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Abstract

Microscopy is a critical component for the visualization of samples & objects that
cannot be seen with the unaided eye, allowing scientists to have a glimpse at a world of
unimaginable complexity. Different specialized microscopes deploying several imaging
techniques are essential for this purpose, however this way scientists tend to consume an
unrealistic amount of time to achieve accurate diagnosis. In this thesis we exploit a new
advanced HTS microscope featuring Hyperspectral, Transmission, Reflectance, Fluores-
cence and Polarization imaging. By illustrating the morphological, molecular, electronic
and crystalline structures of matter, this microscope provides unique features for auto-
mated state of the art object classification. Upon observing those unique characteristics
we approach a Multi-Modal object classification method, utilizing Convolutional Neural
Networks for each modality and a Fully-Connected Neural Network which combines ev-
ery unique illustration of the specimens. The CNN’s outputs are providing a serial unique
encoding for each image and the FC-NN serve as a decoder capable of processing tabu-
lar labeled data. This thesis provides extensive analysis and results regarding the different
combinations of imaging modalities with the intention to extract valuable information about
their importance on the classification process. Exploiting the full power of our NNs system,

by deploying every imaging modality we achieve accuracy greater than 99%.
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Chapter 1

Introduction

Brief Description Since always,human’s curiosity, intelligence, inventiveness and need for
answers drived us to create tools and machinery to explain and understand everything that
surrounds us, the psychical attributes ,the chemical properties and the use of them for fur-
ther exploration of the universe and its components. Subjects that could not go unnoticed
is the microcosmos and macrocosmos that naked eye is not capable to examine. That led
to inventing specialized machinery for enhanced observation that could help our research.
Microscopy as one of the main research field for enhanced observation utilizes different
observation techniques and with those in hand we can further explore and evolve our un-

derstanding on objects nature and potentials uses.

Microscopy is a key component for many science fields like Biomedical science,
Forensic science, determining the health of an ecosystem ,studying the role of a protein
within a cell, studying atomic structures, tissue Analysis(Histology) and many others. It
can be used to solve problems, assist to a conclusion even prevent diseases to plants, ani-

mals and humans.

This thesis provides extensive analysis and results regarding the different combinations
of imaging modalities with the intention to extract valuable information about their impor-
tance on the classification process. The specimens we have available are hairs, skin, fibers,
blood, glass and sand. Microscopy is vital to multiple areas within forensic science and

there is a variety of techniques utilized.

Traditionally, forensic document experts and paleographers used chemical solution based



methods to study the extrinsic and intrinsic components of the important historic docu-
ments [1]. These chemical solution based methods helped in document analysis. But un-
fortunately these techniques were time consuming, sensitive to temperature changes and
destructive in nature i.e. harms to the important documents were irreversible.Microscopy
implements non destructive ways of examine a trace and provide us information about the
object’s psychical substance by applying plenty of lighting techniques and different acquir-

ing processes.

Microscopy can be applied in the identification of trace evidence such as fingerprints,

fibers, hairs,fragments which are left the crime scene, on a victim or suspect.

Fragments of glass may be found in incidents such as house break-ins and road traffic
accidents. Microscopes can be used to compare shattered glass left at the scene to that
found on a suspect. Different types of glass have varying compositions, allowing scientists

to analyze its origin by looking closely at its structure.

When a gun is fired, it leaves behind a chemical residue, known as gunshot residue (GSR).
This residue can help identify a weapon used at a crime scene and link a suspect to a crime
if the GSR is found to match that which was left at the scene of the crime.The tiny particles

that makeup GSR measure between a few hundred nanometers to a few microns.

Forensic epidemiologists investigate how disease spreads. In epidemiology, microscopes
can be used to investigate the root of an outbreak by tracing the pathogen involved to its
source. This information can be essential in preventing further infection, reducing the risk
of an epidemic.In vast times like nowdays with Covid-19 still spreading it could be ex-
tremely essential, also an attempt to ’catch” covid traces at early stages in human lungs has

already begun , similarly disasters could be prevented.



Microscopes have many uses in the field of forensic anthropology, the field of identify-
ing the factors of death. For example, bone and other body tissues can be investigated
using a microscope to gain clues about the cause of death.

Scanning electron microscopes are often used to study soil samples taken from the location
of a body to determine the length of time the body had been there, the bones can be investi-
gated for sharp force trauma and the coating left on the teeth may be examined, which can
also be indicative of a cause of death.

Similar to forensic anthropology, forensic pathology investigates and determines the cause
of death. The difference between forensic anthropology and forensic pathology is that
forensic pathologist aims to establish the exact cause of death, rather than indicators of
potential events leading to death.

Microscopy can be used to identify the bacteria or virus which caused death, or to examine
body tissue for wounds, determining cause and investigating the potential that would be

fatal.

Overall, there are a number of uses of microscopy in forensics. As technology contin-
ues to advance, it is expected that there will be more and more applications over the time.

Even though the information provided by the microscope is extremely rich and useful
enough to determine the psychical properties,the age of the object and identify it,the oper-
ator has to be an expert in a relevant field of the object so the results of the examination
can be certified.This is not only time consuming, but in some cases, like a crime scene,
where time and accuracy are critical and such an expert is hard to find at the time, all this

specialized technology becomes useless .

A way around this issue is the development of a automated classifier embedded in the

microscope which is programmed and monitored by an expert, hence anyone can use it



and come to a conclusion of the evidence and hopefully solve a part or a whole case.Our
approach to tackle this problem is with Neural Networks which are ever-growing in the
microscopy area with a variety of applications , from object classification,to background
extraction and noise removal.Neural Networks are vastly used in computer imaging fore-
most their capability of auto-extracting the strong features of an image through image pro-

cessing.



Chapter 2

Background

2.1 Microscope Utilities

2.1.1 Interaction of light and matter

The interaction between light and a specimen is determined by the optical properties

of the specimen and the incident light. As hyperspectral imaging measures such interac-
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Figure 2.1: The interaction of light with a specimen may lead to (a) specular reflection,
(b) elastic scattering followed by diffuse reflection, (c) inelastic scattering followed by
emission of Raman shifted light (dotted lines), (d) absorption, and (e) absorption followed
by photoluminescence emission (dashed lines).
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tion, it may be used to characterize the material. In practice this involves illumination of
the object under investigation. Commonly, the first interaction will be on the specimen
surface where part of the light will be reflected (Fig. 1.1.a). This part contains no to little
information from within the medium but is governed by the index of refraction difference
between media. Upon entering the material, the light can be scattered or absorbed.
Scattering is the process by which light interacts with structures in a specimen and
causes a change in direction of propagation, depending on the wavelength, size of the

particle and index of refraction differences (Fig. 1.1.b). The majority of light is scattered



at the identical wavelength of the incident light, a process referred to as elastic scattering.
There may also be a small fraction that will be inelastically scattered (Raman scattering)
which will cause wavelength shifts corresponding to the vibrational states of the molecules
in the specimen (Fig. 1.1.c).

The absorption properties of a chemical compound are wavelength dependent. Ab-
sorption in the visible wavelength range corresponds to the electronic states of the molecule,
while absorption in the NIR and IR is determined by the vibrational modes. Upon relax-
ation, return to the ground state, the energy will be released in the form of radiation (heat
or photoluminescence) or by transfer to another molecule. So both the spectral absorption
and, if present,the induced photoluminescence can be measured to identify the chemical
contents of a specimen using hyperspectral cameras in reflectance, or transmission mode
(Fig. 1.1.d/e). Quantitative analysis, however, is complicated because the length of the path
traveled by the detected light depends on the optical properties of the specimen [2].

Transmission of light through the electromagnetic spectrum, where light waves
pass through a material without absorption, is affected by thickness, and type of mate-

rial. Through that technique we can acquire:

2.1.2 Widefield Microscopy

Widefield microscopy, is fundamentally any technique in which the entire specimen
of interest is exposed to the light source with the resulting image being viewed either by

the observer or a camera.

* Brightfield Microscopy
Brightfield Microscopy The most basic form of Widefield microscopy is ‘brightfield
microscopy’ in which the entire specimen is illuminated by white light either from
above (in an inverted configuration), or below (in a standard upright microscope), as

shown in Figure [2.6]. This configuration has influence on the specimen which can
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be investigated. Upright microscopes are commonly used for applications with fixed
samples, mounted on glass slides. Inverted microscopes have been invented to watch
living cells. They are commonly grown in liquid solutions. Only a configuration with
the objective below and the condenser above the specimen guarantees a close enough

proximity of the objective to the specimen.

Figure 2.2: Widefield Microscopy Setups

Construction of a microscope using the brightfield microscopy technique, is based

on these components.

* Light Source: Trans-illumination below sample that propagates through to con-
denser and objective lens. Typically a broadband source such as a quartz halogen

bulb or LEDs is used.

* Condenser Lens: Collects trans-illuminated light and focuses to sample

* Objective Lens: Collects light which propagates through sample and enhances de-

tails by a factor of magnification.

* Eyepiece/Camera: Views or records the image.

A typical brightfield illumination image has a dark sample with a white background,
the darker the regions on a sample, the more absorption of light that has occurred, as shown

in Figure[1.6].



Figure 2.3: Brightfield lllumination Image of  Tissue Paper.
Source:https://www.edmundoptics.com/

2.1.2.1 Reflectance Microscopy Reflectance microscopy is capturing the light
that is being reflected by the specimen, when illuminating light reaches the specimen, it
may absorb some of the light and reflect some of the light, either in a specular or diffuse
manner. The only restriction is that the microscope must have an operational spectral range
from the deep-UV to the NIR while maintaining good image and spectral quality. Standard
microscopes cannot be used as they only cover a portion of the visible spectrum due to their

optical designs and light sources.

2.1.3 Hyperspectral Imaging

Hyperspectral imaging (HSI) integrates conventional imaging and spectroscopy,
to obtain both spatial and spectral information from a specimen. This technique enables
investigators to analyze the chemical composition of traces and simultaneously visualize

their spatial distribution. HSI offers significant potential for the detection, visualization,



Figure 2.4: Sand captured with Reflectance Microscopy on the visible spectrum

identification and age estimation of forensic traces. The rapid, non-destructive and non-

contact features of HSI mark its suitability as an analytical tool for forensic science.

A wide range of techniques are available when implementing a Hyperspectral Imag-
ing system, including chemical enhancement techniques and the use of light sources with
1-10 nm bandwidths. Many of these techniques are, however, either destructive or sub-
ject to human interpretation. Hyperspectral imaging (HSI) is suitable for the non-contact
identification of evidence, thus minimizing the risk of contamination and destruction
of traces. HSI integrates conventional imaging and spectroscopy to obtain a three dimen-
sional data set containing both spatial and spectral information of a specimen. In addition,
analysis of the temporal behavior of spectra can give insight in the chemical changes within
the specimen, which can be used for age estimation purposes. Estimation of the age of
forensic traces provides investigators with valuable information, which can assist the re-

construction of the timeline of events.



HSI was originally developed for remote sensing applications utilizing satellite
imaging data of the earth [3]] but has since found application in such diverse fields as food
science [4], pharmaceuticals [5] and medical diagnostics [6]. Hyperspectral images are
analogous to a stack of images, each acquired at a narrow spectral band. Like spectroscopy,

HSI can be applied in different parts of the electromagnetic spectrum, like :
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by hyperspectral cameras with a spectral resolution similar to miniature spectro-
graphs. Spatial resolutions can be adapted to the application, which range from micro-
scopic to landscapes. Advantages of HSI include speed of data acquisition, reduction
of human error, no destruction of traces, no specimen preparation, and the ability to

illustrate the results.

vaercu be

A —

" Vk)

Tl

I

I

I

< I
X 1

Pixel spectrum at (x;, y) Image plane atA, \L

€ - - -

Reflectance

t"II!’||."

