
TECHNICAL UNIVERSITY OF CRETE

DIPLOMA THESIS

OpenAPI SPARQL: Querying
OpenAPI Ontologies in OWL

Author:
Nikolaos Lagogiannis

Committee:
Euripides G.M.

Petrakis
Vasileios Samoladas

Antonios Deligiannakis

A thesis submitted in fulfillment of the requirements
for the degree of 5-year Diploma

October 17, 2022

https://www.tuc.gr/index.php?id=5397

iii

TECHNICAL UNIVERSITY OF CRETE

Abstract

School of Electrical and Computer Engineering

OpenAPI SPARQL: Querying OpenAPI Ontologies in OWL

by Nikolaos Lagogiannis

In this work, we present OpenAPI SPARQL Language (OASL). OASL
is an RDF query language specified OpenAPI ontologies. OpenAPI is a
language agnostic format describing REST services in YAML or JSON
form. In previous work, we showed how valid OpenAPI descriptions
of RESTful services could be mapped to ontologies. However, queries
on the OpenAPI ontology are very complex and require that the user
be familiar with the peculiarities of the ontology. This is precisely the
problem OASL deals with. To formulate an OASL query, a user needs
only a basic understanding of SPARQL and no knowledge of Ontology
OpenAPI definition. Also, the proposed language is easier to write from
their equivalent SPARQL queries.OASL builds on top of SPARQL and
simplifies query complexity, so even highly complex SPARQL queries
can be expressed using only a few OASL statements.

HTTPS://WWW.TUC.GR/INDEX.PHP?ID=5397
https://www.ece.tuc.gr/index.php?id=4101

v

Acknowledgements
First and foremost, I would like to thank my Supervisor Euripides Pe-
trakis for his support and guidance during preparation and it’s imme-
diate response during every step of this work.

I would also like to thank my friends and family their support during
all these years as a university student.

vii

Contents

Abstract iii

Acknowledgements v

1 Introduction 1
1.1 Motivation . 1
1.2 Proposed Solution . 1
1.3 Thesis Outline . 2

2 Background Knowledge 3
2.1 Semantic Web . 3
2.2 Open API . 4
2.3 Previous Work . 6
2.4 SPARQL as a Query Language 8

3 OpenAPI SPARQL Objects Analysis 11
3.1 Service . 12
3.2 Request . 13
3.3 Security . 14
3.4 SecurityScope . 15
3.5 Tag . 15
3.6 Response . 16
3.7 Server . 16
3.8 Header . 17
3.9 Parameter . 18
3.10 Schema . 19

3.10.1 Schema field in other objects 20
3.11 Property . 21

3.11.1 Property field . 21

4 OpenAPI SPARQL Language 23
4.1 Language Syntax . 24

4.1.1 Triple Syntax . 26
4.1.2 Prefix and SELECT clause 30
4.1.3 WHERE Clause . 30
4.1.4 Rearrange Clause 32

4.2 Enriched Non-SPARQL Syntax rules 36
4.2.1 Comparison Query 37
4.2.2 Between Query . 38

viii

5 System Implementation 39
5.1 Tools Selection . 39
5.2 Mechanism Description 40
5.3 Parsing Algorithm . 43

5.3.1 Special behaviour parsing conditions 46
5.4 Translation and Execution Procedure 49

6 Results and Measurements 51
6.1 Performance Analysis . 51

6.1.1 Non-optimal SPARQL Triples Analysis 51
6.2 Query Categories . 52

6.2.1 Simple queries . 52
6.2.2 Complex queries 54
6.2.3 Extended and Complex queries 56

6.3 Comparison Between Response Times 61
6.4 Actual Ontology OpenAPI Data 61

7 Conclusion and Future Work 63
7.1 Conclusion . 63
7.2 Future Work . 63

Bibliography 65

ix

List of Figures

2.1 Basic Triple Structure Example 4
2.2 OpenAPI 3rd version Structural Objects Diagram 5
2.3 OpenAPI example . 6
2.4 Semantic OpenAPI Structure 7
2.5 Security Object diagram 8
2.6 Demonstrative Example in SPARQL 9

3.1 Service Table . 12
3.2 Request Table . 13
3.3 Security Table . 14
3.4 Security Scope Table . 15
3.5 Tag Table Object . 15
3.6 Response object table . 16
3.7 Caption . 16
3.8 Header Table . 17
3.9 Parameter Table . 18
3.10 Schema Table . 19
3.11 Schema property example 20
3.12 Property Table . 21

4.1 Prefix and Select clause examples 30
4.2 Where syntax example . 31
4.3 Query syntax comparison between no rearrangement and

LIMIT use. 33
4.4 Results without Rearrangement 33
4.5 Results Using LIMIT . 34
4.6 Query syntax comparison between LIMIT use and adding

OFFSET use. 34
4.7 Previous results using LIMIT 35
4.8 Results Using LIMIT and OFFSET 35
4.9 Query syntax comparison between OFFSET and LIMIT

use with OREDER BY clause with ascending order. . . . 36
4.10 Previous results using LIMIT and ORDER 36
4.11 Results also ORDER BY ascending order 36
4.12 Query syntax comparison between two examples. 37
4.13 Results without using comparing operators. 37
4.14 Results using greater equal operator 38
4.15 Query syntax comparison between two examples. 38
4.16 Results without BETWEEN use 38

x

4.17 Results after triple containing BETWEEN 38

5.1 System Architecture Components 40
5.2 Execute OASL query page 41
5.3 Execute OASL query page 42
5.4 Translation and Execution sequence diagram 49

6.1 Presentation of a Simple OASL and SPARQL translation
query . 53

6.2 Results fetched by Simple Query. 54
6.3 Medium complexity query 55
6.4 Extended Query containing every major clause 57
6.5 Generated SPARQL Code from Complex and Extensive

Example . 60

1

Chapter 1

Introduction

The available Web applications nowadays have risen remarkably, sup-
plying consumers and developers with multiple options. Software com-
panies associated with the generation of web services are also trying
to create standard and easily readable documentation. Many of the
formats introduced compete with each other to cover various applica-
tions. One of the dominant description formats, which is also an in-
dustry standard, it is OpenAPI Specification. OperAPI defines a stan-
dard, language-agnostic interface to RESTful APIs that humans and
machines can easily understand.For a machine to understand the mean-
ing of OpenAPI, service descriptions need to be formally defined, and
their content is semantically enriched in a way that eliminates ambigu-
ities.

1.1 Motivation

Semantic Web project is an extension of the World Wide Web through
standards set by the World Wide Web Consortium (W3C)[9]. The goal
of the Semantic Web is to make Internet data machine-readable.Taking
into consideration the dynamics that generated about the expansion of
semantic web , it is also emerges the opportunity to create machine-
readable descriptions.In previous work by Fotios Bouraimis [2] , it is
shown a way to convert OpenAPI descriptions into ontologies and SPARQL
was the language that is used to make queries about them. However,
even the smaller ones are complicated and require enough SPARQL ex-
pertise to be expressed from any user.

1.2 Proposed Solution

We introduce OpenAPI SPARQL, a query language for OpenAPI de-
scriptions. This query language is similar to SPARQL and aims to define
an easier-to-write syntax, avoiding the syntax complexity of SPARQL
queries addressing the OpenAPI ontology. This would require that the
user be familiar with OpenAPI syntax and and especially with the ax-
ioms (including rules) that have been defined in the OpenAPI ontology

2 Chapter 1. Introduction

[6]. SPARQL queries expressed using ontology axioms may become
particularly complicated, involving many statements that an ordinary
SPARQL user (with no understanding of the ontology) is almost im-
possible to express. OASL deals with precisely this problem. An OASL
query involves much fewer statements using HTTP properties rather
than OpenAPI or the OpenAPI ontology.

OASL syntax is proposed and support on features of SPARQL with the
addition of operators capable of filtering effectively the OpenAPI on-
tology database (eg. comparison operators). The ontology database is
implemented in a Virtuoso server. OASL is evaluated in a relatively
large database with 100 ontologies by query complexity level (e.g. sim-
ple, complex, very complex queries) using a set of example queries.

1.3 Thesis Outline

The rest of this thesis is organized as follows:

• Chapter 2 - Background Knowledge: Background knowledge and
introduction to concepts and technologies essential to our work.

• Chapter 3 - OpenAPI Objects Analysis: Contains all available
Open API properties for this language according to our flattened
objects.

• Chapter 4 - OpenAPI SPARQL : This chapter analyzes all details
about OpenAPI SPARQL Language syntax.

