
Methodologies for the prediction of network usage within the
context of cellular hotspots

George Koutroumpas
A thesis presented for the degree of
Electrical and Computer Engineer

Examination Committee:
Professor Sotiris Ioannidis
Professor Apostolos Dollas
Professor Michail Zervakis

December 2022

Abstract

Today we live in a society that relies upon technology. Everything we
see around us has become more and more advanced with the addition
of smart phones, smart cars and maybe even smart clothes. Many of
those devices require the remote use of the world wide web to function
properly. This fact,in conjunction with the ever increasing population
in central living areas, creates severe issues to mobile service providers.
Sudden demand bursts of their service can cause bottlenecks to the net-
work infrastructure, resulting in performance issues to the cellular an-
tennas. An interesting solution for this problem is forecasting when and
where those performance drops will happen and re-calibrating the net-
work parameters, effectively avoiding disaster. In this work I propose a
neural network algorithm that will handle the forecasting task of those
performance drops, referring to them as hotspots. To achieve this goal
I am going to cooperate with the company Telefonica, which will pro-
vide essential information gathered from its networks antennas, as well
as important feedback towards the final product. Using a combination
of Gated Recurrent Units and Graph Convolution Networks the plan is
to capture spatial and temporal dependencies that exist in the networks
behaviour, effectively predicting most of the real performance drops in
long prediction horizons. The focus of this work is to have accurate pre-
dictions of as many hotspots as possible and on the same time support
a vast amount of antennas in the calculation.

I

Acknowledgements

First of all I would like to thank my supervisor Professor Sotiris Ioan-
nidis for offering me this assignment. I would also like to express my
gratitude to Ioannis Arapakis , project manager at Telefonica, for pro-
viding me with guidance in the model design process and the necessary
data for this project. Cheers to coworker and co-student Konstantinos
Zacharopoulos for the great cooperation and excellent partnership in the
pursuit of our goals. An extra thanks to members of the MHL lab Kon-
stantinos Georgopoulos and Ioannis Moriannos for their support.

II

Contents

Abstract I

Acknowledgements II

List of Figures V

List of Tables VI

1 Introduction 1
1.1 Dissertation theme . 1

1.1.1 Object and motivation 1
1.1.2 Problem formulation 2

1.2 Project contribution . 2
1.2.1 Approach . 3

1.3 Chapter contents . 3

2 Background 5
2.1 Introduction to Machine Learning 5

2.1.1 Artificial Neural Networks 5
2.1.2 Model training 7
2.1.3 Activation functions 7
2.1.4 Loss functions . 9
2.1.5 Data preparation 9
2.1.6 Classification performance metrics 11

2.2 Relevant NN architectures 13
2.2.1 Convolutional Neural Networks(CNN) 13
2.2.2 Graph Convolutional Networks 14
2.2.3 Recurrent neural networks and Gated Recurrent

Units . 16
2.2.4 Autoencoders . 17

III

3 State-of-the-art 20
3.1 Existing solutions to general hotspot prediction 20

4 Model architecture 22
4.1 Data preparation . 22

4.1.1 Missing value imputation 22
4.1.2 Feature analysis and feature extraction using Au-

toencoders . 24
4.2 Graph neighbour logic 26
4.3 Neural Network design principles 27

4.3.1 Importance of performance metrics and class im-
balance . 29

4.3.2 Detection of temporal dependencies 29
4.3.3 Detection of spatial patterns 30
4.3.4 Activation function choices 30
4.3.5 Loss function choices 31

4.4 Optimization and hyper-parameter tuning 32
4.4.1 Optimizer and learning rate 33
4.4.2 Loss weights . 33
4.4.3 GCN and GRU configuration 34
4.4.4 Epochs . 35
4.4.5 Graph logic optimization and comparison 36

5 Results 38
5.1 Final model tests and comparison to baselines 38
5.2 Class weights and precision/recall trade-off 40

6 Conclusions 42
6.1 General observations . 42
6.2 Thesis conclusion . 43
6.3 Alternative implementations/Future plans 43

IV

List of Figures

2.1 Artificial neuron logic based on real neuron. [1] 6
2.2 Mathematical flow of an artificial neuron. [2] 6
2.3 Famous activation functions. [3] 8
2.4 Common data processing flow. [4] 12
2.5 Example of Convolutional Neural Network for character

recognition, here max is a pooling operation that calcu-
lates the maximum, or largest, value in each patch of each
feature map [5] . 14

2.6 Graph Convolutional Network node traversal. [6] 15
2.7 Basic Recurrent Neural Network. [7] 16
2.8 LSTM architecture. [8] 17
2.9 GRU architecture. [9] . 17
2.10 Basic Autoencoder architecture. [10] 19

4.1 Simple data imputation [11] 23
4.2 Example of a node connected by knn with k=5. [12] . . . 27
4.3 Basic diagram of the final proposed model. 28
4.4 Simple example of message passing on a target node. [13] 31

V

List of Tables

4.1 Autoencoder reconstruction accuracy using different com-
pression ratios . 25

4.2 Activation functions used and their derivatives. 32
4.3 GRU performance using prediction horizon of 12 hours

ahead and class weights with the target of reaching high
recall. 34

4.4 GCN performance using different layers and neurons. The
neighbour logic used on the test was distance based with
maximum neighbour distance 0.1 kilometers. 35

4.5 GRU-GCN model performance using different neighbour
logic. The main parameters of the model are 24 hours of
history, 3 GCN layers with 256 neurons and class weights
optimized for recall. 37

5.1 Model and baseline performance with the target of high
recall. 39

5.2 Original data versus Autoencoder output 40
5.3 Model and baseline performance with the target of higher

precision at horizon of 12 hours ahead. 41

VI

1 Introduction

1.1 Dissertation theme

1.1.1 Object and motivation

With the ever increasing power of computer hardware that has been
observed in the past years, a very useful and resource hungry computer
science section has been revived, machine learning. Machine learning is
a branch of computer algorithms, whose goal is to detect behaviour pat-
terns in data and use them to create a desirable output. These techniques
are based on empirical data analysis and are used for data classification,
future state prediction, system automation etc. The advantage of those
methods over conventional artificial intelligence algorithms is that they
are fully automated and can handle varieties of data with a more ad-
vanced scope than that of a human. This makes them perform especially
well in real world applications, where the engineers scope may limit the
performance of the automation algorithm.

