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Over the last few years the use of visual Simultaneous Localization and Map-
ping (vSLAM) algorithms gained widespread development and use in all
areas, e.g., self-driving cars, robots, aerial drones, autonomous underwater
vehicles and more. Autonomous underwater vehicles have various applica-
tions ranging from garbage collection in shallow ports and port mapping, to
finding holes in fishery nets. Underwater scenarios are complex and costly
due to the large amount of sensors needed such as Doppler Velocity Log
(DVL) sensors, depth sensors etc. The use of vSLAM algorithms in these ap-
plications is important, leading to a need for real time implementation on
low-power platforms. In this case either a platform with a fast processor
but with high power consumption is used in order to have the real time im-
plementation, or a low-power consumption processor with lower processing
power in frames per second is used, resulting to undesirably slow system
performance. Field Programmable Gate Arrays (FPGAs) and Graphics Pro-
cessing Units (GPUs) can offer real time implementation with low energy
cost. In this thesis we have developed an FPGA-based architecture to accel-
erate the most time consuming part of the ORB-SLAM2 algorithm, i.e. the
Oriented FAST and Rotated BRIEF (ORB) feature extraction part. The pro-
posed architecture requires per image 60% less energy vs. the software im-
plementation of the ORB part of ORB-SLAM2 algorithm, while maintaining
competitive performance vs. a high-end processor.
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by Maria MARAGKAKI

Τα τελευταία χρόνια η χρήση των αλγορίθμων visual Simultaneous Localization
and Mapping (vSLAM) απέκτησε ευρεία ανάπτυξη και χρήση σε όλους τους το-
μείς όπως αυτόνομα αυτοκίνητα, robots , εναέρια drones, αυτόνομα υποβρύχια
οχήματα και άλλα. Τα αυτόνομα υποβρύχια οχήματα έχουν πληθώρα εφαρμογών,

από τη συλλογή σκουπιδιών σε ρηχά λιμάνια έως την εύρεση τρυπών σε δίχτυα

ψαρέματος. Τα υποβρύχια σενάρια είναι περίπλοκα και ακριβά λόγω το μεγάλου α-

ριθμού αισθητήρων που χρειάζονται, όπως, αισθητήρες DVL , αισθητήρες βάθους
κλπ. Η χρήση των αλγορίθμων vSLAM σε τέτοιες εφαρμογές είναι σημαντική,

οδηγώντας στην ανάγκη μιας πραγματικού χρόνου υλοποίησης σε χαμηλής ενερ-

γειακής κατανάλωσης πλατφόρμες. Σε αυτή τη περίπτωση χρησιμοποιείται είτε

μια πλατφόρμα με έναν γρήγορο επεξεργαστή αλλά με υψηλή κατανάλωση ενέρ-

γειας προκειμένου να επιτευχθεί η υλοποίηση σε πραγματικό χρόνο, ή μια χαμηλής

ενεργειακής κατανάλωσης πλατφόρμα αλλά με την επεξεργασία εικόνων ανα δευ-

τερόλεπτο να είναι μικρότερη, με αποτέλεσμα την ανεπιθύμητα αργή απόδοση του

συστήματος. Οι FPGAs καθώς και οι GPUs μπορούν να προσφέρουν υλοποίηση
σε πραγματικό χρόνο με χαμηλό ενεργειακό κόστος. Στην παρούσα διπλωματική

αναπτύξαμε μια αρχιτεκτονική βασισμένη σε FPGA προκειμένου να επιταχύνουμε
το πιο χρονοβόρο κομμάτι του αλγορίθμου ORB-SLAM2 δηλ. Το κομμάτι της
εξαγωγή των σημείων αναφοράς ORB . Η προτεινόμενη αρχιτεκτονική είναι κατά
60% λιγότερο ενεργειακά απαιτητική ανά εικόνα σε σχέση με την υλοποίηση του

αλγορίθμου σε λογισμικό του ORB κομματιού του αλγορίθμου ORB-SLAM2 ,
διατηρώντας παράλληλα ικανοποιητική απόδοση έναντι ενός επεξεργαστή υψηλής

τεχνολογίας.
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Chapter 1

Introduction

The SLAM algorithm is a fundamental technique of pose estimation and lo-
cation in the map was build by the surrounding environment. The use of
SLAM algorithms has various applications in everyday life. Over the last few
years, SLAM algorithms are increasingly used in underwater fields. Under-
water SLAM is a complex and costly research area due to the large amount
of sensors required. This led to the need to develop algorithms that use a
stereo or monocular camera as the only sensor, these algorithms called visual
SLAM algorithms (vSLAM). One such algorithm is ORB-SLAM2 algorithm.
ORB method is a feature based method of SLAM algorithms witch is a high
effective and robust method. This method combined with a low-power em-
bedded platform can give a real-time implementation with low energy cost
witch is the request for underwater vehicles.

1.1 Motivation

Over the years, the applications of algorithms accelerated with FPGAs in-
creased more and more. An application running on a Central Processing
Unit (CPUs) may be easier to write and implement, but it is not time efficient
due to low parallelism and also not energy efficient due to the high power
consumption of CPUs.

Graphics Processing Units (GPUs), provides the ability of high parallelism of
the code and there is also relatively easy of their code implementation. How-
ever, heir power consumption can be really high. Field Programmable Gate
Arrays (FPGAs), on the other hand, apart from ability of high parallelism
are considered to be more power efficient solution, because FPGAs consist of
only hardware functions while GPUs tend to be highly power consuming as
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they need it to facilitate software programmability therefore consist of much
gates.

1.2 Scientific Goals and Contributions

The main goal of this diploma thesis is to design and implement an accel-
erator of the most time consuming part of ORB-SLAM2 algorithm the ORB
feature extraction part. We will propose an FPGA accelerator as when this
work began the available resources of the laboratory did not meet our needs.
This work can also be developed for a GPU such as Jetson which did not
exist in the laboratory at the time. We focused at the ORB part of the algo-
rithm because takes about half the time of the algorithm and can achieve high
parallelism due to the non-dependence of the frames on each other.

This thesis aims to develop an accelerator that will be applicable to unmanned
submarines, so the main goal is to reduce as much as it is possible the power
consumption as well as and achieve a real-time implementation. A CPU in
such a submarine may be achieve real time implementation but the energy
cost is much higher. There are CPUs with lower energy cost but the are not
able to process capacity of frames per second. With the use of the FPGA a
very good amount of frames per second can be processed as well as and very
low power consumption.

The ORB-SLAM2 algorithm in order to process the frames uses the OpenCV
[1] library. Xilinx provides the corresponding library named xfOpencv [2].
One more goal of this thesis is to use the corresponding functions that ORB
uses such as FAST for extracting features, resize for implementing the image
pyramid. Process the image with these function instead of process the image
pixel by pixel and achieve high parallelism in order to compare the results
with those from the software implementation.

The ORB-SLAM2 algorithm, studied in this work, was fully designed with
a system architecture, simulation, place and route, and performance evalu-
ation from post place-and-route simulations for an actual platform, in this
case the ZCU-102 platform from Xilinx.
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1.3 Thesis Outline

• Chapter 2- Theoretical Background: The theoretical background of
SLAM, vSLAM, ORB-SLAM algorithms, with emphasis on the ORB
part of ORB-SLAM2 algorithm.

• Chapter 3 - Related Work: The related work of Undrwater SLAM al-
gorithm and the harware implementation of ORB-SLAM2 algorithm.
Also the datasets used for the thesis approach.

• Chapter 4- System Modeling: The system modeling and CPU Analy-
sis.

• Chapter 5 - System Architecture: The description of this work’s archi-
tecture design with FPGA.

• Chapter 6 - FPGA design: The tools and platform used in order to
implement the design.

• Chapter 7 - Verification on an FPGA platform and Performance Eval-
uation: The results of the design and the verification of the system.

• Chapter 8 - Conclusions and Related Work: Conclusion and future
work that possible make better this design.
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Chapter 2

Theoretical Background

This chapter presents the main purpose of the SLAM algorithm, as well as
some of its most basic versions; these versions are described below. Some
basic information about the main structure of the SLAM algorithm as well as
and the approach of visual SLAM are presented. The purpose and the con-
straints of Underwater SLAM are analyzed. Lastly, the ORB-SLAM2 which
is the main algorithm studied in this thesis is presented, together with theo-
retical information about the implementation of ORB-SLAM2.

2.1 Simultaneous Localization and Mapping (SLAM)

Over the recent years automation in all areas is increasing rapidly. Self-
driving cars, robot vacuum sweepers, unmanned aerial vehicle (UAV) - com-
monly known as drones, autonomous underwater vehicles (AUV) are used
more and more either for civilian and household purposes(self-driving cars,
vacuums) or for military purposes (AUVs, UAVs). All these technologies
have a common background: the SLAM method.

Simultaneous localization and mapping (SLAM) is the computational prob-
lem of constructing or updating a map of an unknown environment while
simultaneously keeping track of an agent’s location within it [3][4]. SLAM
algorithms allow the vehicle to map out unknown environments. Engineers
use the map information to carry out tasks such as path planning and obsta-
cle avoidance. SLAM algorithms are divided into five main parts: landmark
extraction, data association, state estimation, state update and landmark up-
date. Each SLAM algorithm solves every part different for this reason there
are many different versions. SLAM algorithms have a wide range of applica-
tions. Those algorithms are used in navigation robotic mapping and odom-
etry for virtual reality or augmented reality. They have been implemented
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into many fields such as self-driving cars [5], UAVs [6], AUVs [7], planetary
rovers [8], newer domestic robots and even inside the human body. Some of
the sensors that is used in SLAM alorithms are DVL sensors, LiDAR, inertial
measurement unit (IMU), sonar sensors, cameras etc. The approaches that
use cameras as sensor called visual SLAM approaches and are presented in
the next section.

2.2 Visual SLAM (vSLAM)

Visual SLAM is the approach of SLAM algorithm with a single camera. Vi-
sual SLAM uses images acquired from cameras and other image sensors. Is
a specific type of SLAM system that leverages 3D vision to perform location
and mapping functions when neither the environment nor the location of the
sensor is known. vSLAM extracts keyframes from each input image, after ex-
traction follows the data association, the keyframes that have been detected
are stored into a database, the algorithm searches in the database if the cur-
rent keyframes have been shown again. Subsequently, the state estimation
and state update is applied and finally the map is updated. The whole pro-
cedure is presented in the image below.

FIGURE 2.1: SLAM algorithm

The need to create navigation systems has a leading role in the development
of Visual SLAM(vSLAM) algorithms. Visual SLAM refers to the complex
process of SLAM but using only visual inputs from a camera. The problem
of Visual SLAM was originally proposed from Andrew J. Davison and David
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W. Murray in 1998 [9]. SLAM problem is widely known on autonomous nav-
igation. vSLAM algorithms have been applied in various fields such as self-
driving cars [10], unmanned aerial vehicles (UAVs) [11], AUVs [12], plan-
etary rovers [13], newer domestic robots and even inside the human body.
There are many vSLAM algorithms and the categorized into 3 general cate-
gories; feature-based, direct and RGB-D approaches.

• Feature-based methods are split in two categories filter-based and Bun-
dle Adjustment-based

– filter-based method according to the literature [14] the size of the
environment is proportional to the computational complexity.

– BA-based method which can handle more complex environments

• Direct based methods directly use an input image without using any
feature detector or descriptor. These methods mostly used on dense
environments and they can run in real-time on CPUs as mentioned at
[14].

• RGB-D methods use as input an RGB-D image or video from an RGB-D
camera and can extract useful informations from the depth value.

2.3 Underwater SLAM

SLAM has various applications on many fields, as shown above. One of
the main applications of the algorithm is underwater. SLAM in underwater
environments is a complex and costly area of research due to the need for
integrating different specialized sensors to obtain a reliable estimate. Also
there are many obstacles in underwater environments, like the turbidity of
water, the currents, the reduced visibility, are key obstacles to implementing
the algorithm.

A first approach to implement underwater SLAM has been developed at the
University of Sydney in 2000 [15]. In this research they apply the SLAM
algorithm to estimate the motion of a submersible vehicle. The information
for the environment had been taken from a sonar. A first approach on vSLAM
on underwater environment had been at MIT in 2004 [16].

SLAM in underwater environments is very useful in locating corals, trashes,
oil slicks etc. Also is very useful in locating and exploring archaeological
sites, bottoms and surfaces of marines. Nevertheless, underwater SLAM
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steel remains an unsolved problem because of the water restrictions such
as the water currents, the turbulence of the water, and lighting conditions
(sunny or cloudy days). If it is a sunny day and the robot is in about 1-3m
depth, then SLAM algorithms cannot be effective because of the reflection of
light on the water; on the other hand, if it is a cloudy day then there is no
reflection so the algorithm is effective. If the robot is in a big depth then ar-
tificial lighting is necessary. An approach that trying to solve the problem of
water currents presents at University of Rio Grande in 2016 [17].

The approach presented above is based on another work which presents a
new underwater SLAM system called DolphinSLAM [18]. DolphinSLAM
algorithm is based on the UnderWater Simulation, which is a simulation that
represents an underwater environment. It has its robot, the Girona500, where
it consists of a sonar, a camera, an IMU and a DVL.

Another work that tries to solve the underwater problem is presented in this
paper [19]. The algorithm in this approach is based on the ORB-SLAM algo-
rithm [20]. ORB-SLAM is an approach based on Oriented FAST and Rotated
BRIEF (ORB) keypoint detector which are used to match features in consecu-
tive images. In contrast with SURF and SIFT detectors, FAST corner detector
is as it names said fastest, it is computationally efficient and it’s suitable for
real time applications because of this high-speed performance. The algo-
rithm has been tested in many different cases on mobile robots as well as on
underwater cases. In the above approach datasets collected from a ROV and
examined the behavior of the algorithm in different cases e.g. at different
depths, different lighting conditions etc.

2.3.1 ORB-SLAM

ORB-SLAM is a keyframe and feature-based Monocular SLAM. It operates
in real-time in large environments, being able to close loops and perform
camera relocalisation from very different viewpoints. The Oriended FAST
and Rotated BRIEF (ORB) keypoint detector which are used to match features
in consecutive images. The ORB detector is based on FAST feature detector
[21] and BRIEF descriptor [22]

The algorithm is divided into seven separate modules : feature extraction,
data association, initialization, tracking, relocalization, local mapping and
loop closure as presented in the image above.
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FIGURE 2.2: ORB-SLAM architecture [20]

The ORB features that are used in the algorithm offers real-time implemen-
tation on large environments, real-time loop closing and real-time camera
relocalization when the algorithm is lost in the environment.

There are three main threads on the algorithm that run as shown in the image
above. The tracking, the local mapping and the loop closing frame.

The tracking thread, is the frame that is responsible for tracking and insert
new keyframes. The local mapping thread performs local BA on the new
keyframes to achieve optimal reconstruction in the surroundings of the cam-
era pose. The loop closing searches if the new keyframe closes a loop. Cov-
isibility Graph and Essestial Graph are storing information about the covis-
ibility between keyframes. When a new keyframe is inserted, it is included
in the tree linked to the keyframe which shares most point observations. Fi-
nally a Bag of Words Place Recognition is applied. The system performs loop
detection and relocalization based on DBoW2[23]. The algorithm searches on
a visual vocabulary to closes the loop.

2.3.2 ORB-SLAM2

ORB-SLAM2[24] is an approach based on ORB-SLAM algorithm but with the
difference that it has been added a thread after the final thread of ORB-SLAM,
the full BA thread and it processes an input pre-processing.
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FIGURE 2.3: ORB-SLAM2 architecture [24]

FIGURE 2.4: Input pre-processing[24]

ORB-SLAM2 is the first system for monocular, stereo and RGB-D cameras.
This system is using close and far points and monocular obsrvations that
makes the system more accurate. The system is the same with the one men-
tioned before but with the difference that the final thread launched a fourth
thread that performs full BA adjustment, to compute the optimal structure
and motion solution. Also the system pre-processes the input, extract fea-
tures and then discards the input so the rest of the system operates with the
features and be independent of the kind of image input.

• Stereo keypoints are defined by three cordinates xs = (uL, vL, uR) with
(uL, vL) being the coordinates on the left image and uR being the co-
ordinate on the right image. The system extracts ORB in both images
and for every left ORB searches a match in the rigtht image. And so the
keypoint is generated.
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• RGB-D for each feature with coordinates (uL, vL), the depth is trans-
formed into the right coordinate as proposed in this paper [25].

• Monocular keypoints have two coorndinates xm = (uL, vL)

A stereo keypoint is classified as close if its associated depth is less than 4o
times the stereo/RGB-D baseline. otherwise as far [26].

Bundle Adjustment (BA) is the problem of simultaneously refining the 3D
coordinates describing the scene geometry, the parameters of the relative mo-
tion, and the optical characteristics of the camera employed to acquire the im-
ages, according to an optimality criterion involving the corresponding image
projections of all points. The ORB-SLAM2 system performs three times BA.
Performs BA to optimize the camera pose in the tracking thread (motion-only
BA), to optimize a local window of keyframes and points in the local map-
ping thread (local BA), and after a loop closure to optimize all keyframes and
points (full BA).

• Motion-only BA optimizes the camera orientation R ∈ SO(3) and po-
sition t ∈ R3, minimizing the reprojection error between matched 3D
points Xi ∈ R3 in world coordinates and keypoints x(.)i, either monoc-
ular xi

m ∈ R2 or stereo xi
s ∈ R3, with i ∈ X the set of all matches:

{R, t} = argminR,t ∑
i∈χ

ρ(
∥∥∥xi

(.) − π(.)(RXi + t)
∥∥∥2

Σ
)

where ρ is the robust Huber cost function [27] and Σ is the covariance
matrix associated to the scale of the keypoint. Position t is proportional
to the image size and keypoints x are smaller than the image size be-
cause there are some points of the image. π(.) are the projection func-
tions monocular πm and rectified stereo πs,.

πm(

X
Y
Z

) = [ fx
X
Z + cx

fy
Y
Z + cy

]

πs(

X
Y
Z

) =
 fx

X
Z + cx

fy
Y
Z + cy

fx
X−b

Z + cx


• Local BA optimizes a set of covisible keyframes KL and all points seen

in those keyframes PL. Keyframes are proportional to the size of the
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dataset viz the number of the images to be processed. All other keyframes
KF , not in KL, observing points in PL contribute to the cost function but
remain fixed in the optimization. Defining Xk as the set of matches
between points in PL and keypoints in a keyframe k, the optimization
problem is the following:

{Xi, Rl, tl|i ∈ PL, l ∈ KL} = argminXi,Rl ,tl ∑
k∈KL∪KF

∑
j∈Xk

ρ(Ekj)

Ekj =
∥∥∥xj

(.) − π(.)(RkX j + tk)
∥∥∥2

Σ

Where Xi is the keypoint, Rl is the camera orientation, tl is the position
and ρ is the robust huber function, all of the above were mentioned in
the previous paragraph.

• Full BA is the specific case of local BA, where all keyframes and points
in the map are optimized, except the origin keyframe that is fixed to
eliminate the gauge freedom.

The base difference with the ORB-SLAM is the full BA that system performs
at the end. With full BA the scale drift that occurs with monocular SLAM no
longer exists because the scale/depth information makes scale observable.
More information about the functions can fount at [24]

2.4 ORB

ORB as it mentioned before cames from FAST feature detection and BRIEF
feature descriptor[28]. ORB is a fast and efficient algorithm and is rotation
invariant and resistant to noise.

2.4.1 Features from Accelerated Segment Test (FAST)

FAST features are detecting with the parameter of intensity threshold be-
tween the center pixel and those in a circular ring about the center. The
cicrcular radius is defined from the user. After detecting the points Harris
corner measurement is applied to order the FAST keypoints and select the
top N points. A scale pyramid of the image is applied in order to produce
FAST features at each level of the pyramid.
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2.4.2 oFAST: FAST Keypoint Orientation

FAST does not produce a measure of cornerness, in order to solve the large
responses along edges a measure of corner orientation is computed via in-
tensity centroid [29]. The intensity centroid assumes that a corner’s intensity
is offset from its center, and this vector may be used to impute an orientation.

The moment of a patch is defined as:

mpq = ∑
x,y

xpyq I(x, y)

where I(x, y) is the intensity of the pixel at the relative position x, y within
the patch. Patch is a piece of the image so it is proportional to the image size
and to how big would be the piece for process e.g. 30x30 or 10x10 etc. The
centroid is defined as:

C =

(
m10

m00
,

m01

m00

)
Then the vector with the angle form the center to the centroid is calculated as
follow:

θ = atan2(m01, m10)

Where atan2 is the quadrant-aware version of arctan.

2.4.3 BRIEF

The BRIEF descriptor is a bit string description of an image patch (p) con-
structed from a set of binary intensity tests(τ). A binary test is calculated as
follow:

τ(p; x, y) :=

{
1 : p(x) < p(y)
0 : p(x) ≥ p(y)

The feature is defined as a vector of n binary tests:

fn(p) := ∑
1≤i≤n

2i−1τ(p; xi, yi)

It is important to smooth the image before performing this tests, for example
with a Gaussian blur filter. The vector length usually is n = 256.
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2.4.4 rBRIEF: Steered BRIEF

It is important the BRIEF to be invariant to in-plane rotation. An efficient
way to do this is to steer BRIEF according to the orientation of keypoints. So,
for any feature set of n binary tests at location (xi,yi), define the 2 × n matrix

S =

(
x1, ..., xn

y1, ..., yn

)

Using the patch orientation θ and the corresponding rotation matrix Rθ, we
construct a “steered” version Sθ of S:

Sθ = RθS

For more information about the ORB algorithm see [28]

2.5 Theoretical knowledge sources

The aforementioned theoretical background was mostly obtained from the
papers attached above and some other sources from sites as Wikepedia.
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Chapter 3

Related Work

In order to achieve real-time implementation and energy consumption of im-
age processing on SLAM we can use FPGAs. FPGAs can easily accelerate
processes. This advantage make the FPGAs attractive to accelerate processes
like image processing, feature extraction etc. These processes can be eas-
ily parallelized spatial and temporal. Due to this parallelism FPGAs is very
useful and in the SLAM algorithms. The first approaches implementing the
algorithm with FPGAs started around 2012. Some of the main approaches
presented on the following literature, [30], [31], [32], SLAM algorithms apply
to 3 different categories of environments which are Sparse, Semi-Dense and
Dense depending on the needs of the environment there have been created
a lot of different approaches of SLAM algorithms. Underwater environment
are either Semi-Dense either Dense due to the fishes, the corals, sometimes
the trashes and even the boats. Because of these dense environments it’s nec-
essary to accelerate the feature extraction and the image processing in order
to take a real time implementation and more reference points. A first ap-
proach on underwater SLAM using FPGAs has been from Computer Vision
Group U.P.M., Madrid, Spain in 2009 [33]. A lot of work have been done on
underwater SLAM with FPGAs that achieves acceleration on feature extrac-
tion and less energy requirements than the respective software applications.
Some of them presented below [34], [35].

3.1 DolphinSLAM

DolphinSLAM algorithm [18] is one of the first approaches for underwater
SLAM. DolphinSLAM is an extention of RatSLAM for 2D ground robots.
This approach is 3D based SLAM that uses a Continuous Attractor Neural
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Network (CANN) to localize and manage low resolution images and imag-
ing the sonar data.

FIGURE 3.1: DolphinSLAM architecture[18]

As shown in the image above, the algorithm is devided into the following
parts: Perception Cues, Local Cells, 3D Place Cells Network, Experience Map
and Motion Detection.

• Perception Cues This module receives information from a Sonar sen-
sor and from a camera and applies Bag of Words(BoW) algorithm for
feature detection and description.

• Local Cells This modules represents what the robot is perceiving. It
applies FabMap algorithm that estimates if the perception was seen for
the first time or if came from a place already visited

• 3D Place Cells Network This module represents a CANN in which
each neuron is responsible for mapping a specific area of the environ-
ment. Furthermore, this module estimates the robot’s position at the
same time, guided by external inputs. The module is divided into four
steps, Excitation, Path Integration, External Connection Learning, In-
put activation and Activity Normalization.

• Experience Map This module is responsible for creating of the environ-
ment map. Every time a new place is visited a new node is created. In
each node of the experience graph store the Local View Cell (li), the ac-
tive Place Cell (r′x, y′, z′) and the robot position (pj). There are two steps
for this module, the experience activation step which is sets a thresh-
old and if the activity is greater than this threshold then the activity is
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activated. And the Experience creation step which if there is no active
experience, new one is created.

• Motion Detection This module receives information from a Doppler
Velocity Log (DVL) and from an Inertial Measurement Unit (IMU). These
sensors give information about the velocity (DVL) and for robot orien-
tation (IMU). (The output of the module is the relative motion between
two consecutive poses, synchronized with the camera motion between
two frames)

This approach has been tested on two ways. The first way was the Under
Water Simulator [36], which is a simulator that represents an underwater en-
vironment. A scenario was created that it consists from pipes and offshore oil
extraction structures. The robot is a simulated Girona 500 [37] with a camera,
a sonar sensor, a DVL and an IMU. The second scenario was the ARACATI
Dataset which consist from many elements such as boats and stakes which
serve as landmarks inputs for the system. Both of the sets gives satisfactory
results.

We tried to download and run the DolhinSLAM algorithm on the UWSim
environment but due to problems on the versions of some packages, that has
been updated and we cannot find the right versions it was impossible to run
the algorithm, also there was some datasets and BoW dictionaries that there
wasn’t inside the github files so it was impossible to run the algorithm. After
many tries to find and setup the necessary packages, it was impossible to run
the algorithm, so we are going to implement a different version of SLAM that
is also used in underwater environments the last years, the ORB-SLAM.

3.2 SLAM with FPGA

According to the type of the environment the SLAM algorithm are dived
into the follow categories: sparse, semi-dense and dense. Semi-dense and
dense environments due to their nature have large computational demands
and their is need to accelerate them with the use of an FPGA in order to
achieve real -time implementation. FPGAs can achieve real time implemen-
tation with low power consumption so they used to solve SLAM dense prob-
lems. Many researches have been at the years [38], [39], [40]. As shown at
this researches can increases the throughput of the whole application by a
factor of 2.
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A High-Performance System-on-Chip Architecture for Direct Tracking for
SLAM proposed from Konstantinos Boikos and Christos-Savvas Bouganis
[41]. They try to accelerate the Tracking part of the algorithm they use a high
bandwidth streaming architecture for a high-performance solution. They
achieve a tracking rate of more than 22 f rames

second with an embedded power bud-
get and achieves a 5× improvement over previous work on FPGA SoCs.

Another implementation, is that of SMG-SLAM algorithm from Grigorios
Mingas and his team they design a system that is up to 14.83 times faster
compared to the software algorithm without significant loss in accuracy [32].

3.3 ORB-SLAM with FPGA

The most consuming part of the ORB-SLAM algorithm is the ORB extraction.
There are many researches the recent years, that have trying to accelerate the
ORB-SLAM with an FPGA. Weikang Fang et. al [42], trying to accelerate
the ORB feature extraction part in order to achieve real-time implementation
with an extended battery life. An overview of the architecture and the results
are presented below.

ORB architecture results
Clock
Freq.
(GHz)

Latency
(ms)

Throughput
(FPS)

Energy
(mJ/frame)

Weikang Fang Proposed
Design

0.203 14.8 67 68

ARM Krait 2.26 30 33 75
Inten Core i5 2.9 25 40 400
Improvement vs ARM - 51% 103% 9%
Improvement vs Intel - 41% 68% 83%

TABLE 3.1: ORB architecture results [42]

Another approach that trying to accelerate the feature extraction and match-
ing is this from Runze Liu et al [43], compared with Intel i7 and ARM Cortex-
A9 CPUs on TUM dataset, our FPGA realization achieves up to 3× and 31×
frame rate improvement, as well as up to 71× and 25× energy efficiency im-
provement, respectively. An overwie of the architecture is presented below.
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FIGURE 3.2: ORB Hardware architecture 2 [43]

3.4 Datasets

In order to test the right behavior of an algorithm there is need of a dataset.
The dataset for underwater environments can be either a dataset from a sim-
ulation e.g. UWSim [36] an open source dataset collection from UWSim pro-
vided by Amanda Duarte et al. [44] either on a real underwater environment
with a ROV. It was difficult to find an underwater dataset for our needs.

The datasets presented below are recorded in three different real underwater
environments with an ROV. The environments are a harbor at a depth of a
few meters, a first archaeological site at a depth of 270 meters and a second
site at a depth of 380 meters [45].

The main dataset used on this approach was the following approach.

ORB-SLAM as it mentioned above provides real-time implementation. There-
fore, this approach of SLAM, have been tested for underwater robots was
from F.Hidalgo and his team [46]. This approach has 9 different cases at 9
different places all close to the Marina in Fremantle at Western Australia.
These cases are:

• Boat This dataset has been taken a sunny day at different depths, be-
tween 4 and 7m depending on the spot. This case has 5 sub-cases at 5
different spots.

• Marina in Fremantle This dataset has 3 different sub-cases each one on
different lighting conditions and each of sub-case has also sub-cases on
different depths etc. The three different sub-cases were on a sunny day
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at 2-3 meters, on a cloudy day also at 2-3 meters depth and a cloudy
night with the help of a light at about 0.5 meters.

• Omeo wreck This dataset has been taken a cloudy day at 3-4 meters
depth.

• Pool This dataset has been taken at the pool of the lab a cloudy day at
2 meters depth.

• River at Bicton This dataset has two differnt sub-cases. One on a sunny
day at 2-3 meters depth with different lighting conditions and one on a
cloudy day at 0.5-1 meter.

• River at North Fremantle This dataset was on sunny day at about 50
cm .

• River at UWA This dataset was on a cloudy day at different depths and
with different lighting conditions.

• Woodman point This dataset was on a cloudy day at 1.5 meter depth.

According to the above experiments the conclusion of the authors was that
in different lighting conditions, at different depths and according to the en-
vironment around the ROV the result of the algorithm is different. For ex-
ample if we have a cloudy day at a small depth around 1-3 meters and with
many rocks or algae then the keypoints that will be detected there will be
much more than those on a sunny day at 1-3 meteres with same enviroment
conditions. Also if the environment has no algae or rocks it is difficult to
find keypoints. More about the parameters of the algorithm will be referred
above.

3.5 Thesis Approach

Underwater SLAM is a challenging topic for underwater vehicles in long-
term operation due to the limitations of subsea localization sensors and per-
ception sensors for mapping. The most underwater environments are dense
and demands low power consumption. So it’s big need to achieve real-time
implementation on low-power platforms on those environments. A way to
achieve this is to accelerate algorithms with FPGA. Much of SLAM cases have
been applied on underwater environments as mentioned and much of SLAM
cases have been accelerated with FPGA. However the ORB-SLAM2 case have
not been accelerated yet with FPGA on underwater environements.
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The purpose of this thesis is the acceleration the ORB feature extraction part
of ORB2-SLAM algorithm. The acceleration of the ORB will not take place at
the time, in the underwater case we are studying is very important the en-
ergy efficiency. On the ROVs the energy efficiency is important. We want to
explore large areas, so as much battery our ROV have larger areas will be ex-
plored. The part of the algorithm which will accelerate is the ORB Extraction.
After CPU analysis the ORB Extraction is the most time consuming class of
the algorithm. We aim to accelerate the algorithm on FPGA and not on GPU
beacause at the onset of this thesis GPUs were too power-hungry (the Jetson
series was not available yet), as well as the availability of the Xilinx ZCU-102
platform in the Microprocessor and Hardware Lab of the Technical Univer-
sity of Crete. The ZCU-102 was deemed to be appropriate, and indeed it
turned out to be so.
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Chapter 4

System Modeling

The main algorithm is written in C++. This version of the algorithm can
be compiled without the ROS operating system which was necessary for all
the other versions of SLAM algorithms. We use the monocular case of the
algorithm.The inputs are a visual vocabulary, a .yaml file and the path to the
sequence folder.

The vocabulary consists of visual words which are a discretization of the de-
scriptor space. This vocabulary is created with the ORB descriptors extracted
from a large set of images. If the images are general enough, the same vocab-
ulary can be used for different environments. The vocabulary used for this
design was the default Vocabulary of ORB-SLAM2.

The .yaml file is a file which contains some default parameters of the algo-
rithm such as the number of features per image, the scale factor of the image
pyramid, the levels of the image pyramid, the features must be extracted at
each cell of the image grid etc.

In order to compute the image keypoints on a frame, corner detection is used.
A corner is a point whose local neighborhood stands in two dominant and
different edge directions. In other words, a corner can be interpreted as the
junction of two edges, where an edge is a sudden change in image bright-
ness. Corners are the important features in the image, and they are generally
termed as interest points which are invariant to translation, rotation and il-
lumination. Although corners are only a small percentage of the image, they
contain the most important features in restoring image information, and they
can be used to minimize the amount of processed data for motion tracking,
image stitching, building 2D mosaics, stereo vision, image representation
and other related computer vision areas.
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The approach is based on the main algorithm of ORB-SLAM2 and the datasets
is available online and implements three different underwater environments
such as pools, marinas and open sea with varying water conditions such as
cloudy or sunny day and in many different depths.

According to the paper above there are two types of underwater environ-
ments structured and unstructured. In the first category, the structured envi-
ronment, are included the marine platforms, ports etc. that is, the environ-
ment that cointains a base line in which the ROV can move and had easily
recognizable keypoints. The second category, the unstructured, contains the
mostly natural environment such as seabed ets. at these environment the
keypoints are more difficult to be detected.

There are many constraints that must be taken into account. These con-
straints are the water turbidity, the lighting conditions the depth, the reflec-
tion of the water and the sandy areas . As observed at the paper, the results
at the different constraints was different. For example as many as sand the
area has as less as the features extracted, on the sunny days because of the
reflection of the water the features that extracted at closed on time images
where different.

The examples will presented below, are from the run of the ORB-SLAM2 al-
gorithm which we can find in github [47] with the dataset mentioned at chap-
ter 3.4. The algorithm has some dataset that the designers have developed
but for our needs we used the dataset mentioned before.

Some examples are given below. In the first example, as it is shown in figure
4.1, is presented the case in which it was a cloudy day, so there is no reflec-
tions on the water from the sun and the depth in about 2-3 meters. As is
seems, there are some rocks and algea so it is possible to detect many key-
points and start creating a the map, as it shown in figure 4.2.
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FIGURE 4.1: Surface to 2-3 meters, Cloudy day from the run of
ORB-SLAM2 with our dataset

FIGURE 4.2: Map created from the keypoints from the run of
ORB-SLAM2 with our dataset

In this figure we can see the route created in the map from the surrounding
environment. The ORB-SLAM2 algorithm detect the keypoint as shown in
figure 4.1 save the keypoints and creates the route has followed. The red and
black points are the keypoints founded and the green line is the route has
followed.
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Below we can see an another case in which is a sunny day and the depth is
about 50 cm.

FIGURE 4.3: Surface to 50 cm, Sunny day from the run of ORB-
SLAM2 with our dataset

FIGURE 4.4: Map created from the keypoints from the run of
ORB-SLAM2 with our dataset

Except from the cases that the algorithm succeed finding keypoints and build
a map there are and some cases that the algorithm can not find keypoint due
to the underwater restrictions (turbidity of water, lighting conditions etc.).
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In the second example, as it shown in figure 4.5 is presented the case in which
the depth is about 3-4 meters, but there is only sand, so it is impossible to find
keypopints and start creating a map.

FIGURE 4.5: Surface to 2-3 meters, Sunny day

Some other cases that the algorithm failed, is the case in which the ROV is
at the surface and it is a suuny day, in this case due to the reflection it is
impossible to detect keypoints. Last but not least, the case in which the ROV
is at surface, with artificial lights so there is reflection and the area is without
rocks or algea so it is difficult to find keypoints.

In conclusion, these experiments shows that according to the constraints the
results are very different. If it is a sunny day and the depth is small the
algorithm can’t recognize frames as in the case which is cloudy or the depth
is bigger. We run many different cases in order to validate the algorithm but
here are presented a few of them. The same datasets used for the hardware
validation. More details are presented in the chapter 7.

The default parameters defined at .yaml file are the follows:

Target number of features 2000
Scale Factor 1.2

Number of levels 8
Initial FAST threshold 20

Minimum FAST threshold 7

TABLE 4.1: ORB initial parameters
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The dataset that this paper provides is the main dataset of our algorithm.

4.1 CPU analysis

To analyse the performance of the algorithm chrono library of C++ is used
for measuring the time needed on the extraction part of the algorithm. The
std :: chrono :: steady_clock function was used for measuring the time. Before
the call of the Extractor function was placed a time stamp and after the call
another one. The calls of the extraction function is as many as the frames of
the input dataset. So the finally time spent in the function is almost the half
time of the whole algorithm. The analysis shows that almost the half time
of the algorithm is spent on the ORB extraction part. For example for the
Marina if Fremantle dataset, the execution of the ORB part of algorithm was
220 seconds. The ORB feature extraction consumes about 50% of the time of
the whole algorithm.

Afterwords, the execution time of ORB Extractor class was analysed and as
shown in the bellow figure the most time consuming part of Extraction is the
FAST keypoint detection.

FIGURE 4.6: ORB Extraction execution time
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4.2 ORB feature detector

A block diagram of the main parts of the ORB feature detector algorithm is
shown below.

FIGURE 4.7: ORB feature detection main algorithm

These are the main components of the ORB feature detection part of the ORB-
SLAM2 algorithm. All functions are executed sequentially. All the parts one
by one are described below. The main steps are followed at the ORB extrac-
tion part of the algorithm are the following:

1. ComputePyramid: An image pyramid is calculated and stored into a
predefined table size, this size is defined at the .yaml in which are de-
fined all the necessary setting for the algorithm

2. ComputeKeypoints:

(a) ComputeFastKeypoints: Calculate the keypoints by dividing the
image into 30x30 patches in each level separately.

(b) DistributeKeypoints: After the calculation of the keypoints in a
level a distribution is followed. An OctTree is implementing in
order to sort an choose the best keypoints from the response of
each keypoint.
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(c) ComputeOrientation: After the distribution of the keypoints is
complete, the orientation of each keypoints is calculating.

3. ComputeDescriptors: Computes the ORB descriptors of the extracted
keypoints

Firstly, the pyramid of the current frame is computed. Algorithm 1 shows
how the pyramid is computed. It is obtained by down-sampling step by
step, and stops sampling until a certain termination condition is reached. The
application of image pyramid in SLAM is mainly used to solve the problem
of scale invariance. Scale invariance is achieved by constructing an image
pyramid and detecting corner points on each layer of the pyramid

In order to reduse the size of the image the resize function is used instead of
PyrDown. The reason is that the PyrDown function is more computational
cost in contrast with Resize also the PyrDown function applies sampling so
some information are lost.

Algorithm 1 Compute Pyramid

1: procedure COMPUTEPYRAMID(image)
2: for Every level of the pyramid do
3: imagePyr(level)
4: if level 6= 0 then
5: resizeImage
6: makeBorder
7: else
8: originalimage

After calculating the pyramid, we search for keypoints at every image in the
pyramid. Each image of the pyramid is divided into a 30*30 grid, extract the
FAST corner points in each grid, and ensure the uniform distribution of the
corner points. Algorithm 2 is present the main functionality of the function.

After the computation of the keypoints of each cell of the grid, they are added
to the list of the keypoints of all the images. This part of the algorithm divide
the current frame into nodes and from its node keeps the most important
feature points which. In order to ensure an homogeneous distribution, we
are trying to extract at least five corners per cell. According to the resolution
of the image the number of features extracted at each frame is either 1000 if
the image resolution is 512 × 384 to 752 × 480 either 2000 if the resolution is
higher. The function that implements this is the DistributeOctTree function.
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Algorithm 2 Compute Keypoints

procedure COMPUTEKEYPOINTSOCTTREE
2: for Every level of the pyramid do

Initialization of some parameters
4: for Every Row of the image do

for Every Column of the image do
6: FAST(image, keypoints, initthreshold) . Compute the fast

keypoints of the specific patch of the image
if keypoints is empty then

8: FAST(image, keypoints, minthreshold)
if keypoints is not empty then

10: for Every keypoint do
Add the keypoints to the container vToDis-

tributKeys . Vector of
keypoints

12: keypoints← DistributeOctTree(vToDistributKeys) . Perform
culling

for Keypoints size do
14: Add border to coordinates and scale information

for Every leve of the pyramid do computeOrienta-
tion(image,keypointsAtEachLevel) . Calculate the direction of each
feature point

When the necessary keypoints have been calculated, then we compute the
orientation, viz the direction of each point. At each level of the image pyra-
mid, the orientation of each keyopoint is calculated.

Algorithm 3 Orientation

procedure COMPUTEORIENTATION(image, keypoints, umax)
2: for each keypoins do

keypont− > angle = ICAngle(image, keypoint− > pt, umax) .
Compute the angle of the keypoint

Algorithm 4 is calculated according to the subsection 2.4.2

The final step is to compute the ORB descriptor for each keypoint. The selec-
tion rule is a static array, according to the angle of the key point, this array
called pattern. Converting, and then comparing the size of the converted
two pixel values, a total of 256 dimensions, stored in 32 charType matrix. So
algorithm 5 implements the descriptor.

A GaussianBlur is applied at each level of the image before the computation
of the descriptors.
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Algorithm 4 Compute Angle

procedure IC_Angle(image, keypoint->pt, umax)
for u = −hal f _patch_size; u <= hal f _patch_size;++ u do

m_10+ = u ∗ center[U] . pointer traversal method gradation value
of each pixel

for V = 1; u <= hal fpatchsize;++ u do
for u = −d; u <= d;++ u do

val_plus = center[u + v ∗ step], val_minus = center[u− v ∗ step]
v_sum+ = (val_plus− val_minus)
m_10+ = u ∗ (val_plus + val_minus)

m_01+ = v ∗ v_sum
return f astAtan2(m_01, m_10)

Algorithm 5 Compute Descriptor

procedure computeDescriptor(image, keypoint, descriptors, pattern)
for each keypoint do

computeOrbDescriptor(keypoint[i], image, pattern[0], descriptors.ptr((int)i)

Algorithm 6 Compute ORB Descriptor

procedure computeOrbDescriptor(keypoint, image, pattern, desc)
de f ineGETV ALUE(idx)

center[cvRound(pattern[idx].x ∗ b + pattern[idx].y ∗ a) ∗ step +
cvRound(pattern[idx].x ∗ a− pattern[idx].y ∗ b)]

for i = 0; i < 32; i ++, pattern+ = 16 do
GETV ALUE(0); t1 = GETV ALUE(1);
val = t0 < t1;
GETV ALUE(2); t1 = GETV ALUE(3);
val| = (t0 < t1) << 1;
GETV ALUE(4); t1 = GETV ALUE(5);
val| = (t0 < t1) << 2;
GETV ALUE(6); t1 = GETV ALUE(7);
val| = (t0 < t1) << 3;
GETV ALUE(8); t1 = GETV ALUE(9);
val| = (t0 < t1) << 4;
GETV ALUE(10); t1 = GETV ALUE(11);
val| = (t0 < t1) << 5;
GETV ALUE(12); t1 = GETV ALUE(13);
val| = (t0 < t1) << 6;
GETV ALUE(14); t1 = GETV ALUE(15);
val| = (t0 < t1) << 7;
desc[i] = val
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In order to reduce the execution time and achieve power optimization, a ker-
nel was created for the execution of the part of FAST keypoints extraction.

As the Algorithm 2 shows the triple for loop of this part of the algortithm(1
for every level, 1 for each row of the grid and 1 for each column of the grid),
slows down the execution of the program. For example, for the first level
of the image, the size of the image is 1024*768, according to the above the
image will cut in 30*30 grids so the number of rows and cols that has to be
proccessed are 20 and 27 accordingly. So the final times that FAST funcion
will be execute is 540 times for the first image. Every 30*30 grid has no de-
pendence between the, so we tried to pipeline those two loops.
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Chapter 5

System Architecture

In this chapter we present the main design which was developed in the The-
sis. This architecture designed for the Xilinx ZCU 102 Evaluation Kit as a
platform. In order to design the architecture, Vitis IDE was used. A detailed
description of the tool is presented in 6. The first steps was set up the ORB
algorithm in Vitis IDE. The main algorithm can found at github [47]. As men-
tioned before the most computing expensive part of the algorithm is the ORB
Extractor part so this will be the kernel of our design.

5.1 Host Configuration

The Host is the part of the algorithm that runs at the CPU of the FPGA and
triggers the kernel. So as the software implementation reads the images from
an external folder the same does and the Host Configuration and passes the
necessary inputs to the Kernel. These inputs are the corresponding input
image as an unsigned int of 8 bits, the rows and the columns of the image in
order to calculate the xf::cv::Mat element the corresponding element of Mat
in OpenCV. The Kernel gives as output the final vector of the descriptors of
the image.

5.2 Kernel Configuration

Our approach is dividing into 4 main parts:

• Resize module: Computes the image Pyramid

• ComputeModule: The main compute module. Extracts the FAST key-
points at each level of the pyramid.

• Compute Orientation: Computes the orientation of a keypoint.
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• Compute Descriptors: Computes the descriptor of the keypoint.

Each of the 4 for modules will be explained below.

ORB extraction in order to extract keypoints from the images uses FAST func-
tion from OpenCV library instead of FAST function in our design xf::cv::fast
is the corresponding function from xfOpenCV Library of Vitis, more details
are presenting in the next chapter. Some more functions used are Crop, Sobel,
Resize, Gaussian Blur, duplicateImage.

Every keypoint is described from some values such as the coordinates of the
keypoint, the angle, the class_id, the octave, the response and the size. In
software we can access all this element by defining a keypoint with the cor-
responding class cv::KeyPoint of the OpenCV library. In order to store the
necessary values from each keypoint in our kernel a struct was created. This
struct keeps the neseccary values so that our kernel implemented. These
values are x and y e.g. the coordinates of the keypoint, the angle for the ori-
entation, the octave so that the level from which it was extracted is known,
the descriptor of each keypoint and the size

A block diagram of the approach is presented bellow:

FIGURE 5.1: Diagram of kernel
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5.2.1 Resize Module

The image pyramid computes sequentially a pyramid of the main image.
That is resizes each time the main image. The eight level resize of the image
gives us the advantage of pipelining the resize and compute keypoints, so
every time a resized image produced, fed as input to the compute module in
order to compute the keypoints, the main function of xf::opencv library was
used for the pyramid is the resize function.

FIGURE 5.2: Image pyramid [48]

5.2.2 Compute Module

This is the main module of the approach. The purpose is to pipeline the
computation of the keypoints between the patches this is possible because
there is no dependency between the patches. The keypoints in the original
algorithm are computed in two phases firstly with an initial threshold usually
20 and if no keypoints found with this threshold then it computes again the
keypoints with a minimum threshold usually 7. In our case we duplicate
the input image in order to process FAST in parallel for the two thresholds.
The first thing the module do is to crop the image in the 30*30 patch in order
to achiieve this we use the crop function of xf::opencv after cropping the two
images we process FAST in parallel for them. When FAST finished we are
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starting the extraction of the keypoints when at least one keypoint of the
high threshold found, the keypoints of the minimum threshold are discarded.
When a keypoint found the orientation and the descriptor of the keypoint is
calculating immediately. With this way we can achieve pipelining between
the patches and also pipelining between the computation of orientation and
descripors. Finally, the descriptors are writing into the output buffer and fed
back to the DDR memory.

FIGURE 5.3: Compute Module

5.2.3 Compute Orientation

This module takes as input the keypoint extracted in order to compute the
orientation with the given algorithm 4. The computation of the moments
has been parallelized because of there is no dependence between the values
needed for the moment calculation.

5.2.4 Compute Descriptors

This module takes as input the Gaussian Blured image as well as and the
orientation of the each keypoint and a 32-bit descriptor is calculated for its
keypoint. In order to calculate the orientation a predefined array of patternX
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and patternY is used. Those two array are completely partitioned in order to
calculate the 32-bit descriptor in parallel.
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Chapter 6

FPGA Design

This chapter details the design of the architecture described in chapter 5 as
well as the tools used in order to implement the design in the ZCU 102 Eval-
uaton Kit.

6.1 Tools Used

The FAST keypoint extraction of ORB-SLAM2 algorithm, was implemented
and optimized for FPGA platfrom using the Vitis Unified Software Platform
[49]. Vitis Unified Softwre Platform is a Software design by Xilinx that comp-
bines all aspects of Xilinx software development into one unified environ-
ment. The Vitis application acceleration development flow provides a frame-
work for developing and delivering FPGA accelerated applications using
standard programming languages for both software and hardware compo-
nents. The software component, or host program, is developed using C/C++
to run on x86 or embedded processors, with OpenCL API calls to manage
runtime interactions with the accelerator. The hardware component, or ker-
nel, can be developed using C/C++, OpenCL C, or RTL. The Vitis software
platform promotes concurrent development and test of the Hardware and
Software elements of an heterogeneous application. In this case both host
program and kernel was developed using C++ programming language. Vitis
splits the code into two parts. The first part is the host code and the second is
the kernel code with a communication channel between them. The host code
is the main code, the code that runs into the CPU using API abstractions like
OpenCL. The kernel code concerns the code that run into the FPGA.
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6.1.1 Vitis Software Platform (Accelerated Flow Application

Development)

In the Vitis core development kit, the application consists of a host program
and a hardware accelerated kernel with the two being connected through a
communication channel between them. The host program, written in C/C++
and using API abstractions like OpenCL, runs on a host processor (such as
an x86 server or an Arm processor for embedded platforms), while hardware
accelerated kernels run within the programmable logic (PL) region of a Xilinx
device. As mentioned in the present case both host and kernel was developed
with C++.

The API calls, managed by XRT. Xilinx Runtime Library [50] allows the de-
velopers continue using familiar languages like C/C++ and Python and also
facilitates communication between the application code and the accelerated-
kernels.

Communication between the host and the kernel, including control and data
transfers, occurs across the PCIe® bus or an AXI bus for embedded plat-
forms. While control information is transferred between specific memory lo-
cations in the hardware, global memory is used to transfer data between the
host program and the kernels. Global memory is accessible by both the host
processor and hardware accelerators, while host memory is only accessible
by the host application.

Vitis Software Platform provides some build targets that makes easier for the
developer to debug and run the code. There are three different build targets:

• Software emulation Both host and kernel are compiled and run on the
host processor. This allows to identify easily syntax errors and perform
debugging of he kernel code running together with application, and
verifying the behavior of the system.

• Hardware emulation The kernel code is compiled into a hardware model
(RTL), which is run in a dedicated simulator. This render easily the test-
ing of the kernel code because is running into a simulation of the FPGA

• Hardware The kernel code is compiled into a hardware model (RTL)
and then implemented on the FPGA, resulting in a binary that will run
on the actual FPGA
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Vitis Vision Libraries

The main purpose of Vitis Vision Librarie is to achieve real-time performance
and flexibility to manage a range of frame resolutions and adaptable through-
put requirements, while being power-efficient. Vitis Vision Labrarie pro-
vides a familiar interface like the OpenCV the xfOpencv librarie which im-
plements the most functions of OpenCV in terms of FPGA and can achieve
high-performance with low power. In the present case the functions used
was FAST, resize, crop and GaussianBlur.

Xilinx FPGAs can provide an important acceleration percentage over the tra-
ditional CPU/GPU performance. They provide custom architectures capable
of implementing any function that can run on a processor, resulting in better
performance at lower power dissipation. These acceleration can provide an
ideal balance between performance and power.

The main advantage of FPGAs and programmabled devices in constrant with
CPUs and GPUs is that FPGAs are fully customizable architectures. This
gives to the developer the advantage of creating computing units that are
optimized for application needs. In constrant, CPUs and GPUs have pre-
defined architecture, fixed cores and instruction set.

Think of a CPU as a group of workshops, with each one employing a very
skilled worker. These workers have access to general purpose tools that let
them build almost anything. Each worker crafts one item at a time, succes-
sively using different tools to turn raw material into finished goods. This
sequential transformation process can require many steps, depending on the
nature of the task. The workshops are independent, and the workers can all
be doing different tasks without distractions or coordination problems.

A GPU also has workshops and workers, but it has considerably more of
them, and the workers are much more specialized. They have access to only
specific tools and can do fewer things, but they do them very efficiently. GPU
workers function best when they do the same few tasks repeatedly, and when
all of them are doing the same thing at the same time. After all, with so many
different workers, it is more efficient to give them all the same orders.

Programmable devices take this workshop analogy into the industrial age.
If CPUs and GPUs are groups of individual workers taking sequential steps
to transform inputs into outputs, programmable devices are factories with
assembly lines and conveyer belts. Raw materials are progressively trans-
formed into finished goods by groups of workers dispatched along assembly
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lines. Each worker performs the same task repeatedly and the partially fin-
ished product is transferred from worker to worker on the conveyer belt.
This results in a much higher production throughput.

In the present case the kernel code is the Fast extraction of ORB part of the
algorithm. The host code takes the arguments that will be passed to the ker-
nel and put these arguments into a buffer. That is, it moves the arguments to
the global memory so they can be visible from the kernel. Then is launch the
kernel, the kernel is running and writes the result back to the global memory
in order to be visible from the host code.

ORB-SLAM2 algorithm in order to process the input images uses the OpenCV
library [1]. So it is need to implement this library into terms of FPGA. The
Xilinx provides us this library called xfopencv [2]. Is a set of 60+ kernels op-
timized for Xilinx FPGAs and SoCs, based on the OpenCV computer vision
library. All the library functions are following the same format.

• The functions are designed as templates and the images have to be pro-
vided as xf::Mat.

• All functions are defined in the xf namespace.

• Some of the major template arguments are:

– Maximum size of the image to be processed

– Datatype defining the properties of each pixel

– Number of pixels to be processed per clock cycle

– Other compile-time arguments relevent to the functionality.

So, the main purpose is to replace the Opencv functions of FAST part and the
GaussianBlur of ORB feature detection class with these from the XfOpencv
function, and measure the response of these functions.

6.1.2 Vitis High-Level Synthesis (HLS)

Vitis HLS [51] is a high-level synthesis tool that allows C, C++, and OpenCL™
functions to become hardwired onto the device logic fabric and RAM/DSP
blocks. Vitis HLS implements hardware kernels in the Vitis application accel-
eration development flow and uses C/C++ code for developing RTL IP for
Xilinx device designs in the Vivado Design Suite.
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Synthesis Report

A synthesis report is created whenever HLS successfully synthesizes an IP
Block, showing various performance and resource utilization metrics. Using
the synthesis report, the designer can easily find and target the bottleneck to
further optimize their design in terms of both performance and resources

• Latency The number of clock cycles required for a complete run of
module or loop.

• Iteration Latency The number of clock cycles required for running a
single iteration of a module or loop.

• Iteration/Initiation Interval(II) The number of clock cycles required
before a module can accept new input or a loop can initiate a new iter-
ation

• Pipelined Whether a module or loop is implemented using a pipelined
architecture

• Area The number of hardware resources a module requires for its im-
plementation into the target FPGA. The hardware resource types are
Block RAM (BRAM) and Ultra RAM (URAM), Digital Signal Process-
ing (DSP) units, Flip Flops (FF), and Lookup Tables (LUT). A table is
also given on the detailed report, showing the number of hardware re-
sources required for every hardware component type, which include
DSPs, Expressions, First-In-First-Out (FIFO) queues, Instances, Memo-
ries, Multiplexers, and Registers.

Optimization Directives

Vitis IDE as Vivado HLS on the kernel provides a set of optimization direc-
tives for optimizing the latency, throughput and resource utilization of the
exported IP block. The directives can be added directly to the kernel code.
Below are presented some of the basic optimization directives.

• Interface The top-level function’s arguments have to be mapped to RTL
ports to configure the IP block’s functionality. The interface directive
specifies each argument’s port type.

• Stream By default, the top-level function’s array arguments are imple-
mented as RAM channels. However, when data are being produced



46 Chapter 6. FPGA Design

or consumed sequentially, a more efficient data type is to use FIFOs,
which can be specified using the stream directive.

• Pipeline Given an Initiation Interval (II) parameter, the pipeline direc-
tive reduces the number of clock cycles a function or loop can accept
new inputs, targeting II clock cycles, by allowing the overlapped exe-
cution of operations.

• Unroll Given a factor, the unroll directive unrolls a loop factor times,
creating multiple instances of the loop body, that can then be scheduled
independently or run in parallel

• Loop Flatten Allows perfectly nested loops, loops that no logic is in-
jected between them, to get collapsed into a single loop, reducing la-
tency. Essentially, it handles all the indexing logic of the loop flattening

• Loop Merge Merges consecutive loops, often initialization loops, re-
ducing overall latency and resource utilization.

• Resource Specifies the resource for a variable to get implemented.

• Array Parititon By default, every array is implemented as a set of at
least one BRAM unit with a single read and a single write port. The
array partition directive partitions an array into multiple smaller ar-
rays or assigns each array’s element to its register. This partitioning
increases the read and write ports of the array on the hardware level,
allowing for parallel I/O and computations. In the potential expense
of more memory instances and more register, array partitioning can
improve overall throughput and performance of memory bounded ap-
plications.

• Array Map The array map directive combines multiple small arrays
into a single large one, to avoid BRAM waste on small arrays, which
can occupy a BRAN unit for just a few elements.

• Array Reshape Reshapes an array of many elements of small bit-width
to an array of fewer elements but of higher bit-width, increasing the
sequential BRAM access speeds

• Data Pack Similar to the array reshape directive, the data pack directive
combines struct data fields to a single scalar of higher bit-width.

• Dataflow Enables parallel execution of functions and loops, increasing
throughput and latency.
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• Inline Similar to C/C++ macro preprocessor functionality, the inline
directive injects a function’s body to each of its calls, reducing latency
and initiation interval due to lower function call overhead.

• Allocation Limits the number of hardware resources used for imple-
menting the IP block, and may result in hardware sharing and latency
increase.

• Latency Limits the minimum and maximum latency in clock cycles.

6.1.3 Vitis Analyser

Vitis Analyzer GUI and Window Manager is a useful tool that helps to under-
stand better the system. It provides code reports, summaries and system dia-
grams. It is spited into three parts the Report Navigator, Report and Source
Code view

• Report Navigator It provides all the summary files and reports of the
project. Also it is easy to open HLS Project or Vivado Project, by right
clicking on the Compile Summary or the Run Summary respectively.

• Reports It shows all the contents of the summary files. All the reports
related to the Compile Summary, Link Summary, or Run Summary are
grouped together within a single container.

• Source Code The kernel source code.It lets the developer view and edit
kernel source code based on the feedback of the report

6.1.4 Vivado IDE

Vivado IDE provides a friendly to the developer GUI. All Vivado Design
Suite tools integrate a native TCL interface, which can be accessed from IDE’s
GUI and the TCL console. Vivado IDE can compile, synthesize, implement,
place and route FPGA hardware designs written in high-level languages such
as C/C++, and HDLs such as VHDL and Verilog. In addition, using the IP
Integrator tool, hardware systems can be designed by graphically connecting
IP blocks and configuring them through their GUI, with no coding involved,
hence, accelerating the design process. Integration automation features such
as auto-connecting and auto-configuring blocks further accelerate the design
process. IP blocks can be created using the integrated IP Packaging function-
ality for VHDL or Verilog designs and via the Xilinx HLS tool for C/C++
designs. FPGA Implementation for free, including but not limited to on and
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off-chip-network IPs, memory blocks and memory management IPs, I/O in-
terface IPs, and even various compute IPs. There are also additional IP’s that
can be purchased from Xilinx or even other vendors and developers

6.2 FPGA Platforms

The platform used in order to accelerate the application was the Zynq Ul-
traScale+ MPSoC ZCU102 Evaluation Kit [52]. The ZCU102 consists of a
quad-core Arm Cortex-A53, dual-core Cortex-R5F real-time processors, and
a Mali-400 MP2 graphics processing unit based on Xilinx’s 16nm FinFET+
programmable logic fabric

6.3 Architecture Modules

In this section all the modules of the proposed architecture design will be de-
scribed. Additionally, it will be analyzed witch of the optimization directives
used as well as how the Vitis tools (Analyzer, HLS) used in order to detect
the bootlenecks and achieve pipeline.

6.3.1 CropImage and DuplicateImage and FAST

In this subsection we will analyze the highlighted modules from the diagram
above.



6.3. Architecture Modules 49

FIGURE 6.1: The modules from the block diagram

FIGURE 6.2: xfOpencv CropImage

FIGURE 6.3: xfOpencv FAST
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In this module three main functions of the xfOpenCV library provided by Xil-
inx was used. These functions was the FAST in order to compute the FAST
keypoints of the image, the crop in order to crop the image into 30*30 grids
and the duplicate in order to process in parallel the computation of the key-
points with the low and the high threshold.

As we can see at the implementation of algorithm 2, the main image is di-
vided into 30*30 grids. In the software implementation the division is carried
out with the following equation.

image.rowRange(iniY, maxY).colRange(iniX, maxX)

The bellow equation is the input image of the FAST function and it is the
30*30 grid of the image. The hardware implementation of the Mat class of
OpenCV library does not allow us to use the rowRange and colRange methods
so we have to find another to divide the image. In order to achive this we
used the xf::cv::crop function. So we call the crop function depending on the
size of the image. If the image is 768*1024 we will need about 884 grids to
process all the image. A first thing we tried was to cut the image at the begin-
ning of the code and store the images into a fifo and every time to withdraw
data from that fifo but it does not fit at the FPGA. So every time we crop the
hole image into a 30*30 grid.

After copping the main image the 30*30 image is ready to fed at the xf::cv::fast
function in order to calculate the FAST keypoints of that grid. As seen from
algorithm 2 the first step is to calculate the FAST keypoints with the init-
Threshold and if no keypoints found then the FAST keypoints is calculating
with the minthreshold. Those two computations can proceed in parallel.

The way to achieve this is to duplicate the input image with the xf::cv::duplicate,
that is, to create two copies of the input image and process in parallel the
computation of crop and FAST functions. In order to process this computa-
tion of low and high threshold in parallel the Dataflow directive was used.
As mentioned before the dataflow enables the parallel execution of functions,
in this way the computation of FAST keypoints with min and max threshold
process in parallel. After the computation the keypoints are extracted. A di-
agram of the Dataflow pipeline is shown bellow. We can see that separate
grids of the image can executed in parallel.
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FIGURE 6.4: Dataflow pipeline of the min and max threshold

The figure 6.4 it’s about one frame with its 8 levels and the FAST computation
is about the computation of the FAST in a grid of a level of the frame.

Extract Keypoints

FIGURE 6.5: Extract Keypoints Module

The FAST function takes as input the Mat image in which will find the key-
points, the desired threshold and gives as output a new Mat image in the size
of input image in witch the keypoints are marked with the 255 value. So after
the computation of keypoints, the extraction process starts. The pixel of the
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image are read one by one inside a nested for loop, if the value of the pixel is
255 then is stored as keypoint and fed as input in the Compute Orientation
and Descriptors module in order to compute the Descriptors. Those two for
loopa are pipelined by using the Pipeline directive with initiation interval of
1. The algorithm followed is shown below.

Algorithm 7 Extract Keypoints

procedure EXTRACTKEYPOINTS
2: for Every row do

for Every col do
4: inputpixel ← InputImage(row, cols) . Read every pixel from

the grid
if inputpixel ≡ 255 then

6: Storethekeypoint
CallComputeOrientation

8: CallComputeDescriptor

6.3.2 Compute Orientation

FIGURE 6.6: Compute Orientation Module
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FIGURE 6.7: Compute Orientation

This module implements the algorithm 4. In the main algorithm after the
computation of all keypoints, their orientation is computing as follows, al-
gortihm 3 calls algorithm 4 as many times as the number of keypoints is.
Instead of this we call only algorithm 4 every time a keypoint is extracted.
With this way we cut off a for loop and we achieve pipeline as well as until
the extraction of keypoint is done the calculation of the orientation in com-
pleted and fed at the compute descriptor module, however the extraction of
the next keypoint has began. A diagram of the pipeline is shown below.

As we can see from the figures 6.8 and 6.9 the algorithm takes as input a
frame computes the Image Pyramid in the beginning and the for every level
computes the keypoints, the orientations and finally the descriptors. So, the
compute pyramid part is calculated one time for every frame instead of the
other parts that are calculated for every 30*30 grid for every level of the im-
age. We deepen at this part because of there is no dependence between the
grid instead of the pyramid that there is dependence between the next and
the previous level of the pyramid. We detect that there is no dependency
between the grids of the image so we pipeline this part of the algorithm.

FIGURE 6.8: Without Dataflow Pipelining
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FIGURE 6.9: With Dataflow Pipelining

As it seems at the implementation of the algorithm 4 the calculation of the
IC angle of the keypoints is computed in two phase. The first phase is ini-
tializing the parameter m10 with a single for loop and the second phase is
computing both the parameters m10, m01 with a nested for loop all these for
loop are fully pipelined with the Pipeline directive. In order to pipeline these
loops with II of 1 we need to fully partition the array of the image is needed,
this done with the Array Partition directive.

6.3.3 Compute Descriptors

FIGURE 6.10: Compute Descriptors Module
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FIGURE 6.11: Compute Descriptors

This module implements the algorithm 6. As in the previous module the
Descriptors in computing after the calculation of all keypoints and all the
angles of them. So, algorithm 5 calls algorithm 6 as many times as the num-
bers of keypoints is. As mentioned before instead of this implementation we
compute the descriptors imidiately after the extraction of keypoint and the
computation of its angle.

As we can see from the implementation of algorithm 6 there is a single for
loop that calculates the 32-bit descriptor of the keypoint. In order to pipeline
this loop, there two things that must be done. The first is to partition the ar-
ray of the image that is accessed at ever iteration of the loop, and the second
is to partition the pattern array. The pattern array is a predefined array with
coordinates that used for the calculation of the descriptor. This array consist
of 1024 pair of coordinates, we split this array into two different arrays one
for the x coordinates and one for the y coordinates and we implement those
arrays as read only ram with multiple read ports this implemented with the
Resource directive and we fully partition the arrays. In this way the 32 iter-
ation loop of the computation of the descriptors is fully pipelined.

In conclusion, as described above every time a keypoint is extracted the ori-
entation and the descriptor is computed instead of the software implementa-
tion in which firstly all the keypoints are computed, then the orientation and
after orientation the descriptors are computed. We choose this way because
we can cut of 2 large for loops those for the orientation and the descriptor
computation and also we can increase the pipeline.
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Chapter 7

Verification on an FPGA platform
and Performance Evaluation

In this chapter we will analyze the results of our design vs. the theoretical
performance. The design was performed with the Xilinx Vitis HLS and Vi-
vado IDE tools and was carried out past the place and route step of the design
on the ZCU102 Evaluation Kit. We will present and analyse some perfor-
mance metrics such as latency, throughput, power ans energy consumption
and the results of validation will be presented. Lastly, we will compare those
metrics with the corresponding ones from software implementation.

7.1 Validation

In order to validate the proposed solution a suite of 20 images was used. We
run the software algorithm in order to calculate the FAST features of those 20
images and repeat the process with the proposed architecture. Above we can
see the results.
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FIGURE 7.1: Percentage of keypoints found in hardware vs. the
software model, per image and per level

FIGURE 7.2: Percentage of keypoints found in hardware vs. the
software model, per image and per level
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As we can see the FAST keypoints extracted from both Software and Hard-
ware are very similar with a loss 5-10% per level. Also, hardware in some
times can find some more keypoints compared with software but there are
not enough to discuss further. This experiment done for many datasets but
there much in order to present thm all.

7.2 Specification of Compared Platforms

The design which we described in previous chapters and section will be com-
pared vs. the code of the ORB-SLAM2 that has run on an Intel i7-6500U. The
proposed architecture was designed to run on the ZCU102 Evaluation board
but due to technical problems with the platform the results shown below re-
fer to post place and route simulations with the Vitis HLS and Vivado IDE
tools. Post place and route simulations are highly accurate, as all issues (in-
cluding timing ones) have been fully addressed, i.e. the design fits on the
resources of the platform, the maximum clock frequency is highly accurate,
and all internal timings and interfaces to external DDR memory are accurate.
It should be noted that DDR is not a bottleneck in this design, as the frame
rate is very low, hence it is the on-FPGA processing itself which determines
the latency.

7.2.1 Intel i7-6500U

Intel i7-6500U
Cores / Threads 2 / 4
Max Turbo Frequency 3.10 GHz
TDP 15W
Max Memory Bandwidth 34.1 GB/s
Lithography 14 nm

TABLE 7.1: CPU characteristics

7.2.2 Proposed Solution

Here is the final resources usage of our solution.
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Resources usage
Clock Frequency(MHz) 205.5
BRAM 66%
DSPs 1%
FF 3%
LUTs 12%

TABLE 7.2: ZCU102 Resources usage

7.3 Performance Metrics

7.3.1 Latency

Latency, is the time required for accomplishing a single task. It is preferred
to be as low as possible to finish tasks as quickly as possible from the time
they are issued. Latency is given by the following equation.

Latency =
1
v
=

T
W

Where, v is the task’s execution speed, T is the task’s execution time, W is the
task’s execution workload.

7.3.2 Throughput

Throughput, is a measure of how many units of information a system can
process in a given amount of time. It is preferred to be as high as possible to
generate as much work as possible in the unit time. Throughput is given by
the following equation.

Throughput = r ∗ v ∗ A =
r ∗ A ∗W

T
=

r ∗ A
L

Where, r is the execution density, A is the execution capacity.

7.3.3 Power Consumption

Power consumption is defined as the energy consumed per unit time for ac-
complishing a specific task. Average power consumption is always preferred
to be as low as possible to increase the system’s energy efficiency, minimizing
energy losses. In addition, low power consumption leads to simpler system
designs and lower building costs. It is usually measured in Watts (w) or kilo-
Watts (kW).
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7.3.4 Energy Consumption

Energy consumption is defined as the energy required for accomplishing a
specific task in a specific time amount. Energy consumption is also preferred
to be as low as possible while accomplishing the given task within the time
constraints, to minimize the operational costs. It is usually measured in Joule
(J) or kiloJoule (kJ).

7.4 Final Performance

The Dataset used in order to test the design was the Marina in Fremantle at
Western Australia as mentioned in subsection 3.4. Specifically we used one
of the sub datasets of the Marina in Fremantle with 2-3 meters depth and
cloudy day. This dataset was choosen because in this depth and weather
conditions more keypoints are found (as characterized by the algorithm and
not the implementation). It consits of 2,064 images with initial resolutuion of
768x1024 pixels. All the images are processed as gray-scale.

The final results of the architecture are shown below.

Performance Results
CPU Proposed

Solution
Clock Frequency(MHz) 3100 205
Throughput (Images/s) 9.5 6.5
Latency(s) 0.1065 0.153
Execution time of 2,064 images(s) 220 315.8
Total On-Chip Power(Watt) 15 4.12
Energy Cons./Image (Joule) 1.57 0.633
Images/Joule 0.633 1.58

TABLE 7.3: Proposed Architecture Performance results

As mentioned, the performance results refers to theoretical results after per-
forming Place and Route as we encountered technical problems and was im-
possible running the implementation at the FPGA. The Energy Consump-
tion/Image metric is calculated with the following equation.

EnergyConsumption
Image

=
TotalPower
Throughput

The Images/Joule metric is calculated with the following equation.
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Images
Joule

=
Throughtput
TotalPower

The total speedup achive is shown in the following table.

Speedup Results
CPU Proposed

Solution
Throughput 1x 0.68x
Latency 1x 0.69x
Power Efficiency 1x 3.64x
Energy Efficiency 1x 2.5x

TABLE 7.4: Proposed Architecture Speedup results

FIGURE 7.3: Throughput Final Result

FIGURE 7.4: Latency Final Result
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FIGURE 7.5: Energy Consumption per Image Final Result

As we can see from the results above, in terms of Throughput and Latency
the CPU solution is faster than the proposed solution but the energy witch
requires is bigger than the proposed solution. In this thesis we aim to use
this solution in unmanned submarines, so we need real time implementation
with low energy cost in order the submarine can explore as much time as it
is possible. The proposed solution might be more slow but is about 60% less
energy costly than the CPU. At this point let us mention that the metrics of
the CPU were taken with an Intel i7 processor witch may be not a choice for
a submarine due to energy consumption, a choice for a submarine may be an
Intel Pentium with low energy consumption this leads to the result that the
performance will not be the same as the Intel i7 it will be similar or even less
than the proposed solution.
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

Autonomous Underwater Submarines have many useful application such as
garbage collection in shallow ports, mapping ports even finding holes in fish-
ing nets and more other. In order to achieve this we need a real time imple-
mentation algorithm with low energy cost. This can be achieved with the
use of FPGA. The purposed solution may be not meet the timing constraints
but it is much better in terms of energy. If this solution is extended incor-
porated into the ORB-SLAM2 algorithm and accelerate some other timing
costly parts of the algorithm such as ORB maching part, pipeline the execu-
tion of images as we will mention in chapter 8.2 the solution will be timing
and energy effective.

8.2 Future Work

This work is easily expandable and also can be applied into newer platforms
such as GPUs. Some of future works can be done will be mentioned bellow.

• Apply the accelerator into ORB-SLAM2 As mentioned this work refers
to the acceleration of the most timing consuming part of the ORB-SLAM2
algorithm the ORB feature extraction part. This accelerator can replace
the ORB extraction of the ORB-SLAM2 algorithm.

• Accelerate other parts of algorithm Some other parts of the algorithm
even the hole algorithm can be accelerated
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• Apply the architecture in a GPU When this work starts the only avail-
able resources was the ZCU 102 board so we can not apply the architec-
ture in a GPU. Now there are more powerful GPUs like Jetson in witch
this architecture solution can be applied.

• Better Memory management The purpose of our work was not only
to reduce the energy cost but also the comparison of the functions of
opencv with counterpart of xfopencv, so we process the entire image.
A future solution will be the use of FIFOs so that the process can be
pixel by pixel and achieve a better pipeline.

• Better resource managment ZCU 102 has the ability of using multiple
compute units. This means that there can be multiple copies of the same
kernel, so it can parallel process many images.
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