
TECHNICAL UNIVERSITY OF CRETE

SCHOOL OF ELECTRICAL & COMPUTER ENGINEERING

DIPLOMA THESIS

Design and implementing network security
primitives for core 5G infrastructure

Author: Stavros Lyronis Committee:

Associate Professor Sotiris Ioannidis

Professor Apostolos Dollas

Professor Aggelos Bletsas

September 2022

Abstract

We live in an era where modern networking has become a constant battlefield be-
tween hackers and cyber-security operators. Malicious users launch attacks in any
internet facing system that shows vulnerabilities. Due to the growth of the rate
of these attacks, the former naive stationary approaches on computer security are
being abandoned and the need for a new mobile way to defend is required. By tak-
ing advantage of Active Networks, the PRINCIPALS project introduces a novel
architecture for safe programmability and adaptability in 5G networks. In this
thesis we develop five network security primitives for core 5G infrastructure and
some language security techniques that will be used in the PRINCIPALS project.
These network security primitives will be addressing current and anticipated se-
curity problems in 5G networks, through custom-yet-adaptive logic expressed as
code. This code, tested and evaluated, will be containerised and deployed inside
the Active Management Environment (AME) that PRINCIPALS provides. The
application of language security techniques that are also implemented in this the-
sis will set an upper-bound limit on what actions the code-carrying packets used
in PRINCIPALS can take. In this way the flexibility and adaptability will be
secured, while maintaining security in the 5G Network.

Acknowledgements

I would like to give a massive thank you to my supervisor, Dr.Sotiris Ioannidis,
for all of the assistance he has given me throughout this process. I would also like
to give a special thank you to Dr.Spiros Antonatos and MS.Grigorios Ntousakis
for their support and excellent communication that made me come this far. All of
them were always willing to give detailed explanations whenever I had an issue,
and it is really appreciated. I would not be able to complete this thesis without
their incredible aid. I would like to thank my incredible parents, Giannis and
Despoina, for their love, compassion and support all these years, as well as my
three wonderful brothers, Manos, Nikos and Vasilis. I wouldn’t be here without
you.

Contents

1 Introduction 5
1.1 Aim of the thesis . 5
1.2 Thesis contribution . 6
1.3 Thesis overview . 7

2 Background 9
2.1 Virtual Machines . 9

2.1.1 Virtual Machine Security . 10
2.2 Containers . 10

2.2.1 Container Security . 10
2.3 Docker . 11

2.3.1 Docker Images . 11
2.3.2 Image Registries . 11

2.4 Container Orchestration . 12
2.5 Kubernetes . 12

2.5.1 Kubernetes Design . 13
2.5.2 Pods . 14

2.6 Antrea . 14
2.7 Keras . 15
2.8 Multus . 15
2.9 5G Network . 15

2.9.1 5G Network Architecture . 16
2.10 PRINCIPALS . 19

2.10.1 Innovative Claims . 20
2.10.2 Threat Model and System Assumptions 21
2.10.3 Architecture . 22

3 Primitives 28
3.1 Snort . 28

3.1.1 Example . 31
3.2 DNS Sinkholing . 31

3.2.1 Example . 34

3

3.3 Flow Recording . 34
3.3.1 Example . 36

3.4 DDoS Detector . 37
3.4.1 Example . 39

3.5 DGA Detector . 40
3.5.1 Example . 42

4 Language 43
4.0.1 Static Analysis . 43
4.0.2 Dynamic Analysis . 44
4.0.3 Using Static and Dynamic Analysis Tools on PRINCIPALS 45

5 Evaluation 48
5.1 UDP flood attack . 49
5.2 HTTP flood attack . 55
5.3 SYN flood attack . 60

6 Related work 66

7 Conclusion 69

Bibliography 70

Appendices 75

A Creating Dockerised Applications 76

B How to monitor network traffic using Scapy 79

4

Chapter 1

Introduction

In today’s era, mobile communications are an undisputed part of our modern life.
During the last four decades, with the evolution of mobile wireless technology [14]
starting from 1G in 1980 and reaching the 5G in 2019, we have had a number of
new features and capabilities introduced to us in each mobile network generation.
With the growth of them, the number of demands for using these new technologies
also has gradually increased, and the mobile interaction has become a daily part
of our lives, especially with the evolution of Internet of Things (IoT) [13].

Between every new generation of wireless technology, new challenges and op-
portunities have emerged. The fifth generation of wireless technology comes with
some guarantees of acceleration of data transfer, through bigger channels, less la-
tency, the ability of multiple devices to be linked at once, etc. However, in every
dramatic advancement of a new technology, there are always security issues that
we must bear in mind [2], [31]. In 2019 global operators started launching 5G net-
works that enabled the movement and access of vastly higher quantities of data.
This resulted in a much wider surface for the attackers to make their moves. It’s
safe to say that the providers of the infrastructure surface must be very cautious
and take the necessary steps to prevent the attackers from having the ability to
make a move or in case an attack is realized, to take rapidly and with precision
the right actions to neutralize it. Cybersecurity operators have the duty to be one
step ahead of the attackers and find the latest tactics to deal with them.

1.1 Aim of the thesis

5G networks interconnect billions of devices and offer high bandwidth and low
latency guarantees. In this environment, we want to have flexible cybersecurity
defenses that can be deployed quickly in a variety of settings, in order to counter the
inevitable number of attacks that are coming. The PRINCIPALS project aims to
be able to counter such attacks rapidly and with precision. The goal of this thesis is
the design and the implementation of security primitives that are going to be used

5

in the PRINCIPALS project in order to achieve its goal. These network security
primitives will be deployed inside the PRINCIPALS environment and will provide
a plethora of different defensive cyber operations to counter any possible attacks
in the 5G infrastructure. Primitives will use containerised code that is tested and
evaluated.

The application of some language security techniques will accompany these
network security primitives to secure a safe and active management environment.
These language security techniques will provide the necessary extraction of per-
missions that the mobile defensive cyber operations (DCOs) require. These mobile
DCOs will guarantee flexibility and adaptability in the 5G network.

1.2 Thesis contribution

It has already been mentioned that PRINCIPALS is a project that will provide
a novel architecture for safe programmability and adaptability in 5G networks. It
will enable more secure networks, since it provides the ability of mobile defensive
cyber operations. The 5G Network uses Kubernetes as the infrastructure needed
for scaling. The PRINCIPALS architecture is a virtualised architecture built on
top of Kubernetes as well. The following summarizes this thesis’ contribution to
the PRINCIPALS project:

• Five network security primitives, that PRINCIPALS will use as defensive
mechanisms are designed and implemented. These primitives, also known as
FAMElets, are realized in the Kubernetes environment and are full-fledged
code that provide complex, performance-sensitive, and possibly privileged
functionality (FAMElets will be explained thoroughly below). FAMElets will
be deployed inside each node and conduct defensive cyber operations for cur-
rent and anticipated network security issues in the 5G network. These five
primitives are:

1. Snort, a Network Intrusion Detection&Prevention System.

2. DNS Sinkholing, a mechanism used to protect users from accessing ma-
licious or unwanted domains.

3. Flow Recording, a tool used to monitor, analyze and store information
about traffic from specific domains.

4. DDoS Detector, a tool used to detect possible Distributed Denial of Ser-
vice attacks.

5. DGA Detector, a tool used for detection of Domain Generation Algo-
rithm, a technique used for a cyber attack by creating multiple domains
from an algorithm, that generate traffic.

6

These network security primitives can provide a number of different mech-
anisms and functionality just by changing the action to the cybersecurity
operator’s desire. This can be implemented by passing different commands
to the bridge, as you will see below. With the deployment of these primi-
tives, each 5G/Kubernetes node will have some security guarantees about a
plethora of different cyber attacks.

• Every single primitive, from the five mentioned above, was rewritten in Java-
script. From the smallest script to the largest, everything used in these prim-
itives was written again from scratch in Javascript. Besides the new scripts,
this means that all of the containers had to be created again. New Dockerfiles,
new docker images, new archive in the docker repository. The same applies
for the yaml files and the pods in the Kubernetes environment. The whole
process of how a primitive is realized will be explained thoroughly in Chapter
3. This implementation in Javascript was necessary in order to apply the
code analysis tools.

• A code analysis was also implemented, as a part of this thesis. Code anal-
ysis, static and dynamic, was conducted for every script in every primitive
implemented. This analysis required two tools, MIR and LYA, for static and
dynamic analysis respectively. MIR and LYA both are tools that conduct code
analysis for Javascript implemented scripts. This language security technique
provides the necessary generation of permissions TAMElets (will be explained
thoroughly below) require. TAMElets will rely on FAMElets for much of their
functionality and will provide a dynamic configuration on the 5G Network.
The set of permissions MIR, the static analysis tool will generate will act as
an upper bound limitation in what actions each TAMElet can take.

• An evaluation of the DDoS Detector primitive is performed as the last part
of this thesis’ contributions. The testing focuses particularly on the different
variants of the Mirai botnet attacks. Each of the three different case scenarios
of DDoS attacks (UDP, HTTP, SYN) is tested and evaluated.

1.3 Thesis overview

This thesis’ contributions are presented in Chapter 3 and Chapter 4 along with an
evaluation in Chapter 5, with the main focus being the deployment of our network
security primitives in the Kubernetes environment. However, in order to under-
stand the way each primitive works and why they are designed and implemented
the way they are, you should have a background knowledge.

Chapter 2 provides the necessary background knowledge you need. Multiple
concepts like Virtual Machines, Containers, Docker, etc are explained. Also a very
detailed explanation of the 5G Network is given, the latest generation of network

7

that will become a surface of cyber wars. At last it provides a short review of the
PRINCIPALS Architecture. The work of this thesis is going to be used inside the
PRINCIPALS framework as the environment to execute. This novel architecture
will provide safe programmability and adaptability in 5G networks and will enable
more secure networks and endpoints relatively to the current state of the art.

Chapter 3 provides a detailed explanation of the Network Security Primitives
developed, the main focus of this thesis. These primitives are going to be used by
the PRINCIPALS project to conduct Defensive Cyber Operations, in order to
defend upon the growth of cyber attacks in the 5G network. The primitives, or
FAMElets as they are mentioned inside the PRINCIPALS project, are five in total
and they are logic expressed as containerised code, deployed in the Kubernetes
environment for the purpose of defending against known and anticipated cyber
problems.

Chapter 4 provides a detailed explanation of the language security techniques
implemented in this thesis. An explanation of what code analysis is and how it is
used is also provided, as well as a synopsis of the tools used for both dynamic and
static analysis. Beside the explanation of the tools themselves, we show why and
how we used them inside the project and the work needed to be done to use them.

Chapter 5 provides the last part of this thesis’ contribution, the evaluation
of the DDoS Detector primitive. A description about the metrics, the process,
and the critical questions that need to be answered is also provided, as well as
the results of the three possible cases of the DDoS attack (UDP flooding, HTTP
flooding, SYN flooding).

Chapter 6 provides the Related work that has already done. This previous
work inspired, or even better enabled us to think and realize PRINCIPALS.
PRINCIPALS will be built upon the work done in this previous projects.

Chapter 7 shows the conclusions drown from this thesis.

Appendix 1: In this appendix it is shown a step by step procedure of how
to build your own containerised app from scratch, with the help of Docker. As
a practical example, the Dockerfile of one of the primitives implemented in this
thesis is used, in order to get an actual experience of a container.

Appendix 2: In this appendix it is shown how to use Python’s Scapy as a tool
to monitor the network traffic. As a practical example, the script of one of the
primitives is presented, in order to get an actual experience of how to use Scapy’s
sniffing.

8

Chapter 2

Background

Some background knowledge is mandatory for someone to understand the idea
behind and the implementation of this thesis. That is why in this chapter some
concepts like Virtual Machines, Container, Docker, Kubernetes, etc are being ex-
plained. The implementation of this thesis depends on these elements since every
single network security primitive uses most, if not all of them. Here is what is
going to be needed.

2.1 Virtual Machines

A virtual machine or a VM is a virtualized instance of a computer system [32].
Typically a virtual machine is launched from an image that contains an Operating
System and all of the libraries and binaries that come with a standard version of it.
The nature of the virtualization means that each virtual machine is isolated from
each other and can only interact with the host machine and hardware peripherals.
This interaction is done via the hypervisor. The hypervisor is also known as a
virtual machine monitor or VMM [37]. It is software that creates and runs virtual
machines. A hypervisor allows one host computer to support multiple guest VMs
by virtually sharing its resources, such as memory and processing. Hypervisors
make it possible to use more of a system’s available resources and provide greater
IT mobility since the guest VMs are independent of the host hardware. The
amount of computing resources that allocated in a VM can vary. That’s what
makes them a good choice for cloud computing tasks since the service provider can
offer its users the ability to pay only for the resources they want to use. Several
VMs can be hosted on the same infrastructure, with customisable specifications.
The hypervisor starts and stops these VMs and acts as an intermediate between
the host Operating System and the guests. The Host OS then has direct access to
the underlying Infrastructure.

9

2.1.1 Virtual Machine Security

One of the benefits in using virtual machines is that each instance is isolated
from every other instance. It has its own storage, Operating System, libraries and
system binaries. This allows multiple guests to run on the same infrastructure
without one guest being able to access another or corrupt its host. This is the
principle by which virtual machines can securely enable the concept of a platform
as a service. However, the increased adoption of virtualization has also led to
increased concerns about the security risks associated with virtualization [30].

2.2 Containers

A container is a virtual, isolated computing environment, similar to virtual ma-
chines [33]. The programs that run within a containerised environment will believe
that they are running on a normal computer. Containers are virtualized at the Op-
erating System level, unlike VMs. This means that containers running on the same
host share the same kernel while being unaware of the other containers running on
the same host. Containers are bundled with any necessary libraries or any other
dependencies their applications require. This allows an easy deployment without
worrying about whether the target environment can run the client application or
not. Container images themselves can be built upon other container images [34].
That’s what it makes it so easy for a developer to extend an existing container to
suit their needs. This new container can be pushed and anyone will now be able to
use it as a base to extend upon themselves. There are lots of common benefits of
running your applications in containers and in Virtual Machines [8], [9]. Programs
can be run in isolated, from their host, environment and each other. An additional
benefit is that they are more lightweight, in other words the amount of memory
that they require is smaller than an equivalent virtual machine, as they only con-
tain their applications and the necessary libraries to run them. Containers don’t
have to handle any of the kernel space tasks, nor do they need to include them.
This reduces the amount of resources utilized. Moreover, multiple containers can
share data through a shared file system if they want to. Containerisation offers
improved portability of applications across different underlying operating systems
and cloud infrastructure. The container engine manages the starting and stopping
of the containers. All of the containers share access to the Host OS’s kernel for
kernel level tasks.

2.2.1 Container Security

The fact that containers are considerably more lightweight than VMs means that
there is less of an issue in winding down an infected container. It can be dealt by
launching a new instance, much easier than there would be with a VM. A potential

10

drawback to choosing a container over a virtual machine is the matter of security.
Containers have access to the shared kernel, so you can say they are less removed
from the host OS than VMs are [7], [38].

2.3 Docker

Docker [10] is the software that commoditized containers and made them popular,
by offering advanced capabilities with a familiar user interface that is pretty easy
to use. Docker builds on two kernel features:

• Namespaces: Namespaces are a feature of the Linux kernel that partitions
kernel resources such that each set of processes can see a different set of
resources. Some examples of resources are pid, ipc, network etc.

• Cgroups: Cgroups are also a feature of the Linux kernel that limit the usage
of certain resources for specified processes. For example, by using cgroups
a user can limit a process’ CPU and Memory allocation, network and I/O
bandwidth.

Those two features work together to give a flexible and isolated environment for a
process to run. Docker builds on that and adds the concept of images.

2.3.1 Docker Images

A Docker Image is a file usually containing a program (eg Cassandra, MySQL) with
all its dependencies. Using a Docker image, a user can launch a Container from it.
Essentially, Docker took the concept of images from the world of Virtual Machines
and applied it to containers. A Docker Image is made of several read-only layers
that are stacked on top of each other, using a union-capable file system. This way,
common layers are reused between different images and a Copy-On-Write strategy
is applied.

2.3.2 Image Registries

After Docker introduced us with the concept of an image, it took a step forward
by adding sharing and versioning capabilities. This was done by creating an image
registry, Docker Hub [11]. Docker Hub can be described as an image version of
what Github[15] is used by developers to version code. An image is versioned using
tags, which are pretty much like git branches. For example, the Ubuntu image
can be found with the Xenial tag or the bionic tag. This way someone can use an
already existed image from the Docker Hub and use it to create an new image of
his own.