Along with the rapid advancements in hardware technology there ex-
ists another interesting phenomenon, the rapid increase of mobile usage
in large population centers. Today smart devices such as electric cars,
smartphones, internet of things devices etc. create massive data traffic
in mobile networks,that is growing at an exponential rate. Furthermore
many of those devices are not static, meaning they will not apply their
traffic load in one specific area. This creates an interesting problem for
providers of telecommunication services, where the pattern recognition
of traffic overload in several antenna regions remains to this date a high-
value and challenging forecasting problem. At the same time it impacts
the Quality of Experience (QoE) for the customer , since such overloads
may cause low response times, packet loss, or even total service loss to

1

their device. I will refer to those problematic antenna areas as hotspots.
In cooperation with the company Telefonica and fellow student Kon-
stantinos Zacharopoulos we plan to tackle this problem by implementing
two advanced automated machine learning algorithms. The first algo-
rithm that is described in this thesis has the goal of forecasting with
high recall using the full set of antennas, with a secondary goal of being
light enough to include as many antennas as possible into one predic-
tion while also investigating how the model behaves while changing the
goal to achieve high precision. The second algorithm implemented in the
thesis of Kostas Zacharopoulos aims to split the antennas into smaller
regions and achieve predictions with high precision.

1.1.2 Problem formulation

The problem that is being addressed in this project is the prediction
of the system overload on the networks cellular antennas, which happens
due to the increased amount of the network service usage. In order to
solve this issue I am going to create a machine learning algorithm that
forecasts the future load state of an antenna using its key performance
indicators. These indicators consist of sensor values that indicate the
state of the device and measure the quality of the provided services to
the users. These predictions will be given to the network engineers re-
sponsible for the targeted areas, who will in turn calibrate the network
parameters and as a result be able to handle the load on the antennas. It
is important for this goal to predict as many of the real hotspots, while
still maintaining high accuracy in the total network predictions, meaning
that I can tolerate low true positive to false positive ratio. Part of the
main target is also the feasibility of the model to train on large scale
mobile networks without overloading the used system resources.

1.2 Project contribution

To my knowledge, there only exists two works addressing the problem
of long term prediction of antenna hotspots. The first one is the work of
Serra et al. [14], where the authors propose the use of tree based models
in order to find patterns in the networks data. There they observed

2

patterns both in the antenna location and in the temporal nature of the
data. In the second, more recent work of Zhou et al. [15],an LSTM based
model was successfully deployed to predict hotspots for a Chinese mobile
network. In the approach of this thesis, based on the findings of those two
precious works, I am going to construct a graph-based recurrent neural
network (RNN) model so that I can take advantage of both spatial and
temporal patterns that lie in the data. By exploiting the predictive power
of such architectures I hope to have an increased prediction performance
in long prediction horizons, while having a faster run-time compared
to previous works and be able to process a more heavyweight antenna
network.

1.2.1 Approach

As mentioned earlier, my model consists of a graph-based RNN model.
Essentially, I am going to embed a Gated Recurrent Unit (GRU) as an
initial module , followed by a Graph Convolution Network (GCN). The
role of the GRU is creating a temporal representation of the data, de-
tecting such dependencies, later feeding them into a GCN module, where
the effects of close-by antennas to their neighbours are being considered.
The final output will be used as the prediction probability of a future
hotspot in a given time horizon per antenna. The goal is to have accu-
rate predictions on the full antenna graph, with a focus on recall over
precision. One of the challenges is the graph size, which is naturally big
since I am dealing with a big data problem on the full grid of London.
It is also important to achieve a high ratio of true positives to total real
positives, while maintaining high accuracy, since it is more important to
predict most hotspot occurrences, even if there exist a fair amount of
false positives.

1.3 Chapter contents

Here i am going to present a small overview of the chapter contents of
this thesis. Chapter 1 contains a small introduction to the problem that
this work is based on. On the second chapter I provide the theoretical
background of how a machine learning algorithm works and how it has to

3

be designed in order to function properly. In chapter 3 the current state
of the art is being showcased, including some works that either relate or
even predate my state of affairs. In the next chapter I exhibit in depth
the design process of the network and the required preparation, followed
by chapter 5 where I post my experimental results. Finally chapter 6
includes the conclusion of my work, proposing future enhancements and
possible additions.

4

2 Background

In this section I am going to disclose the theoretical background of
the design process of a learning algorithm [16], while also introducing
some useful neural network categories that the suggested model directly
derives from.

2.1 Introduction to Machine Learning

2.1.1 Artificial Neural Networks

Machine learning (ML) is the study of creating algorithms capable
of ’intelligent’ thinking. They are used to recognize patterns in input
data in order to solve classification tasks, target recognition , predic-
tion or even new output creation. One of the more popular methods of
machine learning algorithms are neural networks (NNs).NNs algorithms
[17] are high capacity function approximators that work using a network
of artificial neurons. Those neurons are based on the operation of an
organic neuron (see Figure 2.1). They typically consist of a weighted
sum function and an activation function, as shown in Figure 2.2. The
first function processes the input data using learn-able weights and the
second on applies non-linearity to them.

The goal of neural networks is to adjust the weights of the neurons in
order to approximate the behaviour of the target into a mathematical
function. This is done by adjusting the weights of the neurons based on
a set of the input data, also referred to as training of the neural network
model. The performance of the trained model is then rated based on
a number of metrics, using a separate set of data(i.e. test set). After
several training cycles, called epochs, when those metrics meet certain
criteria the model is then ready for use.

