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Abstract

Polar coding is the first channel coding technique that provably achieves the high-

est rate at which information can reliably be sent over a communication channel,

known as channel capacity. Polar codes utilize the effect of channel polarization to

generate a set of N channels out of N independent copies of a given channel W. These

channels are either perfect (symmetric capacity I(W) = 1) or extremely poor (sym-

metric capacity I(W) = 0).

The main quest of channel polarization is to find out which channels are perfect in

order to transmit data. In this thesis, we first describe the essential concepts of polar

codes and the basic polar encoder and decoder suggested by Arikan.

Then, we analyze a method for the channel selection in the case of the binary sym-

metric channel (BSC) and evaluate its performance.

Finally, we expand channel polarization to Q-ary input channels and evaluate a tech-

nique of channel polarization for arbitrary discrete memoryless channels. Especially

for the ternary symmetric channel, we propose some modifications to the existing

algorithm.
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Chapter 1

Introduction

Claude E. Shannon’s 1948 paper [7], ”A Mathematical Theory of Communication”

published in the Bell Systems Technical Journal, effectively established information

theory. In this paper, Shannon mathematically defined the highest rate at which

information can reliably be sent over a communication channel, known as channel

capacity. Furthermore, he defined the fundamental components of a communication

system as in figure 1.1 which shows the process by which a message is sent by the

transmitter and received by the receiver with the possible input of noise. For the next

2 decades, the field of information theory was widely accepted and applied until the

70s, when for about 20 years the interest significantly declined. In the 90s, remarkable

progress was made with the development of capacity-approaching codes (Turbo codes,

LDPC).

Figure 1.1: Block diagram of a communication system

Polar Codes were introduced in 2009 by Erdal Arikan and it was the first coding

technique to provably achieve channel capacity for the binary input discrete memo-

ryless channel. In addition, polar codes had lower complexity compared to previous

coding techniques. Polar code utilizes the method of channel polarization, which

converts channels (codeword bits) into either very good or very bad channels. As
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a result, we can send information through the good channels while setting the bad

channels to a specific value known to the decoder.

In this thesis, we will focus on channel polarization of Binary Discrete Memoryless

channels (B-DMCs), namely on the Binary Erasure Channel (BEC) and the Binary

Symmetric Channel (BSC). We will also describe a low-complexity Successive Can-

cellation (SC) decoder and simulate the performance results of polar coding under

SC decoding for each channel at various block lengths.

Finally, we will generalize channel polarization for the case of q-ary Discrete Memory-

less Channels channels and specifically the case of Ternary Symmetric Channel(TSC).
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Chapter 2

Polarization of Binary-Discrete

Memoryless Channels

According to Arikan [1], channel polarization is a technique for converting N in-

dependent copies of a B-DMC W into a polarized set of N binary input channels

{W (i)
N : 1 ≤ i ≤ N} such that as N increases, there are indices near 1 that approach

capacity I(W ), those near 0 that approach 1−I(W ) and a small fraction of mediocre

channels.

Figure 2.1: Binary Discrete Memoryless Channel

2.1 Channel Parameters

To begin with, two critical parameters must be defined to measure rate and reliability:

symmetric capacity and the Bhattacharyya parameter.

11



2.1.1 Symmetric Capacity

Given a B-DMC W : X → Y with input alphabet X = {0, 1} and output alphabet

Y , the symmetric capacity is defined as:

I(W ) ≜
∑
y∈Y

∑
x∈X

1

2
W (y|x) log W (y|x)

1
2
W (y|0) + 1

2
W (y|1)

(2.1)

It is used as a measure of the rate and it is essentially the mutual information between

the input and output of the channel when the input is a uniform distribution.

Binary Symmetric Channel

The Binary Symmetric Channel with input alphabet X = {0, 1}, output alphabet

Y = {0, 1} and crossover probability p has the following symmetric capacity

I(W ) = 1 + p log2(p) + (1− p) log2(1− p) (2.2)

Binary Erasure Channel

The symmetric capacity of the Binary Erasure Channel with input alphabet X =

{0, 1}, output alphabet Y = {0, 1, ?} and erasure probability ε is

I(W ) = 1− ε (2.3)

(a) BSC (b) BEC

12



2.1.2 Bhattacharyya parameter

The Bhattacharyya parameter Z(W ) represents an upper bound on the probability of

maximum-likelihood decision error and has values in the range [0 1]. Bhattacharyya

parameter is defined as follows:

Z(W ) ≜
∑
y∈Y

√
W (y|0)W (y|1) (2.4)

It is used as a measure of reliability. For the BSC, the Bhattacharyya parameter is:

Z(W ) = 2
√
p(1− p) (2.5)

For the BΕC, the Bhattacharyya parameter is:

Z(W ) = ε (2.6)

The relation between the symmetric capacity I(W) and the Bhattacharyya parameter

Z(W) is given by:

I(W ) ≥ log
2

1 + Z(W )
(2.7)

I(W ) ≤
√

1− Z(W )2 (2.8)

2.2 Construction

To understand the concept of channel polarization, it is necessary to first define its

two phases, which are the channel combining phase and channel splitting phase.

2.2.1 Channel Combining

Channel combining refers to the procedure where N independent copies of a given

B-DMC W are combined recursively to form a vector channel WN = XN → YN

where N = 2n, n ≥ 0.

Figure 2.3 depicts the construction of W4 : X 2 → Y2 by recursively combining two

independent copies of W2, which is also constructed by combining two independent

copies of W. Furthermore, block R4 represents a permutation operation that separates

odd-indexed with even-indexed input, in the case ofW4 it maps the input (s1, s2, s3, s4)

to (s1, s3, s2, s4).