11

2.4 Container Orchestration

Managing large groups of containers in a deployment has many difficulties and
complexities. Container orchestration tools were created to help with this pro-
cess. Orchestration refers to the automation of key features of the management of
containerised systems. These are:

• Deploying new containers depending on configuration files. Containers do not
have to be manually started. Instead they can be automatically started from
a script. In this way, multiple interdependent containers can be launched at
the same time.

• Coordinating deployed containers. Containers can be categorised and divided
into groups based on whether they require each other’s services or not.

• Network supplying for containers, that enables them to access or be accessed
via a network. This can include access over the Internet as well.

• Flexible scaling of resources to meet demand. If a large number of users
attempted to access a containerised system, the system load could exceed a
certain threshold that would lead to a slow down. Creating new groups of
containers could counter this problem.

• Availability and fault tolerance, achieved by adding some form of redundancy
to the system. One container going down should not bring the whole system
down.

• Stopping container instances when they are no longer needed. This also
includes restarting containers that have entered a status of error or have
been corrupted.

2.5 Kubernetes

Kubernetes [17] is an open source container orchestration tool. It was originally
designed by Google engineers to manage the automation of container deployments.
It can be run on a physical machine, cloud infrastructure or some kind of a hybrid
scheme. In Kubernetes, the smallest deployable instance is called a pod, a single
application instance. Kubernetes can handle systems consisting of multiple pods
as we’ll analyze further down below.

12

2.5.1 Kubernetes Design

Kubernetes design can be divided into the control plane and the nodes. The
control plane contains the services which manage the nodes and the pods within
the nodes. These services are:

• etcd: a service that Kubernetes uses to store all of its data, its configuration
data, its state and its metadata. Kubernetes is a distributed system, so there
is a need for a distributed data store like etcd as well. etcd lets all of the
nodes in the Kubernetes cluster read and write data.

• kube-scheduler: a control plane process whose job is to assign Pods to Nodes.
Depending to the constraints and the available resources, the scheduler de-
termines which Nodes are valid placements for each Pod. Multiple different
schedulers may be used within a cluster.

• kube-controller-manager: is a daemon that embeds the core control loops
shipped with Kubernetes. The controller roll is to watch the shared state
of the cluster through the api-server and make changes to move the current
state towards the desired state. Examples of controllers that ship with Ku-
bernetes today are the replication controller, endpoints controller, namespace
controller, and service-accounts controller.

• cloud-controller-manager: is a Kubernetes control plane component that em-
beds cloud-specific control logic. The cloud controller manager lets you link
your cluster into your cloud provider’s API, and separates out the components
that interact with that cloud platform from components that only interact
with your cluster. It only runs controllers that are specific to your cloud
provider. If you are running Kubernetes on your own premises the Cluster
won’t have a cloud controller manager.

• kube-api-server: is a component of the Kubernetes control plane that is de-
signed to scale horizontally, in other words, it scales by deploying more in-
stances. You can run several instances of kube-apiserver and balance traffic
between those instances.

Nodes can run on physical or virtual machines. They handle and control the
creation and management of pods. Every cluster has at least one node. They
consist of the following components:

• kubelet: an agent that runs on each node in the cluster. It makes sure that
containers are running in a Pod. The kubelet takes a set of pod’s specs, that
are provided through various mechanisms and ensures that the containers
described in those specs are healthy and running. The kubelet doesn’t manage
containers which weren’t created by Kubernetes.

13

• kube-proxy: a network proxy that runs on every node of the cluster, im-
plementing part of the Kubernetes Service concept. kube-proxy maintains
network rules on nodes. These network rules allow external network com-
munication to Pods. Kube-proxy uses the operating system’s packet filtering
layer, if there is one and it’s available. Otherwise, it forwards the traffic itself.

• Container runtime: is the software that is responsible for running containers.

2.5.2 Pods

Pods are the smallest deployable units of computing that you can create and man-
age in Kubernetes. They represent the basic executable instance of an application
in Kubernetes. They are deployed onto the worker nodes. A pod consists of one or
more containers, their underlying storage and an IP address and it has the speci-
fication for how to run the container. All containers in the same pod are assigned
the same IP address, and can communicate with each other through their shared
data storage or via localhost.

2.6 Antrea

Antrea [4], designed by VMware2, is a CNI that operates at Layer 3/4, the Net-
work/Transport layers. It provides networking and security services for a Kuber-
netes cluster. Antrea takes advantage of Open vSwitch [24] to implement Pod
features of networking and security. In a Kubernetes cluster, Antrea creates two
main objects:

• A Deployment (the Antrea Controller), that watches the NetworkPolicy, Pod,
and Namespace resources from the Kubernetes API and it processes several
components (Pod Selectors, Namespace Selectors, ip Blocks) notifying only
interested nodes.

• A DaemonSet, that executes two containers (Antrea Agent and OVS dae-
mons) on every Node. The DaemonSet also includes an Init container that
installs the CNI plugin (Antrea-CNI) on the Node and, in general, ensures
that the OVS kernel module is loaded and it is linked with the portmap CNI
plugin. The Antrea Agent (deployed on each node) receives only the com-
puted policies which affect Pods running locally on its Node. It directly uses
the IP addresses, computed by the Controller, to create OVS flows enforc-
ing the specified NetworkPolicies. In this way, only the nodes involved are
notified.

14

When installed, the network provider creates on each node an OVS bridge with
several interfaces used in different kinds of communications. Antrea uses encap-
sulation and the OVS bridge directly forwards packets between two local Pods.
Indeed, for inter node communication, packets will be first forwarded to the tun0
port. Then, they will be encapsulated and sent to the destination Node through
the tunnel. After that they will be decapsulated and injected through the tun0
port to the OVS bridge, and finally forwarded to the destination Pod.

2.7 Keras

Keras [16] is an open source software library that provides a Python interface for
artificial neural networks. Keras is the high-level API of TensorFlow 2, that is
designed for human beings, not machines. It runs on top of TensorFlow and since
its built in Python, it is very user-friendly. It is an approachable, highly productive
interface for solving machine learning problems. It mainly focuses on modern deep
learning. Keras provides essential abstractions and building blocks for developing
and shipping machine learning solutions with high iteration velocity. Keras follows
the best practices for reducing cognitive load. It offers consistent and simple APIs,
it minimizes the number of user actions required for common use cases and it also
provides clear and actionable error messages.

2.8 Multus

Multus [20] CNI is a container network interface (CNI) plugin for Kubernetes. It
enables the attachment of multiple network interfaces to pods. Usually, a Ku-
bernetes pod has two network interfaces, its primary and a loopback interface.
Multus can create a multi-homed pod that has multiple interfaces. Multus acts as
a meta-plugin, a CNI plugin that can call multiple other CNI plugins. Multus CNI
follows the Kubernetes Network Custom Resource Definition De-facto Standard
to provide a standardized method. Following this standard method, it specifies
the configurations for additional network interfaces. This standard is put forward
by the Kubernetes Network Plumbing Working Group. It provides a very useful
installation guide that makes it easy to work with if you are new to it.

2.9 5G Network

The term 5G is used to refer to the fifth generation of mobile wireless technologies,
which originated with analog mobile telephony in the late 1980s and has progressed
to the point where all people and things can be connected to the Internet. Every
generation’s of mobile technology aim is to provide connectivity anywhere and

15

anytime. The underlying technological objectives and the capabilities of the net-
work, however, have continued to shift into a new generation around every 10
years approximately. Each generation is designed to serve the needs of the current
society over a duration of 2 to 3 decades around the globe. The impact of these
generations on the way we communicate may be viewed across various dimensions,
such as:

• Service offerings.

• Air-interfaces.

• Data rates.

• Spectrum ranges.

• Performance.

Early generations began with only isolated concerns, such as telephone con-
versations, while later ones evolved to digital data communication and more so-
phisticated service architectures. Accordingly, the focus in past generations was
consistently on operation in wider spectrum ranges and with higher data rates
and traffic handling capacities. These objectives continue to be important today,
with 5G being able to operate over much wider range of frequency bands than
ever before. The added attention to massive Internet of Things(IoT) support, the
development of support for critical services, and the remaining of the core net-
work functionality to better support distributed cloud computation and service
orchestration expands the potential of 5G further.

The 5G system is built on radio access nodes and distributed and centralized
data centers, allowing for a flexible allocation of workloads. These nodes and data
centers are connected via programmable transport networks, which are connected
via backbone nodes that carry the information from the access nodes to the data
centers, where most of the data is stored and the network itself is managed. In
addition to this, the management of applications, cloud, transport, and access
resources can be allocated centrally in the data center or be flexibly allocated as
necessary. 5G systems have a significant role to play, not just in the evolution of
communications but in the evolution of businesses and society as a whole.

2.9.1 5G Network Architecture

5G is effectively a dynamic, coherent and flexible framework of multiple advanced
technologies supporting a variety of applications. 5G utilizes a more intelligent
architecture, with Radio Access Networks (RANs) no longer constrained by base
station proximity or complex infrastructure. 5G leads the way towards distributed,
flexible and virtual RAN with new interfaces creating additional data access points.

5G Architecture 3GPP : The 3rd Generation Partnership Project 3GPP [1]
covers telecommunication technologies including RAN, core transport networks

16

and service capabilities. 3GPP has provided complete system specifications for
5G network architecture which is much more service oriented than previous gener-
ations 3GPP. Services are provided via a common framework to network functions
that are permitted to make use of these services. Modularity, reusability and self-
containment of network functions are additional design considerations for a 5G
network architecture described by the 3GPP specifications.

5G Spectrum and Frequency: Multiple frequency ranges are now being ded-
icated to 5G new radio (NR). The portion of the radio spectrum with frequencies
between 30 GHz and 300 GHz is known as the millimeter wave, since wavelengths
range from 1-10 mm. Frequencies between 24 GHz and 100 GHz are now be-
ing allocated to 5G in multiple regions worldwide. In addition to the millimeter
wave, underutilized UHF frequencies between 300 MHz and 3 GHz are also being
repurposed for 5G. The diversity of frequencies employed can be tailored to the
unique applications considering the higher frequencies are characterized by higher
bandwidth, through shorter range. The millimeter wave frequencies are ideal for
densely populated areas, but ineffective for long distance communication. Within
these high and lower frequency bands dedicated to 5G, each carrier has begun to
carve out their own discrete individual portions of the 5G spectrum.

MEC: Multi-Access Edge Computing (MEC) [18] is an important element of 5G
architecture. MEC is an evolution in cloud computing that brings the applications
from centralized data centers to the network edge, and therefore closer to the end
users and their devices. This essentially creates a shortcut in content delivery
between the user and host, and the long network path that once separated them.

This technology is not exclusive to 5G but is certainly integral to its efficiency.
Characteristics of the MEC include the low latency, high bandwidth and real time
access to RAN information that distinguish 5G architecture from its predecessors.
This convergence of the RAN and core networks will require operators to leverage
new approaches to network testing and validation.

5G networks based on the 3GPP 5G specifications are an ideal environment for
MEC deployment. The 5G specifications define the enablers for edge computing,
allowing MEC and 5G to collaboratively route traffic. In addition to the latency
and bandwidth benefits of the MEC architecture, the distribution of computing
power will better enable the high volume of connected devices inherent to 5G
deployment and the rise of the Internet of Things (IoT).

NFV: Network function virtualization (NFV) [36] decouples software from
hardware by replacing various network functions such as firewalls, load balancers
and routers with virtualized instances running as software. This eliminates the
need to invest in many expensive hardware elements and can also accelerate instal-
lation times, thereby providing revenue generating services to the customer faster.
NFV enables the 5G infrastructure by virtualizing appliances within the 5G net-
work. This includes the network slicing technology that enables multiple virtual
networks to run simultaneously. NFV can address other 5G challenges through

17

virtualized computing, storage, and network resources that are customized based
on the applications and customer segments.

5G RAN Architecture: The concept of NFV extends to the RAN through for
example network disaggregation promoted by alliances such as O-RAN [23]. This
enables flexibility and creates new opportunities for competition, provides open
interfaces and open source development, ultimately to ease the deployment of new
features and technology with scale. The O-RAN ALLIANCE objective is to allow
multi-vendor deployment with off-the shelf hardware for the purposes of easier and
faster inter-operability. Network dis-aggregation also allows components of the
network to be virtualized, providing a means to scale and improve user experience
as capacity grows. The benefits of virtualizing components of the RAN provide a
means to be more cost effective from a hardware and software viewpoint especially
for IoT applications where the number of devices is in the millions.

eCPRI: Network disaggregation with the functional split also brings other cost
benefits particularly with the introduction of new interfaces such as eCPRI [12].
Radio Frequency (RF) interfaces are not cost effective when testing large num-
bers of 5G carriers as the RF costs rapidly increase. The introduction of eCPRI
interfaces presents a more cost-effective solution as fewer interfaces can be used
to test multiple 5G carriers. eCPRI is aimed to be a standardized interface for
5G used for instance in the O-RAN front haul interface such as the DU. CPRI
in contrast to eCPRI was developed for 4G, however in many cases was vendor
specific making it problematic for operators.

Network Slicing: Perhaps the key ingredient enabling the full potential of
5G architecture to be realized is network slicing. This technology adds an extra
dimension to the NFV domain by allowing multiple logical networks to simultane-
ously run on top of a shared physical network infrastructure. This becomes integral
to 5G architecture by creating end-to-end virtual networks that include both net-
working and storage functions. Operators can effectively manage diverse 5G use
cases with differing throughput, latency and availability demands by partitioning
network resources to multiple users or tenants.

Network slicing becomes extremely useful for applications like the IoT, where
the number of users may be extremely high, but the overall bandwidth demand is
low. Each 5G vertical will have its own requirements, so network slicing becomes
an important design consideration for 5G network architecture. Costs, resource
management and flexibility of network configurations can all be optimized with this
level of customization now possible. In addition, network slicing enables expedited
trials for potential new 5G services and quicker time-to-market.

Beamforming: Another breakthrough technology integral to the success of 5G
is beamforming [5]. Conventional base stations have transmitted signals in multiple
directions without regard to the position of targeted users or devices. Through the
use of multiple-input, multiple-output (MIMO) arrays featuring dozens of small
antennas combined in a single formation, signal processing algorithms can be used

18

to determine the most efficient transmission path to each user while individual
packets can be sent in multiple directions then choreographed to reach the end
user in a predetermined sequence.

With 5G data transmission occupying the millimeter wave, free space propaga-
tion loss, proportional to the smaller antenna size, and diffraction loss, inherent to
higher frequencies and lack of wall penetration, are significantly greater. On the
other hand, the smaller antenna size also enables much larger arrays to occupy the
same physical space. With each of these smaller antennas potentially reassigning
beam direction several times per millisecond, massive beamforming to support the
challenges of 5G bandwidth becomes more feasible. With a larger antenna density
in the same physical space, narrower beams can be achieved with massive MIMO,
thereby providing a means to achieve high throughput with more effective user
tracking.

CNFs: While VNFs made a breakthrough by virtualising Network Functions,
they still have limitations due to the weight of VMs, especially when it comes to
scaling. Therefore, digital service providers moved toward delivering more agile
services. They adopted a cloud-native approach, using both centralized and dis-
tributed locations for applications. This action benefited in matters of flexibility,
scalability, reliability, and portability. Moving beyond virtualization to a fully
cloud-native design helps push to a new level the efficiency and agility needed
to rapidly deploy innovative, differentiated offers that markets and customers de-
mand. That is when CNFs made their appearance. CNFs is the equivalent of
VNF, but designed and implemented in containers. This containerization of net-
work architecture components makes it possible to run a variety of services on
the same cluster and more easily on-board already decomposed applications, while
dynamically directing network traffic to the correct pods. The infrastructure 5G
decided to use for the orchestration of these containers was Kubernetes.

2.10 PRINCIPALS

In order to further discuss the main topic of this thesis, the design and the imple-
mentation of the network security primitives, it is necessary to take a look at the
PRINCIPALS project and its architecture. Nowdays, networks and the nodes
they interconnect have become a battlefield. Malicious users have the freedom to
use the network for all kind of malicious purposes like reconnaissance, origin ob-
fuscation, propagation, attack and more. Over the years, a number of protection
mechanisms have been developed and deployed that mostly take the form of a
stationary, point defence. It is essential for a new mechanism that will allow the
defensive side to conduct mobile defensive cyber operations (DCO). This new de-
fensive mechanism will be able to match the speed, scale, and accuracy of attacker
tools, without introducing new points of vulnerability or risk network instability.
The PRINCIPALS project introduces a novel architecture that will provide safe

19

programmability and adaptability in 5G networks. This architecture will enable
more secure networks and endpoints compared to the stationary point of defense.