Figure 2.5: Hypercube of a blood stain, with two spatial (x,y) and one wavelength (1)
dimension. From the hypercube an image plane is shown for one wavelength (A;) and a
spectrum is obtained from one pixel (X}, yi).

2.1.3.1 Hypercube Formation Hyperspectral images are analogous to a stack
of images, each acquired at a narrow spectral band. The resulting data set is a three-
dimensional block of data, the so-called hypercube, with two spatial (x,y) dimensions and
one wavelength (A) dimension (Fig. 2). This hypercube provides images for each wave-
length (4;) and a spectrum can be obtained from each individual pixel (x;,yx), as depicted
in Fig.1.2.

Obtaining information in all three dimensions of a hypercubes simultaneously is

currently not feasible; instruments can only capture two dimensions at a time. Temporal
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Figure 2.6: Methods for acquiring three-dimensional hypercubes: (a) point scanning, (b)
line scanning, and (c) area scanning. Hypercubes contain two spatial (x,y) and one spectral
(1) dimension. Blue areas represent data acquired by one scan. Red arrows represent
temporal scanning required to complete the hypercube. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of the article.)

scanning is needed to create a three-dimensional hypercube by stacking the two dimen-
sional data in sequence. There are three ways of acquiring a hypercube (Fig. 1.3), com-
monly known as point scanning (or whiskbroom), line scanning (or pushbroom), and area
scanning (or staredown). These descriptive names refer to the hardware methodology used

to acquire the hypercubes:

* In a point scanning system, a complete spectrum is acquired at a single point. Light
originating from this point enters the objective lens and is separated into different
wavelengths by a spectrometer and detected by a linear array detector. Once spectral
acquisition is completed, the spectrum of another point can be recorded. Scanning

has to be performed in both spatial directions to complete the hypercube.

* In the case of line scanning systems, the spectra of all pixels contained in one im-
age line are acquired simultaneously. The light is dispersed onto a two dimensional
charge coupled device (CCD) detector. This way, a two dimensional data matrix
with the spectral dimension and one spatial dimension is acquired.The second spatial

dimension of the hypercube is achieved by scanning across the specimen surface in
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a direction perpendicular to the imaging line. This means that relative movement
between the object and detector is necessary,which may be achieved either by mov-
ing the specimen (e.g. using a translation stage or a conveyor belt) and keeping the
hyperspectral camera in a fixed position or by moving the camera and keeping the

specimen fixed.

* An area scanning system also acquires a two-dimensional data matrix but in this case
the data represent a more conventional image with two spatial axes. A complete
hypercube is obtained by collecting a sequence of these images for one wavelength
band at a time. The wavelength of incoming light in this configuration is typically

modulated using a tunable filter.

2.1.3.2 System for Hyperspectral imaging Typical hyperspectral imaging sys-
tems contain the following components: objective lens, wavelength modulator, detector,
illumination, and acquisition system (Fig. 1.4). All these components can be adjusted to
the requirements of the application. The forensic environment of analysis may range from
laboratory to field conditions, whereas the areas of interest may range from the microscopic
to landscapes. As for conventional imaging, different objective lenses can be chosen to ob-
tain the right spatial resolution for each application, e.g. macroscopic lenses, zoom lenses,
wide angle lenses etc. For analysis on a microscopic scale, the HSI system can be coupled

to a microscope.

2.1.4 Polarized Imaging

Visible light is actually electromagnetic radiation inside the electromagnetic band
which is visible to the human eye.It has both the electric and magnetic components, and as
we can see in figure 1.6 it is a transverse wave and it’s electric field vectors vibrate in all
planes that are perpendicular with respect to the direction of propagation and are random

in space and time. If we manage to restrict the electric component into one plane then this
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Figure 2.7: Schematic showing components of a HSI system, resulting in a hypercube of
the specimen.

is referred to as linearly polarized .Light can be linear,circular or elliptical poralized.

Dhirecion
af mation

Figure 2.8: A linearly polarized electromagnetic wave.

2.1.4.1 Linear Polarization The essential component that we need to polarize
the light is a polarizer, basically a filter that contains long-chain polymer molecules that are
oriented in a single direction.And the light that vibrates in the same plane as the oriented
polymer molecules will be absorbed, whereas the light that vibrates vertically to this plane
with pass through and create a wave.

When the unpolarized beam propagates towards the vertical polarizer of Figure

1.7, all electric field vectors vibrate perpendicular to the direction of propagation with an
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Figure 2.9: An Incident Beam passing through a cross polarizer setup.

equal distribution in all planes .When light meet the first polarizer, every plane except
the vertical one is blocked while light after the filter creates a vertically polarized light
beam.By encountering the first polarized, only the electric vector that lives on the vertical
plane is allowed through. Resulting in a vertically polarized light beam.And when this
beam encounter the horizontal polarizer, no light passes through because it was absorbed

by the filter.

2.1.4.2 Elliptical and Circular polarization When the electric field of the wave
has circle shape and its always perpendicular to the direction of the propagation its called
circular polarized light. That effect is created by placing two linearly polarized beams with
an appropriate angle with respect to each other,with the same amplitude and phase shift
Ap =n.

When either the phase shift between the two light beams or the amplitude of one
wave or both change, then the light is described as elliptically polarized.Elliptical polar-
ization, which is a general state of circular polarization, has a rotational “sense” that refers

to the direction of electric vector rotation around the propagation axis of the light beam.
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Figure 2.10: Linear, Circular and Elliptical Polarization Graphs

2.1.4.3 Birefrigence is the optical property of a sample having a refractive in-
dex that depends on the polarization and propagation direction of light.A refractive index
is number that can give the indication of the light bending ability of the sample. These
optically anisotropic materials are said to be birefringent (or birefractive). Birefringence is
responsible for the phenomenon of double refraction whereby a ray of light, when incident
upon a birefringent material, is split by polarization into two rays taking slightly different

paths.The phase shift of this two paths can gives us plenty of information
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Figure 2.11

E




2.1.4.4 Polarized Microscopy Polarized light is a contrast-enhancing technique
that improves the quality of the image obtained with birefringent materials. Polarized light
microscopes have a high degree of sensitivity and can be utilized for both quantitative and
qualitative studies targeted at a wide range of anisotropic specimens.It is designed to ob-
serve and photograph specimens that are visible primarily due to their optically anisotropic

character. There are several ways of analysing the polarization of birefringent specimen.
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Figure 2.12: Cross Polarized Microscope setup

A common technique for polarimetry analysis is cross polarization microscopy. The
components used in this technique are a broadband light source like a LED, a polarizer,
positioned in the light path somewhere before the specimen, and an analyzer (a second po-
larizer; see Figure 1.10), placed in the optical pathway between the objective rear aperture
and the observation tubes or camera port.The background is extracted by using a pair of
polarizers in a cross polarized formation at a specific angle,which they work as filters.

Some other, more advanced, polarimetry imaging analysis techniques are based on
the Stokes Parameteres which are a set of calculated values that describe the polarization

state of electromagnetic radiation. These stokes parameters are obtained by measuring sev-
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Figure 2.13: Photomicrograph showing soil grain under plane and cross polarized light
microscope

n: 45° an® 135°

Figure 2.14: Polarizers in four different angles.

eral different angles under the condition of right-circular polarized incident light. Stoke

Parameters:
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I = F where the flux density (F) is the total flux density of the unobstructed light.

Q = Fpo - Fyoo where the degree denotes the flux density of the beam after passing

through the filters of Fig.1.10.

U = Fys0 - Fi350 where the degree denotes the flux density of the beam after passing

through the filters of Fig.1.10.

V =2F¢c— I where F¢ is the flux density of clockwise circular polarized light.

The modern notation for the Stokes parameters is the Stokes vector S™ with its components

So,51,52,53 such as:

R
So 1

2 S o
S, U

S3 Vv
\ )

When computed, the next step is to find the Degree of Linear Polarization, or DoLLP.

DoLP = /S?+55/So (2.1)

Finally, by observing the DoLP Stoke image we can discriminate differences in
the polarization characteristics of a specimen. This parameter is in fact very useful for
discriminating similar (under common microscopy inspection) materials.

Polarized light microscopy is capable of providing information on absorption color

and optical path boundaries between minerals of differing refractive indices, information
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(a) Image of a fiber captured using brightfield mi-(b) The same fiber captured using polarized mi-
croscopy’s technique. croscopy and DoLP parameter.

Figure 2.15: Characterization of birefringent fiber using DoLP imaging.

(b) The same sand captured using polarized mi-

(a) Sand captured using brightfield microscopy croscopy

Figure 2.16

about the crystallic lattice of the sample and obviously if the object is isotropic or not. Also
the contrast-enhancing technique exploits the optical properties specific to anisotropy and

reveals detailed information concerning the structure and composition of materials that are
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invaluable for identification and diagnostic purposes.

2.1.5 Epi-Fluorescence

A fluorescence microscope is like a conventional light microscope with added fea-
tures to enhance its capabilities. The conventional microscope uses visible light (400-700
nanometers) to illuminate and produce an image of a sample. On the other hand, a fluo-
rescence microscope uses a much higher energy light source which excites a fluorescent
species in a sample of interest, and this in turn emits a lower energy light of a longer wave-
length. By capturing only the emitted wavelengths of light (filtering out high energy exci-
tation radiation) we acquire an image that describes the electronic structure of the material
under inspection][//]].

Components that we use: A Light Source, powerful LEDs or xenon arc lamp.
The filter that narrows down the wavelengths of the light that pass through to only those
who excite the sample is called Excitation Filter.

A Dichroic Mirror which acts like a beam splitter, reflecting the light coming from the
source at the sample and transmitting only the emmited light from the sample to the de-
tector. This component is used in order to perform illumination and detection through the
same lens system.

Another filter for emitted light that transmits only the wavelengths of the emitted light from
the sample and blocks all the light passed through the excitation filter.

Any capable camera to capture and view the image.

The basic task of the fluorescence microscope is to let excitation light radiate the
specimen and then sort out the much weaker emitted light from the image. First, the mi-
croscope has a emission filter that only lets through radiation with the specific wavelength
that matches your fluorescing material. The radiation collides with the atoms in your speci-
men and electrons are excited to a higher energy level. When they relax to a lower level,

they emit light. To become detectable (visible to the human eye) the fluorescence emitted
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Figure 2.17: Schematic of a fluorescence microscope(by wikipedia: Henry Miihlpfordt
(talk) Fluoreszenzmikroskopie;008 — 09 — 28.svg : .

from the sample is separated from the much brighter excitation light in a second filter. This
works because the emitted light is of lower energy and has a longer wavelength than the
light that is used for illumination.

Most of the fluorescence microscopes used in biology today are epi-fluorescence
microscopes, meaning that both the excitation and the observation of the fluorescence occur
above the sample. The filters are assigned to capture the maximum excitation and emission
wavelengths of a specific fluorophore but not the whole fluorescence.With the excitation
filter we can define a band of wavelength that we let pass through, and we use it as a
band-pass filter. Emission filters are usually band-pass or long-pass filters, depending on

the specific fluorophore and imaging experiment.
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Figure 2.18: A fluorescence filter set designed for use with FITC(fluorescence
dye).Source:https://www.alluxa.com/optical-filter-applications/fluorescence-filters-
microscopy-imaging/

2.2 Applications of Microscopy in Forensics Science

2.2.1 HSI Applications in Forensics

HSI is a powerful emerging tool for the analysis of forensic traces. Latent traces
can be detected and visualized by using spectral differences to obtain optimal contrast
between a trace and its background. Individual spectra give information about the chemical
composition of the specimen, which is useful for identification and quantification purposes,
and the spatial distribution of traces is simultaneously recorded. In the last decade, HSI has
proven to be a valuable technique for the imaging of latent fingermarks and the detection
of trace materials within these prints. HSI is also emerging in other fields of forensic
science and has shown its value in comparative research of materials including fibers, paint
chips, or inks, where the question arises whether two traces share common origin. The
possibility of viewing spectral and spatial information side by side is advantageous in these

cases.
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Recent developments in HSI technology added potential for forensic science inves-
tigations. Because HSI systems are becoming increasingly portable,they may be used at
the scene of investigation, where traces can be viewed and interpreted in the original con-
text. The development of fast scanning systems enables investigators to scan a complete
scene, which reduces the workload in forensic laboratories and quickly provides investiga-
tors with valuable information which can lead the investigation.