• Chapter 5 - System Implementation: Technical details and the al-
gorithmic structure about the implementation mechanism of this
work.

• Chapter 6 - Results and Measurements: Examples about execu-
tion and discussing results.

• Chapter 7 - Future Work: Thesis conclusion and future work di-
rections are provided .

3

Chapter 2

Background Knowledge

The number of web services have been rapidly increasing over the last
years. This created the need for a standard description format of web
services where can be understood by both humans and machines. Also
another emerging need is to find a way to query data using a language
easily understandable also by humans and machines. This chapter de-
scribes the basic knowledge to understand this work as also refers on
previous work where is involved to this problem.

2.1 Semantic Web

The term “Semantic Web” refers to the W3C’s vision of the Web of
linked data. Semantic Web technologies enable people to create data
stores on the Web, build vocabularies, and write rules for handling
data [9]. Linked data are empowered by technologies such as RDF [8],
SPARQL, and OWL[10]. The Semantic Web is not a separate Web but an
extension of the current one. Information is given a well-defined mean-
ing that enables computers and people to work in better cooperation.
It extends the network of hyperlinked human-readable web pages by
inserting machine-readable metadata about pages and how they are re-
lated to each other, enabling automated agents to access the Web more
intelligently and perform tasks on behalf of users.

An ontology is a formal description of knowledge representation as a
set of concepts within a domain and the relationships between them.
To enable such a description, we need to formally specify components
such as individuals (instances of objects), classes, attributes, and rela-
tions, as well as restrictions, rules, and axioms. As a result, ontologies
do not only introduce a shareable and reusable knowledge representa-
tion but can also add new knowledge about the domain.

The ontology data model can be applied to a set of individual facts to
create a knowledge graph – a collection of entities where nodes and
edges express the types and the relationships between them. By de-
scribing the knowledge structure in a domain, ontology sets the stage

4 Chapter 2. Background Knowledge

for the knowledge graph to capture the data. RDF [8] and OWL[10] are
the technologies associated with this concept.

RDF stands for Resource Description Framework and is a standard for
describing web resources and data interchange, developed and stan-
dardized with the World Wide Web Consortium (W3C). While there are
many conventional tools for dealing with data and, more specifically,
dealing with the relationships between data, RDF is the most straight-
forward, potent, and expressive standard designed now. 1 RDF con-
nects data pieces via triples (three positional statements).
The structure of a triple contains tree statements named: Subject, Pred-
icate, Object

• Subject represents the entity described with the following infor-
mation.

• Predicate is the property that is requested to link the entity with
the final information.

• Object describe the final information where it is aimed to be at-
tached on the Subject.

Below is presented a simple statement in triple format.

FIGURE 2.1: Basic Triple Structure Example

2.2 Open API

The OpenAPI Specification [1], previously known as the Swagger Speci-
fication, defines a standard, language-agnostic interface to RESTful APIs
which allows both humans and computers to discover and understand
the capabilities of the service without access to source code, documen-
tation, or through network traffic inspection. 2 When properly defined,
a consumer can understand and interact with the remote service with
minimal implementation logic. Previously part of the Swagger frame-
work, it became a separate project in 2016, overseen by the OpenAPI

1https://www.ontotext.com/knowledgehub/fundamentals/what-is-rdf/
2https://en.wikipedia.org/wiki/OpenAPI_Specification

https://en.wikipedia.org/wiki/OpenAPI_Specification

2.2. Open API 5

Initiative, an open-source collaboration project of the Linux Founda-
tion.OpenAPI Specification descriptions are written in JSON or YAML
data serialization formats.

FIGURE 2.2: OpenAPI 3rd version Structural Objects Di-
agram

An OpenAPI document has defined many structural Objects, such as
info Paths, ,Server ,Security, tag , external docs , and components.

• The info field contains high-level information about the API, such
as version, title, and license.

• In Paths field are described the specific methods that can be reached,
as well as their parameters, responses, human-readable descrip-
tions of functionality, accepted content types, tags, and other ex-
pected behaviors.

• ExternalDocs as an object is used to enrich with additional infor-
mation

• Components object, holds a set of reusable objects for different
OAS elements to reference throughout the spec.These objects are
Responses, Request Bodies, Headers , Links, Callbacks, Examples,
Schemas and Security Schemas .

Below is presented a detailed OpenAPI Example.

6 Chapter 2. Background Knowledge

FIGURE 2.3: OpenAPI example

This example describes a service with 2 servers available ,an endpoint
’/users’ that accepts GET requests. We also see that for response status
code 200 ,which means successful request , the client receives a json
file which contains data as String array.As we can also see the structure
that follows is an info object who contains general information (title,
description an version), then there is path object, which contains any
endpoint this service describes and inside that endpoint are included
every detail about this request.

2.3 Previous Work

In previous work has defined a way for expressing OpenAPI descrip-
tions in Ontology. Also, another work implemented describes an algo-
rithm that converts an openAPI document to a consistent ontology in
OWL format.

Specifically, the first work claims that for a machine to understand the
meaning of OpenAPI service descriptions, this content must be seman-
tically defined in a way that eliminates ambiguities. This semantically
enriched description is named SOAS 3.0 [6]. Taking advantage of SOAS
3.0, another previous work emerged [2], that creates a complete mecha-
nism that transforms OpenAPI description to an OpenAPI Ontology.

The diagram below describes the structure of OpenAPI as an ontology.

2.3. Previous Work 7

FIGURE 2.4: Semantic OpenAPI Structure

This work annotates entirely and with great semantic detail most Ope-
nAPI Objects except Link and Callback objects. The following graph
structure has the Document Class at the top level. This class contains
the info that describes a service and binds together any description de-
tails about the Operation, Entity and Security objects where they are
expressed. First, Entity objects refer to any schema or Property object
that an OpenAPI service supports. This is supported through Shapes
Constraint Language (SHACL) by creating equivalent sub-class Prop-
ertyShape class and NodeShape class. Operation class is the backbone
of any Semantic
OpenAPI Document. Specifically, this class binds information about
Response, RequestBody, Header, Parameter, Tag, Server, Cookie, on-
Path, and Security objects.

8 Chapter 2. Background Knowledge

FIGURE 2.5: Security Object diagram

Security Class is a superclass which achieves to group the properties
about every supported security type. Each one of these types indi-
vidually , is defined as a subclass of Security with their specific prop-
erties.Same procedure is followed to describe OAuth flows.Flows has
properties such as authorization url where they are member of OAuth-
flow Class which is linked with the subclass of security OAuth2 type.

Bottom level of diagram, contains classes that represent openAPI object
such as MediaType , ExternalDocs , Contact, Liscense etc.These objects
are more often used at many classes to express their multiple endpoints
inside an openAPI description . Other classes however they defined to
restrict their use at incorrect endpoints, so if it happens the ontology
should be inconsistent.

2.4 SPARQL as a Query Language

SPARQL is an RDF query language that can retrieve and manipulate
RDF data. It is an official recommendation standard by W3C (the only
standard W3C query language) and SPARQL allows users to write queries
against what can loosely be called "key-value" data or, more specifi-
cally, data that follow the RDF specification of the W3C. Thus, the entire
database is a set of "subject-predicate-object" triples. This is analogous
to some NoSQL databases’ usage of the term "document-key-value".
SPARQL syntax follows an SQL-like format. It uses the SELECT clause
to retrieve data as SQL does, the FROM clause to define the dataset to
be queried, the WHERE clause expresses the conditions about what to

2.4. SPARQL as a Query Language 9

query from a dataset and the ORDER BY clause is responsible for rear-
ranging these results. Below is displayed a query example in SPARQL3 :

FIGURE 2.6: Demonstrative Example in SPARQL

This example contains a query pattern that asks to project name and
other variables for matching triples where the subject has no limitations
(a variable in the issue can match anything), but the predicate follows
two conditions. It is necessary to match as property with foaf:name
URI and foaf:mbox property according to the same URI , defined in the
prefix declaration clause.

The query above has an order of SPARQL query structure concerning
the position of clauses.
First are declared any prefixes that will be used. It should be noted that
prefixes are optional. Second follows the SELECT clause, responsible for
variable declarations where will be projected. WHERE clause is the last
and most crucial part because it includes the query patterns requested
to match. Next, it follows the FILTER clause, which adds more restric-
tions about fetching the data, such as logical conditions or comparisons
for expected values (string contains substrings or values are higher
than specified prices, etc.). At last, there are ’rearrange’ clauses such as
LIMIT OFFSET, ORDER BY, and each one rearrange the query answer
differently.

