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Abstract— This paper presents the ongoing development
of the microscopic TrafficFluid-Sim simulator, aimed primar-
ily for Connected and Automated Vehicles (CAVs) under a
novel lane-free traffic paradigm. In particular, TrafficFluid-Sim
builds on the SUMO simulation infrastructure to model traffic
environments featuring two novel vehicle characteristics: (i)
Vehicles can be located at any arbitrary lateral position within
the road boundaries; and (ii) Vehicles may exert, based on
their automated driving and connectivity capabilities, “vehicle
nudging” to other surrounding vehicles. As such, TrafficFluid-
Sim enables simulation of novel CAV movement strategies for
various types of road infrastructure and is an indispensable
tool for the design, testing and evaluation of the characteristics
of a future CAV traffic flow as an efficient artificial fluid, as
envisaged by the ongoing TrafficFluid ERC project.

I. INTRODUCTION

The arrival of Connected and Automated Vehicles
(CAVs) [1] promises the dawn of a new era of road trans-
portation, that is linked to the emergence of novel, safer, and
more efficient than existent traffic flow paradigms [2], [3].
Even though CAVS are still fledging, the need to enhance
existing [4], [5], [6] or develop entirely new traffic simulators
that will allow their design and study at the traffic level is
obvious and well recognized in the traffic research commu-
nity. This is due to the fact that certain key aspects, and
characteristics of the prevalent pre-CAV traffic are linked to
assumptions or constraints that are likely to become obsolete;
while novel features, enabled by the superb CAV capabilities,
are emerging and need to be captured in traffic simulation.

In particular, parallel road lanes emerged as a safety-
fostering measure at the mid-20th century, when the density
of automobiles increased strongly in road transportation.
Traffic lanes simplify the driving operations and undoubtedly
improve on safety and average driving speed, yet they
introduce some disadvantages. A considerable proportion of
traffic accidents (10%) occur due to lane changes [7], an
operation that all drivers perform on a regular basis, either for
overtaking or to follow a specific route. Another important
limitation is that lanes have a fixed width according to a
presumed maximum vehicle width, which results in lower
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lateral road occupancy, and hence lower road capacity. Such
compromises are unavoidable with human drivers, given their
high reaction times and limited visual capabilities. However,
in traffic environments with high CAV penetration rates, such
limitations will soon be strongly mitigated, as CAVs have
superb sensing capabilities, allowing continuous and reliable
monitoring of their environment on a 360◦ basis; as well
as efficient computer-based decision-making. Thus, in recent
years, there is a drive to conceive and investigate novel traf-
fic paradigms—e.g., notably, the TrafficFluid [8] concept—
which entails the need for developing corresponding new
traffic simulators to accommodate the novel characteristics
of these paradigms.

II. THE TRAFFICFLUID CONCEPT

TrafficFluid [8] is a novel paradigm for vehicular traffic,
which is being investigated within its namesake ERC Ad-
vance Grant, and targets fully automated vehicles (at SAE
Levels 4 or 5) [9], equipped with vehicle-to-vehicle (V2V)
and vehicle-to-infrastructure (V2I) communication systems.
TrafficFluid is based on two key principles:

(1) Lane-Free traffic: Vehicles can be in any lateral posi-
tion within the road boundaries, thus lifting the lane changing
task.

(2) Nudging: Vehicles can exert a “nudging” effect, i.e.,
apply a pushing force, on front vehicles. This concept implies
that slower downstream vehicles may be nudged to move
aside so as to facilitate faster upstream vehicles to pass. More
importantly, at a macroscopic level, nudging has a capacity
increasing and stabilizing effect on traffic flow [8], [10].

Results obtained so far in TrafficFluid (e.g., in [8], [11],
[12], [13]) showcase aspects of the concept’s potential. In or-
der to further examine emerging approaches and, in particu-
lar, implications at the traffic level, there is an imminent need
for a traffic simulator that incorporates these core principles,
while retaining a flexible approach. The simulator’s structure
has to be modular, so as to integrate and evaluate approaches
originating from many different research fields, ranging from
Control Theory [14] to Artificial Intelligence [15], Machine
Learning [16], [17], [18], and Multi-Agent Systems [19],
[20].

