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Abstract 
 

 In recent years, the use of robots as a part of the automation process is a rapidly expanding 

field. The most prevalent type of robot in industrial environments is robotic arms. This type of 

robots is capable of performing a variety of operations, including transportation, assembly, 

packing and welding. The complexity of the tasks assumed for these growing disciplines is also 

rising. Thus, the ability of the robot to comprehend the surrounding environment is a required 

feature to carry out new tasks. Interacting with the environment and being aware of the 

changing conditions enables the robot to make autonomous decisions in more complex 

situations. This thesis describes the implementation of an autonomous 6-DOF (Degrees Of 

Freedom) robotic manipulator with visual guidance, where the objective for the robot arm is to 

stack cylinder blocks, recreating a gradually-presented structured tower pattern. The available 

blocks, initially placed randomly in the robot workspace, have unique ArUco markers 

displayed on them, so they can be identified. The manipulator is equipped with vacuum 

grippers and a 2D camera attached to its end effector. The robot acquires information about the 

desired tower pattern from a remote stationary camera, responsible to track the spawning of 

building blocks. Since the robotic arm is equipped with its own camera, it employs computer 

vision techniques to locate the desired cylinder and, consequently, constructs a trajectory to 

pick and stack that cylinder to its correct position using motion planning algorithms. The entire 

project has been implemented within the Robot Operating System (ROS) and Gazebo open-

source 3D robotics simulator. The proposed robotic system has been tested extensively in 

simulations to ensure its reliability and investigate its efficiency. 
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Περίληψη 

 
 Τα τελευταία χρόνια, η χρήση ρομποτικών συστημάτων ως μέρος της διαδικασίας 

αυτοματισμού είναι ένας ταχέως αναπτυσσόμενος τομέας. Ο πιο διαδεδομένος τύπος ρομπότ 

σε βιομηχανικά περιβάλλοντα είναι οι ρομποτικοί βραχίονες. Αυτός ο τύπος ρομπότ είναι 

ικανός να εκτελεί μια ποικιλία λειτουργιών, όπως μεταφορά, συναρμολόγηση, συσκευασία και 

συγκόλληση. Η πολυπλοκότητα των εργασιών που αναλαμβάνονται για αυτούς τους 

αναπτυσσόμενους κλάδους αυξάνεται επίσης, επομένως η ικανότητα του ρομπότ να κατανοεί 

το περιβάλλον του είναι απαραίτητο χαρακτηριστικό για την εκτέλεση νέων εργασιών. Η 

αλληλεπίδραση με το περιβάλλον και η επίγνωση των μεταβαλλόμενων συνθηκών επιτρέπει 

στο ρομπότ να παίρνει αυτόνομες αποφάσεις σε πιο περίπλοκες καταστάσεις. Η παρούσα 

διπλωματική εργασία περιγράφει την υλοποίηση ενός αυτόνομου ρομποτικού χειριστηρίου 6-

DOF (Degrees Of Freedom – Βαθμών Ελευθερίας) με οπτική καθοδήγηση, όπου ο στόχος είναι 

ο ρομποτικός βραχίονας να στοιβάζει κυλίνδρους, ανακατασκευάζοντας ένα πρότυπο 

δομημένου πύργου που παρουσιάζεται σταδιακά. Τα δομικά στοιχεία, αρχικά τοποθετημένα 

τυχαία στον χώρο εργασίας του ρομπότ, έχουν μοναδικούς δείκτες ArUco που εμφανίζονται 

σε αυτά, ώστε να μπορούν να αναγνωριστούν. Ο βραχίονας είναι εξοπλισμένος με άρπαγες 

κενού αέρος και μια κάμερα 2D συνδεδεμένη στην απόληξη του. Το ρομπότ αποκτά 

πληροφορίες σχετικά με το επιθυμητό πρότυπο πύργου από μια απομακρυσμένη σταθερή 

κάμερα, υπεύθυνη για την παρακολούθηση της διαδοχής των δομικών στοιχείων. Δεδομένου 

ότι ο ρομποτικός βραχίονας είναι εξοπλισμένος με δική του κάμερα, χρησιμοποιεί τεχνικές 

μηχανικής όρασης για να εντοπίσει τον επιθυμητό κύλινδρο και, στη συνέχεια, σχεδιάζει μια 

τροχιά για να σηκώσει και να στοιβάξει τον συγκεκριμένο κύλινδρο στη σωστή του θέση 

χρησιμοποιώντας αλγόριθμους σχεδιασμού κίνησης. Η εργασία στο σύνολό της έχει 

υλοποιηθεί χρησιμοποιώντας το Robot Operating System (ROS) και το περιβάλλον 

ρομποτικής προσομοίωσης Gazebo. Το προτεινόμενο ρομποτικό σύστημα έχει δοκιμαστεί 

εκτενώς σε προσομοιώσεις, για να διασφαλιστεί η αξιοπιστία του και να διερευνηθεί η 

αποτελεσματικότητά του. 
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Chapter 1 

1 Introduction 

 

 

In recent years, automation is one of the most effective tools of industry, thanks to the 

constant advancements in computation, electronics and control algorithms. It enables the 

completion of specific tasks quickly, efficiently and safely. The use of robots as a part of the 

automation process is a rapidly expanding field. The most prevalent type of robot, in industrial 

environments, are robotic arms. This type of robot is capable of performing a variety of 

operations, including transportation, assembly, packing and welding. 

The complexity of the tasks assumed for these growing disciplines is also rising. 

Furthermore, robots are required to coexist and cooperate with humans in tasks like assisted 

industrial manipulation, collaborative assembly etc. Thus, the ability of the robot to 

comprehend the surrounding environment is a required feature to carry out the new tasks. 

Interacting with the environment and being aware of the changing conditions enables the robot 

to make autonomous decisions in more complex situations. 

Obtaining knowledge about the surroundings can be accomplished by computer vision 

(CV). A computer vision system includes a camera that captures images, processes them and 

extracts information about the environment. The ability of vision provides the robot with the 

necessary tools to identify objects in its physical environment and select the best way to interact 

with them. 