Although hyperspectral imaging has mainly been used for the analysis of finger-
marks, studies are also reported on several other forensic traces, including drugs, hair,

dentin, bruises, blood stains,condoms, inks, tapes, firearm propellants, paints and fibers.

2.2.1.1 Fingermark Applications Fingerprints are the unique identities of each
individual and do not change as an individual gets older, thereby making this type of foren-
sic evidence extremely powerful during criminal investigations. In addition to identifying
individuals present at a crime scene, fingerprint analysis is also crucial to preventing and
detecting counterfeiting.

Several authors recently evaluated the possibility of detecting untreated latent fingermarks
using HSI. Exline et al. used visible reflectance and photoluminescence HSI to detect un-
treated latent fingermarks on plastic and paper[8]].

Resulting images were compared to images created with a conventional foren-
sic imaging system, in which different excitation and observation wavelengths could be
chosen. While both methods succeeded in visualizing latent fingermarks on plastic, HSI
showed enhanced contrast on paper surfaces. Processing tools used included background
division, offset correction, normalization and PCA. In a further study Payne et al. optimized
this visualization technique by using different processing tools to achieve an improved im-
age[9].

Crane et al. demonstrated the ability of IR HSI to detect latent untreated finger-

marks on various porous backgrounds (copier paper, cigarette butt paper, U.S. dollar bill,
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Figure 2.19: Two-year-old fingerprint on a white plastic garbage bag after treatment with
cyanoacrylate and Basic Red/Basic Yellow stain (observation in the luminescence mode):
CONDOR™ (left), Poliview (right).Picture from:|[|S]

postcard) and nonporous backgrounds (trash bags, a soda can, tape)[10].

In two papers, Tahtouh et al. also described the application of infrared HSI to the vi-
sualization of untreated fingermarks [|11} |12]]. Results indicated that the infrared spectra of
many untreated fingermarks show peaks due to C-H stretching vibrations around 3333 nm,
mainly due to fatty acid residues. These peaks are common to most organic compounds, but
they can be used to visualize fingermarks against some backgrounds, like metals, minerals,
and ceramics, that do not contain C—H bonds. For fingermarks on other backgrounds, they
stated that some type of chemical enhancement technique is required prior to hyperspectral
imaging.

Bhargava et al. described an approach to use IR HSI to reveal latent fingermarks
overlaid on top of one another, each made under different hand washing conditions [13].
Differences observed in the absorbance of the C—H stretching mode and other vibrational
modes in the spectra indicated that the two prints had different chemical compositions.
Because of this variation, linear unmixing applied to the spectral content of the data could

be used to provide images revealing both superimposed fingermarks.
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Figure 2.20: Cut and flattened Dr. Pepper’s soda can with fingermark deposit. (A) Soda
can imaged by a document scanner. (B) Infrared image of the outlined area obtained by
plotting the band intensity at 9842 nm (1016 cml).

2.2.1.2 Other HSI Applications Apart from the analysis of fingermarks, the
benefits of HSI can be exploited for the analysis of many other traces of importance in

forensic science. Latent traces can be detected and visualized by using spectral differences
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to obtain optimal contrast between a trace and its background. Individual spectra give
information about the chemical composition of the specimen, which is useful for identi-
fication, quantification, or age estimation. The possibility of viewing spectral and spatial
information side by side is an advantage in comparative research of e.g. fibers, paint chips,
or inks, where the question arises whether two traces share common spectral features.

Kalasinsky et al. were the first to demonstrate the value of infrared HSI for deter-
mining drugs of abuse in hairs[14]. By examining only the interior portion of the hair,
drugs exclusively resulting from human ingestion were measured and distinguished from
drugs that made contact with the outside of the hair. After microtoming the hair, IR hyper-
spectral images were obtained of the cortex and the medulla. Drug free hairs of different
sources all correlated with standard spectra of proteins.An intensity band image at 5824
nm showed that the drug was concentrated in the center of the hair. This way, relative
drug concentrations across the hair could be successfully determined and visualized. In a
further study, Kalasinsky showed the distribution of drugs in human hairs, which is critical
information to validate drug testing data [15].

The analysis of bruises, or aging of bruises in particular, can give important evi-
dence in cases of domestic violence or child abuse. Several studies have been performed as
initial steps toward the aging of bruises using HSI. A bruise is formed after blunt trauma,
which results in blood being present in the skin. In time, hemoglobin in the blood is de-
graded into other products, including bilirubin. Both hemoglobin and bilirubin have typical
spectral features in the visible region[/16].

Payne et al. showed the possibility to use HSI to differentiate pure blood from
blood with bilirubin based on these spectral features [[17]. Randeberg et al. presented
hyperspectral images of bruises on porcine and human skin [18]]. They used minimum noise
fraction transform, a statistical method similar to PCA, to classify the injuries. Stam et al.
described how HSI can be used to accurately determine the areas covered by hemoglobin

and bilirubin in the bruise, by fitting pixel spectra with a combination of reference spectra
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of chromophores present in bruises [[19].

450 500 550 600 650
Wavelength (nm)

Figure 2.21: (A) RGB image of the first bruise at 52.1 hours. The dashed square indicates
the ROI chosen for alignment. The red dot indicates the pixel for which the spectrum is

shown in B. (B) Spectrum of pixel (dots) and spectral fit (line).

Relative concentration map Area
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Figure 2.22: The relative concentration maps obtained using the fit coefficients(wavelength
dependent variables of bruise’s chemical composure who were extracted by the RGB im-
age.) in every pixel are show in Figure 1.17, left column. Left column: Relative con-
centration maps of hemoglobin, bilirubin and melanin. Right column: Binary images of

hemoglobin and bilirubin areas.[19)]
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2.2.2 Fluorescence Microscopy collaboration with Forensics Science

Fluorescent microscopy is associated with several advantageous properties that make
it an ideal tool for forensic researchers. Fluorescent microscopy techniques have been
widely used within forensic science to assist in the visualization of latent fingerprints, iden-
tification of GSR and examination of other types of trace evidence.

Fingerprints are often invinsible to the naked eye, additional efforts by forensic
investigators are required to develop and ultimately allow for the visualization of latent fin-
gerprints (LFPs). Several traditional methods that can be used for the development of LFPs
include powder dusting, ninhydrin spraying and cyanoacrylate fuming, many of which are
simple and effective methods.

Due to the fluorescent label potential of lanthanide phosphors, recent work on this
material has led to the fabrication of red-emitting La2(MoO4)3:Eu3+ phosphor microcrys-
tals for the visualization of LFPs deposited onto several different nonporous substrates.
Some of the unique characteristics of this novel material include high contrast and low
background interference, both of which contribute to the ability of this label to provide
well-defined finger ridge details when analyzed by SEM[20].

And plenty more uses of fluoresence microscopy on latent fingermarks, like a re-
search on drugs left on fingermarks and obtaining four week aged both in presense and
absense of light fingermarks from smoked cigarretes|].

Another trace that can be indentified by fluorescence microscope is gunshot residue(GSR)
due to the fact that it leaves behind evidence which is principally composed of burnt and
unburnt particles from the detonation, as well as fragments of the bullet, cartridge case,
and the firearm. This is why it has been applied to many real cases and attract so much
interest and is considered a necessary tool for the researchers , as Damian K. et. al. who
demonstrated the capacity of time-resolved fluorescence microscopy as a practical analyti-
cal tool in the forensic sciences via the imaging of gunshot residues that are expelled when

a firearm is discharged[22, 23].
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Figure 2.23: Detection of fingermarks after ageing at room temperature in the presence and
absence of light. Brightfield (a) and fluorescence (b) images of fingermarks after ageing for
3 days in the presence of light. Brightfield (c) and fluorescence (d) images after ageing for
4 weeks in the presence of light. Brightfield (e) and fluorescence (f) images of fingermarks
after ageing for 3 weeks in the absence of light. Brightfield (g) and fluorescence (h) images
after ageing for 4 weeks in the absence of light[21]]

Our task for this thesis was to try to classify specimens like Hair, Blood, Sand,
Skin etc., objects that can be found on any crime scene .Those traces may be evidence or
lead the investigation and must be classified correctly and quickly. If the examination of
an expert is no longer needed it will save a great amount of time, and sometimes time has
great importance.

A constantly increasing in popularity choice for object classification of any kind is
Neural Networks. A great variety of applications have used Neural Networks from system
identification, geomorphology or even in brain research ANNs have studied short-term
behavior of individual neurons,[24]] the dynamics of neural circuitry arise from interactions
between individual neurons and how behavior can arise from abstract neural modules that
represent complete subsystems.

But Neural Networks is also used in a big variety of forensics applications like

identifying Recaptured Forensics images that are very small with Laplacian Convolutional
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Neural Networks that put signal enhancement layer into Convolutional Layer and Laplacian
filter is used in the signal enhancement layer[[25]].

Taken in account the various applications in many fields and the preference of many
to choose Neural Networks to decide for them we decide to approach our thesis task also

by using Neural Networks.

2.3 Artificial Intelligence

Artificial intelligence (Al) is the broadest term used to classify machines that mimic
human intelligence. It is used to predict, automate, and optimize tasks that humans have
historically done, such as speech and facial recognition, decision making, and transla-
tion.One of the tasks which can be achieved by Al is computer vision, which is the ability
for computers to process and analyse images, aiming to mimic human vision. One of the
main tasks of computer vision is image classification, which is the process of labelling im-
ages into “classes”. For example, if there are images of multiple objects, and those images
need to be categorized into “classes”, for instance “car”, “plane”, “ship”, or “house”, that
1s image classification.One common way to execute image classification is through con-
volutional neural networks, a technique implementing deep learning, which is a subset of
machine learning, which is in turn a subset of Al.Neural Networks make up the backbone
of deep learning algorithms.In fact, it is the number of node layers, or depth, of neural

networks that distinguishes a single neural network from a deep learning algorithm, which

must have more than three layers

2.3.1 Artificial Neural Networks

As the name suggests the basic idea comes from the so far understanding we have
on our own human brain and the way it’s processing the new information-data.So, how
does our brain think: When we receive an external stimulus like vision or sound, data trav-

els as electrical signals through a path between neurons. The specific path is determined by
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Figure 2.24: Simple Visualisation between AL ML,NN and DL

the strength of inter-neuron connections, which itself is a cumulative result of all previous
learning experiences[26]]. A neuron may get signals from many other neurons. If the sum
of all input signals crosses its activation threshold, it transmits the signal to the next con-
nection; otherwise the signal dies at that neuron. Thinking essentially involves taking the
information from input neurons, progressively abstracting it through multiple connections
among ‘thinking neurons’, finally leading to muscle instruction by output neurons. Our
ability to abstract from raw information is a key attribute of intelligence.

