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ABSTRACT
A path-planning algorithm for connected and non-connected automated road vehicles on

multilane motorways is derived from the opportune formulation of an optimal control problem.
In this framework, the objective function to be minimized contains appropriate respective terms
to reflect: the goals of vehicle advancement; passenger comfort; and avoidance of collisions
with other vehicles and of road departures. Connectivity implies, within the present work, that
connected vehicles can exchange with each other (V2V) real-time information about their last
generated short-term path. For the numerical solution of the optimal control problem, an efficient
feasible direction algorithm (FDA) is used. To ensure high-quality local minima, a simplified
Dynamic Programming (DP) algorithm is also conceived to deliver the initial guess trajectory
for the start of the FDA iterations. Thanks to very low computation times, the approach is read-
ily executable within a model predictive control (MPC) framework. The proposed MPC-based
approach is embedded within the Aimsun microsimulation platform, which enables the evalua-
tion of a plethora of realistic vehicle driving and advancement scenarios under different vehicles
mixes. Results obtained on a multilane motorway stretch indicate higher efficiency of the opti-
mally controlled vehicles in driving closer to their desired speed, compared to ordinary manu-
ally driven vehicles. Increased penetration rates of automated vehicles are found to increase the
efficiency of the overall traffic flow, benefiting manual vehicles as well. Moreover, connected
controlled vehicles appear to be more efficient in achieving their desired speed, compared also to
the corresponding non-connected controlled vehicles, due to the improved real-time information
and short-term prediction achieved via V2V communication.

1. Introduction
In the past decade, automated driving has attracted strong interest in industry and scientific community. This is

fostered by strong technological advancements, compared to which human driving capabilities appear limited in terms
of perception of the driving environment, reaction time, and real-time decision efficiency. In addition, variations in
driving behavior from person to person or short inattention at high speeds may result in accidents. In fact, the vast
majority of road accidents are attributed to human error on the account of, e.g., insufficient sensory information, lack
of attention, shortcomings in driving skill or reckless driving. Each year, road accidents result in approximately 1.35
million fatalities and leave some 50 million of injured or disabled worldwide. Road congestion is another major issue,
causing excessive delays, fuel consumption and emissions around the globe (Goniewicz et al., 2016; Montanaro et al.,
2019). On the other hand, vehicle automation is a challenging area due to the variety and complexity of real-world
environments, including avoidance of static and moving obstacles, compliance with traffic rules and consideration of
human driving behavior aspects (Gu and Dolan, 2014).

With the recent advances in vehicle communications, either vehicle-to-vehicle (V2V) or infrastructure-to-vehicle
(I2V), new communication channels, carrying a potentially wide range of information becomes available in real time.
Connected automated vehicles (CAVs) may receive or exchange relevant information, including vehicle state, the
current traffic conditions, the next switching time of a traffic signals etc. This extended information entails better
knowledge of the driving conditions for CAVs and may be beneficial in various driving situations concerning road
safety, flow efficiency and environmental sustainability (Sjoberg et al., 2017; Tian et al., 2018). Specifically, automated
drivingmay improve various driving aspects, such as lane-changing, obstacle avoidance, forming of platoons with short
inter-vehicle distances and the application of smoother acceleration or deceleration.
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The development of fully automated driving algorithms is inherently related to planning and updating a vehicle
path, which should be efficient, collision-free and user-acceptable. Planning such a path can be viewed as a trajectory
generation problem, i.e., creation in real time of a quasi-continuous sequence of states that must be tracked by the
vehicle via appropriate steering, throttle and braking actions. Inspired by earlier studies on motion planning of robot
vehicles in other contexts (e.g. (González et al., 2015)) and driven by imminent implementations and optimistic fore-
casts of CAV technologies (e.g. (Nagy and Kelly, 2001; Gu and Hu, 2002)), studies on CAV trajectory optimization
in the road traffic context have boomed in the past decade. However, path-planning for road vehicles is a difficult
task, since speeds are very high, and safety of the passengers must be guaranteed. Thus, automation on roads calls
for sophisticated approaches, such as optimal control methods, advanced feedback control or reinforcement learning
(Claussmann et al., 2019; Haydari and Yilmaz, 2020).

In the related literature, many works exist for trajectory generation of longitudinal motion for CAVs, consider-
ing cooperative adaptive cruise control (CACC) and platooning (Dey et al., 2015; Wang et al., 2018b); cooperative
merging at highway on-ramps (Rios-Torres and Malikopoulos, 2016; Ntousakis et al., 2016); speed harmonization
on highways (Ghiasi et al., 2017; Malikopoulos et al., 2018) etc. On the other hand, there are relatively few studies
on CAV trajectory optimization considering lane-changing (Wang et al., 2018c), which indicates that optimization of
CAV trajectories in both longitudinal and lateral directions is worth additional investigations. Some of these studies ap-
proach the problem with optimal control and model predictive control (MPC), while avoidance of collision with other
vehicles is handled through potential-field like penalty functions (Dixit et al., 2019; Rasekhipour et al., 2016; Wang
et al., 2018a; Jalalmaab et al., 2015; Makantasis and Papageorgiou, 2018). In comparison with other aforementioned
approaches, e.g. reinforcement learning, optimal control techniques require substantially less data as input. Moreover,
depending on the numerical solution algorithms, the execution times of the problem should be sufficiently small to
enable their implementation within a real-time MPC framework, i.e. real-time feasibility.

As far as the connectivity capabilities of the CAVs is concerned, most of the related mentioned works consider
limited knowledge of their surroundings, specifically knowledge of the current position and speed of surrounding
vehicles, e.g. thought their own sensors. Thus, the short-term future path of the obstacles is considered as a projection
of their initial states, e.g. assuming zero acceleration and no lane change. For example, in (Sadat et al., 2020; Shao
et al., 2021), the prediction of the surrounding environment is handled through marginal distributions of semantic
occupancy over time; or considered as static region, respectively. In the same context, (Saxena et al., 2020) studies
the problem of successfully executing a safe and comfortable merge into dense traffic, while the surrounding obstacle
vehicles are handled either as static or as constant-speed obstacles. Note that a variety of path planning approaches that
emerged in decade-long research in the Robotics domain are valuable for road vehicle path planning as well, but there is
a crucial difference in the respective requirements due to automated highway vehicles (and dynamic obstacles) driving
much faster than typically considered autonomous robots. This important difference calls for enhanced prediction of
the obstacles behaviour, which is indeed achieved via vehicle connectivity, as considered in this work.

Compared to approaches presented in the past by some of the authors (Makantasis and Papageorgiou, 2018), the
present work marks significant differences and advances. In that early-stage work, a basic optimal control problem
(OCP) formulation was developed, providing a solid basis for subsequent significant advances, both in the conceptual
design and in its evaluation. Specifically, significant differences in the present work include: the newly designed
collision avoidance term, the number of involved state variables, the prediction of the surrounding vehicles’ paths and
the comprehensive and realistic evaluation at traffic level, to mention just the most important ones. In more detail, in
the previous work, the collision avoidance term was formulated as a non-smooth function, which may entail difficulties
for gradient-based numerical solution algorithms, such as the employed feasible direction algorithm (FDA). Therefore,
in this work, the corresponding term has been modified, and a novel smooth function is appropriately designed. In
addition, the longitudinal control variable in this work is the jerk, instead of the acceleration, which ensures smoother
trajectories and improves the passengers’ comfort. Moreover, the specific previous work did not consider connectivity
for the vehicles, which implies that the prediction of the surrounding vehicle paths has limited accuracy, and the impact
of vehicle connectivity cannot be assessed. Finally, compared to the previous work, which only reports on limited
open-loop evaluation instances involving just a few vehicles, without testing its applicability within a closed-loop
MPC framework, this work develops the proposed approach fully, along with the appropriate MPC framework; and
implements it within a realistic microsimulation platform (Aimsun Next, 2019) in order to comprehensively evaluate
the traffic-level effects of the controlled AVs at various demand levels and for different penetration rates of vehicle
automation and connectivity.

Compared to other works in the literature, the proposed approach delivers a very efficient algorithm, which is
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readily applicable in real time due to very low computational times (fractions of a second). Moreover, the introduction
of the enhanced information of the CAVs enables more accurate prediction of their surrounding and is demonstrated
to be crucial, particularly in scenarios of high demand levels. Finally, based on the authors’ knowledge, there are no
comparable works considering such a comprehensive OCP and MPC-based approach within a microscopic simulator
for various demand levels and, especially, for various penetration rates; and reporting on the effects of the AVs on their
own efficiency and on the traffic environment, as the penetration rate rises.