The development of computer vision has completely revolutionized the problem solving 

approach in many different industries like retail, manufacturing, warehousing and agriculture. 

Repetition in those types of industries is typically the key factor that makes automation easy to 

apply. However, when there is some variability in the task, an effort should be made to lessen 

the uncertainty, or a human should be recruited to make the judgments. Thanks to intelligent 

systems, decision making is now possible with the aid of perceptual systems, such as computer  
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vision. Visual servoing is the term used to describe this technique. It gathers data via visual 

sensors in order to control the robot. 

Commercial systems provided by robot manufacturers include not only the physical robot 

but also the software and methodology for controlling it. Oftentimes, in the pursuit of friendly 

user interaction and intuitive development, these systems are mainly proprietary and focus on 

solving easy and generic tasks. For the implementation of more advance features developing 

third party programs and connecting them with the system is required. For this reason, a variety 

of software tools is available, regardless of the robot’s manufacturer, that can integrate tasks 

like CV, robot control and advanced trajectory planning. Complex issues can be resolved by a 

later interface between the developed software and the robot. 

 

 

 

1.1 Thesis Contribution 

 

This thesis describes the implementation of an autonomous 6-DOF robotic manipulator with 

visual guidance, where the objective is for the robot arm to stack cylinder blocks, recreating 

randomly generated towers. The blocks have different, unique ArUco markers displayed on 

them so they can be identified. The robot is equipped with vacuum grippers to achieve the 

grasping of the objects. Also, a 2D camera is attached to its end effector, to enable the robot 

system to make decision and function autonomously by providing visual feedback. 

In an area adjacent to the robot’s workspace, cylinder blocks are being spawned, one at a 

time, in three different locations creating towers. A camera, placed above the aforementioned 

area, makes use of an object recognition algorithm to detect every newly spawned cylinder and 

extract information about its coordinates and identification. This information is transferred to 

the robot arm to proceed with its task. 

The robot arm has a similar set of cylinders blocks, laid out in front of it. By exploiting the 

data communicated to it by the camera, it is able to determine which block it is required to 

stack and at what position. Since the robotic arm is equipped with a camera, it employs 

computer vision techniques to locate the desired cylinder. Consequently, it constructs a 

trajectory to position its end effector directly above the cylinder by making use of motion 

planning algorithms. After the pick and place task has been completed the process repeats for 

the next cylinder block. 

 The entire project has been implemented within the Robot Operating System (ROS). In the 

absence of a real robotic manipulator the whole environment was simulated in the Gazebo 

open-source 3D robotics simulator. However, the present approach could be applied to the 

actual robot arm, after minor adjustments, since all the packages used to describe and control 

the robot are provided and tested from the manufacturer.  
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1.2 Thesis Outline 

 

In Chapter 2 we present all the background information needed for this thesis. We provide the 

characteristics and specifications of the selected robot arm and an overview of all the 

frameworks and software packages used for this thesis. Additionally, basic knowledge of 

concepts like computer vision and kinematics is discussed. 

In Chapter 3 the basic problems of our approach are stated and also similar robotic projects are 

referenced. 

In Chapter 4 we describe in detail the implementation steps of our approach. The exact 

environment setup is presented, as well as the methods and proposed algorithm to solve 

computer vision, robot control and path planning problems. 

Chapter 5 contains the results of the approach in the simulated environment. 

Finally, in Chapter 6 conclusion and future work to extend our approach is presented. 
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Chapter 2 

2 Background 

 

 

2.1 UR5 Robot Arm 

  

  The UR5 is a 6-axis robot arm developed by the Danish company Universal Robots. It is 

regarded as a collaborative robot, meaning that it is safe to operate alongside humans, as they 

are equipped with force sensors in their joints which will stop the motion as soon as they 

detect a collision with an object. An image of such a robotic arm can be seen at Figure 2.1 

along with the dimensions of all the links.       

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.1 : UR5 collaborative robot arm 
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The UR5 a lightweight, adaptable robot that tackles medium-duty applications designed for 

industrial environments. It is one of the industry’s most popular cobot because of its portability 

combined with the long-term flexibility of the UR5’s higher payload and longer reach. 

The specifications given by Universal Robots are provided in Figure 2.2. 

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

    

 

 

 

Figure 2.2 : UR5 Technical Specifications 
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There are six revolving joints in the robotic arm. These joints are referred to as Base, 

Shoulder, Elbow, Wrist1, Wrist2, and Wrist3. For these kinds of robotic arms, the UR5 features 

a layout that is very typical. The Shoulder and Elbow joint are rotating perpendicular to the 

Base joint. The main purpose of the wrist joints is to move the Tool Center Point (TCP) into 

the proper orientation. 

The Degree of Freedom (DOF) for a robot arm is the configuration space dimension, which 

in turn is the minimum number needed to describe this space. The degrees of freedom for a 

mechanism are calculated using Grubler's formula [22] by deducting the freedom of a joint 

from the number of independent constraints.   

   

 

 

 

For a robot arm with J number of joints this formula become : 

 

 

 

 

Where m is the number of freedoms for a single rigid body. For planer bodies, m equals three 

with one rotational and two transitional in 2D space. In our case, for spatial bodies in a 3D 

environment, m equals six with three rotational and three transitional. N is the total number of 

bodies including the ground. Six revolute joints make up UR5, and when ground is added, N 

becomes seven. Finally, c is the constraint between two rigid bodies. For revolute joints, c is 

equal to 5. The aforementioned equation can be used to obtain the UR5 robot arm's DOF by 

entering these numbers. 

 

 

 

 

 

 

 

 

 



7  Background 

  

 

 

 

2.2 Robot Operating System and Gazebo 

 

Robot Operating System ROS [17] is a flexible collaborative framework for robotic 

software development, and consists of a large collection of tools, libraries and templates. 

