules Evaluation on Trash-net

Now we use the networks mentioned above as “frozen classifiers” and test in a testing

set12 of unseen images from both the multi-class baseline and IP networks, to evaluate the

performance of the different combinations mentioned in Figure 4.6 against the baseline

model. In Table 4.7 and Table 4.8 we can see the classification report metrics of baseline

network and Decision Rules Combinations respectively. The results show that in every

metric we have an increase ranging to 1-4 % from baseline model. Importantly, we have

a 4% increase in overall accuracy.

We can infer the increase of the correct predictions in every class is due to the uti-

lization of different targeted “decision rule paths”, instead of the classic multi-class CNN

architecture. Figure 4.11 depicts the performance of Multi-class Baseline CNN and Fig-

ure 4.12 the performance of voting mechanism under decision rules implementation.

12consists of images that were chosen prior to the training of the networks under examination, ensuring

that they have never seen it before and thus constituting a clean unseen test set.
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Material Precision Recall f1-score support Specificity Sensitivity

cardboard 94% 92% 93% 53 98.2% 92.4%

glass 75% 89% 81% 53 91.3% 88.6%

metal 82% 85% 83% 53 94.4% 84.9%

paper 74% 91% 81% 55 90% 90.9%

plastic 77% 44% 56% 55 96.4% 43.6%

accuracy 80% 269

macro avg 80% 80% 79% 269

weighted avg 80% 80% 79% 269

Table 4.7: Classification Report for Baseline network in Trash-net

Material Precision Recall f1-score support Specificity Sensitivity

cardboard 94% 94% 94% 53 98.3% 94.3%

glass 82% 87% 84% 53 94.7% 86.7%

metal 83% 92% 88% 53 94.6% 92.4%

paper 75% 91% 82% 55 91.1% 90.9%

plastic 88% 55% 67% 55 97.9% 54.5%

accuracy 84% 269

macro avg 84% 84% 83% 269

weighted avg 84% 84% 83% 269

Table 4.8: Classification Report for Decision Rules Combination [2-4] in Trash-net
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Figure 4.11: Multi-class Baseline Network Confusion Matrix
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Figure 4.12: Decision Rules Combination Confusion Matrix

Antonios Vogiatzis 96 January 2022



4.4 Results

Decision Rules Frequency (sum=269)
Name of Decision Rule

Comb. 1 Comb. 2 Comb. 3 Comb. 4

MSDR-ONE-YES-

THRESHOLD-YES
143 143 143 143

MSDR-ONE-YES-

THRESHOLD-NO-PICK-YES
23 - 23 -

MSDR-ONE-YES-

THRESHOLD-NO-PICK-

RANDOM

- 23 - 23

MANY-YES-THRESHOLD-

YES-PICK-MAX
42 42 42 42

MANY-YES-THRESHOLD-

NO-PICK-MAX
9 9 - -

MANY-YES-THRESHOLD-

NO-PICK-RANDOM
- - 9 9

ALL-NO-PICK-MAX 52 52 52 52

Table 4.9: Frequency of Decision Rules Activation

A decision set is analogous to a rule-based democracy, except that some rules may

have a greater voting power. The rules in a set are either mutually exclusive or there is

a strategy for resolving conflicts, such as majority voting, which may be weighted by the

frequency with which the individual rules are activated or by other quality measures. We

can estimate the frequency of occurrences of these decision rules by counting the number

of occurrences one by one. The frequency of decision rules activation’s are shown in

table Table 4.9. As we stated in paragraph 4.3.1, each combination of decision rules

must include rules that cover the three main cases (MSDR-YES, MANY-YES, ALL-

NO). Furthermore, for the first two cases, we must add two extra rules for the state in

which the probability threshold (THRESHOLD-NO case) is not reached, resulting in a

sequence of five rules. This results in four distinct rule combinations, refer as Comb [1-4].

According to table 4.10, the “MSDR-ONE-YES” decision rule family has a 61.8 %

activation rate, followed by the MANY-YES decision rule family with an 18.9 % activation

rate and the “ALL-NO” decision rule family with a 19.3 % activation rate. In greater

detail, the subcase of THRESHOLD-NO triggered a substantially lower proportion of the
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Main Case of Decision Rules
Percentage of Activations

THRESHOLD-YES THRESHOLD-NO NO-THRESHOLD Total (%)

MSDR-ONE-YES 53.2 % 8.6 % - 61.8 %

MANY-YES 15.6 % 3.3 % - 18.9 %

ALL-NO - - 19.3 % 19.3 %

Table 4.10: Decision rules frequency activation on Trashnet Dataset

first two cases, “MSDR-ONE-YES” and “MANY-YES”, activating at a rate of 6 times

and 5 times lower, respectively.