13



Figure 2.3: Construction of W4

It becomes apparent that since mapping uN
1 7→ υN

1 is linear over GF(2), the

mapping of the input of the constructed channel WN to the input of the underlying

raw channels WN is also linear and can be carried out over the binary field GF(2) in

the sense that xN
1 = uN

1 GN .

GN is the generator matrix of polar codes and it is defined as GN = BNF
⊗n, where

BN is the bit reversal permutation matrix BN = RN(I2 ⊗ BN/2) and F⊗n is the n

Kronecker product of the matrix F =

[
1 0

1 1

]
.

For the case of W4 where N = 22, we have

F⊗2 =


1

[
1 0

1 1

]
0

[
1 0

1 1

]

1

[
1 0

1 1

]
1

[
1 0

1 1

]
 =


1 0 0 0

1 1 0 0

1 0 1 0

1 1 1 1

 and

G4 =


1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 1


Hence, the construction of the vector channel is given from the relation

WN(y
N
1 |uN

1 ) = WN(yN1 |uN
1 GN) = WN(yN1 |xN

1 ) (2.9)

for yN1 ∈ YN , uN
1 ∈ XN .
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2.2.2 Channel Spliting

Channel splitting refers to the procedure where the vector channelWN is split back

to N channels W
(i)
N : X → YN × X i−1 and it is defined by the following transition

probabilities

W
(i)
N (yN1 , ui−1

1 |ui) ≜
∑

uN
i+1∈XN−i

1

2N−1
WN(y

N
1 |uN

1 ) (2.10)

In the case of the polarization of BEC, the symmetric capacities can be easily calcu-

lated by the following recursive relations:

I(W
(2i−1)
N ) = I(W

(i)
N/2)

2

I(W
(2i)
N ) = 2I(W

(i)
N/2)− I(W

(i)
N/2)

2
(2.11)

where I(W ) = 1− ε.

Figure 2.4: BEC(ε = 1
2
) channel polarization for N = 212

The plot and histogram show that channel polarization of BEC with erasure proba-

bility e = 0.5 results in half of the channels being perfect with symmetric capacity 1,

half of the channels being useless with symmetric capacity 0, and a small percentage

of mediocre channels.
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2.2.3 Channel, Rate and Reliability Transformations

Given a single binary-input channel W : X → Y we can perform a single step

transformation (W,W ) 7→ (W−,W+) and get two binary-input channelsW− : X → Ỹ
and W+ : X → Ỹ × X , iff there exist one-to-one mapping f : Y2 → Ỹ such that

W−(f(y1, y2)|u1) =
∑
u
′
2

1

2
W (y1|u1 ⊕ u

′

2)W (y2|u
′

2) (2.12)

W+(f(y1, y2), u1|u2) =
1

2
W (y1|u1 ⊕ u2)W (y2|u2) (2.13)

Figure 2.5: Polarized channels

and if we take f as the identity mapping, we can obtain (W,W ) 7→ (W−
2 ,W+

2 )

such that

W−
2 (y21|u1) =

∑
u2

1

2
W (y1|u1 ⊕ u2)W (y2|u2) (2.14)

W+
2 (y21, u1|u2) =

1

2
W (y1|u1 ⊕ u2)W (y2|u2) (2.15)

In addition, it is important to mention the properties of rate and reliability. Given

a single binary-input channel (W,W ) 7→ (W−,W+) Then

I(W−) + I(W+) = 2I(W ) (2.16)

I(W−) ≤ I(W+) (2.17)

The equality stands for when I (W) equals 0 or 1.

Those two relations highlight the preserving properties of the symmetric capacity

under single-step channel transformation.
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Furthermore, given the single-step channel transform (W,W ) 7→ (W−,W+)

Z(W+) = Z(W )2 (2.18)

Z(W−) ≤ 2Z(W )− Z(W )2 (2.19)

Z(W−) ≥ Z(W ) ≥ Z(W+) (2.20)

The equality in (2.19) stands for when W is a BEC. This results that under single-step

channel transform, the reliability can either stay the same iff W is BEC or improve.

All of the above-mentioned relations can expand for W
(i)
N

Figure 2.6: Symmetric Capacity vs Erasure probability of the original and the polar-

ized BEC

Figure 2.7: Symmetric Capacity vs Error probability of the original and the polarized

BSC

It is obvious that for both the BEC and the BSC, the symmetric capacity of the

degraded channel W− is smaller than before the polarization, and the symmetric

capacity of the upgraded channel W+ is greater.
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2.3 Encoding

The matrix multiplication method outlined in channel combining (2.9) is convenient

for small values of N, but as N grows, so does the complexity. Another implementation

of the encoder is rather straightforward, as we must construct the WN as shown in

figure 2.8.

Figure 2.8: Recursive construction of WN from two copies of WN/2

Having made the selection of the information set A, we assign the message to the

channels uA ∈ XK and the remaining channels uAc ∈ XN−K are frozen and set to 0.

The reverse shuffle operation RN separates the odd-indexed channels, which are

fed into the first copy WN/2, from the even-indexed channels, which are fed into the

second copy WN/2. This process is implemented recursively until the channel W2

which is comprised of two independent copies of W1, the B-DMC which outputs yN1

becomes the input to the decoder.

The polar coding transform graph example in Figure 2.9 shows that the encoding

process has log2(N) levels with N channels at each level, implying that the encoding

complexity is O(N log2N).

18



Figure 2.9: Graph of the polar encoding for N=8

As the block length increases more channels are going to polarize, thus, the proba-

bility of error is going to get smaller and as we can see in figure 2.10, more channels are

either perfect with a symmetric capacity near 1 or useless with a symmetric capacity

near 0.