Research organizations, labs, and individuals can use ROS as the programming platform to 

contribute their algorithms, also known as ROS packages, and build software by utilizing pre-

existing modules. 

Numerous ROS and ROS-Industrial [18] packages are being used for the purposes of this 

project. The latter are designed specifically for industrial robotic applications with the support 

of the robotics industry and research institutions. ROS-Industrial provides numerous sensor 

plugins, robot controller packages and planning algorithms in order to enhance agile industrial 

robotics for a wide range of automation tasks and industrial manufacturing. 

Additionally, ROS framework comes with a wide variety of tools to help with real time 

environment configuration and monitoring, data visualization tools, like Rviz [23] and the 

transformation system tf [24]. 

In the ROS environment each process performing computation is called a ROS node and 

represents a device. ROS middleware integrates a communication infrastructure in order for 

the nodes to interact with each other, via a peer-to peer network. The capabilities, provided for 

inter -process communication, are described as follows: 

 

• Message passing via publishing and subscribing systems. ROS nodes exchange 

messages in an asynchronous way through ROS Topics. A ROS node that generates and 

publishes data to a particular ROS Topic is referred to as a publisher. Any ROS node 

can subscribe to a ROS subject and receive information if it is interested in the 

published data. A publishing ROS node is not aware of the identities of the subscribers 

to its subjects in this manner of communication. Through a single topic, numerous 

publications and subscribers can interact. 

 

• Remote procedure calls (RPC) in request-response systems. RPC that provide request 

and reply interactions are called ROS services. The RPC interactions in ROS are 

defined by a pair of ROS messages. A provider ROS node registers the service under a 

namespace (a directory of names), and a client calls the service by sending a request 

message and waiting for a reply. 
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• Distributed parameter server. A shared dictionary to store static and non-binary 

parameters. The parameters stored in the server can be retrieved globally by all ROS 

nodes and they provide and registration services to the rest of the nodes. 

 

    ROS messages are defined using a simplified message description language, which enables 

ROS to automatically create source code for several languages. A ROS message is a collection 

of constant definitions and descriptions for data fields. The built-in or self-defined description 

is the field type listed in the left column. The field type is followed by the field name, which 

provides the name of the data structure and is bounded by a space. Although it is not necessary, 

a data field's description can be added after the comment symbol (#), as seen in the figure 

below. 

The workspace environment was simulated and tested using Gazebo, a robotics simulator. 

Gazebo uses Open Dynamic Engine (ODE) for dynamics simulation. Also, high-quality 

rendering is supported by the Object-Oriented Graphics Rendering Engine (OGRE). A variety 

of sensors and robotic models are included in the Gazebo library. Various command line tools 

are available to users, and customized plugins for robot, sensor and environment control can 

be programmed in Python or C++ and integrated into Gazebo. 

 

 

2.3 MoveIt! 

 

MoveIt! [19] Motion Planner is a set of software packages integrated with the ROS and 

designed specifically to provide motion planning capabilities, especially for the manipulators. 

It is state–of–the–art software for mobile manipulation and it provides the latest advances in 

motion planning, manipulation, 3D perception, robot kinematics and control. MoveIt! packages 

support the UR5 robot and were used as a convenient platform to implement the motion 

planning pipeline. 

The system architecture for the primary node, move_group, is shown in Figure 2.4. It 

combines controllers, sensors, libraries and all the other components to provide a set of ROS  

 

Figure 2.3 : A ROS message example 
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actions (red lines), services (blue lines) and topics (green lines). This node obtains three 

different types of information from the ROS parameter server: 

• URDF which is the robot_description file on the ROS parameter server. 

• SRDF which is the robot_description_semantic parameter on the ROS parameter server. 

The MoveIt! Setup Assistant is commonly used by a developer to generate the SRDF 

just once. 

• MoveIt! Configuration which includes MoveIt specific settings, such as kinematics, 

joint limits, motion planning, perception, and other data. 

     

Topics and actions are used by the move group node to communicate with the robot. Joint 

state information is published on the /joint state ROS topic and transform tree data is published 

on the /tf topic. Information on the robot transform tree is published by the robot state publisher. 

The state of the robot and its surrounding environment is defined as a planning scene in a scene 

monitor. In order to compute the trajectory, the motion planning algorithm retrieves the data 

from the planning scene. 

 

 

 

Figure 2.4 : Move_group Architecture 
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MoveIt! Includes motion planning plugins that allow the user to take advantage of multiple 

open-source planning libraries such as the Open Motion Planning Library (OMPL) [20]. OMPL 

is used as the primary or default set of planners in MoveIt. The planners in OMPL are abstract, 

thus they no concept of a robot. Instead, MoveIt! sets up OMPL and supplies the back-end 

needed for OMPL to work with robotics-related issues. The structure of OMPL can be seen in 

Figure 2.5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5 : Planning scene pipeline 
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2.4 Kinematics 

 

The branch of mechanics that studies the motion of a body or a system of bodies, without 

consideration given to its mass or the forces acting on it, is known as kinematics. Hence, the 

study of the kinematics of robotic manipulators refers to all the geometrical and time-based 

properties of the motion. From the mechanical structure point of view, the UR5 robot is an open 

kinematic chain connected by 6 revolute joints, so the 6-DOF robotic manipulator's kinematic 

model can be developed. 

 

2.4.1 Forward Kinematics 

 

Forward kinematics is the method for determining the orientation and position of the end 

effector, given the joint angles and link lengths of the robot arm. 

The transformation matrix  𝐻𝑗
𝑖 is the matrix mapping point p in reference frame Ψi into Ψj. 

For a robotic arm it is convenient to begin with the base frame Ψ0 and start from the zero vector 

in xyz. 

 

 

 

 

The transformation matrices can be multiplied to conveniently map into 

other reference frames. 