In summary, the main contributions of this work are the following:
• A highly efficient (fractions of a second) numerical approach for the solution of the OCP for path planning of

AVs.
• The full exploitation of vehicle connectivity via asynchronous path decision exchange that leads to more accurate

prediction of the surrounding CAV behaviour.
• Comprehensive traffic-level evaluation and analysis, including the impact of lane changes, for different penetra-

tion rates and demand levels.
In more detail, this paper explores the impact of vehicle connectivity on the efficiency of advancement of automated

vehicles (AVs) and on the efficiency of the emerging traffic flow. The investigations address multi-lane motorways
with mixed traffic, comprising both automated and manually driven vehicles at different penetration rates. An optimal
control problem is employed for the path-planning of AVs, comprising three main elements:

• A simple kinematic model describing the vehicle movement process.
• An objective function to be minimized, which contains respective terms to reflect efficient vehicle advancement;

passenger comfort and fuel consumption; and avoidance of collisions with other vehicles and of road departures.
• Short-term prediction of the trajectories of other neighboring vehicles (obstacles), which is crucial for pro-active

collision avoidance.
For the numerical solution of the optimal control problem (OCP), a very efficient iterative feasible direction algo-

rithm (FDA) is used. To ensure high-quality local minima, a simplified Dynamic Programming (DP) algorithm is also
employed to deliver the initial guess trajectory for the FDA. Thanks to low computation times, the overall approach is
readily executable within a MPC framework, applying updated initial state and obstacle path prediction at each repe-
tition. MPC has a long history of applications in control, automation, and chemical industries (Mayne and Michalska,
1988; Qin and Badgwell, 2003; Mayne, 2014). Due to the strongly dynamic environment of the path-planning prob-
lem for AVs, the accurate prediction of the surrounding vehicles’ paths is crucial, particularly at high highway speeds.
However, the uncertainties related to the changing environment and to the actual vehicle advancement inevitably in-
crease over time. Therefore, the MPC approach is often used for online path planning of AVs, as it is very efficient in
handling the arising uncertainties due to its re-planning ability (Claussmann et al., 2019). One possibility is to solve
the OCP at each time step, with a corresponding shift of the planning horizon (Nilsson et al., 2015; Murillo et al., 2018;
Howard et al., 2010). An alternative possibility is to update path decisions in event-based mode (Earl and D’Andrea,
2007; Khazaeni and Cassandras, 2016), which is pursued in the current study.

Vehicle connectivity refers here to the capability of AVs to exchange with each other, in an asynchronous mode,
real-time information about their current state (position and speed) and their latest generated path, where the latter
strongly enhances the prediction accuracy for obstacle movement in the short-term future. The MPC-based approach
is embedded within the Aimsun micro-simulation platform (Aimsun Next, 2019), which enables driving evaluation in
countless appearing driving scenarios. Specifically, we investigate two cases, each of them at different penetrations of
AVs:

• No connectivity: Each AV is aware of the current position and speed of obstacles (via its own sensors). Short-
term prediction of obstacle movement is based on extrapolation, assuming zero acceleration and same-lane
movement.

• Connected automated vehicles: Each AV is aware of the current position and speed of obstacles; in addition, it
receives the path-planning decisions of other automated vehicles, which facilitates the short-term prediction of
their movement.
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In both cases, the short-term movement prediction for manually driven vehicles is based on zero-acceleration and
same-lane extrapolation.

Demonstration results are reported for a motorway pipeline section. The results indicate higher efficiency of the
optimally controlled vehicles in driving closer to their desired speed, compared to non-automated vehicles. In addition,
increasing penetration rates of controlled vehicles are found to lead to more efficient traffic flow. Specifically, as the
penetration rate of controlled vehicles rises, there is a significant increase of the average speed and, consequently, a
decrease on the average delay time and travel time for all vehicles. These conclusions apply mainly for demand levels
where the controlled vehicles have space to manoeuvre. Specifically, the proposed approach is efficient due to the
fact that the controlled vehicles are able to apply smarter manoeuvres. Also, connected controlled vehicles are more
efficient than non-connected controlled vehicles, due to the improved real-time information that enables more pertinent
obstacle movement prediction. Finally, the emerging traffic flow and even the manually driven vehicles are found to
benefit from improved operation of the AVs.

It should be noted that urban road environments are out of the scope of this work, which focuses on vehicles
moving on a highway. We believe that application of a similar approach for urban networks is possible with appropriate
modifications or extensions, but this is left to future work.

The rest of the paper is organized as follows: Section 2 presents the dynamics of each AV and the components
of the objective function that lead to the OCP definition. Section 3, describes the numerical solution algorithms and
explains the procedure used for MPC. Section 4 presents the simulation results, while Section 5 concludes this work.

2. Optimal Control Problem Formulation
This section describes the proposed path-planning strategy for automated road vehicles on motorways. At first, the

simple vehicle kinematic motion dynamics and considered hard constraints are defined. Then, an objective function
is designed, which includes appropriate terms regarding the efficient vehicle advancement, the obstacle and off-road
avoidance and the passenger convenience. Finally, the proposed path-planning algorithm is generated based on a
combination of FDA and Dynamic Programming techniques.
2.1. Problem variables, state-equations and constraints

We consider a straight road on a two-dimensional plane, and the vehicle’s position on this plane is expressed
in global Euclidean coordinates. Each controlled vehicle is described by five state equations, corresponding to the
equations of motion, which are expressed in discrete time, assuming time-steps of length T , as follows:

x(k + 1) = x(k) + vx(k) ⋅ T + 1
2
ax(k) ⋅ T 2 + 1

6
jx(k) ⋅ T 3 (1)

y(k + 1) = y(k) + vy(k) ⋅ T + 1
2
ay(k) ⋅ T 2 (2)

vx(k + 1) = vx(k) + ax(k) ⋅ T + 1
2
jx(k) ⋅ T 2 (3)

vy(k + 1) = vy(k) + ay(k) ⋅ T (4)
ax(k + 1) = ax(k) + jx(k) ⋅ T (5)

where x(k), y(k), vx(k), vy(k), ax(k) correspond to the longitudinal and lateral position, the longitudinal and lateral
speed and the longitudinal acceleration at time-step k, respectively; while the control variables jx(k), ay(k) refer to thelongitudinal jerk and the lateral acceleration, respectively, which are kept constant for the duration T of each time-step
k; hence the above state equations are derived from the exact time-integration of the corresponding continuous-time
differential equations of motion. Note that the consideration of jerk (rather than the acceleration) as a control variable
for the longitudinal direction leads to smoother vehicle trajectories, which consequently improve the convenience of
the vehicle passengers. On the other hand, for the lateral movement, such detail is not necessary, as the lateral speed
and movement is only needed for lane changing, and a lane change maneuver is substantially less frequent compared
to the continuous longitudinal motion. It should be noted that, in contrast to other works, the proposed approach
produces continuous, rather than discrete, lateral movement, thus avoiding the usage of integer variables that increase
the computational effort for the numerical OCP solution.
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In this work, the model for expressing the vehicle dynamics is a double (lateral) and triple (longitudinal) integration
model, which is quite common for the problem at hand, involving high-speed longitudinal movement with occasional
lane changes. This model considers the lateral and longitudinal movement to be decoupled. An alternative would
be the use of a so-called bicycle model (Rajamani, 2011). However, in a lane-based highway environment, a vehicle
mostly follows a leader or drives on its lane with its desired speed, as the lane-change manoeuvres are not very frequent.
In these conditions, explicit consideration of steering is not deemed important.