3https://en.wikipedia.org/wiki/SPARQL

https://en.wikipedia.org/wiki/SPARQL

11

Chapter 3

OpenAPI SPARQL Objects
Analysis

RDF data are stored in graph databases. The challenge is to query a
path of property triples, leading to a node expressing the requested
object. However, SPARQL queries sometimes require multiple triples
to describe some openAPI fields, leading to confusing and extended
SPARQL queries. Moreover, many of these queries use the same paths
to reach a group of semantic fields. As a result, someone who wants to
ask a query in an RDF database with openAPI descriptions must un-
derstand openAPI specification and know precisely the semantic path
of these ontologies. At last, he needs to write an extensive SPARQL
query, with the risk of expressing it wrong.

OpenAPI SPARQL Language (OASL) applies flattering,a reduction of
long path experssions into a simple statement with the property of in-
terest. OASL requires that the user be familiar with SPARQL syntax
(SELECT WHERE and triple understanding). This section explains the
model and the fields that language supports. Every field of this model
is expressed with no more than two triples (in most cases, they are de-
fined with one). Notice that if more than one properties required, these
can be properties of different OpenAPI Objects (eg. a schema property
may describe objects of both requests or responses).

12 Chapter 3. OpenAPI SPARQL Objects Analysis

3.1 Service

Service object, includes the fields of openAPI, Info, Contact ,License
and External Documentation objects.They contain general information
about the described web service such as its title , description or its ver-
sion.

The fields of Service object along with OpenAPI and semantic OpenAPI
are shown below:

FIGURE 3.1: Service Table

3.2. Request 13

3.2 Request

Response Object includes fields of Paths, Operation, and Request Body
Objects. In semantic openAPI, all these objects are part of Operation
Class which they have access through supported operation property.
These objects describe the requests and their details supported by a web
service method(ex GET) , operationName etc.

The fields of Request object along with OpenAPI and semantic Ope-
nAPI are shown below:

FIGURE 3.2: Request Table

Method field in a Semantic OpenAPI description has been declared
as a property of Operation object domain and in OpenAPI is referred
directly with their property names in Path object (GET , PUT, POST,
DELETE). In OASL, any question about the method field has accepted
answers, only the previous four keywords. Also, the operationName
field represents operationId in openAPI, which is defined with name
property at the Operation object domain in its semantic version. The
schema keyword is used to access the schema field in RequestBody Ob-
ject.

14 Chapter 3. OpenAPI SPARQL Objects Analysis

3.3 Security

Security object include fields from Security Requirement, Security Scheme,
OAuth Flows and OAuth Flow. These objects describe all security mech-
anisms defined by web services. In semantic openAPI these objects
are described with Security objects and their subclasses (APIKey , Http
,OAuth2 , openIdConnect) as also OAuthFlow class with its subclasses
(ClientCredentials , AuthorizationCode ,Password ,Implicit) as shown
in the figure: 2.5 .

The fields of Security object along with OpenAPI and semantic Ope-
nAPI are displayed below::

FIGURE 3.3: Security Table

SecurityType field represents the field type in the Security Object at
OpenAPI. In semantic OpenAPI it is defined with the creation of the
appropriate subclasses (OAuth2, ApiKey, etc.) and there is not specific
property to describe it. In (OASL) it is accepted to ask using only the
subclasses names as keywords (Oauth2 , Api Key, OpenIdConnect and
Http).

3.4. SecurityScope 15

Also, it defines OAuth2flowType field using subclasses names as key-
words (Implicit, Client Credentials , Password , AuthCode). The other
fields are flattened properties from every security type and OAuthflow
type mentioned above.

3.4 SecurityScope

A request mechanism can also require specific scopes. The fields of
Security Scope object relates the name and descriptions defined in the
OAuthFlow object’s scopes.
The fields of Security Scope object, along with OpenAPI and semantic
OpenAPI are displayed below:

FIGURE 3.4: Security Scope Table

3.5 Tag

Tag corresponds to fields in Tag and External Documentation objects
and they are used to group operations as objects in a description.

The fields of Tag object along with OpenAPI and semantic OpenAPI
are displayed below:

FIGURE 3.5: Tag Table Object

16 Chapter 3. OpenAPI SPARQL Objects Analysis

3.6 Response

The field of Response table contains properties from Response , Re-
sponses and Media Type objects.These objects describe, about a request,
details for its defined responses.
The fields of Response object along with OpenAPI and semantic Ope-
nAPI are shown below:

FIGURE 3.6: Response object table

In OpenAPI description statusCode property is described with prop-
erty names as a string either is a number about the status code or ex-
presses a response range using "-xx" string symbol (1xx which means
100-199, 2xx ,3xx ,4xx and 5xx). In semantic openAPI status code range
is expressed by different subclasses of Response class object. In (OASL)
status code defined with two separate fields. If a user want to ask for
status code range uses statusCodeRange property giving the above "-
xx" keywords as it is shown in figure 3.6 . Asking about a certain status
code number uses the statusCode field in integer format in a question.

3.7 Server

Server objects are available to describe about each Request its own servers.
Server table contain fields from Server Object. The fields of Server ob-
ject along with OpenAPI and semantic OpenAPI are shown below:

FIGURE 3.7: Caption

3.8. Header 17

3.8 Header

Header Table contains all Header Object properties. This object has the
same structure with Parameter object and describes any header that are
returned with response or a request. In semantic OpenAPI it is placed
either as a ResponseHeader or as a RequestHeader inside Operation
Object.

The fields of Header object along with OpenAPI and semantic OpenAPI
are shown below:

FIGURE 3.8: Header Table

Because of the existence of the Header object at two critical positions
inside an OpenAPI document, this table expresses two ways of query-
ing. The RequestHeader keyword is responsible for searching directly
from the requestHeader property domain of the Operation object. The
ResponseHeader keyword is responsible for searching directly from re-
sponseHeader property, which is in the domain of the Response object
located inside the Operation.

18 Chapter 3. OpenAPI SPARQL Objects Analysis

3.9 Parameter

Parameter table contains fields from Parameter Object in OpenAPI de-
scription.As an object describes parameters where a request can acquire
with it.

The fields of Parameter object along with OpenAPI and semantic Ope-
nAPI are shown below:

FIGURE 3.9: Parameter Table

The field location is defined in (OASL) to enable questions about ’in’
field in an OpenAPI document. It should be noted that in Semantic
OpenAPI description there is not a property to describe it, however it is
represented by equivalent subclasses of Parameter class, such as Path-
Parameter, Cookie etc. The accepted keywords in (OASL) are "path",
"header" , "query" and "cookie". Also style field has specific accepted
keywords that they simplify the original define objects in a Semantic
OpenAPI description.

3.10. Schema 19

3.10 Schema

Schema table contains fields of Schema object. This object of openAPI
has defined to conclude all fields that defined in JSON Schema. How-
ever in (OASL) are supported only the most important ones.Their use
is to describe any data model where a request , response, parameter or
header can support.

In Semantic OpenAPI Schema and its fields, it is described through
SHACL objects (i.e., NodeShape or PropertyShape objects), which, in
turn, are defined as subclasses of a general ShapeClass.

The fields of Schema object along with OpenAPI and semantic Ope-
nAPI are shown below:

FIGURE 3.10: Schema Table

The ’Schema’ subject keyword is used, then the query asks for the sup-
ported entity field. In other objects, as aforementioned, there are also
schema properties. In SPARQL, when a user wants to ask a specific
question about a schema property, he writes several triples to reach the
appropriate property-value endpoint. In (OASL), because of the impor-
tance of most of the schema questions, it is selected the SPARQL-like
approach of using variables to avoid reducing the available query va-
riety. Also property field, its purpose is the direct queries about name,
type and datatype for the Property object.

20 Chapter 3. OpenAPI SPARQL Objects Analysis

3.10.1 Schema field in other objects

The schema objects can be used in multiple positions inside an Ope-
nAPI description. For example, we can declare a schema in the Re-
sponse object but also in Request, Header e.t.c. In order to allow the
user to query schemas in every position from the document, access to
that position is achieved using the schema fields from these objects. In
detail, the user enters a variable as an object in the specific triple and
next can access all schema properties using the variable as the triple’s
subject.

FIGURE 3.11: Schema property example

This figure has two different (OASL) query parts. The first one de-
scribes a triple that asks about the schema property in Response Ob-
ject with the title value of "Dog". As it is pointed with red color, using
a variable (?var1) it connects the triples (1st as an object and 2nd as a
subject), and similarly queries schema fields with SPARQL. The next
column has the equivalent SPARQL query and lines 4-6, which is noted
with red color, an identical definition.