As a result, the dataset exhibits a rather high percentage of ambiguous boundaries

between the various classes. Particularly in these instances, only around 1 in 6 will require

the employment of a decision rule to settle the problem when the defined threshold is

not met (80% to consider the classifier result as “YES”). To support the perception that

class boundaries are indistinguishable, the “ALL-NO” decision rule is engaged only when

no independent classifier predicts that the item belongs to its own class. Here we have

a similar activation rate as in the previous case (“MANY-YES”), which leads us to the

conclusion that there is a large degree to which contained items’ classes are related to

each other.

Finally, we can see that in one of the two prediction, there are distinct boundaries

between the classes, but we also have a prediction with a higher probability of 80%. This

is a relatively low prediction rate with distinct margins between classes for a slightly

unbalanced dataset, but it demonstrates the importance of statistical analysis through

the frequency of decision rule activation.
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4.4.3 Training on the WaDaBa Dataset

The dataset comprises four type of plastic, such as PET, PE HD, PP, PS with the PET

class having as many images as all others combined (see subsection 4.3.1). Since the ratio

of images in one class is the same with the sum of all the others, this is a case of highly

unbalanced dataset. The accuracy of each Independent classifier shown in Table 4.11 in

comparison to the multi-class baseline CNN model accuracy. In Table 4.12 the sensitivity

and specificity metrics for the individual class provide by the baseline CNN model. We

can see that the overall accuracy from Baseline CNN is in average equal with any accuracy

on independent classifiers. However, its sensitivity for each class is usually higher than of

the IP classifiers. This is due to the larger number of samples processed by the baseline

CNN model, as well as the fact that the baseline model learns features for every class,

rather than just two, as an independent classifier, allowing it to learn more accurate

boundaries between classes. The Brier Score for the IP classifiers stays below 3% with

the best possible Brier score to be 0, for total accuracy.

Model Name 4-fold Accuracy Specificity Sensitivity Brier Score

Multi-class Baseline CNN 98.39% (+/- 0.61%)

PET classifier 98.66% (+/- 0.61%) 99.2% 99.3% 0.5%

PE HD classifier 99.45% (+/- 0.17%) 97.1% 100.0% 0.4%

PP classifier 96.28% (+/- 0.92%) 87.3% 98.3% 3%

PS classifier 97.93% (+/- 0.65%) 99.1% 79.2% 2.7%

Table 4.11: Metrics for every independent classifier in Training phase

Class Name Specificity Sensitivity

PET class 99.3% 99.1%

PE HD class 99.4% 100.0%

PP class 99.1% 95.2%

PS class 99.2% 98.4%

Table 4.12: Specificity and Sensitivity of the Baseline Model for every class

The confusion matrix of baseline multi-class baseline CNN are shown in Figure 4.13.

For comparison the corresponding confusion matrixs during training for each IP Network
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are shown in Figure 4.14 for PET and PE HD classifiers, in Figure 4.15 for PP and PS

classifiers.

Figure 4.13: Baseline Classifier Confusion Matrix
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(a) PET (b) PE HD

Figure 4.14: PET and PE HD IP-Classifiers Confusion Matrix

(a) PP (b) PS

Figure 4.15: PP and PS IP-Classifiers Confusion Matrix
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4.4.4 Decision Rules Evaluation on WaDaBa

Now we use the networks mentioned above as “frozen classifiers” and test in a hold out

set of unseen images from both the baseline and IP networks, to evaluate the performance

of the different combinations mentioned in Figure 4.6 and Table 4.4, specifically comb

1-4, against the baseline model. In Table 4.13 and Table 4.14 we can see the classification

report metrics of baseline network and Decision Rules Combinations respectively. The

results show that in every metrics, the Decision rules does not manage to surpass in any

way the baseline model metrics. Thus, in this case the primary purpose of this framework

is not met and only the secondary objectives, those of characterizing the dataset regarding

its “homogeneity” and “balancedness” properties, may be achieved.

Figure 4.16 depicts the performance of the Multi-class Baseline CNN, and Figure 4.17

the performance of voting mechanism with the decision rules implementation.