 

 

The position of the joints of the UR5 are used to construct every homogeneous transformation 

matrix and represent the transformation from joint i−1 to joint i. Where θ1 is the Base joint and 

θ6 is the Wrist3. Eventually a mapping from the base frame to the position of the TCP can be 

constructed. 
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The transformation matrices can be easily constructed in accordance with the Denavit-

Hartenberg convention [21], which is a commonly used to define four parameters that describe 

how the reference frame of each link is attached to the robot manipulator. 

 

 

 

These Denavit-Hartenberg parameters are known for the UR5 and listed in Figure 2.6. 

 

 

 

 

 

 

 

 

 

2.4.2 Singularities 

 

    In robotics, singularity is a common problem. When a robot is in a singular configuration it 

cannot track the desired trajectory. How a singularity occurs and how it affects the manipulator 

will be discussed. 

The transformation matrix from the joint velocity space to the end effector velocity space is 

called the Jacobian. 

   

  

 Geometric Jacobian   

 

 

 

 Analytic Jacobian 

 

 

 

 

Figure 2.6 : UR5 DH parameters 

 



13  Background 

  

 

There is a difference between the geometric Jacobian and the analytic Jacobian. While ω 

represents the angular velocity 𝜑̇ represents the change of orientation of the end-effector frame 

φ. ω and 𝜑 ̇ are in general not the same. 

The geometric Jacobian for a robot with only revolute joints can be constructed as follows [25]: 

 

Where Zi are the first three elements of the third column of transformation matrix 𝐻𝑖
0 and oi are 

the first three elements of the fourth column of  𝐻𝑖
0 

Singularity happens when a rank is dropped in the Jacobian. There are two types of singular 

configurations for robotic arms, boundary singularities and internal singularities. If the robot is 

requested to move outside its workspace, a boundary singularity will occur. Typically, this takes 

place when the arm is fully extended. Internal singularities are usually caused by the alignment 

of two or more of the robot's axes. As a result, the action of one joint can be cancelled by 

another joint. In this situation, there are infinite possibilities for the movement, leaving the 

action undetermined. 

Near-singularities pose also a problem. In the case, when the determinant of the Jacobian 

becomes small, the inverted Jacobian will become large. This means that some joints must 

perform a considerable movement for a small end-effector movement. That can lead to the 

joint’s velocity operating outside its physical range, making it impossible for the end-effector 

to move according to the intended trajectory. 

 

 

2.4.3 Inverse Kinematics 

 

In section 2.4.1 the mapping from the joint space to the cartesian space for the robotic 

manipulator was discussed. This is a fairly easy problem since the transformation matrix has 

only one solution and only depends on the known joint angles. 

Finding the joint variables for given end–effector positions is a much more complicated 

issue known as inverse kinematics. The joint angles, which are unknown in this instance, are 

also a factor in the transformation matrix. Additionally, given a single Cartesian coordinate, 

there are often eight distinct configurations that are feasible. The two main types of inverse 

kinematics techniques are iterative techniques and closed form solutions. 
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The robotic arm's geometrical properties are utilized by the closed-form solution, which can 

directly solve the inverse kinematics problem. To illustrate this concept, a two DOF robotic 

arm example [26] is explained below. 

 

A 2-link arm is shown in figure 2.7. Link 1 and 2 are respectively l1 and l2. The angle from 

link 1 to the x-axis is expressed as θ1. The angle between link 2 and link 1 is expressed as θ2. 

The position of the end effector in the Cartesian space is expressed in p. 

The Forward Kinematics for the position of the end effector of this robotic arm are 

straightforward. 

 

  

 

 

Where px is the x-coordinate and py is the y-coordinate of the end effector. 

 

 

     

    

 

 

 

 

 

 

 

 

 

 

 

 

 

The Inverse Kinematics is more complicated. The challenge is to find the angles θ1 and θ2 , 

knowing the desired position of the end effector, p. 

 

Figure 2.7 : Inverse Kinematics example of a 2-link robotic arm 
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The Rule of Cosine can be used to determine the angle of θ2, where cos(γ) =−cos(θ2). There 

will be two solutions for θ2 .because of the arccos, meaning −θ2 will also be a solution. 

 

 

 

 

 

 

The Rule of Sine can be used to determine the angle of θ1. Angle θ1 is dependent on θ2, but 

there are no different solutions for a same θ2. 

As a result, there will typically be two alternative configurations for a given point in the 

Cartesian plane. 

 

 

 

 

 

 

 

 

 

 

 

This was a simplified example with only two links. Finding a closed form solution for a 6 DOF 

robotic arm is significantly more complicated. 

Using iterative techniques is another method to perform the inverse kinematics. Iterative 

numerical approaches are one of those techniques. A search algorithm like the Newton-

Raphson can be used. The transformation matrix 𝐻6
0 can be used to create the cost function for 

this optimization algorithm. The cost functions derived from the DH-parameters of the UR5, 

that can be used for various minimization algorithms, are described in Appendix A. 
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2.4.4 Inverse Jacobian Technique 

 

The method to calculate the inverse Kinematics of the UR5 is the inverse Jacobian 

technique. Although it is impossible to reverse the joint space to Cartesian space mapping for 

position, it is possible to do so for rates. As we mentioned in section 2.4.2, this mapping is 

known as the Jacobian and it is only dependent on the angles of the joints, thus in can be 

inverted. 

The plan is to differentiate the 6D position and rotation vector. The resulting vector, which 

contains the TCP's velocities, is multiplied by the Jacobian's inverse. The present angles of the 

joints are used to calculate this Jacobian as described on section 2.4.2. The resulting vector 

represents the joints’ velocities and it is finally summed to produce the vector with the joint 

angles. The whole process is briefly presented below. Here pi is the position and rotation vector 

for instant i. JG is the geometric Jacobian and θi is the vector for the angles of all six joints for 

instance i. 