(a) BEC (b) BSC

Figure 2.10: I(W) versus Channel index for block lengths 25...210
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2.4 Decoding

The technique used to decode polar codes, as suggested by Arikan in [1], is known

as a successive cancellation decoder. Based on the observed channel output yN1 and

knowledge of the frozen bits uAc , this method gives an estimate ûN
1 of uN

1 . The

decoding is sequential in the sense that the calculation of probabilities makes use of

the previously estimated bits (fig 2.11), and it is accomplished using the recursive

formulae listed below.

W
(2i−1)
2N (y2N1 , u2i−2

1 |u2i−1) =
∑
u2i

1

2
W

(i)
N (yN1 , u2i−2

1,o ⊕ u2i−2
1,e |u2i−1 ⊕ u2i) (2.21)

·W (i)
N (y2NN+1, u

2i−2
1,e |u2i)

W
(2i)
2N (y2N1 , u2i−1

1 |u2i) =
1

2
W

(i)
N (yN1 , u2i−2

1,o ⊕ u2i−2
1,e |u2i−1 ⊕ u2i) (2.22)

·W (i)
N (y2NN+1, u

2i−2
1,e |u2i)

and the decision is made according to the following rule

ûi =

0 if ui ∈ Ac

argmaxx∈(0,1)W
(i)
N (yN1 , ui−1

1 |x) otherwise
(2.23)

For the Binary input channel W : X → Y with X = 0, 1 and Y arbitrary, we can

also use the likelihood ratio

L
(i)
N (yN1 , ûi−1

1 ) ≜
W

(i)
N (yN1 , ûi−1

1 |0)
W

(i)
N (yN1 , ûi−1

1 |1)
(2.24)

With decision rule

ûi =


0 if L

(i)
N (yN1 , ûi−1

1 ) ≥ 1

1 otherwise

0 if ui ∈ Ac

(2.25)
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The following recursive formulas can be used to estimate the L
(i)
N (yN1 , ûi−1

1 )

L
(2i−1)
N (yN1 , û2i−2

1 ) =
L
(i)
N/2(y

N/2
1 , û2i−2

1,o ⊕ û2i−2
1,e )L

(i)
N/2(y

N
N/2+1, û

2i−2
1,e ) + 1

L
(i)
N/2(y

N/2
1 , û2i−2

1,o ⊕ û2i−2
1,e )L

(i)
N/2(y

N
N/2+1, û

2i−2
1,e )

(2.26)

L
(2i)
N (yN1 , û2i−1

1 ) =
[
L
(i)
N/2(y

N/2
1 , û2i−2

1,o ⊕ û2i−2
1,e )

]1−2û2i−1

· L(i)
N/2(y

N
N/2+1, û

2i−2
1,e ) (2.27)

Figure 2.11: Channel transformation for N=8

We can see from the recursive formulas that some calculations are repeated. For

example, once we’ve calculated formula (2.12), we’re ready to calculate formula (2.13)

too. To obtain a better approach and decrease complexity, we store every calculation

in two matrices of size N × (log2N +1) and reuse them rather than computing them

again.
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2.5 BEC simulation

To determine the performance of polar coding on the BEC under SC decoding, we

define channel W as in BEC figure . For rate = 1/2 and block lengths ranging from

25 to 29, we run 5000 experiments for each value of erasure probability e in order to

obtain the BER in relation to the erasure probability e.

Figure 2.12: erasure probability versus BER for polar coding and SC decoding at

block lengths 25...29 on a BEC with rate 1/2.

Figure 2.12 indicates, as expected, that as the block length increases, the BER

decreases since polar codes approach capacity when the block length increases to

infinity.
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Chapter 3

Polar Codes Construction

We have already described the nature of polar codes and the creation of a low-

complexity encoder and decoder. However, deciding on the information set A is

critical in determining if the construction is also efficient. In the case of the binary

erasure channel (BEC), choosing the information set is straightforward since we can

easily compute the symmetric capacity I(W) of each channel using (2.11), and then

choose the K channels with the largest capacity as the information set A. In the case

of the binary symmetric channel (BSC), however, it is rather challenging since there

are no recursive relations to calculate the symmetric capacity I(W).

One of the first attempts at an efficient construction of polar codes was made by

Mori and Tanaka [3] with linear complexity in the blocklength, making this approach

unfeasible. In their paper [8], Tal and Vardy proposed an efficient method to de-

termine the information set and thus construct polar codes. This method uses two

approximations to obtain a upper bound (degrading approximation) and an lower

bound (upgrading approximation) on the probability of error for each bit-channel.

These approximations make use of a parameter μ, which specifies the accuracy of

the approximation since it is the size of the output alphabet. It is evident that for

bigger values of μ, the bounds are closer to the actual probability of error, but the

complexity of the approximation of n bit-channels grows. O(n · µ2logµ).
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3.1 Preliminaries

In order to fully understand the proposed solution, we must first define the stochas-

tically degraded and stochastically upgraded channels.