Plastic Type Precision Recall f1-score support Specificity Sensitivity

PET 74% 97% 84% 107 79% 97.1%

PE HD 97% 93% 95% 69 98.8% 92.6%

PP 56% 53% 54% 66 87.9% 53%

PS 97% 57% 72% 65 99% 56.9%

accuracy 78% 307

macro avg 81% 75% 76% 307

weighted avg 80% 75% 78% 307

Table 4.13: Classification Report for Baseline network in WaDaBa
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Plastic Type Precision Recall f1-score support Specificity Sensitivity

PET 74% 100% 85% 107 76.3% 100%

PE HD 95% 91% 93% 69 98.2% 91.3%

PP 51% 48% 50% 66 86.6% 48.5%

PS 57% 48% 64% 65 99% 47.6%

accuracy 76% 307

macro avg 75% 72% 73% 307

weighted avg 78% 76% 75% 307

Table 4.14: Classification Report for Decision Rules Combination [2-4] in WaDaBa
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4. INDEPENDENT PARALLEL CNN APPROACH

Figure 4.16: Baseline Network Confusion Matrix
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4.4 Results

Figure 4.17: Decision Rules Combination Confusion Matrix
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4. INDEPENDENT PARALLEL CNN APPROACH

Decision Rules Frequency (sum=307)
Name of Decision Rule

Comb. 2 Comb. 3 Comb. 4 Comb. 5

MSDR-ONE-YES-

THRESHOLD-YES
212 212 212 212

MSDR-ONE-YES-

THRESHOLD-NO-PICK-YES
25 - 25 -

MSDR-ONE-YES-

THRESHOLD-NO-PICK-

RANDOM

- 25 - 25

MANY-YES-THRESHOLD-

YES-PICK-MAX
13 13 13 13

MANY-YES-THRESHOLD-

NO-PICK-MAX
4 4 - -

MANY-YES-THRESHOLD-

NO-PICK-RANDOM
- - 4 4

ALL-NO-PICK-MAX 53 53 53 53

Table 4.15: Frequency of Decision Rules Activation

A decision set is analogous to a rule-based democracy, except that some rules may

have a greater voting power. The rules in a set are either mutually exclusive or there is

a strategy for resolving conflicts, such as majority voting, which may be weighted by the

frequency with which the individual rules are activated or by other quality measures. We

can estimate the frequency of occurrences of these decision rules by counting the number

of occurrences one by one. The frequency of decision rules activation’s are shown in

table Table 4.15. As we stated in paragraph 4.3.1, each combination of decision rules

must include rules that cover the three main cases (MSDR-YES, MANY-YES, ALL-NO).

Furthermore, for the first two cases, we must add two extra rules for the state in which

the probability threshold (THRESHOLD-NO case) is not reached, resulting in a sequence

of five rules. This results in four distinct rule combinations, refer as Comb [1-4].

According to table Table 4.16, the “MSDR-ONE-YES” decision rule family has a

77.2 % activation rate, followed by the MANY-YES decision rule family with an 5.5 %

activation rate and the “ALL-NO” decision rule family with a 17.3 % activation rate. In

Antonios Vogiatzis 106 January 2022



4.4 Results

Main Case of Decision Rules
Percentage of Activations

THRESHOLD-YES THRESHOLD-NO No-THRESHOLD Total (%)

MSDR-ONE-YES 69.1 % 8.1 % - 77.2 %

MANY-YES 4.2 % 1.3 % - 5.5 %

ALL-NO - - 17.3 % 17.3 %

Table 4.16: Decision rules frequency activation on WaDaBa Dataset

greater detail, the subcase of THRESHOLD-NO triggered a substantially lower propor-

tion of the first two cases, “MSDR-ONE-YES” and “MANY-YES”, activating at a rate

of 8.5 times and 3 times lower, respectively.

As a result, the dataset exhibits a rather high percentage of clear boundaries between

the various classes. Particularly in these instances, there are not many samples images

that activated the “THRESHOLD-NO” decision rule to resolve the problem when the

pre-defined threshold is not met (80% to consider the classifier result as “YES”). To

support the perception that class boundaries are distinct between plastic type class, the

“ALL-NO” decision rule is engaged only when no independent classifier predicts that the

item belongs to its own class, and all these predictions are the wrong predictions for the

PP class that predicted as PET and PS plastic type that wrongly predict as PP class

type respectively as shown in Figure 4.17.