The second example shows a triple using the defined Schema keyword
as the subject and the equivalent query is about the ’supported entity’
endpoint in a semantic OpenAPI description.

It is also accepted as value , except from variables , to add string or
URI making this an abbreviation triple.More details about the imple-
mentation are in Chapter 5

3.11. Property 21

3.11 Property

In OpenAPI properties field contains also object that can be described
as Schema Object. In semantic openAPI this is also viable with the def-
inition of PropertyShape class.

The fields of Property object along with OpenAPI and semantic Ope-
nAPI are shown below:

FIGURE 3.12: Property Table

3.11.1 Property field

The property field works similarly to the schema field in other objects.
Using a variable is the standard way to query specific details about a
property object. It is also accepted as a value, except from variables, to
add string or URI, making this an abbreviation triple. According to the
value is translated into a different triple group. More details about the
implementation are in Chapter 5

23

Chapter 4

OpenAPI SPARQL Language

OpenAPI SPARQL Language is a query language for searching Seman-
tic OpenAPI descriptions. The syntax of this language is similar to the
SPARQL language, so it is easier for a user with SPARQL knowledge to
understand and adapt to (OASL) syntax. Every OASL query consists of
the following structural components:

• PREFIX clause (optional): This clause is responsible for defining
keywords that correlate to specific URIs.

• SELECT clause: This clause contains which variables value are to
be projected as results in the user

• WHERE clause: This clause contains all conditions and rules in
triple form. These conditions filter these OpenAPI triples and
match them with the user’s defined variables.

• Rearrange clause (optional) :This clause includes 3 different clauses
, with purpose to rearrange the projected data. These clauses are
LIMIT , ORDER BY and OFFSET.

24 Chapter 4. OpenAPI SPARQL Language

4.1 Language Syntax

The syntax of OpenAPI SPARQL (OASL) is presented below in Backus
Naur form (BNF).After BNF is presented the accepted language triples
for OpenAPI SPARQL Language :

4.1. Language Syntax 25

26 Chapter 4. OpenAPI SPARQL Language

4.1.1 Triple Syntax

The table below contains, in the first column, the OpenAPI objects that
OASL recognizes. The user can type the presented keywords as the
subject in his triple. The second column contains all the recognized
properties in an ontology that every OpenAPI object accepts. The key-
words of the second column are the predicate in his triple. At last,
column 3 expresses the object in his triple. Anything inside quotes de-
scribes the only keywords that accept as an answer. String, boolean, and
integer tell the acknowledged format in this specific field. Fields such
as type and schema object cells are empty because they accept either
more than one type or, according to their answer, generate a different
SPARQL code, as the previous section mentions. Of course, identical
SPARQL variables are accepted in the object’s position to protect our
data (using the same variable with the SELECT clause).

TRIPLE COLUMNS
Column1

SUBJECT
Column 2

PREDICATE
Column 3
OBJECT

Service title string

description string

email string

externalDocUrl string

externalDocDescription string

contactUrl string

contactName string

version string

liscenseName string

liscenseDescription string

Request

method ‘get’ , ‘put’ , ‘post’ , ‘delete’

path string

operationName string

schema string

contentType string

header string

extDocUrl string

extDocDescription string

summary string

bodyDescription string

tag string

Server description string

url string

SecurityScope description string

name string

Parameter name string

required boolean

schema

27

description string

style ‘simple’ , ‘form’ , ‘label’ , ‘matrix’ ,
‘pipeDelimited’ , ‘spaceDelimited’

allowEmptyValue boolean

allowReserved boolean

deprecated boolean

location ‘path’ , ‘header’, ‘query’ ,‘cookie’

Tag name string

description string

extDocUrl string

Security apiKeyIn string

apiKeyName string

httpBearrerFormat string

httpBearrerScheme string

OpenIdConnectUrl string

OAuth2AuthUrl string

OAuth2RefreshUrl string

OAuth2TokenUrl string

OAuth2flowType ‘Implicit’, ‘Client Credentials’ , ‘Password’ ,
‘AuthCode’

securityType ‘Oauth2’ , ‘Api Key’, ‘OpenIdConnect’ , ‘Http’

Response schema string

header string

statusCode integer

statusCodeRange ‘1xx’ , ‘2xx’, ‘3xx’, ‘4xx’ , ‘5xx’

description string

ResponseHeader
RequestHeader
Header

name string

required boolean

schema

description string

style ‘simple’ , ‘form’ , ‘label’ , ‘matrix’ ,
‘pipeDelimited’ , ‘spaceDelimited’

28

allowEmptyValue boolean

Schema
<variable>

dataType ‘integer’ , ‘number’ , ‘string’ , ‘boolean’ , ‘array’

type

property

style ‘simple’ , ‘form’ , ‘label’ , ‘matrix’ ,
‘pipeDelimited’ , ‘spaceDelimited’

title string

minProperties number

maxProperties number

minLength number

maxLength number

minCount number

maxCount number

minimum number

maximum number

description string

Property
<variable>

dataType ‘integer’ , ‘number’ , ‘string’ , ‘boolean’ , ‘array’

name string

type

description string

minLength number

maxLength number

minimum number

maximum number

minCount number

maxCount number

29

30 Chapter 4. OpenAPI SPARQL Language

4.1.2 Prefix and SELECT clause

The PREFIX clause is an optional part of the query where a user can
define prefixes. Every prefix is matched with a URI separating the pre-
fix part from the URI part with the ":" symbol, similarly to SPARQL.
Prefixes are used as URI shortcuts inside a query, allowing the user to
express smaller and easier questions.

The SELECT clause is the position inside a query where the user de-
fines any variables where is content wants to expose as the output of
his query. Any results are usually presented in table format, and the
variable name is also the column’s name. A variable starts with the "?"
symbol followed by an identifier. It is also available for the user with
the "DISTINCT" keyword. Using this keyword, every duplicated tuple
from the expected results are removed. It should be noted that these
syntax rules are identical to the SPARQL syntax structure.

Below is presented an example of the implementation of these rules:

FIGURE 4.1: Prefix and Select clause examples

In this example is shown two declaration of prefixes named example1
and example2. A colon symbol follows them to separate from the URI’s
and, at last, is declared the URI’s where they are replaced. The SELECT
clause contains two variables separated by a comma and presents the
use of
DISTINCT keyword.

4.1.3 WHERE Clause

This clause is responsible for choosing which triple conditions must be
true and defining the fields the user wants to express. The accepted
triples and most commonly accepted combinations derived from their
objects have been described in the previous section. Except for inter-
section between triples,it is also supported OR clauses, equivalent to

4.1. Language Syntax 31

UNION clauses in SPARQL, OPTIONAL clauses, and NOT clauses as
like in SPARQL.

• OR clause syntax is identified correctly by the use of a number
of triples inside to brackets following by OR keyword and at last
followed by another count of triples inside brackets.

• OPTIONAL syntax contains inside brackets only one triple. If
the user wants to add more optional triples , follows the same
procedure for each triple

• NOT syntax follow the same structure with OPTIONAL clause. It
is used inside brackets only one triple.

Below is presented an example with the implementation of these rules:

FIGURE 4.2: Where syntax example

32 Chapter 4. OpenAPI SPARQL Language

The first example describes a WHERE clause asking the title from ser-
vices and their operations’ names, with operations tagged about Google-
Company according to a declared uri. Also, its response is a type of
schema that has been declared according to another uri endpoint (ex-
ample1:Workers).

The second example describes a query which contains OR clause in-
side.OR clause have similar use and syntax to SPARQL UNIONS .The
keyword change it is selected to be similar to SQL language, because
most of users are not familiar with SPARQL as also is more memorable
for a simple user. This example is asking for web services, which they
have tag name as example2:GoogleCompany defines, and Response
schema can be (example1:Managers and example1:Employers). We ask to
retrieve as result its service title and its operation name.

NOT example fetches every service title that matches, but only if oper-
ations tag is not as example2:GoogleCompany declares.

The last example expresses that if is declare an operation name to that
endpoint , in expected answer will be expressed in variable2.Else this
tuple will still fetch the rest requested info, even though it will be void.

Overall WHERE clause in OASL includes the equivalent syntax rules
from SPARQL WHERE and FILTER clause. Because of the restricted
range of queries where a user can search about the fields of an openAPI
ontology description, the only useful filter clauses that could be used
are about comparisons between numbers.As a result it is selected to
integrate these functionalities inside where clause to achieve a more
convenient language for user.