The control variables jx(k), ay(k) are bounded according to vehicle specifications, whereby the longitudinal upperbound and the lateral bounds are constant, while the longitudinal lower bound is state-dependent, as follows:

jx,min(vx(k), ax(k)) ≤ jx(k) ≤ jx,max (6)
ay,min ≤ ay(k) ≤ ay,max (7)

The constant upper bound jx,max and the lateral bounds ay,min, ay,max may be set with consideration of the vehicle
capabilities and the passengers’ convenience. Furthermore, a vehicle, having a currently non-negative longitudinal
speed vx(k), should not have negative longitudinal speed at the next time step, i.e.,

vx(k + 1) ≥ 0 (8)
should hold. To ensure this, while avoiding state constraints that may complicate the numerical solution of the OCP,
the state equation (3) is replaced in (8) and, after rearrangement, this yields the state-dependent control constraint

jx(k) ≥ − 2
T 2
vx(k) −

2
T
ax(k) (9)

This bound may be unrealistically low (negative) at higher speeds, due to the magnitude of the coefficients, which
can be a cause of discomfort for the passengers. Note that the equation-version of (9) may be interpreted as a dead-
beat controller that drives the speed vx to zero in exactly two time steps. However, the magnitude of the resulting jerk
bounds can be mitigated by choosing more moderate "controller" coefficients 0 < K1 ≤ 2∕T 2 and 0 < K2 ≤ 2∕T ,
which would drive vx to zero asymptotically. This way, accordingly moderate lower jerk bounds are obtained, while
guaranteeing that the constraint (8) is always satisfied. In conclusion, the considered lower bound on longitudinal jerk
is

jx,min(vx(k), ax(k)) = −K1 ⋅ vx(k) −K2 ⋅ ax(k) (10)
and (6) is replaced by the following state-dependent constraint to be considered in OCP

ℎ = [jx(k) − jx,max][jx(k) − jx,min] ≤ 0 (11)
2.2. Optimization Objectives
2.2.1. Objective Function

The objective function to be minimized, in the frame of the OCP formulation, includes a number of terms, which
consider efficient, convenient and safe driving, each with a weighting parameter to reflect the corresponding priorities.
Among these terms, several safety constraints are considered as soft constraints, so as to drastically speed up the
numerical solution. Although alternative approaches may indeed lead to respect of the safety constraints in a more
direct way, our indirect approach (using soft constraints) also satisfies these constraints and fulfils this task to the full,
while featuring very low CPU times, which make it readily applicable in real time.

The optimisation criterion, which extends over a time horizon of K steps in the future, reads

J =
K−1
∑

k=0

[

w1j
2
x(k) +w2a

2
x(k) +w3a

2
y(k) +w4[vx(k) − vd,x]2

+w5[vy(k) − vd,y]2 +w6fr(y(k)) +w7

n
∑

i=1

[

ci(x(k), y(k))
]

]

(12)
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Figure 1: The penalty function of road boundaries.

where w1,… , w7 are non-negative penalty parameters.
The first three quadratic penalty terms concern the comfort of the passengers, which is related to the magnitude of

lateral and longitudinal acceleration, as well as of the longitudinal jerk. Note that the quadratic penalty term of longi-
tudinal acceleration acts also as a good proxy for deriving fuel-minimizing vehicle trajectories (Typaldos et al., 2020).
More specifically, it has been demonstrated that the simple square-of-acceleration term delivers excellent approxi-
mation of fuel-optimal vehicle trajectories, when compared with the use of complex and realistic fuel-consumption
models in the objective function.

The fourth and fifth penalty terms reflect the vehicle advancing goals. These terms account for pre-specified
desired longitudinal and lateral speeds by penalizing speed deviations from those values. In the current work, vd,x hasa positive value, corresponding to the vehicle type or driver choice of desired longitudinal speed; while vd,y is set tozero to suppress unnecessary lateral movements. Note that, vd,y can be set to non-zero values in case, for example, a
vehicle is bound to exit the motorway at a downstream off-ramp or in emergency cases, where the controlled vehicles
should create appropriate space, e.g., for an ambulance or a fire truck to pass.

The two last penalty terms, which are related to the lateral road boundaries and the obstacle avoidance, respectively,
are described in detail in the following.
2.2.2. Road Boundaries Term

The penalty function for the road boundaries must be designed so as to disallow the automated vehicle (AV) to
depart from the road. To this end, the following smooth quadratic function, dependent on the width w of the road, is
adopted, which is equal to zero when the vehicle moves within the road boundaries; while its value increases the more
the vehicle would depart from the boundaries

fr =

⎧

⎪

⎨

⎪

⎩

(y − d)2 , y < d
0 , d ≤ y ≤ w − d
(y + d −w)2 , y > w − d

(13)

where the small positive parameter d is used to prevent the ego vehicle from moving too close to the road boundaries;
and w is the road width. Figure 1 displays the penalty function generated for the road boundaries for a three-lane
motorway with w = 9 m and d = 1.5 m.
2.2.3. Collision Avoidance Term

Crash avoidance is an absolute necessity in vehicle path planning, that may be achieved in different ways. Note that
crash avoidance is closely related to the highest deceleration available, not just the way (hard or soft) of considering
the related constraints. Thus, it is crucial that deceleration vis-à-vis an obstacle is applied timely, so as to avoid the
need for harsh or infeasible deceleration eventually; and this is indeed a feature enabled via OCP with future time
horizon (that helps anticipate imminent crash risks) and soft constraints (that exert timely smooth repulsion while the
controlled vehicle is approaching obstacles).

The penalty function (similar to potential field functions) for obstacle avoidance should feature high values at the
gross obstacle space, so that the ego vehicle is repulsed, and potentially unsafe trajectories are suppressed; and low (or
virtually vanishing) values outside of that space. To this end, we adopt, for each obstacle, an ellipsoid penalty function,
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which is best understood in its one-dimensional form f (x) = (1 + (x∕a)p1 )−1. This smooth function has a maximum
of 1 for x = 0; for |x| < a, the function retains values close to 1 (the maximum), while for |x| > a, it reduces to
very small values or virtually zero. The even integer parameter p1 influences the sharpness of the smooth transition of
function values from 1 (for |x| < a) and 0 (for |x| > a).

For the present needs, the function is generalised to two dimensions, and its two respective arguments �x and
�y reflect the longitudinal and lateral distances between the ego vehicle and each obstacle i, while the respective
counterparts of parameter a should be selected based on the vehicle dimensions, taking into account also the vehicle
and obstacle speeds for safe car-following distances. Thus, in two dimensions, the following ellipsoid penalty function
for each obstacle i is used

ci(x, y) =
1

( �x+s
0.5⋅rx

)p1 +
( �y
0.5⋅ry

)p2 + 1
(14)

where p1 and p2 are positive even integers, �x = x − xi and �y = y − yi are the longitudinal and lateral distances
from obstacle i, rx and ry determine the dimensions of the ellipse, and the term s introduces a shift of the ellipse’s
longitudinal centre position, as will be explained in the following.

For safety, the width of the ellipse, ry, should be equal to the width of a motorway lane,W , to avoid lateral intrusion
of the ego vehicle into a lane occupied by an obstacle. On the other hand, the length of the ellipse, rx, should consider,beyond the physical vehicle length, a safe space gap in front and behind of each obstacle i. In case the ego vehicle
is behind the obstacle, a safe space-gap, equal to ! ⋅ vx, should be maintained between the two vehicles, where ! is
the time-gap parameter (Rajamani, 2011). On the other hand, when the ego vehicle is in front of the obstacle, a safe
space-gap, equal to ! ⋅ vi, should be considered, with vi being the longitudinal speed of the obstacle. Moreover, the
physical dimensions of both ego and obstacle vehicles, Li = (�e + �o,i)∕2, with �e, �o,i being the ego and obstacle’s ilengths, respectively, should be considered as a minimum safe space-gap in case of zero speeds. Thus, the longitudinal
ellipsoid dimension is defined as

rx = ! ⋅ vx + ! ⋅ vi + Li (15)
Due to the difference in the longitudinal speeds of the ego vehicle and the obstacle, the above space gaps in front

of and behind the obstacle are accordingly different, hence the ellipse is longitudinally asymmetric with respect to the
physical centre of the obstacle. Therefore, the ellipse centre must be appropriately shifted, depending on ego vehicle
and obstacle speeds difference. Specifically, the position of the ellipse centre is expressed as the summation of �x andthe shift term s given by

s =
! ⋅ (vx − vi)

2
(16)

For safe car-following, the longitudinal size of the ellipse depends on the controlled vehicle’s and obstacle’s speeds,
as well as the time-gap value employed. Thus, the size is not fixed, but changes over time according to the mentioned
variables. For example, when the vehicles are stopped (zero speed), the ellipse’s longitudinal dimension equals the
average length of the controlled vehicle and the leading vehicle, in both sides of the ellipse; while, as the speed of both
vehicles increases, the dimension of the ellipse increases accordingly.