Now visualize the neuron as a computational unit, the strength of inter-neuron con-
nections as a quantitative weight for signals into each computational unit, and activation
threshold as a quantitative threshold for releasing information, and you have the basic
building blocks of ANN. The computational unit in a neural network is called a ‘node’ and,
unlike the 3-dimensionally packed neurons, nodes are connected to each other in layers —
an input layer for getting information, an output layer for generating results and multiple
‘hidden layers’ in between for processing. Every node assigns a ‘weight’ to the connec-
tion from an incoming node, and its output is the weighted sum of data from each incoming
node. If the weighted sum is above the quantitative threshold, the node fires its output to the
next connected node. In the active state, each layer of ANN takes information, combines
it into next level of abstraction, and then passes it to the next layer, until the information
reaches the highest level of abstraction at the output layer. The larger the number of layers,

the deeper the network is, and hence the phrase ‘deep learning’.
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Unlike the brain, ANN randomly assigns the weights and thresholds in the begin-
ning. By running data for known outcomes, weights and thresholds are optimized to min-
imize the error. This ‘try try again, until you succeed’ approach (called supervised learn-

ing) is continued until the correct output is achieved, at which stage the ANN is deemed

‘trained’.
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Figure 2.25: Human Neurons and Artificial Neurons

2.3.2 Generic Architecture for any type of Neural Network

An artificial neural network (ANN) is a set of layers of neurons (in this context they
are called units or nodes). In the case of a fully connected ANN, each unit in a layer is
connected to each unit in the next layer.

There is an input layer, where the network takes all the information needed, in
this case the images to classify.Between the input layer and the output layer are hidden
layers. Each hidden layer is used to detect a different set of features in an image, from less
to more detailed. For example, the first hidden layer detects edges and lines, the second
layer detects shapes, the third layer detects certain image elements, for example a face

or a wheel.The output layer is where the network makes predictions. The predicted image
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Figure 2.26: An example of a ANN(Fully-Connected Feedforward NN)

categories are compared to the labels provided by humans. If they are incorrect,the network
uses a technique called backpropagation to correct its learning, so it can make guesses more
correctly in the next iteration. After enough learning, a network can make classifications

automatically without human help.

2.3.3 Artificial Neuron(Perceptron)

An artificial neuron is a connection point (unit or node) in an artificial neural net-
work and has the capability to receive and process input signals and forward an output

signal to another node.

2.3.4 Weights ,Bias and Activation Functions

2.3.4.1 Weights The connections between the units in a neural network are weighted,
meaning that the weight indicates how much influence the input from a previous unit has on
the output of the next unit. To mathematically compute an artificial neuron, all the products
of all the inputs ( x; —x,, ) and their corresponding weights ( w; —w,, ) are added, then a
bias (b) is added to that sum, then the resulting value is fed into an activation function (f)

to form the output
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Figure 2.27: Weights,Bias and Activation Function
2.3.4.2 Biases A biasis an extrainput to a neuron and it is technically the number

1 multiplied by a weight .The bias makes it possible to move the activation function curve

left or right on the coordinate graph, enabling the neuron to create the required output value
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Figure 2.28: Bias value , shift the activation function left or right
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flu) = max(0, u)

Figure 2.29: Relu

2.3.4.3 Activation Functions By definition, an activation function decides if a
neuron should be activated (“fired”) or not.It introduces non-linearity to the output of a
neuron. A neural network without activation functions is just a linear regression model.The
most common activation functions for CNNs are the Relu, Tanh and Sigmoid of which we
choose ReLu :  f(u) = max(0,x) . For values below zero the output is always 0 and
for x > 0 the output is x.ReLu is less computationally expensive than the other activation
functions because the mathematical operation is simpler and the activation is sparser. Since
the function outputs 0 when x 0, there is a considerable chance that a given unit does not
activate at all.Sparsity also means more concise models with more predictive power and
less noise or overfitting. In a sparse network, neurons are more likely to process meaningful
information. For example, a neuron which can identify human faces should not be activated
if the image is actually about a building. One more advantage, which the ReLu possesses
over the others, is that it converges faster. Linearity (when x > 0) means that the slope of
the line does not plateau when x increases. Therefore ReLLu does not have the vanishing

gradient problem suffered by some other activation functions, such as Sigmoid or tanh.

2.3.4.4 Backpropagation Backpropagation is an algorithm which helps feedfor-
ward neural networks to train and learn their parameters , mostly from errors in predictions.

This chapter is going to explain backpropagation using a gradient descent
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Figure 2.31: Tanh

2.3.4.5 Loss Function A loss function is an error metric, a way to calculate the
inaccuracy of predictions. The aim of deep learning models is to minimize this loss function

value, and the process of minimizing the loss function value is called optimization.

2.3.4.6 Gradient Descent A gradient descent is an optimization algorithm which
modifies the internal weights of the neural network to minimize the loss function value.
After each iteration, the gradient descent algorithm attempts to decrease the loss function

value by tweaking weights, until the point where further tweaks produce little or no change

to the loss function value, also called convergence .

2.3.4.7 Learning Rate and Adam Optimizer A learning rate is the step size of

each iteration in the gradient descent or other optimization algorithms.A common value
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Figure 2.32: Loss Function = f(x) ,x = output of Activation Function. We continuously
tweak the weights by the "learning rate” and check the result.lf the Loss function become
smaller we continue until we find the minimum extremum.

is 0.01 but LR is probably the most important hyperparameter of a NN so fine-tuning has
to be done because every NN process different data.The LR values can vary from 10~°
to 1 .If the learning rate is too small, convergence will take a long time to happen, but
if the learning rate is too large, there might be no convergence at all because we missed
the extremum. There are many optimization algorithms, one of which is the Adam.The
name Adam is derived from adaptive moment estimation , and takes the advantages of
2 others optimization algorithms(Root Mean Square propagation and Adaptive Gradient
Algorithm) and combines them .A learning rate is maintained for each network weight
(parameter) and separately adapted as learning unfolds. It’s one of the best optimizers and

great for computer vision , and the one we use for our CNNs.
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2.4 State Of the Art

The constant Microscopy evolution has reached such a level that we can acquire
images real time and with different imaging modalities. That great advance is used in
many Science fields ,like Pathology, Biomedical, Forensics and many others.

A segmentation method was introduced using Magnetic Resonance imaging and
X-ray computer tomography images of the human brain[27] and Convolutional Neural
Networks were utilized to develop an adaptive learning scheme able to overcome inter-
slice intensity variations typical of MR images. Multi-Modal imaging and CNNs were
also combined for image Restoration using RGB guided depth imaging SR [28], a RGB
guided multi-spectral imaging SR [29] and flash guided non-flash imaging for denoising
purposes.[30]. Also at the same research they used techniques like Multi-Focusing imag-
ing, Multi-Exposure imaging and Medical imaging and for Image Fusion with a network
that is called the Common and Unique information splitting network (CU-Net) and it is

designed to solve both problems together[31]].

Figure 2.33: Neural network segmentation of intensity slice 6 (left), slice 10 (middle), and
slice 14 (right) of MR images.Source : [31|]
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Convolutional Neural Networks also used in detecting recaptured images or dis-
torted images, that was a difficult task so far with common techniques. One application
for detecting recaptured images, consist of 1 camera capturing the real image and 8 other
cameras used for recapturing. In the recapturing process, the composition, light, shaking,

and other variables were strictly controlled[32]].

RGB guided depth image SR RGB guided multi-spectral image SR Flash guided non-flash denoising

Figure 2.34: Examples of different multi-modal image restoration and fusion tasks. The
first row shows the MIR related applications, including RGB guided depth image SR, RGB
guided multi-spectral image SR, and flash guided non-flash image denoising. The second
row shows the MIF related applications, including multi-exposure image fusion, multi-
focus image fusion, and medical image fusion.Source : [|32|]
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Chapter 3

System Design

3.1 Convolutional Neural Networks

An image is comprised of pixels. In the RGB model that displays the image with
color, each pixel has three color elements, red, green and blue.In the grayscale model each
pixel has only one color element that describes the ”grayness” of the image.Bit depth refers
to how many bits of information are used to store color information in an image file.A
colored image uses 8bits x 3channels = 24 bits for each pixel , and a grayscale image
uses 8bits x 1channel = 8 bits.Most commonly each element can range from O (no color)
to 255 (full saturation) in value.In digital image processing, a colored image is a three-
layered matrix of pixels,where each layer is a two-dimensional matrix representing red,
green or blue pixel values .The width and the height of an image is also counted in pixels

e.g. 600x400 .

3 Colour Channels

Height: 4 Units
(Pixels)

Width: 4 Units
(Pixels)

Figure 3.1: The RGB matrixes that combine to produce a colored image
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Figure 3.2: A more eye friendly way to present the structure of a colored image

3.1.1 CNN Architecture

A convolutional neural network (CNN) is a type of artificial neural network used
primarily for image recognition and processing, due to its ability to recognize patterns
in images.They also have many applications outside of image recognition and analysis,
including image classification, natural language processing, drug discovery, and health risk
assessments

All CNNs share a very similar architecture which is the input layer , then a number
of convolutional layers depending on the difficulty of the task , pooling layers after some
or every convolutional layer , then some Dense or Fully Connected layers that flatten the
matrixes produced by the convolutional layers and at last a classification function depend-
ing on the number of the classes(objects) we wish to discrete. In simple word what CNN
does 1is, it extract the feature of image and convert it into lower dimension without loosing

its characteristics.
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Figure 3.3: VGG-16 Architecture Model A very “deep” model that supports 16 Convo-
lutional Layers,5 Max Pooling layers , 3 Fully Connected layers and a Softmax Activa-
tion.Visualizing the flow and the process of an image after each layer.

3.1.2 Convolutional Layers

The convolution layer is the core building block of the CNN. It carries the main
portion of the network’s computational load. The term “convolution” refers to the math-
ematical combination of two functions to form a third function. When that happens, two
sets of information are merged.Practically convolution uses a filter(or kernel) for edge de-
tection , it detects the parts of the image with high contrast and creates a new 2-D matrix
with those “edges” saved on it and we call it feature map.Another name for Convolutional
layer is Feature Extractor.The number of filters and the size of them are defined by us in a
suitable way depending on the size of the image.

The first Convolutional layer is responsible for capturing the Low-Level features
such as edges, color, gradient orientation, etc. With added layers, the architecture adapts to
the High-Level features as well, giving us a network which has the wholesome understand-

ing of images in the dataset, similar to how we would.
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Figure 3.4: Convolution between a 6x6 image which is half white and half gray and a 3x3
filter that amplifies the brightness and reducing the output image dimensions.OQutput may
seem distorted but we only need to detect that there is an "edge” and save it to the feature
map.

The filter slides repeatedly through the input image , and creates a new feature map
by calculating the dot product between receptive field(it is a local region of the input image
that has the same size as that of filter) and the filter. Result of the operation is single integer
of the output volume. Multiple filters are used for one input and the resulting feature maps

are joined together for the final output of one convolutional layer.
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Figure 3.5: Convolution process between Input image and kernel.
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3.1.3 Padding and Strides

There are two types of results to the convolution operation — one in which the
convolved feature is reduced in dimensionality as compared to the input, and the other in
which the dimensionality is either increased or remains the same. This is done by applying
Valid Padding in case of the former, or Same Padding in the case of the latter.In our case
we apply Same Padding. Another hyperparameter in every CNN model is the stride size of

the kernel ,which by default is one , and this is also the stride we chose.

Figure 3.6: Example of Same Padding with zeroes that preserve the width and height be-
tween input and output image

3.1.4 Batch Normalization Layer

We place the Batch Normalization layer between Conv. Layers and Activation func-
tion.Batch normalization applies a transformation that maintains the mean output close to

0 and the output standard deviation close to 1.Standardizing the activations of the prior
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layer means that assumptions the subsequent layer makes about the spread and distribution
of inputs during the weight update will not change, at least not dramatically. This has the

effect of stabilizing and speeding-up the training process of deep neural networks.

