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Abstract

In recent years, the use of robots as a part of the automation process is a rapidly expanding
field. The most prevalent type of robot in industrial environments is robotic arms. This type of
robots is capable of performing a variety of operations, including transportation, assembly,
packing and welding. The complexity of the tasks assumed for these growing disciplines is also
rising. Thus, the ability of the robot to comprehend the surrounding environment is a required
feature to carry out new tasks. Interacting with the environment and being aware of the
changing conditions enables the robot to make autonomous decisions in more complex
situations. This thesis describes the implementation of an autonomous 6-DOF (Degrees Of
Freedom) robotic manipulator with visual guidance, where the objective for the robot arm is to
stack cylinder blocks, recreating a gradually-presented structured tower pattern. The available
blocks, initially placed randomly in the robot workspace, have unique ArUco markers
displayed on them, so they can be identified. The manipulator is equipped with vacuum
grippers and a 2D camera attached to its end effector. The robot acquires information about the
desired tower pattern from a remote stationary camera, responsible to track the spawning of
building blocks. Since the robotic arm is equipped with its own camera, it employs computer
vision techniques to locate the desired cylinder and, consequently, constructs a trajectory to
pick and stack that cylinder to its correct position using motion planning algorithms. The entire
project has been implemented within the Robot Operating System (ROS) and Gazebo open-
source 3D robotics simulator. The proposed robotic system has been tested extensively in
simulations to ensure its reliability and investigate its efficiency.
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Iepiinyn

Ta televtaio ypodvia, M ¥PNON POUTOTIKOV CLGTNUATOV OG HEPOS TNG OLOOIKOGTOC
OVTOLOTIGHOV Vot £VOG TAXEMG OVATTUGGOUEVOS TORENC. O o d1adEd0UEVOS TOTOG POUTOT
oe Prounyavika mepiBdAiovta givar ot poumotikoi Ppoyioveg. Avtdg o TOHmOG poumdT ivan
KavOG Vo EKTEAEL oL TTOTKIALDL AEITOVPYIDV, OTTMG LETAPOPE, GLVAPLOAOYNOT), GLCKEVOGTO KO
ovykOAAnon. H molvmloxdtnto tov epyacidv mov oavorappdvovior yio ovtods TOvg
OVATTUGGOUEVOLG KAAOOVG avEdveTal ETIOTG, EMOUEVMG 1) IKOVOTNTO TOL POUTOT VO KOTAVOEL
10 TEPPAAAOV TOL glval amapoiTnTo YOPAKTNPIGTIKO Yoo TV €KTEAEST] VE®V gpyocidv. H
aAAnienidopaon pe to mePPAALOV Kot 1 EXlyveon TV UETAPOAAOUEVOV GUVONKOV emITPEMEL
OTO POUTOT Vo, TOUPVEL AVTOVOUEG ATOPACELS 6E To TePimAoKeg Kataotacel. H mapodoa
OUTAMUOTIKY EPYOCIO TEPLYPAPEL TV LAOTOINGCT VOGS ALTOHVOLOL POUTOTIKOD YEPIOTNPIOL 6-
DOF (Degrees Of Freedom — BaBuav EAsvBepiag) pe ontikn kabodnynon, 6mov o 6todyog eival
0 poumotTikodg Ppoyiovag vo otolPdler KuAlvdpovg, ovokataokKevdloviag &vo TPOTLTTO
dounuévouv Topyov Tov mapovcslaletal otadtakd. Ta dopkd otoryeio, apykd TorodeTnuéva
VYO0 GTOV YOPO EPYOTinG TOL POUTAT, £xovV povadikovg deikteg ArUco mov gppavifoviot
o€ OVTO, OCTE Vo Umopohv va avayvopltotovy. O Bpoylovag sivor eEomMopuévog pe apmoryeg
KeEVOL aépog kot pio Kapepa 2D ovvoedepévn ommv andAnén tov. To poundt omoktd
TANPOPOPIeg GYETIKA e TO emBuuNTd TPOHTLITO TVPYOL GO WK OTOUAKPVOUEVT oTofEpT
Képepa, vrevbovn yua TV TopakKoAovOnon TG O1d0YNG TV SOUIKADV GTOlXEIMV. AESOUEVOL
0Tl 0 poumoTikdg PBpayiovog eivar eE0MMGOIEVOG LE O1KT TOL KAUEPD, XPNCUYLOTOLEL TEXVIKES
UNYOVIKNG OpOoNS Y10 VO EVTOTIGEL TOV EMBLUNTO KOAMVIPO KA, 6T GLVEYELN, GYeO1ALEL Lua
TPOYIAL Y10 VO, ONKMOGEL Kot Vo, 6TORAEEL TOV GLYKEKPIUEVO KOAMVIPO G011 omath Tov B€om
YPNOOTOIDVTAG aAYOp1Buovs oyedlacpov kivnong. H epyacio oto oVvvohd tng €xet
viomomBel ypnotpomoidvtag to Robot Operating System (ROS) xor 10 mepifaiiov
pounoTikng mpocopoinwong Gazebo. To mpotevoOpevo poumotTikd cuotnua €xel OOKIUAGTEL
EKTEVMG GE TMPOGOUOUDGELS, Yot Vo, dtucpalotel 1 a&lomoticc Tov Kot va depguvnOet
OMOTEAECUATIKOTNTA TOV.
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1 Introduction

Chapter 1

Introduction

In recent years, automation is one of the most effective tools of industry, thanks to the
constant advancements in computation, electronics and control algorithms. It enables the
completion of specific tasks quickly, efficiently and safely. The use of robots as a part of the
automation process is a rapidly expanding field. The most prevalent type of robot, in industrial
environments, are robotic arms. This type of robot is capable of performing a variety of
operations, including transportation, assembly, packing and welding.

The complexity of the tasks assumed for these growing disciplines is also rising.
Furthermore, robots are required to coexist and cooperate with humans in tasks like assisted
industrial manipulation, collaborative assembly etc. Thus, the ability of the robot to
comprehend the surrounding environment is a required feature to carry out the new tasks.
Interacting with the environment and being aware of the changing conditions enables the robot
to make autonomous decisions in more complex situations.