According to [8]

Assuming two channels Q : X → Z and W : X → Y , we say that channel

Q is stochastically degraded with respect to W , Q ≼ W , if there exist a channel

P : Y → Z such that

Q(z|x) =
∑
y∈Y

W(y|x)P(z|y) (3.1)

for all z ∈ Z and x ∈ X .
Similarly,

Assuming two channels Q′ : X → Z ′ and W : X → Y , we say that channel

Q is stochastically upgraded with respect to W , Q′ ≽ W , if there exist a channel

P : Z ′ → Y such that

W(y|x) =
∑
z′∈Z′

Q(z′|x)P(y|z′) (3.2)

for all z′ ∈ Z ′ and x ∈ X .
Apparently,

Q′ ≽W iff W ≼ Q′ (3.3)

Furthermore, it can be seen that ifW ′ is both degraded and upgraded with respect

to W , the W and W ′ are equivalent, W ≡ W ′, and since ≼ and ≽ are reflexive

relations

W ≼W and W ≽W (3.4)

and transitive relations

if W ≼W ′ and W ′ ≼W ′′, then W ≼W ′′ (3.5)

Therefore, ≡ is also a transitive relation, according to (3.3) it is a symmetric relation

and according to (3.4) it is reflexive as well.

In addition, assuming a binary input memoryless symmetric channel (BMS) W :

X → Y , and a channel Q : X → Z that is degraded with respect toW then according

to [8]

Pe(Q) ≥ Pe(W) (3.6)

Z(Q) ≥ Z(W) (3.7)

I(Q) ≤ I(W) (3.8)
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If the inequalities are reversed, the above relations hold for the upgraded channel.

It is also known that the probability of error of a BMS channel under a maximum-

likelihood decision is

Pe(W) =
1

2

∑
y∈Y

min{W(y|0),W(y|1)} (3.9)

The proof is provided in the Appendix.

Finally, assuming a binary input memoryless symmetric channels (BMS)W : X →
Y , the likelihood ratio of an output symbol y ∈ Y is given by

LRW(y) =
W(y|0)
W(y|1)

=
W(y|0)
W(ỹ|0)

(3.10)

and at least one of the probabilitiesW(y|0) =W(ỹ|1) orW(y|1) =W(ỹ|0) is greater
than zero.

If the denominator of the likelihood ratio is zero then LRW(y) =∞.

3.2 Bit-Channel approximations

According to [8], to obtain the degrading or upgrading approximation of each

bit-channel, we provide the underlying BMS channel, the fidelity parameter, and the

binary representation of the channel index as input to an algorithm that performs

Arikans’ recursive transformations:

W−(y1, y2|u1) =
1

2

∑
u2∈X

W(y1|u1 ⊕ u2)W(y2|u2) (3.11)

W+(y1, y2, u1|u2) =
1

2
W(y1|u1 ⊕ u2)W(y2|u2) (3.12)

One issue with using recursive transformations is the massive increase in the out-

put alphabet size. Thus, after each iteration, we call the degrading merge or upgrad-

ing merge function in order to reduce the output alphabet size to at most μ. The

algorithm proposed in [8] for the Bit-channel degrading procedure is the following
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Given a BMS channelW : X → Y with output alphabet Y = {y1, ..., yL, ỹ1, ..., ỹL},
we choose from each pair (y, ỹ) a representative such that

1 ≤ LR(y1) ≤ LR(y2) ≤ ... ≤ LR(yL). (3.13)

Algorithm 1: Bit-channel degrading procedure

Input: An underlying BMS channel W, a bound μ=2ν on the output

alphabet size, a code length N = 2m, and an index i with binary

representation i = ⟨b1, b2, ..., bm⟩2.
Output: An upper bound on the probability of error of Wi Pe(Wi).

Z← Z(W )

Q ← degrading merge(W,µ)

for j = 1,2,...,m do

if bj = 0 then
W ← Q−

Z← min{Z(W), 2Z− Z2}
else
W ← Q+

Z← Z2

Q ← degrading merge(W , µ)

return min{Pe(Q),Z}

Where Z(W) is the Bhattachayya parameter of the BMS channel W and it is

obtained by

Z(W ) =
∑
y∈Y

√
W (y|0)W (y|1). (3.14)

The same algorithm holds for the Bit-channel upgrading procedure if we change

degrading merge with upgrading merge.

It is evident that if the degrading merge and upgrading merge have a time com-

plexity of τ=τ(μ) then due to the for loop, this algorithm has a complexity of O(mτ).

In order to approximate all N bit-channels the time complexity would be O(Nmτ),

but as noted in [8] many transformations can be avoided because they are shared

between bit-channels.

For example, given N = 16, the bit-channels with index ⟨0000⟩ and ⟨0001⟩ have three
transformations Q− that are shared, or ⟨0000⟩and ⟨0010⟩ have two transformations

Q− that are shared.

Upon observing this, we decided to save the transformation result for every combina-

tion of indexes bj with j = 1, ..,m when it first occurs and then recall it from memory
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when it reoccurs rather than calculating it again. The time complexity of the smart

implementation is O(Nτ).

3.2.1 Degrading merge

As proved in [8], given a BSM channel W : X → Y and let the symbols that we

want to merge be y1, y2 ∈ Y . We define Q : X → Z with the output alphabet

Z = Y \ {y1, ỹ1, y2, ỹ2} ∪ {z1,2, z̃1,2}

for all x ∈ X and z ∈ Z.

Then the degraded Q with respect to W , Q ≼W , is given by

Q(z|x) =


W(z|x) if z /∈ {z1,2, z̃1,2},

W(y1|x) +W(y2|x) if z = z1,2,

W(ỹ1|x) +W(ỹ2|x) if z = z̃1,2.

(3.15)

Figure 3.1: The degrading merge operation

It is also worth noting that when yi and yi+1 are merged, the LR order is preserved,

since LR(yi) ≤ LR(z) ≤ LR(yi+1). The output alphabet size of the degraded channel

Q decreases by 2 after each iteration of the degrading merge. Following that, the

degrading merge algorithm proposed in [8] is defined as follows:
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Algorithm 2: The degrading merge function

Input: A BMS channel W : X ← Y where |Y| = 2L, a bound μ=2ν on the

output alphabet size.