3.1.5 Dropout Layer

The Dropout layer randomly sets input units to O with a frequency that we choose,
at each step during training time, which helps prevent overfitting and generalization of the
model.That is because when important neurons are dropped out ,model has to find new
strong features to base the classification to.Inputs not set to 0 are scaled up by 1/(1 - rate)
such that the sum over all inputs is unchanged.In our model we apply Dropout layers only

after FC layers with rate=0.3.

3.1.6 Leguralizers L1,1L.2

Regularizers allow you to apply penalties on layer parameters or layer activity dur-
ing optimization. These penalties are summed into the loss function that the network op-
timizes.Regularization controls the models complexity and can prevent a Neural Network
from overfitting or underfitting,and thus improve the accuracy of a Deep Learning model
when facing completely new data from the problem domain.

Regression equation:

y=Wxx+b (3.1

where x is the input,W are the weights and b is the bias.

» Kernel Reguralizer :Tries to reduce the weights W (excluding bias).

* Bias Regularizer: Tries to reduce the bias b.

» Activity Regularizer: Tries to reduce the layer’s output y, thus will reduce the weights

and adjust bias so Wx+b is smallest.
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L1 versus L2 loss for the weight decay.

1.2 loss is defined as w2.

L1 loss is defined as |w| , where w is a component of the matrix W.

The gradient of L2 will be 2w.

The gradient of L1 will be sign(w).

Thus, for each gradient update with a learning rate a, in L2 loss, the weights will be
subtracted by a * W, while in L1 loss they will be subtracted by a * sign(W).The effect of
L2 loss on the weights is a reduction of large components in the matrix W, while L1 loss

will make the weights matrix sparse, with many zero values.

3.1.7 Pooling Layers

In most cases, a Convolutional Layer is followed by a Pooling Layer.Pooling lay-
ers are responsible for decreasing the dimentionality of feature maps and reducing the
computational costs, specifically they are decreasing the height and width, preserving the
depth.Doing so is beneficial because it decreases the required computational power to pro-
cess the data, while extracting the dominant features in feature maps. There are two types
of pooling layers: max pooling and average pooling .Max pooling is better at extracting

dominant features and therefore considered more perfomant.
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Figure 3.7: Pooling layers.Max Pooling outputs the highest value of the elements in the
portion of the image covered by the filter out = max(xy,xp,x3,x4), while average pooling
takes the average value of the four( out = (x] +x3 +x3 +x4) /4.

3.1.8 Fully Connected Layers

Fully connected layers are where classification actually happens. The input matrix
is flattened into a column vector and is fed into a set of fully connected layers which are
the same as the fully connected ANN architecture that was previously discussed in chapter.
Each fully connected layer (called Dense layer) is passed through an activation function
(e.g. tanh or ReLu), but the output Dense layer is passed through Softmax. In the Softmax
multiclass classification, the loss function used is Cross Entropy (categorical crossentropy
in Keras).

The output of the Softmax function is an N-dimensional vector, where N is the
number of classes the CNN has to choose from. Each number in this N-dimensional vector
represents the probability that the image belongs to each certain class. For example, if the
output vector is [0 .1 .1 .75 0 0 0 0 0 .05], then there is a 10 percent probability that this
image belongs to the class 2, 10 percent probability that it belongs to the class 3, 75 percent
probability that this image belongs to the class 4, and 5 percent probability that it belongs

to the class 10.
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3.2 Supervised Learning

Supervised learning uses a training set to teach models to yield the desired output.
This training dataset includes inputs and correct outputs, which allow the model to learn
over time.There are many machine learning algorithms we can choose from.We chose Neu-
ral Networks ,which are suitable for the task, as they function like feature extractors and
reduce dimensionality of the images.Thus,dataset is probably the most important part be-
hind a CNN and great results.It has to be accurate labeled,every image that is fed to our
network must contain only the object we assigned to it for proper training.It may contain
only a part of the object,or contain noise for better generalization,for this job we insert
a data augmentation layer provided by Keras,our framework tool,to create new images
slightly or 90 degrees rotated for our model to be able to recognise the same object even if
its upside down or in a random position.

Creating a capable and big enough dataset for object classification with Neural Net-
works, is extremely time consuming, and depending on what you want to classify, special
equipment is required.For each different object,for your CNN to be robust needs multi-
ple images from the same object from many angles, different parts and the whole image,
blurred and with noise etc,approximately at least 200 images for each object. In this thesis,

we have 5 discrete objects :

Blood

Fiber

Sand

Glass

Skin
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3.3 Dataset Acquisition

Firstly we have to gather the data that we need, luckily for this research on CNNs
we have available a very large and unique dataset which was produced by the microscope’s

data acquisition process consists of :

* Transmission.(RGB,Spectral Cubel3 Bands)

Transmitted light microscopy is the general term used for any type of microscopy where
the light is transmitted from a source on the opposite side of the specimen from the objec-
tive.Besides colored(RGB) display,with optical band-pass filters we can capture the same

image in different wavelengths in the Electromagnetic spectrum with HSI.

- |
-

(a) Image of a fiber captured using(b) The same fiber captured using HSI
brightfield microscopy. microscopy at 325nm.

s | ‘
i
A 4

B (d) The same fiber captured using HSI
(c) The same fiber captured using HSI microscopy at 980nm.

microscopy at 515nm.

¢ Reflection(UV,Visible)

In reflected light microscopy, illuminating light reaches the specimen, which may
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absorb some of the light and reflect some of the light, either in a specular or diffuse

manner.

(a) Image of a sand captured using brightfield microscopy. (b) The same fiber captured using HSI microscopy at 325nm.

(c) The same fiber captured using HSI microscopy at 515nm.

* Fluorescence(spectrum bands:365,405,450).

Fluorescence microscopy is an imaging technique used in light microscopes that allows
the excitation of fluorophores and subsequent detection of the fluorescence signal. Flu-
orescence is produced when light excites or moves an electron to a higher energy state,
immediately generating light of a longer wavelength, lower energy and different color to

the original light absorbed.
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(a) Image of a sand captured using brightfield mi-(b) The same fiber captured using Fluorescence
croscopy. microscopy with a light source at 365nm.

(c) The same fiber captured using Fluorescence
microscopy with light source at 405nm

(d) The same fiber captured using Fluorescence
microscopy with light source at 450nm.
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* Polarization(Degree of linear Polarization).

Polarized light is a contrast-enhancing technique that improves the quality of the image

obtained with birefringent materials.

(a) Image of glass captured using brightfield mi-(b) The same sand image captured using Polar-
croscopy. ized Microscopy.

(a) Image of a skin captured using brightfield mi-(b) The same skin part captured using Polarized
croscopy. Microscopy.

Figure 3.12: Glass and skin under light and polarized micorscopy.As we can see polarized
microscopy works like a contrast enhancing technique.

In total there are 20 different displays of the same image and even though we can
perform classification with Convolutional Neural Network in each display individually,

our desired outcome would take in account all the valuable information of each different
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display.We want to achieve this multi-layer classification with only the use of Neural Net-
works, which means that the output of one or more CNNs will be the input to another
NN, and in the next chapters we will elaborate how the final design works and why some

approaches do not work.
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Chapter 4

Implementation

4.1 System Configuration

Training a CNN is computationally heavy, so the hardware(GPU) our system
has,is important to determine the numbers of layers and the number of convolutions we
can apply, as well as the batch size which we define in the training process.Our initial state

attempts to create Convolutional Neural Network were processed by:

* GPU:NVIDIA RTX 750 TI 2GB , max memory capacity 1.7GB

But later we evolved our GPU to:

* NVIDIA RTX 2010 TI 4GB , max memory capacity 3.7GB

and so we could also develop stronger networks with more convolution in each layer and

increase the batch size to fasten the whole process.

4.1.1 Tool for dataset extraction

The dataset that we will feed on our Neural Networks has to be accurate, which
means that the same image but in different mode will be fed to each CNN. Our CNN’s
output is a matrix of possibilities as many as the quantity of the objects we want to classify,
and the biggest possibility of this matrix is the decision of the CNN about what object
does it sees.So we created a tool that acquire all images simultaneously and saves them in
different folders.

For this tool, we convert the image into grayscale and then we apply a threshold

between [1-255] which are the range of the pixel’s value ,and any pixel above threshold
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we “paint” it white,and the rest of them black, so we can distinguish them easily.The white
pixels that are left on the image, are our object, and our region of interest for this task.
Training any NN is expensive computationally , so we crop our images into smaller
tiles that we can examine and process easier. The size that we crop our dataset for training
is the same size with the images we are going to feed to our CNN for the predictions and
it is 256x256 pixels.We use the RGB image to extract the contour’s coordinates, and with
the same coordinates we crop the images in every different mode, then we label the images

before saving them.

Transmission Hyper 325  Transmission Hyper 340 Transmission Hyper 365  Transmission Hyper 385 Transmission_Hyper 405

Transmission_Hyper 450  Transmission_Hyper 490  Transmission_Hyper 515  Transmission_Hyper 590  Transmission_Hyper 630

Transmission Hyper 750  Transmission Hyper 850 Transmission_Hyper 980 Transmission_Color Reflectance UV

Reflectance_VIS Fluoresence Fluoresence_2 Fluoresence_3 Polarized

Figure 4.1: A fiber under all different microscopy techniques.
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Transmission Hyper 325  Transmission Hyper 340  Transmission Hyper 365  Transmission Hyper 385 Transmission Hyper 405

4

y

Transmission_Hyper 450  Transmission_Hyper 490  Transmission_Hyper 515  Transmission_Hyper 590 Transmission_Hyper 630

Transmission_Hyper 750  Transmission_Hyper 850  Transmission_Hyper 980 Transmission_Color

”

Reflectance VIS Fluoresence Fluoresence 2 Fluoresence 3 Polarized

Figure 4.2: Blood under 20 different image enhancing modes

In figure we can see the output of that extraction tool, and we can no-
tice that there are some very unique features, for example fiber is extremely fluoresce and
so, very distinguishable and blood almost does not fluoresce at all.Nevertheless the major
distinctions between the variety of displays we can acquire from the objects have to be
taken account for our final prediction, because it will drastically affect the accuracy of our
system.

As we previously mentioned, the architecture of CNN lookalike, the differences are
found in the number of convolutional layers, the convolutions that take place in each layer,
the kernel size for each convolution, the padding that is used, which pooling layer(Max,

Average) we choose,and some features that can be inserted between layers, like Batch
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Normalization, the use of Regularizers(L.1,L2 or both), the Dropout Layers and the number
of neurons we use for our Dense Layer. Of course, there are many other features that can
be examined and implemented in a CNN but this is how far i searched for this thesis and

assume its enough for a satisfying output.

4.1.2 Hyperparameters

Hyperparameters are a set of parameters that organize the whole process and ev-
ery neural network that has a different task, will need to ’tune” the parameters to fit the
task.They exist in the convolutional layers as the number and size of the kernels, the size
of the stride and the size of the kernels in the pooling layer.Pooling type and size are
also two important parameters, as they define the way and how much the image will be
downsampled[33].Our kernel size is 3x3, and number of kernels is defined in each layer,
size of our stride is 1.Pooling kernel size is 2x2 and we use the max pool technique that
keeps the maximum value between the four pixels.