Obtaining knowledge about the surroundings can be accomplished by computer vision
(CV). A computer vision system includes a camera that captures images, processes them and
extracts information about the environment. The ability of vision provides the robot with the
necessary tools to identify objects in its physical environment and select the best way to interact
with them.

The development of computer vision has completely revolutionized the problem solving
approach in many different industries like retail, manufacturing, warehousing and agriculture.
Repetition in those types of industries is typically the key factor that makes automation easy to
apply. However, when there is some variability in the task, an effort should be made to lessen
the uncertainty, or a human should be recruited to make the judgments. Thanks to intelligent
systems, decision making is now possible with the aid of perceptual systems, such as computer
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vision. Visual servoing is the term used to describe this technique. It gathers data via visual
sensors in order to control the robot.

Commercial systems provided by robot manufacturers include not only the physical robot
but also the software and methodology for controlling it. Oftentimes, in the pursuit of friendly
user interaction and intuitive development, these systems are mainly proprietary and focus on
solving easy and generic tasks. For the implementation of more advance features developing
third party programs and connecting them with the system is required. For this reason, a variety
of software tools is available, regardless of the robot’s manufacturer, that can integrate tasks
like CV, robot control and advanced trajectory planning. Complex issues can be resolved by a
later interface between the developed software and the robot.

1.1 Thesis Contribution

This thesis describes the implementation of an autonomous 6-DOF robotic manipulator with
visual guidance, where the objective is for the robot arm to stack cylinder blocks, recreating
randomly generated towers. The blocks have different, unique ArUco markers displayed on
them so they can be identified. The robot is equipped with vacuum grippers to achieve the
grasping of the objects. Also, a 2D camera is attached to its end effector, to enable the robot
system to make decision and function autonomously by providing visual feedback.

In an area adjacent to the robot’s workspace, cylinder blocks are being spawned, one at a
time, in three different locations creating towers. A camera, placed above the aforementioned
area, makes use of an object recognition algorithm to detect every newly spawned cylinder and
extract information about its coordinates and identification. This information is transferred to
the robot arm to proceed with its task.

The robot arm has a similar set of cylinders blocks, laid out in front of it. By exploiting the
data communicated to it by the camera, it is able to determine which block it is required to
stack and at what position. Since the robotic arm is equipped with a camera, it employs
computer vision techniques to locate the desired cylinder. Consequently, it constructs a
trajectory to position its end effector directly above the cylinder by making use of motion
planning algorithms. After the pick and place task has been completed the process repeats for
the next cylinder block.

The entire project has been implemented within the Robot Operating System (ROS). In the
absence of a real robotic manipulator the whole environment was simulated in the Gazebo
open-source 3D robotics simulator. However, the present approach could be applied to the
actual robot arm, after minor adjustments, since all the packages used to describe and control
the robot are provided and tested from the manufacturer.
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1.2 Thesis Outline

In Chapter 2 we present all the background information needed for this thesis. We provide the
characteristics and specifications of the selected robot arm and an overview of all the
frameworks and software packages used for this thesis. Additionally, basic knowledge of
concepts like computer vision and kinematics is discussed.

In Chapter 3 the basic problems of our approach are stated and also similar robotic projects are
referenced.

In Chapter 4 we describe in detail the implementation steps of our approach. The exact
environment setup is presented, as well as the methods and proposed algorithm to solve
computer vision, robot control and path planning problems.

Chapter 5 contains the results of the approach in the simulated environment.

Finally, in Chapter 6 conclusion and future work to extend our approach is presented.



4 Background

Chapter 2

Background

2.1 URS5 Robot Arm

The URS is a 6-axis robot arm developed by the Danish company Universal Robots. It is
regarded as a collaborative robot, meaning that it is safe to operate alongside humans, as they
are equipped with force sensors in their joints which will stop the motion as soon as they
detect a collision with an object. An image of such a robotic arm can be seen at Figure 2.1
along with the dimensions of all the links.

825

R . 109.3
" UNIVERSAL ROBOTS Wrist3 \ ‘

‘ Wrist2
A /

425

Figure 2.1 : URS5 collaborative robot arm
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The URS a lightweight, adaptable robot that tackles medium-duty applications designed for
industrial environments. It is one of the industry’s most popular cobot because of its portability
combined with the long-term flexibility of the URS’s higher payload and longer reach.

The specifications given by Universal Robots are provided in Figure 2.2.

URS Technical specifications Item no. 110105

6-axis robot arm with a working radius of 850 mm / 33.5in

Weight: 184 kg / 40.61bs

Payload: Skgs/ 11 lbs

Reach: BS0mm # 33.5in

Joint ranges: +/- 360

Speed: All joints: 1805,
Tool: Typical 1 mfs. £ 39.4in/s.

Aepeatability: +/- 0.1 mm / +/- 0.0039 in (4 mils)

Footprint: 2149 mm / 5.9in

Degrees of freedom: 6 rotating joints

Control box size (WxHxD): A75 mmx 423 mm x 268 mm S 18.7x 1672 10.6in

If0 ports: Controlbox Tool conn.
Digital in 16 2
Digital out 16 2
Analog in 2 2
Analog out 2 -

10 power supply: 24V 24in control box and 12 W24 V600 mA in tool

Communication: TCP/IP 100 Mbit: IEEE 802.3u, 100BASE-TX
Ethernet sacket & Modbus TCP

Programmiing: Polyscope graphical user interface on
12 inch touchscreen with mounting

Hoize: Comparatively noiseless

IP classification: P54

150 Class Cleanroom robot amm: 5

150 Class Cleanroom control box: 6

Power consumption:

Approx. 200 watts using a typical program

Collaboration operation: 15 Advanced Safety Functions

Tested im acoordance with: EM 150 13849:2008 PLd

EM 150 10218-1:2011, Clause 5.4.3

Materials: Aluminum, PP plastic
Temperature: The robot can work in a temperature range of 0-50°C
Power supply: 100-240 VAC, 50-60 Hz
Cabling: Cable between robot and control box (G m / 236 in)

Cable between touchscreen and control box (4.5 m # 177 in)
Universal Robots AfS
Energivej 25
DK-5260 Odensze 5
Denmark
+458993 8080

www.universal-robots.com
sales{@universal-robots.com

Figure 2.2 : UR5 Technical Specifications
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There are six revolving joints in the robotic arm. These joints are referred to as Base,
Shoulder, Elbow, Wristl, Wrist2, and Wrist3. For these kinds of robotic arms, the URS features
a layout that is very typical. The Shoulder and Elbow joint are rotating perpendicular to the
Base joint. The main purpose of the wrist joints is to move the Tool Center Point (TCP) into
the proper orientation.