Output: A degraded channel Q : X → Y ′, where |Y ′| ≤ µ.

Assume 1 ≤ LR(y1) ≤ LR(y1) ≤ ... ≤ LR(yL)

if L ≤ ν then
return W

for i = 1,2,...,L-1 do
d← new data elements

d.a←W(yi|0), d.b←W(ỹi|0)
d.a’←W(yi+1|0), d.b’←W(ỹi+1|0)
d.deltaI→ calcDeltaI(d.a, d.b, d.a’, d.b’)

insertRightmost(d)

l = L

while l > ν do
d← getMin()

a+ = d.a+ d.a′, b+ = d.b+ d.b′

dLeft → d.left

dRight → d.right

removeMin()

l→ l − 1

if dLeft ̸= null then
dLeft.a’ = a+

dLeft.b’ = b+

dLeft.deltaI = calcDeltaI(dLeft.a, dLeft.b, a+, b+)

valueUpdated(dLeft)

if dRight ̸= null then
dRight.a = a+

dRight.b = b+

dRight.deltaI = calcDeltaI(, a+, b+, dRight.a’, dRight.b’)

valueUpdated(dRight)

Construct Q according to the probabilities in the data structure return Q

28



The degrading merge is implemented using a data structure that stores

a, b, a’, b’, deltaI, dleft, dRight, h

a , b, a’, b’ store the probabilities W(yi|0),W(ỹi|0),W(yi+1|0),W(ỹi+1|0), deltaI

store the return value of the function calcDeltaI, dLeft is a pointer to the previous

pair (yi−1, yi) and dRight is a pointer to the next pair (yi+1, yi+2).

Effectively, we are looking for a pair of yi, yi+1 that upon applying the degrading

merge, the difference in capacity is the minimum among all pairs (getMin). The

resulting difference in capacity is obtained by

calcDeltaI(a,b,a’,b’) = C(a,b) + C(a’,b’) - C(a+, b+) (3.16)

where

C(a,b)=−(a+ b) log2((a+ b)/2) + a log2(a) + b log2(b) (3.17)

with 0 log2 0 defined as 0.

The function removeMin() removes the element of the pair returned by getMin(),

from the data structure.

Obviously, after a merge is accomplished, the parameter deltaI of the pairs (yi−1, yi)

and (yi+1, yi+2) must be recalculated with the parameters of the new symbol z instead

of yi and yi+1. Thus, we check if the previous element in the array is not null to up-

date its deltaI and its field of a’, b’, dRight with valueUpdated(dLeft). Also, if the

next element in the array is not null, we update its deltaI and its field of a, b, dLeft

accordingly, with valueUpdated(dRight).

The complexity of the merge function is O(L logL) and since transformation (3.12)

grows the alphabet size to at most 2µ2 and |y| = 2L, the complexity is translated to

O(µ,2 log µ2).
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3.2.2 Upgrading merge

As in the case of the degrading merge, where we merged pairs of symbols to obtain

a channel that is degraded with respect to the original channel. We can also merge

pairs of symbols with the upgrading merge function and obtain a channel that is

upgraded with respect to the original channel. As a result, we get a lower bound (the

upgraded channel) and an upper bound (the degraded channel) on the probability of

error for each bit-channel. In reality, even for tiny values of the fidelity parameter μ,

the two boundaries are typically very close.

Method 1: As proved in [8], given a BSM channel W : X → Y and let the

symbols that we want to merge be y2, y1 ∈ Y . We denote λ2 = LR(y2) and λ1 =

LR(y1), assuming that

1 ≤ λ1 ≤ λ2.

Also, let a1 =W(y1|0) and b1 =W(ỹ1|0). We define α2 and β2 as follows.

If λ2 <∞
α2 = λ2

a1 + b1
λ2 + 1

, β2 =
a1 + b1
λ2 + 1

Otherwise λ2 =∞ and thus,

α2 = a1 + b1, β2 = 0

For α, β real numbers and x ∈ X

t(α, β|x) =

α if x = 0

β if x = 1
(3.18)

We define Q′ : X → Z ′ with the output alphabet

Z ′ = Y \ {y2, ỹ2, y1, ỹ1} ∪ {z2, z̃2}

for all x ∈ X and z ∈ Z ′.

Then the upgraded Q′ with respect to W , Q′ ≽W , is given by

Q′(z|x) =


W(z|x) if z /∈ {z2, z̃2},

W(y2|x) + t(α2, β2|x) if z = z2,

W(ỹ2|x) + t(β2, α2|x) if z = z̃2.

(3.19)
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Figure 3.2: The upgrading merge operation Method 1

Method 2: As proved in [8], given a BSM channel W : X → Y and let the

symbols that we want to merge be y1, y2, y3 ∈ Y . We denote λ1 = LR(y1), λ2 =

LR(y2) and λ3 = LR(y3), assuming that

1 ≤ λ1 < λ2 < λ3.

Also, let a2 =W(y2|0) and b2 =W(ỹ2|0). We define α1, β1, α3, β3 as follows.

If λ3 <∞
α1 = λ1

λ3b2 − a2
λ3 − λ1

, β1 =
λ3b2 − a2
λ3 − λ1

α3 = λ3
a2 − λ1b2
λ3 − λ1

, β1 =
a2 − λ1b2
λ3 − λ1

Otherwise λ3 =∞ and thus,

α1 = λ1b2, β1 = b2

α3 = a2 − λ1b2, β3 = 0

Let t(α, β|x) be the same as in Method 1.