In Figures 2a-2g, different cases for the proposed ellipsoid are displayed for illustration. We assume an obstacle
with its centre point at 50 m. The ellipsoids in each case are displayed in orange color and are contrasted to the
corresponding space gaps resulting from the constant time-gap policy (red rectangle) (Rajamani, 2011). In Figure 2a,
both the ego vehicle and the obstacle have zero speed, leading to a symmetric ellipse shape around the obstacle centre,
as both the front and the back part around the vehicle centre (dashed black line) are equal to Li. Note that the shape ofthe ellipse is close to a rectangle due to the use of high values for both exponents p1 and p2 in (8) (e.g. p1 = p2 = 18).
In Figures 2b-2g, using a time-gap value ! = 1.2 s and a longitudinal obstacle speed vi = 20 m/s, it is observed how
the ellipse shape changes, and the ellipse centre shifts in dependence of the ego vehicle speed. Specifically, when the
ego vehicle has zero speed (2b), the centre of the ellipse is shifted to upstream to accommodate a back space-gap equal
to the average length of both vehicles; while the front part of the ellipse equals the space-gap, which depends on the
P. Typaldos et al.: Preprint submitted to Elsevier Page 7 of 22
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(a) ! = 0 s or (vx = 0 m/s and vi = 0 m/s)

(b) ! = 1.2 s, vx = 0 m/s and vi = 20 m/s (c) ! = 1.2 s, vx = 5 m/s and vi = 20 m/s

(d) ! = 1.2 s, vx = 10 m/s and vi = 20 m/s (e) ! = 1.2 s, vx = 15 m/s and vi = 20 m/s

(f) ! = 1.2 s, vx = 20 m/s and vi = 20 m/s (g) ! = 1.2 s, vx = 25 m/s and vi = 20 m/s
Figure 2: Illustration of the collision avoidance term (orange ellipsoid), ci(x, y), for different ego vehicle speeds with time
gap ! = 1.2 s and obstacle speed vi = 20 m/s, compared to the corresponding space gap of the constant time gap policy
(red rectangle). The lateral dashed line indicates the physical vehicle centre location.

speed of the obstacle. For higher ego vehicle speeds, it can be observed that the length of the ellipse increases, and,
at the same time, its centre shifts downstream. In the specific representation, the length of the front part of the ellipse
does not change, as the obstacle speed remains constant.

Potential obstacles, to be considered in the sum of the collision avoidance term in (12), are all vehicles around
the ego vehicle that might appear on its way, causing potentially a crash risk, during the considered planning horizon.
Thus, all vehicles within a longitudinal zone in front and behind the ego vehicle should be considered as potential
obstacles, and the length of this zone is taken proportional to the ego vehicle’s desired longitudinal speed times the
time horizon.
2.3. Problem Formulation

In conclusion, the path-planning problem may be formulated as OCP. The difference equations (1)-(5) may be
organised in the following vector form

x(k + 1) = f [x(k), u(k), k], k = 0,… , K − 1 (17)
where x and u are the system states and control variable vectors, respectively. With known initial state x(0) = x0 andobstacle trajectories, the optimal control problem consists in minimizing the objective function (12) subject to (17)
and control bounds

h = [u(k) − umax][u(k) − umin] ≤ 0, k = 0,… , K − 1 (18)
which reflect constraints (7) and (11) in a unified way.
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The general form of the objective function (12) is given by

J =
K−1
∑

k=0
�[x(k), u(k)] (19)

and then, the Hamiltonian function is given by (see (Papageorgiou et al., 2016, 2015))

H[x(k), u(k),�(k + 1), k] = �[x(k), u(k)] + �(k + 1)T f [x(k), u(k), k] + �(k)Th[x(k), u(k)] (20)
where �(k+1) stands for the co-state vector (equivalent to Lagrange multipliers) for the corresponding state equations.

The following conditions of optimality for the discrete-time OCP must be satisfied for k = 0,… , K − 1 (notation:
zw = )z∕)w)

x(k + 1) = H�(k+1) = f [x(k), u(k), k] (21a)
�(k) = Hx(k) = �x(k) + fTx(k)�(k + 1) + ℎTx(k)�(k) (21b)

Hu(k) = �u(k) + fTu(k)�(k + 1) + ℎTu(k)�(k) = 0 (21c)
Equations (21a) and (21b) are the state and co-state difference equations, respectively, while (21c) specifies the optimal
control variables. Furthermore, the following boundary conditions must be satisfied

x(0) = x0 (22a)
�(K) = 0. (22b)

Although expressing a dynamical process, the above minimization problem is, from a mathematical point of view,
a Nonlinear Programming Problem (NLP) due to the discrete-time nature of the involved process model, see ((Papa-
georgiou et al., 2016), (Papageorgiou et al., 2015)). However, thanks to the structure of the state equation (17), which
allows for the state variables to be efficiently eliminated as functions of the control variables, the optimisation prob-
lem may be solved, by use of reduced gradients, in the reduced space of the control variables much more efficiently,
compared to a general NLP problem with full dimension.

3. Numerical Solution and Model Predictive Control
3.1. Feasible Direction Algorithm (FDA)

The solution of the formulated OCP is computed by use of the very efficient feasible direction algorithm (FDA)
(Papageorgiou et al., 2016; Typaldos et al., 2020), which exploits the structure of the state equations to map the OCP
into an NLP problem in the reduced space of control variables. Thus, the algorithm attempts the calculation of a control
trajectory u(k), k = 0,… , K − 1, which corresponds to a local minimum of the cost function, in the mK-dimensional
space, wherem is the number of control variables. This marks a substantial reduction of the problem dimension, as the
state variables are eliminated. More specifically, FDA exploits the fact that g(k) = [

)f
)u(k)

]T �(k + 1) +
)�
)u(k)

equals
the reduced gradient in the mK-dimensional reduced space of the control, if the states and co-states involved in the
partial derivatives satisfy the state and co-state equations. The details about this fact may be read in optimal control
textbooks (e.g. (Papageorgiou et al., 2015)).

The algorithm is iterative, starting with an initial-guess feasible control trajectory; feasible meaning that it satisfies
all state equations and control inequality constraints. The multipliers of the inequality constraints that define bounds
are calculated, using (21c), as�(k) = −g(k)∕[)h∕)u(k)] for active constraints and�(k) = 0 for inactive constraints. At
each iteration, using reduced gradient information, a descent search direction in the (reduced)mK-dimensional control
space is calculated based on conjugate gradients (or quasi-Newton). Subsequently, a line-search procedure delivers
the optimal step along the search direction, and this optimal step leads to an enhanced feasible control trajectory,
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with improved objective function value. This enhanced trajectory is fed to the next iteration; and so forth, until a
sufficiently low reduced-gradient norm is obtained, which marks convergence to a virtually optimal control trajectory.
The algorithm guarantees improved objective values at each iteration and features global convergence, from any starting
control trajectory, to a local minimum.

The algorithmic steps of FDA are presented below (superscripts (i) indicate the iteration index);
1: Receive initial state values.
2: Guess an initial control trajectory u(0)(k), k = 0, . . . , K − 1
3: Calculate states x(0)(k)
4: In a unique loop: calculate g(0)(k),�(0)(k) and co-states �(0)(k) for k = K − 1, . . . , 0, starting with �(0)(K).
5: Set iteration index i = 0.
6: while i <max_iterations do
7: Specify a descent direction s(i)(k), k = 0, ..., K − 1.
8: Specify an optimal scalar step �(i) > 0 through line optimization.
9: Calculate u(i+1)(k) = u(i)(k) + �(i)s(i)(k), k = 0, ..., K − 1 and x(i+1)(k) for k = 0, ..., K − 1 (apply bounds on

control)
10: In a unique loop: calculate g(i+1)(k),�(i+1)(k) and co-states �(i+1)(k) for k = K − 1, . . . , 0, starting with

�(i+1)(K).
11: Calculate projected gradient when the control bounds are applied.
12: if not converged then
13: index increment, i ∶= i + 1
14: continue
15: else
16: break
17: end if
18: end while
19: Generate optimal control input u(k), k = 0, ..., K − 1

3.2. Dynamic Programming (DP)
As the OCP at hand is non-convex, FDA may converge to a local minimum. Note that, each single-lane vehicle

path can give raise to a local minimum, even though lane changing could possibly improve the cost function. More
precisely, gradient-based algorithms search, in each iteration, for descent directions for the control variables. However,
in the specific problem, due to the penalisation of lateral acceleration and the rectangular shape of the ellipse in the
collision avoidance term (14), a controlled path on a lane may feature positive gradients w.r.t. the lateral control,
i.e. any lateral deviation from the current path would locally increase the objective value. Thus, if there is no lateral
movement in the initial control trajectory, the controlled vehicle will remain in the same lane for the whole time horizon
(local minimum), e.g. trapped behind an obstacle on the same lane.