In this work, we present the development of TrafficFluid-
Sim, a lane-free microscopic simulator aimed for V2V and/or
V2I-enabled CAVs. TrafficFluid-Sim possesses the aforemen-
tioned desirable characteristics; while special care is taken
during its development so that no inter-tool “communication”
delays, which could affect efficiency and user experience,



are introduced. The simulator builds on and extends the
SUMO [4] simulation infrastructure. Importantly, we pro-
vide the user with a dynamic library for lane-free vehicle
movement control, the incorporation of which allows one to
avoid all commutation cost between SUMO and an external
application. In what follows, we present in detail our design
and implementation choices. Among other things, we explain
how lane-free vehicle movement is achieved in TrafficFluid-
Sim; and also how the simulator handles external traffic and
appropriately inserts vehicles at entry points, by offering the
user two related functionalities: (a) the option to laterally
position the vehicles in such a way that the entire capacity
of the road is exploited; and (b) allow the user to sample
each vehicle’s desired speed from a distribution of her choice
(offered by the API), and then assign a lateral position for the
vehicle that is proportional to its respective desired speed. We
also present envisaged extensions of the simulator, most of
which actually correspond to work currently in progress. We
note that a (previous) version of our simulator has already
been used for obtaining the results of [11].

III. DESIGN OF THE SIMULATOR

This section presents the TrafficFluid-Sim’s different de-
sign and implementation aspects. Specifically, we discuss
how we built upon the microscopic traffic simulation tool
SUMO, so as to provide enhancements for the incorporation
of lane-free vehicle movement and related necessary or
desirable functionalities; and detail the implementation of
the lane-free vehicle controller dynamic library.

A. Simulator Overview

The purpose of this work is to build a simulator that
enables various control strategies for lane-free vehicle move-
ment, for CAVs, including the nudging effect. We choose
SUMO [4] (Simulation of Urban MObility) as the traffic
platform to build upon, since, as an open-source project, it
can easily be adjusted to our needs.

Due to the popularity of SUMO, multiple frameworks
(e.g. VEINS, iCS, VsimRTI) exist that can connect with
SUMO via its traffic control interface (TraCI), in order to
provide additional functionalities, such as enhanced vehicle
communication (see Section V). Our primary endeavour is to
create a modular approach regarding the road infrastructure
characteristics (including space-time varying internal bound-
ary separating the two traffic directions, see [21]) and the
vehicles and their movement design (physical dimensions,
controllers, connectivity with surrounding CAVs and infras-
tructure, desired speeds, etc.), thus providing a contained
and flexible environment to systematically evaluate novel ap-
proaches at various levels (vehicle movement, infrastructure,
traffic control).

TraCI enables communication with SUMO, giving access
to information regarding the simulation environment, and
managing many aspects of it online. However, TraCI imposes
certain time limitations, which escalate as the number of con-
trollable vehicles rises. This motivated us to directly extend
the code-base of SUMO, rather than relying on TraCI. While

SUMO does not support connected vehicles or vehicles with
custom controllers, we implement such functionalities by
“overriding” its default behavior. Therefore, our contribution
can be viewed as an additional plug-in to the existing SUMO
implementation.

We should mention here that, besides TraCI, one alterna-
tive option would be to consider Libsumo, a low-level Appli-
cation Programming Interface (API) that does not exhibit the
computational limitations imposed by socket communication.
However, this choice was deemed to be rather restrictive, and
thus inappropriate for our requirements. Note that Libsumo
does not support the GUI application, meaning that it works
only with the command line version of SUMO. In addition,
the functionalities of the APIs (TraCI or Libsumo) would be
limiting for some of the extensions we provide; or would
require additional computational tasks to monitor or control
the traffic environment properly. By working directly with
the open-source code-base of SUMO, we can meticulously
exploit the existing infrastructure and extend it appropriately.