The PRINCIPALS core architecture relies upon domain-specific languages
and restricted execution runtimes, along with suitable cryptographic protocols
and authorization credentials. It runs atop locked-down open-source platforms
that offer the core services necessary to implement a variety of security primitives.
PRINCIPALS will thereby offer an active management environment (AME) that
we will be able to quickly prototype. This prototype will be used to investigate,
develop, and evaluate algorithms and approaches to addressing current and an-
ticipated security problems through custom-yet-adaptive logic expressed as code
(AMElet). AMElets will be deployed on-demand inside the network, possibly at
scale, while also creating new defensive opportunities. Thin AMElets (TAMElets)
are implemented in a novel domain-specific language (DSL) that offers inherent
safety and security guarantees. TAMElets compose and supervise fundamental
security and data analytics services built into the 5G infrastructure. These ser-
vices can themselves be extended via persistent fat AMElets (FAMElets) that can
be implemented in any Turing-complete language and offer higher performance at
equal or higher resource expenditure.

2.10.1 Innovative Claims

The PRINCIPALS architecture will provide a novel mechanism for carrying out
defensive cybersecurity operations (DCO) at a scale, pace, and precision that has
never been done before. It will be able to detect and track malicious activity
across a 5G architecture, and it will provide the tools for effectively and rapidly
countering such activity. PRINCIPALS will allow operators to write defensive
(as well as network diagnostic) tools, called AMElets.

PRINCIPALS supports two types of AMElets, allowing for a rich and pro-
grammable network environment. To support this powerful extensibility model,
a novel architecture will be prototyped and designed, with safety and security
guarantees derived from a combination of :

• Carefully constructed semantics.

• A domain-specific language (DSL) for expressing transient network computa-
tion.

• Strict resource management.

• Cryptographic protections.

• Distributed authorization.

Coordinated action across a network can be implemented in PRINCIPALS fol-
lowing a variety of possible models, including through AMElet propagation across

20

nodes, explicit communication between AMElets, and command-and-control com-
munication with an operator console or other centralized management system.

Another novel aspect of the PRINCIPALS effort is the use of multi-resolution
emulation and simulation, combining Mininet [19] and the NS3 network simulation
environment as part of its evaluation plan. Parameters like latency and overhead
will be determined by the use of smaller-scale/higher-fidelity (SSHF) network emu-
lations using actual PRINCIPALS runtimes. Following that, they are then used
by larger-scale/lower-fidelity simulations that still use SSHF emulations in ran-
domly chosen simulated network regions to scale to the desired evaluation scale
program goals.

A final novel aspect of PRINCIPALS is its integration with end nodes (e.g.,
mobile handsets), leveraging secure execution elements such as Qualcomm’s Secure
Enclave to extend the ability to carry out DOC all the way to compliant end nodes.
PRINCIPALS will be designed and prototyped in the form of software runtimes
and services built atop open source operating systems (Linux and OpenBSD).

2.10.2 Threat Model and System Assumptions

While designing the PRINCIPALS architecture, it’s necessary to make certain
assumptions about the node on which the PRINCIPALS runtime operates and
the capabilities of the attacker. It is assumed that the runtime itself is protected
from malicious interference from enemies remote and local. By local we mean the
attackers that are co-resident with a PRINCIPALS instance on a given 5G node.
So PRINCIPALS is not concerned about hardware supply chain or close access
attacks. In addition, it is assumed that the underlying platform offers protection
against side channel attacks, that could reveal sensitive information that the run-
time and AMElets use. Any algorithms used are outside the adversary’s ability to
successfully cryptanalyze and are implemented correctly. We, also, assume that
the platform allows for a certain degree of extensibility. Finally we assume that
there will be an attempt to use the PRINCIPALS infrastracture generally itself
for malicious purposes. So it’s only logical to assume that there will be at least
some nodes that will initialize and attest to the integrity of a PRINCIPALS
runtime.

21

2.10.3 Architecture

The PRINCIPALS node architecture, as illustrated in the figure above, is
based on three pillars:

• Flexibility: PRINCIPALS provides complete but controllable programma-
bility in every layer of the network stack. PRINCIPALS will offer the ability
for defenders to inject their code from high-level, unprivileged applications,
all the way to low-level, privileged system functionality, and potentially pro-
grammable hardware. This will provide the ability to defend against malicious
attacks, analyze traffic and extract necessary information.

• Performance: Performing per-packet or per-flow computations in real-time
(or near-real-time) requires efficient intra-node and inter-node communica-
tion, noteworthy processing capabilities for complex analytical computations,
and sufficient memory resources. For PRINCIPALS to scale, we must mini-
mize overheads, since executing multiple applications on the same infrastruc-
ture increases system complexity and the overall execution overhead.

• Security: PRINCIPALS is designed to support the injection of code in
the data path, often by users that may not be fully trusted. Security mod-
els with great attention to detail are needed to increase usability as more
precise policies can be specified and enforced. For example, the payload of
packet will be accessible to some due to their credentials while not to some
others. The specification as well as the enforcement of policy for the loaded

22

AMElets is where the challenge stands in this dimension. Security must be
carefully balanced with the other two pillars of PRINCIPALS, performance
and flexibility.

The main design choice for PRINCIPALS programmable architecture is how
extensions are realized and the level of programmability it is capable of support-
ing. The perspective of PRINCIPALS is to support a wide spectrum of choices
to maximize the benefits of the 5G infrastructure. These extensions (AMElets) re-
quire direct low-level access to packets or traffic flows, hardware features, and other
resources, or are performance-sensitive, can be developed in any Turing-complete
language and loaded into the network infrastructure, the PRINCIPALS nodes.
Such fat AMElets (called FAMElets) can dynamically change a PRINCIPALS
node’s capabilities and operation. This covers functionality on one side of the
spectrum and is very similar to the way programs or even operating systems can
expand their functionality (e.g. plugins and extensions for Firefox or dynamically
loadable modules for Linux) or the dynamic module model of active networks.

The second extensibility model of PRINCIPALS is the support of thin AMElets
(called TAMElets), which consists of programs written in a domain-specific lan-
guage (DSL). This limits the set of actions that TAMElets can take. TAMElets
can be labeled as code-carrying packets that are executed as they traverse the
network. They could possibly leave behind code that continues to execute un-
til its allocated resources are used. TAMElets are an instance of the transient
computation model of active networks. TAMElets rely on FAMElets and other
PRINCIPALS core services to access traffic, computation, or other resources,
through carefully constructed APIs.

PRINCIPALS can support traffic where all packets are code. This can be con-
sidered as an extreme IP network. To be more precise, if we think of IP packets
as simple programs that invoke router functionality (e.g., store-and-forward, drop-
ping of packets, etc), PRINCIPALS packets extend this thought to packets that
contain actual code that is translated by the PRINCIPALS nodes. Depending
on the services we wish to get from PRINCIPALS the degree of the extensi-
bility and programmability will be determined. Resource usage, latency, should
be taken into account. TAMElets can be thought as the dynamic parameteriza-
tion/configuration and control of FAMElet-provided capabilities, in the context of
a particular DCO mission. The design of these carefully constructed APIs and the
delineation of the functionality between FAMElets and TAMElets in the initial
prototype will be the subject of research and continuous refinement.

Below are described the key components of PRINCIPALS in more detail.
AMEx: The PRINCIPALS core component is the AME execution runtime .

AMEx consists of a number of services and APIs and is responsible for controlling
and mediating all accesses and calls between components (hardware or software).
AMEx provides:

23

• The space where all FAMElets execute.

• An interpreter (AMEvm) for the execution of TAMElets written in AMEis
(more details on AMEvm and AMEis are presented down below).

• Facilities for loading and unloading AMElets through the AMEx Service.

• Guarantees that AMElets do not interfere with each other.

• Intercession of communication between AMElets, as well as between AMElets
and hardware resources of the 5G node (memory, network interfaces, CPU,
accelerators and other computing devices like GPUs or FPGAs, trusted exe-
cution environments like SGX and TrustZone, etc.).

• Grouping of AMElets into slices

• Overall resource management per slice (or an interface to another resource
management facility on the platform, if one exists).

• Guarantees that all operations are in line with the security policy that the
infrastructure operators has set and the credentials the AMElets carry with
them. More details about AMElet authorization will be given below.

AMEvm: is a simple virtual machine that can run the mobile code carried
by the TAMElet. It is a simple interpreter that executes the instructions defined
in the AMEis instruction set and serves as a sandbox for executing the code,
relaying calls to FAMElet functionality that inhabits inside the AMEx. While
for most purposes we expect running in simple interpreter mode, we do plan to
investigate the potential use of Just-in-time (JIT) compilation of AMEis code to
native (machine) code. Finally, it is important to note that there is a possibility
of multiple instances of AMEvm running, as it is possible for multiple incoming
packets to generate TAMElet code execution.

AMEis: is the instruction set that TAMElets are expressed in when transmit-
ted in the network. The instruction set is very similar to the Berkeley Packet Filter
(BPF) language, but it has two significant differences. Besides the standard in-
structions (arithmetic, logic, branch, and memory load/store), it is equipped with
an interrupt instruction that allows it to imprison inside the AMEvm, and from
there invoke functionality that has been defined in FAMElets. AMEis code can also
register callbacks to itself, which are invoked by AMEx (via the AMEvm) when
certain conditions are met. This allows an event-based on-the-fly programmability
(and thereby orchestration) of services, including FAMElets, on a node. AMEis
achieves two goals with this approach:

• It is able to alter the state of FAMElets, and altogether the state of a slice.

• It can rely on native and performant execution of heavyweight tasks while
maintaining a lightweight and simple code profile.

24

Another difference from the implementation of the BPF language is that AMEis
allows backward jumps. BPF implements only forward jumps for reasons of bound-
ing the execution time. Forward jumps guarantee termination in time linear to
the length of the program. We believe such a programming model is hard to use
and very restrictive for the purposes of PRINCIPALS. We will implement up-
per bounds to the execution time of TAMElets using a different mechanism, by
taking advantage of work done in prior projects of the Personnel in charge. Each
TAMElet has a certain number of instruction cycles it can run and every instruc-
tion execution counts as one cycle. The AMEvm keeps track of the execution time
and will terminate TAMElets that consume their allocated instruction cycles. Ad-
ditional resource counters will be used to support wall-clock expiration, number
of callback invocations, number of packets a TAMElet can generate, etc. Other
TAMElets may increase the budget of already running (or resting) AMEis code,
subject to proper authorization.

AMElets: come in two forms, as already mentioned. FAMElets are full-fledged
code that is designed to execute on the PRINCIPALS framework, and specifically
inside the AMEx. FAMElets are responsible for providing complex, performance-
sensitive, and possibly privileged functionality. TAMElets can be thought of mo-
bile programs that are designed to execute as they transit through the 5G net-
work. They depend on FAMElets for much of their functionality and core services.
TAMElets can be thought as scripting-like functionality that enables the dynamic
configuration and composition of security (and other) services on a PRINCIPALS
node.

TAMElets: are carried in network packets, with a special header that iden-
tifies them as a special kind of packet. The packet also encapsulates a payload
of AMEis code along with metadata related to that code. The code payload is
executed as it transits through the network. To be more precise, when reaching a
PRINCIPALS node, the header is identified by the AMEx Service, which then
proceeds to process the metadata. Metadata can include a variety of information
like the TAMElet state, credentials that specify what permissions the TAMElet
has, the slice wich the mobile TAMElet belongs to, etc. After the metadata is
processed, the code of the TAMElets is given to an AMEvm for execution. While
executing, TAMElets can alter the state of a slice via calls to FAMElets, or their
own state (packet headers, metadata). TAMElet execution can end in a couple
of ways. They may run out of cycles, in which case they terminate and AMEvm
performs a cleanup, or they may explicitly exit or reach the end of their execution.
When this happens, AMEx Service will check to see whether the current node
is the final destination of the packet, in which case it will perform a cleanup. If
not, the AMEx will forward the packet to the next destination. We anticipate
TAMElets will be expressed in a programming language similar to PLAN.

TAMElet library: PRINCIPALS will provide a library of TAMElets for

25

common network functionality. For example, update of state in common FAMElets,
operations like collecting statistics from all slice nodes, modification in the func-
tionality of FAMElets, heartbeat messages, PRINCIPALS node and AMEx con-
trol.

FAMElets: are software modules that execute inside AMEx. Their function-
ality may be different, depending on the needs of the services we need to deploy on
PRINCIPALS. For example, a FAMElet can be a firewall module, a deep packet
inspection system (e.g., Snort), a machine learning inference engine, a network
monitoring system, or any other custom service. FAMElets can be written in any
Turing-complete language.

Unprivileged FAMElets : In their most common form, FAMElets will be
user-level programs that run inside a network slice. They can, and often will,
interact with other FAMElets within the same slice, inside one or multiple PRIN-
CIPALS nodes, to provide their services. Their access to slice resources will be
checked by their credentials. For example, a FAMElet may not be allowed to access
certain types of packets or traffic flowing through the slice.

Privileged FAMElets: When FAMElets require deeper system or network ac-
cess, operations will be carried out by privileged FAMElets. These will be kernel-
level modules running inside a slice. As such, they will typically have access to
the whole resources of the slice, within and across multiple PRINCIPALS nodes.
They will also be able to control the behavior of unprivileged FAMElets. They will
have full access to the network resources of the slice, its computing capabilities,
storage, etc. Typically, when a service has real-time needs, it may rely on priv-
ileged FAMElets, as they are closer to the hardware. Since privileged FAMElets
are kernel-level modules, they are written in a typesafe language, and pointers
and jumps are controlled. This is implemented in two different ways. Privileged
FAMElets carry source code that is compiled by a trusted compiler within AMEx
before it is loaded inside the PRINCIPALS operating system kernel. Alterna-
tively, FAMElets carry object code that AMEx will patch to limit pointer access
and jump targets. PRINCIPALS could allow for privileged FAMElets to carry
code that will be executed at the GPU, or bitstreams that can be loaded onto the
FPGA within a constrained area of the programmable fabric.

Management FAMElets : This type of FAMElet will be designed to run out-
side network slices, and inside the host operating system of the PRINCIPALS
node. Operators will use these nodes of the 5G network infrastructure to changer
or even extend the behavior and capabilities of the PRINCIPALS node. For
example, they can update or patch the node and the AMEx. Credentials: con-

tain information about the resource constraints and permissions of the AMElets
(TAMElets or FAMElets). Specifically, they inform the system how many cycles
the AMElet is allowed to consume, how much memory it is permitted to allocate,

26

what traffic it is allowed to monitor or modify, etc. The credentials are checked
when the AMElet is loaded, to determine the type of AMElet. They are checked
again in every API call performed by the AMElets. Credentials for FAMElets are
typically created by managers of slices. Credentials for TAMElets are typically
created by users that want to run their applications in a slice. The maximum
rights in those credentials are capped by the type of user. We envision this to be a
process that takes place out-of-band. As a starting point, we will use the KeyNote
trust management system for authorization credentials in PRINCIPALS.

Resource management : This takes place in PRINCIPALS at a number
of layers, across PRINCIPALS nodes and also within them. Within a node, re-
sources are controlled within and across slices. Finally, resources are controlled
at the level of the OS and hardware. The enforcement points depend on creden-
tials to determine whether a resource (or how much of it) is available for use by
an AMElet. As a whole, a 5G slice is given a resource budget (for network us-
age, memory usage, compute usage, etc.) to operate on all PRINCIPALS nodes.
While this serves as an upper bound, the fact that the users of the slices can gen-
erate packets (TAMElets) that can traverse the network, perform computation,
and generate new TAMElets, complicates resource management enforcement. To
enforce a global security policy on resource consumption, we rely on the AMEx
services of each PRINCIPALS node. When created, each TAMElet starts with
a resource budget allocation. This allocation is encoded in the metadata it car-
ries with it, in the form of a cryptographically signed credential. This makes it
immutable to non-authorized entities. As the TAMElet jumps from node to node
and executes, this resource budget is reduced. This is done by the AMEx Services,
by modifying the credentials of the TAMElet to reflect the resource usage. In the
event a TAMElets generates a new TAMElet, the resource budget is split between
them (the exact split is subject to policy and the parent TAMElet). For example,
assume a TAMElet is generated and is issued a credential with a policy that gives
it 100 hops between PRINCIPALS nodes, 1000 compute cycles on AMEvms,
and 200 calls to FAMElet services. At its first hop, the TAMElet uses 50 compute
cycles and issues 2 FAMElet calls. As it propagates to the next node, it is issued
a new credential stating that it still has 99 hops, 950 compute cycles, and 198
FAMElet calls. If at the next node it consumes another 50 cycles and 2 FAMElet
calls, and then it generates a TAMElet, the two TAMElets will now share the re-
sources, and the two newly issued certificates may each have 49 hops, 450 compute
cycles, and 98 FAMElet calls. The above is an oversimplified example that does
not take into account factors such as the cost of the FAMElet calls, but it serves
to illustrate the concepts that we will be pursuing in PRINCIPALS.