In order to overcome this difficulty and to enhance the quality of the optimal paths delivered by the gradient-
based FDA, Dynamic Programming (DP) is first used appropriately to deliver an initial guess trajectory. Despite
the involvement of DP in an initial problem solution phase, the overall required computation time for the optimal path
generation remains extremely low and certainly real-time feasible. The DP methodology is known to deliver a globally
optimal solution trajectory for optimal control problems. However, DP is characterized by computational cost, which
increases exponentially with the problem dimensions; and this cost is indeed too high in the present application for
efficient real-time path-planning. However, DP is not considered here stand-alone, as it is not real-time feasible for the
original path-planning problem. Instead, a simplified problem is solved through DP in very short time, in order to be
used as a good initial guess for FDA. Using this combination of methods, the weaknesses of both, i.e. FDA leading
to bad local minima and DP being infeasible in real time due to the curse of dimensionality, are strongly mitigated,
resulting in good vehicle paths within very short computation times.

In particular, such rough, but globally optimal solutions of the DP simplified problem were found to include lane
changes in driving situations where a lane change is indeed beneficial. Note again that the DP algorithm is only
used to deliver the initial trajectory for the FDA. Therefore, sacrificing some accuracy due to the simplifications is
not important, as the FDA has the final responsibility to deliver an optimal path that satisfies all vehicle tasks and
constraints.

The simplifications introduced in the DP problem are:
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• A larger step size T (1 s) is used, versus the four times smaller time step (0.25 s) used in FDA and deemed
appropriate for path-planning of AVs. As a consequence, the number K of time steps within each planning
horizon decreases accordingly.

• The state equation (5) is dropped, and the longitudinal acceleration ax is used as a control variable instead of thejerk.
• The lateral vehicle motion is also simplified by dropping state equation (4) and modifying equation (2) assuming

that the vehicle’s lateral position is discrete and lane-based. Specifically, the lateral control is limited to three
distinct values at each time step, namely {−1, 0, 1}, meaning that the vehicle can only apply a lane change
towards the adjacent left or right lanes or stay on the same lane.

• Only one lane change is allowed at each planning horizon, in order to reduce the amount of options to be explored
by DP.

• The longitudinal acceleration is also roughly discretised andmay obtain one out of three values, namely {−3, 0, 3}
m/s2.

Given the above modifications and the fact that state constraints may be directly handled by the DP algorithm, the
cost function used with DP is simpler than the corresponding cost function of the OCP and is described as follows

JDP =
K−1
∑

k=0
[w1a

2
x(k) +w2u

2
y(k) +w3(vx(k) − vd)2] (23)

where ax and uy are the control variables, corresponding to the longitudinal acceleration and the discrete lateral
movement, which reflects the lane changes. Collision avoidance, road departure avoidance and suppression of negative
speeds are taken care by the DP algorithm directly, as will be discussed later.

In more detail, the vehicle kinematics (with bigger time step T ) in the simplified DP problem are considered as
follows

x(k + 1) = x(k) + vx(k)T + 1
2
ax(k)T 2 (24)

y(k + 1) = y(k) + uy(k) (25)
vx(k + 1) = vx(k) + ax(k)T (26)

where x(k), y(k), vx(k) correspond to the state variables of the simplified problem and reflect the vehicle’s longitudinal
position, lane and speed at discrete times k = 0, . . . , K − 1, respectively. The control variables ax, uy reflect the
longitudinal acceleration and lateral change of lane, as mentioned. The state and control variables are bounded within
the following feasible regions

x(k) ∈ X (27)
u(k) ∈ U (28)

where the admissible state region X does not allow for road departures, vehicle interference or negative longitudinal
speeds; while the admissible control region U contains the mentioned discrete values of the control variables in the
simplified problem, i.e. ax ∈ {−3, 0, 3} m/s2 and uy ∈ {−1, 0, 1}.

After discretisation of the longitudinal position, speed and acceleration with consistent respective increments,
the standard discrete DP algorithm is designed as follows. The algorithm starts with time step K − 1 and advances
backward, step-by-step. At every step k, all discrete states are branched into all possible transitions (reflecting all
combinations of the discrete ax and uy values), whereby infeasible transitions (road departure, obstacle collision,
negative longitudinal speed) are ignored. For each feasible discrete state, the corresponding optimal controls, along
with the corresponding optimal cost-to-go value, are stored. The algorithm ends, when the initial state at k = 0 has
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been evaluated. Eventually, starting from the given initial state and progressing forward step-by-step by following the
respective optimal controls at each encountered discrete state, the optimal trajectories are obtained.

In view of the positive semi-definite nature of the objective function (23), alternative forward-branching procedures
can be employed for the solution of the simplifiedDP problem, such as branch-and-bound or DFS (Depth-First-Search)-
based approaches (Cormen et al., 2001). In the current work, in addition to the aforementioned standard DP, a forward-
branching procedure, which employs DFS-based branching (Bar-Yehuda et al., 1989; Cho and Shaw, 1997), was also
tested. In this approach, states x(k) are considered as nodes that can be branched, by application of discrete control
combinations, to corresponding subsequent nodes x(k+1), whereby transitions that lead to infeasible states (nodes) are
ignored. The initial state (root)x(0) is first branched towards one single (feasible) transition (i.e. using a specific control
combination) all the way, until a state (node) x(K) of the final time K is reached. The cost of this path (trajectory) is
provisionally stored as the current optimal cost. Then, the algorithm backtracks continuously, according to the DFS
procedure, and creates new paths to the final time K if the arrival cost of all intermediate nodes is lower than the
provisional optimal cost. In case a new complete path from k = 0 to K is found, which has lower cost, the previous
optimal cost is replaced. The algorithm ends when all open (not branched) nodes have a higher arrival cost than the
current optimal cost. Thus, the algorithm may leave many feasible nodes unvisited, which leads to corresponding
reduction of the computational effort, without affecting the optimality of the solution. Remarkably, this DFS-based
procedure, which leads to identical solutions as the standard DP algorithm, was found to take a computation time ten
times lower, on average, compared to the standard DP algorithm for the problem at hand. Specific run times for all
employed algorithms are reported in the next section.

More formally, the algorithmic steps of the forward-branching procedure are as follows:
1: Initialize: root vertex p (initial state), JBest = ∞, k = 0
2: Call DFS algorithm for traversing, recursively:
3: procedure DFS(p)
4: label p as visited
5: if k > K or p == infeasible then
6: return
7: end if
8: if k == KandJDP ,p ≤ JBest then
9: JBest = JDP ,p
10: else if JDP ,p ≥ JBest then
11: return
12: end if
13: for each child q (combination of u ∈ U ) of p do
14: if q is undiscovered then
15: calculate x(k + 1), y(k + 1), v(k + 1) and JDP ,q
16: if x ∉ X then
17: flag q as infeasible
18: end if
19: k = k + 1
20: call DFS(q)
21: end if
22: end for
23: end procedure
where p is the parent nodes, q are the children nodes of a parent p, JDP ,q is the cost obtained at a node q and JBest isthe optimal cost.

The complexity of both DP algorithms can be considered to be known beforehand and constant, due to the fact
that the dimensions of the problem are fixed. Specifically, the problem is solved for fixed time-horizon, which means
that the dimensions of the control and state variables are not changing. Of course, the actual execution complexity
is reduced due to a number of factors, such as: surrounding vehicle density (affecting the amount of feasible states),
current lane (one or both lateral movements possible), the size of a time step, the time-horizon length.