Thus, we retain the current functionality, and develop
complementary components that can both monitor online
a lane-free traffic environment, and also control vehicles
considering the lane-free paradigm. This is achieved via an
additional dynamic library we implemented, which allows
development in C/C++.1 In more detail, the library provides
the user with the ability to follow a core coding structure
which contains an initialization (and finalization) function.
These functions, as the naming suggests, are executed once
at the initialization (respectively, the termination) of the
traffic environment. Also a function that is executed in every
simulation time-step is introduced. There, a user can develop
code in order to test lane-free vehicle controllers, emulating
vehicle connectivity aspects via retrieving of information
from SUMO, since we provide a concrete and easy to use
API, enabling the direct communication with SUMO without
any time-related overhead (that TraCI imposes). Fig. 1 shows
an overview of the components that form TrafficFluid-Sim.

By means of this library, a user can utilise the available
API in order to obtain information regarding:2 the vehicles’
properties (type, length, width, etc.) or current status (po-
sition, speed, etc.); properties of a specific road segment

1.dll file (or .so file in Linux)
2Here we simply highlight the features, as they will be presented in more

detail in the following sections.

Fig. 1. An overview of TrafficFluid-Sim’s components.



Fig. 2. A snapshot of the TrafficFluid-Sim application.

(ids of vehicles operating in this segment, length, width,
additional information for given regions of the road); and
online information from loop detectors. Additionally, one
can control the vehicles through their unique ID with the
API, where longitudinal and lateral acceleration values are
supplied as control inputs to the relevant function.

Fig. 2 shows a snapshot of the application for a lane-
free traffic scenario with an on-ramp. It is evident that the
vehicles operate with no restrictions whatsoever regarding
lateral placement. Lane-markings only exist to indicate the
acceleration lane for the vehicles to merge on the lane-free
highway.

In the following subsections, we outline key features and
functionality offered; and present the different aspects of the
implementation in more detail.

B. Lane-Free Vehicle Movement

Networks in SUMO are composed by multiple connected
road segments (edges), essentially depicted by a graph rep-
resentation, and SUMO maintains local coordinates for each
vehicle, with respect to the road segment the vehicle is resid-
ing. For the longitudinal coordinate, the value is essentially
reflecting the distance from the respective segment’s starting
point. In a lane-free environment, this value is suitable, so no
substantial changes are needed. However, this is not the case
for the lateral coordinate, where the value we can obtain
from SUMO (besides information about the lane we are
currently in), is the lateral distance from the respective lane’s
center. Moreover, SUMO does not actually consider lateral
dynamics, since it does not involve anywhere lateral speeds
or acceleration. One can find information about lateral speeds
only within the Sublane model3 of SUMO, but this is only
relevant to the lane-changing model, whereby the vehicles
simply move by providing a new lateral distance deviation
value.

These features are not adequate for our purposes, as, in
order to model lane-free movement, we need to consider both
longitudinal and lateral dynamics with constant respective
accelerations for each simulation time-step. SUMO supports
this only for the longitudinal motion of vehicles.4 Thus, we
added information about the lateral speed of the vehicles

3Sublane depicts more realistic lane-changing behavior.
4Through the ‘Ballistic-Update’ option of SUMO.

“internally” (i.e., by altering the existing SUMO simulator
code), and modified the update process of the vehicles’
lateral position.

In more detail, the local coordinates (x,y) of the
rectangular-shaped vehicles that we provide are as follows:
The longitudinal position x of the vehicle is now the distance
of its center point from the starting point of the road segment.
Accordingly, the lateral position y measures the distance
from the right road boundary to the vehicles’ center point.
Hence, the vehicles observe a single lateral position, without
knowledge about lateral placement w.r.t. to lane centers, as
this information is not meaningful anymore for designing a
vehicle movement control strategy under lane-free settings.

C. Handling of Demand

In contrast to real traffic networks, any simulated network
infrastructure has upstream boundaries, at which vehicles
need to be inserted at a pre-specified demand rate. This is
a delicate operation, because the simulated traffic conditions
(e.g. dense traffic or congestion) may not allow for the whole
demand to enter, as this might lead to unrealistically high
vehicle densities just after insertion. Thus, vehicles should
only be inserted if there is enough space to the vehicle in
front; and with an insertion speed that would not lead to
immediate strong deceleration, or even crashing with the
front vehicle. Vehicles that cannot be inserted, due to such
restrictions, are placed in a virtual queue to be considered for
insertion later on. On the other hand, the vehicle insertion
policy should not be too conservative, as this might lead to
the creation of virtual queues even in cases where the demand
is lower than the road capacity.