 

 

 

 

 

 

 

 

 

 

 

It should be noted that the order in which the rotation matrices are multiplied affects the 

angle. There is no way to compute the difference without introducing an error. Furthermore, 

the present position affects the Jacobian used to determine the following position. This will, 

also, produce an error since θ is generally not constant. In order to avoid problems, the steps 

must be very small so the errors are not significant. 
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2.5 Robot Vision and ArUco Markers 

 

Computer vision is a field that enables computers and systems to perceive the world around 

them and derive meaningful information by analysing digital images, videos and other visual 

inputs. Robot vision is a related branch where the host computer not only processes the 

environment data collected from cameras or sensors but also uses the information to control 

the client robot. 

The most used software to handle computer vision problems is the OpenCV [27], an open 

source cross-platform programming language. This library implements many functions useful 

to handle cameras, intrinsic calibrate them and to manage and parse images. 

A very useful tool for computer vision systems are fiducial markers. These markers are 

image like objects, which are designed to be detectable and typically contain an interpretable 

meaning. They come in a variety of sizes and shapes, ranging from tiny dots to intricate bar-

code images. 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

For the purposes of this thesis the ArUco markers [11] are best suited. These markers are 

comprised by an external black border and an inner region that encodes a binary pattern. There 

are several dictionaries for ArUco markers which differ in the number of markers they contain  

 

Figure 2.8 : Comparison of some 

common Fiducial markers 
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and the number of inner squares that encode the binary pattern. In this application, the marker 

is a 7x7 grid with the outer rows and columns used as a black border, leaving a 5x5 grid for the 

encoding. Only two squares on each row are utilized for the actual code, with the remaining 

used for error checking. 

This evaluates to 11111111112 = 102310 , resulting to 1024  unique IDs. 

 

 

 

 

 

 

 

 

 

     

 

 

 

The large squares in this design makes it easy and fast to detect, compared to something like 

a QR-code, while it is still able to contain an encoded ID. Therefore, we can preserve all the 

needed information while any unnecessary complexity is eliminated. Another advantage of 

these markers is that each of them provides a 4-point vector representing the pixel coordinates 

of the corners. When the corners are known, the position of the center can be calculated and 

because of the asymmetry of the binary code, the orientation of the marker can be determined. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.9 : ArUco Marker with ID = 4 

 

 



19  Problem Statement 

  

 

 

 

 

Chapter 3 

3 Problem Statement 

 

 

3.1 Autonomous Vision Based Control For Robot 

Manipulator 

 

  The use of robot manipulators is a continuously developing area, especially in industrial and 

manufacturing environments. As a result, there is a growing need for agile and adaptable 

autonomous robotic systems. In order for the robots to be considered autonomous, they must 

be able to perceive the surrounding environment and make decisions about the order of actions. 

   This thesis is focused on developing autonomous control of the UR5 robot arm, by the means 

of computer vision, recognition and tracking, in order to complete picking, handling and 

stacking tasks. The robot must be able to operate autonomously, without user input. 

Furthermore, it should be able to interact with its environment and recognize objects of interest. 

This is crucial in order for the robot arm to adapt to potential changes of its surroundings, and 

operate under random conditions of the workspace. 

   The introduction of extra features like, robot vision and grasping, calls for the integration of 

the appropriate modules. Additionally, the tools for the trajectory planning, robot control and 

object recognition must be implemented. Due to the need of performing the tasks accurately 

and reliably, synchronization and efficient algorithm development is a key factor for the success 

of the system. 
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3.2 Related Work 

 

Autonomous robotic manipulators have been an area of increasing research interest, due to 

their extensive use in industrial and manufacturing applications. Robot arms with 6DOF are 

complex enough to take the place of humans and perform complicated tasks. Many approaches 

focus on the integration of robotic arms in industrial environments [1], [2], [5]. These 

approaches utilize vision systems to enable the robot to perceive its surroundings. The Amazon 

Picking Challenge (APC) [3] is a well-known competition, organized every year by the amazon 

company, in order to promote shared and open solutions to some of the big problems in 

unstructured automation. This challenge focuses on pick-and-stow operations where a robot 

recognizes target items, picks items from shelves and places them in shipping boxes. 

Moreover, visual guidance systems are examined in [4], [7], [6]. In those approaches 

different camera systems have been used, from simple 2D USB camera to the more advanced 

Kinect depth camera. Also, the recognition tasks vary, as some approaches focus on color 

recognition, while others deal with shapes and object detection. In our approach, we used 

ArUco markers [11] for the object detection. These markers are commonly used in robotics, 

not only for object tracking but also for localization and navigation [8], [9]. Since there are 

ways to extract information about the object’s distance from the camera, if you possess 

knowledge about the markers’ dimensions, the use of a depth camera is not necessary. 

Robot arm kinematics and motion planning are also topics with great interest in robotics. 

Specifically, for the UR5 manipulator the kinematic and dynamic modeling is explained in 

[10],[12]. Different approaches for the motion control of the robot have been investigated in 

the past, including the Proportional Integral Derivative method and the Fuzzy Logic Control 

[13],[14]. These techniques are especially useful for controlling the hardware of the real UR5 

robot. Finally, the motion planning strategy for the 6-DoF robot has been studied in several 

publications [15],[16] which contain the conditions and parameters involved in robot trajectory 

planning. 
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4 Our Approach 

 

 

4.1 Simulation Environment  

 

The first step was to create the environment for the simulation in the Gazebo platform. The 

environment consists of two workbenches. The first one, that will be referred to as workbench 

1, is the place where the towers, which the robotic arm is called to recreate, are being spawned. 

A stationary 2D camera is placed directly above, so that its field of view covers the entirety of 

the area. The second workbench (workbench 2) includes the UR5 manipulator and 8 cylinders 

with unique ArUco markers displayed on top of them. This is the operation area of the robot 

arm. The goal is for the robotic manipulator to handle the cylinder blocks on its workbench to 

recreate the spawning of stacks that takes place in workbench 1. 

