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Abstract: Improving energy efficiency in buildings is a major priority and challenge worldwide.
The employed measures vary in nature, and the decision analyst, who is typically the architect, the
engineer, or the building expert that has undertaken the task to suggest energy efficient solutions,
faces a complex decision problem comprising numerous decision variables and multiple, usually
competitive objectives. The solution of such multi-objective problems typically involves some sort
of objectives aggregation, which reflects the preferences of the involved final decision maker that
is the building’s user, occupant, and/or owner. The preferences elicitation, however, is a difficult
task, and this paper aims to provide an interactive framework that will allow their consideration in a
relatively easy manner. More specifically, a mathematical programming approach is proposed herein,
which allows the elicitation and incorporation of the decision maker’s preferences in the decision
model via the assessment of his/her utility function with the assistance of the multicriteria decision
aid method UTASTAR. To study the feasibility and efficiency of the proposed approach, the case of a
simple building is examined as an application example. The study results suggest that the proposed
approach is capable of helping the decision analyst to suggest energy measures that satisfy, as much
as possible, the decision maker’s preferences, without having to precisely prescribe them beforehand.

Keywords: buildings; energy efficiency; energy efficiency improvement; multi-objective optimization;
preference disaggregation; preference elicitation; value system; utility function

1. Introduction

Despite the long-lasting research and development in the particular field, the problem
of improving energy efficiency in buildings still remains under investigation, according
to recent reviews [1,2], due to its inherent complexity. The complexity of the problem
stems from the involvement of several, typically competitive objectives (e.g., cost versus
energy consumption) and the availability of numerous alternative measures (e.g., addition
of insulation, change of color, use of cool coatings and renewables, etc.) [3], based on which,
a final choice has to be made.

In practice, the specific measures to be adopted are typically suggested by the architect,
the engineer, or the building expert, who undertakes the task to study the problem, thus
playing the role of the decision analyst (DA). However, for any suggestions to be accepted
by the final decision maker (DM), who may be the building’s user, occupant, and/or owner,
they have to satisfy his/her specific requirements and preferences. This further increases
the complexity of the problem, and calls for solution approaches that allow the realistic
comparative evaluation of all the available alternatives [4]. Such an approach has been
proposed by Diakaki et al. [5], who developed a relevant multi-objective decision model
based on the principles of mathematical programming.

The aforementioned model considers as objectives to minimize the primary energy
consumption of a building and the released CO2 emissions during operation, as well as the
initial investment cost. The particular formulation lends itself for solution via mathematical
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optimization techniques [5], as well as evolutionary methods like genetic algorithms [6],
should the problem complexity become such that a solution via analytic techniques is no
longer feasible. Despite the reduced precision compared to the simulation models typically
employed for the evaluation of alternative measures [2], the mathematical programming-
based approach has been proved to allow for the realistic comparative evaluation of all the
available, alternative measures [7], it has thus been adopted by several researchers in the
field (see, e.g., [8–13]).

Irrespective of the particular technique that one may employ for the solution of a
multi-objective mathematical programming problem, to reach a single, final solution, which
will be satisfactory, thus acceptable by the corresponding DM, weights need to be assigned
to the different objectives [2,14]. These weights reflect the relevant importance of each
considered objective to the DM, and/or the trade-off that exists among them, due to their
competitive nature. The determination of such weights is a difficult task, as it is very
unlikely for a DM to be able to explicitly state his/her preferences and satisfaction levels
for each and every considered objective. Thus, rather than trying to determine the criteria
weights [14], the implicit elicitation and learning of the preferences and value system of
the DM, and their incorporation and use in the decision making process, seems more
convenient. The development of such an approach for the multi-objective decision problem
of improving energy efficiency in buildings is the purpose of the work presented herein.

Specifically, it is the aim of this paper to present an approach, whereby the DA will
manage to reach a single, final solution of maximum utility to the DM, as an outcome of an
interactive process of individual inter-alternative preference modelling. To this end, the
main principles and rationale of a two-phase, iterative procedure proposed by Siskos and
Despotis [15] for similar decision problem settings have been adopted. The procedure starts
with identifying an initial compromise solution for the energy efficiency improvement prob-
lem established in Diakaki et al. [5] (first phase), and then runs iteratively (second phase)
as many times as necessary to extract the DM’s aspiration levels for each objective, and
estimate a respective utility function, which is used in order to reach a single, final solution,
which is as close as possible to the DM’s actual preferences and value system. Throughout
the iterative procedure, interaction is offered at two levels: (i) interactive modification of the
DM’s satisfaction levels on the different pursued objectives; and (ii) interactive assessment
of the DM’s utility function via the development and use of the UTASTAR multicriteria
decision aid model [16]. UTASTAR is a preference disaggregation approach, which aims at
inferring the value or utility function(s) of a DM, given his/her expressed preferences over
a reference set of alternatives.

Through the aforementioned interactive procedure, the proposed approach allows the
DA to (a) develop the DM’s overall utility function for the considered problem; (b) solve
the problem by optimizing the developed utility function, rather than aggregating the
individual objective functions of the considered problem via potentially arbitrary weights,
like in the original multi-objective problem formulation in [5]; and (c) reach a single, final
solution of maximum utility to the DM.

To study the feasibility and efficiency of the proposed approach, the case of a simple
building is examined as an application example. The study results suggest that the pro-
posed approach is capable of helping the DA to select and suggest energy measures that
satisfy, as much as possible, the DM’s spectrum of desires, without having to precisely
prescribe them beforehand.

The rest of the paper is structured in three more sections. Section 2 introduces the
proposed approach, while Section 3 presents the application example. Section 4 discusses
the results and findings, and Section 5, finally, summarizes the conclusions of the study
and highlights future research directions.
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2. Materials and Methods
2.1. Overview

The approach proposed herein builds upon the mixed-integer, non-linear, multi-
objective optimization problem developed by Diakaki et al. [5], which may be generally
defined as follows:

min[g1(x), g2(x), . . . , gn(x)]
subject to x ∈ X,

(1)

where x = (x1, x2, . . . , xm) is the vector of m binary or continuous decision variables
reflecting alternative choices (e.g., doors and windows types that can be used in the
building, structure of multi-layer components such as walls, ceilings, and floors, materials
to be used for their construction, and systems that can be used for heating, cooling and
hot water supply), X ⊆ Rm is the feasible region or decision space of the problem under
study, which is implicitly dictated by a set of constraints concerning the decision variables
and their intermediary relations; and g1(x), g2(x), . . . gn(x) are the values of n considered
objectives. In the problem defined in [5], n = 3, as the considered objectives are the total
annual primary energy consumption (MJ/year), the CO2 emissions (kg CO2/year) released
to the environment by the operation of the heating, cooling, and/or hot water supply
systems, and the investment cost for the construction or retrofit of the building envelope
and the acquisition and installation of the aforementioned systems, respectively.