In a regular lane-based scenario, one normally specifies
a demand of vehicles either for individual lanes, or for the
whole edge (road segment). For the latter option, SUMO
automatically distributes the demand to each lane. Contrary
to a lane-based environment, where a simple time-gap or
space-gap policy can be applied, such a policy is not appro-
priate for lane-free environments, since it would not exploit
laterally the actual capacity of the road, which constitutes one
of the intrinsic properties when operating under the lane-free
paradigm. Recall that the space-gap (sg) is the distance from
the front bumper of the vehicle attempting to enter, to the rear
bumper of the front one, and the time-gap (tg) is defined as
tg = sg/vp, where vp is the speed of the vehicle attempting
to enter. Likewise, if we have any two quantities, we can
calculate the remainder one using the equation above.

Therefore, we designed a new method that determines
where (laterally) a vehicle shall be inserted in the road;
as well as whether it should actually be inserted or stay
in a virtual queue of vehicles in case of lack of sufficient
space due to other vehicles in front. In the latter case, the
vehicle has to wait for the next time-step before re-attempting
insertion. To this end, we need to establish how the vehicles
will spawn at an entry point, when defining a global cross-
section, in a way that is organically tied to a lane-free
environment. Essentially, we use a constant time-gap policy
(provided by the user) customised for this setting, which also



Fig. 3. Vehicle is inserted randomly within the range of one of the available
lateral regions (indicated with light blue).

accounts for the width of the vehicle when entering. As such,
each vehicle attempting to enter (according to the demand)
has a set of available lateral regions that it can spawn.

Initially, the vehicle considers a single lateral region that
corresponds to the whole road width. Then, its insertion
speed will be the minimum of the user-defined departure
speed and the average speed of the front n = 5 vehicles.
This bounding serves to prevent collisions in case the region
is congested, where the vehicles move with lower speed
(or even in extreme cases they cannot move at all). Given
the insertion speed and the pre-specified time-gap, the cor-
responding required space-gap in front of the vehicle is
calculated, and the next step is to obtain a lateral position to
spawn according to the downstream traffic.

To achieve that, we first scan (in ascending order, accord-
ing to longitudinal position) the front vehicles until one is
found that conforms to the calculated space-gap. Then, for
all front vehicles that have a space-gap less that the required
value, we restrict, according to their widths and lateral
positions on the road, the available lateral regions. Finally,
the vehicle randomly spawns in one of the remaining lateral
regions, which guarantees that there is no vehicle in front
with less than the required space-gap. Fig. 3 demonstrates
visually the aforementioned procedure. Of course, if, at any
point in the above procedure, the set of available lateral
regions becomes empty (i.e., there is no lateral position
to insert the vehicle with an acceptable space-gap in front
of it), then the procedure is stopped, and the vehicle does
not spawn, but is preserved in the virtual queue of SUMO.
Vehicles within this virtual queue have the opportunity to
enter in subsequent time-steps, when front vehicles will have
advanced. It should be noted that in the aforementioned
process, we impose a minimum lateral distance between the
vehicles, that is selected by the user.

In Figs. 4 & 5, we illustrate instances of lateral vehicle
placement for two different respective demands, according
to the aforementioned insertion policy.

Simulated vehicles possess a desired speed that they strive
to achieve when and where the traffic conditions allow. This
desired speed is decided at insertion point, and accompanies
the vehicles, until their exit from the network. The user
may select desired speeds for the entering vehicles via the
API, based on a range of desired speeds [vd,low,vd,high],
sampled according to a distribution (e.g. uniform). The
desired speed distribution may be independent of the lateral
vehicle insertion positions, but a specific consideration for

the selection of desired speeds may be to establish a mapping
with the range of initial lateral placements. Specifically, some
vehicle movement strategies favor a lateral vehicle position,
while driving, that is proportional to the vehicle’s desired
speed, i.e., vehicles with higher desired speed tend to drive
further left on the road, compared to vehicles with lower
desired speed (e.g. trucks). In such cases, it is reasonable
to relate accordingly the lateral insertion position of each
vehicle with its assigned desired speed at the entry points,
so as to avoid unrealistic weaving maneuvers after insertion.
For instance, each desired speed vd can be assigned based
on a linear mapping from the lateral position range to the
range [vd,low,vd,high] of desired speeds (accounting also for
the width of the vehicle, e.g., when the vehicle has width wv,
and the road has width wr, the vehicle considers the lateral
region [wv/2,wr−wv/2], so if it spawns at wv/2, then the
selected desired speed will be vd,low).