 

 

 

Figure 4.1 : Gazebo environment. Workbench 1 (left), Workbench 2 (right) 
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The process by which the stacks, that we are called to copy, are being spawned is described 

as follows. In each iteration a single cylinder, from a set identical to the one described above, 

is being spawned randomly in one of three positions, on workbench 1. The order by which the 

IDs spawn is random. The stationary camera is responsible for detecting the cylinder and 

identify its ArUco ID and position. The robotic manipulator is able to acquire this data via the 

ROS Service /latest_aruco_id, in order to continue with the pick and place task. 

 

 

4.2 UR5 Robot Modeling 

 

    For the UR5 robotic arm ROS Industrial universal_robot package was used. Universal robot 

descriptions, drivers, gazebo resources, kinematic, ROS messages and MoveIt! packages are 

included. Robots in ROS are modelled in The Universal Robotic Description Format (URDF) 

which is XML file format. For speeding up of tedious writing in URDF language serves XML  

 

Figure 4.2 : Workspace 1, target stacks spawn 
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macro (Xacro). Xacro enables the developer to define repeating properties and create own 

macros. Several addition had to be introduced in the original ur5.urdf.xacro file in order to add 

the desired functionalities to the robot. 

First, vacuum grippers were attached to the manipulator’s end effector. The grippers are 

available as a Gazebo ROS dynamic plugin. They operate by collecting data from a ROS topic 

and applying wrench to a body accordingly.  Since the vacuum gripper only provides limited 

force, nine identical grippers were added in order to lift the object. An extra link and a joint are 

added to the URDF file for every gripper. 

The robot was also equipped with a camera module attached to its end effector, available as 

a gazebo sensor plugin, for the detection and tracking of the cylinders. The camera is displayed 

in the simulation as a green cube. All camera’s image raw data are published at the 

/ur5/usbcam/image_raw topic. 

In the discipline of robotics, each component of a robot is described by its coordinate system 

and its origin, which are provided by a position and a rotation vector relative to another 

reference system. Additionally, for moving robots the relation between two subsystem parts is 

dependent to time. ROS has an integrated transform library, called tf [24], which is utilized as 

the main method of tracking positional data. This information is very useful to determine robot 

poses and objects’ position at a given timestamp. The tf tree of the complete UR5 with the 

additions of the extra modules and views in Rviz plugin are presented in Figure 4.4 and Figure 

4.5 respectively. 

 

Figure 4.3 : UR5 Robot model equipped with the additional modules and the vacuum 

grippers configuration 
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Figure 4.4 : UR5 tf tree 

 

 

Figure 4.5 : Tf tree view in RVIZ plugin 
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4.3 System Synchronization and management 

Synchronizing every subtask is crucial to ensure the smooth operation of the system. Delays 

in the simulation can cause loss of data, during the communication of different nodes, resulting 

in errors. To solve this problem a simple finite state machine (FSM) was implemented which 

controls the robot’s behavior and the function of all the other modules. The complete finite 

state machine is shown in figure 4.6. 

 

     

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The starting point is the Initialization State, IS. The FSM will remain in this state until the 

simulation environment is built. When the robot, the workbenches, the scene 1 camera and the 

cylinders are spawned, we transition to the next state. 

  

 

 

Figure 4.6 : FSM 
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  HS stands for Home State, during this state the arm goes to its home pose. In this pose, the 

robot’s camera is aimed at the cylinder blocks that must be stacked. During this state, a cylinder, 

whose placement the robot must recreate, spawns on workbench 1. 

The next state is Detection Scene 1, DS1. The 2D camera located above workbench 1 

recognizes the newly spawned ArUco ID and based on its coordinates it determines in which 

of the three towers it was stacked. This information is communicated to the robot via ROS 

Services request and reply messages. The camera node stores information about all the ArUco 

IDs it has previously encountered, that way we ensure that only the information about the most 

recently spawned cylinder will get transferred to the robot. 

The next transition in to the Detection Scene 2 state, DS2. Now the robot arm in called to 

detect the cylinder with the same ArUco ID, from the block set located in front of it, using the 

attached camera on its end effector. Furthermore, the cylinders position must be estimated for 

the next step. 

It is finally time for the pick and place task, PPS. The robot arm has knowledge about the 

coordinates of the desired cylinder and the stack on which it should be placed, thus the motion 

planning can be implemented. When the placement is completed, the FSM transitions to the 

Home State for the loop to repeat. When we run out of cylinder blocks the program will 

progress to the End State. 

 

 

 

4.4 ArUco Marker Detection 

 

The detection algorithms were implemented using OpenCV, since it provides a large set of 

image processing algorithms. Additionally, a library specifically for ArUco markers detection, 

developed by Rafael Muñoz and Sergio Garrido [11] is available for OpenCV. 

The script from Github repository [28] was used, under MIT License, to create the ArUco 

markers. Then, using Blender open source 3D creation suite, COLLADA files were created 

describing the mesh, material and texture of each cylinder based on the ArUco image files. An 

example of a generated ArUco marker and the corresponding blender model is shown in Figure 

4.7. 
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Before we proceed with the detection, it is necessary to ensure that we are accepting the 

camera’s latest frame. For that reason, we discard the first 20 frames the camera provided in 

each detection state, which is equivalent to 2 seconds since the camera operates at 10 frames 

per second. This is enough time to make sure that delays in the simulation or in the publishing 

of the camera’s recorded image on the ROS Topic, will not cause any issues. 

The first step of the detection process is finding marker candidates. In order to do that, an 

adaptive threshold [29] is applied to the image. Window sliding is used in adaptive thresholding 

to obtain the best greyscale value for each window. Values below the calculated value will be 

black and above is white. Contours can now be extracted from the binary image [30]. If they 

are not convex or close to a square shape, they will be discarded. The size of the edges or the 

separations between them, among other filters, are used to define these conditions [31]. 

Now that the square shaped candidates have been selected, the next step in to determine if 

they are in fact ArUco markers with a valid ID. The candidates will be subjected to perspective 

transform. This form is known as the canonical form. Otsu thresholding [32] will then be 

applied. The goal of Otsu thresholding is finding an optimum point of the histogram of the 

image so that the disparity between the black and white (foreground and background) 

distributions is minimum. 