4.1.4 Rearrange Clause

This clause describes three different clauses whom its purpose is to re-
arrange any data where the query fetches. Their syntax behaviour is
identical to the SPARQL syntax. These clauses are : order by clause
LIMIT clause and offset clause.These rearrange clauses are optional
and they have specific order between them. For example ORDER BY
clause syntax comes first and later on follows LIMIT and OFFSET.

LIMIT command is used to contain to a specific number the expected
results. Syntax only requires LIMIT keyword followed by an integer. If
the answers exceed this number, then they will not be included to the
answer table. below it is presented an example and its results about this
section of query:

4.1. Language Syntax 33

FIGURE 4.3: Query syntax comparison between no rear-
rangement and LIMIT use.

The example above retrieves the titles from the matched services and
the operation names, which their request methods GET requests. We
expect, as a result, operations with GET request methods and further-
more the name of the service where it is located. All ’rearrange exam-
ples’ that are displayed in this section are similar variations containing
the same triples.

FIGURE 4.4: Results without Rearrangement

34 Chapter 4. OpenAPI SPARQL Language

FIGURE 4.5: Results Using LIMIT

Comparing the two result tables is is obvious that after the use of LIMIT
the expected tuples reduced to 15 (as the number after LIMIT)

OFFSET command is used also for containing the number of expected
results and its syntax is the same with LIMIT. However, the declared
number expresses how much triples are going to be skipped.

below it is presented an example and its results about this section of
query:

FIGURE 4.6: Query syntax comparison between LIMIT
use and adding OFFSET use.

4.1. Language Syntax 35

FIGURE 4.7: Previous results using LIMIT

FIGURE 4.8: Results Using LIMIT and OFFSET

Comparing previous results with the addition of OFFSET the expected
results are still 15 , but it starts from the 3rd tuple of in Figure 4.5 .Also
the last 2 extra tuples according to 4.3 Figure are next 2 after position
15. So it is obvious that the first and second tuples of Figure 4.5 have
been skipped.

Order clause is responsible to rearrange data either by ascending or
by descending order from a selected variable.The syntax form requires
the keyword ORDER BY followed by either "asc" or "desc" keywords
accordingly. In OASL these keywords are not case sensitive. At last
, follows the variable where according to its results the data will be
rearranged.

below it is presented an example and its results about this section of
query:

36 Chapter 4. OpenAPI SPARQL Language

FIGURE 4.9: Query syntax comparison between OFFSET
and LIMIT use with OREDER BY clause with ascending

order.

FIGURE 4.10: Previous results using LIMIT and ORDER

FIGURE 4.11: Results also ORDER BY ascending order

Adding also ORDER BY clause with ascending order it is obvious the
rearrangement that happened at every tuple if we use the results from
code without rearrangement and after that LIMIT and OFFSET are tak-
ing place .

4.2 Enriched Non-SPARQL Syntax rules

Most of the syntax rules this language follows are very similar to SPARQL
syntax, and any clause in (OASL) also exists in SPARQL. However, in

4.2. Enriched Non-SPARQL Syntax rules 37

some cases, to avoid the writing of extensive queries and to integrate
the FILTER clause, this language introduces two keywords about com-
parison where they are placed as objects in (OASL) triples.

4.2.1 Comparison Query

Many fields of OpenAPI descriptions contain properties where their
value are numbers. Even though SPARQL can make a query and ask
about a property in ontology description using as object a number, range
queries are more complex. It is supported with FILTER clause, but to
avoid its integration in OASL we introduce the comparing mechanism
positioned at the object placed inside WHERE clause. The syntax of a
comparing triple contains an accepted subject, a property, which means
a field where the object accepts numbers and, in object position, uses
one of the comparator symbols below, followed by a number.

> Greater than next number
>= Greater or equal than next number
< Lesser than next number

<= Lesser or equal than than next number

below is presented an example containing its query syntax as also the
effects in results:

FIGURE 4.12: Query syntax comparison between two ex-
amples.

FIGURE 4.13: Results without using comparing opera-
tors.

38 Chapter 4. OpenAPI SPARQL Language

FIGURE 4.14: Results using greater equal operator

4.2.2 Between Query

Another addition was the keyword BETWEEN.This keywords allows to
compare between a range of values. It is equivalent to the typing of two
triples about the same field using symbols "<=" ">=". Syntax position-
ing is the same with a compare query ,but in object position starts with
keyword BETWEEN followed by parentheses, containing two number
values separated by comma. Below there is an example using this rule.

FIGURE 4.15: Query syntax comparison between two ex-
amples.

FIGURE 4.16: Results without BETWEEN use

FIGURE 4.17: Results after triple containing BETWEEN

39

Chapter 5

System Implementation

This chapter describes all technical details about the system implemen-
tation and also the algorithmic procedures about the parser.

5.1 Tools Selection

This mechanism uses as database Openlink Virtuoso[7]. Virtuoso Uni-
versal Server is a middleware and database engine that combines the
functionality of a traditional relational database management system
(RDBMS), object-relational database (ORDBMS), virtual database, RDF,
XML, free-text, web application server in a single system. However,
rather than dedicate servers for each of the functionality mentioned
above, Virtuoso is a "universal server" where it enables a single multi-
threaded server process that implements multiple protocols. Another
considered database was Neo4j1. However, it selected Virtuoso be-
cause it has an integrated SPARQL endpoint, which is a feature that
offers HTTP-based Query Services. Neo4j supports its query language
(Cypher) and not SPARQL, something that would require an extra layer
of translation for SPARQL to Cypher2.

To parse OASL queries, it is used a lexical analyzer and a parser that
was generated using JFlex and Java CUP tools, respectively. Java CUP
[5] generates a Java program that will parse input that satisfies that
grammar. On the other hand, Jflex [4] is the main lexical analyzer writ-
ten in Java and works together with Java cup.

The user interface is written using Flask [3]. Flask is a micro web back-
end framework written in Python. It is classified as a microframe-
work because it does not require particular tools or libraries. It has no
database abstraction layer, form validation, or any other components
where pre-existing third-party libraries provide common functions. As
a web template engine, Flask’s default engine is Jinja2. 3

1https://neo4j.com/
2https://en.wikipedia.org/wiki/Neo4j
3https://en.wikipedia.org/wiki/Flask_(web_framework)

https://neo4j.com/
https://en.wikipedia.org/wiki/Neo4j
https://en.wikipedia.org/wiki/Flask_(web_framework)

40 Chapter 5. System Implementation

5.2 Mechanism Description

This system comprises three basic components the openlink virtuoso ,
which is the database of our system, an user interface which is starting
any uploading or querying action , and of course the translator which
is responsible for parsing an OASL query and producing a equivalent
SPARQL query.

FIGURE 5.1: System Architecture Components

Communication between virtuoso is possible from virtuoso SPARQL
endpoint.Virtuoso has the port ’8890’ available to execute SPARQL queries
or to upload ontologies to the graph database.

User interface contains four pages which two of them are responsible
for uploading files and writing queries in (OASL).The other two pages
contain information about the way this app works. Specifically:

• Home Page is the starting page where a user is informed about
the feature this site supports.

• Upload Page loads an environment where the user selects which
ttl files want to upload to the virtuoso database for storage. It
should be noted that the uploaded files are already OpenAPI on-
tologies, and any conversion process does not happen to the files.
(Ontologies have been created in previous work. [2])

• Execute Page transfers the user to a simple environment where
he can write an OASL query and after submitting it, can see the
results in table format. If the query is not correct, throws an ap-
propriate error.

5.2. Mechanism Description 41

• Instructions Page contains a PDF file with our simplified triples
where this language accepts. As a result even if a user has not
high level of openAPI knowledge he can just look what kind of
information to ask and just type it.

Execute Query page consists from 3 elements . The text field is a re-
adjustable rectangle space.When Execute page is selected is already con-
taining a simple query as an example. On submit (the submit button is
pressed), it posts the content of text field and after the translation and
execution of the query in Virtuoso is returned in XML form the results.
The next field presents the fetched results formatted as enumerated ta-
ble rows. If an error has been occurred this field will present the exact
error message that was happened.

FIGURE 5.2: Execute OASL query page

42 Chapter 5. System Implementation

The Upload page contains two simple buttons and one table.The pur-
pose of this page is to store in database ontologies, which from the ex-
ecute page a user can ask queries about them. The table displays all
ontology file names that have been uploaded to our system. In case
no files have been uploaded, the Virtuoso database is empty and this
field is blank. The browse button opens a tab where the user can select
which files will be uploaded. The user can upload more than one file
at once. After their selection, he could press the Upload button. Then
these files using the virtuoso endpoint are uploaded to Virtuoso to be
stored, meaning they become part of Virtuoso’s graph database. After
completing the uploading process, the display table also includes the
new files. Every file is uploaded with a specific URI endpoint and from
this endpoint every triple are starting to extend their properties.