The aforementioned insertion policy aims to fully exploit
the available lateral space. However, notice that this method,
along with mentioned linear mapping will not result in a
uniform (or other desired) distribution of desired speeds.
Therefore, for specific simulation scenarios requiring a spe-
cific probability distribution, we also developed an alternative
insertion policy, in which we refrain from exploiting fully the
lateral space.

In the alternative policy, we initiate the process of intro-
ducing a new vehicle to an entry point by drawing a sample
vd from the user-chosen distribution (provided by the API),
within the range [vd,low,vd,high]. This sample value vd will
be the desired speed of the vehicle. Thereafter, the policy
decides upon the lateral placement for the vehicle. This is
done via a linear mapping from the range [vd,low,vd,high] to
the range of available lateral positions [wv/2,wr − wv/2],
according to the sampled vd value. Next, the first vehicle
in front of the vehicle to be inserted is identified, and a
candidate insertion speed vp is calculated according to the
time-gap provided by the user and the space-gap between the
two vehicles. Note that we consider that a vehicle is in front,
if the lateral regions resulting from their lateral placements
and width overlap. This is also noticeable in Fig. 6, where
we show visually the above procedure. The vehicle will be
inserted with insertion speed vinsert = min{vp,vd}, unless
vinsert < min{vd ,v f }, where v f is the speed of the vehicle
in front. In that case, the vehicle will remain in the virtual
queue and attempt reentering with the same desired speed
(and, consequently, the same lateral position) in the next
time-step.

Fig. 4. Vehicle placement for a demand of 7500veh/h, time-gap of 0.5s,
minimum lateral distance of 0.25m.



Fig. 5. Vehicle placement for a demand of 12000veh/h, time-gap of 0.5s,
minimum lateral distance of 0.25m.

In what follows, we showcase its use (assuming uniform
distribution for the desired speeds), against that of the first
method in a scenario with an extremely high value of
demand, specifically, one of 18,000veh/h. This is a demand
clearly beyond the capacity of any lane-based approach for
a road width as the one in Table I, corresponding to a road
comprised of 3 lanes. We compare the two insertion policies
in terms of the flow values achieved in each case.

We collect measurements of the flow with a sampling
period of T = 2min. All relevant parameters are tuned
according to Table I, where dlat,min is the minimum lateral
distance the vehicles are allowed to have upon entering; lv, wv
are the length and width of the vehicles respectively (which
are equal for all vehicles in this scenario, for simplicity); and
wr is the width of the road.

As observed in Fig. 7, where we display measured flows
for the two different insertion policies, the first policy (in-
dicated with method 1 in the figure) yields an average flow
of 12,998veh/h. This effectively sets an upper bound for the
achievable maximum flow, given the parameter choices of
Table I. The vehicle movement strategy used to obtain these
results is an ad-hoc strategy according to the one presented
in [8]. On the other hand, the alternative policy (indicated
with method 2 in the figure), using a uniform distribution
U (25,35), was observed to lead to under-utilisation of the
road capacity. We now have vehicles spawning with desired
speeds according to a uniform distribution within the range of
[25,35]m/s, as desired, but this results into a lower average
flow of 8,312veh/h. Thus, maintaining such a distribution
comes with a cost of a reducing by 36% for the average

Fig. 6. Vehicle has a predefined initial lateral position, and obtains an
insertion speed according to the space-gap from the vehicle in the front.