5

Figure 2.1: Artificial neuron logic based on real neuron. [1]

Figure 2.2: Mathematical flow of an artificial neuron. [2]

6

2.1.2 Model training

Training is a critical part of how neural network models work. As
mentioned, in training the model uses a certain set of data to adjust its
weights, so that it optimises its performance for a given task. In training,
the input data is fed into a model with randomized weights. After all the
calculations are done the output is being fed forward to a loss function.
This function measures how much the output information deviates from
the expected real output. Based on that measurement the neuron weights
are being adjusted using back-propagation (see [18]). Back-propagation
functions by computing the gradient of the loss function starting from
the last layer of neurons to the first using the chain rule, re-calibrating
the weights. There are many methods to train a model, based on the
data at hand. The most common of them are:

• Supervise Learning: In supervised learning, the model is given both
the input and the expected output, named label, and is expected
to map the correct behaviour to meet our expectations. Supervised
learning is commonly utilized for classification tasks.

• Unsupervised Learning: In unsupervised learning the data given is
unstructured/unlabeled. The goal is to find a pattern in them and
use it to fulfill a task. Unsupervised learning is used typically in
statistics.

• Reinforcement Learning: In reinforcement learning the model op-
erates in an environment, in which it learns by receiving a reward
based on its actions. The input data consists usually of environmen-
tal variables based on the devices sensory. Reinforcement learning
is mostly applied in automated agents.

2.1.3 Activation functions

In ML, an activation function is a way of deciding how the neuron will
behave and whether it will ”activate”. Activation functions essentially
control the domain of the values that the models output can take. They
are placed in the end of a NN layer, adding non-linearity to the network.
This non-linearity is what provides the current model the ability to learn

7

how to solve more complex problems. Some famous activation functions
are the binary step, which activates to 1 only then the input x goes above
a threshold, ReLu , which activates x when the input x is above 0 and the
sigmoid which outputs a value between 0 and 1 depending on the input x,
where output = 1/(1+e−x). In the works of Chigozie Nwankpa et al. [19]
and Shiv Ram Dubey et al. [20] there are some interesting comparisons in
the performance of the above and more activation functions while used
in deep learning problems. Figure 2.3 shows more famous activation
functions along with their plot diagrams, equations, first derivatives and
output range.

Figure 2.3: Famous activation functions. [3]

8

2.1.4 Loss functions

Another important aspect of NN’s are loss functions. These functions
are responsible for fitting the model to the given training set. The operate
by comparing the target and predicted output values and compute a new
value called loss. The goal of the model is typically to minimize the loss
and as a result bring the outputs closer to the target values.
There are many different loss functions depending on the use case. In

regression, the most typical loss functions are mean squared error (MSE)
and mean absolute error (MAE). These two functions operate exactly as
they are named, MSE calculates the mean of all squared errors in an in-
stance 2.1 and MAE the mean of the absolute deviation per instance 2.2.
In classification tasks, where the output is a probability, cross entropy is
typically used, which compares the distribution of the prediction prob-
ability to the target values.In binary classification cross entropy follows
Equation 2.4 and in multi-class problems the Equation 2.3.

MAE =
D∑
i=1

|xi − yi| (2.1)

MSE =
D∑
i=1

(xi − yi)
2 (2.2)

CrossEntropy = −
M∑
c=1

yo,c log(po,c) (2.3)

BinaryCrossEntropy = −(y log(p) + (1− y) log(1− p)) (2.4)

2.1.5 Data preparation

One of the key factors for the proper operation of NNs, is the prepara-
tion of the input data. A good in-depth analysis of data preparation can
be found in [21], as shown in Figure 2.4. Initially, the data that is going
to be analysed needs to be checked for missing or corrupt information.
When working with real-world data, it is very common for phenomena
like sensor failures to occur, leading to incomplete data capture. There
are two basic ways to handle those areas, either remove the data tuple

9

that has blank spots, or fill it using an imputation technique, that is,
using a statistical or a learning approach to guess what is missing.

After having filled the missing spots in the data set, excess information
has to be removed. Usually such data exists in points of data that do not
provide useful patterns to the model. These can be columns or features
that contain the same value across the hole column, or columns with
identical or very close values, meaning that they have close to 0 vari-
ance. Keeping those features in the data will only make the model more
resource hungry, while at the same time possibly degrading its perfor-
mance by introducing noise and increasing computations needed. Some
simple categories of methods to battle this problem are feature selection
and feature extraction. In feature selection the columns or features are
being compared, and only the ones of high value are being kept in the
input set. In feature extraction the raw data is fed into a transforming al-
gorithm that calculates the new features. Feature extraction techniques
typically apply a dimensionality reduction algorithm to the initial set
and create a new one for the target model. This new set consists of new
features, fewer in number than the initial set, that give a representation
of the old tuples. Some well used algorithms for this function are the
Autoencoder and Principal Component Analysis.
I also need to check the format of the data. In some columns there

may be encountered data with high variance or with categorical values.
Categorical values cannot be processed directly by a neural network,
and data with high variance and big values can make it harder for the
model to make accurate predictions. To deal with categorical values one-
hot encoding is applied, where the non-integers are being encoded into
integers. After that the data columns can either be normalized , giving
them values between 0 and 1, or standardized, giving them a center
value of 0 and variance at 1. This part of normalizing or standardizing
the input is referred to as data scaling.
A final step of the data pre-processing is splitting it into a train group,

a validation group and a test group. The purpose of splitting the data
is to avoid phenomena such as over-fitting the classifier into a specific
scenario, and to ensure its ability to generalize the given task. The split
is done randomly to avoid any bias in the model training or testing. The

10

training set usually consists of the larger portion of the data, since this
improves the model fitting into a more complex behaviour pattern. The
validation set should be a small percentage, close to 10-20% the total
data, and is used to validate the performance of the model in the end
of each training cycle and adjust the hyper-parameters of the model. It
also helps detect over-fitting and apply early stopping of the training
function, if it is needed. Finally the testing step should be close to 15-
20% of the total data, and is used to test the final performance of the
model.