Finally, we can see that in 77.2 % of prediction, there are distinct boundaries between

the classes, but we also have a prediction with a higher probability of 80%. The WaDaBa

dataset is highly unbalanced but has very clear boundaries between distinct classes,

indicating that the dataset largely possesses the mutual exclusivity property, and all that

is required is to better adjust the weights for PP and PS classifiers according to the

corresponding Bries score to achieve better accuracy and minimize errors.

Making a final comparison between Table 4.9 and Table 4.15 we see that there is a

significant difference in the activation frequency of the “MSDR-ONE-YES” and “MANY-

YES” decision rules, with fluctuations depending on how distinct/clear the boundaries

are among classes and the degree of balance of the dataset, but almost no difference in

the activating decision rules, “ALL-NO”. Even in the classic case of the base model there

are cases where the probability of choosing a class is less than 50% but it remains the

highest of all the others.
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4. INDEPENDENT PARALLEL CNN APPROACH

4.5 Conclusions and Future Work

In Chapter 4 we present a novel, generic one-versus-all classification framework in this

work that incorporates multiple non-trivial decision rules for effectively aggregating the

opinions of several independent parallel CNNs. Several of the proposed rules explicitly

exploit the mutual exclusivity property inherent in numerous interesting image datasets,

while others are inspired by randomized social choice schemes and assign a class to the

item under consideration by selecting from a distribution of alternatives. When clear

class boundaries exist, the framework takes advantage of them, while still being able

to confidently assign items to classes when they do not. The proposed methodology

paves the way for a plethora of fascinating future study. To begin, the effectiveness of

various combinations of decision rules (e.g., combining max-picking rules with randomized

ones in various cases) must be verified via systematic experimentation on a variety of

relevant datasets; and statistics on the frequency with which different rules are triggered

in various datasets must be compiled. The results obtained in this section can be used

to implicitly characterize a dataset in terms of “balancedness” and “homogeneity” (e.g.,

if a “MANY-YES” rule regularly applies, this can indicate that a dataset is mostly

have blurry boundaries between classes and the mutually exclusive property is not very

dominant). Finally, in terms of developing effective and efficient methods for setting and

adjusting the Independent Classifier’s weights, we intend to use uncertainty metrics from

the scoring rules literature [80] to objectively characterize our confidence in a classifier’s

performance.
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Chapter 5

Conclusion

5.1 Conclusions and Future Work

Two ensemble learning approaches for recyclables classification are described in this the-

sis, implemented and incorporated using Tensorflow, Keras and Python. In the first

approach , reffered as “Dual-branch” CNN we exploit the shared wisdom from data and

explore how various datasets can be combined to improve accuracy and create a stable

network architecture. The second approach implements a novel classification framework

that employs voting mechanism, based on outputs from Independent Parallel classifiers.

We make use of pre-trained Convolution Neural Networks for classification, and replace

“normal softmax” with softmax with temperature scaling for better calibration on neu-

ral network. We provide a thorough evaluation of our methods, and discuss the impact

of our work on both recycle waste classification and optimization of ensemble learning

techniques.

5.2 Future Work

We have already mentioned ideas for future work in the end of Chapters 3 and 4. We

now discuss further ideas for extending the work described in this thesis. The lack

of interpretablity discourages practitioners from using these solutions even though the

strategies developed improves performance [69]. As a result, the learned strategies should

be explored and interpreted through the opening of the deep “black box”.
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5. CONCLUSION

It is very important to manage reliability because no algorithm can be flawless in all

cases. In this context, in this work of [81] examines the issue of end-to-to-end object

detectors that where a probabilistic confidence score is explicitly pre-multiplied into the

incoming activations to modulate confidence. They use a relaxed version of the “softmax”

function that can be incorporate in out approaches.

A interesting approach is to employ the voting mechanism of Independent Parallel

classifiers on object detection system, combining with ensemble learning to create new

algorithm for object detection like what is done in the approach of [82].

Our architecture takes advantage of the combined knowledge of its sub-nets across the

various datasets, with local training only on the site of each dataset. We can learn from

multiple sources and accumulate knowledge without mingling the data samples. The

combination scheme exploits the individual outcomes of subnets in a way that increases

confidence in final decision making process. We propose to deploy this approach in real-

time applications as an adaptively updated Federated learning strategy in following stages

of this research.
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