Also, learning rate that tunes the weights after backpropagation ,even though it is
not considered a hyperparameter it needs tuning because as we mentioned before,if learning
rate is too large can cause the model to converge too quickly to a suboptimal solution,
whereas a learning rate that is too small can cause the process to get stuck[34].Sometimes
if learning rate is too big then every few epochs evaluation accuracy after training will
drop significantly because network assumes it has find the maximum extremum.An error
like this occured while training with a learning rate of 104 and the graph with the train

accuracy, validation accuracy, validation loss and train loss is presented in (a).
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Training Loss and Accuracy
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Figure 4.3: Metrics graph for our CNN with learning rate = 0.001.There are huge spikes
on evaluation accuracy.
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Figure 4.4: Metrics graph for our CNN with learning rate set to 0.0001.Validation accu-
racy and loss, respond to a 15% of our total dataset which we split before the training
phase.We do this split before the training phase because we want to keep those images for
validation process, so the CNN will never train on those images to check if the classification
works.TrainLoss:Loss function’s output,in our case sparse categorical crossentropy which
Computes the crossentropy loss between the labels and predictions.Maximum value is one
which indicated that there is no loss,Accucary:Correctly classified images/All images
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4.1.3 Preprocessing

Before the images reach the first convolutional layer we place an rescaling layer that
the whole image goes through so all the pixels get a value between 0 and 1 to reduce the
computational cost, this technique is also called normalizing the data.Afterwards we place
another couple of layers and each one will create a new image from the original image, but
rotated by 90 degrees vertical or horizontal and another image rotated by 30 degrees.This
way we produce three times the quantity of the original dataset, and we make our model
even more robust.

Also in the preprocessing field is the Batch Normalization function that we apply

after each convolutional layers and that we explained in chapter 2.

4.1.4 CNN Features Between Layers

Regularizers are placed also after convolutional layers.We use L1 and L2 regular-
izers but with a very small value of 0.0001.As we mentioned before, leguralizers are placed
on the weights to make the really small values zero with L1 regularizer, and also reduce the
values that are so high who may affect the decision of the network,With regularizer L2, by
doing so we prevent overfitting and help the generalization of our model.

As we mentioned, after all convolutional layers we need the activation function, in

our case we use rectified linear activation function or ReLLU.

—6 -4 -2 0 2 4 6
Input

Figure 4.5: Rectified Linear Activation
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After we pass through all convolutions and flatten the feature map from the image
we apply a dropout layer of 20%.Dropout means that we shut down randomly the 20%
of our neurons, in order to prevent overfitting, by eliminating the most dominant feature
the model will find other strong features to classify the objects so we making the model
independent from only one feature.

Our architecture for the initial classification we performed before the final structure

looks like this:
Output

Layers Shape(width,height, Parameters

convolutions)
Input Image (256,256,3{channels})
Conv2D (256,256,128) 3584
MaxPooling (128,128,128) 0
Conv2D (128,128,128) 147.584
MaxPooling (64,64,128) 0
Conv2D (64,64,256) 295.168
MaxPooling (32,32,256) 0
Conv2D (32,32,256) 590.082
MaxPooling (16,16,256)

Flatten (65.536) 0
Dense (512) 33.554.944
Dense (Number of Classes=11) 5643

Total Parameters 8.767.560

Figure 4.6: The architecture of the CNN model one step before the final structure.The num-
ber of parameters for any Conv. layer are calculated like this : (filter shape =3%*3, stride=1)
layer is: ((shape of width of filter * shape of height filter * number of filters in the previous
layer+1) * number of filters) ,e.g parameters for second Conv2D : (((3*3*128)+1)*128)
= 147.584.For Dense(FC) layer are calculated like this:((current layer c*previous layer
p)+1%c)e.g first Dense layer: 512*%(16*16%64)+1*512 = 8.389.120.

Every layer of filters is there to capture patterns. For example, the first layer of
filters captures patterns like edges, corners, dots etc. Subsequent layers combine those
patterns to make bigger patterns (like combining edges to make squares, circles, etc.).
Now as we move forward in the layers, the patterns get more complex, hence there are
larger combinations of patterns to capture. That’s why we increase the filter number in

subsequent layers to capture as many combinations as possible.
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The number of parameters in a given layer is the count of “learnable” elements
for a filter aka parameters for the filter for that layer, genuinely any layer that contain
weights is considered “learnable”.Parameters in general are weights that are learnt during
training. They are weight matrices that contribute to model’s predictive power, changed
during back-propagation process.The changes are depended to the training algorithm we
choose.

Our final architecture of CNN after the Hardware development on our system is

shown in Figure [Figure 4./}

Output
Layers Shape(width,height, Parameters
convolutions)
Input Image (256,256,3)
Conv2D (256,256,128) 3584
MaxPooling (128,128,128) 0
Conv2D (128,128,128) 147584
MaxPooling (64,64,128) 0
Conv2D (64,64,128) 147584
MaxPooling (32,32,128) 0
Conv2D (32,32,64) 73792
MaxPooling (16,16,64)
Flatten (16384) 0
Dense (512) 8389120
Dense (Number of Classes=8) 4104
Total Parameters 8,767,560

Figure 4.7: Final architecture of CNN models.

4.1.5 Splitting the Dataset

Before we start the training process we have to split the dataset into 3 parts.

* Training Dataset 70 %

¢ Validation Dataset 15%

¢ Test Dataset 15%
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Training dataset is utilized in the training process we described above,convolution,weight
assignment and update,backpropagation etc. Validation dataset is used after the training in
each epoch to measure the accuracy with unknown images, the only issue is that this vali-
dation is happening in the background of the training process, and we cannot see actually
the labeling prediction but only a probability for accuracy and the results of our loss func-
tion.This is why we need Test dataset, which also is unknown for the CNN. After we save
the model’s architecture and final weights and load them again we use the predict function
with given input the test dataset and we evaluate the result with real images.

We gathered and used two main datasets because the first dataset was not complete

with all our final enhancing techniques and the number of images in each class was a little

unbalanced, so both dataset consistency is shown below on Table [subsection 4.1.5] Thirty

percent of this dataset is not used in the training phase, and even though we randomly select
the images we are going to use for test and validation practically 30$ of those numbers does
not go to the training process.So dataset is even more unbalanced, and we can not be sure
about the results on classifying the four last classes.

Our dataset consists of different specimens we captured through the microscope,
and some of this specimens belong to the areas we are going to classify.So, except from
individually images from the microscope, we acquired approximately 50% of the objects
from the classifying area and fed it into our CNNs, but 30% of it will be distributed in
validation and test dataset, so finally approximately 35% of the overall specimens exist in

our first classification area will be processed by the CNNs.
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First Dataset

* Blood 47 images

* Fiber Cotton 1027 images

* Fiber Highly Fluorescic 417 images

* Fiber Polyester 336 images

* Glass 107 images

* Hair 389 images

* Sand 80 images

* No Object 420

* Fiber Unknown 13 images

* Multi-Object 17 images

e Bubbles 139 images
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Second Dataset

* Blood 320 images

* Fiber 406 images

* Glass 282 images

* Hair 345 images

* Sand 759 images

 Skin 308 images

* Bubbles 444 images

* No Object 154 images



4.2 Single Modality Classification Methods

4.2.1 Transmission Color Approach

The most common thought around designing a CNN classifier, is to train the net-
work with the most appealing to the human eye imaging method. To reach our first practical
results we trained a CNN model to classify objects acquired utilizing Transmission Color

Imaging(Whitefield). This CNN model was trained with 11 classes of different objects:

Blood e Skin

Fiber Polyester
* No Object

Fiber Highly Fluorescic

Fiber Cotton ¢ Bubbles

¢ Hair
¢ Fiber Unknown

Glass

Multi-Object

The No object and the Bubbles classes are needed for the final construction of the
images we will classify.When our higher prediction is for any of those two classes we can
skip the process of drawing the contours on the image.Also, bubble class functions as a
noise extractor.When an image contains both bubbles and an object the CNN can identify

the differences between that image and a image with plane bubbles.

As we can see from figures [Figure 4.8| and [Figure 4.9| the results are promising,

as we achieve average confidence of 93% with only a few mistakes and small confidence

predictions that we assume its from the unbalanced dataset.
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Actual:Fiber_Highly_Fluorescic Actual:Fiber_Polyester

Predict: Fiber Highly Fluorescic, Conf: 94.73% Predict: Fiber Polyester, Conf: 100.0%
Actual:Sand Actual:Fiber_Highly_Fluorescic
Predict: Sand, Conf: 97.79% Predict: Fiber_Highly_Fluorescic, Conf: 99.94%

Actual:No Object Actual:Fiber Cotton
Predict: No_Object, Conf: 89.29% Predict: Fiber_Cotton, Conf: 99.99%

4

Actual:Fiber_Cotton
Predict: Fiber Cotton, Conf: 99.85%

Actual:Fiber_Cotton
Predict: Fiber_Cotton, Conf: 96.95%

Figure 4.8: Conf = Confidence.lesting the accuracy with images the CNN haven’t seen
before. Every prediction was correct with excellent accuracy.Even though the shape of the
different kind of fibers are the same, and the black color that cotton and highly fluorescic

fibers have are the sane, CNN can actually distinguish them!

The actual label for this objects has been given when we were extracting the dataset

with our tool, and when we took the testing dataset we also kept the label for each image.

The predictions we get from our model are for each image individually and it is a matrix

with n = number of classes elements, with the probability for each element.Some values

are very small e.g. 1074 so we skip them,and the output of our trained CNN with the
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Actual:Fiber_Cotton Actual:Glass Actual:Fiber_Cotton
Predict: Fiber Cotton, Conf: 99.94% Predict: Glass, Conf: 89.31% Predict: No_Object, Conf: 50.09%
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-
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- - Fl
Actual:No_Object Actual:Fiber_Polyester Actual:Fiber_Polyester
Predict: No_Object, Conf: 99.92% Predict: Fiber_Polyester, Conf: 99.97% Predict: Fiber_Polyester, Conf: 100.0%
Actual:Fiber Cotton Actual:Ne Object
Predict: Fiber_Cotton, Conf: 99.64% Predict: No_Object, Conf: 99.77%

ZIt . A

_ R

Figure 4.9: Even though the prediction in the top-right corner is wrong,the confidence it
has for that label is really low,so we can simply not acknowledge that prediction, until our
Neural Network is more confident about its predictions by correcting and expanding that
dataset or optimizing the hyperparameters.

colored image dataset when we feed it a new unseen image for prediction looks likes this:

00 O0O009 001 0O00O0O0
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We can decode the matrixes we take from the CNN by knowing that the classes
are distributed in alphabetical order from their names, first element is the probability for
the image to be classified as “Blood”, which is zero and as we continue we find that the
fourth element corresponds to “Fiber Polyester” class with 99% prediction probability. The

metrics graph for this trained model is given below:

Training Loss and Accuracy
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Figure 4.10: Graph for the training process of the colored dataset.

We can see that training and validation accuracy approximately 93% and training
and validation loss is slowly stabilizing around one point and despite a few spikes there is

not over or under fitting.
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4.2.2 Training with Different Modalities

We have mentioned before the tool for extracting the dataset 1 which can crop and
save all 20 images of the same object, each image captured with a different technique or
with the same technique in a different wavelength.So we have 20 unique datasets, with a
total number of number of images in the colored dataset*20 = 57.060 images.

Before we find the way to combine all those images and predictions into a single and
final prediction we train 20 individual CNN each one trained with images from different

technique.The following categories are all the different displays we can acquire:

* Color RGB image.

* Hyperspectral images with different wavelength bands:

— from 325nm to 339nm
— from 339nm to 364nm
— from 365nm to 384nm
— from 385nm to 404nm
— from 405nm to 449nm
— from 450nm to 489nm
— from 490nm to 514nm
— from 515nm to 589nm
— from 590nm to 629nm
— from 630nm to 749nm
— from 750nm to 849nm
— from 850nm to 979nm

— from 980nm to 1100nm
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* Fluorescence images with the emission wavelength at:

— 365nm
— 405nm

— 450nm
* Image captured under polarized microscopy
* Image captured under reflectance microscopy on the visible spectrum

* Image captured under reflectance microscopy on the ultraviolet spectrum

Below on figures e can see the results from our CNNis:

Actual:Hair Actual:Hair Actual:No_Object
Predict: Hair, Conf: 99.91% Predict: Hair, Conf: 86.02% Predict: No_Object, Conf: 91.5%

Actual:No_Object Actual:Blood Actual:Fiber_Highly_Fluorescic
Predict: No_Object, Conf: 81.18% Predict: Fiber_Polyester Non_Fluorescic, Conf: 70.63% Predict: Fiber_Highly_Fluorescic, Conf: 100.0%

Actual:Fiber_Highly_Fluorescic Actual:Fiber_Cotton
Predict: Fiber_Highly_Fluorescic, Conf: 100.0% Predict: Fiber_Cotton, Conf: 44.9%
”

Figure 4.11: 8 Predicted images under reflectance microscopy.