27

Chapter 3

Primitives

Having a better understanding about how the 5G Network is implemented and
how it relates to Kubernetes, we can now move on to the main focus of the thesis,
the Network Security Primitives. In this chapter, it is presented the first part
of this thesis’ contribution. These primitives, designed and implemented, consist
of a variety of defensive mechanisms that will provide PRINCIPALS the ability
to neutralize any possible cyber threat on the 5G network. These primitives, or
FAMElets as they are named inside the PRINCIPALS project, will be deployed
inside the PRINCIPALS framework through carefully constructed APIs. Below
we present the five network security pimitives that were designed and implemented
as a part of this thesis.

3.1 Snort

Snort is an open source NIDS created by Martin Roesch in 1998. Snort is a free
Network Intrusion Detection system software for Linux and Windows, that detects
cyber threats like malicious packets, threats on Internet Protocol networks etc. It
can perform real time traffic analysis and packet logging on IP networks. Snort
relies on rules to determine what kind of malicious behaviour it should look for
in a packet. These rules are stored in logging files that can be modified by a text
editor. The rules are grouped in categories and depending on each category, they
are stored in separate files. These files are then included in a main configuration
file called snort.conf. Snort reads these rules at start-up time and builds
internal data structures or chains to apply these rules to captured data. Snort
comes with a rich set of pre-defined rules to detect intrusion activity and anyone
can add their own rules or remove some of the built-in rules to avoid false alarms.
The rules are proportional to the processing power that is required to process
captured data in real time. Snort mainly consists of four components:

• Data sniffers

28

• Pre-processor

• Detection engine

• Alarm system

A packet read from the network card is first processed by the pre-processor. Then
through rule detection packet in the detection engine. If the packet matches the
rule, it will be processed in accordance with the rules.

In this Primitive, Snort is being containerised, in other words a version of
Snort is created inside a Docker container that has the same functionality.
Given the rules Snort has been configured with, this primitive has the ability
to monitor and find malicious traffic in the pod. In order to create a container-
ised Snort version, a Docker image must be created. Using a Dockerfile
and taking an already existing image by using the FROM command inside, the
Dockerised Snort starts its creation. The functionality of Snort is added by the
installation of many necessary packages. Here is the whole Dockerfile :

1 FROM ubuntu:20.04

2

3

4 ENV DEBIAN_FRONTEND noninteractive

5 ENV NETWORK_INTERFACE eth0

6

7 RUN apt-get update && apt-get -y install \

8 wget \

9 build-essential \

10 gcc \

11 libpcre3-dev \

12 zlib1g-dev \

13 libluajit-5.1-dev \

14 libpcap-dev \

15 openssl \

16 libssl-dev \

17 libnghttp2-dev \

18 libdumbnet-dev \

19 bison \

20 flex \

21 libdnet \

22 autoconf \

23 libtool \

24 nodejs \

25 tcpdump \

26 npm

27

28 WORKDIR /opt

29

30 ENV DAQ_VERSION 2.0.7

31 RUN wget https://www.snort.org/downloads/snort/daq-${DAQ_VERSION}.tar.gz \

32 && tar xvfz daq-${DAQ_VERSION}.tar.gz \

33 && cd daq-${DAQ_VERSION} \

34 && ./configure; make; make install

35

36 ENV SNORT_VERSION 2.9.18.1

37 RUN wget https://www.snort.org/downloads/archive/snort/snort-${SNORT_VERSION}.tar.gz \

29

38 && tar xvfz snort-${SNORT_VERSION}.tar.gz \

39 && ls \

40 && cd snort-${SNORT_VERSION} \

41 && ./configure; make; make install

42

43 RUN ldconfig

44

45 ADD mysnortrules /opt

46 RUN mkdir -p /var/log/snort && \

47 mkdir -p /usr/local/lib/snort_dynamicrules && \

48 mkdir -p /etc/snort && \

49 cp -r /opt/rules /etc/snort/rules && \

50 mkdir -p /etc/snort/preproc_rules && \

51 mkdir -p /etc/snort/so_rules && \

52 cp -r /opt/etc /etc/snort/etc && \

53 touch /etc/snort/rules/white_list.rules /etc/snort/rules/black_list.rules

54

55 RUN apt-get clean && rm -rf /var/lib/apt/lists/* /tmp/* /var/tmp/* \

56 /opt/snort-${SNORT_VERSION}.tar.gz /opt/daq-${DAQ_VERSION}.tar.gz

57

58 COPY myjsscript.js /var/log/snort/myjsscript.js

59 RUN chmod +x /var/log/snort/myjsscript.js

Finally with the docker build command, all of this necessary packages is being
applied inside the container and when the building is done, the container is ready
for use. By using the Docker containers, Snort can run individually inside
the Kubernetes infrastructure as a pod (Snortpod), with the application of a
simple yaml file. For this to happen the image of the Snort container that was
created must be pushed either in Docker Hub or our local repository. As an
extend to this, with the help of the Antrea Agent, the whole traffic of the node is
being mirrored to the Snortpod. This is achieved with the use of Init container, a
useful component of the Kubernetes environment that makes it possible to run
a specific task before the initialization of any pod or deployment.

The configuration of the image required for the Init container is similar to the
previous one. The image that we use in our Dockerfile as a base image, is an
Antrea image though. That’s because this deployment works by having installed
the Antrea project inside and by using the Volume Mount components with the
Antrea agent of K8s. Inside this shared file, we store a bash script that essential
makes the Antrea Agent to apply the mirroring rule to the bridge when it executes.
The Init container’s task is the execution of this script. In that way the mirroring
can be implemented. This is whole configuration is implemented in the yaml file
of the Kubernetes environment, given the fact that we have already created a
containerised Snort deployment and a containerised mirroring deployment. It’s
worth mentioning, that when the Antrea agent applies the rule, the mirroring
is realized in the first interface of the SnortPod, the eth0 interface. The SnortPod
then, can no longer use this interface for nothing else than mirroring. So if there
is a need to communicate with an external or an internal user, the Snortpod will
have to use its secondary interface. The secondary interface is created with the use
of Multus inside the yaml file. The necessary Dockerfile and yaml file alongside

30

with a rule file can be found here. Inside also exists the code and yaml file required
for the mirroring. A very detailed explanation is also provided in the README
file.

3.1.1 Example

We assume that there is a pod that creates traffic inside the Cluster, called Alice
pod. Whatever traffic the Alice pod creates it’s being mirrored to the SnortPod.
The Snortpod primitive has logged all the predefined information about the traffic
that wants to monitor. The rule that is configured with is this:

alert ICMP 172.16.0.4 any -> any any (msg:"Sample alert"; sid:1000001; rev:1;)

The meaning of this rule is that any time this IP(172.16.0.4) creates ICMP
traffic, it will be logged. This is the IP of the Alice pod though. That means that
if the Alice pod creates any ICMP traffic, this traffic must be logged. The Alice
pod starts pinging at google.com. The Snortpod monitors this traffic and logs it
in the alert file inside the container’s /var/log/snort directory. The figure
above shows a representation of this scenario in a Kubernetes Cluster.

3.2 DNS Sinkholing

DNS Sinkholing is a mechanism used to protect users that attempt to connect to
known malicious or unwanted domains by intercepting their DNS request. Then
it returns a false, or even better a fixed IP address. This fixed IP address will
point to whatever the system administrator defines it. This technique can be

31

https://github.com/parasecurity/principals-language/tree/master/primitives/snort

used to prevent users from connecting or communicating with known malicious
destinations (botnets, etc) in a secure workplace environment.

The input to the DNS Sinkholing primitive is a list of pairs (domain,IP address),
where domain is the domain to be sinkholed and IP address is the address the
primitive will inject at the request. The implementation of the primitive takes
advantage of the CoreDns plugins. By using the rewrite and hosts plugin, the
job of this primitive becomes very easy. When the pod, named DNS-Support, is
deployed, it runs a series of scripts that do the following :

• Checks the input file.

• Reads the input file and finds out the domains that need to be sinkholed.

• Having the domains needed, it then writes a new Corefile for the CoreDns
and applies it.

• Then it restarts the CoreDns with the new Corefile. The new Corefile has
the requested domains written in the Hosts plugin, next to the IP we want
to sinkhole them to. It also covers the top-level domains case with the use of
the rewrite plugin.

• Finally, it periodically checks the input file for changes. In the event of a
change, the Primitive will restart the whole drill with the new input file.

For this implementation to take place, the creation of the DNS-Support pod
has some background procedure. For starters, the functionality of the pod must
be Dockerised. This happens again, by creating a Dockerfile that takes an
Ubuntu image and it’s added some packages to be installed, like Node.js (which is
the language that is implemented in), npm, etc. The scripts that this pod will run
are also added in the Dockerfile. These scripts are three in total and provide
the necessary functionality the DNS Sinkholing Primitive needs.

• rewriteCorefile.js is the script that creates a new Corefile with the host
plugin filled with the domains that exist in the input file.

• start.js is the script that is immediately executed when the pod is deployed.
This script uses the rewriteCorefile.js script to create the new Corefile that
will be used in the new CoreDNS and then uses it to restart the CoreDNS
with it.

• run.js is the last script that runs for the rest of the lifecycle of the DNS
Support pod and monitors the input file with the domains. If any changes
are made in that file, the run.js script will basically run a copy of the start.js
script that will redo everything from the start.

32

This Pod has to have the ability to make changes to the Cluster, in other words
to be able to execute kubectl commands. This happens by giving it the appropriate
packages installed in the Dockerfile. Here is the whole Dockerfile:

1 FROM ubuntu

2 ARG DEBIAN_FRONTEND=noninteractive

3

4 RUN apt-get clean

5 RUN apt-get -y update

6 RUN apt-get -y upgrade

7 COPY script.js /home/script.js

8 RUN chmod +x /home/script.js

9 COPY run.js /home/run.js

10 RUN chmod +x /home/run.js

11 COPY start.js /home/start.js

12 RUN chmod +x /home/start.js

13 RUN apt-get install -y nano

14 RUN apt-get install -y npm

15 RUN apt-get -y install curl

16 RUN curl -LO "https://dl.k8s.io/release/$(curl -L

17 https://dl.k8s.io/release/stable.txt)/bin/linux/amd64/kubectl"

18 RUN curl -LO "https://dl.k8s.io/$(curl -L -s

19 https://dl.k8s.io/release/stable.txt)/bin/linux/amd64/kubectl.sha256"

20 RUN install -o root -g root -m 0755 kubectl /usr/local/bin/kubectl

21 RUN apt-get install -y nodejs

22 CMD ["sleep", "infinity"]

Now the Dns-Support is ready to be built and used as a pod inside the Kuber-
netes infrastructure. By having the image of it in our local repository, a yaml
file is needed to deploy the pod in our Cluster. The yaml file is deployed in the
Cluster via the command:

kubectl apply -f

With the pod’s initialization, the CoreDns should restart as well. The necessary
Dockerfile and yaml file alongside the code needed to implement the DNS Sinkhol-
ing primitive, can be found here. A very detailed explanation is also provided in
the README file.

33

https://github.com/parasecurity/principals-language/tree/master/primitives/sinkholing

3.2.1 Example

We assume again that there is a pod that creates traffic inside the Cluster,
called Alice pod. At the same time the DNS support Pod exist in the node,
with a list of domains to be sinkholed. Suddenly the Alice pod starts pinging
at google.com. This domain is not listed inside the input list of domains to be
sinkholed. So the CoreDNS, who doesn’t have google.com inside its Corefile’s host
plugin, returns google’s legit IP, 142.250.179.142. So now the Alice pod is pinging
at 142.250.179.142. The system’s administrator then decides that he/she wants to
ban google from the employees. So google is added in the input file with an IP
of 127.0.0.1. At that time, the DNS Support pod finds out that there has been
a change in the input file. Immediately, it creates a new Corefile using the new
input. When this job is done, it applies it to the CoreDNS and it restarts it. Now
the CoreDNS has a new list of domains to be sinkholed and google.com is one of
them. The Alice pod suddenly stops pinging at 142.250.179.142 and starts pinging
at 127.0.0.1.

The figure above shows an representation of this scenario in a Kubernetes
Cluster.

3.3 Flow Recording

Just like the Snort Primitive case, in this Primitive we want to create a mirroring
of the traffic to our pod. This means that besides the containerization of the
Analyzer pod, the pod that is going to provide the functionality in this primitive,

34

there is a need for a mirroring container. This will be done again with the use of
the Init containers component of Kubernetes. The procedure is similar. From a
Dockerfile, we are going to create a new image of Antrea, that will have the
ability to share a Volume with the Antrea Agent of our Kubernetes Cluster.
Then a simple bash script is added, that will provide the functionality needed to
create the mirroring. Having the initialization process completed, the Analyzer
pod now has the whole traffic of the node mirrored to itself. The functionality
that we need from the Analyzer pod now is the following:

• Reads the Input file from the API and extracts the domain names we want
to monitor.

• Monitors DNS traffic from a given OVS port and extracts DNS requests.

• If there is a match with a domain name from the input file, the analyzer will
create an object with specific information about the packet.

• Then it will forward this object to the logger pod, a pod created in order to
store the information.

First, we started with the known procedure. A new image is created, with the
help of a Dockerfile and an image of Centos. Then the requirements are added
in the Dockerfile along with the Python script that is designed for this exact
job. Here is the whole Dockerfile :

1 FROM centos:8

2

3 COPY domains.txt monitor.py requirements.txt /tmp/

4

5 RUN yum -y install python3-pip python3-devel

6 RUN yum -y install gcc gcc-c++

7 RUN pip3 install -r /tmp/requirements.txt

With the help of Scapy, a sniffing process begins with a filter of port 53, since
we’re only interested in DNS Requests. When a DNS request matches with a
domain from the list of domains we get from the input file, the script creates the
designated object with the information. When this job is done, through a TCP
socket, the pod will communicate with the Flow-Server pod, or any other logger
pod that we desire, and will exchange these information. The IP and the port of
the logger pod to communicate with, are given to the python script as an input as
well.

As mentioned before, it’s important to keep in mind that when a pod has one
interface that has traffic mirrored to it, it can no longer use this interface to com-
municate. As a result to that, the Analyzer pod will have to create and use a
secondary network interface to communicate with the logger pod. The logger pod,
on the other hand, will also have to have a secondary interface, because the com-
munication between a primary interface and a secondary interface is impossible.

35

The secondary interface is created with the use of Multus inside the yaml file.
The necessary Dockerfile and yaml file alongside the code needed to implement
the Flow Recording primitive, can be found here. A very detailed explanation is
also provided in the README file.

3.3.1 Example

We assume there is a pod that creates traffic inside the Cluster, called Alice pod.
At the same time the Analyzer Pod exists in the node, with a list of domains to
be monitored. Suddenly the Alice pod starts pinging at google.com. This domain
is not listed inside the input list of domains to be monitored. So the Analyzer
Pod, who doesn’t have google.com inside the list of domains to analyze, does
nothing. All of a sudden, the Alice pod is pinging at example.com. This domain,
example.com, exists inside the input list of domains of the Analyzer pod. The
Analyzer pod has all the traffic of the node mirrored to its eth0 interface. In this
way, it monitors all the DNS Lookups of the node. So when the Alice pod pings at
example.com, the Analyzer monitors that DNS lookup and because example.com
is a domain that it is interested in, it creates an object. This object consists of
useful information about the DNS request, like the time it was made, the IP and
MAC addresses of the source and destination of the packet, etc. Right after, it
sends it to the logger pod, through the secondary interface, net1. The logger pod
stores this information in a logging file for the system administrator to access. The
figure above shows an representation of this scenario in a Kubernetes Cluster.

36

https://github.com/parasecurity/principals/tree/main/images/analyser

3.4 DDoS Detector

A Distributed Denial of Service (DDoS) is a kind of attack that plans to overflood
the traffic of server, service or network. The way to achieve such a malicious
act is by overwhelming the target or its surrounding infrastructure with a flood of
Internet traffic. You can see this kind of attack, like an unexpected traffic jam that
just blocks the way of normal passengers and delays them from their destination,
if they even reach it eventually.

DDoS attacks are carried out with networks of Internet-connected machines.
These networks, that mostly consist of computers or other electronic devices, are
usually infected by some kind of malware that enables the attacker to control
them remotely. Each one of these devices is called a bot in the department of
cybersecurity, and the whole group of them is called a botnet. When the attacker
has established connection with every bot in his botnet, he is ready for the attack.
By sending remote instructions to the botnet, the server, that he has planned
his attack to, starts flooding in traffic. The server that has just received way
too much traffic, becomes overwhelmed and starts to show a denial-of-service to
normal traffic.