TABLE I
PARAMETER CHOICES FOR THE DEMAND EXAMINED.

time-gap dlat,min lv wv wr
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Fig. 7. Measured flows of vehicles from a detector placed 100 meters
downstream of the entry point.

flow inserted (w.r.t. the one achieved by the first policy
(method 1)). These results indicate the expected trade-off
between demand insertion at the capacity of the road versus
guaranteeing that the distribution of desired speeds will be
exactly mapped with the lateral insertion position of entering
vehicles.

D. Using a Dynamic Library for Lane-Free Vehicle Control

Normally, vehicle strategies in lane-based SUMO are
structured according to two types of models, a “Car-
Following” model, and a “Lane-Changing” one, that regulate
the longitudinal speed and the lane-placement accordingly.
This type of architecture is obviously not appropriate for
lane-free vehicle controllers. Also, something crucial, that
we need to address, is the fact that these models are pre-
compiled, and constitute a part of the SUMO environment.
This means that the users can select one of the available
models, and ‘tune’ them via model-related parameters. There
is no flexibility to easily incorporate different controller
designs to this environment, unless we do so by accessing
the open-source code-base of SUMO (or via TraCI).

Especially for a novel traffic paradigm, like TrafficFluid,
a more flexible design, that allows for interdisciplinary
research approaches and refined control of the vehicles, is
fundamental. Therefore, we have made the necessary devel-
opments to make use of an external dynamic library (that is
linked with the main application at execution time) in order
to enable the development of any type of vehicle controller
just by providing the longitudinal and lateral acceleration
values for each simulation time-step. Importantly, this es-
sentially means that any vehicle strategy can be incorporated
without the need to re-compile SUMO; moreover, after its
compilation, the library is essentially treated for all purposes
as an integral part of the application, thus avoiding all com-
munication costs between SUMO and external frameworks
(that would have been otherwise unavoidable). In conclusion,
we have the benefit of flexibility, but without the cost of
time-delays.

E. Dynamic Library Structure and API features

Our library consists of 3 core functions that can be utilised:



• simulation initialize: Executed once before the first
time-step; intended for initialization of variables, mem-
ory, files, etc.

• simulation step: Executed once in every time-step.
Within this function, users can control the vehicles, and
monitor online the traffic environment

• simulation finalize: Executed once before exiting the
simulation; intended for deallocation of memory, saving
log files, etc.

The user can build upon the development environment
and communicate directly with SUMO via the API provided
by our implementation (see Fig. 1). Regarding the memory
structure that contains the vehicles for a given road segment,
vehicles are always retained in ascending order, according
to their respective (local) longitudinal position x. This infor-
mation is updated dynamically, since vehicles have different
speeds and, also, are following a route and may thus change
road segments. Such ordering is quite convenient for many
reasons. First, it allows us to perform collision checks much
more efficiently; and to perform the dynamic allocation of
vehicles to road segments much faster. Furthermore, this
information can be provided to the user via the API.

For the remainder of this subsection, we showcase the
current capabilities of our API:

1) Vehicles: A user can obtain information, such as: the
ID’s of all vehicles in the network; or only the ID’s of
vehicles in a specific road segment. In the latter case, they
are obtained in ascending order according to their (local)
longitudinal position. Given a specific vehicle’s ID value,
information relevant to this vehicle is easily available, such
as: its longitudinal and lateral positions (either local coordi-
nates, as specified in Section III-B, or global coordinates);
longitudinal and lateral speeds, dimensions (length, width);
the vehicle’s type id (as defined when setting up the traffic
environment); the vehicle’s name (the one displayed by
SUMO).

Besides information retrieval, one can control a vehicle
via its ID, providing the longitudinal and lateral acceleration
values (in m/s2) as inputs to the relevant function. Moreover,
through the API, the user can manually insert a new vehicle
either at the initialization phase, or at any arbitrary simulation
time-step. In this case, the initial conditions and additional
information should be provided by the user. That information
involves: initial position and speed (longitudinal and lateral),
a (valid) vehicle type, and a (valid) route for the vehicle to
follow. We also retain internally a desired speed for each
vehicle; and, through the API, we can obtain or change the
existing value.