The Degree of Freedom (DOF) for a robot arm is the configuration space dimension, which
in turn is the minimum number needed to describe this space. The degrees of freedom for a
mechanism are calculated using Grubler's formula [22] by deducting the freedom of a joint
from the number of independent constraints.

DOF = Z ( Freedoms of bodies ) - Number of independent constraints

For a robot arm with J number of joints this formula become :

DOF = m(N — 1) Zr-,

Where m is the number of freedoms for a single rigid body. For planer bodies, m equals three
with one rotational and two transitional in 2D space. In our case, for spatial bodies in a 3D
environment, m equals six with three rotational and three transitional. N is the total number of
bodies including the ground. Six revolute joints make up URS, and when ground is added, N
becomes seven. Finally, c is the constraint between two rigid bodies. For revolute joints, ¢ is
equal to 5. The aforementioned equation can be used to obtain the URS robot arm's DOF by
entering these numbers.

DOF = 6(7 — 1) —6(5) = 6
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2.2 Robot Operating System and Gazebo

Robot Operating System ROS [17] is a flexible collaborative framework for robotic
software development, and consists of a large collection of tools, libraries and templates.
Research organizations, labs, and individuals can use ROS as the programming platform to
contribute their algorithms, also known as ROS packages, and build software by utilizing pre-
existing modules.

Numerous ROS and ROS-Industrial [18] packages are being used for the purposes of this
project. The latter are designed specifically for industrial robotic applications with the support
of the robotics industry and research institutions. ROS-Industrial provides numerous sensor
plugins, robot controller packages and planning algorithms in order to enhance agile industrial
robotics for a wide range of automation tasks and industrial manufacturing.

Additionally, ROS framework comes with a wide variety of tools to help with real time
environment configuration and monitoring, data visualization tools, like Rviz [23] and the
transformation system tf [24].

In the ROS environment each process performing computation is called a ROS node and
represents a device. ROS middleware integrates a communication infrastructure in order for
the nodes to interact with each other, via a peer-to peer network. The capabilities, provided for
inter -process communication, are described as follows:

* Message passing via publishing and subscribing systems. ROS nodes exchange
messages in an asynchronous way through ROS Topics. A ROS node that generates and
publishes data to a particular ROS Topic is referred to as a publisher. Any ROS node
can subscribe to a ROS subject and receive information if it is interested in the
published data. A publishing ROS node is not aware of the identities of the subscribers
to its subjects in this manner of communication. Through a single topic, numerous
publications and subscribers can interact.

* Remote procedure calls (RPC) in request-response systems. RPC that provide request
and reply interactions are called ROS services. The RPC interactions in ROS are
defined by a pair of ROS messages. A provider ROS node registers the service under a
namespace (a directory of names), and a client calls the service by sending a request
message and waiting for a reply.
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* Distributed parameter server. A shared dictionary to store static and non-binary
parameters. The parameters stored in the server can be retrieved globally by all ROS
nodes and they provide and registration services to the rest of the nodes.

ROS messages are defined using a simplified message description language, which enables
ROS to automatically create source code for several languages. A ROS message is a collection
of constant definitions and descriptions for data fields. The built-in or self-defined description
is the field type listed in the left column. The field type is followed by the field name, which
provides the name of the data structure and is bounded by a space. Although it is not necessary,
a data field's description can be added after the comment symbol (#), as seen in the figure
below.

std_msgs/Header header # Message Header

string name # Object name in a database

std_msgs/UInt16 obj_seq # Assigned object sequential number

time detection_time # The time when the object was detected
geometry_msgs/Pose pose # Pose of the object observed at the detection time

Figure 2.3 : A ROS message example

The workspace environment was simulated and tested using Gazebo, a robotics simulator.
Gazebo uses Open Dynamic Engine (ODE) for dynamics simulation. Also, high-quality
rendering is supported by the Object-Oriented Graphics Rendering Engine (OGRE). A variety
of sensors and robotic models are included in the Gazebo library. Various command line tools
are available to users, and customized plugins for robot, sensor and environment control can
be programmed in Python or C++ and integrated into Gazebo.

2.3 Movelt!

Movelt! [19] Motion Planner is a set of software packages integrated with the ROS and
designed specifically to provide motion planning capabilities, especially for the manipulators.
It is state—of—the—art software for mobile manipulation and it provides the latest advances in
motion planning, manipulation, 3D perception, robot kinematics and control. Movelt! packages
support the URS robot and were used as a convenient platform to implement the motion
planning pipeline.

The system architecture for the primary node, move group, is shown in Figure 2.4. It
combines controllers, sensors, libraries and all the other components to provide a set of ROS
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actions (red lines), services (blue lines) and topics (green lines). This node obtains three
different types of information from the ROS parameter server:

* URDF which is the robot description file on the ROS parameter server.

* SRDF which is the robot_description semantic parameter on the ROS parameter server.
The Movelt! Setup Assistant is commonly used by a developer to generate the SRDF
just once.

* Movelt! Configuration which includes Movelt specific settings, such as kinematics,
joint limits, motion planning, perception, and other data.