We define Q′ : X → Z ′ with the output alphabet

Z ′ = Y \ {y1, ỹ1, y2, ỹ2, y3, ỹ3} ∪ {z1, z̃1, z3, z̃3}

for all x ∈ X and z ∈ Z ′.

Then the upgraded Q′ with respect to W , Q′ ≽W , is given by

Q′(z|x) =



W(z|x) if z /∈ {z1, z̃1, z3, z̃3},

W(y1|x) + t(α1, β1|x) if z = z1,

W(ỹ1|x) + t(β1, α1|x) if z = z̃1.

W(y3|x) + t(α3, β3|x) if z = z3,

W(ỹ3|x) + t(β3, α3|x) if z = z̃3.

(3.20)
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Figure 3.3: The upgrading merge operation Method 2

Method 2 has several advantages over Method 1, the only disadvantage of Method

2 is that if λ1 and λ3 are very close, the denominator of α1, β1, α3, β3 will cause

numerical instabilities.

Thus to construct the upgrading merge algorithm, we define a threshold ε and

check if any neighboring λs are closer than this threshold, if so we employ Method

1 otherwise we use Method 2 to have a better merging operation. Having said that,

and having the algorithm for the construction of the degrading merge at hand, the

algorithm for the upgrading merge is quite straightforward. As in the case of the

degrading merge, the output alphabet size of the upgraded channel Q′ decreases by

2 after each iteration of the upgrading merge. Similarly to the degrading merge, the

complexity of the upgrading merge algorithm is O(µ2 log µ).
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3.3 Performance of the approximations on the BSC

under SC decoding

To determine the performance of polar coding on the BSC under SC decoding, we

define the transition probabilities for the BSC channel W and find the information

set as we described earlier. For symmetric capacity I(W)=0.5 (p=0.11) and block

lengths ranging from 25 to 29, we run 4000 experiments for rate R from 1 to 0 in

order to obtain the BER in relation to the rate R.

Figure 3.4: Performance of polar coding on the BSC with a probability of error

p=0.11.

Figure 3.4 indicates, as expected, that as the block length increases, the BER

decreases since polar codes approach capacity when the block length increases to

infinity.
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Chapter 4

Polarization of q-ary Discrete

Memoryless Channels

The channel polarization method introduced by Arikan in [1] was initially proposed

for binary-input Memoryless channels. Later on, [2], [6], [4], [5] set the groundwork

for expanding channel polarization for q-ary input channels.

Figure 4.1: Q-ary Discrete Memoryless Channel

4.1 Channel Parameters

In order to polarize q-ary channels, we must first generalize the relations for the

rate, reliability, and channel transformations for q-ary input channels.
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4.1.1 Symmetric Capacity

According to [9], given a channelW : X → Y with input alphabet X = {0, 1, .., q − 1},
the symmetric capacity is defined as:

I(W ) ≜
∑
y∈Y

∑
x∈X

1

q
W (y|x) logq

W (y|x)∑
x′∈X

1
q
W (y|x′)

(4.1)

Since the base of the logarithm equals the alphabet size q, the symmetric capacity

has values in

0 ≤ I(W ) ≤ 1

.

4.1.2 Bhattacharrya parameter

The Bhattacharyya distance between a pair of input symbols x,x’ is defined as

follows

Z(W{x,x′}) =
∑
y∈Y

√
W (y|x)W (y|x′) (4.2)

According to [9], the average Bhattacharyya distance of W defines an upper bound

on the probability of error of uncoded transmission

Z(W ) =
∑

x,x′∈X ,x ̸=x′

1

q(q − 1)
Z(W{x,x′}) (4.3)

The relation between the error probability and the Bhattacharyya parameter is

defined as

Pe ≤ (q − 1)Z(W ) (4.4)

Finally, the relation between the symmetric capacity I(W) and the Bhattacharyya

parameter Z(W) is given by

I(W ) ≥ log
q

1 + (q − 1)Z(W )
(4.5)

I(W ) ≤ log(
q

2
) + (log 2)

√
1− Z(W )2 (4.6)

I(W ) ≤ 2(q − 1)(log e)
√

1− Z(W )2 (4.7)
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4.2 Channel Transformations

The channel transformations for q-ary input channels are similar to those for the

polarization of binary-input channels, with the exception that in the case of the q-ary

channels the operations are over GF(q). Given a channel W : X → Y with input

alphabet X = {0, 1, .., q − 1}, where q is a prime number, it is proven in [9] that the

single step transformations are defined as follows:

W−(y1, y2|u1) =
∑
u2∈X

1

q
W (y1|u1 + u2)W (y2|u2) (4.8)

W+(y1, y2, u1|u2) =
1

q
W (y1|u1 + u2)W (y2|u2) (4.9)

Also, it is known that

W2(y1, y2|u1, u2) = W (y1|u1 + u2)W (y2|u2) (4.10)

4.3 Ternary Symmetric Channel

The Ternary Symmetric Channel depicted in figure 4.3 with input alphabet X =

{0, 1, 2} and output alphabet Y = {0, 1, 2} has the following symmetric capacity

I(W ) = 1 + p log3(p/2) + (1− p) log3(1− p) (4.11)

Figure 4.2: Ternary symmetric channel (TSC)

We can see the effect of the basic polarization step on the symmetric capacity of

the Ternary Symmetric channel bellow
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Figure 4.3: Symmetric Capacity vs Error probability of the original and the polarized

TSC

As expected, the symmetric capacity of the degraded channel W− is smaller than

the original channel before polarization, and the symmetric capacity of the upgraded

channel W+ is greater than the original channel W.

4.4 Encoding

The construction of the encoder when q is a prime number, is similar to that

for binary-input channels, using Arikan’s transform F =

[
1 0

1 1

]
and the generator

matrix GN over GF(q).