As mentioned, we use local coordinates, something quite
convenient for designing a vehicle movement strategy, since
the vehicle just follows a given route, and does not need
to take into account the geometry of the road. However,
this poses a limitation when a vehicle needs to observe
downstream traffic in the next road segment, as the local
coordinates of downstream vehicles correspond to a different
road segment. For this reason, considering two vehicles that
can potentially be located on different road segments, we pro-

Fig. 8. The appointed vehicle, located on an on-ramp and about to merge
in the highway, has direct access to the vehicles located in the next segment.

vide information about the longitudinal and lateral distance
from the perspective of one of the two vehicles. Complemen-
tary to the aforementioned functions is another feature that
allows for each vehicle to easily observe downstream and
upstream traffic, according to their routing scheme, i.e., they
can observe vehicles that may be located in the upcoming
or previous road segments. This essentially translates to
obtaining an array of all the downstream (upstream) vehicles’
ID values (up to a specified distance), in ascending order,
based on the longitudinal distance from the ego-vehicle that
request such information, even if the downstream (upstream)
vehicles are beyond the current road segment. For example,
a vehicle in an on-ramp, which is advancing to merge on the
mainstream, can directly observe downstream traffic from the
main highway and be properly informed about the distances,
as illustrated in Fig. 8.

Moreover, we developed the necessary components to
emulate a ring-road scenario using a single road segment.
In this case, the vehicles are directly “transmitted” to the
starting point of the segment instead of exiting. Longitudinal
distance dx(i, j) is properly adjusted for this feature, e.g., a
vehicle towards the end of the road segment will properly
observe vehicles at the starting point. In order to introduce
vehicles in the ring-road, the recommended solution is to
utilise the API, and insert the desired density of vehicles
when initializing the simulation. When this functionality is
extended to incorporate multiple road segments, the demand
can be alternatively generated from an on-ramp, connected
to the main highway that emulates the ring-road.

2) Road Segments: Similarly, users can obtain an array
of the road segments’ ID values in the network. For a
given road segment, a user can obtain its properties (length,
width), and additional online information for user-defined
regions. Essentially, at any simulation step, we can directly
gain information for a specific region of the road segment
regarding the traffic density at that region, or the average
speed of the vehicles. This is illustrated in Fig. 9, where such
information will be provided only according to the vehicles
within the appointed region.

In addition, there is the flexibility to use these functions
only for a specific type of vehicles, i.e., we can independently
monitor each type of vehicles in the network. For instance,
in Fig. 9, we may be interested only in the type of vehicles
indicated with white color, thus the information we will
receive will be calculated from these 3 vehicles only.

The outlined functionalities related to road segments are
valuable for several possible applications, including real-time



traffic management via emulated V2I communication.
3) Detectors: One of the features of SUMO, when de-

signing a traffic scenario, is the support of multiple types
of detectors, which can be placed anywhere throughout the
network. The simple ‘E1’ Loop Detectors of SUMO are
integrated with our internal extensions. Likewise, these loop
detectors are represented by unique ID values. With this, we
can monitor online the number of vehicles that have passed
from the corresponding detector. Additionally, we retain the
same flexibility here regarding monitoring specific types of
vehicles.

Lastly, we have embedded a set of event-based functions,
triggered when specific situations occur, such as: a new
vehicle entering the network, a vehicle reaching a final
destination; a collision between two vehicles; or a vehicle
being located out of the road boundaries. Obviously, these
functions are accommodated with information regarding the
involved vehicles’ IDs.

F. Designing a Lane-Free Traffic Scenario

We should emphasise that we can design traffic scenarios
exactly as we would normally do for the standard SUMO
application. In order to design a traffic scenario, the core
components that we need is a road network, specification
of vehicle types along with their properties, and finally the
demands.

Lane-free vehicles can now be incorporated through the
definition of a vehicle type. We have included an additional
‘virtual’ model option (besides the ones provided by SUMO),
that the assigned vehicle types can now employ. When a user
specifies the model as “lane-free”, it will not conform to
any standard lane-based model, but the user will be granted
access to the control of all vehicles of this type through
the dynamic library. Thus, these vehicles will now move
according to the developed movement strategy. Any type of
lane-free controller can be developed and adapted to the same
structure, provided that it yields the longitudinal and lateral
accelerations (in m/s2) in every simulation time-step.