[ ROS Param Serverj

wolw 1=
alg| €
| <]
=1 k2l lS]
User Interface XY ¥
@ove _group_interface : MoveGroupAction . 5 g
: (C+4) 5 PickAction JointTraj - IS
h > 2 jectoryAction |2 &
: PlaceAction " |2 §
: : )
! ( moveit_commander ) ! o
(Python) e Get IK Service =
3 Get FK Service (o)
: 5‘ Get Plan Validity Service = g
¢ R ! # Plan Path Service bﬁ Point Cloud Topic | 8 2
[ GUl (vt Fegin) ] i, Execute Path Service ; g § 3
: i Get Planning Scene Service (o) o
Other Interfaces AttachedObject
T 08 CollisionObject
PlanningSceneDiff
! )

Figure 2.4 : Move_group Architecture

Topics and actions are used by the move group node to communicate with the robot. Joint
state information is published on the /joint state ROS topic and transform tree data is published
on the /tf topic. Information on the robot transform tree is published by the robot state publisher.
The state of the robot and its surrounding environment is defined as a planning scene in a scene
monitor. In order to compute the trajectory, the motion planning algorithm retrieves the data

from the planning scene.
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Movelt! Includes motion planning plugins that allow the user to take advantage of multiple
open-source planning libraries such as the Open Motion Planning Library (OMPL) [20]. OMPL
is used as the primary or default set of planners in Movelt. The planners in OMPL are abstract,
thus they no concept of a robot. Instead, Movelt! sets up OMPL and supplies the back-end
needed for OMPL to work with robotics-related issues. The structure of OMPL can be seen in

Figure 2.5.

User Interface
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g = Publisher
{ I, Monitored Planning Scene 5 g :a
4 y — =] o)
: Other Interfaces (Optionally Published) o 90-’0 £
........................... ! o (E)
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Figure 2.5 : Planning scene pipeline
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2.4 Kinematics

The branch of mechanics that studies the motion of a body or a system of bodies, without
consideration given to its mass or the forces acting on it, is known as kinematics. Hence, the
study of the kinematics of robotic manipulators refers to all the geometrical and time-based
properties of the motion. From the mechanical structure point of view, the URS robot is an open
kinematic chain connected by 6 revolute joints, so the 6-DOF robotic manipulator's kinematic
model can be developed.

2.4.1 Forward Kinematics

Forward kinematics is the method for determining the orientation and position of the end
effector, given the joint angles and link lengths of the robot arm.
The transformation matrix Hji is the matrix mapping point p in reference frame W¥i into V.

For arobotic arm it is convenient to begin with the base frame W0 and start from the zero vector
n xyz.

0

PJ 70
| =H

1

The transformation matrices can be multiplied to conveniently map into

other reference frames.

H = H)H]

The position of the joints of the URS are used to construct every homogeneous transformation
matrix and represent the transformation from joint i—1 to joint i. Where 6, is the Base joint and
06 1s the Wrist3. Eventually a mapping from the base frame to the position of the TCP can be
constructed.

6
Hg = [ H;7'(8:)

1=1
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The transformation matrices can be easily constructed in accordance with the Denavit-
Hartenberg convention [21], which is a commonly used to define four parameters that describe
how the reference frame of each link is attached to the robot manipulator.

Hf_lliﬁ';- disa;, o) = R (0;)T.(d; ) T (a;) Ry (o)

These Denavit-Hartenberg parameters are known for the URS and listed in Figure 2.6.

- 8 [rad] a(m] d|m) | alrad]
Jointl: [ 0 0 0.08920 | =
Joint 2: 0 —0.42500 0 0
Joint 3: 0 —0.39243 0 0
Joint 4: 0 0 0.10900 %
Joint 5: 0 0 0.09300 =
Joint 6: 0 0 0.08200 0

Figure 2.6 : UR5 DH parameters

2.4.2 Singularities

In robotics, singularity is a common problem. When a robot is in a singular configuration it
cannot track the desired trajectory. How a singularity occurs and how it affects the manipulator
will be discussed.

The transformation matrix from the joint velocity space to the end effector velocity space is
called the Jacobian.

Geometric Jacobian = [‘I }] = [J‘FJ] 0 = J(,-é

Analytic Jacobian o |i‘U] = [J‘FJ] 0= J46
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There is a difference between the geometric Jacobian and the analytic Jacobian. While ®
represents the angular velocity ¢ represents the change of orientation of the end-effector frame
¢. ® and ¢ are in general not the same.

The geometric Jacobian for a robot with only revolute joints can be constructed as follows [25]:

) Zy x oy —og) -+ Zig X (oy—0i_1) -+ Zy_1%x(oy—on_1)
Jo = . . .
Zy Zi—y ZN-1

Where Z; are the first three elements of the third column of transformation matrix H? and o; are
the first three elements of the fourth column of H}

Singularity happens when a rank is dropped in the Jacobian. There are two types of singular
configurations for robotic arms, boundary singularities and internal singularities. If the robot is
requested to move outside its workspace, a boundary singularity will occur. Typically, this takes
place when the arm is fully extended. Internal singularities are usually caused by the alignment
of two or more of the robot's axes. As a result, the action of one joint can be cancelled by
another joint. In this situation, there are infinite possibilities for the movement, leaving the
action undetermined.

Near-singularities pose also a problem. In the case, when the determinant of the Jacobian
becomes small, the inverted Jacobian will become large. This means that some joints must
perform a considerable movement for a small end-effector movement. That can lead to the
joint’s velocity operating outside its physical range, making it impossible for the end-eftector
to move according to the intended trajectory.

2.4.3 Inverse Kinematics

In section 2.4.1 the mapping from the joint space to the cartesian space for the robotic
manipulator was discussed. This is a fairly easy problem since the transformation matrix has
only one solution and only depends on the known joint angles.

Finding the joint variables for given end—effector positions is a much more complicated
issue known as inverse kinematics. The joint angles, which are unknown in this instance, are
also a factor in the transformation matrix. Additionally, given a single Cartesian coordinate,
there are often eight distinct configurations that are feasible. The two main types of inverse
kinematics techniques are iterative techniques and closed form solutions.
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The robotic arm's geometrical properties are utilized by the closed-form solution, which can
directly solve the inverse kinematics problem. To illustrate this concept, a two DOF robotic
arm example [26] is explained below.

A 2-link arm is shown in figure 2.7. Link 1 and 2 are respectively 11 and l>. The angle from
link 1 to the x-axis is expressed as 01. The angle between link 2 and link 1 is expressed as 0.
The position of the end effector in the Cartesian space is expressed in p.

The Forward Kinematics for the position of the end effector of this robotic arm are
straightforward.

Pz = cos(t)l1 + cos(6y — 62)la
Py = sin(fly )l + sin(#) — 62)ls

Where px is the x-coordinate and py is the y-coordinate of the end effector.