For the purpose of defending such an attack, this Primitive was created. DDoS
Detector is a primitive that uses a Golang implemented script to defend against
a DDoS attack. So this how this primitive works. Starting as you can probably
guess, we are going to create a mirroring to the first interface of the Pod. The
procedure is the same with previous primitives. A mirroring container is created
from the image of Antrea. Via the Init containers component the Kubernetes
provides along with a volume-mount with the Antrea agent, a mirroring of the
traffic is created to the first interface of the pod (the eth0 interface). Having the
initialization ended, the pod is ready to start. The pod works by executing a
Golang implemented script that takes as input the following :

• The interface to read packets from.

• The filename to read from, overrides the interface option if it exists.

• The snap length (number of bytes max to read per packet, default value is
65536).

• The packet threshold (its value is packets per second, default value is 150).

• A Boolean option to check if it is an syn attack(default value is false).

• The path to the log file.

• The flow-server connection in format IP:Port.

• The IP and the port of the secondary network that listens for connections in
format IP:Port.

37

• The command to execute when a malicious behaviour is detected e.g. block,
tarpit, etc.

• Arguments to pass to the command you want to execute.

Golang is a multi-threaded language, so many processes are taking place simul-
taneously. Using the pcap library, we create a monitoring interface that starts with
a BPF filter of net 127.0.0.1, in other words that monitors the loopback. At the
same time a TCP socket is open for listening incoming traffic. This TCP socket
and any other incoming or outgoing communication is happening through the sec-
ondary interface. The secondary interface is created with the use of Multus inside
the yaml file. Whenever the Canary, a pod that already exists in the PRINCI-
PALS project and won’t be explained thoroughly, detects any weird traffic, it will
send a message to our pod, through the TCP socket, with the IP that creates it.

In every message our listener gets, each IP is extracted and added to the ar-
ray of IPs that are being monitored. Bear in mind that all of this is happening
with the necessary use of Mutexes(locks and unlocks) since Go is a multi-threaded
language, as already mentioned. In every new IP we get, the BPF filter changes
to the appropriate value in contemplation of monitoring this IP as well. Simul-
taneously, two timers have been set, to check periodically the incoming traffic of
the IPs that we monitor. Through a variety of ifs, each packet is adding value to
a number of counters (tcpCounter, udpCounter, HttpCounter, etc), depending on
its characteristics. At the end of the first timer, we create some variables. Each
counter is multiplied by 100 and is divided by the total number of packets we got
in this time. Then a comparison of each new variable against a fixed number is
made. If a variable is greater than a fixed number, then we known we are under a
certain type of attack. In that case, our pod will have to inform the Flow-Server,
an important pod of the PRINCIPALS project that has the ability to talk to
the bridge, about the attack that we are under. So the pod will send to the
Flow-server, again through a TCP socket, the appropriate information (IP of the
malicious pod, command to be executed by the bridge like block, tarpit etc), and
the Flow-Server with its turn will apply the command to the bridge.

But that’s in case an attack is happening. If none of the conditions is fulfilled,
then it’s going to keep on repeating this process until the second timer strikes.
When the second timer strikes, the Timeout timer, then it’s decided that the IP
that is being monitored is not malicious and the array of monitored IPs, clears it.
This results in the change of the BPF filter to net 127.0.0.1 or to the rest of the
IPs existing inside monitored IPs array, until traffic from the Canary comes.

All of this, are included in the Golang implemented script our pod will execute.
This means that a container should be created with all the necessary packages
and dependencies, alongside this script. This is implemented inside the following
Dockerfile:

38

1 FROM projects.registry.vmware.com/antrea/antrea-ubuntu:v1.0.0

2

3 RUN apt-get update && apt-get install -y \

4 iperf3 \

5 libpcap-dev \

6 sudo \

7 nodejs \

8 && rm -rf /var/lib/apt/lists/*

9

10 COPY bin/ /home/tsi/bin

11 COPY scripts/ /home/tsi/scripts

With the help of a Makefile that creates this repositories, as well as the executa-
bles inside, the container is ready to be applied inside the cluster. The necessary
Dockerfile and yaml file alongside the code needed to implement the DDoS Detec-
tor primitive, can be found here. A very detailed explanation is also provided in
the README file.

3.4.1 Example

We assume that there is a Kubernetes cluster with the above configuration.
So there are at least three pods deployed inside the default namespace. These three
pods are the Canary pod, the Flow-server pod and the DDoS detector pod. There
is nothing weird in the traffic all the cluster and everything is running smoothly.
All of a sudden the DDoS detector receives a message in its secondary interface.
Its eth0 interface is only for mirroring. The Canary pod has detected some weird
traffic that needs to be examined. The DDoS detector pod, extracts an IP to

39

https://github.com/parasecurity/principals/tree/main/images/antrea-tsi/tools/httpDetector

monitor from the message it received. It starts tracking the traffic that is created
by this IP. Inside two seconds of monitoring this IP’s traffic, the DDoS detector
finds something out. This IP has created an extraordinary amount of SYN traffic.
There’s no time to lose. The cluster is under a SYN attack. The DDos Detector
pod creates a message for the Flow-server and sends through its secondary inter-
face, net1, to the secondary interface of the Flow-server. The messages consists of
the IP address of the malicious pod that has created this traffic, alongside a rule.
The rule is to block it. The Flow-server receives the message and immediately
applies the rule to the bridge. The IP is blocked and the cluster is safe.

The figure above shows an representation of this scenario in a Kubernetes
Cluster.

3.5 DGA Detector

DGA stands for Domain Generation Algorithm and is a technique used by at-
tackers to generate new domains (names and IP addresses) for malware’s C&C
servers. Executed in a way that seems random, it makes it nearly impossible for
cybersecurity operators to detect and defend against the attack. Changing do-
main names helps the attackers by keeping their servers from being blocked from
their targeted victims. The main idea is to have a program that produces random
domain names that the malware can use and quickly switch between. Security
operators usually block or take down the malicious domains that malware creates,
so switching domains enables them to continue the attack.

In order to defend against this kind of attack, the use of a machine-learning
module is a must in this Primitive. Starting from the top, we need to create
a mirroring of the traffic of the whole node, so that we can extract every DNS
request. Without further ado, the procedure has been explained thoroughly before,
we create a mirroring container and initialise our pod, the DGA Detector pod, with
it. Now that we have the whole traffic mirrored we are going to need a script that
monitors that traffic.

Our container starts with a basic Centos image and then it’s added some nec-
essary requirements. First, we add a dga.model file to our container, a Keras
model that is created for the exact purpose of finding domains that have been
created by an algorithm. Now that we have a machine-learning model to use, we
need to create an script for the pod to use. The implementation of the container
is concluded with this script and it’s ready to build. The Dockerfile the DGA
Detector primitive uses is the following:

1 FROM centos:8

2

3 COPY dga.model monitor.py requirements.txt /tmp/

4

40

5 RUN yum -y install python3-pip python3-devel

6 RUN yum -y install gcc gcc-c++

7 RUN pip3 install -r /tmp/requirements.txt

A Python script is implemented, the monitor.py as you can see in the Dock-
erfile. This script uses the Scapy library in order to create a monitoring, with
a filter of port 53, since the DNS request are the only thing we’re interested in.
Beside the sniffing that Scapy will provide, a class named DGA Detector is cre-
ated, that takes a domain name and breaks it to a list of ints. Then, by using the
appropriate padding, this list of ints is passed to the Keras model. The Keras
module will return a prediction, a number between 0 and 1, that will be the possi-
bility of this domain to be a domain generated by an algorithm. If the prediction
is higher than 0.5, we choose to deal with the domain as a domain generated by
an algorithm.

Having the ability now to tell whether a domain is legit or not and having the
whole traffic mirrored to our first interface, we can deal with a DGA attack. For
every DNS request that is made in our node, our pod will get the domain name
and the IP of the requested domain and will check if it’s valid or not. If it’s not,
then through a TCP socket, our pod will communicate with the Flow-Server and
it will send him the IP of the domain alongside a command with the value block.
The Flow-Server is going to apply the command with the specific IP to the bridge,
and this domain is going to be blocked from our Cluster.

It’s important not to forget, that since our first interface is used for the mir-
roring, the communication between our pod and the Flow-Server pod, is carried
out through the secondary interface of those two pods. The secondary interface is
created with the use of Multus inside the yaml file. The necessary Dockerfile and
yaml file alongside the code needed to implement the DGA Detector primitive,
can be found here. A very detailed explanation is also provided in the README
file.

41

https://github.com/parasecurity/principals/tree/main/images/dga

3.5.1 Example

We assume there are two pods that create traffic inside the Cluster. The one
is called Alice pod and creates normal traffic. The other one is called Malicious
and creates malicious traffic. To be more precise, it’s making an attack by using
Domain Generation Algorithm. At the same time the DGA Detector Pod exists in
the node, as well as the Flow-Server pod. The DGA Detector monitors the whole
traffic of the node, by having all the traffic mirrored to its eth0 interface. The
DGA Detector monitors the DNS lookups and decides whether or not a domain is
created by an algorithm. When the DNS lookup of the malicious pod reaches the
DGA Detector pod, the Detector checks the validity of the domain. It predicts
that this domain is generated by an algorithm. Right away, it sends a message
to the Flow-server’s secondary interface, through its net1 interface. This message
consists of the IP of this domain and a command. It’s a blocking command. The
Flow-Server receives the command and immediately applies it to the bridge. The
bridge blocks the received IP address. The attacker has no longer the ability to
slow the traffic.

The figure above shows an representation of this scenario in a Kubernetes
Cluster.

42

Chapter 4

Language

In this chapter of the thesis, we are going to present the second and last part
of this thesis’s contribution. In order to create the necessary permissions needed
for the implementation of TAMElets, we had to implement some language security
techniques. Before presenting the tools used for the language security and the work
done in order to use them, an introduction is given on why a language security
technique like code analysis is so important.

In the department of security, code analysis is always a matter of great im-
portance. The last few years, with the use of third-party libraries, it has been
noticed an excessive number of attacks against the supply-chain [47], [46],[28].
Small problems, internal to the libraries, or even malicious code that can be in-
troduced, create unprecedented obstacles. The majority of modern programs use
thousands libraries with thousands of lines of code in total. Libraries, small in
number of lines code, are used by hundreds of applications as well. As a result,
such attacks are difficult to counter and affect a wide range of the applications
ecosystem [25], [53].

A relatively recent example of this kind of attack at the event stream [3], [22],
where the maintainer of a very popular package, inserted inside the package new
code. This code’s aim was to steal the security passwords of the wallet of a very
popular cryptocurrency (Bitcoin) [6]. Code analysis is necessary in order to avoid
such risks.

Right below is now presented the already existing tools used in this thesis
to provide some security guarantees on language level of the framework. The
two language tools are composed from a dynamic (§4.0.2) and a static analysis
tool (§4.0.1).

4.0.1 Static Analysis

Third-party libraries make the development of large-scale software systems much
easier, that is why modern software development relies heavily on them. Such
reliance has led to an explosion of attacks [42], [46], [47], [50]. However, they often

43

execute with crucially more privileges than needed to complete their task. Even
if these libraries are not actively malicious, this additional privileges are often ex-
ploited at runtime via dynamic compromise. This exploitation can compromise
the application or even worse the broader system on which the application is ex-
ecuting. Static analysis, also called static code analysis, is a method of computer
program debugging. Static analysis is realized by examining the code without ex-
ecuting the program. The process provides an understanding of the code structure
and can help ensure that the code adheres to industry standards. To address such
problem a tool of static analysis is a necessity.

The tool that is going to be used to deal with this problem is MIR [52].
MIR introduces a fine-grained read-write-execute (RWX) permission model at
the boundaries of libraries. Every field of an imported library is governed by a set
of permissions, which developers can express when importing libraries. To enforce
these permissions during program execution, MIR transforms libraries and their
context to add runtime checks. As permissions can overwhelm developers, MIR’s
permission inference generates default permissions by analyzing how libraries are
used by them. Applied to 50 popular libraries, MIR’s prototype for JavaScript
demonstrates that the RWX permission model combines simplicity and power:

• It is simple enough to automatically infer 99.33% of required permissions.

• It is expressive enough to defend against 16 real threats.

• It is efficient enough to be usable in practice (1.93% overhead).

• It enables a novel quantification of privilege reduction.

MIR manages to prevent real attacks without breaking library functionality while
requiring minimal user effort and imposing minimal overhead on execution and
compilation time. MIR is a lightweight addition to any contemporary developer’s
toolkit, complementing defense mechanisms.

4.0.2 Dynamic Analysis

In this section will be shown the tool used for the dynamic code analysis in the
code implemented in the Network Security Primitives of this thesis. Lya [51] is
a tool that provides Library-oriented Dynamic Program Analysis for JavaScript.
Dynamic program analysis is a technique for obtaining information about a pro-
gram and its execution. Lya provides a new type of dynamic analysis that targets
modern dynamic languages such as Python, Lua and Javascript. This kind of dy-
namic analysis uses the capabilities of the module-import mechanism, and more
specifically the fact that libraries are imported as text. At its core, Lya performs
disassembly, transformation and re-composition of the imported libraries while
maintaining their original functionality. During the transformation phase, it in-
jects user-generated code, specific to each analysis, into the source code of the

44

library. This user-generated imported code, combined with various context wraps
and the use of proxies, makes it possible to detect interactions at the library level,
without altering the runtime environment. This approach is implemented in Lya, a
coarse-grained dynamic analysis framework that bolts onto a conventional produc-
tion runtime as a library, written in Javascript. Lya offers 2–3 orders of magnitude
faster analyses compared to conventional dynamic analysis systems. Analysis can
be enabled to run during production, detecting problems and behaviors unique to
these conditions.

4.0.3 Using Static and Dynamic Analysis Tools on PRINCIPALS

In order to use this tools, Lya and MIR, we had to make some changes to the
Network Security Primitives. This tools are designed to work on Javascript imple-
mented code. That means that each primitive had to be rewritten in Javascript in
order to get analyzed. So all the scripts in all of the primitives(Analyzer, Sinkhole,
DGA Detector, etc) had to be changed from the various language implemented
(Golang, Python, etc) to Javascript, or to be more precise to Node.js, a runtime
environment that’s used to run JavaScript outside the browser. That being said,
the whole process of each primitive had to be done again from scratch.

Each Network Security Primitive had to be reconstructed. Every container
built, besides the ones already implemented in Javascript (DNS Sinkholing Primi-
tive and the mirroring container of the Snort Primitive), had to rebuild in Javascript.
Starting from the very start, the way to begin is by creating new containers. These
new containers have more or less the same configuration. The only differences are
the Node.js install, alongside with NPM [21]. NPM is a package manager for the
JavaScript programming language. Every package needed for the script each Prim-
itive used, or better saying, each container since mirroring was also implemented
in Node.js, have to be installed in the Dockerfile of each container. Before the
installation of the packages, the following command is executed first.

1 RUN npm init --yes

A json file named package.json, that contains all of the packages used in the
script is added as well. The code of each primitive implemented in Node.js along-
side the necessary yaml files can be found in here. A detailed explanation is also
provided inside the according README files.

The Primitives are now ready to run in the same way the ”old” ones worked.
But in this section we will do the static and the dynamic analysis. What that
means is that we need to install the tools that will be used on each Primitive’s
Dockerfile. Bear in mind, that most of the Primitives use mirroring, so they can’t
use external networking communication. So it is necessary to install the tools in
advance. The installation of these tools is easily done by these two commands:

1 npm i -g @andromeda/mir-sa

2 npm i -g @andromeda/mir-da

45

https://github.com/parasecurity/principals-language/tree/master/primitives

The first one is for the static and the second one for the dynamic analysis.
The rest of the procedure for each Primitive to be implemented is the same, so

no need to further analyse that. With the ”new” Primitives now though, we can
use the tools discussed above. Starting with MIR, we make a static analysis for
each script. In order to have a deeper understanding, right below is the json file,
named static.json, produced by the static analysis by MIR to the script that
the Flow Recording Primitive uses:

1 {

2 "/home/analyzer.js": {

3 "Date": "r",

4 "Date.now": "rx",

5 "JSON": "r",

6 "JSON.parse": "rx",

7 "JSON.stringify": "rx",

8 "console": "r",

9 "console.log": "rx",

10 "parseInt": "rx",

11 "require": "rx",

12 "require('argparse')": "ir",

13 "require('argparse').ArgumentParser": "rx",

14 "require('dns-packet')": "ir",

15 "require('dns-packet').decode": "rx",

16 "require('fs')": "ir",

17 "require('fs').readFileSync": "rx",

18 "require('net')": "ir",

19 "require('net').Socket": "rx",

20 "require('pcap')": "ir",

21 "require('pcap').createSession": "rx",

22 "require('pcap').decode": "r",

23 "require('pcap').decode.packet": "rx"

24 }

25 }

By running inside the Analyzer pod the following command :

1 mir-sa /home/analyzer.js &> /home/static.json

the static.json file is created. As you can see, inside the static.json file
exists every library and every function of the library used inside the Analyzer
script (analyzer.js). Right next to them, there is a string that contains the
access permissions each element should be given. The possible permissions are:

• R, read.