Due to the introduced simplifications, the resulting DP optimal control trajectories have to be processed appropri-
ately, before being used as an initial control trajectory for FDA, so as to be consistent with FDA control inputs. More
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specifically, the longitudinal acceleration resulting from the DP procedure is transformed to the corresponding jerk
via simple Euler differentiation; while any lane changing delivered by the DP procedure is transformed into a lateral
acceleration trajectory that leads to the intended lane change also in the FDA settings.
3.3. Safety Override

The proposed optimal control approach, with the use of a penalty function (14) for collision avoidance does not
absolutely guarantee crash-free path generation. Although in the vast majority of cases, the solution of the optimization
problem produces trajectories that do not include crashes, thanks to the selected high value of the corresponding
weighting parameter, there are very rare cases where, due to the conflicting goals of the collision avoidance term
versus the desired speed term, a trajectory including a crash may result. These two terms may be conflicting, as the
first term may be striving to decrease the ego vehicle speed, in presence of a slower leading obstacle, while the second
term is striving to increase the speed towards the desired speed. A balance between these two terms is typically reached
(through the corresponding penalty weights in (12)), which guarantees efficient vehicle advancement while suppressing
collisions. However, under extreme conditions, e.g. in high density scenarios, the possibility of a collision cannot be
utterly excluded.

In order to avoid such decisions and ensure safety, an emergency rule is activated if the solution procedure produces
an unsafe path. In this case, the just generated path is dropped, and a new one is generated, with reduced desired speed
and planning horizon. Specifically, the desired speed is set equal to a percentage of the leading obstacle’s speed (e.g.
95% of obstacle’s current speed) and the planning horizon is reduced by half. Both these measures reduce the size of
the desired-speed term and enable crash-free vehicle advancement. In particular, the reduction of the planning horizon
is helpful because the objective function (12) is additive over the time steps; thus, in some rare driving scenarios, it may
appear less costly to crash with the leading vehicle for the first few time steps and then achieve all goals for the rest of
the planning horizon; instead of avoiding the collision and bearing a high cost each time step due to the desired-speed
deviation. Factually, these actions definitely suppress collisions, as the desired speed term is not competing with the
collision avoidance term anymore.
3.4. Model Predictive Control

Summarising, the presented numerical solution approach requires, as input data, the current (initial) ego vehicle
(EV) state, as well as the current and future positions and speeds of obstacle vehicles (OVs); to produce optimal EV
controls and states over a future time horizon KT . This is an open-loop solution, and, given the dynamic environment
(moving OVs), the time horizon should be long enough to anticipate and prepare for future situations and avoid myopic
control actions. On the other hand, as time advances, the uncertainties related to the changing environment (actual
versus predicted OV movement) and to the actual vehicle advancement (versus the open-loop solution) increase, as
increasing deviations from the assumed predictions are inevitable. To address these uncertainties, the open-loop solu-
tion procedure is cast in a model predictive control (MPC) frame, whereby the solution is re-computed online, using
the same horizon KT (rolling or receding horizon), whenever substantial changes regarding the initial predictions are
detected at any time before the end of the time horizon. The new computation uses updated initial states and up-
dated predictions about the movement of OVs. This calls for computation times smaller than the path update period,
something that is indeed satisfied by the presented efficient solution procedure.

Considering traffic flow with many vehicles, as considered in the subsequent simulation investigations, three types
of vehicles are distinguished:

1. Manually driven vehicles, which, in the simulation investigations, are navigated by the employed microscopic
simulator (Aimsun).

2. Automated vehicles without V2V communication capabilities, which are navigated according to the presented
procedure. Such vehicles rely only on their own sensors to sense the current position and speed of other sur-
rounding vehicles of any type, whose paths are predicted simply by assuming that they will keep their current
lane and speed fixed over the EV planning horizon KT .

3. Connected automated vehicles (with V2V communication capabilities), which are also navigated according to
the presented procedure. However, such vehicles broadcast their latest path decision to other surrounding con-
nected vehicles; and can receive the latest path decisions of surrounding connected vehicles. Note that this
information is broadcasted asynchronously, i.e. a path-planning decision by a vehicle is broadcasted as soon as
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it is produced. Thus, connected AVs rely also on their own sensors to sense the current position and speed of
other surrounding vehicles; but, in addition, they receive the latest path planning decision by other surrounding
vehicles of the same type.

In the scenarios tested in this work, two cases of AV connectivity are considered:
• Non-connected automated vehicles
• Connected automated vehicles.
Both cases are tested for different penetration rates, along with manually driven vehicles, which are guided by the

microsimulation platform.
As evidenced by the above statements, for manually driven vehicles and non-connected AVs, no enhanced infor-

mation is available, i.e. the non-connected AVs have information about the surrounding vehicles only through their
sensors. Consequently, they only know the initial position and speed of the obstacles. So, in order to predict their
surrounding vehicles path, the AVs assume that all the obstacles keep their speed and lane fixed over the planning
horizon.

On the other hand, connected AVs, having some obstacles of the same type, enjoy enhanced information exchange
with such obstacles. Specifically, connected obstacle vehicles (which are also controlled by the proposed approach)
send their last generated path to other connected AVs around them. Thus, whenever a connected AV needs to generate
a path, it requests the last generated paths of its surrounding connected obstacles, which contains not only the initial
position and speed, but also the acceleration and the lane information over the planning horizon. Note that the com-
munication between the connected vehicles is asynchronous, which means that each controlled vehicle generates its
path independently, in terms of time, of the other vehicles. Thus, the time a surrounding connected OV last generated
its path may deviate from the time that the EV is calculating its own path, e.g., the EV is calculating at time k, while
the OV had calculated its path at time k−n. For this reason, the available decided path for each connected OV extends
up to time k + K − n, where K is the time horizon, and must be extended for the n − 1 missing time steps. This is
done by considering that the OV speed and lane, for these remaining time-steps, remain constant and equal to the last
communicated values (of time k − n +K).

As mentioned earlier, the EV path is re-generated in real time to address evolving deviations from the last predicted
driving conditions. More specifically, a new updated path is generated in the following cases:

• The EV has driven for the duration of half planning horizon (KT ∕2) according to the last generated trajectory.
The plan is then updated, even if no deviations are observed, because application of the second half of the last
path may lead to myopic actions.

• One or more surrounding vehicles deviate substantially from their predicted paths, e.g. an OV changed lane or
changed its speed significantly, compared to its predicted movement.

• A new vehicle enters into the planning zone around the EV, corresponding to a new OV that was not accounted
for in the last EV planning.

• The controlled vehicle cannot track the produced path (e.g. when certain safety-related lane-changing restrictions
are violated in the microscopic simulation environment).

It may be useful to highlight that the pursued OCP approach aims at minimising an objective function, which
reflects the various vehicle tasks, the successful fulfillment of which may entail complex vehicle manoeuvres. In other
words, the goal of the vehicle movement strategy is not to track a pre-specified vehicle path, but to create an opportune
path; therefore, classic stability is not a major issue here, the main interest focussing on the quality (in terms of the
degree of task fulfillment) of the created path.

4. Simulation Testing and Results
4.1. Simulation Environment

In order to evaluate the proposed path-planning approach, including its MPC-based application, in realistic envi-
ronments, the procedure was implemented in the Aimsun’s (Aimsun Next, 2019) micro-simulation platform with the
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use of both provided API and SDK tools to integrate the developed path-planning procedures in the traffic context.
This implementation enables the investigation of how vehicles, guided by our path-planning approach, interact with
each other and with manually driven vehicles, that emulate human driving, in countless driving situations occurring for
a variety of traffic conditions. Due to the discrete nature of the micro-simulator with respect to lateral vehicle move-
ment, the produced path of each AV must be modified appropriately to enable its application within the simulator.
Specifically, Aimsun does not allow for continuous lateral vehicle positioning or movement, other than discrete lane
assignment and instantaneous (vertical) lane changing. Therefore, the continuous lateral AV movements, produced by
the path-planning approach, must be translated appropriately in terms of Aimsun lane positioning. For example, in a
three-lane motorway section with each lane being 3 m wide, Aimsun assumes that the right-most lane is lane 1, the
middle lane is lane 2 and the left-most lane is lane 3. Thus, for Aimsun usage, the lateral EV position at any time must
belong to one of these lanes. On the other hand, in the proposed path-planning approach, lateral vehicle position is
continuous (as in real conditions), hence, the AV assignment to a discrete lane in the simulator is effectuated according
to the AV lateral position: if the AV lateral position is within a range [0, 3] m, the AV is assigned to the right-most lane;
if it is within range [3, 6] m, it is assigned to the middle lane; and for range [6, 9] m, the AV is assigned to the left-most
lane. The same applies also in case the AV is executing a lane change, leading to a “vertical” lane change, as required
by Aimsun, according to Figure 3. This issue is not part of the proposed vehicle movement strategy, which, in a real
application, would produce a continuous path. It is only for the needs of the commercial micro-simulation platform
(Aimsun) that this discretisation is introduced, so the procedure is deemed to be of minor importance for the designed
movement strategy, but is necessary to enable usage of Aimsun for the comprehensive traffic-level evaluation.