GN = BNF
⊗n over GF(q). (4.12)

where BN is the bit reversal permutation matrix BN = RN(I2 ⊗ BN/2) and F⊗n is

the n kronecker product of the matrix F =

[
1 0

1 1

]
.

Hence, the encoding operation is given by:

xN
1 = (uN

1 GN) mod 3.
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4.5 Decoding

Similar to the Binary case, we use a successive cancellation decoder, which is based

on the following recursive formulas:

W
(2i−1)
2N (y2N1 , u2i−2

1 |u2i−1) =
∑
u2i

1

q
W

(i)
N (yN1 , u2i−2

1,o ⊕ u2i−2
1,e |u2i−1 ⊕ u2i) (4.13)

·W (i)
N (y2NN+1, u

2i−2
1,e |u2i)

W
(2i)
2N (y2N1 , u2i−1

1 |u2i) =
1

q
W

(i)
N (yN1 , u2i−2

1,o ⊕ u2i−2
1,e |u2i−1 ⊕ u2i) (4.14)

·W (i)
N (y2NN+1, u

2i−2
1,e |u2i)

and the decision is made according to the following decision rule

ûi =

ui if ui ∈ Ac

argmaxx∈(0,1,...,q−1)W
(i)
N (yN1 , ui−1

1 |x) otherwise
(4.15)

4.6 Channel Approximations

The construction of the degraded subchannels is accomplished similarly to the

case of the BMS channel. We recursively apply the channel transformations based

on the channel index and then implement the degrading merge function in order to

reduce the output alphabet size to at most μ. The algorithm proposed in [2] for the

degrading procedure is the following

and it is called, greedy mass merging. In its general form, it is very inefficient for

non-binary input alphabets since we have to check every pair of symbols, thus the

complexity is at most O(Nµ4 log µ). To minimize the complexity and make it feasible

to implement, we use a technique called ”No-loss alphabet reduction”.
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Algorithm 3: q-ary Channel Degrading

Input: DMC channel W, a bound μ on the output alphabet size, code length

N = 2n, and an index i with binary representation i = ⟨b1, b2, ..., bn⟩2.
Output: A DMC obtained from the subchannel W

(i)
N .

T
(i)
N ← Degrading merge qary(W, μ)

for j = 1,2,...,n do

if bj = 0 then

T
(i)
N ← W−

else

T
(i)
N ← W+

T
(i)
N ← Degrading merge qary(T, μ)

return T
(i)
N

4.6.1 No-loss Alphabet Reduction

Given a DMCW : X → Y , we calculate the joint PMF PXY onX×Y by assuming

prior on X using the following relations:

PW (x|y) = W (y|x)∑
x0∈X W (y|x0)

(4.16)

PY (y) =
1

q

∑
x0∈X

W (y|x0) (4.17)

for every x ∈ X and y ∈ Y .

It is also known that for q-ary polar codes with q ≥ 2, the symmetric capacity

I(W ) = log q−H(X|Y ) and the conditional entropy H(X|Y ) = E(− logPX|Y (X|Y ).

Thus we define the channel transformations in terms of the reverse channel PX|Y over

GF(q).

P+
Y +(u, yi, yj) = PY (yi)PY (yj)

∑
x∈X

PX|Y (u+ x|yi)PX|Y (x|yj)

P+
X|Y +(x|u, yi, yj) =

PX|Y (u+ x|yi)PX|Y (x|yj)∑
x0∈X PX|Y (u+ x0|yi)PX|Y (x0|yj)

P+
X+(x) =

∑
u∈X ,yi,yj∈Y

P+
X|Y +(x|u, yi, yj)P+

Y +(u, yi, yj)

(4.18)

and,
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P−
Y −(yi, yj) = PY (yi)PY (yj)

P−
X|Y −(x|yi, yj) =

∑
u2∈X

PX|Y (x+ u2|yi)× PX|Y (u2|yj)

P−
X−(x) =

∑
yi,yj∈Y

P−
X|Y −(x|yi, yj)P−

Y −(yi, yj)

(4.19)

On the above transformations, the operator + is modulo q addition. If PX is

uniform, P+
X and P−

X are also uniform. Thus, P−
X|Y − and P+

X|Y + are equal to the

posterior distributions induced by Arikan’s transformations. The transformations

W− and W+ and the q-ary Channel Degrading function will be replaced by the

above-described transformations of probability distribution.

4.6.2 Cyclic Unification

According to [2], given a distribution PXY on X × Y , we define the equivalence

relation on Y , y1 ∼ y2, such that if x1 ∈ X then PX|Y (x + x1|y1) = PX|Y (x|y2) for

every x ∈ X . Thus, if y1 ∼ y2 we can merge y1 and y2 without rate loss.

Proposition As it is mentioned in [2], we can prove the above claim accordingly:

Given a distribution PXY on X ×Y . For every y1, y2 ∈ Y and any u1, u ∈ X , it holds
that

P+
X|Y +(u|(u1, y1, y2)) =

PX|Y (u1 + u|y1)PX|Y (u|y2)∑
x0∈X PX|Y (u1 + x0|y1)PX|Y (x0|y2)

=
P (−u1 + (u+ u1)|y2)P (u1 + u|y1)∑

x0∈X PX|Y (−u1 + (u1 + x0)|y2)PX|Y (u1 + x0|y1)

=P+
X|Y +(u+ u1|(−u1, y2, y1))

(4.20)

Thus, for every (u, y1, y2) ∈ X × Y2 it is true that

(u, y1, y2)
P+

∼ (−u, y2, y1)

where if y1 = y2 then u ̸= 0.