FIGURE 5.3: Execute OASL query page

Finally parsing and Translation mechanism is written in java. It is in-
tegrated into the system as an executable JAR file as argument input
takes in string format query where the user submits and returns the
generated SPARQL query as output. If an error occurs during the pro-
cess is accessible from the system.err output stream.

5.3. Parsing Algorithm 43

5.3 Parsing Algorithm

Below are presented the algorithms for parsing a query. It is described
in three main procedures:

Algorithm 1 Query Parsing Algorithm

addIntitalPre f ixes()
if PREFIX clause is detected then

while new prefix exists do
ParsePrefixStatement()

Ensure: Prefix is unique
Pre f ixList← addnewpre f ixes()

generatePrefixSPARQLCode()

Ensure: next clause = SELECT
ParseVariables()
generateSelectSPARQLCode(identified variables)

Ensure: next clause = WHERE
while current clause = WHERE do

structure← RecogniseTripleStructuring
ParseTriples()
if structure = OPTIONAL then

Ensure: Optional syntax rules
else if structure = NOT then

Ensure: NOT syntax rules
else if structure = UNION then

Ensure: UNION syntax rules
generateWHERESPARQLCode(structure)

while next clause = rearrange do ▷ LIMIT , OFFSET or ORDER BY
if rearrange = LIMIT then

Parse LIMIT clause
if rearrange = OFFSET then

Parse OFFSET clause
if rearrange = ORDER BY then

Parse ORDER BY clause
correctPositioning← checkI f ClausespositionAreInOrder()
if correctPositioning is false then return Syntax Error
else

generateRearrangeSPARQLCode()

When a user submits a query in OASL, it executes the same algorithm

44 Chapter 5. System Implementation

for parsing described above. This algorithm, specifically at first, exam-
ines if they have been declared any prefixes and stores them in a Hash-
Set for later validation syntax in triples where it can be used. Also,
if they exist, this triple throws an error message to the user. When a
SELECT keyword is scanned examines the syntax of the following vari-
ables and creates the equivalent part of the SPARQL final code.WHERE
keyword means that WHERE clause has started, so the algorithm ex-
pects either to recognize triples or to recognize OPTIONAL, UNION
and NOT keywords to generate an equivalent SPARQL code. At last,
examine if any rearrange clauses are in the correct order. Any clause is
detected by the keyword that represents (LIMIT, ORDER BY, OFFSET)
and checks if their positioning is correct, else returns an error message
to the user. If every step is successful, then is created the executable
SPARQL query.

5.3. Parsing Algorithm 45

Algorithm 2 Parse Triples algorithm

while nextTriple exists do
subject← scanSubject()
if subject = Service then

predicate← scanServicePredicateField()
else if subject = Request then

predicate← scanResponsePredicateField()
if predicate =schema then

else if subject = Parameter then
predicate← scanParameterPredicateField()

else if subject = Tag then
predicate← scanTagPredicateField()

else if subject = Header or RequestHeader or ResponseHeader
then

predicate← scanHeaderPredicateField()
else if subject = Server then

predicate← scanServerPredicateField()
else if subject = Sequrity then

predicate← scanSequrityPredicateField()
else if subject = SequrityScope then

predicate← scanSequrityScopePredicateField()
else if subject = Response then

predicate← scanResponsePredicateField()
else if subject = Schema then

predicate← scanSchemaPredicateField()
else if subject = Property then

predicate← scanPropertyPredicateField()
else if subject = variable then

if schemaVariableList contains variable then
Variable requires Schema fields

else if propertyariableList contains variable then
Variable requires Schema fields

elsereturn Error syntax message

[isCommon, object]← specialTripleConditions()
if isCommon is true then

object← commonTripleParse()
SparqlTripleStack← mergeTriple(subject, predicate, object, f ilterClause)

return SPARQLQuery

The algorithm parses and creates the executable part of SPARQL code
responsible for triples follows a specific procedure. First scans the sub-
ject of any triple which means the object table contains several expected
fields. In most cases , when the subject is one of the Tables described
in the previous section , he parses the predicate and expects to be a

46 Chapter 5. System Implementation

member of his field. If the subject is a variable, searches in two lists to
recognise if this variable has been declared as schema or property vari-
able and is treated accordingly. Any other case is syntactical incorrect.
When recognised the subject and predicate examines if this triple ex-
pect a common syntax as in most object is happening or is used one of
the special triples. If it is common , starts a procedure to recognise the
object and at last merges these information and creates the equivalent
SPARQL triple code part.

Algorithm 3 Common Triple Parsing Conditions

Parse object value
if object = String, Number, Boolean, uri , variable then

Check if this Object is acceptable in triple
else if object = prefix then

Ensure: Prefix value has been declared
else if Comparison object then

declare new variable
Codeobject← newVariable
addFILTERClause(comparator number)

else if Between object then
declare new variable
Sparqlobject← newVariable
addFILTERClause(newVariable ≥ num1 and newVariable ≤

num2)

This algorithm describes the procedure that is followed to identify the
object of a triple. As object in OASL it can be common values such as
string , number, boolean or any uri. Each one of them it is recognized
instantly be the lexical analysis by the rules presented above. Identical
to this is treated also any common variable in object position. After its
spotting, the parser examines if the syntax rule is correct and then adds
the last part of SPARQL code for this triple . When a prefix is included
as object , it is examined if has been declared first and then follows the
same procedure as before. If a comparator with a number is the object
, according with the comparator type, SPARQL object becomes a new
declared variable and is adding a FILTER clause with the appropriate
conditions to express this comparison. At last if BETWEEN keyword is
detected the same procedure is followed comparing the variable with
two conditions : greater equal (>=) and lesser equal (<=) .

5.3.1 Special behaviour parsing conditions

The procedures above describe the behavior for the most triples that
they are defined in this work. However, for some triples, even though
they have the same syntax in subject and predicate, the object of the

5.3. Parsing Algorithm 47

triple datatype (for example :string or uri), can determine which is the
final property in generated SPARQL code.An example is schema prop-
erty. If the user specifies a string as an object, the matched property
inside schema class will be rdfs:label .When the user specifies a URI as
object , then the matched property will be sh:targetClass. These ’special’
triples are the ones where field name (predicate) is schema or property ,
which they are described in Chapter 3 .
Below is the algorithm about handling these situations:

Algorithm 4 Special Triple Conditions

if predicate is schema then
if object = string then

declare new variable
Codeobject← newVariable
add schema triple until name property

else if object = uri then
declare new variable
Codeobject← newVariable
add schema triple until targetClass endpoint

else if object = prefix then
Ensure: Prefix value has been declared

declare new variable
Codeobject← newVariable
add schema triple until targetClass endpoint

else if object = common datatypes then
declare new variable
Codeobject← newVariable
add triples until property class datatype field

else if object = variable then
add variable to schemaVariableList

else if predicate = property then
if object = string then

declare new variable
Codeobject← newVariable
add property triples until name property

else if object = uri then
declare new variable
Codeobject← newVariable
add property triple until path property

else if object = prefix then
Ensure: Prefix value has been declared

declare new variable
Codeobject← newVariable
add schema triple until path endpoint

else if object = variable then
add variable to propertyVariableList

48 Chapter 5. System Implementation

This algorithm examines if predicate is schema or property. If it is
schema keyword then scans the object expecting one of the following
options from lexical analysis. When is string creates a SPARQL code
part referring to the name property endpoint of Schema object in on-
tology document . Uri and prefixes are matched with the targetClass
property endpoint.In prefix option it is also examined if the expected
prefixed has been declared in prefix clause. Another object field that
is allowed are the common datatypes where this language uses .When
lexical analysis finds one of these types ,this shortcut creates a SPARQL
code part referring to the datatype property endpoint of Property Ob-
ject in ontology document. At last if a variable is detected , is declared
by adding it to the schema variable list as schema variable. This variable
can be used in later triples as subject. If predicate is property keyword
, in string creates SPARQL code part name property endpoint of Prop-
erty object, in uri and prefix is the same procedure but until the path
endpoint an finally, variables are stored in property variable list to be
used as Property subjects.

5.4. Translation and Execution Procedure 49

5.4 Translation and Execution Procedure

Below it is explained the whole sequence of action that take place from
submitting a query until the appearance of results.