• W, write.

• X, execute.

• I, import.

• any combination from the above.

46

Now that we know what permissions each library should have, we are going to
use the file that includes them, the static.json file, to do a dynamic analysis
using this file. In other words we are going to execute the script with the Lya tool,
and give this file as an input. The command we use is :

1 mir-da analyzer.js --module-include '/home/analyzer.js' -e /home/static.json

If there are no security issues, then the script is going to execute without any
problem. If more credentials are required for the execution of the script than the
ones already defined inside the json file, then the execution is going to terminate.

That is how these tools are going to be used in PRINCIPALS. To be more
specific, TAMElets are going to use them for their execution. TAMElets, which
are special packets carrying code to be executed inside the PRINCIPALS node,
will use this tools in order to know exactly what kind of credentials they need.
TAMElets have the ability to reconfigure the whole node, so we must be very
careful with the credentials we are giving to them. The tasks they are assigned
with, always needs limited amount of permissions. If more than the ones MIR
generates are asked, then the dynamic analyses tool, LYA, is going to terminate
its execution. No security issues will be realized.

By generating the permissions that FAMElets need to execute we can set an
upper-bound. No TAMElet will ever need permissions that FAMElets don’t have.
So when a TAMElet executes through LYA, by having the FAMElets permissions
as an input, LYA will check if the TAMElets permissions are the same or a subset
of them. If not the TAMElets’ execution will be terminated.

47

Chapter 5

Evaluation

In this chapter we present the last part of this thesis’ contribution, the evaluation
the DDoS Detector primitive. This test objective focuses on testing the PRINCI-
PALS approach in defending the 5G network against DDoS attacks. The testing
focuses particularly on the different variants of the Mirai botnet [35] attacks. A
number of variants of the Mirai attacks and their combinations will be considered
in the testing.

The fundamental question to ask is, are defenses capable of detecting and re-
moving a DDoS attack while ensuring that legitimate service continues at a user
acceptable level during the attack?. To answer this question, we need metrics that
can effectively measure the performance of the defenses. The following metrics
have been identified for testing the DDoS defenses:

1. Percentage of attack traffic dropped: How much of the attack traffic the
DDoS defenses are able to detect and drop?

2. Legitimate traffic’s goodput: How much of the good traffic is reaching
the destination?

3. Delay and loss rate: What is the delay and loss rate of the legitimate
packets?

4. Percentage of legitimate packets delivered: How high of packet delivery
for legitimate traffic is needed to keep the services running?

5. Delay in detecting and responding to the attack: Time taken to ini-
tially detect attack and initiate mitigation response?

6. False Positive Rate: How much of legitimate traffic was flagged as attack
traffic by the DDoS detection mechanism? The false positive rate for DDoS
detection can be expressed as a function of legitimate background network
traffic (noise).

48

7. Legitimate services availability during the attack: How many of the
services are able to receive enough traffic to stay available?

8. Amount of attack packets and number of hops traversed: What is
the DDoS collateral damage? How close to the attacker the defenses are able
to block the attack?

9. Impact of the DDoS attack on the network without any mitigation
in place: What was the impact of the mitigation algorithm on the DDoS
attack?

10. Application Throughput and Latency: What was the impact of the
DDoS attack on service/application quality of service while the DDoS miti-
gation algorithm was in effect? For example, VoIP calls, 4k Streaming Video,
FTP.

11. QoS service metrics: What is the Mean Opinion Score time series distri-
bution of the VoIP service?

12. Infrastructure Switch Support: How much of the infrastructure (what
fraction of the switches) throughout the network needs to be instrumented to
detect/mitigate against the DDoS attack? What is the optimal distribution
(Benefit-Cost Analysis) of switches throughout the network?

Before we describe the evaluation of each attack scenario (UDP, HTTP, SYN),
it is important to document the application-level metrics that are used to demon-
strate the impact of DDoS attacks. For the VoIP application two metrics were
calculated:

1. The percentage of successful/failed calls: how many calls were able to
go through before, during and after the attack is mitigated.

2. The Mean Opinion Score: for the successful calls what is the perceived
quality of calls before, during and after the attack is mitigated. Since we use
the G.711 codec for the RTP (voice) streams, the maximum score that can
be achieved is 4,4.

For the file transfer application, the transfer rate (unit is Mbps) was used to
evaluate the impact of the DDoS attack. The DDoS Detector implemented cover
three types of DDoS attacks that were identified as the main modes for the testing.
These are the UDP flood attack (§5.1), the HTTP flood attack (§5.2), and the TCP
SYN flood attack (§5.3).

5.1 UDP flood attack

The next four graphs show the attack timeline for the UDP flood attack. The first
two graphs display the VoIP metrics on the secondary Y-axis while the third and

49

fourth graph concern the file transfer application. We observe that in all graphs,
the detection delay is 9 seconds. The detection delay is defined as the time between
the first attack packet was sent and the time the detection algorithms flags the
malicious UEs(User Equipments) for blocking. In the case of VoIP we observe that
both the number of successful calls and Mean Opinion Score (MOS) is sustained
during the first 8 seconds of the attack (this is due to the fact that some calls were
already in progress and that the link is not immediately saturated) but then both
metrics rapidly deteriorate. The number of successful calls drop to 1% while MOS
drops to 0.9 during the attack. In the case of file transfer, the rate drops from
110Mbps down to 40Mbps during the attack.

The VoIP application recovers immediately after the attack is mitigated. We
observe that successful call rate return to 100% and MOS goes back to 4,4 after
the attack is mitigated (around second 45 of the timeline). The file transfer also
recovers but it takes close to two and half minutes to go back to the original
transfer rate before the attack takes place. This is due to how the TCP protocol
works and how congestion is handled by the Linux kernel (secure copy protocol is
TCP-based). Figure 5.4 shows the recovery progress of the file transfer after the
attack. In all scenarios, the response time was maximum 16 seconds and the false
positive rate is 0%.

50

Figure 5.1: UDP flood attack timeline (VoIP calls)

Figure 5.2: UDP flood attack timeline (SCP metrics)

51

Figure 5.3: UDP flood attack timeline (VoIP calls)

Figure 5.4: UDP flood attack timeline (SCP metrics) with recovery progress

52

The following table summarizes the metric results according to the 12 metrics
mentioned at the start of this chapter.

Test Objective Test Case / Critical Ques-
tion

Result

False Positive
Rate

How much of the legitimate
traffic was flagged as attack
traffic by the DDoS mitiga-
tion algorithm?

0%

Percentage of
attack traffic
dropped

How much of the attack
traffic the DDoS mitigation
algorithm was able to drop
at various points – at the
victim machine, at the edge
and at the core in the net-
work?

100%. All malicious IP ad-
dresses were throttled. All
drops happened at the core
switch of each node.

Delay in detect-
ing and respond-
ing to the attack

How long did it take for the
performer’s detection mech-
anism to detect the DDoS
attack?

In the file transfer scenario,
the first attack packet to
detection took 9 seconds.
From detection to mitiga-
tion took 11 seconds. From
the first attack packet to
mitigation took in a total of
20 seconds.
In the VoIP scenario, the
first attack packet to detec-
tion took 18 seconds. From
detection to mitigation took
10 seconds. From first at-
tack packet to mitigation
took in a total of 28 seconds.

What was the
broad impact of
the DDoS attack
on the network
without any mit-
igation in place?

What was the impact of the
performer’s mitigation algo-
rithm on the DDoS attack?

Availability to the victim
Web service was restored
successfully and all mali-
cious users were throttled.
The number of failed called
returned to 0.

Amount of at-
tack packets and
number of hops
traversed

How close to the attacker
the defenses were able to
block the attack?

1 hop away

53

Legitimate traf-
fic’s goodput

How much of the good traf-
fic was reaching the destina-
tion?

In terms of packets, all traf-
fic from legitimate users was
reaching the destination. In
terms of application-level
requests: before the attack
begins 100% of the requests
were served, during the at-
tack 76% of the requests
were served and after the
mitigation takes place the
percentage increases back to
100%

Delay and loss
rate

What is the delay and loss
rate of the legitimate pack-
ets?

The mean service delay be-
fore the attack begins was
12 ms, during the attack 498
ms and after the attack was
throttled was 14ms

Application
Throughput and
Latency

What was the impact of
the DDoS attack on service/
application quality of ser-
vice while the DDoS mitiga-
tion algorithm was in effect?
For example, VoIP calls, 4k
Streaming Video, FTP

The file transfer rate drops
from 110 Mbytes/sec down
to 20 Mbytes/sec during the
DDoS attack. After the
mitigation takes place, the
initial transfer rate is re-
stored.
The VoIP call rate drop
from 100% success rate
down to 30-50% success rate
during the DDoS attack.
After the mitigation takes
place, the initial success
rate of calls is restored.

QoS Service
Metrics

What is the Q-Score/R-
Score/Mean Opinion Score
time series distribution of
the VoIP service?

Before the attack, the Mean
Opinion Score was 4,4 (the
maximum for G.711 codec
that was used in the RTP
streams). During the at-
tack. the score drops down
between 1,5 to 2. After the
attack, the score returns to
4,4.

54

Infrastructure
Switch Support

How much of the infrastruc-
ture (what fraction of the
switches) throughout the
network needs to be instru-
mented to detect/ mitigate
against the DDoS attack?
What is the optimal distri-
bution (Benefit-Cost Analy-
sis) of switches throughout
the network?

100(10 switch in our
testbed)%

5.2 HTTP flood attack

The next three graphs show the attack timeline for the HTTP flood attack. The
first two graphs display the VoIP metrics on the secondary Y-axis while the third
graph concerns the file transfer application. In the case of VoIP we observe that
both the number of successful calls and Mean Opinion Score (MOS) drop imme-
diately once the attack starts. Successful calls drop to approximately 40% during
the attack and MOS goes down to 1,5. In the case of file transfer, the rate drops
from 110Mbps down to 25Mbps during the attack.

The VoIP application recovers immediately after the attack is mitigated. We
observe that successful call rate return to 100% and MOS goes back to 4,4 after
the attack is mitigated (around second 45 of the timeline for VoIP and second 35
for timeline of SCP). The file transfer also recovers immediately once the attack
is mitigated. This is due to how the TCP protocol works and how congestion is
handled by the Linux kernel (secure copy protocol is TCP-based). 5.7 shows the
recovery progress of the file transfer after the attack.

In all scenarios, the response time was maximum 28 seconds and the false
positive rate is 0%.

55

Figure 5.5: HTTP flood attack timeline (VoIP calls)

Figure 5.6: HTTP flood attack timeline (VoIP MOS)

56

Figure 5.7: HTTP flood attack timeline (SCP metrics)

57

The following table summarizes the metric results according to the 12 metrics
identified earlier.

Test Objective Test Case / Critical Ques-
tion

Result

False Positive
Rate

How much of the legitimate
traffic was flagged as attack
traffic by the DDoS mitiga-
tion algorithm?

0%

Percentage of
attack traffic
dropped

How much of the attack
traffic the DDoS mitigation
algorithm was able to drop
at various points – at the
victim machine, at the edge
and at the core in the net-
work?

100%. All malicious IP ad-
dresses were throttled. All
drops happened at the core
switch of each node.

Delay in detect-
ing and respond-
ing to the attack

How long did it take for the
performer’s detection mech-
anism to detect the DDoS
attack?

The time between the first
attack packet and the detec-
tion was 9 seconds. From
detection to mitigation an-
other 4 to 7 seconds were
required. The total mitiga-
tion time is 13-16 seconds

What was the
broad impact of
the DDoS attack
on the network
without any mit-
igation in place?

What was the impact of the
performer’s mitigation algo-
rithm on the DDoS attack?

Availability to the victim
Web service was restored
successfully and all mali-
cious users were throttled.
The number of failed called
returned to 0.

Amount of at-
tack packets and
number of hops
traversed

How close to the attacker
the defenses were able to
block the attack?

1 hop away

58

Legitimate traf-
fic’s goodput

How much of the good traf-
fic was reaching the destina-
tion?

In terms of packets, all traf-
fic from legitimate users was
reaching the destination. In
terms of application-level
requests: before the attack
begins 99.2% of the requests
were served, during the at-
tack 65% of the requests
were served and after the
mitigation takes place the
percentage increases back to
100%

Delay and loss
rate

What is the delay and loss
rate of the legitimate pack-
ets?

The mean service delay be-
fore the attack begins was
98 ms, during the attack 494
ms and after the attack was
throttled was 275ms. Given
enough time the application
restores to the original rate.

Application
Throughput and
Latency

What was the impact of
the DDoS attack on service/
application quality of ser-
vice while the DDoS mitiga-
tion algorithm was in effect?
For example, VoIP calls, 4k
Streaming Video, FTP

The file transfer rate drops
from 110 Mbytes/sec down
to 40 Mbytes/sec during the
DDoS attack. After the
mitigation takes place, the
initial transfer rate is re-
stored but after few min-
utes.
The VoIP call rate drop
from 100% success rate
down to 4-10% success rate
during the DDoS attack.
After the mitigation takes
place, the initial success
rate of calls is restored.

59

QoS Service
Metrics

What is the Q-Score/R-
Score/Mean Opinion Score
time series distribution of
the VoIP service?

Before the attack, the Mean
Opinion Score was 4,4 (the
maximum for the G.711
codec used in the RTP
streams). During the at-
tack, the score drops be-
tween 0,5 and 1. After
the attack is mitigated, the
score returns to 4,4.

Infrastructure
Switch Support

How much of the infrastruc-
ture (what fraction of the
switches) throughout the
network needs to be instru-
mented to detect/ mitigate
against the DDoS attack?
What is the optimal distri-
bution (Benefit-Cost Analy-
sis) of switches throughout
the network?

100 (10 switch in our
testbed)%

5.3 SYN flood attack

The next three graphs show the attack timeline for the SYN flood attack. The
first two graphs display the VoIP metrics on the secondary Y-axis while the third
graph concerns the file transfer application. The SYN flood attack has insignificant
impact on both applications. The reasons are threefold. First, the impact of a
SYN flood attack on the bandwidth is minimal. Since SYN packets are very small
(close to 60 bytes), even a large number of SYN packets per second cannot congest
a link. The total amount of traffic generated is close to 100Mbps (as a reminder
the link is 10Gbps). Secondly, the SYN flood attacks an HTTP server so it has no
material impact on the SIP service which is UDP-based or the file transfer since
we do not attack the used services. Finally, the targeted host has SYN-cookies
implemented by default (and most Linux distributions out of the box nowadays) so
the attack cannot deplete resources on the target machine. SYN cookies prevent
the host of allocating file descriptors unless the UE completes the TCP handshake.
In all scenarios, the response time was maximum 14 seconds and the false positive
rate is 0%.

60

Figure 5.8: SYN flood attack timeline (VoIP calls)

Figure 5.9: SYN flood attack timeline (VoIP MOS)

61

Figure 5.10: SYN flood attack timeline (SCP metrics)

62

The following table summarizes the metric results according to the 12 metrics
identified earlier.

Test Objective Test Case / Critical Ques-
tion

Result

False Positive
Rate

How much of the legitimate
traffic was flagged as attack
traffic by the DDoS mitiga-
tion algorithm?

0%

Percentage of
attack traffic
dropped

How much of the attack
traffic the DDoS mitigation
algorithm was able to drop
at various points – at the
victim machine, at the edge
and at the core in the net-
work?

100%. All malicious IP ad-
dresses were throttled. All
drops happened at the core
switch of each node.

Delay in detect-
ing and respond-
ing to the attack

How long did it take for the
performer’s detection mech-
anism to detect the DDoS
attack?

The time between the first
attack packet and the at-
tack detection was 4-5 sec-
onds. From detection to
mitigation another 9-10 sec-
onds were required. From
the first attack packet to
mitigation the maximum
observed reaction time was
14 seconds.

What was the
broad impact of
the DDoS attack
on the network
without any mit-
igation in place?

What was the impact of the
performer’s mitigation algo-
rithm on the DDoS attack?

Availability to the victim
Web service was restored
successfully and all mali-
cious users were throttled.

Amount of at-
tack packets and
number of hops
traversed

How close to the attacker
the defenses were able to
block the attack?