Even though the accuracy on some easily distinguished objects is high, with re-

flectance image dataset we get an average accuracy of 86% and some decrease spikes
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on our metrics, due to the fact that many objects do not reflect any light or they do not
fluoresce if they are being exposed to fluorescence light ,or a specimen may do not have
birefrigence properties.In these cases the images are completely black or extremely fainted,
and the network get confused because the No Object class contain only plane background,
hence black images and many predictions were falsely classified as ”"No object”.

As we can see fiber types are easily distinguishable on reflectance display, some
human hairs do not reflect the light transmitted to them and many other features to help us

categorize the objects us easy us possible.

Actual:Fiber_Cotton Actual:Fiber_Cotton Actual:Fiber_Highly_Fluorescic
Predict: Fiber_Polyester, Conf: 50.07% Predict: Fiber_Cotton, Conf: 57.13% Predict: Fiber_Highly_Fluorescic, Conf: 100.0%

Actual:Sand
Predict: Fiber_Polyester, Conf: 77.81% Predict: Fiber_Cotton, Conf: 64.19% Predict: Sand, Conf: 99.99%

Actual:Fiber_Polyester Actual:Fiber_Cotton

Actual:Fiber_Cotton Actual:Fiber_Cotton
Predict: Fiber_Highly Fluorescic, Conf: 57.97% Predict: Fiber_Cotton, Conf: 41.14%

Figure 4.12: 8 Predicted images under polarized microscopy.

In polarized microscopy we get an average accuracy of 83%, it provides as
monochromatic images but the birefrigence properties can really differ between objects.For
example sand and glass can be hardly distinguished in some cases, but with polar images

we can notice the differences based on their crystalline structures.Those unique differences
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we find on specimens with those techniques are valuable information and with the right

processes we can exploit them.
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Actual:Fiber_Polyester Actual:Fiber_Highly_Fluorescic Actual:Hair
Predict: Fiber_Polyester, Conf: 100.0% Predict: Fiber Highly Fiuorescic, Conf: 100.0% Predict: No_Object, Conf: 81.62%

Actual:Fiber_Highly Fluorescic Actual:No_Object Actual:Fiber_Cotton
Predict: Fiber_Highly_Fluorescic, Conf: 99.91% Predict: No_Object, Conf: 93.89% Predict: No_Object, Conf: 67.59%

|
Actual:Hair Actual:Fiber_Cotton
Predict: No_Object, Conf: 93.11% Predict: No_Object, Conf: 67.99%

Figure 4.13: 8 Predicted images under fluorescence microscopy with a light source at
405nm.

With Fluorescence imaging we get an average accuracy of 78% because many
specimens do not fluoresce at all, like some kind of hairs or glass.But some other specimens
fluoresce enough to be easily distinguished by all the other objects like polyester and highly

fluorescent fibers.

4.3 Multi Modal CNN Design

After the training process we save the model that can classify any given image
based on the saved weights of our model. But it will classify correctly images only similar
to those images that we fed and labeled to our network.We saw the produced data of a

single CNN in a previous chapter , and they look like this:

Eprobaitivies = | 0 0.1 0 0 0.77 003 0 0.1 0 0
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The matrix F has n elements where n=number of classes we trained our network with, and
the value of a element is the prediction our model gave us and the names of the classes
are decoded alphabetically.

So we have 20 matrices each one consisted of 11 elements, in total 220 probabilities
and if we want those 20 matrices to respond at the same image we just have to make sure

that images are distributed to the right CNN.

4.3.1 Utilizing the data

We created a new dataset from 2-D arrays with size 1x221, first 220 values are
the probabilities and the last value is the actual label of the specimen, in this case label
is 1 which corresponds to "Blood”.The first 11 elements are the predictions for one image
by the CNN trained with the RGB images, the next 11 elements are the predictions of the

next model and it goes on until we reach the last CNN.

09910{0{0[{0]0]001]0[0]0[0]097 ... 00096 |1

— 11 —

Matrix Size 1x221
Practically we acquire a matrix with probabilities but we can also see this matrix as a
code for a label. Many of those probabilities due to the great accuracy of our individual
CNN s have, are very close to 1, making the 10 rest probabilities zero or almost zero.That
creates an evenly distributed array of elements and easy to process.Additionally, e.g. two
objects may look very similar under Brightfield microscopy like fibers and hairs, but the
fluorescence imaging can easily distinguish those two objects.So, if the prediction of the
fluorescence model is almost 1 for fiber then for hair will be 0 and vise versa.This way we
are creating a unique encoding for our class classification which will take advantage of the

unique properties different objects have under different microscopy techniques.
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4.3.2 Fully Connect Neural Network as final component

The fact that we create a new unique encoding ,which includes 220 values for each
image on the first dataset and 160 values at the second allow us to combine our data with a
Fully Connected NN due to the way a network like that functions.

A Fully Connected NN as we mentioned in chapter 2, consists of a series of
fully connected layers that connect every neuron in one layer to every neuron in the other
layer.Which means that as we go ’deeper” in the FC layers and the neurons we use de-
crease, only the high values will remain.Every neuron has its own weight that is added
to its input and passed through a RelU activation function.As last layer we have softmax
activation function which will give us the final probabilities.Softmax function compresses
values between 0 and 1, the Softmax neurons allow the prediction of outputs to certain

classes.

Softmax Activation Function

1.0 ———

Figure 4.14: Softmax Activation Function.Typically placed in output layers of networks
used for classification.

softmax(y;) = €/ Z Yj

n=j
Where y; is the neuron’s output.
The major advantage of fully connected networks is that they are “structure agnostic’ i.e.
there are no special assumptions needed to be made about the input.And we are going to

try and use it as a decoder for our 220 element arrays.
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Figure 4.15: A generic architecture of a FC NN.
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Figure 4.16: Neuron’s process.All the previous neurons pass their output to each neuron in
the next layer, which adds its own bias(if exists) and weight and then the sum goes through
the Softmax activation function f.

Every neuron’s mathematical equation is the same with different weights, inputs
and biases:

vi = fx1 *wip+x2%xwo..x, % w, +b)

,where y; is the output of the i-th neuron,w are the weights and f is the RelU activation

function.

4.3.3 Architecture of the Fully Connected NN

The architecture for this NN is simpler than CNN’s architecture, and it consists of

the input layer, 2 hidden FC layers and for multi-classification we use the Softmax activa-
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tion with neurons equal to the number of our classes.First layer input shape has the shape
of our array(1x221 and 1x161), first hidden layer has 1024 neurons and second hidden
layer has 512 neurons. Also we apply a Dropout layer between Dense layers which shut
down 30% of each layer’s output, for the purpose of increasing the generalization of the

model and prevent overfitting. This NN in term of python coding is shown below:

Figure 4.17: Python Code for our FC NN.

Now that we have all the components we need for multi-classification and a so-
lution to combine and exploit the psychical properties of objects through the variety of

microscope’s utility techniques our final design from start to end is shown below:
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Figure 4.18: Process behind training our FC NN and creating the Classifier Model.

The same process will take place when we need to predict a new image, that means

that every time we want to classify an image, we pass the same 256x256 image in 20

different modes, respectfully to the NN each image belongs, we take the outputs of all

CNNs and create a matrix that fits the saved Classifier model and call the model to give us

its prediction.
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Chapter 5

Classification Results

5.1 Data Visualization

We applied classification into areas captured by the microscope, which we concate-
nate to produce the final overview image that consists of many smaller images with 640
pixels for height and for width 477 pixels.

When we find an object through the process we discussed for extracting the dataset,
we crop the area the object is, to smaller parts that fit our Neural Network’s defined input
size which is 256x256 pixels.The pixels the areas that we are interested at more likely will
not be a multiple of 256 so we will take extra pixels to fit that specific size if our ROI is
smaller, or crop the image into smaller parts and individually predict the image it contains.

On our first try we draw the contours around the object as rectangles as we saw
on figure 5.1 that contain the whole object and the prediction can be shown inside the

rectangle.

Splitting ROI into smaller parts to fit our CNNs input
shape without distorting the image quality

Figure 5.1: Splitting process into right size with no distortion of the pixels.
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5.2 Proof of Concept

Our initial results were produced based on our first dataset and the S modes that

were taken account for are shown below:

¢ Transmission mode

Reflectance mode

Fluorescence mode with emmision light wavelength at 405nm

Fluorescence mode with emmision light wavelength at 450nm

Polarized mode

Fully Connected NN gave us 98.4% validation accuracy which is a very promis-
ing percentage and approximately 5% higher than CNN trained with the Colored Dataset
which had the best validation accuracy so far, but we have to test the power of our classifier
also in unseen images and display the results.Some parts of the reconstructed image are

shown below:

’

¢ o

¥

Figure 5.2: Blood Area
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As we can see on figures 5.2,5.3 and 5.4 all specimens are classified correctly except
the smaller objects, which the networks were not trained with images containing very small
objects. But these 3 figures are only a part of the final overview image which consists of
1024 tiles of smaller 640x480 pixels images and is really huge to be shown.So by counting
the successfully classified contours that contain an object, we measured the success rate
of the classifier to be (447 contours containing object) / (431 contours correctly classified)
=96.42%.

By verifying the success of our system we are ready to go deeper on further re-
search to understand how each different display mode affect our accuracy we are going to
gradually add modes and check how success rate behave on those changes and conclude

on how each mode affect the results.
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Figure 5.4: Glass Area

5.3 Validation

The next step was to create a series of combinations with the new available display
modes, HSI at 13 different bands,another Fluorescence mode that captures the emmited
light from the specimen at 365nm and another Reflectance mode with the light source
transmitting at Ultraviolet spectrum. A common classification mode due to its ability to
display objects in unique appearances, thus easily distinguable, is Reflectance mode with
light source wavelength at the visible electromagnetic spectrum(380-700nm), so we began
our research by using only the Reflectance mode.The results are shown in Figure
and at Success Rate table :

Our way of detecting the objects by dividing the overview image into smaller tiles
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Figure 5.5: Classified Areas using Reflectance mode with the light source on the visible
electromagnetic spectrum.
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can lead to finding an object into more than one tile, so we do not count the objects but the

contours that exist in our classifying areas.So in our final areas we find:

Blood: 81 contours

Glass: 109 contours

Skin: 104 contours

Hair: 94 contours

Sand: 124 contours

Fiber: 81 contours

Success Rate is calculated like this: (numbers of successfully classified contours / number
of contours)*100.Below is the success rate table for the classified contours only under the

Reflectance Visible mode.

Mode Blood Glass Skin Hair Fiber Sand

Reflectance Visible 98% 93.57% 98.07% 89.36% 100% 95.16%

The average time for each prediction is 35ms and time is independent from which
mode we use and its dependent only on how much information is on the image being
classified, and with 2357 predictions in total, our overall time for loading the images and
predicting them is 230.70 seconds or 3.845 minutes. Even though our contours are 593
our total predictions are almost 5 times that number because one contour may need many
predictions and also some invalid contours that the prediction about what object the image
contains is less than 90% are left out, and also any contours with bubbles from the tape are
also left undrawned.