FIGURE 5.4: Translation and Execution sequence diagram

The whole procedure starts from the moment the user submits a query.

50 Chapter 5. System Implementation

The compiler scans this query word by word and executes the algo-
rithm described in Algorithm 1. Suppose there are no errors to return
in the user interface and stop the procedure. In that case, the generated
SPARQL code is given as input through the SPARQL endpoint, from
the virtuoso Jena provider, in Virtuoso and executes this query. Any
results are returned in XML format, where they are transformed to be
presented in table format in User Interface.

51

Chapter 6

Results and Measurements

6.1 Performance Analysis

In order to take some solid measurements in numbers about the per-
formance of this work. We test by uploading 300 Semantic openAPI
descriptions.Afterwards we test some different queries as examples ,
simple and more complex and extended , counting their reaction time
and analyzing these results. These reaction time measurements are:

• The time difference between start of translation mechanism until
the production of the executable SPARQL code.

• The time difference between the moment the SPARQL query is ex-
ecuted in virtuoso until the time where results are became avail-
able.

• The total time from the submission of OASL query until the final
results presentation to the user.

6.1.1 Non-optimal SPARQL Triples Analysis

It should be noted that the produced SPARQL queries are not optimal
because some RDF triples are sometimes repeated in the final code.
This phenomenon happens when the parser recognizes a triple from the
same OpenAPI object and generates some parts of the final RDF graph
triples endpoint, which is possible to already used. For example most
triples such Request , Response and Tag in OASL, their triple paths until
their endpoints in ontology are sharing the openapi:supportedOperation
property. As a consequence , the generated SPARQL code will contain
more than once this triple.

To examine if there are significant delays, we test a SPARQL query in
Virtuoso SPARQL endpoint with an extreme (bad) and nonrealistic ex-
ample containing a repeated pattern of triples 300 times. Compared to
an equivalent optimized one (3 triples), this example revealed a mini-
mal delay (1ms), which is insignificant compared to the time a SPARQL

52 Chapter 6. Results and Measurements

query needs to be executed. Considering that the number of these re-
peated triples will never exceed 30 triples, we conclude that there is no
point in optimizing this issue.

6.2 Query Categories

In order to examine the reaction times, we must determine which cri-
teria we categorized the tested queries. The OASL translation process
contains the scanning process, the SPARQL code generation process fol-
lowing each recognized rule, and any additional control that the rules
are producing a meaningful query(does not contain unnecessary decla-
rations, wrong variables, etc.). Any delay in the translation mechanism
proceeds from how extensive is the OASL code and the variety of differ-
ent clauses. The complexity of the SPARQL execution process depends
on the number of different triple endpoints. Every triple which is added
in the WHERE clause means that an extra condition must be matched
in the database’s graph.

The queries below are scaling according to these rules :

• Triple increase :More triples, more time consuming

• Clause variety : More clauses more difficult to process.

6.2.1 Simple queries

As simple query we define any query where it is requested to match
with maximum 2 or 3 different triples, which means that any intersec-
tions inside graph is very limited, from execution perspective. From
the translation perspective it should contain only the necessary clauses
with a minimal amount of triples. below is presented an example of a
simple OASL code and its SPARQL equivalent code as also its timings.

6.2. Query Categories 53

FIGURE 6.1: Presentation of a Simple OASL and SPARQL
translation query

This example describes a query in (OASL) where the user wants from
each matched answer the service title of the openAPI document ,the
operation name about each operation inside and the response status
code for every responses described.In OASL it is a simple and small
query containing only the necessary clauses (SELECT and WHERE)
. They are requested only 3 triples , which they belong to 3 separate
Table Object groups.The SPARQL equivalent query is more extended ,
however contains only and operations between triples.

The below figure shows the structure of retrieved data from the simple
example. The results were significantly more, so they are cropped for
better displaying them in the figure:

54 Chapter 6. Results and Measurements

FIGURE 6.2: Results fetched by Simple Query.

After executing the simple query, we return many results, showing only
a tiny fraction. We can see that the first data column projected the
names of the service in variable ?serTitle, as exactly was expected. Also,
?statCode variable displays in second column the status code numbers
as exactly were instructed to fetch according to the second triple (Re-
sponse statusCode ?statCode). At last name from operations appear in
the third column. We can we that many results are repeated, which is
normal because the DISTINCT keyword is not used. These repeated tu-
ples exist because the OpenAPI document matches the requested triple
patterns from the example above many times.

Below are presented delay timings for simple queries:

Translation Time : 35ms
SPARQL Execution time : 248ms
Total Time : 2193ms

After running similar simple queries as the average time for translating
procedure was 35 milliseconds , which is a small fracture comparing to
the execution time and insignificant to the total time needed for reveal-
ing the results.

6.2.2 Complex queries

Complex query in SPARQL we define any query that contains many
triple endpoints as also many different clauses.Clauses such as FILTER
or rearrangement clauses , they should be more time consuming be-
cause they require extra data processing . In OASL translation mecha-
nism a query is more complex, when is demanded to run extra proce-
dures to decide the final executable code output or to ensure that some
syntax rules are properly used.These procedures

below is presented an example of a simple OASL query and its SPARQL
equivalent code ,as also its timings. This example contains 3 clauses (
PREFIX SELECT and WHERE) and Where clause contains in its body
also OPTIONAL and OR.Comparing this query to the previous one in

6.2. Query Categories 55

Figure 6.2, is enriched by asking also In response Object the required
content schemas to be compatible ,as they have been declared, in two
different URI’s (myOnt:Pet and myOntb:Pets). The status code field is
removed from this example. At last information about Tag and Server
objects that are requested are declared optional . The equivalent SPARQL
query is far more extended as it seems and expresses using rdf triples
the graph paths that is followed until the endpoints of the field where
it described above.

FIGURE 6.3: Medium complexity query

below are presented delay timings in extended queries:

Translation Time : 39ms
SPARQL Execution time : 1643ms
Total Time : 8341ms

56 Chapter 6. Results and Measurements

After running similar queries with medium complexity the average time
for translating procedure was 39 milliseconds , which is a minimal de-
lay compared to the execution time and total time where a significant
increase is observed about to 1.6 and 8.4 seconds respectively .

6.2.3 Extended and Complex queries

It is defined as an extremely complex and extended query, if its body in-
cludes any available clause and using in where clause between or com-
parison triples and furthermore a variety of triples from different Ope-
nAPI objects. A query with these characteristics has much more impor-
tant delays for two reasons. First an extended query with many OASL
triples requires much more parsing time, even though it is not expected
to influence significantly any results.The second reason is that prefixes
, comparisons and the use of variables as subject in triples are using
additional functions something that according to the query could cause
additional.However these extreme extended and complex queries have
not any practical value for a user to make them. In most cases a users
query it won’t contain more than 20 lines of code.

The example below contains every possible clause in OASL.The pur-
pose of its presentation is mainly to express how the translation mech-
anism can handle it. Initially they are declared a number of Prefixes,
so they will be available later in where clause . SELECT clause fol-
lows projecting the variables where the user demands. The core of
this query contains some OPTIONAL and UNION bodies along with
normal intersection between OASL triples.The requested thirteen fields
originated from seven Semantic OpenAPI Objects (Service, Request,
Parameter, Response,Tag ,Server and Response Server. In comparison
with the previous example it is requested status codes at response fields
should be between 100 and 450. Additionally the Header in Response
object in requested as style option to be simple.Finally the after WHERE
clause are following three rearrangement rules .They limit any results to
60 lines skipping the first 5 , but first they have been ascending ordered
by the service title variable (?serviceName) .

6.2. Query Categories 57

FIGURE 6.4: Extended Query containing every major
clause

Below are presented response times for highly extensive and complex
queries with many matching results:

Translation Time : 41ms
SPARQL Execution time : 16215ms
Total Time : 21003ms

below are presented response times for highly extensive and complex
queries without matching results:

58 Chapter 6. Results and Measurements

Translation Time : 41ms
SPARQL Execution time : 1451ms
Total Time : 1547ms

After running queries containing as much as possible parameters , the
average time for translating procedure was 41 milliseconds. How-
ever because of the amount of fields with specific conditions that are
requested the response times about SPARQL execution and total time
presenting some variations. When Virtuoso returned enough rows as
results which means SPARQL mechanism has found enough triples to
match , execution time was almost 17 seconds.The total amount of time
was approximately to 21 seconds. When similar queries return no re-
sults the SPARQL execution times are much smaller to 1451ms follow-
ing similar trend of course and total response time.