For the purpose of this thesis the 5x5 ArUco dictionary was used, so the last version of the 

images will be divided into 5x5 sub-images (with the border, 7x7). Since they are already 

thresholded, it is easy to convert the binary images to a binary matrix. These matrices will be 

searched in the dictionary and if they match with the markers their IDs will be determined. 

 

 

Figure 4.7 : ArUco Marker ID=4 and the corresponding cylinder blender model 
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Figure 4.9 : ArUco Markers' IDs detection by the UR5’s  

end effector camera 

 

Figure 4.8 : Marker cells 
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The final step is to estimate the positions of the markers. ArUco detect function returns the 

coordinates of the corners for each marker, in pixel units, in the camera field of view. The depth 

can be calculated if we take into account the exact dimensions of the marker. In our case, the 

square’s side length is 7.81 centimeters. If we pass this data, along with the camera’s distance 

coefficient and position, as parameters in the function estimatePoseSingleMarkers(), which is 

included in the ArUco library, it will return 2 vectors, the translation (position) and rotation of 

the marker. The rotation vector is not relevant for its application since cylinder blocks are used, 

thus their orientation in not significant. The translation vector is the coordinates of the ArUco 

marker corners translated to the camera coordinate system. Using simple geometry, we can 

deduce the center point of the square marker by calculating the means of the corners’ x and y 

coordinates.  

In order to command the robot to move its end effector, the position must be relevant to the 

robot’s base coordinate system. To do that we use the homogeneous transformation matrix H, 

that represents position and orientation of one coordinate frame relative to another coordinate 

frame.  

 

 

 

 

 

 

 

To find the homogeneous transformation matrix we need the rotation matrix, R and the 

translation vector, t. 
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The camera pose relative to the robot base can be acquired using the get_current_pose 

function. In ROS the preferred representation for orientation are quaternions, a 4-tuple 

representation (x, y, z, w). A unit quaternion q can be converted to a rotation matrix R as 

follows: 

 

The same transformation has to be performed to get the vector that describes the pose of the 

marker in the camera coordinate system. By multiplying the two terms together we get the 

position of the object in the robotic arm reference frame. 

 

 

 

 

 

4.5 Robot Control and Motion Planning 

 

For the robot motion MoveIt! was used to define the required control groups both for the 

arm and the vacuum grippers, perform the motion planning and solve the inverse kinematics. 

Motion plan creation by MoveIt is advantageous since only the goal pose needs to be defined 

if the motion path is irrelevant. 

What we want from the motion planner to perform is specified in the motion plan request. 

Typically, the motion planner is asked to move the arm to a new pose or the end effector to a 

different location. By default, collisions, including self-collisions, are checked. The desired 

trajectory will be generated to move the arm according to the plan request. It should be noted 

that the result will be a trajectory, not just a path, meaning that velocity and acceleration 

constraints at the joint level must be taken into consideration. 
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A motion planner is a part of the entire motion planning pipeline, which also includes 

planning request adapters. Pre-processing motion plan requests and post-processing motion 

plan responses are both possible with planning request adapters. Pre-processing is helpful in a 

variety of circumstances, such as when a robot's initial state is just barely outside of its defined 

joint limits. Other processes, such converting paths generated for a robot into time-

parameterized trajectories, require post-processing. 

 

    

 

 

     

 

 

 

 

 

 

 

 

 

 

 

 

To generate the MoveIt configuration package the setup assistant tool GUI can be used. The 

URDF/xacro file that defines the robot is the only file needed to execute this tool. Also, the 

ROS Industrial package provides all the necessary MoveIt configuration YAML files for the 

UR5 manipulator, including controllers, joint limits, kinematic solvers and OMPL planning. 

One of the simplest and most useful MoveIt user interfaces is through the Python-based 

Move Group Interface. The functionality for all the needed operations can be provided by these 

wrappers. To use the Python MoveIt interfaces, the moveit_commander namespace must be 

imported in the python script responsible for robot movement. This namespace provides us 

with a MoveGroupCommander class, which is an interface to a planning group or group of 

joints, and a RobotCommander class, which has information about the robot’s kinematic model 

and the current joint states. Additionally, a GripperCommander class was created in order to 

turn the grippers on and off. 

 

Figure 4.10 : Motion planning pipeline 
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In order to plan a motion for the robot arm, such as picking or placing an object and moving 

to home pose, we require a start and a goal state. For the starting state, we can acquire the 

robot’s pose using the get_current_pose() function. For the goal state we can just define the 

x,y,z coordinates the arm’s end effector should end up after the motion is completed. These 

coordinates are predefined if the robot needs to move to the home position, or if it is required 

to place a cylinder in one of the three stacks. Of course, in the placing case, the z-coordinate 

adjusts depending on the height of the tower. In the picking scenario the coordinates are 

provided from the ArUco detection and they correspond to the cylinders position in the world.   

The Cartesian space path planning is implemented by the use of compute_cartesian_path() 

function. This function computes a sequence of waypoints to make the end effector move in 

straight line segments in order to move from the start to the goal state. A value is requested, as 

a parameter, to determine the distance that configurations are computed, in our case that 

distance is 2 centimeters. The system computes the joint positions using inverse kinematics for 

each interpolated waypoint and the planned path is, finally, executed. In Figure 4.10 the start 

state (green) and the goal state (orange) of a simple motion are depicted. The Cartesian path 

and the waypoints of the computed motion plan are shown in Firure 4.11. 

    

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.11 : Start and Goal State 
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Figure 4.12 : Motion planning 
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5 Results 

 

 

    An overview of the whole approach can be viewed using rqt_graph, a tool that offers 

graphical representation of all the nodes and the topics used for communication between them. 