1 hop away

63

Legitimate traf-
fic’s goodput

How much of the good traf-
fic was reaching the destina-
tion?

In terms of packets, all traf-
fic from legitimate users was
reaching the destination. In
terms of application-level
requests: before the attack
begins 100% of the requests
were served, during the at-
tack 0% of the requests were
served (since server queue
was full) and after the miti-
gation takes place the per-
centage increases back to
100%.

Delay and loss
rate

What is the delay and loss
rate of the legitimate pack-
ets?

The mean service delay be-
fore the attack begins was
48 ms, during the attack 98
ms and after the attack was
throttled was 49ms.

Application
Throughput and
Latency

What was the impact of
the DDoS attack on service/
application quality of ser-
vice while the DDoS mitiga-
tion algorithm was in effect?
For example, VoIP calls, 4k
Streaming Video, FTP

The file transfer rate be-
fore the attack was 100-
110 Mbytes/sec and there
was small rate drop during
the DDoS attack of about
10Mbps. This is expected
since the SYN flood attack
does not consume consider-
able bandwidth. The VoIP
call rate had 100% suc-
cess rate during the DDoS
attack. This is expected
since the SYN flood attack
does not consume consider-
able bandwidth and the SIP
servers were not targeted.

QoS Service
Metrics

What is the Q-Score/R-
Score/Mean Opinion Score
time series distribution of
the VoIP service?

The Mean Opinion Score
was 4,4 throughout the en-
tire time.

64

Infrastructure
Switch Support

How much of the infrastruc-
ture (what fraction of the
switches) throughout the
network needs to be instru-
mented to detect/ mitigate
against the DDoS attack?
What is the optimal distri-
bution (Benefit-Cost Analy-
sis) of switches throughout
the network?

100 (10 switch in our
testbed)%

65

Chapter 6

Related work

Here is presented some similar work, already done that motivated the PRINCI-
PALS project and this thesis.

A Secure Active Network Environment Architecture (AN) [39] : The
whole concept of the Active Networks (AN) is a foundation for the PRINCIPALS
project. PRINCIPALS is based in the idea of a network that can dynamically
change its configuration and its capabilities. Active Networks is the passageway
to a secure network that can also introduce safe programmability and adaptabil-
ity. PRINCIPALS will build upon the inovative work done in the DARPA Ac-
tive Networks program, the intellectual ancestor to Software Defined Networks
(SDNs) [45].

The above work alongside the continuation by J.T. Moore in the Safe and
Efficient Active Packets [48] project, that introduced us with the concept of
Active Packets and the specifically designed language of SNAP(Safe Networking
with Active Packets), are the cornerstones of PRINCIPALS. PRINCIPALS will
be built upon the lessons learnt from previous work and will try to expand their
functionality.

A Secure Plan (Extended Version) [43]: The implementation of TAMElets,
the ”Thin” AMElets, which has already been discussed above, in the Framework
chapter, is ”inspired” from PLAN. Borrowing elements from the PLAN project
and extending them will be an initial approach to the TAMElet implementation.
We anticipate TAMElets will be expressed in a similar programming language,
and will implement the necessary traceroute-like functionality.

PLAN was one of the first active networking systems, and the first to be demon-
strated at the DARPA active networks workshops. It was also the first packet-
scripting language and the first to use language-based resource restrictions to limit
the impact of an active packet on the network. PLAN has received the most
formal analysis of any active networking system, including an abstract calculus,
mathematical specification, formal simulations and theorems about invariants and
properties of applications. The PLAN system was also the foundation or target

66

of a number of studies of security, including trust management, information flow
and active firewalls. PLAN introduced the idea of implementing network lay-
ers through the use of a quotation-like mechanism (chunks).It was also the first
AN system to prove that it could implement Internet (IP-based) functionality (as
part of the PLANet system) and then improve upon it to support Multicast and
Packet-directed routing (FBAR) among other applications.

Flexible Network Monitoring with FLAME [40] : FLAME is a project
built on Active Networks and provides an open architecture for network traffic
monitoring. PRINCIPALS will use the FLAME architecture as an initial ap-
proach for the FAMElets. PRINCIPALS contributors had a fair share of contri-
bution in the FLAME project and they plan to not only leverage elements from
the project but extend them as well.

xPF: Packet Filtering for Low-Cost Network Monitoring [44] : xPF
constitutes one more project that PRINCIPALS contributors have worked on
and are gonna exploit. xPF is a high-performance Turing-complete packet filter-
ing language with resource constraints, we will implement upper bounds to the
execution time of TAMElets. It’s similar to the BPF language with the main
difference being that it allows backward jumps.

The KeyNote Trust-Management System, Version 2 [41] : KeyNote is
also one of the projects that PRINCIPALS contributors have worked on and
are gonna exploit. The KeyNote architecture and language are useful as building
blocks for the trust management aspects of a variety of Internet protocols and
services. s a starting point, KeyNote is going to be used as a trust management
system for authorization credentials in PRINCIPALS. This credentials will con-
tain information about the resource constraints and permissions of the AMElets
(TAMElets or FAMElets), as it has already been explained in Chapter 3.

WebSOS [49]: Another novel architecture from contributors of PRINCI-
PALS, implemented in the past, can be used in this project as well. WebSOS
is a novel overlay-based architecture that provides guaranteed access to a web
server that is targeted by a denial of service (DoS) attack. In a concept of a DDoS
attack, PRINCIPALS could implement an appropriate DCO to deal with.

A quick example. In this scenario a DDoS attack has already been detected. As
a first step, the network SOC broadcasts TAMElets that create a reserved man-
agement slice within the base 5G network, allowing for telemetry to be collected
by any network element. Subsequent TAMElets configure the network switches to
report netflow for non-established TCP flows. Initial triage of this data suggests
that the bulk of the attack traffic is coming from external IP sources from around
the world using a variety of random traffic. Quickly, new TAMElets are emitted
that configure SDN switches to prioritize existing flows, limiting other traffic to
a fraction of the available bandwidth. In parallel, FAMElets implementing active
TCP SYN cookies [29] and CAPTCHA-based IP validation 5 are instantiated in

67

5G nodes near the network ingress points. Within a minute, this blunts the force
of the DDoS attack, and services begin to slowly become responsive.

68

Chapter 7

Conclusion

Nowadays mobile communications are a part of our daily life. The growth of this
department and the continuation of that growth is certain. At the same time,
modern networking has become a constant battlefield between hackers and cyber-
security operators. Since the launch of 5G, the attackers are able to make their
moves in a much wider surface. Malicious users will launch attacks in any internet
facing system that shows vulnerabilities. This growth in aspects of range and rate
of these attacks showed that the former naive stationary approaches on computer
security are no longer viable. A new mobile way to defend is required, in order to
be a step ahead of the attackers. PRINCIPALS introduces a novel architecture
for safe programmability and adaptability in the 5G network. Through the use of
Active Networks, PRINCIPALS will give the ability to reconfigure, adapt and
overcome any possible attack in any possible networking space. PRINCIPALS
provides a novel mechanism for conducting defensive cybersecurity operations at
a scale, pace, and precision that is unprecedented. In this thesis we presented:

• A series of network security primitives that PRINCIPALS will use, that will
provide the ability to defend against malicious users trying to take advantage
of the 5G infrastructure. These primitives will use containerised code, tested
and evaluated in this thesis as well. The containerised code will be deployed
inside the PRINCIPALS environment and will address current and antici-
pated network security problems.

• Beside the network security primitives, PRINCIPALS also provides the abil-
ity of mobile DCOs, with code-carrying packets with limited permissions, that
will secure adaptability and flexibility in this environment. By extracting
the set of permission that the network security primitives require, we set an
upper-bound limit on what actions the code-carrying packets can take.

In this way, the defensive cyber operators will have the ability to match the speed,
scale, and accuracy of attacker tools, without introducing new points of vulnera-
bility or risk network instability.

69

Bibliography

[1] 3gpp. https://www.3gpp.org, the 3rd Generation Partnership Project is an
umbrella term for a number of standards organizations which develop proto-
cols for mobile telecommunications.

[2] 5g roll–out in the eu: delays in deployment of networks with se-
curity issues remaining unresolved. https://op.europa.eu/webpub/eca/

special-reports/security-5g-networks-03-2022/en/, while 5G has the
potential to unleash many opportunities for growth, it comes with certain
risks.

[3] A. sparling et al. (2018) event-stream. https://github.com/dominictarr/
event-stream/issues/116, i don’t know what to say.

[4] Antrea. https://antrea.io, antrea is a Kubernetes-native project that im-
plements the Container Network Interface (CNI) and Kubernetes NetworkPol-
icy.

[5] beamforming. https://spectrum.ieee.org/

5g-bytes-beamforming-explained, beamforming is a type of radio
frequency (RF) management in which a wireless signal is directed toward a
specific receiving device.

[6] Bitcoin. https://bitcoin.org/en, bitcoin is a decentralized digital currency
that can be transferred on the peer-to-peer bitcoin network. Bitcoin transac-
tions are verified by network nodes through cryptography and recorded in a
public distributed ledger called a blockchain.

[7] Containers’ security. https://snyk.io/learn/container-security/, what
is container security?

[8] Containers vs vms? https://www.atlassian.com/microservices/

cloud-computing/containers-vs-vms, containers vs VMs. What are the
differences?

[9] Containers vs vms? https://www.netapp.com/blog/containers-vs-vms/,
containers vs VMs. What are the differences

70

https://www.3gpp.org
https://op.europa.eu/webpub/eca/special-reports/security-5g-networks-03-2022/en/
https://op.europa.eu/webpub/eca/special-reports/security-5g-networks-03-2022/en/
https://github.com/dominictarr/event-stream/issues/116
https://github.com/dominictarr/event-stream/issues/116
https://antrea.io
https://spectrum.ieee.org/5g-bytes-beamforming-explained
https://spectrum.ieee.org/5g-bytes-beamforming-explained
https://bitcoin.org/en
https://snyk.io/learn/container-security/
https://www.atlassian.com/microservices/cloud-computing/containers-vs-vms
https://www.atlassian.com/microservices/cloud-computing/containers-vs-vms
https://www.netapp.com/blog/containers-vs-vms/

[10] Docker. https://www.docker.com, docker is a set of platform as a service
products that use OS-level virtualization to deliver software in packages called
containers.

[11] Docker hub. https://hub.docker.com, docker hub is the world’s easiest way
to create, manage, and deliver your team’s container applications.

[12] ecpri. https://wiki.wireshark.org/eCPRI.md, enhanced CPRI (eCPRI) is
a way of splitting up the baseband functions to reduce traffic strain on the
fiber.

[13] Evolution of internet of things. https://www.techaheadcorp.com/

knowledge-center/evolution-of-iot/, evolution of Internet of Things.

[14] Evolution of networking generations. https://www.brainbridge.be/en/

blog/1g-5g-brief-history-evolution-mobile-standards, evolution of
Networking Generations.

[15] Github. https://github.com, gitHub, Inc., is an Internet hosting service for
software development and version control using Git.

[16] Keras. https://keras.io, keras is an open-source software library that pro-
vides a Python interface for artificial neural networks.

[17] Kubernetes. http://kubernetes.io, kubernetes, also known as K8s, is an
open-source system for automating deployment, scaling, and management of
containerized applications.

[18] Mec. https://www.etsi.org/technologies/

multi-access-edge-computing, multi-access edge computing (MEC)
is a type of network architecture that provides cloud computing capabilities
and an IT service environment at the edge of the network.

[19] Mininet. http://mininet.org/, mininet creates a realistic virtual network,
running real kernel, switch and application code, on a single machine (VM,
cloud or native), in seconds, with a single command.

[20] Multus. https://github.com/k8snetworkplumbingwg/multus-cni, multus
CNI is a container network interface (CNI) plugin for Kubernetes that enables
attaching multiple network interfaces to pods.

[21] npm. https://www.npmjs.com, npm is a package manager for the JavaScript
programming language maintained by npm, Inc. npm is the default package
manager for the JavaScript runtime environment Node.js.

[22] npm, inc. (2018). https://blog.npmjs.org/post/180565383195/

details-about-the-event-stream-incident, details about the event-
stream incident.

71

https://www.docker.com
https://hub.docker.com
https://wiki.wireshark.org/eCPRI.md
https://www.techaheadcorp.com/knowledge-center/evolution-of-iot/
https://www.techaheadcorp.com/knowledge-center/evolution-of-iot/
https://www.brainbridge.be/en/blog/1g-5g-brief-history-evolution-mobile-standards
https://www.brainbridge.be/en/blog/1g-5g-brief-history-evolution-mobile-standards
https://github.com
https://keras.io
http://kubernetes.io
https://www.etsi.org/technologies/multi-access-edge-computing
https://www.etsi.org/technologies/multi-access-edge-computing
http://mininet.org/
https://github.com/k8snetworkplumbingwg/multus-cni
https://www.npmjs.com
https://blog.npmjs.org/post/180565383195/ details-about-the-event-stream-incident
https://blog.npmjs.org/post/180565383195/ details-about-the-event-stream-incident

[23] O-ran. https://www.o-ran.org, an Open Radio Access Network (O-RAN) is
a totally disaggregated approach to deploying mobile fronthaul and midhaul
networks built entirely on cloud native principles.

[24] ovs. openvswitch.org/, open vSwitch, sometimes abbreviated as OVS, is an
open-source implementation of a distributed virtual multilayer switch.

[25] S. yegulalp (2016). http://www.infoworld.com/article/3047177/

javascript/how-one-yanked-javascript-package-wreaked-havoc.

html., how one yanked javascript package wreaked havoc.

[26] Scapy. https://scapy.net, scapy is a packet manipulation tool for computer
networks, originally written in Python by Philippe Biondi. It can forge or
decode packets, send them on the wire, capture them, and match requests
and replies.

[27] Scapy usage. https://scapy.readthedocs.io/en/latest/usage.html,
more detailed usage of Scapy’s Sniff() function.

[28] Snyk. (2016). https://snyk.io/, find, fix and monitor for known vulnerabil-
ities in node.js and ruby packages.

[29] Syncookies. https://cr.yp.to/syncookies.html, sYN cookies are particu-
lar choices of initial TCP sequence numbers by TCP servers.

[30] Top eight virtualization security issues and risks. https://www.liquidweb.
com/kb/virtualization-security-issues-and-risks/, vMs security
risks.

[31] What is 5g security? explaining the security benefits and vul-
nerabilities of 5g architecture. https://cybersecurity.att.com/blogs/

security-essentials/what-is-5g-security, explaining the security ben-
efits and vulnerabilities of 5G architecture.

[32] What is 5g vm? https://www.vmware.com/topics/glossary/content/

virtual-machine.html, explaining what a Virtual Machine is.

[33] What is a container? https://www.docker.com/resources/

what-container/, what is a container?

[34] What is a container image? https://www.aquasec.com/

cloud-native-academy/container-security/container-images/, what
is a container image?

[35] What is mirai botnet? https://www.cloudflare.com/learning/ddos/

glossary/mirai-botnet/, what is Mirai botnet?

[36] What is nfv? https://www.vmware.com/topics/glossary/content/

network-functions-virtualization-nfv.html, what is NFV?

72

https://www.o-ran.org
openvswitch.org/
http://www.infoworld.com/article/3047177/ javascript/how-one-yanked-javascript-package-wreaked-havoc.html.
http://www.infoworld.com/article/3047177/ javascript/how-one-yanked-javascript-package-wreaked-havoc.html.
http://www.infoworld.com/article/3047177/ javascript/how-one-yanked-javascript-package-wreaked-havoc.html.
https://scapy.net
https://scapy.readthedocs.io/en/latest/usage.html
https://snyk.io/
https://cr.yp.to/syncookies.html
https://www.liquidweb.com/kb/virtualization-security-issues-and-risks/
https://www.liquidweb.com/kb/virtualization-security-issues-and-risks/
https://cybersecurity.att.com/blogs/security-essentials/what-is-5g-security
https://cybersecurity.att.com/blogs/security-essentials/what-is-5g-security
https://www.vmware.com/topics/glossary/content/virtual-machine.html
https://www.vmware.com/topics/glossary/content/virtual-machine.html
https://www.docker.com/resources/what-container/
https://www.docker.com/resources/what-container/
https://www.aquasec.com/cloud-native-academy/container-security/container-images/
https://www.aquasec.com/cloud-native-academy/container-security/container-images/
https://www.cloudflare.com/learning/ddos/glossary/mirai-botnet/
https://www.cloudflare.com/learning/ddos/glossary/mirai-botnet/
https://www.vmware.com/topics/glossary/content/network-functions-virtualization-nfv.html
https://www.vmware.com/topics/glossary/content/network-functions-virtualization-nfv.html

[37] What is vm hypervisor? https://www.howtogeek.com/66734/

htg-explains-what-is-a-hypervisor/, explaining what a Virtual
Machine Hypervisor is.