2.1.6 Classification performance metrics

To know how well the model fitted into the dataset I need a method of
performance measurement. Here, I am going to introduce some of the im-
portant metrics that perform this task. These metrics are the standard
Information Retrieval (IR) performance metrics of accuracy, precision,
recall, f-score , area under curve and hit rate [22]. Their calculation
relies on the use of a confusion matrix, which is a table that contains the
number of true positive predictions TP, the number of true negative pre-
dictions TN, the number of false positive predictions FP and the number
of false negative predictions FN. In non-binary classification tasks, the
confusion matrix contains the TN,TP,FN,FP for each class. Using those
values what each metric measures can be defined mathematically what
each metric measures. Accuracy measures how accurate the model is by
comparing the total number of correct predictions to the total number
of predictions as in Equation 2.5. Precision calculates the ratio of true
positives to the predicted positives as shown in Equation 2.6 and is a
measure of how confident the model is in the calculations. Recall is the
ratio of the true positives to the total positives as in the Equation 2.7
and expresses the models sensitivity to the detection of the target class.
F-score is the harmonic mean of precision and recall as shown in the
Equation 2.8 and considers both recall and precision. A version of F-
score exists, called F-beta , which considers that recall is beta times as
important as precision, with the Equation 2.9. Area under curve (AUC)
calculates the relationship between the true positive rate and the true
negative rate and gives the information of how well a model can differen-

11

Figure 2.4: Common data processing flow. [4]

12

tiate between the classes. Finally hit rate at x contains the information
of how well the precision was at the most probable x predictions and
can help decide if and where to change the decision threshold. All of
those metrics are useful tools in handling spatial cases, where the typical
metric of accuracy may lead to false claims, like it is showcased in this
example of Brian Liu et al. [23] where accuracy is put on the test versus
precision.

Accuracy =
TP + TN

TP + TN + FP + FN
(2.5)

Precision =
TP

TP + FP
(2.6)

Recall =
TP

TP + FN
(2.7)

F1 =
2 ∗ Precision ∗Recall

Precision+Recall
(2.8)

Fb = (1 + b2) ∗ 2 ∗ Precision ∗Recall

b2 ∗ Precision+Recall
(2.9)

2.2 Relevant NN architectures

2.2.1 Convolutional Neural Networks(CNN)

In this section I am going to describe some useful neural networks re-
lated to the project, starting from CNNs [24]. As their name implies
CNNs are neural networks that apply a mathematical function called a
convolution. At the point of the convolution those networks use a set of
learn-able filters, also called kernels, to apply the convolution to the in-
put data. Using those kernels CNNs are able to learn, store and identify
patterns in the data. Additionally due to the abilities of the convolution,
the pattern detection is invariant of the spatial location of the pattern.
This means that a kernel that detects dots in an image can detect them
wherever they are located and not a specific spot.The rest of their func-
tionality is similar to the typical neural networks. Convolutional neural
networks are intended for use with multidimensional data and as such are

13

typically applied to image and time-series related works. Convolutional
neural networks have proved to be a very powerful type of network in
such use cases and have been widely deployed for pattern recognition in
images and time series data. Convolutional neural networks have been
used in conjunction with LSTM type RNNs for traffic flow prediction. In
the works of Zhao et al. and Zhuang et al. [25, 26] they have been proven
to work effectively in short-term predictions. Also in the work [27] CNNs
are able to handle sets with sizable feature vectors. Figure 2.5 show a
well known application of CNNs, character recognition.

Figure 2.5: Example of Convolutional Neural Network for character
recognition, here max is a pooling operation that calculates
the maximum, or largest, value in each patch of each feature
map [5]

2.2.2 Graph Convolutional Networks

Graph Convolutional Networks, or GCNs , are a generalization of
CNNs that also take advantage of the graph structure of the data. The
GCNs rely on an adjacency or Laplacian matrix to represent the struc-
ture of a graph [28, 29]. The input of the GCNs is the data followed

14

by an adjacency matrix that describes the relation between each data
point. Then message passing is applied to each target data point, where
the data of the adjacent ’neighbour’ nodes are being aggregated with the
target data. The output of the aggregation is being fed into a CNN.
GCNs allow taking the advantage of the spatial influence contained in
close-by data points and thus help in detecting the wanted phenomenon.
The main focus is on GCNs since they have been typically used in as-
sociation with traffic forecasting problems containing important spatial
patterns with high success rates.
In order to detect spatio-temporal dynamics of traffic data, GCNs have

been used accompanied with RNNs. In the work of Zhao et al. [30] GCNs
have been fused with GRU or LSTM compnents with the goal of traffic
control. There, the combination with GRU outperformed LTSM, while
also outperforming algorithms GCN, GRU, ARIMA and SVR in their
prediction. Another project using GCN-LSTM architecture has shown
to handle network scale data, similar to my interest [31].

Figure 2.6: Graph Convolutional Network node traversal. [6]

15

2.2.3 Recurrent neural networks and Gated Recurrent
Units

Another well-used category of algorithms, that I built upon, are recur-
rent neural networks (RNNs). This type of algorithm takes advantage
artificial memory in order to maintain information patterns through cycli-
cal runs on the input data. Thanks to that memory, these algorithms
usually achieve high accuracy. They are also invariant to the sequence
length. This behaviour makes them suitable for recognition using time-
series as inputs, like speech recognition. RNNs have been widely used
as part of a traffic forecasting model to predict traffic speed [32], travel
time [33], and traffic flow [34, 35, 36].

Figure 2.7: Basic Recurrent Neural Network. [7]

The most effective RNNs are Gated Recurrent Units (GRU) and Long
Short Term Memory (LSTM). GRUs are RNNs that use two gates to
keep historical information, the update and the forget gate. The update
gate regulates what information will be passed from the previous time-
step date to the next, while the forget gate decides how much of the
information should be forgotten. The input and the output of the GRU
consist of a data vector and a history vector. GRUs are widely used in
works with less frequent data sets than other RNNs. LSTMs function

16

similarly to GRU, having one additional forget gate. They are computa-
tionally more heavyweight than GRU, while seemingly having very close
performance to it.