In fact, the OCP decides whether a controlled vehicle will apply a lane change or not, which depends on the time
the optimal control decided this lane change to happen. As already mentioned in the previous section, that the OCP
is solved for a fixed time horizon, K , however only half of this horizon is applied (at most). Thus, if a lane change
was decided during the first K∕2 period, then the vehicle actually applies the lane change manoeuvre; otherwise, if
the lane change was decided to happen during the second half of the horizon, the vehicle just stays at its current lane,
with its lateral position being the middle of this lane. Note that, in a lane-based highway environment, a vehicle
mostly follows a leader or drives on its lane with its desired speed, as the lane-change manoeuvres are not frequent.
So, in these cases, explicit consideration of wheel steering is not important. On the other hand, when a lane-change
manoeuvre is decided, the vehicle must safely drive from the centre of a lane to the centre of an adjacent lane. This
lane change manoeuvre, in real application, can be considered as a tracking problem, with pre-fixed lane-change path,
for the corresponding vehicle. For example, the following procedure can be followed:

• The algorithm decides about when and where to effectuate a lane-change within a time horizon.
• Whenever a lane change is decided, a pre-fixed lane-change trajectory can be applied, e.g. simply using a sigmoid

function from the centre of the vehicle’s lane to the centre of the target lane (Claussmann et al., 2015).
For the simulation investigations, two cases were considered, each of them at different penetrations of AVs:
• No connectivity: Each AV is aware only of the current position and speed of obstacles (via its own sensors).
• Connected automated vehicles: Each AV is aware of the current position and speed of obstacles; in addition, it

receives the path-planning decisions of other AVs, which facilitates more accurate short-term prediction of their
movement.

In both cases, manually driven vehicles are moved according to Aimsun’s Gipps (lane-changing) (Gipps, 1986)
and IDM (car-following) (Treiber and Kesting, 2013) models.

All investigations use as a testbed a homogeneous motorway section of 3 km in length, with three lanes (each
lane being 3 m wide). Two different levels of inflow, 3.000 veh/h and 5.000 veh/h, into this section are simulated,
and vehicle trajectories and traffic conditions are monitored over a simulation horizon of 60 min. Entering vehicles
are randomly assigned their characteristics (type of vehicle, dimensions, desired speed, initial lane and time gap). In
particular, vehicle type is selected randomly, according to the examined penetration rate of AVs. All vehicles are
"passenger cars" with dimensions selected randomly, from a default range, by the Aimsun simulator. The desired
speed of each vehicle (of both types) is selected randomly, with uniform distribution, from a range [80, 120] km/h.
The constant time gap, !, for both automated and manually driven vehicles, is also selected randomly, with uniform
distribution, from a range [0.8, 1.8] s (Spiliopoulou et al., 2018).
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Figure 3: AV lateral position trajectory (blue line) and its mapping into Aimsun lanes (orange lines).

For AVs, a planning horizon of 8 s is used, with a path-planning step of T = 0.25 s. Thus, each plan consists of
controls jx(k), ay(k) for K = 32 time steps. However, as mentioned earlier, half planning horizon is applied at most,
which corresponds to 4 s, before a re-plan. The control bounds have been set to jx ∈ [−4.0, 4.0] and ay ∈ [−1.5, 1.5]
for longitudinal and lateral controls, respectively, but it should be noted that high (absolute) control values are virtually
never reached. In (13) d = 1.4; and in (14) p1 = p2 = 18, which lead to rectangular-like ellipses.

In an initial offline trial-and-error procedure, where many different driving situations were tested, the penalty
weights in (12) were set to [w1, w2, w3, w4, w5, w6, w7] = [1.5, 1.0, 1.5, 0.05, 1.0, 15.0, 15.0]. The choice of the
penalty weights does not depend on the vehicle class or the infrastructure. Problems with multiple sub-objectives,
reflected in corresponding weighted penalty terms, have a long history in optimisation. The appropriate specification
of weights, so as to reflect the desired relative importance of the sub-objectives, is not a trivial task and is usually
addressed via trial-and-error, i.e. by running experiments and evaluating their outcome. This typical trial-and-error
procedure was pursued also in this work. Starting from an initial estimate about the appropriate weight values, the
following steps were executed:
(a) Run a simulation involving many different driving circumstances for the AVs.
(b) Evaluate the AV behaviour during the simulation (e.g. crashes, road departures, travel time etc.).
(c) If the vehicle behaviour is not satisfactory with respect to some sub-objectives, modify the weights accordingly

and go to a).
(d) Else appropriate weights have been found.

4.2. Results
Figure 4 displays the trajectories of several representative AVs, extracted from a simulation scenario with low

inflow (3,000 veh/h) and 50% penetration of connected AVs. The trajectories refer to the longitudinal and lateral
acceleration and speed; the longitudinal jerk; and the lateral continuous position, produced by FDA, along with the
mapping based on lanes, required by the Aimsun microsimulation environment. In Figure 4a, it is observed that the AV
cannot reach its desired speed (orange lines). This happens because there is no space to overtake and, consequently,
it simply follows the leader by adapting its longitudinal speed in a car-following mode. In Figure 4b, the AV starts
with a longitudinal speed equal to its desired speed. In this case, it can be seen that the vehicle needed to slow down
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(a) (b)

(c) (d)
Figure 4: Trajectories of several representative AVs during the simulation, representing longitudinal and lateral speeds
(orange line is the longitudinal desired speed) and accelerations, longitudinal jerk, and lateral continuous position produced
by FDA (blue lines), along with the corresponding mapping on lanes (orange lines).

and apply lane changes twice, in order to maintain its desired speed. Finally, Figures 4c, 4d, combine both first two
simpler cases, as the corresponding AVs are manoeuvring through the surrounding slower traffic, managing to achieve
their desired speeds for small parts of their trip, while for the rest part they simply follow their leaders, waiting to find
appropriate space to overtake, as human drivers would also do. As far as the longitudinal jerk and the longitudinal and
lateral accelerations are concerned, the magnitudes are limited and quite smooth, which is good for passenger comfort
and fuel consumption.

Figures 5 and 6 present results obtained for the two different demand levels, namely for 3.000 veh/h and 5.000
veh/h, respectively. Each figure contains results of different penetration rates of AVs. In addition, each figure displays
and contrasts results corresponding to the two evaluated cases of AV connectivity: connected AVs (green lines) and
non-connected AVs (blue lines). For each case, the solid lines reflect on the average results of the whole vehicle
population, including both automated and manually driven vehicles, while the dense-dashed and sparse-dashed lines
reflect on the average results of automated and manually driven vehicles, respectively. These summarized results
concern the average delay time; the average speed; the average number of lane changes; and the average deviation
from the desired speed.

Under both considered demand levels, the online path-planning approach appears to be more efficient in navigating
AV speeds closer to the respective desired speeds, compared to manually driven vehicles. Apparently, the suggested
approach is more successful at exploiting gaps through traffic and applies "smarter" maneuvers; which leads not only
to better performance of each AV, but also to increased overall traffic performance. Specifically, in both Figures 5 and
6, as the penetration rate of AVs rises, an increase of the average speed, and consequently a significant decrease of the
delay, for the whole traffic, is observed. Note that, this improvement also affects the manually driven vehicles, which
appear to also benefit from the AVs presence and decisions.