Our next step is to apply classification with only the Transmission Color mode

which gives us around 93% Train and Validation accuracy and see the results:
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Mode Blood Glass Skin Hair Fiber Sand

Transmission Color 98.76% 68.8% 99% 94.6% 98.7% 95.1%

(a) Glass and Sand Area
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Figure 5.6: Classified Areas using Transmission Color mode.
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We continue our research by gradually adding mode by mode so we can deduce
the value of every mode in classifying specimens, and which mode help us distinguish
each specimen.So below are the results after classifying the same areas by adding the

Transmission Color mode:

Success Rate table for Transmission Color and Reflectance mode:

Mode Blood Glass Skin Hair Fiber Sand

Color and Reflectance 98.76% 91.74% 99% 100% 98.7% 97.58%
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Figure 5.7: Classified Areas using two modes,Reflectance on visible spectrum,and Trans-
mission Color mode

By comparing the results so far we can infer that each mode contributes greatly in

different specimens, for example, when we applied classification with only the Reflectance
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mode we achieve great accuracy at distinguishing glass and sand that very much look alike,
also flawless classification on the fiber area , and great results on fiber and blood. But when
it comes to hair, reflectance properties are really low, so we get only 89.3%.

After we applied classification with both Reflectance and Transmission Color modes
we achieve 100% accuracy, which is a 10.7% raise of success rate.Also success rate
slightly increased for Skin, Sand, Blood areas , but the success rate for Fiber and Glass
areas decreased. That leaves us to conclude that if two objects lookalike in one mode , and
only two modes are taking part in the classification that may lead to confuse our final NN
if trained with false or uncertain information.

So we have to determine which modes are needed for best results, in terms of
success rate as first criterion, secondly we have to understand which modes may lead to
misguidance to our FC-NN and last we have to determine which modes do not assist our
classification at all and exclude them to reduce the time and computational load of our
system.

Another mode we tested was only the 13 Hyperspectral images to determine the

power of just the HSI, and here are the results:

Success Rate table of classification using 13 HSI modes:

Mode Blood Glass  Skin Hair Fiber Sand

HSI 13 Bands 97.53% 65.13% 99% 97.87% 100% 90.3%

In figure , even though the hairs are classified correctly , some bubbles
from the tape are misclassified for fibers with Confidence more than 90% because in HSI
they look the same.Also the success rate for Glass dropped dramatically to 65.13% and we
had a 7% decrease in Sand specimens. Even though HSI provides valuable details about

specimen composition it is not enough for classification with CNNs.
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Figure 5.8: Classified Areas using only the HSI at 13 different bands.

On our next combination of modes includes Transmission Color,Reflectance on the

visible and the ultraviolet spectrum, Polarized mode, and one Fluorescence mode with light

source at 450nm.Below on figure are the results:
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(c) Hair Area (d) Fiber Area

Figure 5.9: Classified Areas using Polarized mode, Fluorescence mode at 450nm, Trans-
mission Color, Reflectance in visible and ultraviolet spectrum.

Success Rate table for classification using Transmission Color, Polarized, both Re-

flectance modes and Fluorescence mode with light source at 450nm.
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Blood Glass Skin Hair Fiber Sand

98.8% 84.4% 100% 100% 100% 100%

By comparing the combinations so far we see that in the last combination we have 100 %
success rate for Sand , but success rate for Glass dropped by 9.2% from our best Success

Rate so far when we combined Transmission Color and Reflectance.

Next combination of modes is the same as previous combination but we also added two

Fluorescence modes with the light source at 365 and 405nm.

Success Rate table of classification by using every mode except HSI.

Blood Glass Skin Hair Fiber Sand

98.8% 89.9% 100% 100% 100% 98.3%

By adding 2 more Fluorescence mode capturing the emmited light at lower wave-
lengths we see 7.4% increase in the success rate for the Glass Area but also one falsely

classified Sand contour.
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Figure 5.10: Classified Areas using Polarized mode, Fluorescence mode at 365,405 and
450nm, Transmission Color, Reflectance in visible and ultraviolet spectrum.

Afterwards we added 5 HSI modes covering the electromagnetic spectrum from
325nm to 450nm.On Figure the results of the classification and the success

rate table:
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Figure 5.11: Classified Areas using Polarized mode, Fluorescence mode at 365,405 and
450nm, Transmission Color, Reflectance in visible and ultraviolet spectrum and our 5 first
Hyperspectral modes.
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Success Rate table for classification with every mode except the last 8 Hyperspectral

modes:

Blood Glass Skin Hair Fiber Sand

98.8% 88% 100% 100% 100% 100%

Even though we added 5 Hyperspectral modes, it affected our success rate only by
little, increasing the Sand accuracy by 1.7% but decreasing the Glass accuracy by 1.9%
Our next step is to add 5 more HSI modes covering the electromagnetic spectrum

from 325nm to 750nm.Below are the results of the classification and the success rate table:

Success Rate table for classification with every mode except the last 3 Hyperspectral

modes:

Blood Glass Skin Hair Fiber Sand

98.8% 93.5% 100% 100% 100% 99.2%
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Figure 5.12: Classified Areas using Polarized mode, Fluorescence mode at 365,405 and
450nm, Transmission Color, Reflectance in visible and ultraviolet spectrum and our 10
first Hyperspectral modes.
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For our last combination we added every HSI mode covering the electromagnetic
spectrum from 325nm to 950nm.Below on Figure [Figure 6.1pare the results of the classifi-

cation and the success rate table:

Success Rate table for classification with all 20 modes:

Blood Glass Skin Hair Fiber Sand

98.8% 100% 100% 100% 100% 99.2%
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Figure 5.13: Classified Areas using 20 modes
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Chapter 6

Conclusions and Future Work

We specific chose this kind of Glass specimen that it is not transparent to make it
more difficult to distinguish from Sand, and as we can see those 2 areas are the only ones
who confuse our CNNs.

Also very small objects or parts of a bigger specimen that have been disjoined

by a adjacent tile may be falsely classified due to the fact that our dataset do not contain

very small objects , and our CNNs do not have a reference to match them with.

(a) Very small object that our CNNs were not (b) Part of a bigger specimen
trained to classify, that was disjoined by the tile
below

Figure 6.1: Examples of very small objects

Even though our dataset should be larger or we should find a different way for object
detection, as we can see , when we use all of our modes we achieve a perfect classification
and that demonstrates the power of CNNs.

While testing out different combinations of modes to determine which modes are
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critical for the classification, we noticed that some modes can distinguish some objects
better than other.

First combination was only Reflectance Mode with our light source on the visible
spectrum which is known for its capabilities to display objects with unique appearances
and even though we get great results with only one mode some specimen do not reflect
much light and they can not be classified, like some parts of hairs so we continue to add
different modes that can detect those objects.

When we combined Transmission Color and Reflectance on the visible spec-
trum we achieve great Success Rate, but for Glass Area we got 92% and we want to
increase that rate even more.

ur fourth combination was only the 13 bands of wavelengths that we captured with
HSI. Even though Blood, Skin, Hair and Fiber which differ a lot as matter components,
and that is what HSI tries to display, Glass that is processed Sand can not be distinguished
by the CNNs , and even though we get 90.3% Success Rate on the Sand area , we get only
65.13% Success Rate on the Glass area.

Afterwards we added Reflectance with our light source at the ultraviolet spec-
trum, Polarized Mode and Fluorescence mode that captures the emmited light from the
specimen at 450nm and we achieve only 84.4% at Glass area but 100% to every other
area.Our CNNs predictions were worse on the Glass area but better on every other area.

Next we added two Fluorescence modes capturing light at different bands at 365nm
and 405nm we see an increase of 5.5% at the Glass Area that it is the only area we want to

improve, as every other area is almost perfectly classified.

On table are all the Success Rate tables so far:
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Modes Blood Glass Skin Hair Fiber Sand

Reflectance on the visible | 98% 93.57% 98% 89.36% 100% 95.16%
spectrum

Transmission Color 100% 68.8% 99% 94.6% 98.7% 95.1%
Transmission Color and 100% 91.74% 98% 100% 98.7% 97.58%
Reflectance

Transmission Color + 100% 88% 98% 96.8% 100% 99%

Reflectance + Polarization

13 HSI Modes from 95% 65.13% 99% 97.87% 100% 90.3%
325nm to 980nm
4 + Reflectance on the 100% 84.4% 100% 100% 100% 100%

ultraviolet spectrum +
Fluorescence capturing the
emmited light at 450nm

6 + Fluorescence Modes 100% 89.9% 100% 100% 100% 98.3%
capturing light at 365nm
and 405nm

7 + 5 HSI Modes from 100% 88% 100% 100% 100% 100%
325nm to 450nm

& + 5 HSI Modes from 100% 93.5% 100% 100% 100% 99.2%
450nm to 750nm

7+ 4 HSI Modes at 100% 93.5% 100% 100% 100% 99.2%
325,490,630,980

9 + 3 HSI Modes from 100% 100% 100% 100% 100% 99.2%
750nm to 980nm

Table 6.1: Success Rate table for every combination.

By adding only 5 HSI modes capturing the specimnes between 325-450nm we see
a tiny decrease of 1% on our Glass Area and a tiny increase of 1.7% at the Sand Area that

gave us 100% Success Rate.So we continue and we add the next S HSI modes that capture

100



the specimen from 450nm-750nm and we see a 5.5% increase on the Success Rate of the
Glass area but we find a single mistake on the Sand Area. That mistake is caused probably
due to the fact that the tape placed on the sand specimen is pushed too hard and the image
is distorted and looks a lot like transparent Glass.Our dataset do not contained distorted
specimens like that and so it is logical for our CNN to falsely predict it as glass. Because the

results is ambiguous we place that predict as error and we continue with our combinations.

Figure 6.2: Mistake in the Sand area caused by the tape.

We continue by adding S more HSI Modes that capture the specimen from 450nm-
750nm and the Success Rate increased by 5.5% at Glass Area and no changes at the rest

of the areas.

By including all 13 modes as we can see in Figure we increase our
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Success Rate by 6.5% and the only contour that is classified as Fiber is actually tape which
has taken the color of the Glass, and our dataset does not contain any images as reference.

Every mode offers its own unique characteristics that help the final FC-NN identify
the objects.As the modes increase so does the complexity of the encoding.Each mode adds
as many elements as our different classes to the training array for the FC-NN, and this is
an advantage for a powerful FC-NN like ours. When we combine 20 modes the final NN is
trained with an array of 161 elements, the first 160 elements are the 20 different predictions
from our CNNs and the 161th element is the object’s actual label.

While classification with only one mode took 237s, the time is not linear because
the time for prediction do not change, but loading the images is, if we load all images
together will take less amount of time. So when combine 5 modes we need approximately
600 seconds , and when we use all 20 modes we need 2100 seconds. If time was linear we

would need at least 4000 seconds.

6.1 Future Work

Improves can be made in a couple of sections in this thesis. Our first job is to further
increase our dataset to include even the smaller objects and even specimens with diffused
display from the tape. Increase the tape class so they are never misclassified us fibers or
hairs,

Another potentially great change would be at the way we detect the objects not from
tile to tile but from the whole overview image so there is no need to classify small objects
but the whole specimen all together.

Also the process of detecting the objects with threshold according to the intensity
of each pixel will change and replaced by Convolutional Neural Networks that work like
autoencoders and autodecoders of an image.Unlike traditional methods of denoising, au-
toencoders do not search for noise, they extract the image from the noisy data that has been

fed to them via learning a representation of it. The representation is then decompressed to
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form a noise-free image[335].
Even more combinations will also determine if a mode can be completely extracted
from our system, because it may decrease our Success Rate or do not provide anything, and

by doing so we will decrease the overall time and maybe make our system more stable.
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