Figure 2.8: LSTM architecture. [8] Figure 2.9: GRU architecture. [9]

2.2.4 Autoencoders

Autoencoders [37] are a family of neural networks, whose goal is to
compress the input by lowering its dimensionality and then reconstruct it
as close as possible. To achieve that, the autoencoder has multiple layers
and is split in two parts, the encoder and the decoder. The first lay-
ers, belonging to the encoder shrink the input, reaching a minimum size
for the neural network. The information they contain is a compressed,
distorted representation of the original, named the code. The code still
contains most of the original data attributes and thus can be very useful,
especially when dimensionality reduction is needed in a dataset. The
code is then fed to the decoder, which consists of layers that increase in
size. A basic autoencoder is shown in Figure 2.10 In a basic autoen-
coder, the role of the decoder would be to use the code to recreate the
original dataset as close as possible. After training an autoencoder,I can
get an output that is very close to the input, but also get a better code,
more representative of the input set. There are various ways to take ad-
vantage of such a network. The input can be corrupted with noise and
then train an autoencoder on recreating the original , clean data, essen-
tially teaching it to remove noise. The code can also be used as the new
’features’ of a clean set to make it more lightweight to train with in other
applications. A disadvantage of autoencoders is, that they encounter a

17

bias-variance trade-off, creating problems when trying to minimize the
loss of such a model.
Depending on the application, there are different autoencoder types.

Some of the more common ones are denoising , sparse and contractive.

• Sparse autoencoders: They deal with the bias-variance trade-off
by enforcing sparsity on the hidden activation, using sparsity reg-
ularization. This regularization is applied to the activation instead
of the weights. Sparse autoencoders have been widely used for
dimensionality reduction like in the work of [38].

• Denoising autoencoders: This category of robust autoencoders are
used for error correction. In this configuration the model is trained
with corrupted input and is expected to reconstruct the original
input [39].

• Contractive autoencoders : They work on the opposing principle
to denoising ones. Instead of trying to resist perturbations of the
input, the emphasis is to be less sensitive to them. Contractive
autoencoders are usually employed as just one of several other au-
toencoder nodes, activating only when other encoding schemes fail
to label a data point

18

Figure 2.10: Basic Autoencoder architecture. [10]

19

3 State-of-the-art

Cellular performance forecasting has been a popular research topic in
the recent years. In this section I will present some of the most important
works that influenced my design, as well as discuss their limitations that
I am addressing.

3.1 Existing solutions to general hotspot
prediction

Traffic forecasting belongs to the domain of multivariate time series
problems. In order to solve such problems ML methods have been found
to outperform statistical methods like ARIMA, thanks to their ability to
learn complex, non-linear relationships. With the added introduction of
high capacity neural networks in combination with more effective training
algorithms, it is also possible to learn using big data collections. Such
algorithms have been used, initially for short term mobile performance
prediction, like the work “Proteus” [40], which consisted of a tree based
model.
In the later work “Hot or Not” [14], the target horizon was hours to

days later. In said work, the authors gave a more in depth analysis of
the cellular network dynamics. Serra et al. [14] casted the problem as
multivariate time series forecasting and focused mainly on the temporal
patterns, using a Random Forest (RF) model. This model outperformed
the tested baselines in short term horizons, but its advantages vanish in
longer horizons, while also not accounting for the spatial patterns of the
data.
A more recent work by Zhou et al. [15] captures the temporal depen-

dencies of the network using an LSTM-based model. The model was
trained with the data of a network in a Chinese city and produced ad-

20

mirable results in longer horizons. This solution is the closest one to my
goal. I plan to improve on the prediction by using better performing RNN
algorithms than LSTMs, while also incorporating spatial dependencies to
my predictor.

21

4 Model architecture

In this section I describe the proposed models design process and ana-
lyze the principles that lead to my approach. The main analysis is split
into four parts, the data preparation, the creation of the graph used on
the graph based version of the network, the basic neural network, and
the optimization of it. My initial goal is to run the model on the full
graph while maintaining high accuracy, high recall with a relatively good
precision. A later goal is to investigate if the precision can be increased
without losing the optimal recall.

4.1 Data preparation

As previously discussed, an important part of training a neural net-
work correctly is the data preparation. In this case, the dataset consists
of hourly observations from the key performance indicators from 10700
antennas in the location of London, from the month May until August,
approximating 2.15 billion tuples of data. Since this is a case of real world
data, it is natural to have a number of blank spots on the set. There
are also a number of indicator values, or features that are not useful in
the analysis. The goal is to find a way to deal with those problems while
minimizing the loss of useful information. Before beginning I transform
all categorical KPIs to numerical values using one hot encoding, with
the exception with some cell identification related features that have to
remain unchanged.

4.1.1 Missing value imputation

The first part of the data preparation is filling the gaps of information
in the dataset. This task is referred to as data imputation, as shown
in Figure 4.1. In this setting it was found that from the whole set, 15

22

percent of the tuples had at least one missing value from the 77 features
at a random location. There are two common approaches to dealing with
missing or corrupted data, either imputation as mentioned, or dropping
the problematic tuples all together. The reason that I prefer imputation
is, that removing certain values will ruin the continuity of the multivari-
ate time series per antenna, and thus negatively affect the prediction. So
my choice is imputation.

Figure 4.1: Simple data imputation [11]

Some of the more famous techniques to work around this problem are
zero filling, mean imputation and imputing using a k-nearest neighbours
learning method. In order to test which approach would work the best,
all three algorithms were applied in a test subset of the original data
named ’A’. Subset ’A’ consists of tuples cut from the original set, which
do not have any missing values. I artificially corrupt some of A’s values at
random and then test all three cases. In the case of filling every gap with
zeros,the algorithm got the worst accuracy comparing to the original set,
as it was originally expected. Filling with the mean values between the
gaps had a more acceptable accuracy, while also having a relatively low
run-time. Finally I train a k nearest neighbours algorithm that groups the
tuples and then imputes based on what values the neighbours of the tuple
contains. While more accurate by all 3, the knn algorithm fails in run-
time, especially when considering that it has to be applied to a set that
has almost 2.15 billion tuples. The final choice was mean imputation,

23

due to having a more balance accuracy/performance relationship.