[38] Whats is container security? https://www.trendmicro.com/en_us/

what-is/container-security.html, the process of securing containers is
continuous.

[39] Alexander, D.S., Arbaugh, W.A., Keromytis, A.D., Smith, J.M.: A secure ac-
tive network environment architecture: realization in switchware. IEEE net-
work 12(3), 37–45 (1998)

[40] Anagnostakis, K.G., Greenwald, M.B., Ioannidis, S., Li, D., Smith, J.M.:
Flexible network monitoring with flame. Computer Networks 50(14), 2548–
2563 (2006)

[41] Blaze, M., Feigenbaum, J., Ioannidis, J., Keromytis, A.: The keynote trust-
management system version 2. Tech. rep., - (1999)

[42] Cadariu, M., Bouwers, E., Visser, J., van Deursen, A.: Tracking known se-
curity vulnerabilities in proprietary software systems. In: 2015 IEEE 22nd
International Conference on Software Analysis, Evolution, and Reengineering
(SANER). pp. 516–519. IEEE (2015)

[43] Hicks, M., Keromytis, A.D., Smith, J.M.: A secure plan (extended version).
In: Proceedings DARPA Active Networks Conference and Exposition. pp.
224–237. IEEE (2002)

[44] Ioannidis, S., Anagnostakis, K.G., Ioannidis, J., Keromytis, A.D.: xpf: packet
filtering for low-cost network monitoring. In: Workshop on High Performance
Switching and Routing, Merging Optical and IP Technologie. pp. 116–120.
IEEE (2002)

[45] Kreutz, D., Ramos, F.M., Verissimo, P.E., Rothenberg, C.E., Azodolmolky,
S., Uhlig, S.: Software-defined networking: A comprehensive survey. Proceed-
ings of the IEEE 103(1), 14–76 (2014)

[46] Lauinger, T., Chaabane, A., Arshad, S., Robertson, W., Wilson, C., Kirda,
E.: Thou shalt not depend on me: Analysing the use of outdated javascript
libraries on the web. arXiv preprint arXiv:1811.00918 (2018)

[47] Maass, M.: A theory and tools for applying sandboxes effectively. - (2016)

[48] Moore, J.T.: Safe and efficient active packets. - (1999)

[49] Morein, W.G., Stavrou, A., Cook, D.L., Keromytis, A.D., Misra, V., Ruben-
stein, D.: Using graphic turing tests to counter automated ddos attacks
against web servers. In: Proceedings of the 10th ACM conference on Com-
puter and communications security. pp. 8–19 (2003)

73

https://www.howtogeek.com/66734/htg-explains-what-is-a-hypervisor/
https://www.howtogeek.com/66734/htg-explains-what-is-a-hypervisor/
https://www.trendmicro.com/en_us/what-is/container-security.html
https://www.trendmicro.com/en_us/what-is/container-security.html

[50] Staicu, C.A., Pradel, M., Livshits, B.: Understanding and automatically pre-
venting injection attacks on node. js. Tech. Rep. TUD-CS-2016-14663, TU
Darmstadt, Department of Computer Science, Tech. Rep. (2016)

[51] Vasilakis, N., Ntousakis, G., Heller, V., Rinard, M.C.: Efficient module-level
dynamic analysis for dynamic languages with module recontextualization. In:
Proceedings of the 29th ACM Joint Meeting on European Software Engineer-
ing Conference and Symposium on the Foundations of Software Engineering.
pp. 1202–1213 (2021)

[52] Vasilakis, N., Staicu, C.A., Ntousakis, G., Kallas, K., Karel, B., DeHon, A.,
Pradel, M.: Mir: Automated quantifiable privilege reduction against dynamic
library compromise in javascript. arXiv preprint arXiv:2011.00253 (2020)

[53] Zimmermann, M., Staicu, C.A., Tenny, C., Pradel, M.: Small world with high
risks: A study of security threats in the npm ecosystem. In: 28th USENIX
Security Symposium (USENIX Security 19). pp. 995–1010 (2019)

74

Appendices

75

Appendix A

Creating Dockerised Applications

Here is a guide on how to dockerise an application. As we have already seen in this
thesis, the Dockerisation of an application is a need in every single network security
primitive implemented. So let’s see how to use Docker in order to containerise an
app.

The very first step is to install Docker on your PC or the server you are working
on. Docker is going to be used for the containerisation. Having Docker installed,
you are now going to write your Dockerfile. The Dockerfile is a script for building
a docker image. Inside it, there specific instructions to set up the image and install
all the necessary requirements. Let’s now take a deeper look of the Dockerfile, by
using as an example the Dockerfile i used for the creation of the Snort Primitive.
Below is the Dockerfile:

1 FROM ubuntu:20.04

2

3

4 ENV DEBIAN_FRONTEND noninteractive

5 ENV NETWORK_INTERFACE eth0

6

7 RUN apt-get update && apt-get -y install \

8 wget \

9 build-essential \

10 gcc \

11 libpcre3-dev \

12 zlib1g-dev \

13 libluajit-5.1-dev \

14 libpcap-dev \

15 openssl \

16 libssl-dev \

17 libnghttp2-dev \

18 libdumbnet-dev \

19 bison \

20 flex \

21 libdnet \

22 autoconf \

23 libtool \

24 nodejs \

25 tcpdump \

26 npm

76

27

28 WORKDIR /opt

29

30 ENV DAQ_VERSION 2.0.7

31 RUN wget https://www.snort.org/downloads/snort/daq-${DAQ_VERSION}.tar.gz \

32 && tar xvfz daq-${DAQ_VERSION}.tar.gz \

33 && cd daq-${DAQ_VERSION} \

34 && ./configure; make; make install

35

36 ENV SNORT_VERSION 2.9.18.1

37 RUN wget https://www.snort.org/downloads/archive/snort/snort-${SNORT_VERSION}.tar.gz \

38 && tar xvfz snort-${SNORT_VERSION}.tar.gz \

39 && ls \

40 && cd snort-${SNORT_VERSION} \

41 && ./configure; make; make install

42

43 RUN ldconfig

44

45 ADD mysnortrules /opt

46 RUN mkdir -p /var/log/snort && \

47 mkdir -p /usr/local/lib/snort_dynamicrules && \

48 mkdir -p /etc/snort && \

49 cp -r /opt/rules /etc/snort/rules && \

50 mkdir -p /etc/snort/preproc_rules && \

51 mkdir -p /etc/snort/so_rules && \

52 cp -r /opt/etc /etc/snort/etc && \

53 touch /etc/snort/rules/white_list.rules /etc/snort/rules/black_list.rules

54

55 RUN apt-get clean && rm -rf /var/lib/apt/lists/* /tmp/* /var/tmp/* \

56 /opt/snort-${SNORT_VERSION}.tar.gz /opt/daq-${DAQ_VERSION}.tar.gz

57

58 COPY myjsscript.js /var/log/snort/myjsscript.js

59 RUN chmod +x /var/log/snort/myjsscript.js

Starting from top, the FROM command is used to set the base image of your im-
age. In the example above, as you can see, we take the base image of ubuntu:20.04
also known as Focal Fossa. This is going to be the OS of our app.

Right after, the ENV command is used. The ENV command is used in order
to set the value of a variable. For example, ENV DEBIAN FRONTEND nonin-
teractive is used in order to set the environment to noninteractive, in other words
that there will be no dialogue during apt-get, etc.

The ‘RUN’ instruction will run a command. Here you can see that RUN is used
in order to install all the necessary libraries and packages like npm , nodejs etc.
These are all absolute necessities for the app that need to be installed.

The ‘WORKDIR’ instruction will set the default working directory that we will
use to run the application. In our case, this directory is the /opt directory.

Last but not list in our Dockerfile, you can see the ’ADD’ and the ’COPY’
command. With the add command we basically copy a file or a directory from
our local host to the directory we desire inside the Docker image while the COPY
command will do the same but in the Docker container. There are a lot of com-
mands to be used like ’EXPOSE’, ’CMD’, etc . For more details you can visit the
official Docker website.

77

The Dockerfile should be placed inside the directory you’re going to use, let’s
name it startDir. Inside the startDir place every file you are going to need and add
in your Dockerfile. When all is done, you are ready to build your container. Open
a terminal and go to your app directory, the startDir. Then execute the following
command:

docker build -t mycontainer .

The process of building your container will begin, and if no errors occur, your
container will shortly be ready. The -t command allows you to name the container
in the way you want, in our case ”mycontainer”. Note that it is necessary to be
inside the directory in order to use the docker build command. Now that your
containerized application is ready, you can easily run it using the command:

docker run mycontainer .

For more information about the arguments you can use to run your application
with, visit the official site of Docker.

78

https://www.docker.com

Appendix B

How to monitor network traffic
using Scapy

Here is a guide on how to monitor network traffic. As we have already seen in this
thesis, the monitoring of traffic is a very common task and is used in almost every
primitive implemented. In this appendix we show a guide on how to do this, using
Python and Scapy [26].

The very first step is to install Python and Scapy on your PC or the server
you are working on. The installation is a pretty standard procedure so we are not
going to further analyse that. When the installation is done, you are now going
to start writing your Python script. Below we will show and discuss the script
used for the necessary functionality of the Flow Recording Primitive. Here is the
Python script:

1 from scapy.all import *

2 import socket

3 import argparse

4 import time

5 import json

6

7 class DomainList:

8 domains = None

9

10 def exist(self, domain):

11 if domain in self.domains:

12 return True

13 else:

14 return False

15 pass

16

17 def load_domains(self, path):

18 self.domains = set(line.strip() for line in open(path))

19 pass

20

21 def __init__(self, path):

22 self.load_domains(path)

23

24

25 class PacketInfo(object):

79

26

27 def create_send_object(self):

28 obj = {

29 "ts": self.ts,

30 "domain": self.domain,

31 "ip_src": self.ip_src,

32 "ip_dst": self.ip_dst,

33 "resolved_ip": self.resolved_ip,

34 "mac_src": self.mac_src,

35 "mac_dst": self.mac_dst,

36 "port_src": self.port_src,

37 "port_dst": self.port_dst

38 }

39 return json.dumps(obj)

40

41 def __init__(self, ts, domain, ip_src, ip_dst, resolved_ip, mac_src,

42 mac_dst, port_src, port_dst):

43 self.ts = ts

44 self.domain = domain

45 self.ip_src = ip_src

46 self.ip_dst = ip_dst

47 self.resolved_ip = resolved_ip

48 self.mac_src = mac_src

49 self.mac_dst = mac_dst

50 self.port_src = port_src

51 self.port_dst = port_dst

52

53 class PacketMonitor:

54 iface = None

55 detector = None

56

57 def establish_connection(self, host="192.168.1.204", port=8080):

58 self.socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

59 self.socket.connect((host, port))

60 pass

61

62 def send_data(self, data):

63 self.arguments["data"] = data

64 obj = {

65 "action": self.action,

66 "argument": self.arguments,

67 }

68 # Format json object

69 send_obj = json.dumps(obj) + "\n"

70 self.socket.sendall(send_obj.encode("utf-8"))

71 pass

72

73 def trim_domain_string(self, domain):

74 domain = domain[:-2]

75 domain = domain[2:]

76 return domain

77

78 def process_packet(self, packet):

79 """

80 This function is executed whenever a packet is sniffed

81 """

82 if IP not in packet:

83 return

84

85 if not packet.haslayer(DNS):

86 return

87

80

88 domains = None

89 dns_layer = packet.getlayer(DNS)

90

91 if dns_layer.ancount > 0 and dns_layer.qd:

92 ts = time.time()

93 ip_src = str(packet[IP].src)

94 ip_dst = str(packet[IP].dst)

95 mac_src = str(packet.src)

96 mac_dst = str(packet.dst)

97 if UDP in packet:

98 port_src = str(packet[UDP].sport)

99 port_dst = str(packet[UDP].dport)

100 if TCP in packet:

101 port_src = str(packet[TCP].sport)

102 port_dst = str(packet[TCP].dport)

103

104 domain = self.trim_domain_string(str(dns_layer.qd.qname))

105 dga_result = self.domains.exist(domain)

106

107 if dga_result == False:

108 return

109

110 for x in range(dns_layer.ancount):

111 resolved_ip = str(dns_layer.an[x].rdata)

112 packet_info = PacketInfo(ts, domain, ip_src, ip_dst,

113 resolved_ip, mac_src, mac_dst, port_src, port_dst)

114 send_object = packet_info.create_send_object()

115 self.send_data(send_object)

116

117 def sniff_packets(self):

118 if iface:

119 # `process_packet` is the callback

120 sniff(filter="port 53", prn=self.process_packet, iface=iface, store=False)

121 else:

122 # sniff with default interface

123 sniff(filter="port 53", prn=self.process_packet, store=False)

124

125 def __init__(self, iface, domains, address, port, action, arguments):

126 self.iface = iface

127 self.domains = domains

128 self.establish_connection(address, port)

129 self.action = action

130 self.arguments = arguments

131 pass

132

133 if __name__ == "__main__":

134 parser = argparse.ArgumentParser(description="DGA detector")

135 parser.add_argument("-i", "--iface")

136 parser.add_argument("-d", "--domains")

137 parser.add_argument("-a", "--address")

138 parser.add_argument("-p", "--port")

139 parser.add_argument("-c", "--command", required=True)

140 parser.add_argument("-arg", "--arguments", required=False)

141 args = parser.parse_args()

142

143 domains_file = args.domains

144 domains = DomainList(domains_file)

145

146 iface = args.iface

147 address = args.address

148 port = int(args.port)

149

81

150 action = args.command

151 if args.arguments == None:

152 arguments_json = "\{\}"

153 else:

154 arguments_json = args.arguments

155

156 try:

157 arguments = json.loads(arguments_json)

158 except ValueError:

159 print("Decoding JSON has failed")

160 arguments = {}

161 pass

162

163 packet_monitor = PacketMonitor(iface, domains, address, port, action, arguments)

164 packet_monitor.sniff_packets()

165 packet_monitor.socket.close()

As you can probably see, a lot are taking place inside this script. So let’s see
on which functions we are going to take a deeper dive to. We start with the
necessary importation of Scapy, as you can see in line 1. Now inside the Packet-
Monitor class, we are interested about two functions, the sniff packets() and
the process packet() functions. sniff packets() is the function that pro-
vides the main functionality. As you can see, it is called from the ”main”, once the
PacketMonitor class has been initialised. sniff packets() checks the ”iface”
variable, the variable we use to store the input networking interface we want to
monitor. If ”iface” is not Null, we proceed to use the scapy function, sniff(),
to monitor the interface we want. If it is Null, then we monitor the default Scapy
interface. sniff() function monitors the networking traffic of the interface we
define for an infinite period of time until the user interrupts it.

Another argument to define the functionality of sniff() is the ”filter” ar-
gument. Depending on the value of the ”filter” argument, sniff() is going to
monitor only specific traffic. For example, as you can see in line 118, by giving the
value ”port 53” to ”filter”, we monitor only the DNS requests, since this is what
we want in this Primitive.

process packet() is the callback function that sniff() uses every time a
packet is sniffed. This is realized by giving the function as value to the argument
”prn” on the sniff() function. Inside the process packet(), we provide
the functionality we want. In this example, once we sniff a packet, we check if
the domain matches one of the domains we want to monitor. If it does, we store
the information we want about this packet and later send it to another pod. But
that is obviously is going to differ from script to script. You can provide your own
functionality inside your code, according to your needs. There are multiple ways
sniff() can be used and a number of different arguments to be used with. For
more details you can use the official site of Scapy [26], or see the manual [27].

82

	Introduction
	Aim of the thesis
	Thesis contribution
	Thesis overview

	Background
	Virtual Machines
	Virtual Machine Security

	Containers
	Container Security

	Docker
	Docker Images
	Image Registries

	Container Orchestration
	Kubernetes
	Kubernetes Design
	Pods

	Antrea
	Keras
	Multus
	5G Network
	5G Network Architecture

	PRINCIPALS
	Innovative Claims
	Threat Model and System Assumptions
	Architecture

	Primitives
	Snort
	Example

	DNS Sinkholing
	Example

	Flow Recording
	Example

	DDoS Detector
	Example

	DGA Detector
	Example

	Language
	Static Analysis
	Dynamic Analysis
	Using Static and Dynamic Analysis Tools on PRINCIPALS

	Evaluation
	UDP flood attack
	HTTP flood attack
	SYN flood attack

	Related work
	Conclusion
	Bibliography
	Appendices
	Creating Dockerised Applications
	How to monitor network traffic using Scapy