4.6.3 Proposed Greedy Mass Merging Algorithm

Given a DMC W : X → Y , we recursively calculate P s
XY s and after each step, we

proceed as follows:
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• If the last step in s is +, then we first use the function merge pair to merge

the symbols (u1, y1, y2) and (−u1, y1, y2) for all u1, y1, y2 and then we use the

function degrade on P s
XY s

• If the last step in s is -, then we use the function Degrading merge qary on

P s
XY s .

The function Degrading merge qary is defined as follows:

Algorithm 4: Degrading merge qary

Input: distribution PX,Y0 over X × Y0, bound μ on the output alphabet size.

Output: distribution QX,Y over X × Y , where |Y| ≤ µ

Q ← P

l← |Y|
while l > µ do

(y1, y2, u)← choose(Q)
Q ← merge pair(Q(y1, y2, u))
l← l − 1

return Q

The function choose(Q) finds y1, y2, u that when merged withmerge pair(Q, (y1, y2, u))

the change of conditional entropy HQ(X|Y )

∆(H) ≜ QỸ (ỹ)H(X|Ỹ = ỹ)−
2∑

i=1

QY (yi)H(X|Y = yi)

is the smallest among all (yi, yj, u) ∈ Y2 ×X .

The function merge pair(Q, (y1, y2, u)) merges two symbols into one as follows:

ỹ = y\{y1, y2} ∪ {ỹ}

where QỸ (y) = QY (y), QX|Ỹ (x|y) = QX|Y (x|y) for all x ∈ X and y ∈ ỹ\{ỹ} and

QỸ (y) = QY (y1) +QY (y2)

QX|Ỹ (x|ỹ) =
QY (y1)QX|Y (x|y1) +QY (y2)QX|Y (x+ u|y2)

QỸ (y)
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4.6.4 Cyclic Unification Algorithm

After we calculate the joint PXY on X × Y , we then recursively calculate P s
XY s

and reduce the output alphabet size by assigning one symbol to the whole class A

such that:

P s
Y s(A) =

∑
y∈A

P s
Y s(y) (4.21)

P s
X|Y s(x|A) = P s

X|Y s(x|y∗) (4.22)

Where y∗ is an arbitrarily chosen y ∈ A because P s
X|Y s(·|y), y ∈ A are cyclically

shifted.

4.6.5 Modifications to the proposed Algorithm

Firstly, it is quite obvious that in function choose, the exhaustive search on the

smallest change of conditional entropy between all the triples (yi, yj, u) ∈ Y2 × X , is
very inefficient in practice. To overcome this problem, we set a threshold ε and select

the first triple (yi, yj, u) that has a rate loss smaller than the threshold.

In addition, there is an ambiguity between the use of the proposition of cyclic

unification and the cyclic unification algorithm when it comes to merging cyclically

shifted vectors. While the greedy mass merging algorithm proposes that the cyclic

unification is accomplished with the use of the proposition, we saw that using the

cyclic unification algorithm instead of the proposition, is faster and has a smaller

output alphabet size, since we can merge not only a pair of symbols but large sets of

cyclically shifted vectors each time.

Algorithm 5: New degrading merge qary

Input: distribution PX,Y over X × Y
Output: distribution QX,Y over X × Y
u← unique vectors in PX,Y

s← |u|
for i=1...s do
QY (i)←

∑
y∈A PY (y)

QY |Y (i)← PX|Y (x|y∗)
return Q
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4.7 TSC simulation

To determine the performance of polar coding on the TSC under SC decoding,

For symmetric capacity I(W)=0.5 (p=0.16) and block lengths ranging from 25 to 28,

we run 2000 experiments for rate R from 1 to 0 in order to obtain the SER in relation

to the rate R and saw the improvement on the SER as the block length increases.

Figure 4.4: Performance of polar coding on the TSC with a probability of error p=0.16
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Appendix

Proof of relation(3.9)

Pe(W) =
1

2

∑
y∈Y

min{W(y|0),W(y|1)} (4.23)

Given a BMS channel with input alphabet X = 0, 1 and arbitrary output, under

a maximum-likelihood decision, the probability of error is

P (E) =
∑
y∈Y

P (Y = y)P (E|Y = y) (4.24)

where

P (Y = y) =
1

2
W (Y = y|X = 0) +

1

2
W (Y = y|X = 1) (4.25)

and

P (E|Y = y) =
∑
x∈X

P (X = x|Y = y) + P (E|Y = y,X = x)

=P (X = 0|Y = y) + P (E|Y = y,X = 0)

+ P (X = 1|Y = y) + P (E|Y = y,X = 1)

(4.26)

for any given y ∈ Y one of the probabilities P (X = 0|Y = y) and P (X = 1|Y = y)

will be equal to 0 and the other will be equal to 1

Also according to Bayes’ rule

P (X = x|Y = y) =
W (Y = y|X = x)P (X = x)

P (Y = y)

=
1
2
W (Y = y|X = x)

P (Y = y)

(4.27)
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Considering this

P (E|Y = y) =
1
2
W (Y = y|X = x)

P (Y = y)
(4.28)

Thus, substituting (4.25) and (4.28) on (4.24) we get that

P (E) =
∑
y∈Y

P (X = x)W (Y = y|X = x) =
∑
y∈Y

1

2
W (Y = y|X = x) (4.29)

and since we use ML decision rule

W (Y = y|X = x) = min{W (Y = y|X = 0),W (Y = y|X = 1)} (4.30)

P (E) =
1

2

∑
y∈Y

min{W(y|0),W(y|1)} (4.31)
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