 

 

 

 

 

 

 

Figure 5.1 : ROS Nodes Graph showing all nodes and topics 
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5.1 Simulation 

 

Complete simulations of the robot stacking all the cylinders, in order to recreate the desired  

towers, is presented step by step in the figures below. First, an example with 8 cylinders: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2 : Example 1, Simulation start 

 

Figure 5.3 : Example 1, Iteration 1. Detection (left) Picking (center) Placing (right) 

Figure 5.4 : Example 1, Iteration 2 
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Figure 5.5 : Example 1, Iteration 3 

Figure 5.6 : Example 1, Iteration 4 

Figure 5.7 : Example 1, Iteration 5 

Figure 5.8 : Example 1, Iteration 6 
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Simulation ends when all cylinder blocks are stacked. The final result is two identical sets of 

towers.  

 

 

Figure 5.11 : End of simulation (8 cylinders) 

 

Figure 5.9 : Example 1, Iteration 7 

Figure 5.10 : Example 1, Iteration 8 
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In the second example, a simulation with 10 cylinders is presented: 

 

 

 

 

 

 

Figure 5.12 : Example 2, Iteration 1 

Figure 5.13 : Example 2, Iteration 2 

Figure 5.12 : Example 2, Iteration 3 

Figure 5.13 : Example 2, Iteration 4 
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Figure 5.14 : Example 2, Iteration 5 

Figure 5.15 : Example 2, Iteration 6 

Figure 5.16 : Example 2, Iteration 7 

Figure 5.17 : Example 2, Iteration 8 

Figure 5.18 : Example 2, Iteration 9 
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In the above examples, we used 8 and 10 cylinders with ArUco markers, even though the 

project was originally designed to incorporate 16 markers. Unfortunately, the system, this 

application was developed on, was not able to successfully run the simulation for more than 10 

cylinders, since the Gazebo simulator is a resource demanding program. However, the code for 

all 16 cylinders is implemented and is included in the package. 

 

 

 

 

 

 

Figure 5.19 : Example 2, Iteration 10 

Figure 5.20 : End of simulation (10 cylinders) 
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5.2 Object Pose Estimation 

 

The performance of the robot vision algorithm is shown in the table below. We can conclude 

that the estimation of the cylinder poses is accurate, since the maximum deviation is 2-3 

millimeters.  The z axis presents the biggest differences from the true coordinates. Fortunately, 

the addition of 9 vacuum grippers and the reduced cylinder’s mass, enable the robot arm to 

consistently pick up the blocks. Failure to pick a cylinder is extremely rare and dropping a 

block mid motion has yet to encountered. 

 

 True world coordinates Estimated coordinates 

ArUco ID x y z x y z 

1 0.5 0 0.025 0.502 0.001 0.028 

2 0.7 0 0.025 0.699 0 0.022 

3 0.6 -0.1 0.025 0.601 -0.101 0.023 

4 0.6 0.1 0.025 0.600 0.102 0.028 

5 0.74 -0.14 0.025 0.741 -0.139 0.025 

6 0.74 0.14 0.025 0.741 0.140 0.024 

7 0.46 -0.14 0.025 0.461 -0.141 0.022 

8 0.46 0.14 0.025 0.459 0.141 0.026 
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Chapter 6 

6 Conclusions 

 

 

6.1 Conclusion 

 

This thesis describes the implementation of an autonomous 6-DOF robotic manipulator with 

visual guidance, where the objective is for the robot arm to stack cylinder blocks, recreating 

randomly generated towers. The blocks have unique ArUco markers displayed on them so they 

can be identified. The manipulator is equipped with vacuum grippers and a 2D camera attached 

to its end effector. 

The robot receives information about the towers that it is required to copy from a stationary 

camera, responsible to track their spawning. Since the robotic arm is equipped with a camera, 

it employs computer vision techniques to locate the desired cylinder. Consequently, it 

constructs a trajectory to pick and stack each cylinder by making use of motion planning 

algorithms. 

This approach is a proof of concept for a manipulator robot that can perceive its 

surroundings and operate autonomously, in a closed-loop, according to the changes. In real life 

scenarios, the prototype towers could be constructed by a human, instead of being randomly 

generated. Additionally, the information about the sequence that the robot arm has to stack the 

building blocks, can vary. As an example, in a real-world application if the robot arm was 

utilized in the warehousing industry, a list of how the packages need to be stacked could be 

provided to the robot. Subsequently the robot would be able to recognize markers on the 

packages and place them on wooden pallets according to the requested way, so that they can 

be conveniently shipped or delivered. 

The entire project has been implemented within the Robot Operating System (ROS) and 

Gazebo 3D robotics simulator and is available as an open source package. 
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6.2 Future work 

 

6.2.1 Real Robot Application 

 

The results of this project are theoretical and simulation-based. The next 

step is to test the designed system on an actual robot and observe how the planners and 

computer vision perform in real-world scenarios. Motion planners probably require adjustment 

of the planning parameters, to take the environmental disturbances and the actual robots 

limitation into account, in order to achieve optimal planning process. Also, lighting conditions 

and environmental noise might hinder the computer vision algorithm’s performance. 

 

 

6.2.2 Motion planners 

 

There is a variety of motion planners available for robotic manipulators. To name a few 

Rapidly-exploring Random Trees (RRT), Expansive Space Trees (EST) and Path-Directed 

subdivision Trees (PDST) are all available in the Open Motion Planning Library (OMPL). It is 

worth investigating if implementing any of those or any other motion planning algorithm, can 

improve the robots arm precision, solution smoothness or planning time. Additionally, different 

motion planners could be deployed for more complex environments with introduced obstacles. 
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8 Appendix A 
 

Transformation Matrix 

 

The equations in this Appendix form the transformation matrix for the Forward Kinematics of 

the UR5, as defined in Chapter 2. In these equations si+j = sin(θi+θj) and ci+j = cos(θi+θj). 

Furthermore the Denavit-Hartenberg (DH) coefficients for di and ai can be found in Figure 2.6. 

These equations can be used in the cost function in an optimization algorithm to find the Inverse 

Kinematics. 
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