Figure 2.7 : Inverse Kinematics example of a 2-link robotic arm

The Inverse Kinematics is more complicated. The challenge is to find the angles 6; and 0, ,
knowing the desired position of the end effector, p.
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The Rule of Cosine can be used to determine the angle of 02, where cos(y) =—cos(02). There
will be two solutions for 0, .because of the arccos, meaning —0, will also be a solution.

(P2 4 p3) = 1 + 15 + 211ac05(6s)

o (i) -l -8
s = arccos ( oL

The Rule of Sine can be used to determine the angle of 0:. Angle 0: is dependent on 0, but
there are no different solutions for a same 6.

As a result, there will typically be two alternative configurations for a given point in the
Cartesian plane.

sin(f)  sin(fs)

Iy 1”,.-“’ pi+p

i
v = arctan (g—”)
Px

) [ l2sin(#:
b = a+ 3 = arctan (‘E—”) + arcsin 2—3;21
Pz 1:; P2+ p?

This was a simplified example with only two links. Finding a closed form solution for a 6 DOF
robotic arm is significantly more complicated.

Using iterative techniques is another method to perform the inverse kinematics. Iterative
numerical approaches are one of those techniques. A search algorithm like the Newton-
Raphson can be used. The transformation matrix HY can be used to create the cost function for
this optimization algorithm. The cost functions derived from the DH-parameters of the URS,
that can be used for various minimization algorithms, are described in Appendix A.
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2.4.4 Inverse Jacobian Technique

The method to calculate the inverse Kinematics of the URS is the inverse Jacobian
technique. Although it is impossible to reverse the joint space to Cartesian space mapping for
position, it is possible to do so for rates. As we mentioned in section 2.4.2, this mapping is
known as the Jacobian and it is only dependent on the angles of the joints, thus in can be
inverted.

The plan is to differentiate the 6D position and rotation vector. The resulting vector, which
contains the TCP's velocities, is multiplied by the Jacobian's inverse. The present angles of the
joints are used to calculate this Jacobian as described on section 2.4.2. The resulting vector
represents the joints’ velocities and it is finally summed to produce the vector with the joint
angles. The whole process is briefly presented below. Here pi is the position and rotation vector
for instant i. JG is the geometric Jacobian and 6; is the vector for the angles of all six joints for
Instance 1.

3
Wi
| =
Pi= 1R,
If.r;.l'
| .
Ap; = pi — pi—1
Ab; = Jg' (6:-1)Ap;
0; = 6;_1 + Ab;

It should be noted that the order in which the rotation matrices are multiplied affects the
angle. There is no way to compute the difference without introducing an error. Furthermore,
the present position affects the Jacobian used to determine the following position. This will,
also, produce an error since 0 is generally not constant. In order to avoid problems, the steps
must be very small so the errors are not significant.
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2.5 Robot Vision and ArUco Markers

Computer vision is a field that enables computers and systems to perceive the world around
them and derive meaningful information by analysing digital images, videos and other visual
inputs. Robot vision is a related branch where the host computer not only processes the
environment data collected from cameras or sensors but also uses the information to control
the client robot.

The most used software to handle computer vision problems is the OpenCV [27], an open
source cross-platform programming language. This library implements many functions useful
to handle cameras, intrinsic calibrate them and to manage and parse images.

A very useful tool for computer vision systems are fiducial markers. These markers are
image like objects, which are designed to be detectable and typically contain an interpretable
meaning. They come in a variety of sizes and shapes, ranging from tiny dots to intricate bar-
code images.

1. ARToolKit 2. ARTag

s

3. AprilTag 4. ArlUco

kAl

Figure 2.8 : Comparison of some
common Fiducial markers

For the purposes of this thesis the ArUco markers [11] are best suited. These markers are
comprised by an external black border and an inner region that encodes a binary pattern. There
are several dictionaries for ArUco markers which differ in the number of markers they contain
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and the number of inner squares that encode the binary pattern. In this application, the marker
is a 7x7 grid with the outer rows and columns used as a black border, leaving a 5x5 grid for the
encoding. Only two squares on each row are utilized for the actual code, with the remaining
used for error checking.

This evaluates to 11111111112 = 102310, resulting to 1024 unique IDs.

Figure 2.9 : ArUco Marker with ID = 4

The large squares in this design makes it easy and fast to detect, compared to something like
a QR-code, while it is still able to contain an encoded ID. Therefore, we can preserve all the
needed information while any unnecessary complexity is eliminated. Another advantage of
these markers is that each of them provides a 4-point vector representing the pixel coordinates
of the corners. When the corners are known, the position of the center can be calculated and
because of the asymmetry of the binary code, the orientation of the marker can be determined.
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Chapter 3

Problem Statement

3.1 Autonomous Vision Based Control For Robot
Manipulator

The use of robot manipulators is a continuously developing area, especially in industrial and
manufacturing environments. As a result, there is a growing need for agile and adaptable
autonomous robotic systems. In order for the robots to be considered autonomous, they must
be able to perceive the surrounding environment and make decisions about the order of actions.

This thesis is focused on developing autonomous control of the URS robot arm, by the means
of computer vision, recognition and tracking, in order to complete picking, handling and
stacking tasks. The robot must be able to operate autonomously, without user input.
Furthermore, it should be able to interact with its environment and recognize objects of interest.
This is crucial in order for the robot arm to adapt to potential changes of its surroundings, and
operate under random conditions of the workspace.

The introduction of extra features like, robot vision and grasping, calls for the integration of
the appropriate modules. Additionally, the tools for the trajectory planning, robot control and
object recognition must be implemented. Due to the need of performing the tasks accurately
and reliably, synchronization and efficient algorithm development is a key factor for the success
of the system.
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3.2 Related Work

Autonomous robotic manipulators have been an area of increasing research interest, due to
their extensive use in industrial and manufacturing applications. Robot arms with 6DOF are
complex enough to take the place of humans and perform complicated tasks. Many approaches
focus on the integration of robotic arms in industrial environments [1], [2], [5]. These
approaches utilize vision systems to enable the robot to perceive its surroundings. The Amazon
Picking Challenge (APC) [3] is a well-known competition, organized every year by the amazon
company, in order to promote shared and open solutions to some of the big problems in
unstructured automation. This challenge focuses on pick-and-stow operations where a robot
recognizes target items, picks items from shelves and places them in shipping boxes.