In terms of lane changing, the number of lane changes of all vehicles, in the lower demand level (Figure 5c), is
higher compared to the higher demand level (Figure 6c). This is due to the density prevailing in each case, where, for
the lower demand levels there is more space for the vehicles to apply a lane change in order to overtake slower traffic.
Moreover, in Figure 5c, it can be observed that the number of lane changes of AVs is decreasing as their penetration
rate rises. This happens as, for low penetration rates, the AVs need to overtake slower traffic, including other slower
AVs or manually driven vehicles, which do not have the same capability to achieve their target speed; while for higher
penetration rates, the need for overtaking is reduced, as the increased number of AVs ensures speeds closer to the target
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(a) (b)

(c) (d)
Figure 5: Average delay time, speed, deviation from target speed and number of lane changes for: i) connected (green
lines); and ii) non-connected (blue lines) AVs; for a demand of 3.000 veh/h. Solid lines represent the average of the whole
section, while dense-dashed and sparse-dashed lines reflect on average results for automated and manually driven vehicles,
respectively.

speed of each vehicle; thus, it is less probable for a vehicle entering the section to face a slower one. On the other hand,
in higher demand levels (Figure 6), the number of lane changes of AVs is increasing with their increasing penetration.
In this case, where traffic is denser, it is harder, for both the manually driven vehicles and the AVs to overtake. Thus, as
the penetration rate of AVs rises, there are more overtakes from AVs, which exploit the available space better, helping
to maintain increased speed and consequently create spaces for the following traffic. In both demand levels, the AVs
efficient maneuvering behavior allows for the manually driven vehicles to increase their lane changes as well.

Contrasting the two types of AVs, the results in Figure 5 indicate only small differences, with connected vehicles
being able to achieve slightly better performance in higher penetration rates. This similar outcome is due to the fact that,
in lower demand levels, driving space is ample for an AV to maneuver efficiently, which is also evident from Figure 5c,
where the difference in the average number of lane changes is moderate. For the same reason, all vehicles (manually
driven and automated) do not need to change their speed frequently or strongly, hence the added value of receiving
improved information (last path decision) from the surrounding AVs, through the connectivity with other vehicles, is
not significant. On the other hand, in Figure 6, where the demand level is higher, vehicle connectivity is seen to have a
high impact on the vehicles performance. In this scenario, it is noticed that, although both types of vehicles manage to
achieve improved performance, connected AVs outperform the non-connected ones, as the penetration rate increases,
with most noticeable differences in the area of 75%-100%. This is explained as, in denser conditions, the enhanced
information that the AVs have about the surrounding traffic enable them to achieve better reactions in need of a lane
change. That means, that the connected AVs are able to apply few lane changes due to better timing, compared to the
non-connected ones, which also leads to keeping their speed closer to the desired speed.

Finally, Figure 7 reports on the average number of plans (and re-plans) of the two types of AVs, in dependence of
the penetration rates and for both demand levels. In Figure 7a, it is noticed that both types of AVs have approximately
the same average number of (re-)plans. In this low demand case, all AVs are able to navigate close to their desired
speeds, with no significant changes to their predicted paths. The slightly reduced values for the connected AVs are due
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(a) (b)

(c) (d)
Figure 6: Average delay time, speed, deviation from target speed and number of lane changes for: i) connected (green
lines); and ii) non-connected (blue lines) AVs; for a demand of 5.000 veh/h. Solid lines represent the average of the whole
section, while dense-dashed and sparse-dashed lines reflect on average results for automated and manually driven vehicles,
respectively.

to their enhanced information, specifically the knowledge of the lane changes that other neighboring AVs have planned
to apply. On the other hand, in Figure 7b, where the higher demand level case is presented, it is observed that, as the
penetration rate increases, there is an increase of plan numbers for both types of AVs. As also mentioned above for
the lane changing behavior, this is because in this case, for low penetration rates, the surroundings of each AV do not
change much, hence there are few deviations from the predicted paths for the obstacles. However, as the penetration
rate rises, the AVs are more capable in maneuvering through traffic, which increases the need for re-plans. In these
conditions, the number of lane changes increases, vehicles may accelerate or decelerate after an overtake or may reach
a vehicle downstream, which was not included in their initial prediction. This increase of the average number of plans
is different for the two types of AVs, with connected AVs demanding less re-plans compared to the non-connected
ones, as their enhanced knowledge allows them to have more accurate view of the surrounding traffic, including the
intended lane changes and the tendency of other AVs to accelerate or decelerate.

Regarding computation times, the average CPU-time per planning of an AV path during the simulation is 0.1 s for
the DP, 0.01 s for forward-branching DP and 0.01 s for FDA, with the corresponding maximum values during a whole
simulation being 0.2 s for DP, 0.06 s for forward-branching DP and 0.2 s for FDA, which indicates that the proposed
approach is clearly real-time feasible. In addition, in Table 1, the average execution times of the three algorithms, for
different planning horizons are reported, which verify their polynomial increase against the time-horizon length; and
the real-time applicability of the proposed approach, even for increased time horizons.

Demonstration of the vehicle movements in Aimsun micro-simulation platform is available as videos at https:
//bit.ly/3m2nPa2. Specifically, there are three videos, showing the connected AVs’ behavior in both demand levels,
i.e. 3.000 veh/h (video-1) and 5.000 veh/h (video-2 and video-3), both for 100% penetration rate. It is evident from
the videos that the above OCP formulation is conceived for American freeway traffic rules, whereby vehicles may use
any lane at any speed and may overtake on the left or right. Adoption of European driving rules, where overtaking is
only from left, may be easily accommodated according to (Makantasis and Papageorgiou, 2018).
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Table 1
Average execution times of the three proposed algorithms, FDA, DP and Forward DP, for different planning
horizons.

Time Horizon (KT ) Average CPU Time
FDA DP Forward DP

6 seconds 0.002 0.04 0.001
8 seconds 0.010 0.09 0.010
10 seconds 0.020 0.12 0.015
12 seconds 0.035 0.17 0.018

(a) (b)
Figure 7: Average number of (re-)plans for different penetration rates of the two evaluated cases: non-connected AVs
(blue); and connected AVs (green) and for different demand levels: a) 3.000 and b) 5.000 veh/h

5. Conclusions
Automated vehicle path-planning has been expressed as an optimal control problem. A combination of DP and

NLP techniques allows obtaining good local minima for this non-convex optimization problem efficiently. This effi-
ciency facilitates an online MPC-based (re-)planning approach, by observing or receiving information (according to
the connectivity features) and predicting the trajectory of the surrounding vehicles and adapting the EV path accord-
ingly. The proposed MPC-based approach is embedded within the Aimsun micro-simulation platform, enabling us to
thoroughly examine the behavior of the approach in presence of vehicles emulating human driving behavior and in
a plethora of realistic driving instances. For the simulation investigations, two cases were considered, each of them
at different penetration rates of AVs: i) non-connected vehicles, where each AV is aware only of the current states
of obstacles, which are either manually driven or automated; and ii) connected AVs, where each AV is aware of the
current states of obstacles, but, in addition, it receives (asynchronously) the path-planning decisions of other AVs.

Demonstration results are reported for a homogeneous motorway stretch and different lane-capacity utilizations.
Based on the results, it is concluded that the introduction of AVs, guided by the suggested approach, benefits the
overall traffic performance. Specifically, in all scenarios, as the penetration of AVs rises, an increase of the average
speed and consequently a decrease of the average delay of both automated and manually driven vehicles are observed.
AVs appear to be more effective to navigate closer to their desired speed compared to the manually driven vehicles in
all tested scenarios. Specifically, in the case of lower demand level, both non-connected and connected AVs manage
to improve their average delay time by 44%, with the speed being increased by 4% compared to the manually driven
vehicles. On the other hand, for the higher demand level scenario, the improvement of the average delay time was
38% and 69% for the non-connected and the connected AVs respectively; while the average speed was increased by
6% and 10%, respectively. The improved performance of controlled vehicles stems from their ability to apply smarter
manoeuvers, while in very high density or congested cases, the performance of both controlled and non-controlled
vehicles is expected to be similar, due to very limited or no space to exploit. Of course, further investigation, in such
cases, is required, which is part of future work. As far as the AVs are concerned, in lower demand levels both connected
and non-connected AVs perform similarly, due to sufficient space for maneuvering. The superiority of connectivity
becomes evident in higher demand levels, as the enhanced information about the surrounding traffic is crucial, and
connected AVs appear more efficient at increased penetration rates, due to the improved real-time information that
enables more pertinent obstacle movement prediction.
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Current and future work is focused on:
• Investigation of scenarios, which feature very high demand levels and congested areas.
• Consideration of platooning and multiple vehicle coordination and study of the synergistic effects and impact

on the overall traffic flow.
• Application of a similar approach for urban road networks.
• Introducing on-ramps, off-ramps and emergency cases, e.g. controlled vehicles need to create appropriate space

for an ambulance.
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