IV. EXTENSIONS

Currently, vehicles are operating according to a predefined
route, simply following a specified path from origin to
destination. We rely on SUMO, which requires either just
an origin and a destination segment (then a valid path is
automatically generated upon initialization of the vehicles),
or a (valid) full path consisting of the full sequence of road

Fig. 9. We can directly request information about density or average speed
just by providing the upper and lower bounds of the region, e.g., if what
is displayed is the total road segment, its length is 150 meters, and we are
interested only in the last 50 meters, we define the region as [100,150].

segments the vehicle should follow, if we wish more refined
control. Also, SUMO provides some options regarding re-
routing (either online or offline) of the vehicles, but none
of them conforms with the flexibility we need in order to
support the design of V2I applications for traffic management
in a lane-free environment.

One impending extension is to provide the necessary func-
tionalities for allowing the user to assign turn probabilities at
bifurcation nodes of the road network, in a lane-free traffic
environment, omitting the origin-destination routing of the
vehicles for specific applications.

Another forthcoming extension is the incorporation of
jerk [22] dynamics (both longitudinal and lateral), meaning
that the vehicles will have the option to operate based on jerk
commands from the vehicle control, where jerk is the time
derivative of acceleration. To this end, we need to update the
simulation of vehicle movement accordingly. Of course, the
default option will still be to control through acceleration,
and jerk control will constitute an alternative that the user
will be able to switch to via either the API or through an
additional parameter when specifying a type of vehicles.

V. RELATED WORK

In this section we provide a brief overview of some
of the most popular external frameworks for SUMO, and
further motivate our choice to directly extend this open-
source project.

To begin with, Veins [23] is a network simulator that
emphasizes on the realistic depiction of communication
structures, simulating IEEE 802.11p and IEEE 1609.4
DSRC/WAVE network layers, and providing an extensive
list of useful metrics. “iTETRIS Control System” (iCS) [24]
delivers a platform for large-scale simulation and assessment
of Cooperative Intelligent Transportation Systems (C-ITS).
They additionally aspire to develop novel traffic control
and communication strategies, along with new metrics that
capture the overall performance of the network in terms
of common traffic issues, such as: vehicle emissions, traf-
fic congestion, travel time etc. VSimRTI [25] is aimed at
providing a comprehensive and user-friendly environment. It
embraces likewise realistic communication structures and en-
ergy consumption and is suitable for large-scale simulations.
Flow [26] is a modular framework that facilitates the use
of machine learning (in particular, reinforcement learning)
methods to address the complexity of traffic dynamics.
Likewise, Flow communicates with SUMO via TraCI, and
is developed in Python. It also facilitates the creation of a
generic simulator, appropriate for microscopic traffic mod-
elling and the embedding of custom vehicle controllers.

All aforementioned frameworks are flexible and extensi-
ble, at least to a certain extent. Still, to accommodate our
needs, considerable source code modifications and extensions
would have been required, since no single framework pro-
vides our desired TrafficFluid capabilities, while any such
framework would induce a substantial additional overhead
(w.r.t. time and memory) for communicating with SUMO.
This led us to the choice of developing a direct extension of



the SUMO framework, purpose-built for modeling the novel
lane-free traffic paradigm. In addition, the new framework is
flexible enough to allow its easy incorporation into existing
code-bases, and also for future extensions.

VI. CONCLUSIONS

We presented TrafficFluid-Sim, a new, modular, and ex-
tensible simulator, that supports a novel paradigm of lane-
free traffic, such as the one coined by TrafficFluid [8].
We discussed the main components of the new simulator,
as well as forthcoming extensions. The simulator is al-
ready employed for the evaluation and expansion of vehicle
movement strategies [8], [11], [12] under the novel traffic
paradigm. Videos illustrating the presented insertion policies,
and a simulation example with one on-ramp when employing
an ad-hoc movement strategy (see [8]), are available at
https://bit.ly/3twy4qc. We intend to expand the
existing TrafficFluid-Sim’s components and, following its
evaluation and feedback by the community, to elevate it into a
fully-fledged, feature-rich platform that will enable the rapid
progress of novel lane-free traffic research approaches; and,
more generally, serve the community’s needs and demands.
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