4.1.2 Feature analysis and feature extraction using
Autoencoders

After filling the gaps in the data, the next part is reducing the di-
mensionality of the set. My goal is to train a graph-based network with
batches of one hour containing information for every cell in the network.
Doing that with the full set is nearly impossible due to memory restric-
tions. The experiments are being conducted on a powerful server, having
256 Gb of RAM and an array of 5 modern GPUs with 12 Gb of VRAM
each. Fitting the full graph with all 77 features overloads the server and
thus cannot run effectively. A common practice is to apply feature analy-
sis methods to remove features that either contain similar information to
each other, or that even contain no information related to the analysis.
Out of those techniques, I applied variance thresholding, that removes
features that have near-zero variance. Those features mostly contained
the same value across all observations, or deviated so little that they
would not positively affect the models output.
Since my goal on this task is to reduce the dimensionality as much

as possible, after the variance thresholding I am not going to continue
using feature analysis methods. A higher reduction in dimensions is
needed without the loss of useful information. For that reason I use
autoencoders for a method called feature extraction. Here I train a sparse
autoencoder to recreate the input set while firstly compressing it and then
decompressing it. After optimizing the autoencoder I run the process
on the full dataset, while keeping the output of the autoencoders final
encoding layer, the aforementioned code. The code is going to replace
the original input set as the new input of the proposed model, with
the goal of retaining a good prediction while allocating less resources.
During optimization I chose an autoencoder with four compression ratios,
2/3, 1/3, 1/6 and 1/9 of the initial size. The optimal ration was the
one with a compression of 1/6 since as shown in Table 4.1 it gives a
high compression with a relatively high reconstruction accuracy, while
the next highest compression has a significantly worse reconstruction
accuracy. The new set consists of new compressed features that represent

24

the original full set, having a much smaller size while keeping most of the
important information. This allows me to train the forecaster with the
current resources while also giving me some extra space to try different
configurations, that would otherwise not be applicable.

Compression list
Compression ratio Accuracy

2/3 93%
1/3 96%
1/6 95%
1/9 89%

Table 4.1: Autoencoder reconstruction accuracy using different compres-
sion ratios

25

4.2 Graph neighbour logic

The next step that is required to do is to defining the graph logic.
In my graph, the nodes represent the cellular antennas that are being
investigated . What needs to be define are the edges. An edge translates
to the two connected antennas to be treated as neighbours, meaning that
their values will be included in the message passing state of the networks
Graph based layer. Knowing the location of each antenna I calculate the
distances between the cells. Then I apply the three different neighbour
criteria to create the graph’s adjacency matrix. The criteria are:

• Distance-based: A distance-based criterion decides depending on
how far away an antenna is from the target. That antenna is con-
sidered a neighbour only if its distance from the target is set bellow
a threshold value KM.I experiment in the optimization section with
different KM values. With the distance based criterion the idea is
that close-by antennas have a high probability of affecting the tar-
get one. The downside of it is that it can create a big number on
neighbours, which will affect both the performance and the run-
time of the model negatively.

• KNN based: A KNN based criterion will simply consider a target
antenna neighbour only the K nearest antennas. This method gives
a threshold to the potential big number of neighbours, but may
leave out some of the antennas that had important influence to the
target. It may also have the opposite result of including antennas
that are too far to affect the target.

• Cell site based: The final criterion tested is considering only the
antennas on the same base station as neighbours. With this crite-
rion the model is limited only to very close antennas, excluding the
probability of being affected by ones that are very far away and do
not provide anything useful to the prediction.

I will showcase the performance of each different neighbour logic in
the results section. There, several variations of each criterion will be
compared to each other for the final product.

26

Figure 4.2: Example of a node connected by knn with k=5. [12]

4.3 Neural Network design principles

On this section I am going to analyze the design principle of the sug-
gested model. The model itself consists of a Gated Recurrent Unit part
that captures temporal dependencies and a Graph Convolutional part to
capture spatial ones. The final output of the model is the probability
of an antenna becoming a hotspot. The idea of combining those two
architectures in order to take advantage of spatio-temporal patterns was
influenced by the works of Zhao et al. and Bing et al. [30, 41]. In those
papers RNN- type networks were combined with graph-based networks
to produce the final classifier/predictor.

27

Figure 4.3: Basic diagram of the final proposed model.

28

4.3.1 Importance of performance metrics and class
imbalance

The basic principle of the models design is the exploitation the afore-
mentioned performance metrics. One of the challenges of the prediction
goal is the high class imbalance that exists in the input data. The target
variable has such a small appearance probability, that even a classifier
that only predicts 0 will have an accuracy rating of over 90%, misleading
observers that it performs wells in its task.
To correctly benchmark a forecasting algorithm that deals with the

imbalance of my data, I need give a greater focus on precision, recall and
f-score. In particular my goal is to detect as many of the real hotspots
as possible, maintaining an accuracy rating over 90%. This allows the
predictor to accept precision as low as 10% if the recall rating reaches
values of 90% or above, similarly to cancer detection, where a false nega-
tive might cost much more than a 10 or 20 false positives. By monitoring
the above performance metrics, the hyper-parameters can be optimized
and finally achieve and optimal outcome.

4.3.2 Detection of temporal dependencies

The first operation executed in the model is capturing the temporal
information. In doing so an RNN type network has to be deployed. As
previously mentioned in the theoretical background section, there are
two well performing RNNs the LSTM and the GRU. Out of the two I
picked the Gated Recurrent Unit as the models module. The reason being
that GRU architecture is more lightweight than the LSTM memory wise,
while also being slightly faster and similarly performing [42]. Although
LSTMs are known to perform well when with a large historical input,
in my case the time complexity to include longer historical buffers is
extremely big. In addition, as shown in the later results section, the
LSTM baseline under-performs against the contemporary GRU baseline
using this data-set.
The temporal part of the model consists of N GRU layers, where N is

the number of historical hours that are given as input. As it is going to
be discussed in the optimization section, the optimal value of layers in

29

this work was 24 hours of history. The output of the GRU has the form
of a single hour of observations per antenna.