Moreover, visual guidance systems are examined in [4], [7], [6]. In those approaches
different camera systems have been used, from simple 2D USB camera to the more advanced
Kinect depth camera. Also, the recognition tasks vary, as some approaches focus on color
recognition, while others deal with shapes and object detection. In our approach, we used
ArUco markers [11] for the object detection. These markers are commonly used in robotics,
not only for object tracking but also for localization and navigation [8], [9]. Since there are
ways to extract information about the object’s distance from the camera, if you possess
knowledge about the markers’ dimensions, the use of a depth camera is not necessary.

Robot arm kinematics and motion planning are also topics with great interest in robotics.
Specifically, for the URS manipulator the kinematic and dynamic modeling is explained in
[10],[12]. Different approaches for the motion control of the robot have been investigated in
the past, including the Proportional Integral Derivative method and the Fuzzy Logic Control
[13],[14]. These techniques are especially useful for controlling the hardware of the real URS
robot. Finally, the motion planning strategy for the 6-DoF robot has been studied in several
publications [15],[16] which contain the conditions and parameters involved in robot trajectory
planning.
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Chapter 4
Our Approach

4.1 Simulation Environment

The first step was to create the environment for the simulation in the Gazebo platform. The
environment consists of two workbenches. The first one, that will be referred to as workbench
1, is the place where the towers, which the robotic arm is called to recreate, are being spawned.
A stationary 2D camera is placed directly above, so that its field of view covers the entirety of
the area. The second workbench (workbench 2) includes the URS manipulator and 8 cylinders
with unique ArUco markers displayed on top of them. This is the operation area of the robot
arm. The goal is for the robotic manipulator to handle the cylinder blocks on its workbench to
recreate the spawning of stacks that takes place in workbench 1.

Figure 4.1 : Gazebo environment. Workbench 1 (left), Workbench 2 (right)
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The process by which the stacks, that we are called to copy, are being spawned is described
as follows. In each iteration a single cylinder, from a set identical to the one described above,
is being spawned randomly in one of three positions, on workbench 1. The order by which the
IDs spawn is random. The stationary camera is responsible for detecting the cylinder and
identify its ArUco ID and position. The robotic manipulator is able to acquire this data via the
ROS Service /latest_aruco_1id, in order to continue with the pick and place task.

teration : 2

Figure 4.2 : Workspace 1, target stacks spawn

4.2 URS Robot Modeling

For the URS robotic arm ROS Industrial universal _robot package was used. Universal robot
descriptions, drivers, gazebo resources, kinematic, ROS messages and Movelt! packages are
included. Robots in ROS are modelled in The Universal Robotic Description Format (URDF)
which is XML file format. For speeding up of tedious writing in URDF language serves XML
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macro (Xacro). Xacro enables the developer to define repeating properties and create own
macros. Several addition had to be introduced in the original ur5.urdf.xacro file in order to add
the desired functionalities to the robot.

First, vacuum grippers were attached to the manipulator’s end effector. The grippers are
available as a Gazebo ROS dynamic plugin. They operate by collecting data from a ROS topic
and applying wrench to a body accordingly. Since the vacuum gripper only provides limited
force, nine identical grippers were added in order to lift the object. An extra link and a joint are
added to the URDF file for every gripper.

The robot was also equipped with a camera module attached to its end effector, available as
a gazebo sensor plugin, for the detection and tracking of the cylinders. The camera is displayed
in the simulation as a green cube. All camera’s image raw data are published at the
/ur5/usbcam/image raw topic.

Figure 4.3 : UR5 Robot model equipped with the additional modules and the vacuum
grippers configuration

In the discipline of robotics, each component of a robot is described by its coordinate system
and its origin, which are provided by a position and a rotation vector relative to another
reference system. Additionally, for moving robots the relation between two subsystem parts is
dependent to time. ROS has an integrated transform library, called tf [24], which is utilized as
the main method of tracking positional data. This information is very useful to determine robot
poses and objects’ position at a given timestamp. The tf tree of the complete URS with the
additions of the extra modules and views in Rviz plugin are presented in Figure 4.4 and Figure
4.5 respectively.
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4.3 System Synchronization and management

Synchronizing every subtask is crucial to ensure the smooth operation of the system. Delays
in the simulation can cause loss of data, during the communication of different nodes, resulting
in errors. To solve this problem a simple finite state machine (FSM) was implemented which
controls the robot’s behavior and the function of all the other modules. The complete finite
state machine is shown in figure 4.6.

initilisation

tasks_finished b at_home_pose

END i

get marker_in_scene 1 pbj_picked_and_placed

estimate_obj_pose_in_scene_2

Figure 4.6 : FSM

The starting point is the Initialization State, IS. The FSM will remain in this state until the
simulation environment is built. When the robot, the workbenches, the scene 1 camera and the
cylinders are spawned, we transition to the next state.
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HS stands for Home State, during this state the arm goes to its home pose. In this pose, the
robot’s camera is aimed at the cylinder blocks that must be stacked. During this state, a cylinder,
whose placement the robot must recreate, spawns on workbench 1.

The next state is Detection Scene 1, DS1. The 2D camera located above workbench 1
recognizes the newly spawned ArUco ID and based on its coordinates it determines in which
of the three towers it was stacked. This information is communicated to the robot via ROS
Services request and reply messages. The camera node stores information about all the ArUco
IDs it has previously encountered, that way we ensure that only the information about the most
recently spawned cylinder will get transferred to the robot.

The next transition in to the Detection Scene 2 state, DS2. Now the robot arm in called to
detect the cylinder with the same ArUco ID, from the block set located in front of it, using the
attached camera on its end effector. Furthermore, the cylinders position must be estimated for
the next step.

It is finally time for the pick and place task, PPS. The robot arm has knowledge about the
coordinates of the desired cylinder and the stack on which it should be placed, thus the motion
planning can be implemented. When the placement is completed, the FSM transitions to the
Home State for the loop to repeat. When we run out of cylinder blocks the program will
progress to the End State.