The decision model (1) is used herein in the following two-phase procedure:

1. In the first phase, each individual objective of (1) is first minimized and then maxi-
mized over the set of the feasible solutions, thus providing lower and upper bounds
for the objectives. Given that gi(x) are minimized in (1), the lower bounds represent
the ideal values of the objectives, and remain the same throughout the whole process,
while the upper bounds represent the anti-ideal ones, and are refined during the
second phase of the procedure. In addition, an initial efficient solution, i.e., a solution,
which is not dominated by any other acceptable solution in the decision space is
estimated that is closest to the ideal one with respect to the weighted Tchebycheff
norm [15].

2. In the second phase, an iterative process is followed, which comprises three successive
steps. The first step can be viewed as a learning process of the trade-offs among the
objectives for the DM. Through questions and answers, this step refines the upper
bounds, thus gradually reducing the feasible region of the decision problem. The
second step can be viewed as a learning process of the DM’s preferences. During this
step, the DM is asked to rank, according to his/her preferences, a reference set of
fictitious non-dominated decision profiles. This subjective ranking is then used by a
UTASTAR model to generate the DM’s utility function u, over the intervals created by
the lower and upper limits of the objectives’ values, and use them in transforming the
decision problem (1) in the following:

max u[g(x)]
subject to x ∈ X,

(2)

where, g(x) = (g1(x), g2(x), . . . , gn(x)) is the vector of the values of the objectives
of the initial Problem (1). The decision Problem (2) is solved in the third step of the
process, the solution is presented to the DM, and the iterations restart until a solution
is reached that will be sufficiently satisfactory for the DM, so that he/she will not
wish to further improve it.

Figure 1 presents the flowchart of the aforementioned procedure, while the following
subsection provides the details of its different phases.
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Figure 1. The flowchart of the interactive multi-objective mathematical programming approach.

2.2. The Interactive Mathematical Programming Approach
2.2.1. Phase One

As mentioned earlier, within the first phase of the proposed interactive mathematical
programming approach, the individual objectives of decision Problem (1) are minimized
and maximized to establish the initial lower and upper bounds of the objectives. More
specifically, the lower bound li, which is the ideal solution for each objective i, with
i = 1, 2, . . . , n, is calculated as follows:

li = min[gi(x)]
subject to x ∈ X,

(3)

while for the upper bound hi, which is the anti-ideal solution, the following problem
is solved:

hi = max[gi(x)]
subject to x ∈ X.

(4)

Then, an initial compromise solution is obtained via the solution of the following problem:

min z
subject to x ∈ X

z > mi(gi(x)− li), i = 1, 2, . . . , n
z > 0

(5)

where
mi = di/∑

i
di, i = 1, 2, . . . , n, (6)

and
di = (hi − li)/hi, i = 1, 2, . . . , n. (7)
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The solution of Problem (5) is the closest one to the ideal values of the objectives
calculated via (3) in the sense of the weighted Tchebycheff norm.

2.2.2. Phase Two

The second phase of the proposed interactive mathematical programming approach is
the iterative one, so let q be the number of iteration. Let also Xq be the feasible region, hq

i
the upper bound of objective i, and gq the vector of the optimal values of the objectives
reached in iteration q.

When entering for the first time in phase two, for the upper bounds and the objectives
values, the following hold:

• The upper bound values h0
i are equal to the solutions of the corresponding problems

(4), obtained in phase one;
• The optimal values of the objectives g0 are equal to the values obtained via the solution

of the multi-objective Problem (5) in phase one.

In addition, X0 = X holds.
Given the above initial values, as well as the lower bounds li, i.e., the ideal solutions

of the objectives, the three steps described below are successively executed.

Step 1

At the first step of phase two, interaction takes place in order to learn the trade-offs
among the objectives for the DM. More specifically, the DM is asked to express his/her
satisfaction with respect to the values of the objectives that have been reached so far, i.e.,
for the values in gq−1.

If the DM does not find any objective value satisfactory, the multi-objective decision
problem has no satisfactory solution. In such case, the problem should be reviewed and
revised, and the procedure should restart from phase one. However, if some values in gq−1

are satisfactory, the DM is asked to suggest the objectives, which he/she insists to further
decrease, and the whole set of objectives G is split in the following two complementary
sets:

• GD: the subset of G, which comprises the objectives that the DM insists to decrease;
• GD: the complement of GD in G.

Given the split of G in the two subsets, the DM is asked again to suggest, if there
are any objectives in GD, which could be increased to make room for the desired further
decrease of the objectives in GD. If the response to this question is no, there is no room
for further improvement, the procedure stops, and the solution reached so far is the best
compromise solution to the examined problem. If, however, the response of the DM is yes,
the upper bounds of the objectives are updated as follows:

hq
i =

{
gq−1

i if gi ∈ GD

hq−1
i if gi ∈ GD

(8)

For each gj ∈ GD, the following problem is solved:

min gj(x)
subject to x ∈ X

gi(x) ≤ hq
i i = 1, 2, . . . , n and i 6= j,

(9)

and the feasible region is finally reduced as shown below:

Xq = Xq−1 ∩
{

x ∈ Rm/gi(x) ≤ hq
i , i = 1, 2, . . . , n

}
. (10)
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Step 2

The second step of phase two is also a learning process aiming at the DM’s preferences
elicitation. To this end, for an arbitrary chosen integer s, s + 1 reference alternative profiles
ak, with k = 0, 1, . . . , s, are generated. Each profile comprises a coordinate aik for each
objective i, which is calculated as follows:

aik = li + (k/s)
(

hq
i − li

)
(11)

Apparently, any other number of alternative profiles, as well as profiles generation
procedure, can be adopted, as long as the generated profiles are representative of the
trade-off among the objectives, and do not dominate each other. As their purpose is not to
be offered to the DM as possible problem solutions, the generated profiles do not need to
be efficient or feasible. They are just presented to the DM, who is asked to rank order them.
The ranked set of alternative profiles is then used in the UTASTAR method [16] to assess
the DM’s utility function u[g(x)], as described in Appendix A.

Step 3

The utility function assessed in Step 2 is maximized in this last step over the feasible
region. In other words, the Problem (2) is modified as follows, to take into account the
reduction of the decision space according to (10):

max u[g(x)]
subject to x ∈ Xq,

(12)

and then solved.
The solution of Problem (12) marks the end of the current iteration, and the procedure

restarts from step 1 with the new solution, feasible region, and upper objective bounds.

3. Application Example
3.1. Overview of the Decision Problem

To assess the feasibility and efficiency of the proposed approach in suggesting mea-
sures that satisfy the competitive objectives of the energy efficiency improvement problem
in a way that is compatible with the preferences and value system of the DM, the case
of a simple building is studied. The building, taken from the study of Diakaki et al. [5],
assumes an envelope, which comprises a floor and ceiling area of 100 m2, 2 walls of area
24 m2, 2 walls of area 30 m2, and a door and window area both of 6 m2.

The decisions regarding the considered building concern appropriate choices for:

• The type of the building’s door and window among the alternatives of Tables 1 and 2,
respectively;

• the structure of the building’s walls, ceiling, and floor among the alternatives of
Tables 3–5, respectively;

• the addition or not, in the building’s walls, ceiling, and floor, of an insulation layer of
maximum permissible thickness 0.10 m and material chosen among the alternatives
of Table 6;

• the space heating system among the alternatives of Tables 7–9;
• the space cooling system among the alternatives of Table 8;
• the hot water supply system(s) among the alternatives of Tables 9 and 10; and
• the addition or not of a solar collector system among the alternatives of Table 11.
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Table 1. Alternative door types.

Type Thermal Transmittance
(W/m2 ◦C)

Cost
(€/m2)

1. Hollow-core flush door 2.7 800
2. Solid-core flush door with single glazing (17% glass) 2.1 1000

Table 2. Alternative window types.

Type Subtype
Thermal

Transmittance
(W/m2 ◦C)

Effective Total Solar
Energy Transmittance

(%)

Cost
(€/m2)

1. Single glazing 1. Typical glazing 5.0 80 40
2. Double glazing 1. 4-20-4, uncoated, air filled 2.6 72 55

2. 4-12-4, coated, argon filled 1.6 76 65

Table 3. Alternative wall structures.

Structure Layer Material Thickness
(m)

Thermal Conductivity
(W/m ◦C)

Cost
(€/m3)

1 1 Plaster 0.025 0.87 10
2 Brick (complex) 0.150 0.72 23
3 Plaster 0.025 0.87 10

2 1 Plaster 0.025 0.87 10
2 Brick (complex) 0.060 0.72 6.2
3 Brick (complex) 0.060 0.72 6.2
4 Plaster 0.025 0.87 10

Table 4. Alternative ceiling structures.

Structure Layer Material Thickness
(m)

Thermal Conductivity
(W/m ◦C)

Cost
(€/m3)

1 1 Tiles 0.02 1.00 55
2 Concrete 0.15 0.72 55

2 1 Tiles 0.02 1.00 55
2 Wood 0.03 0.17 70

Table 5. Alternative floor structures.

Structure Layer Material Thickness
(m)

Thermal Conductivity
(W/m ◦C)

Cost
(€/m3)

1 1 Tiles 0.01 1.00 55
2 Concrete 0.15 0.72 55

2 1 Wood 0.02 0.17 85
2 Concrete 0.15 0.72 55

Table 6. Alternative insulation materials.

Material Thermal Conductivity
(W/m ◦C)

Cost
(€/m3)

1. Polystyrene 0.036 200
2. Mineral fiber 0.042 180
3. Plastic fiber 0.020 300



Sustainability 2021, 13, 4436 8 of 25

Table 7. Alternative heating-only systems.

Category Type Generation Efficiency
(%)

Cost
(€)

Electrical systems
1. Resistance-based 1. Dry core storage boiler type 1 100 5000

2. Dry core storage boiler type 2 85 4200
Non-electrical systems

1. Oil-based 1. Condensing 83 5300
2. Standard oil boiler 62 4700

2. Natural-gas based 1. Condensing 85 5800
2. Floor mounted boiler 55 4500

Table 8. Alternative heating–cooling systems.

Category Type Generation Efficiency
(%)

Cost
(€)

1. Water cooled electric 1. <12,000 BTU 200 500
2. <18,000 BTU 230 800
3. <24,000 BTU 250 1200

Table 9. Alternative heating–hot water supply systems.

Category Type Generation Efficiency
(%)

Cost
(€)

Electrical systems
1. Resistance-based 1. Electric CPSU 100 7200

2. Water storage boiler 85 5800
Non-electrical systems

1. Oil-based 1. Condensing combi 81 6200
2. Combi 70 5800

2. Natural-gas based 1. Condensing combi 84 7200
2. Combi 65 5700

Table 10. Alternative hot water supply-only systems.

Category Type Generation Efficiency
(%)

Cost
(€)

Electrical systems
1. Resistance-based 1. Electric immersion 100 1200

2. Electric instantaneous at point of use 85 1000
Non-electrical systems

1. Oil-based 1. Oil boiler/circulator 80 1000
2. Oil single burner 60 800

2. Natural-gas based 1. Circulator built into a gas warm air
system type 1 73 850

2. Circulator built into a gas warm air
system type 2 60 650

Table 11. Alternative solar collector systems.

Category Type Generation Efficiency
(%)

Cost
(€)

1. Flat collector 1. Type 1 90 900
2. Type 2 80 600

2. Vacuum hear pipe CPC collector 1. Type 1 72 780
2. Type 2 67 500



Sustainability 2021, 13, 4436 9 of 25

The values of the thermal and solar transmittance, and the thermal conductivity of
construction materials and components in Tables 1–6 have been taken from the ASHRAE
database [17], while the cost values in all the aforementioned tables were obtained through
a short, unofficial market survey that took place for the needs of the study described in [5].

The application of the multi-objective decision modelling approach to the particular
decision problem leads to a mathematical model of the form (1), which includes 18 contin-
uous and 57 binary variables. The model, which is summarized in Appendix B, aims at
determining measures that minimize the following three objectives:

• The primary energy consumption g1(x);
• the release of CO2 emissions g2(x); and
• the initial investment cost g3(x).

These objectives are competitive, since, typically, the cost-efficient solutions are less
environmentally friendly and vice versa. Thus, the search for a globally optimal solution is
infeasible, and the DA has to search for a feasible solution, which will comply as much as
possible with the DM’s preferences and value system. To assist the DA in this search, the
multi-phase iterative procedure described in Section 2 is applied.

3.2. Application of the Interactive Mathematical Programming Approach
3.2.1. Phase One

In the first phase of the proposed approach, the individual objectives of the examined
decision problem are minimized and maximized, according to (3) and (4), respectively, in
order to establish the ideal and anti-ideal solutions of the problem. In addition, an initial
compromise solution is identified via the solution of Problem (5).

Table 12 summarizes the outcomes of this phase. The outcomes clearly demonstrate
that the choices made depend on the pursued objective(s). For example, when the objective
is solely to minimize the primary energy consumption, the most energy efficient choices
are made in contrast to the choices made when aiming solely at the reduction of the initial
investment cost. In this latter case, the cheapest choices are made, which are the worst
from the energy efficiency perspective. These two objectives are clearly competitive to each
other, but also to the emissions objective. The release of CO2 emissions does not depend
solely on the generation efficiency of the heating, cooling, and hot water supply systems,
but also on the utilized fuel. Thus, some energy efficient choices are no longer efficient
when emissions come into the picture.

Table 13 summarizes and highlights the basic information about the problem at hand,
which has been generated by the proposed approach in phase one. More specifically, the
table comprises the ideal and anti-ideal objective values, the initial upper bound for each
objective, the initial compromise solution, as well as the rate of closeness of the objectives
to their ideal values, being calculated as follows:

Rate of closeness to the ideal solution = 100
gq

i − li
hi − li

(13)

with q the number of iteration; for phase one, q = 0 holds. Apparently, the lower the value
of the rate, the better.

Table 13 makes clear that the initial compromise solution comprises choices that lead
the objectives of primary energy consumption and release of CO2 emissions very close
to their ideal solutions (rates of closeness are 0.85% and 1.59%, respectively). The initial
investment cost, on the other hand, is not similarly close to its ideal value (rate of closeness
is 38.80%), and this may cause dissatisfaction to the DM. For this reason, the second phase
of the proposed approach is activated, to examine the satisfaction level of the DM and
refine, if necessary, the problem solution.
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Table 12. Summary of phase one outcomes.

Decisions and Criteria Type of Solution

Minimize Maximize Compromise

g1(x) g2(x) g3(x) g1(x) g2(x) g3(x)

Door type 2 2 1 1 1 2 1
Window type/subtype 2/2 2/2 1/1 1/1 1/1 2/2 2/2

Wall structure 1 1 2 2 2 1 2
Wall insulation thickness (m) 0.10 0.10 0.00 0.00 0.00 0.10 0.07

Wall insulation material 3 3 - - - 3 3
Ceiling structure 1 1 2 2 2 1 2

Ceiling insulation thickness (m) 0.10 0.10 0.00 0.00 0.00 0.10 0.07
Ceiling insulation material 3 3 - - - 3 3

Floor structure 2 2 1 1 1 2 1
Floor insulation thickness (m) 0.10 0.10 0.00 0.00 0.00 0.10 0.07

Floor insulation material 3 3 - - - 3 3
Heating system type EHC NEH EHC EHW EHW EHW EHC

Heating system category/type 1/3 2/1 1/1 1/2 1/2 1/1 1/3
Cooling system type - EC - EC EC EC -

Cooling system category/type - 1/3 - 1/1 1/1 1/3 -
Hot water supply system type NEW NEW NEW - - - NEW

Hot water supply system
category/type 1/1 2/1 2/2 - 1/2 - 2/2

Solar collector category/type 1/1 1/1 - - - 1/1 2/2
g1: Primary energy

consumption (MJ/year) 13,593 13,970 321,276 722,123 722,123 32,475 19,582

g2: Release of CO2 emissions
(kg CO2/year) 1400 810 32,758 74,559 74,559 3353 1986

g3: Initial investment cost (€) 21,987 27,637 7524 12,674 12,674 28,187 15,540

EHC: electrical system that will be used for both heating and cooling (see Table 8); EHW: electrical system that will be used for both heating
and hot water supply (see Table 9); EC: electrical system that will be used only for cooling (see Table 8); NEH: electrical system that will be
used only for heating (see Table 7); NEW: non-electrical system that will be used only for hot water supply (see Table 10).

Table 13. Basic information generated in phase one (iteration q = 0).

Information

Primary Energy
Consumption

(MJ/Year)
i = 1

Release of CO2 Emissions
(kg CO2/Year

i = 2

Initial Investment Cost
(€)

i = 3

Ideal solution (lower bound) li 13,593 810 7524
Initial compromise solution g0

i 19,582 1986 15,540
Anti-ideal solution hi 722,123 74,559 28,187

Initial upper bound h0
i 722,123 74,559 28,187

Rate of closeness to the ideal solution 0.85% 1.59% 38.80%

3.2.2. Phase Two-Iteration 1-Step 1

Entering in phase two, the basic information of Table 13 is presented to the DM.
Assuming that he/she is satisfied by the performance on objectives 1 and 2, but asks for an
improvement on objective 3, i.e., a further cost reduction, even at the expense of the other
two objectives, the following sets are formed:

• G = {objective 1, objective 2, objective 3};
• GR = {objective 3};
• GR = {objective 1, objective 2};

and the upper bound of objective 3 is updated as follows:

h1
3 = h0

3 = 15540. (14)
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Being members of set GR, the upper bounds of the other two objectives remain equal
to their initial values, i.e.:

h1
1 = h0

1 = 722123,

h1
2 = h0

2 = 74559.
(15)

Then, the Problem (9) is solved for the third objective, which is the only member of set GR:

min g3(x)

subject to x ∈ X

g1(x) ≤ h1
1

g2(x) ≤ h1
2

(16)

and the feasible region of the decision problem is reduced as follows:

X1 = X0 ∩
{

x ∈ R75/gi(x) ≤ h1
i , i = 1, 2, 3

}
, (17)

with X0 being the decision space X of the initial problem.

3.2.3. Phase Two-Iteration 1-Step 2

On the basis of information from step 1 and assuming s = 9, 10 alternative profiles ak,
k = 0, 1, . . . , 9, are generated, according to Equation (11), and presented to the DM in order
to rank order them. Table 14 presents the profiles of these alternatives for each objective,
along with their assumed ranking r, r = 1, 2, . . . , 10.

Table 14. Reference set of alternatives and DM’s ranking.

Profile
Primary Energy
Consumption

(MJ/Year)

Release of CO2
Emissions

(kg CO2/Year)

Initial Investment
Cost
(€)

DM’s
Ranking

a0 13,593 810 15,540 3
a1 92,319 9004 14,650 2
a2 171,044 17,199 13,759 1
a3 249,770 25,393 12,868 4
a4 328,495 33,587 11,978 5
a5 407,221 41,782 11,087 6
a6 485,947 49,976 10,196 7
a7 564,672 58,171 9306 8
a8 643,398 66,365 8415 9
a9 722,123 74,559 7524 10

The information of Table 14 is then used in UTASTAR, leading to the marginal utility
functions graphically displayed in Figure 2, which define the global utility of the DM via
the following additive function:

u[g(x)] = u1(g1(x)) + u2(g2(x)) + u3(g3(x)), (18)

or the equivalent:

u[g(x)] = 0.300u′1(g1(x)) + 0.525u′2(g2(x)) + 0.175u′3(g3(x)), (19)

where u′ i, i = 1, 2, 3, are the normalized, in the range [0, 1], values of the marginal utilities
ui, graphically displayed in Figure 3.



Sustainability 2021, 13, 4436 12 of 25

Figure 2. Marginal utility functions of: (a) Primary energy consumption; (b) release of CO2 emissions; (c) initial invest-
ment cost.

Figure 3. Normalized marginal utility functions of: (a) Primary energy consumption; (b) release of CO2 emissions; (c) initial
investment cost.
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3.2.4. Phase Two-Iteration 1-Step 3

In this last step of phase two, the utility Function (18) or (19) is maximized over the
decreased feasible solution space X1, defined in (17). More specifically, the following problem:

max u[g(x)] = u1(g1(x)) + u2(g2(x)) + u3(g3(x))
subject to x ∈ X1 (20)

or its equivalent:

max u[g(x)] = 0.300u′1(g1(x)) + 0.525u′2(g2(x)) + 0.175u′3(g3(x))
subject to x ∈ X1 (21)

is solved.
The solution of any of the aforementioned problems generates the new compromise

solution, displayed in Table 15, the current iteration is terminated, and a new iteration
starts from step 1.

Table 15. Basic information generated in iteration q = 1 of phase two.

Information

Primary Energy
Consumption

(MJ/Year)
i = 1

Release of CO2 Emissions
(kg CO2/Year)

i = 2

Initial Investment Cost
(€) i = 3

Ideal solution (lower limit) li 13,593 810 7524
New compromise solution g1

i 166,640 17,199 11,147
Anti-ideal solution hi 722,123 74,559 28187
New upper bound h1

i 722,123 74,559 15,540
Rate of closeness to the ideal solution 21.60% 22.22% 17.53%

3.2.5. Phase Two-Iteration 2-Step 1

The second iteration of phase two starts with the results of Table 15 being presented
to the DM. Apparently, the cost objective has been reduced as desired, coming closer to its
ideal value; a rate of closeness 17.53% has been achieved, which is also reduced compared
to its previous value (38.80%). This improvement, however, has come at the expense of the
other two objectives, the values of which, as well as their corresponding rates of closeness,
present an increase.

If the consequences of the obtained solution are not satisfactory, the interaction with
the DM should continue, like in the previous iteration, until reaching a satisfactory solution.
Otherwise, the procedure stops here and the final choices made through this multi-phase
procedure (see Table 16) are presented to the DM.

Table 16. Initial and final compromise solutions.

Decisions and Criteria Initial Compromise Solution Final Compromise Solution

Door type 1 1
Window type/subtype 2/2 2/1

Wall structure 2 1
Wall insulation thickness (m) 0.07 0

Wall insulation material 3 -
Ceiling structure 2 2

Ceiling insulation thickness (m) 0.07 0.01
Ceiling insulation material 3 1

Floor structure 1 1
Floor insulation thickness (m) 0.07 0.07

Floor insulation material 3 1
Heating system type EHC EHC

Heating system category/type 1/3 1/1
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Table 16. Cont.

Decisions and Criteria Initial Compromise Solution Final Compromise Solution

Cooling system type - -
Cooling system category/type - -
Hot water supply system type NEW NEW

Hot water supply system category/type 2/2 2/2
Solar collector category/type 2/2 1/1

g1: Primary energy consumption (MJ/year) 19,582 166,640
g2: Release of CO2 emissions (kg CO2/year) 1986 17,199

g3: Initial investment cost (€) 15,540 11,147

EHC: electrical system that will be used for both heating and cooling (see Table 8); NEW: non-electrical system that will be used only for
hot water supply (see Table 10).

4. Discussion

The previous two sections presented an interactive mathematical programming ap-
proach to the problem of improving energy efficiency in buildings, and demonstrated its
use via an example case study. The problem is difficult to solve as it involves multiple,
competitive objectives, and a large number of decision variables, given the large number
of available, alternative measures, which can be adopted in this respect. In addition, the
solution of the problem requires the DM to express his/her preferences to the considered
objectives, a fact that further increases the problem’s complexity.

The approach proposed herein exploits the mathematical programming model pro-
posed by Diakaki et al. [5] and the UTASTAR value elicitation method proposed by Siskos
and Yannacopoulos [16] under an interactive decision framework, which has been devel-
oped following the rationale and principles of the decision-oriented method for multi-
objective linear programming problems proposed by Siskos and Despotis [15]. The pro-
posed framework assists the decision making procedure so that decisions are made, which
comply with the value system of the DM, without the need to prescribe it beforehand.

The proposed approach can be also adopted in other decision settings within, but
also beyond, the field of energy and environment. A similar approach, for example, lies
on the basis of ADELAIS, an interactive computer program developed to support the
search for a satisfactory solution in multi-objective linear programming problems, which
has been used as a tool for the selection of stock portfolios [18]. In contrast, however, to
both the initial conception in [15] and the ADELAIS program, the decision framework
developed herein concerns a mixed-integer nonlinear mathematical programming problem,
which aims at minimizing rather than maximizing the considered multiple objectives.
This means that the overall framework can be adopted to any possible decision settings,
should adequate care be taken to consider any potential particularities; e.g., in a case where
objectives with a positive preference direction (e.g., comfort) should also be considered, to
incorporate them, preserving at the same time the required cohesiveness of all considered
objectives, their preference direction should be reversed by changing the sign of their
corresponding functions. In addition, the mathematical programming formulation is quite
flexible, allowing the incorporation of additional DM’s objectives and preferences.

5. Conclusions

The study presented herein demonstrated the feasibility as well as the strengths of ap-
plying an interactive mathematical modelling approach to the problem of energy efficiency
improvement. The application of such a systematic approach allows for the simultaneous
consideration of all available combinations of alternative actions, the consideration of any
logical, physical, technical, or other constraints that may apply, and the incorporation
of the preferences and value system of the DM without having to explicitly prescribe
them beforehand. In addition, the application of the proposed approach ensures that a
single, final solution will be reached, which will be satisfactory, and thus acceptable by the
corresponding DM.
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The proposed approach addresses the problem of improving energy efficiency in
buildings in a systematic way. Thus, it can provide the basis for the development of a
corresponding decision support system (DSS), which could assist the respective DAs in
their difficult task of identifying, among the large volume of available measures, those that
will satisfy the needs, requirements, and preferences of the DMs. According to Li et al. [19],
there is still plenty of room for the enhancement of the existing relevant toolkits and the
development of new ones, and the proposed approach provides the ground in this direction.
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Appendix A. The UTASTAR Method

The UTASTAR method proposed by Siskos and Yannacopoulos [16] is a variation of
the UTA method, which aims at inferring a set of additive value functions from a given
ranking on a reference set AR of alternative actions a ∈ AR.

UTASTAR assumes an unweighted additive value function of the form:

u(g) =
n

∑
i=1

ui(gi) (A1)

under the normalization constraints:
n
∑

i=1
ui
(

g∗i
)
= 1

ui(gi∗) = 0
∀i = 1, 2, . . . , n (A2)

where n is the number of criteria; {g1, g2, . . . , gn} is the set of criteria; [g∗i , gi∗] is the evalua-
tion scale of criterion i, with i = 1, 2, . . . , n and gi∗, g∗i the worst and best level of criterion i,
respectively; ui is the marginal value function of criterion i.

On the basis of the additive Model (A1) and (A2), the value of each alternative a ∈ AR
may be expressed as:

u[g(a)] =
n

∑
i=1

ui[gi(a)]− σ+(a)− σ−(a), (A3)

where σ+, σ− are the overestimation and underestimation errors, respectively.
In addition, linear interpolation is used in order to estimate the corresponding

marginal value functions in a piecewise linear form. More specifically, for each crite-
rion i, the interval [g∗i , gi∗] is first cut into (αi − 1) equal intervals, where the points gj

i are
given by the following formula:

gj
i = gi∗ +

j− 1
αi − 1

(g∗i − gi∗) ∀j = 1, 2, . . . , αi (A4)
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Then, the marginal value of each action a ∈ AR, for which gi(a) ∈
[

gj
i , gj+1

i

]
is

approximated by the following linear interpolation:

ui[gi(a)] = u
(

gj
i

)
+

gi(a)− gj
i

gj+1
i − gj

i

[
u
(

gj+1
i

)
− u

(
gj

i

)]
(A5)

Furthermore, the set of reference actions AR = {a1, a2, . . . , am} is rearranged so that a1
is the action with the best ranking, am is the action with the worst ranking, and for each pair
of consecutive actions (ak, ak+1), either ak � ak+1 (preference) or ak ∼ ak+1 (indifference)
holds, thus if

∆(ak, ak+1) = u[g(ak)]− u[g(ak+1)], (A6)

one of the following holds: {
∆(ak, ak+1) ≥ δ if ak � ak+1
∆(ak, ak+1) = 0 if ak ∼ ak+1

, (A7)

where δ is a small positive number, which, however, allows the equivalence discrimination
of two actions, which are successive in the ranking.

A final important modification of the UTASTAR method concerns the monotonicity
constraints of the criteria that are taken into account through the following transformations:

wij = ui

(
gj+1

i

)
− ui

(
gj

i

)
≥ 0∀i = 1, 2, . . . , n and j = 1, 2, . . . , αi − 1, (A8)

which allow the replacement of the monotonicity conditions for ui with non-negative
constraints for the variables wij.

Based on the above, given the ranking over a reference set AR of alternative actions
a ∈ AR, the UTASTAR method can be implemented via the following four steps:

1. The global value of all reference actions u[g(ak)], k = 1, 2, . . . , m, is first expressed in
terms of the marginal values ui(gi), and then in terms of the variables wij, according
to (A8), through the following relationships:

ui
(

g1
i
)
= 0 ∀i = 1, 2, . . . , n

ui

(
gj

i

)
=

j−1
∑

t=1
wij ∀i = 1, 2, . . . , n and ∀j = 2, 3, . . . , αi − 1

(A9)

2. For each pair of actions, which are consecutive in the given ranking, error terms are
introduced using the following relationship:

∆(ak, ak+1) = u[g(ak)]− σ+(ak) + σ−(ak)− u[g(ak+1)] + σ+(ak+1)− σ−(ak+1) (A10)

3. The following linear programming problem is solved:

min z =
m
∑

k=1
[σ+(ak) + σ−(ak)]

subject to ∆(ak, ak+1) ≥ δ if ak � ak+1

∆(ak, ak+1) = 0 if ak ∼ ak+1

}
∀r

n
∑

i=1

αi−1
∑

j=1
wij = 1

wij ≥ 0, σ+(ak) ≥ 0, σ−(ak) ≥ 0 ∀i, j, k

(A11)
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4. The existence of multiple or near optimal solutions of the Problem (A11) is examined
(stability analysis), and the mean additive value function of those (near) optimal
solutions is found, which maximize the objective functions:

ui(g∗i ) =
αi−1

∑
j=1

wit ∀i = 1, 2, . . . , n (A12)

on the polyhedron of the constraints of the Problem (A11), bounded by the following
additional constraint:

m

∑
k=0

[
σ+(ak) + σ−(ak)

]
≤ z ∗+ε, (A13)

where z∗ is the optimal value of Problem (A11) and ε is a very small positive number.

Appendix B. The Multi-Objective Decision Model of the Application Example

This Appendix provides an overview of the mathematical model of the considered
multi-objective problem. The details of the model can be found in [5].

Appendix B.1. Parameters and Decision Variables

Table A1. Doors-related parameters and data.

Parameters Description

DR Number of building’s doors; here DR = 1
dr Index to DR; dr = 1, . . . , DR

ADOR
dr Area of door dr (m2); here ADOR

dr = 6
bDOR

dr Temperature correction factor of construction part dr; here bDOR
dr = 1

V Number of available door types
v Index to V; v = 1, . . . , V

UDOR
v Thermal transmittance of door type (W/m2 K)

CDOR
v Cost of door type v (€/m2)

Table A2. Windows-related parameters and data.

Parameters Description

WN Number of building’s windows; here WN = 1
wn Index to WN; wn = 1, . . . , WN

AWIN
wn Area of window wn (m2); here AWIN

wn = 6
bWIN

wn Temperature correction factor of construction part wn; here bWIN
wn = 1

FF,wn Frame factor of window wn (%); here FF,wn = 0.7
FS,wn Correction factor for shading of window wn (%); here FS,wn = 1

FCM,wn Correction factor for movable devices of window wn (%); here FCM,wn = 1
S Number of available window types
s Index to S; s = 1, . . . , S

Ts Number of available sub-types of window type s
t Index to Ts; t = 1, . . . , Ts, ∀s = 1, . . . , S

gWIN
st Effective total solar energy transmittance of window sub-type t (%)

UWIN
st Thermal transmittance of window sub-type t (W/m2K)

CWIN
st Cost of window sub-type t (€/m2)
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Table A3. Walls-related parameters and data.

Parameters Description

WL Number of walls; here WL = 4
wl Index to WL; wl = 1, . . . , WL

AWAL
wl Area of wall wl (m2); here AWAL

1 = AWAL
2 = 30 and AWAL

3 = AWAL
4 = 24

bWAL
wl Temperature correction factor of construction part wl; here bWAL

wl = 1
W Number of available wall structures
w Index to W; w = 1, . . . , W

KWLw Number of known layers of structure w, regarding material and thickness
kwl Index to KWLw; kwl = 1, . . . , KWLw, ∀w = 1, . . . , W

ddWAL
w,kwl Thickness of known layer kwl of wall structure w (m)

kkmWAL
w,kwl Thermal conductivity of material of known layer kwl of wall structure w (W/mK)

CKmWAL
w,kwl Cost of material of known layer kwl of wall structure w (€/m3)
Yw Number of unknown layers of structure w; here Yw = 1 (insulation layer)
y Index to Yw; y = 1, . . . , Yw, ∀w = 1, . . . , W

dWAL
max,wy Maximum permissible thickness of layer y of structure w (m); here dWAL

max,wy = 0.1
Cwy Number of available materials for layer y of structure w

c Index to Cwy; c = 1, . . . , Cyw, ∀(y = 1, . . . , Yw, ∀w = 1, . . . , W)
kmWAL

wyc Thermal conductivity of material c of unknown layer y of structure w (W/mK)
CmWAL

wyc Cost of material c of unknown layer y of structure w (€/m3)

Table A4. Ceilings-related parameters and data.

Parameters Description

CE Number of ceilings; here CE = 1
ce Index to CE; ce = 1, . . . , CE

ACEIL
ce Area of ceiling ce (m2); here ACEIL

ce = 100
bCEIL

ce Temperature correction factor of construction part ce; here bCEIL
ce = 1

D Number of available ceiling structures
d Index to D; d = 1, . . . , D

KCLd Number of known layers of structure d, regarding material and thickness
kcl Index to KCLd; kcl = 1, . . . , KCLd, ∀d = 1, . . . , D

ddCEIL
d,kcl Thickness of known layer kcl of structure d (m)

kkmCEIL
d,kcl Thermal conductivity of material of known layer kcl of structure d (W/mK)

CKmCEIL
d,kcl Cost of material of known layer kcl of structure d (€/m3)
Fd Number of unknown layers of structure d; here Fd = 1 (insulation layer)
f Index to Fd; f = 1, . . . , Fd, ∀d = 1, . . . , D

dCEIL
max,d f Maximum permissible thickness of layer f of structure d (m); here dCEIL

max,d f = 0.1
Ad f Number of available materials for layer f of structure d

a Index to Ad f ; a = 1, . . . , Ad f , ∀( f = 1, . . . , Fd ∀d = 1, . . . , D)

kmCEIL
d f a Thermal conductivity of material a of unknown layer f of structure d (W/mK)

CmCEIL
d f a Cost of material a of unknown layer f of structure d (€/m3)

Table A5. Floors-related parameters and data.

Parameters Description

FL Number of floors; here f l = 1
fl Index to FL; f l = 1, . . . , FL

AFLO
f l Area of floor fl (m2); here AFLO

f l = 100
bFLO

f l Temperature correction factor of construction part fl; here bFLO
f l = 1

H Number of available floor structures
h Index to H; h = 1, . . . , H

KFLh Number of known layers of structure h, regarding material and thickness
kfl Index to KFLh; k f l = 1, . . . , KFLh, ∀h = 1, . . . , H
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Table A5. Cont.

Parameters Description

ddFLO
h,k f l Thickness of known layer kfl of structure h (m)

kkmFLO
h,k f l Thermal conductivity of material of known layer kfl of structure h (W/mK)

CKmFLO
h,k f l Cost of material of known layer kfl of structure h (€/m3)
Eh Number of unknown layers of structure h; here Eh = 1 (insulation layer)
e Index to Eh; e = 1, . . . , Eh, ∀h = 1, . . . , H

dFLO
max,he Maximum permissible thickness of layer e of structure h (m); here dFLO

max,he = 0.1
Ghe Number of available materials for layer e of structure h
g Index to Ghe; g = 1, . . . , Ghe, ∀(e = 1, . . . , Eh ∀h = 1, . . . , H)

kmFLO
heg Thermal conductivity of material g of unknown layer e of structure h (W/mK)

CmFLO
heg Cost of material g of unknown layer e of structure h (€/m3)

Table A6. Heating-only systems’ parameters and data.

Parameters Description

EHI Number of available electrical heating systems’ categories
ehi Index to EHI; ehi = 1, . . . , EHI

EHJehi Number of available systems of category ehi
ehj Index to EHJehi; ehj = 1, . . . , EHJehi, ∀ehi = 1, . . . , EHI

eEH
ehi,ehj Generation efficiency of system ehj of category ehi (%)

CSTEH
ehi,ehj Installation cost of system ehj of category ehi (€)

NEHI Number of available non-electrical heating systems’ categories
nehi Index to NEHI; nehi = 1, . . . , NEHI

NEHJnehi Number of available systems of category nehi
nehj Index to NEHJnehi; nehj = 1, . . . , NEHJnehi, ∀∀nehi = 1, . . . , NEHI

eNEH
nehi,nehj Generation efficiency of system nehj of category nehi (%)

CSTNEH
nehi,nehj Installation cost of system nehj of category nehi (€)

FUNEH
nehi,nehj, f uel Parameter; equals 1, if system nehj of category nehi uses fuel fuel, else equals 0

Table A7. Cooling-only systems’ parameters and data.

Parameters Description

ECI Number of available electrical cooling systems categories
eci Index to ECI; eci = 1, . . . , ECI

ECJeci Number of available systems of category eci
ecj Index to ECJeci; ecj = 1, . . . , ECJeci, ∀eci = 1, . . . , ECI

eC
eci,ecj Generation efficiency of system ecj of category eci (%)

CSTC
eci,ecj Installation cost of system ecj of category eci (€)

Table A8. Domestic hot water (DHW) supply-only systems’ parameters and data.

Parameters Description

EWI Number of available electrical DHW systems’ categories
ewi Index to EWI; ewi = 1, . . . , EWI

EW Jewi Number of available systems of category ewi
ewj Index to EW Jewi; ewj = 1, . . . , EW Jewi, ∀ewi = 1, . . . , EWI

eEW
ewi,ewj Generation efficiency of system ewj of category ewi (%)

CSTEW
ewi,ewj Installation cost of system ewj of category ewi (€)

NEWI Number of available non-electrical DHW systems’ categories
newi Index to NEWI; newi = 1, . . . , NEWI

NEW Jnewi Number of available systems of category newi
newj Index to NEW Jnewi; newj = 1, . . . , NEW Jnewi, ∀newi = 1, . . . , NEWI



Sustainability 2021, 13, 4436 20 of 25

Table A8. Cont.

Parameters Description

eNEW
newi,newj Generation efficiency of system newj of category newi (%)

CSTNEW
newi,newj Installation cost of system newj of category newi (€)

FUNEW
newi,newj, f uel Parameter; equals 1, if system newj of category newi uses fuel fuel, else equals 0

Table A9. Combined heating–cooling systems’ parameters and data.

Parameters Description

EHCI Number of available combined electrical heating-cooling systems’ categories
ehci Index to EhCI; ehci = 1, . . . , EHCI

EHCJehci Number of available systems of category ejci
ehcj Index to EHCJehci; ehcj = 1, . . . , EHCJehci, ∀ehci = 1, . . . , EhCI

eHC
ehci,ehcj Generation efficiency of system ehcj of category ehci (%)

CSTHC
ehci,ehcj Installation cost of system ecj of category eci (€)

Table A10. Combined heating–DHW systems’ parameters and data.

Parameters Description

EHWI Number of available combined electrical heating-DHW systems’ categories
ehwi Index to EHWI; ehwi = 1, . . . , EHWI

EHW Jehwi Number of available systems of category ehwi
ehwj Index to EHW Jehwi; ehwj = 1, . . . , EHW Jehwi, ∀ehwi = 1, . . . , EHWI

eEHW
ehwi,ehwj Generation efficiency of system ehwj of category ehwi (%)

CSTEHW
ehwi,ehwj Installation cost of system ehwj of category ehwi (€)

NEHWI Number of available non-electrical combined heating-DHW
systems’ categories

nehwi Index to NEHWI; nehwi = 1, . . . , NEHWI
NEHW Jnehwi Number of available systems of category nehwi

nehwj Index to NEHW Jnehwi;
nehwj = 1, . . . , NEHW Jnehwi, ∀nehwi = 1, . . . , NEHWI

eNEHW
nehwi,nehwj Generation efficiency of system nehwj of category nehwi (%)

CSTNEHW
nehwi,nehwj Installation cost of system nehwj of category nehwi (€)

FUNEHW
nehwi,nehwj, f uel

Parameter; equals 1, if system nehwj of category nehwi uses fuel fuel, else
equals 0

Table A11. Solar collectors’ parameters and data.

Parameters Description

ASLC Area of solar collector (m2); here ASLC = 2
FS,SLC Correction factor for shading of solar collector (%); here FS,SLC = 1

U Number of available solar collectors systems’ categories
u Index to U; u = 1, . . . , U

Bu Number of available solar collectors systems of category u
b Index to Bu; b = 1, . . . , Bu, ∀u = 1, . . . , U

eSLC
ub Generation efficiency of system b of category u (%)

CSTSLC
ub Installation cost of system b of category u (€/m2)
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Table A12. Fuel and emissions-related parameters and data 1.

Parameters Description

FUEL Number of fuels available for heating and DHW; here FUEL = 2
fuel Index to FUEL; f uel = 1, . . . , FUEL; here f uel = 1 is oil and f uel = 2 is gas

Ff uel
Conversion factor of fuel fuel to CO2 emissions (kg of CO2/kg of fuel); here

F1 = 3.142 and Ff uel = 2.715

LHPf uel
Conversion factor of fuel fuel to energy (MJ/kg of fuel); here

LHP1 = 42.912 and LHP2 = 49.788

Fstation
Emissions factor of electricity producing station (kg of CO2/MJ); here

Fstation = 0.295
nel Return rate of electricity producing stations; here nel = 0.35

1 Parameter values have been adopted from [5].

Table A13. Parameters and data describing weather conditions at the building’s location 1.

Parameters Description

n Month index; n = 1, . . . , 12; 1 corresponds to January, 2 to February, etc.
Tn Duration of month n (s)

θE,n Average external temperature at building’s location in month n (◦C)
ISL,wn,n Solar radiation on window wn in month n (MJ/m2/month)
ISL,SLC,n Solar radiation on solar collector in month n (MJ/m2/month)

ρair Air density at building’s location (kg/m3)
cair Air heat at building’s location (J/kg◦C)
Vair Air volume (m3)

1 It is assumed that the building is located in the wider area of Athens, Greece [5].

Table A14. Parameters and data describing comfort-related user preferences and foreseen operational
conditions of the building.

Parameters Description

θIH Internal design temperature during heating season (◦C); here θIH = 21
θIC Internal design temperature during cooling season (◦C); here θIC = 26

HSn
Parameter; equals 1, if heating is required for month n, else equals 0; here

HSn = 1 for n = 1, 2, 3, 4, 10, 11, 12 and HSn = 0 for n = 5, 6, 7, 8, 9

CSn
Parameter; equals 1, if cooling is required for month n, else equals 0; here

CSn = 1 for n = 6, 7, 8, 9 and CSn = 0 for n = 1, 2, 3, 4, 5, 10, 11, 12

WSn
Parameter; equals 1, if hot water supply is required for month n, else

equals 0; here WSn = 1 ∀n = 1, 2, . . . , 12
QAINHG Average monthly heat gains (W); here QAINHG = 8400 1

Qdhwu
Average energy requirements for hot water use (MJ/month); here

Qdhwu = 425 1

1 Rough estimates assuming 4 inhabitants in the building [5].

Table A15. Decision variables.

Variable Description

xDOR
v Doors choice; equals 1, if type v is selected, else equals 0

xWIN
st Windows choice; equals 1, if subtype t of type s is selected, else equals 0

xWAL
w Wall structure choice; equals 1, if structure w is selected, else equals 0

xmWAL
wyc

Wall material choice; equals 1, if material c is selected for layer y of wall
structure w, else equals 0

xdWAL
wy Thickness of material added in layer y of wall structure w (m)

xCEIL
d Ceiling structure choice; equals 1, if structure d is selected, else equals 0

xmCEIL
d f a

Ceiling material choice; equals 1, if material a is selected for layer f of
ceiling structure d, else equals 0
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Table A15. Cont.

Variable Description

xdCEIL
d f Thickness of material added in layer f of ceiling structure d (m)

xFLO
h Floor structure choice; equals 1, if structure h is selected, else equals 0

xmFLO
heg

Floor material choice; equals 1, if material g is selected for layer e of floor
structure h, else equals 0

xdFLO
he Thickness of material added in layer e of floor structure h (m)

xEH
ehi,ehj

Electrical heating system choice; equals 1, if system ehj of category ehi is
selected, else equals 0

xNEH
nehi,nehj

Non-electrical heating system choice; equals 1, if system nehj of category
nehi is selected, else equals 0

xEC
eci,ecj

Electrical cooling system choice; equals 1, if system ecj of category eci is
selected, else equals 0

xEW
ewi,ewj

Electrical DHW system choice; equals 1, if system ewj of category ewi is
selected, else equals 0

xNEW
newi,newj

Non-electrical DHW system choice; equals 1, if system newj of category
newi is selected, else equals 0

xEHC
ehci,ehcj

Electrical heating–cooling system choice; equals 1, if system ehcj of
category ehci is selected, else equals 0

xEHW
ehwi,ehwj

Electrical heating–DHW system choice; equals 1, if system ehwj of
category ehwi is selected, else equals 0

xNEHW
nehwi,nehwj

Non-electrical heating–DHW system choice; equals 1, if system nehwj of
category nehwi is selected, else equals 0

xSLC
ub

Solar collector choice; equals 1 if system b of category u is selected, else
equals 0

x Vector of all decision variables x

Appendix B.2. Multi-Objective Decision Model

Minimize

g1(x) =
QHDSEHel

nel
+

FUEL

∑
f uel=1

(
QHDSEHnel, f uel

)
+

QCDSECel
nel

+
QWDSEWel

nel
+

FUEL

∑
f uel=1

(
QWDSEWnel, f uel

)

g2(x) =
(

QHDSEHel + QCDSECel + QWDSEWel

)
Fstation +

FUEL

∑
f uel=1

(
QHDSEHnel, f uel + QWDSEWnel, f uel

) Ff uel

LHPf uel

g3(x) = COSTDOR + COSTWIN + COSTWAL + COSTCEIL + COSTFLO + COSTHS + COSTCS + COSTWS
+ COSTHCS + COSTHWS + COSTSLC

Subject to

QHD =
12

∑
n=1

QHD
n

QCD =
12

∑
n=1

QCD
n

QWD =
12

∑
n=1

(WSnDQdDHW,n)

SEHel =
EHI

∑
ehi=1

EHJehi

∑
ehj=1

(
xEH

ehi,ehj

eEH
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)
+

EHCI

∑
ehci=1

EHCJehci

∑
ehcj=1

(
xEHC

ehci,ehcj

eEHC
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)
+

EHWI

∑
ehwi=1

EHW Jehwi

∑
ehwj=1

(
xEHW

ehwi,ehwj

eEHW
ehwi,ehwj

)

SEHnel, f uel =
NEHI

∑
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∑

nehj=1

(
xNEH

nehi,nehj FUNEH
nehi,nehj, f uel

eNEH
nehi,nehj

)
+

NEHWI
∑

nehwi=1

NEHW Jnehwi
∑

nehwj=1

(
xNEHW

nehwi,nehwj FUNEHW
nehwi,nehwj, f uel

eNEHW
nehwi,nehwj

)
∀ f uel ∈ {1, . . . , FUEL}
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SECel =
ECI

∑
eci=1

ECJeci

∑
ecj=1

(
xEC

eci,ecj

eEC
eci,ecj

)
+

EHCI

∑
ehci=1

EHCJehci

∑
ehcj=1

(
xEHC

ehci,ehcj

eEHC
ehci,ehcj

)

SEWel =
EWI

∑
ewi=1

EW Jewi

∑
ewj=1

(
xEW

ewi,ewj

eEW
ewi,ewj

)
+

EHWI

∑
ehwi=1

EHW Jehwi

∑
ehwj=1

(
xEHW

ehwi,ehwj

eEHW
ehwi,ehwj
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SEWnel, f uel =
NEWI
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NEW Jnewi
∑
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xNEW

newi,newj FUNEW
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)
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NEHW Jnehwi
∑
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(
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nehwi,nehwj FUNEHW
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eNEHW
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)
∀ f uel ∈ {1, . . . , FUEL}

QHD
n =


HSn
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COSTFLO =
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