4.3.3 Detection of spatial patterns

The next step is to capture the spatial dependencies and produce the
output. To achieve this, a graph based neural network is needed. The
prime candidates are Graph Convolutional Networks and Graph Atten-
tion Networks. The main difference between GAT and GCN is the fact
that GAT have learnable weights for the edges that allow them to cap-
ture more complex relations between the neighbouring nodes. This makes
them more effective than GCN in certain use cases, with the disadvantage
of being more resource heavy. This fact, with the addition of effective
examples of GCN deployments in traffic prediction [30], make the Graph
Convolutions more compatible with my use case.
It is important to add here that the effectiveness of the graph based

networks relies upon the graph connections. This is also the reason that
I need to try multiple neighbour logic definitions to receive an optimal
outcome. GCNs take advantage of spatial information using a step called
message passing. In this step a node retrieves the information vector of
all neighbours and averages them before continuing with the convolu-
tion. Having too many neighbours can affect negatively the outcome of
message passing. On the other hand , not including key neighbouring
antennas will devoid the network of spatial information. On Figure 4.4
an example of message passing is shown.

4.3.4 Activation function choices

As it is natural in any neural network, the application of non-linearity
has to be included by adding activation functions between the hidden
layers. One of the more common and effective activation function is
RELU. This function only allows positive values to flow from layer to
layer, while nullifying negative ones. Usually it is the default choice for
most works.
This work though is a special case. I observed an increased number

of negative values in all of the models layers. This creates the danger of

30

Figure 4.4: Simple example of message passing on a target node. [13]

vanishing gradients when nullifying those outputs. Thus I decide to use a
version of RELU called LeakyRELU. What this function does is allow a
down-scaled negative output to enter the next layer. Using it I avoid the
problem of vanishing gradients, while observing a jump in performance
in said model.
Finally for the output has to take the form of the probability of an

antenna becoming a hotspot. To achieve this outcome a sigmoid activa-
tion function is being placed before the final output of the model. This
function transform all outputs, giving them a value range between zero
and one. This provides the model the probability of each antenna be-
coming a hotspot. A copy of the final output decides non hotspot for
values lower than the decision boundary of 0.5, otherwise classifies an an-
tenna as hotspot. Table 4.2 contains some information about the used
activation functions.

4.3.5 Loss function choices

Finally I need to choose a loss function compatible to this problem.
Since i am dealing with a binary prediction, I consider using binary cross

31

Name Function Derivative

Sigmoid ϕ(x) =
1

1 + e−x
ϕ′(x) = ϕ(x)(1− ϕ(x))

ReLU ϕ(x) =

{
0 x ≤ 0

x x > 0
ϕ′(x) =

{
0 x ≤ 0

1 x > 0

Leaky ReLU ϕ(x) =

{
αx x ≤ 0

x x > 0
ϕ′(x) =

{
α x ≤ 0

1 x > 0

Table 4.2: Activation functions used and their derivatives.

entropy. Binary cross entropy , or log loss, calculates how much a binary
classification deviates from the real values using the probability that my
model produces as output.
A variation of this function called binary cross entropy with logits al-

lows me to add a class weight and a re-scaling factor to the loss calcula-
tion. The class weight helps in dealing with the crippling class imbalance
that exists in the data , while the re-scaling factor corrects the loss so
that the optimizer will not make drastic changes to the models weights
between epochs. An additional benefit of the class weight is that they al-
low the predictor to increase the prediction recall , with a minor trade-off
on precision.

4.4 Optimization and hyper-parameter tuning

Optimizing the model is the final essential task in designing a func-
tional machine learning algorithm. Here it is required to test and find
the optimal parameters that increase the overall performance. Those pa-
rameters are the total number of layers, neurons, how many epochs to
train, which graph logic to use, what are the optimal class weights etc.

32

4.4.1 Optimizer and learning rate

In order for the model to train it is essential to include some kind of
back propagation algorithms for optimizing the networks weights. To do
that I am going to use the well known Adam optimizer implementation
of the library Pytorch.
Adam is an extension of stochastic gradient descent. It has been used

in most recent deep learning (DL) applications thanks to its high com-
putational efficiency and low memory usage. The learning rate in which
the optimizer will default is 0.001. The strategy behind that number
being the initialization of the weight optimization process with a small
deviation, in order to avoid losing local optima that may exist close to
the initial value of the weights. Thanks to the functions of Adam, the
starting learning rate doesn’t have to be manually adjusted, since the
algorithm itself will fine-tune it later on , depending on the output gra-
dients and the loss it receives on the backwards call of the model.

4.4.2 Loss weights

Lastly it is important to configure the loss weights in order to counter
the class imbalance. Here, the minority class that the model tries to
forecast has a ratio close to 1 to 10.000, making it extremely hard to
predict. If the model is left without a loss weight, then it will almost
always predict the majority class, making the classifier practically useless.
On the other hand a very high class weight will have the model classify
every outcome to the minority class. In order to refine it I used a number
of combinations of class weights. Class weights with lower value than one
do not contribute into finding the minority class, and thus are excluded.
Weights above one give more attention to antennas that are hotspots,
but have a trade-off between recall and precision. Increasing the weight
provides better recall, but at the same time sacrifices precision, especially
when the weight was far above the value of 2. There the drop in precision
translated to significant drop in accuracy as well. The optimal value
turned up to be two. Using this weight the model achieves high recall
with precision over 10%, maintaining high accuracy as well . It is also
important to use a re-scaling weight of 0.9 in order to let the optimizer
make smaller steps during the weight optimization. This helps avoiding

33

the loss of some local optima that may appear.

4.4.3 GCN and GRU configuration

The first thing that is going to be optimized is the GRU. In this part
it is vital to figure out what number of N historical values will provide
the best result with a relatively fast run-time. As it is natural, increas-
ing the value of N translates to a linear increase in time requirements. I
tested a variety of different historical values ranging from 1 to 48 hours.
I observed that before the value of 24, increasing the historical value also
gave better performance. After the value of 24 , as shown in Table 4.3,
GRU returns similar results between experiments. Since the improve-
ment was marginal with historical values greater than 24 hours, I keep
24 GRU layers, having the optimal performance to run-time trade-off for
this work.