In addition is presented the generated SPARQL query which is exe-
cuted in Figure 6.4:

6.2. Query Categories 59

60 Chapter 6. Results and Measurements

FIGURE 6.5: Generated SPARQL Code from Complex
and Extensive Example

This example indicates clearly how complex could be a SPARQL query
and of course because of its extent ,that any human user would be prone
errors when is writing directly a query like that.

6.3. Comparison Between Response Times 61

6.3 Comparison Between Response Times

The next table presents the response times from the previous experi-
ments and furthermore expresses in comparison, translation and exe-
cution delays with the total amount of time for submitting a query until
the display of the results to the user.

Query Type: Simple Complex Complex Complex
& Extended & Extended
(no results) (results)

Translation Time : 35ms 39ms 41ms 41ms
Execution time : 248ms 1643ms 1451ms 16215ms
Total Time : 2193ms 8341ms 1547ms 21003ms
Translation/Total Time % : 1.59 % 0.46 % 2.45 % 0.19 %
Execution/Total Time % : 11.3 % 19.7 % 93.8 % 77.2 %

Observing and comparing the results from the previous queries it is
noticeable that translation mechanism has a reliable and small delay to
the total system timings.When a query is simple the generated SPARQL
code includes less RDF triple lines than more complex and extended
queries. When a query becomes more extensive there is a slight increase
(4ms) to the translation mechanism but according to the increasing de-
lays from Virtuoso database response and standard delays from the
system processes is minimal. When an OASL query becomes contains
every possible clause and includes many difficult conditions to tackle,
such as BETWEEN , there also a slighter translation time increase.The
basic response delay at this experiment arises from the execution of gen-
erated SPARQL queries in Virtuoso and the results fetching process.

In conclusion the OASL compiler and translation mechanism executes
its tasks at a stable and insignificant amount of time. Most important
delays are due to the execution of the SPARQL as they contain a large
number of RDF triples, searching in files with thousands lines of RDF
data .

6.4 Actual Ontology OpenAPI Data

An issue worth exploring was the size gap between OpenAPI document
files and OpenAPI Ontology equivalent descriptions. Specifically, we
select some files from our database and convert them to ontology. Vir-
tuoso database, to recognize an ontology document as valid and consis-
tent, must include every triple statement from the Ontology’s schema.
The ontology’s schema is every RDF statement necessary to properly
define every property that describes the individuals of a document.
However, this information has no value to the querying process.

62 Chapter 6. Results and Measurements

To understand the impact of this code on the total execution, it is neces-
sary to examine how many triples are explicitly referred to in the Ope-
nAPI information. The files (openAPI1 and ontologies2) are selected
randomly from Semantic OpenAPI from previous work.

The files which selected are:

• File1: Cisco521_SaaS-Connect-Provision

• File2: EliteFintech_list_management

• File3: youtube_API

• File4: petV3_Anotado

• File5: googleBlogger_API

Below is presented a table which contains details about the selected
files:

Files Selected: File1 File2 File3 File4 File 5
Yaml file lines : 20 493 170 844 552
Ontology Individual lines : 10 580 357 1031 1128
Ontology Schema lines : 2107 2173 2180 2192 2287
Individual triples % : 0.47 % 26.69 % 14.07 % 32% 33%
Yaml file size (KB) : 0.505 16.8 6.5 23.5 19.8
TTL file size (KB) : 90.3 127.1 116 174.5 179

Comparing the number of lines referring to the individuals with the
rest of the code, we observe that Ontology’s schema lines have a stable
number of triples. This derives from the conversion algorithm adding
all the statements to describe the openAPI schema in every document,
irrespectively from the real OpenAPI related object and properties. Ad-
ditionally, we see that Individual triple lines are proportional to the
number of lines from the initial OpenAPI descriptions (YAML format),
which validates that genuine information is related only to individual
triples. Considering also that information for ontology (TTL) files in
most cases is below 30%, which means that 70% of data have no impor-
tance in the querying procedure but take part delaying the execution
time.

1https://www.intelligence.tuc.gr/semantic-open-api/descriptions
2https://www.intelligence.tuc.gr/semantic-open-api/ontologies

https://www.intelligence.tuc.gr/semantic-open-api/descriptions
https://www.intelligence.tuc.gr/semantic-open-api/ontologies

63

Chapter 7

Conclusion and Future Work

7.1 Conclusion

This work had as its goal to introduce a new query language for Se-
mantic OpenAPI descriptions written in Semantic OpenAPI based in
SPARQL.
Comparing OASL with SPARQL as a different RDF query language ap-
proach, OASL achieves the following advantages:

• An easier syntax and more familiar to a user knowing REST archi-
tecture without knowing how an OpenAPI description is trans-
formed into an ontology.

• It is familiar with SPARQL, a standard language for RDF ontolo-
gies, but it does not require extensive knowledge of this language.

• Translation process is fast, so it is not causing significant delays
compared with an equivalent SPARQL execution system.

• Imports clever methods to express more minor triples and avoid
implementing extra SPARQL clauses.

7.2 Future Work

An idea for future work could be expanding the OpenAPI objects de-
scribed in this language. Because the conversion of an OpenAPI de-
scription to its Semantic form is based on previous work, Links and
Callbacks are not supported. Furthermore, Webhooks is another addi-
tion for future work because this language is made for the 3.0 OpenAPI
version and not 3.1.

Another idea for future work could also be the fragmentation of RDF
data storage. Every ontology saved in the database contains many
triples repeated each time, creating huge files and causing significant
delays to the execution process.

This work does not alter any data inside ontologies. Another direc-
tion worth exploring is the use of indices. The system can insert an id

64 Chapter 7. Conclusion and Future Work

x-property (PropertyShape in the ontology) during the uploading pro-
cess. To keep a syntax similar to SPARQL, the FROM clause (not used
in OASL) can be implemented.

An interesting idea in addition to future work is the creation of an en-
vironment where the user can also download one of the ontology files
shown in his result tab. This can be implemented either by importing a
unique id for retrieving each document or using the SPARQL GRAPH
function.

65

Bibliography

[1] D. Miller et al. OpenAPI Specification v3.0.0. 2017.
[2] F. Bouraimis. “Instantiating OpenAPI Descriptions to the REST

Services Ontology”. Diploma Thesis. School of Electrical and Com-
puter Engineering, Technical University of Crete, 2021.

[3] Miguel Grinberg. Flask web development: developing web applications
with python. " O’Reilly Media, Inc.", 2018.

[4] JFlex. https://www.jflex.de/docu.html.
[5] LALR Parser Generator for Java. http://www2.cs.tum.edu/projects/

cup/index.php.
[6] Nikolaos Mainas. “Semantically enriched API descriptions for im-

proving service discovery in cloud environments”. Master Thesis.
School of Electrical and Computer Engineering, Technical Univer-
sity of Crete, 2017.

[7] OpenLink Virtuoso Universal Server. https://docs.openlinksw.
com/virtuoso/.

[8] Resource Description Framework. https://www.w3.org/RDF/.
[9] Semantic Web. https://www.w3.org/standards/semanticweb/.

[10] Web Ontology Language. https://www.w3.org/TR/owl2-overview/.

https://www.jflex.de/docu.html
http://www2.cs.tum.edu/projects/cup/index.php
http://www2.cs.tum.edu/projects/cup/index.php
https://docs.openlinksw.com/virtuoso/
https://docs.openlinksw.com/virtuoso/
https://www.w3.org/RDF/
https://www.w3.org/standards/semanticweb/
 https://www.w3.org/TR/owl2-overview/

	Abstract
	Acknowledgements
	Introduction
	Motivation
	Proposed Solution
	Thesis Outline

	Background Knowledge
	Semantic Web
	Open API
	Previous Work
	SPARQL as a Query Language

	OpenAPI SPARQL Objects Analysis
	Service
	Request
	Security
	SecurityScope
	Tag
	Response
	Server
	Header
	Parameter
	Schema
	Schema field in other objects

	Property
	Property field

	OpenAPI SPARQL Language
	Language Syntax
	Triple Syntax
	Prefix and SELECT clause
	WHERE Clause
	Rearrange Clause

	Enriched Non-SPARQL Syntax rules
	Comparison Query
	Between Query

	System Implementation
	Tools Selection
	Mechanism Description
	Parsing Algorithm
	Special behaviour parsing conditions

	Translation and Execution Procedure

	Results and Measurements
	Performance Analysis
	Non-optimal SPARQL Triples Analysis

	Query Categories
	Simple queries
	Complex queries
	Extended and Complex queries

	Comparison Between Response Times
	 Actual Ontology OpenAPI Data

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography

