
  

  

Abstract—This paper is concerned with a novel traffic control 

concept of internal boundary control for bi-directional lane-free 

traffic of automated vehicles on freeways. The internal boundary 

control can help exploit the capacity resources of road 

infrastructure and eliminate traffic jams by sharing the total bi-

directional capacity for traffic on freeways when the total 

demand of the bi-directional traffic (also in consideration of 

on/off-ramp flows in both directions) does not exceed the total 

capacity. When this condition is not met, however, applying the 

internal boundary control alone cannot reach the pursued goal. 

Thus, one other traffic control measure ramp metering is 

introduced as well. This paper studies how to prevent freeway 

congestion using both control measures. A cell transmission 

model (CTM) based non-holding-back quadratic programming 

optimal control model is formulated. The investigation results 

show that the proposed integrated control scheme can maximize 

the utilization of road infrastructure and remove congestion at 

overloaded ramp-merging areas. It is the first time to study the 

combination of the two control measures and its potential.  

I. INTRODUCTION 

Due to the steady growth in traffic demand, traffic 
congestion happens increasingly frequently on freeways, 
especially during holidays, morning and evening peek-periods, 
which causes a series of problems such as travel delays, 
traveler injuries, environmental pollution. In the past few 
decades, ramp metering, variable speed limit control and other 
freeway traffic control measures have been applied to improve 
traffic conditions [1], [2]. However, all those measures face 
various limitations. The emergence of connected and 
automated vehicles (CAVs) critically helps to tackle the 
limitations, and opens a new era of freeway traffic control [3]. 

Based on automated driving, vehicle-to-vehicle (V2V), 
vehicle-to-infrastructure (V2I) communication and other 
related technologies, a novel paradigm of vehicular traffic 
“TrafficFluid” that is applicable at high penetration rates of 
CAVs, was proposed recently [4]. TrafficFluid has the 
following features: (1) lane-free traffic: directional vehicles 
are no longer restricted by fixed traffic lanes, but only bound 
to the road boundaries, and can drive anywhere within the 
boundaries. (2) nudging: vehicles can communicate their 
status and plans with others and particularly exert a pushing 
force towards vehicles in front, which is impossible for 
human-driven vehicular traffic where anisotropy is dominating 
[4]. Based on the two principles, vehicles will not form lanes, 
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but 2-D clusters on roads. The microscopic simulation results 
in [4] show that, as long as the two principles were applied, the 
resulting road capacity would be enlarged drastically. 

In this context, a new concept of traffic control called 
internal boundary control was proposed [5]. it exploits and 
extends the lane-free feature of TrafficFluid to consider that 
the internal boundary between the two opposite directions of 
traffic on a road is not necessarily fixed but can be flexible 
under the lane-free paradigm of CAV traffic. As such, the total 
bi-directional cross-road capacity can be shared between the 
two directions according to their respective demands to 
maximize road space utilization. Internal boundary control can 
be achieved by setting a virtual internal boundary between the 
two opposite traffic flows and sending this information to 
CAVs in order for them to be aware of this boundary while 
performing their lane-free-based maneuvers. With appropriate 
control strategies, the internal boundary can be adjusted in 
adequate resolutions of time and space for the optimization of 
traffic efficiency. 

The concept of sharing capacity can be traced back to 
reversible lanes, which has been successfully implemented in 
many freeways, e.g. Interstate 15 in San Diego, Canal Road in 
Washington [6] to address a variety of needs, e.g. unbalanced 
peek-period traffic demands [7], special event management [8]. 
Some other works (e.g. [13]) modified the types of usage (e.g. 
through, turning) of one or more lanes to reallocate the 
available road resources to meet unbalanced and varying 
traffic demands. Early works as mentioned above were usually 
done offline based on experience to manually modify the 
corresponding lane boundaries using e.g. traffic signs or 
roadblocks. 

To make the operation more efficient, a number of 
subsequent works have tried to establish control strategies so 
as to adjust reversible lanes in real time according to traffic 
conditions. To this end, some approaches have been employed, 
such as binary mixed-integer linear programming [9], multi-
objective mixed-integer non-linear programming [10], 
feedback control [11], model predictive control (MPC) [12]. 
However, those models did not take advantages of the real-
time traffic information available with CAV technologies, 
except that Ding [13] constructed a mixed integer quadratic 
programming to jointly optimize signal timings and variable 
lane settings in a CAV environment. 
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The above lane-based tidal flow control systems have 
obvious shortcomings and limitations [5]. More specifically, 
(1) The spatial resolution for lane operation is very restrictive, 
which is lane based and not sufficient for tricky but not rare 
situations under which the demand difference in the two 
opposite directions may not be more than the capacity of one 
lane, and if possible, finer operations based on a portion of a 
lane would be ideal. (2) For safety, the clearance time of the 
reversible lane after each lane switch is long, wasting space 
resources. (3) The reversible lane must be long enough to 
avoid congestion in the interleaved lane. By contrast, in the 
TrafficFluid environment, these problems can readily be 
handled, thanks to the characteristics of lane-free traffic and 
nudging operations. The internal boundary control in this 
environment can achieve the sharing of capacity with a high 
lateral resolution of reversible lanes, short control interval and 
short road length. 

Recently, Malekzadeh [5] analyzed the performance of 
internal boundary control for freeways based on convex 
quadratic programming. The work has a high potential for 
further improvements. Malekzadeh [14] also applied Linear-
Quadratic regulators to the problem of internal boundary 
control, enabling efficient real-time capacity sharing without 
traffic demand prediction. However, both works only verified 
the concept of internal boundary control under simple traffic 
scenarios. When the condition gets more complex, it may not 
be sufficient to eliminate congestion. For instance, when the 
sum of bi-directional demands is greater than the total capacity 
of all lanes in two directions, especially considering on-ramp 
inflows, congestion cannot be avoided by applying internal 
boundary control alone. 

With the above in mind, and also to fully explore the 
potential of internal boundary control, a more general control 
problem is studied in this paper, which combines the internal 
boundary control with ramp metering. By handling this 
problem under critically congested traffic conditions, the 
applicable scenarios, limitations and the pros and cons of 
internal boundary control can be examined in depth, and the 
gained knowledge could be valuable for a general internal 
boundary control model in the CAV environment. 

More specifically, this paper formulates a CTM-model-
based optimization scheme for an integrated problem of 
internal boundary control and ramp metering on freeways. It 
analyzes and elaborates on the characteristics of the problem. 
In particular, a convex quadratic programming (QP) problem 
is treated to avoid the holding-back issue [15] so as to obtain 
reasonable results. Finally, the scheme is tested in a carefully 
designed freeway scenario with satisfactory results obtained.  

The contributions of this work are as follows: (1) It is for 
the first time to combine the internal boundary control and 
ramp metering for freeway traffic and study the compatibility 
of the two control measures and their potential in improving 
traffic flow efficiency. (2) In the lane-free paradigm of CAVs, 
it is possible to order via internal boundary control all road 
resources including ramp storage space in both directions to 
work together for traffic flow optimization, which is absolutely 
impossible in the current traffic paradigm with fixed internal 
boundaries. It is for the first time to study this novel possibility.  

The remainder of the paper is organized as follows: Section 
II presents the idea of internal boundary control and the 
corresponding mathematical model. CTM and the optimal 
control framework are given in Section III. Section IV 
introduces the formulation of the quadratic programming. 
Case study and corresponding results are presented in Section 
V. Section VI concludes this paper. 

II. INTERNAL BOUNDARY MODELING 

In the TrafficFluid environment, the structure of the 
existing macroscopic models will not be changed, in contrast, 
some concepts like the conservation equation, the fundamental 
diagram and the moving traffic waves will continue to 
characterize macroscopic traffic flow modeling [5]. The only 
differences are the free speed, critical density, flow capacity. 
These values may differ from in lane-based traffic and when 
the internal boundary control comes into play, these values 
will no longer be constant, but change dynamically.  

Hence, before establishing the macroscopic dynamic 
traffic model for internal boundary control and ramp metering, 
it is crucial to analyze the characteristics of the two opposite 
traffic directions with the impact of internal boundary control. 
As explicitly derived in[4], [5], for the scene show in Figure 
1. , the relationship between key parameters of the respective 

Fundamental Diagrams (FDs) such as 𝑄𝑐𝑎𝑝
𝑎 , 𝑄𝑐𝑎𝑝

𝑏 , 𝜌𝑐𝑟
𝑎 , 𝜌𝑐𝑟

𝑏  

and the sharing factor ε is linear. The specific derivation is as 
follows. 

 
Figure 1.  Space-time internal road boundary 

As is shown in Figure 1. , there are two opposite traffic 
directions, which we will call direction a and direction b. The 
road widths of direction a and direction b are 𝑤𝑎 = 𝜀 ∙ 𝑤  and 

𝑤𝑏 = (1 − 𝜀) ∙ 𝑤  , where  𝑤 is the total road width and 0 ≤
𝜀 ≤ 1  is the sharing factors. The total FD of the highway 
segment is Q(ρ) , where ρ  is the traffic density in veh/km. 
Assuming 𝑤 is the total number of lanes and 𝜀 ∙ 𝑤, (1 − 𝜀) ∙
𝑤 are the corresponding integer numbers of lanes for the two 
directions. The FD per lane can be easily get as Q(𝜌1 ∙ w)/w 
where 𝜌1 is the density per lane and similarly, the FDs for the 
two directions, are given in the form of  𝜀’s functions. 

 ( , ) ( )a a aQ Q    =   () 

 ( , ) (1 ) ( (1 ))b b bQ Q    = −  −  () 

in which 𝜌𝑎  and 𝜌𝑏  are the respective densities of the two 
directions. 

 As for direction a, by taking the derivative of (1), we can 

obtain that 𝑄𝑎′(𝜌𝑎, 𝜀) = 𝑄′(𝜌𝑎 𝜀⁄ ) . For the critical density 

𝜌𝑐𝑟
𝑎 , we have 𝑄𝑎′(𝜌𝑐𝑟

𝑎 , 𝜀) = 0 = 𝑄′(𝜌𝑐𝑟
𝑎 𝜀⁄ ). Meanwhile, we 

also have 𝑄′(𝜌𝑐𝑟) = 0. Hence, it can be easily deduced that 
𝜌𝑐𝑟

𝑎 (𝜀) = 𝜀 ∙ 𝜌𝑐𝑟 . For the capacity, we have 𝑞𝑐𝑎𝑝
𝑎 =

𝑄𝑎(𝜌𝑐𝑟
𝑎 , 𝜀) = 𝜀 ∙ 𝑄(𝜌𝑐𝑟) = 𝜀 ∙ 𝑞𝑐𝑎𝑝. As for the jam density, we 



  

have Q(𝜌𝑚𝑎𝑥) = 𝑄𝑎(𝜀 ∙ 𝜌𝑚𝑎𝑥 , 𝜀) = 0  and deduce that 
𝜌𝑚𝑎𝑥

𝑎 (𝜀) = 𝜀 ∙ 𝜌𝑚𝑎𝑥. 

 Similarly, we can deduce 𝜌𝑐𝑟
𝑏 (𝜀) = (1 − 𝜀) 𝜌𝑐𝑟 , 𝑞𝑐𝑎𝑝

𝑏 (𝜀) =
(1 − 𝜀)𝑞𝑐𝑎𝑝 and 𝜌𝑚𝑎𝑥

𝑏 (𝜀) = (1 − 𝜀) ∙ 𝜌𝑚𝑎𝑥 for direction b. 

III. CTM-BASED OPTIMAL CONTROL 

A. General Framework 

In this work, we consider exploring the potential of 
combining internal boundary control and ramp metering in 
congested freeway environment. A general macroscopic 
traffic model for internal boundary control and ramp metering 
is expressed as follows: 

 ( 1) [ ( ), ( ), ( ), ( )]a a a a a a

c rx k f x k k r k t k+ =  () 

 ( 1) [ ( ), ( ), ( ), ( )]b b b b b b

c rx k f x k k r k t k+ =  () 

where 𝑥𝑎 and 𝑥𝑏  are the state vectors for traffic directions a 
and b; k = 0,1, …  is the corresponding discrete time index; 

𝑡𝑎(𝑘)  and 𝑡𝑏(𝑘)  are vectors of external variables in the 
respective traffic directions a and b (upstream demand, initial 

density etc.); 𝜀𝑎 and  𝜀𝑏 are the vectors of the corresponding 

sharing factors; 𝑟𝑎  and 𝑟𝑏  are the vectors of ramp metering 
flow. The internal boundary control time step 𝑇𝑐 is assumed 
to be a multiple of the model time step T, hence the control 

time index is given by 𝑘𝑐 = ⌊𝑘𝑇 𝑇𝑐⁄ ⌋, in which ⌊⌋ means to 

take the integer part. Same as the ramp metering time step 𝑇𝑟 
and time index 𝑘𝑟. 

By the way, the relationship between ε(𝑘𝑐), 𝜀𝑎(𝑘𝑐) and  

𝜀𝑏(𝑘𝑐) should be emphasized. For traffic safety, the time-
delay should apply only to the traffic direction that is being 
widened, while the direction that is restricted should promptly 

apply the smaller width. The purpose of  𝜀𝑎(𝑘𝑐) and  𝜀𝑏(𝑘𝑐) 
is to achieve this time-delay by establishing the mathematical 
relationship with ε(𝑘𝑐). The relationship can be expressed as 
follows: 

 ( ) min{ ( ), ( 1)}a

i c i c i ck k k  = −  () 

 ( ) min{1 ( ),1 ( 1)}b

i c i c i ck k k  = − − −  () 

What’s more, the sharing factor 𝜀𝑖 should be constrained 
to prevent the complete closure of the road in either direction 
but assign the road width in either direction will be bigger 
than the widest vehicles. The constraint is shown in (7) 

 0 1i ,min i i ,max       () 

where 𝜀𝑖,𝑚𝑖𝑛 ∙ 𝑤  and (1 − 𝜀𝑖,𝑚𝑎𝑥) ∙ 𝑤  are the minimum 

widths to be assigned in either direction. 

B. CTM model 

Cell Transmission Model (CTM) [16] is a first-order 
model deriving from the LWR model. Because of its 
triangular FD, it can form a convex, linear or quadratic 
programming problem easily and solved quickly when used 
in an optimization problem. In this work, we select the 
extended CTM model which can reproduce the capacity drop 
[17] and modify it to achieve internal boundary control. 

Before present the CTM equations, let us first introduce 
the key notations corresponding with Figure 2. . The highway 
stretch we consider, has n segments, with respective lengths 
𝐿𝑖.For direction a, traffic flows from segment 1 to segment n. 
The 𝜌𝑖

𝑎 , 𝑖 = 1,2, … , 𝑛 are the traffic density of segment i, and 

𝑞𝑖
𝑎, 𝑖 = 1,2, … , 𝑛 are the mainstream exit flows of segment i. 

For on-ramps may exist in some segments, we denote 𝑟𝑖
𝑎 , 𝑖 =

1,2, … , 𝑛 , the on-ramp flow for segment i, and 𝑤𝑖
𝑎 , 𝑖 =

1,2, … , 𝑛, the ramp queues for segment i. For off-ramps, we 
have exit rates 𝛽𝑖

𝑎 , and the exit flow of segment i can be 

calculated as 𝛽𝑖
𝑎 ∙ 𝑞𝑖

𝑎Similarly, for direction b, we denote the 

traffic density 𝜌𝑖
𝑏 , 𝑖 = 1,2, … , 𝑛 , the mainstream exit flow 

𝑞𝑖
𝑏 , 𝑖 = 1,2, … , 𝑛 , on-ramp flow 𝑟𝑖

𝑎 , 𝑖 = 1,2, … , 𝑛 , the ramp 

queues 𝑤𝑖
𝑎 , 𝑖 = 1,2, … , 𝑛, and the off-ramp exit rates 𝛽𝑖

𝑏. 

Based on these definitions, the conservation of each 
segment can be written for direction a and direction b 
respectively: 

 
1( 1) ( ) ((1 ) ( ) ( ) ( )),

1,2,...,

a a a a a a

i i i i i i r

i

T
k k q k q k r k

L

i n

   −+ = + − − +

=
 () 

1( 1) ( ) ((1 ) ( ) ( ) ( )),

1,2,...,

b b b b b b

i i i i i i r

i

T
k k q k q k r k

L

i n

   ++ = + − − +

=
 () 

where the 𝑞𝑖
𝑎(𝑘)  and 𝑞𝑖

𝑏(𝑘)  are obtained by upstream 
demand and downstream supply according to the following 
equations: 
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( )}, 1,2,..., 1,

( ) ( ( ), ( ))

a a

a a a S i i c

i D i i c a

i

a

r i

a a a

n D i i c

Q k k
q k Q k k

r k i n

q k Q k k

 
 





 

+ +

+

+

=
−

− = −

=

() 

 

1 1

1

1

( ( ), ( )
( ) min{ ( ( ), ( )),

1

( )}, 2,3,..., ,

( ) ( ( ), ( ))

b b

b b b S i i c

i D i i c b

i

b

r i

b b b

n D i i c

Q k k
q k Q k k

r k i n

q k Q k k

 
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


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− −
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−

=
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− =
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() 

the demand function 𝑄𝐷 and the supply function 𝑄𝑆 are given 
by the following equations respectively: 

 
max

( , ) min{ , }cr

D cap d cap f

cr

Q q q v
 

    
 

−
= +

−
 () 

 max( , ) min{ , ( )}S cap sQ q w    = −  () 

where 𝑣𝑓 is the free speed, 𝑤𝑠 is the back-wave speed, 𝜆𝑑 

and 𝜆𝑟 are the parameters to activate capacity drop [17]. 

What’s more, the ramp queues are determined by the 
followings: 

 
( 1) ( ) [ ( ) ( )]

( 1) ( ) [ ( ) ( )]

a a a a

i i i i r

b b b b

i i i i r

w k w k T d k r k

w k w k T d k r k

+ = + −

+ = + −
 () 

where 𝑑𝑖
𝑎(𝑘), 𝑑𝑖

𝑏(𝑘) are the on-ramp demand. 



  

 
Figure 2.  The considered highway stretch 

IV. QUADRATIC PROGRAMMING FORMULATION 

To complete the QP problem formulation, the non-linear 
equations should be linearized. The non-linear CTM equations 
(10,11) can yield the following linear inequalities: 

For direction a (equation (10)): 

 ( ) ( ), 1,2,...a a

i f iq k v k i n =  () 

 
max

( ) ( ) ( )
( ) ( ) ,

1,2,

a a

a a i i c cr c

i i c cap d cap

cr

k k k
q k k q q

i n

  
 

 

−
 +

−

=

 () 

 
1 max 1 1

1

( ) ( ( ) ( )) ( ),
(1 )

1,2, 1

a a a as

i i c i r i ra

i

w
q k k k r k

i n

   


+ + +

+

 − −
−

= −

() 
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1

1
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( ) ( ), 1,2, 1
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a

i c capa a

i r i ra

i

k q
q k r k i n






+

+

+

 − = −
−

 () 

For direction b (equation (11)): 

 ( ) ( ), 1,2,...b b

i f iq k v k i n =  () 

 
max

( ) ( ) ( )
( ) ( ) ,

1,2,

b b

b b i i c cr c

i i c cap d cap

cr

k k k
q k k q q

i n

  
 

 

−
 +

−

=

 () 

 
1 max 1 1

1

( ) ( ( ) ( )) ( ),
(1 )

2,3,

b b b bs

i i c i r i rb

i

w
q k k k r k

i n

   


− − −

−

 − −
−

=

() 

 
1

1

1

( )
( ) ( ), 2,3,

(1 )

b

i c capb b

i r i rb

i

k q
q k r k i n






−

−

−

 − =
−

 () 

Similarly, the equation (5), (6) can be modified into the 
following inequations: 

 ( ) ( )a

i c i ck k   () 

 ( ) ( 1)a

i c i ck k  −  () 

 ( ) 1 ( )b

i c i ck k  −  () 

 ( ) 1 ( 1)b

i c i ck k  − −  () 

Hence, the linear inequalities of the QP derive from all 
inequalities include (15)-(26), while (8), (9), (14) are the 
linear equality. The decision variables include all the state 

( 𝜌𝑖
𝑎(𝑘), 𝜌𝑖

𝑏(𝑘), 𝑞𝑖
𝑎(𝑘), 𝑞𝑖

𝑏(𝑘), 𝑤𝑖
𝑏(𝑘), 𝑤𝑖

𝑏(𝑘) ) and control 

variables (𝜀𝑖(𝑘𝑐), 𝜀𝑖
𝑎(𝑘𝑐), 𝜀𝑖

𝑏(𝑘𝑐), 𝜀𝑖
𝑏(𝑘𝑐), 𝑟𝑖

𝑎(𝑘𝑟), 𝑟𝑖
𝑏(𝑘𝑟)). 

The cost criterion, which consider the control goal and the 
system robustness, is defined as (27). The cost criterion 
includes nine terms. The first two terms present the Total 
Time Spent (TTS), which is one of the most important 
parameters to evaluate traffic flow efficiency. The third 
(weighted by 𝑤1) and fourth terms (weighted by 𝑤2) are one 
of the major innovations, in which ℎ𝑖 obey the rule that ℎ𝑖 >
ℎ𝑗 > 0, ∀𝑖, 𝑗𝜖𝑛, 𝑖 < 𝑗 , and 𝑔𝑖  obey the rule that 0 < 𝑔𝑖 <
𝑔𝑗 , ∀𝑖, 𝑗𝜖𝑛, 𝑖 < 𝑗. By setting appropriate parameters, they can 

overcome the holding-back phenomenon [15], which is a non-
physical phenomenon caused by the linearization of nonlinear 
equations. The fifth term aims to maximize road resource 
utilization, and the next three terms are penalty terms for 
minimizing the variation of the control input in time and space. 
The last term is policy related, which is considered to balance 
the respective capacity reserves for each segment. More 
detailed explanation can be seen in [5]. 
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V. SIMULATION 

The selected highway stretch, same as in [5], is displayed 
in Figure 2. . It is 3 km long and evenly divided into six 
segments. In direction a, there is one on-ramp at segment 5 and 
one off-ramp at segment 2. In direction b, there is one on-ramp 
at segment 3 and one off-ramp at segment 4. All the on-ramps 
and the off-ramps are located at the beginning of the 
corresponding segments. 

The modelling time step is 𝑇 = 10𝑠, the internal boundary 
control time step is 𝑇𝑐 = 60𝑠 and the ramp metering time step 
is 𝑇𝑟 = 60𝑠. The considered time horizon is 1 hour, hence, 
𝐾 = 360 , 𝐾𝑐 = 60 , 𝐾𝑟 = 60 . The CTM corresponding 
parameters are 𝑉𝑓 = 100𝑘𝑚/ℎ , 𝑤𝑠 = 12𝑘𝑚/ℎ , 𝑞𝑐𝑎𝑝 =
12000𝑣𝑒ℎ/ℎ , 𝜌𝑐𝑟 = 120𝑣𝑒ℎ/𝑘𝑚 , 𝜌𝑚𝑎𝑥 = 1120𝑣𝑒ℎ/𝑘𝑚 . 
The parameters to activate capacity drop, are 𝜆𝑑 = 0.4, 𝜆𝑟 =
0.7. The upper and lower bounds for the sharing factors ε is 
𝜀𝑚𝑖𝑛 = 0.16, 𝜀𝑚𝑎𝑥 = 0.84, respectively. For all the segments, 
the initial density values are 𝜌𝑖(0) = 5𝑣𝑒ℎ/𝑘𝑚 and for all the 
off-ramps, the exiting rates are 0.1. 

The demand flows are shown in Figure 3. . For both 
directions, the distribution of mainstream demand is similar. 
They have the same peak value, and the peaks are greatly 
overlapping.  Meanwhile, the on-ramp demands in both 
directions are constant, and the on-ramp demand in direction a 



  

is higher than in direction b. The traffic demand scenario can 
activate the state that the total demand of the bi-directional 
traffic exceed the total capacity and is suitable for validating 
the proposed model. 

The weight parameters in the cost criterion are obtained by 
gradually increased when the value of TTS increases 
marginally but the corresponding issues, e.g. holding-back, 
smoothness are achieved at a sufficient level. More precisely, 
𝑤1 = 10−4 , 𝑤2 = 10−3 , 𝑤3 = 10−5 , 𝑤4 = 10−4 , 𝑤5 =
10−6, 𝑤6 = 10−6, 𝑤7 = 10−5.  

 
Figure 3.  Traffic demand for all the directions and on-ramps 

 
Figure 4.  Spatio-temporal relative density in the no-control case 

 
Figure 5.  Spatio-temporal relative density in the control case 

For comparison, the simulation results of the no-control 
case are shown first in Figure 4. . In this case, the sharing 
factors are constant of 𝜀𝑖 = 0.5 for all segments, and all the 
on-ramp flows will enter the mainstream without control. In 
the no-control case, the value of TTS for the scenario is 310.6 
veh ∙ h and the value of Total Delay (TD) is 137.0 veh ∙ h. 
Figure 4.  displays the corresponding spatio-temporal density 
evolution. The variable displayed in Fig.4 is the relative 
density, which is defined as 𝜌~𝑎(𝑘) = 𝜌𝑎(𝑘)/𝜀𝑎(𝑘) ∙ 𝜌𝑐𝑟 , 

𝜌~𝑏(𝑘) = 𝜌𝑏(𝑘)/𝜀𝑏(𝑘) ∙ 𝜌𝑐𝑟 , same as the spatio-temporal 
density figure in the following control case. According to the 
definition, the value of relative density lower than 1 refer to 

uncongested traffic, and value higher than 1 refer to congested 
traffic. Figure 4.  shows that there is a heavy congestion in 
segment 5 for direction a, which occurs at around k = 110 for 
the increased mainstream demand. The congestion spread 
upstream to segment 2 and dissolve at around k = 280. In 
direction b, a congestion occurs at around k = 210 in segment 
3, spills back up to segment 4 and dissolves at around k = 270. 
The congestion in direction b is smaller than in direction a for 
the lower on-ramp demand. 

 The simulation results of the control case are displayed in 
Figure 5. . We can briefly see that the proposed optimal control 
model can eliminate the congestion by capacity sharing and 
ramp metering. It needs to be emphasized that there is no 
holding-back phenomenon in the simulation results, which 
means that only the proposed control methods have an impact 
on the traffic flow. 

 
Figure 6.  Density, flow and control trajectories for segment 1 and 2 

 
Figure 7.  Density, flow and control trajectories for segment 3 and 4 



  

More information can be seen in Figure 6. , 7, 8. For each 
segment, five diagrams are presented. The first one shows the 
two traffic densities and the corresponding critical densities. 
Flows and capacity are shown in the second one. The third one 
provides the ramp metering flow and on-ramp demand for 
each segment, and the forth one shows the ramp queue length. 
The last one presents the trajectories of the sharing factors, in 
which the black lines mean the upper and lower boundaries for 
the sharing factors. 

 
Figure 8.  Density, flow and control trajectories for segment 5 and 6 

The results show that the densities (flows) are always 
lower than the critical densities (capacities) in all segments. 
The proposed controller assigns new capacities for both 
directions according to their demands during the whole 
horizon, which can help avoid congestion. The ramp metering 
comes into play when the demand in direction a arrive its peak 
at around k = 180, meanwhile more capacity is assigned to 
direction a. By the help of internal boundary control and ramp 
metering, the total flow curve reach the total capacity during 
the heavy congestion period. In short, the congestion is utterly 
avoided while the utilization of road infrastructure is 
maximized. The value of TTS is 183.3 veh ∙ h, which is 41.0% 
less than TTS in no-control case. TD has more noticeable 
improvements. The simulation resulting TD value is equal to 
9.7  veh ∙ h, that is an improvement of 92.9% over the no-
control case. 

VI. CONCLUSION 

Integrated control of internal boundary and ramp inflows 
for lane-free traffic of automated vehicles on freeways has 
been studied in this paper. A CTM-based quadratic 
programming optimal control model has been employed to 
design the integrated controller for both internal boundary 
control and ramp metering, with particular attention given to 
the holding-back issue. The study results demonstrate that the 
proposed integrated control scheme can make up for the 
deficiency of internal boundary control alone and has the 
potential of avoiding congestion, maximizing the utilization 

of road infrastructure and improving the traffic flow 
efficiency. 
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