4.4 ArUco Marker Detection

The detection algorithms were implemented using OpenCV, since it provides a large set of
image processing algorithms. Additionally, a library specifically for ArUco markers detection,
developed by Rafael Mufioz and Sergio Garrido [11] is available for OpenCV.

The script from Github repository [28] was used, under MIT License, to create the ArUco
markers. Then, using Blender open source 3D creation suite, COLLADA files were created
describing the mesh, material and texture of each cylinder based on the ArUco image files. An
example of a generated ArUco marker and the corresponding blender model is shown in Figure
4.7.
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Figure 4.7 : ArUco Marker ID=4 and the corresponding cylinder blender model

Before we proceed with the detection, it is necessary to ensure that we are accepting the
camera’s latest frame. For that reason, we discard the first 20 frames the camera provided in
each detection state, which is equivalent to 2 seconds since the camera operates at 10 frames
per second. This is enough time to make sure that delays in the simulation or in the publishing
of the camera’s recorded image on the ROS Topic, will not cause any issues.

The first step of the detection process is finding marker candidates. In order to do that, an
adaptive threshold [29] is applied to the image. Window sliding is used in adaptive thresholding
to obtain the best greyscale value for each window. Values below the calculated value will be
black and above is white. Contours can now be extracted from the binary image [30]. If they
are not convex or close to a square shape, they will be discarded. The size of the edges or the
separations between them, among other filters, are used to define these conditions [31].

Now that the square shaped candidates have been selected, the next step in to determine if
they are in fact ArUco markers with a valid ID. The candidates will be subjected to perspective
transform. This form is known as the canonical form. Otsu thresholding [32] will then be
applied. The goal of Otsu thresholding is finding an optimum point of the histogram of the
image so that the disparity between the black and white (foreground and background)
distributions is minimum.

For the purpose of this thesis the 5x5 ArUco dictionary was used, so the last version of the
images will be divided into 5x5 sub-images (with the border, 7x7). Since they are already
thresholded, it is easy to convert the binary images to a binary matrix. These matrices will be
searched in the dictionary and if they match with the markers their IDs will be determined.
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Figure 4.8 : Marker cells

B
=3

Figure 4.9 : ArUco Markers' IDs detection by the UR5’s

end effector camera
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The final step is to estimate the positions of the markers. ArUco detect function returns the
coordinates of the corners for each marker, in pixel units, in the camera field of view. The depth
can be calculated if we take into account the exact dimensions of the marker. In our case, the
square’s side length is 7.81 centimeters. If we pass this data, along with the camera’s distance
coefficient and position, as parameters in the function estimatePoseSingleMarkers(), which is
included in the ArUco library, it will return 2 vectors, the translation (position) and rotation of
the marker. The rotation vector is not relevant for its application since cylinder blocks are used,
thus their orientation in not significant. The translation vector is the coordinates of the ArUco
marker corners translated to the camera coordinate system. Using simple geometry, we can
deduce the center point of the square marker by calculating the means of the corners’ x and y
coordinates.

In order to command the robot to move its end effector, the position must be relevant to the
robot’s base coordinate system. To do that we use the homogeneous transformation matrix H,
that represents position and orientation of one coordinate frame relative to another coordinate
frame.
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To find the homogeneous transformation matrix we need the rotation matrix, R and the
translation vector, t.
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The camera pose relative to the robot base can be acquired using the get current pose
function. In ROS the preferred representation for orientation are quaternions, a 4-tuple
representation (X, y, z, w). A unit quaternion q can be converted to a rotation matrix R as
follows:

[ 1—2¢2—2¢.> 240y~ 20:90  2029: — 204w "
R = 2@'1:@'3: — 2q:quw 1 — 2@12 — 2@':;2 2@3,@'3 — 2929w
20:q: — 200w 2049z — 2029w 1 — 2¢.° — 2q,°

The same transformation has to be performed to get the vector that describes the pose of the
marker in the camera coordinate system. By multiplying the two terms together we get the
position of the object in the robotic arm reference frame.

4.5 Robot Control and Motion Planning

For the robot motion Movelt! was used to define the required control groups both for the
arm and the vacuum grippers, perform the motion planning and solve the inverse kinematics.
Motion plan creation by Movelt is advantageous since only the goal pose needs to be defined
if the motion path is irrelevant.

What we want from the motion planner to perform is specified in the motion plan request.
Typically, the motion planner is asked to move the arm to a new pose or the end effector to a
different location. By default, collisions, including self-collisions, are checked. The desired
trajectory will be generated to move the arm according to the plan request. It should be noted
that the result will be a trajectory, not just a path, meaning that velocity and acceleration
constraints at the joint level must be taken into consideration.
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A motion planner is a part of the entire motion planning pipeline, which also includes
planning request adapters. Pre-processing motion plan requests and post-processing motion
plan responses are both possible with planning request adapters. Pre-processing is helpful in a
variety of circumstances, such as when a robot's initial state is just barely outside of its defined
joint limits. Other processes, such converting paths generated for a robot into time-
parameterized trajectories, require post-processing.

3
|

MotionPlanRequest

MotionPlanResponse
(C++) i

(C++)

A
planning request adapters
e.g. time parameterization

E e.g. fix start time
motion_planner
planning request adapters

|

Figure 4.10 : Motion planning pipeline

To generate the Movelt configuration package the setup assistant tool GUI can be used. The
URDF/xacro file that defines the robot is the only file needed to execute this tool. Also, the
ROS Industrial package provides all the necessary Movelt configuration YAML files for the
URS manipulator, including controllers, joint limits, kinematic solvers and OMPL planning.

One of the simplest and most useful Movelt user interfaces is through the Python-based
Move Group Interface. The functionality for all the needed operations can be provided by these
wrappers. To use the Python Movelt interfaces, the moveit commander namespace must be
imported in the python script responsible for robot movement. This namespace provides us
with a MoveGroupCommander class, which is an interface to a planning group or group of
joints, and a RobotCommander class, which has information about the robot’s kinematic model
and the current joint states. Additionally, a GripperCommander class was created in order to
turn the grippers on and off.
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In order to plan a motion for the robot arm, such as picking or placing an object and moving
to home pose, we require a start and a goal state. For the starting state, we can acquire the
robot’s pose using the get current pose() function. For the goal state we can just define the
x,y,Z coordinates the arm’s end effector should end up after the motion is completed. These
coordinates are predefined if the robot needs to move to the home position, or if it is required
to place a cylinder in one of the three stacks. Of course, in the placing case, the z-coordinate
adjusts depending on the height of the tower. In the picking scenario the coordinates are
provided from the ArUco detection and they correspond to the cylinders position in the world.

The Cartesian space path planning is implemented by the use of compute cartesian_path()
function. This function computes a sequence of waypoints to make the end effector move in
straight line segments in order to move from the start to the goal state. A value is requested, as
a parameter, to determine the distance that configurations are computed, in our case that
distance is 2 centimeters. The system computes the joint positions using inverse kinematics for
each interpolated waypoint and the planned path is, finally, executed. In Figure 4.10 the start
state (green) and the goal state (orange) of a simple motion are depicted. The Cartesian path
and the waypoints of the computed motion plan are shown in Firure 4.11.

Figure 4.11 : Start and Goal State
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Figure 4.12 : Motion planning
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Chapter 5
Results

An overview of the whole approach can be viewed using rqt graph, a tool that offers
graphical representation of all the nodes and the topics used for communication between them.
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Figure 5.1 : ROS Nodes Graph showing all nodes and topics
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5.1 Simulation

Complete simulations of the robot stacking all the cylinders, in order to recreate the desired

towers, is presented step by step in the figures below. First, an example with 8 cylinders:

Figure 5.2 : Example 1, Simulation start

Figure 5.4 : Example 1, Iteration 2
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Figure 5.8 : Example 1, Iteration 6
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Figure 5.11 : End of simulation (8 cylinders)

Simulation ends when all cylinder blocks are stacked. The final result is two identical sets of
towers.
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In the second example, a simulation with 10 cylinders is presented:

Figure 5.12 : Example 2, Iteration 1

T8
E) OQ

Figure 5.13 : Example 2, Iteration 2
Figure 5.12 : Example 2, Iteration 3
Figure 5.13 : Example 2, Iteration 4
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Figure 5.18 : Example 2, Iteration 9
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Figure 5.19 : Example 2, Iteration 10

Figure 5.20 : End of simulation (10 cylinders)

In the above examples, we used 8 and 10 cylinders with ArUco markers, even though the
project was originally designed to incorporate 16 markers. Unfortunately, the system, this
application was developed on, was not able to successfully run the simulation for more than 10
cylinders, since the Gazebo simulator is a resource demanding program. However, the code for
all 16 cylinders is implemented and is included in the package.
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5.2 Object Pose Estimation

The performance of the robot vision algorithm is shown in the table below. We can conclude
that the estimation of the cylinder poses is accurate, since the maximum deviation is 2-3
millimeters. The z axis presents the biggest differences from the true coordinates. Fortunately,
the addition of 9 vacuum grippers and the reduced cylinder’s mass, enable the robot arm to
consistently pick up the blocks. Failure to pick a cylinder is extremely rare and dropping a
block mid motion has yet to encountered.

True world coordinates Estimated coordinates

x y : x y :

0.5 0 0.025 0.502 0.001 0.028
0.7 0 0.025 0.699 0 0.022
0.6 -0.1 0.025 0.601 -0.101 0.023
0 oe 0.1 0.025 0.600 0.102 0.028
o o4 -0.14 0.025 0.741 -0.139 0.025
e o074 0.14 0.025 0.741 0.140 0.024
0.46 -0.14 0.025 0.461 -0.141 0.022
bl o4e 0.14 0.025 0.459 0.141 0.026
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Chapter 6

Conclusions

6.1 Conclusion

This thesis describes the implementation of an autonomous 6-DOF robotic manipulator with
visual guidance, where the objective is for the robot arm to stack cylinder blocks, recreating
randomly generated towers. The blocks have unique ArUco markers displayed on them so they
can be identified. The manipulator is equipped with vacuum grippers and a 2D camera attached
to its end effector.

The robot receives information about the towers that it is required to copy from a stationary
camera, responsible to track their spawning. Since the robotic arm is equipped with a camera,
it employs computer vision techniques to locate the desired cylinder. Consequently, it
constructs a trajectory to pick and stack each cylinder by making use of motion planning
algorithms.

This approach is a proof of concept for a manipulator robot that can perceive its
surroundings and operate autonomously, in a closed-loop, according to the changes. In real life
scenarios, the prototype towers could be constructed by a human, instead of being randomly
generated. Additionally, the information about the sequence that the robot arm has to stack the
building blocks, can vary. As an example, in a real-world application if the robot arm was
utilized in the warehousing industry, a list of how the packages need to be stacked could be
provided to the robot. Subsequently the robot would be able to recognize markers on the
packages and place them on wooden pallets according to the requested way, so that they can
be conveniently shipped or delivered.

The entire project has been implemented within the Robot Operating System (ROS) and
Gazebo 3D robotics simulator and is available as an open source package.
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6.2 Future work

6.2.1 Real Robot Application

The results of this project are theoretical and simulation-based. The next
step is to test the designed system on an actual robot and observe how the planners and
computer vision perform in real-world scenarios. Motion planners probably require adjustment
of the planning parameters, to take the environmental disturbances and the actual robots
limitation into account, in order to achieve optimal planning process. Also, lighting conditions
and environmental noise might hinder the computer vision algorithm’s performance.

6.2.2 Motion planners

There is a variety of motion planners available for robotic manipulators. To name a few
Rapidly-exploring Random Trees (RRT), Expansive Space Trees (EST) and Path-Directed
subdivision Trees (PDST) are all available in the Open Motion Planning Library (OMPL). It is
worth investigating if implementing any of those or any other motion planning algorithm, can
improve the robots arm precision, solution smoothness or planning time. Additionally, different
motion planners could be deployed for more complex environments with introduced obstacles.
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Appendix A

Transformation Matrix

The equations in this Appendix form the transformation matrix for the Forward Kinematics of
the URS, as defined in Chapter 2. In these equations si+j = sin(8;+6;) and ci+j = cos(0i+9;).
Furthermore the Denavit-Hartenberg (DH) coefficients for di and ai can be found in Figure 2.6.
These equations can be used in the cost function in an optimization algorithm to find the Inverse
Kinematics.
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