GRU performance

Historical

buffer size

Accuracy Precision Recall Run-time

1 97% 12% 52% 15min

12 97% 15% 78% 90min

24 98% 20% 79% 180min

36 98% 18% 80% 270min

48 98% 19% 79% 360min

Table 4.3: GRU performance using prediction horizon of 12 hours ahead
and class weights with the target of reaching high recall.

For the GCN part, the number of layers allows the network to get
information from nodes that are further away. Each layer act similar to
collecting information from 1 step distances on further nodes. Going too
far away will provide the network with too much information, not only
making it more resource hungry, but also diluting the useful information
so much, to a point that the model wont be able to make any predictions.
On the other hand using a too shallow GCN will lose useful information
from nearby nodes. Uppon testing I found that the optimal number

34

node hops is three, as it appears in Table 4.4. Other than the number of
layers , the GCN part has also a variable number of neurons. Although
faster than the GRU, the GCN uses a much bigger memory space in the
server, closely related to the number of neurons that the architecture
uses. Since the project utilizes the full graph, more neurons allow it to
learn more complex patterns and thus provide better predictions. But
since there are no infinite resources, I had to limit the neurons to 256,
which provided the best results, while leaving enough space in memory
module to add the GRU module to the system. As exhibited in Table
4.4 the best combination for the GCN in this case is 3 layers with 256
neurons.

GCN performance

Layers Neurons Accuracy Precision Recall VRAM

1 256 98% 12% 38% 2 GB

2 256 96% 10% 45% 3 GB

3 256 97% 10% 50% 4 GB

4 256 96% 8% 40% 6 GB

3 64 99% 0.1% 1% 1 GB

3 128 98% 10% 30% 2 GB

3 512 96% 0.7% 25% 8 GB

Table 4.4: GCN performance using different layers and neurons. The
neighbour logic used on the test was distance based with max-
imum neighbour distance 0.1 kilometers.

4.4.4 Epochs

Since I am dealing with a model with a large number of parameters,
that accepts a very large input vector, it is important to have a way
to find an optimal amount of epochs in which the model will train. In
my case each epoch takes at best four hours to train. Also due to the
vast amount of input data, I observe vast changes in the model loss and
performance even one step ahead. To deal with this I implemented a
standard early stopping method to stop the training time. Here the

35

model will stop training if it didn’t deviate more than 5% loss-wise in
the final five epochs.

4.4.5 Graph logic optimization and comparison

As part of the optimization step I need to figure out which of the three
neighbour logic matches best to the performance goal. I train the model
with different values in all three neighbour methods. Starting with the
application of distance thresholds, I observe that increasing the distance
parameter, not only increases the models complexity, but also decreases
its performance. This goes to the fact that having too many neighbours in
the message passing part of the GCN algorithm, in accordance to the class
imbalance, dilates the useful information and leads to having inaccurate
predictions. This method performed best when using very small distances
while also using much less memory than the longer distance counterparts.
Next I try considering only neighbours on the same base station. This

method vastly outperforms the distance based one, since it limits the
graph to smaller neighbourhoods. The dilation problem still persists,
since the typical number of antennas in each base station is more than
10.
Finally I apply a k-nearest neighbours algorithm as the graph logic.

In this method I test the model with different k number of neighbours,
limiting the dilation issues while still providing important information
from the neighbouring cells. The best combination turned out to be
using KNN with 5 neighbours, giving the best results compared to the
other graphs that I constructed. The results of each method using GRU
with 24 hours of history and three layers of GCN are expressed in Table
4.5.

36

Neighbours performance
Criterion Limit Accuracy Precision Recall
Distance 0.05 km 96% 16% 70%
Distance 0.1 km 96% 15% 68%
Distance 0.2 km 98% 10% 45%
KNN 1 99% 22% 85%
KNN 5 99% 20% 95%
KNN 10 99% 15% 85%

Cell Site - 98% 15% 75%

Table 4.5: GRU-GCN model performance using different neighbour logic.
The main parameters of the model are 24 hours of history, 3
GCN layers with 256 neurons and class weights optimized for
recall.

37

5 Results

Reaching the end of the architecture design phase I have a final, highly
optimized predictor. It is now turn to compare this models performance
to a number of baseline ones that are being used in similar works, while
also showcasing the performance of certain variations of it. I also in-
vestigate the performance of said designs when trying to achieve higher
precision while trying to maintain the target recall.

5.1 Final model tests and comparison to
baselines

The proposed GRU-GCN design consists of a Gated Recurrent Unit
with 24 hour history buffer, 3 Graph Convolutional layers using 256 neu-
rons and a neighbourhood derived from the 5 nearest neighbours of each
node and is exhibited in Figure 4.3. The loss function used is binary
cross entropy with logit loss, using a class weight of 2 and a scaling weight
of 0.9. This configuration reached the highest recall while maintaining
high accuracy and a good level of precision. A number of variations of the
model were tested in order to provide a comparison to known methods.
Those variations include using 1 less graph convolution in the process
,referred to as Variation 1 in the experiment tables, changing the final
layer to a fully connected one as shown in the work AT-GCN [30] ,named
Variation 2, and using a Long Short Term Memory unit instead of the
Gated Recurrent one, named Variation 3. As baselines I also used an op-
timized 3 layer Graph Convolutional Network with similar configuration
with the one that was embedded in the model, a Gated Recurrent Unit
and a Long Short Term Memory based on the work of Zhou [15]. All
configurations were tested for the prediction horizons of 12 and 24 hours
ahead.

38

Models
Model Prediction

Horizon
Accuracy Precision Recall

GRU-GCN 12 hours 99% 20% 95%
Variation 1 12 hours 99% 33% 88%
Variation 2 12 hours 99% 33% 88%
Variation 3 12 hours 99% 18% 73%

GCN 12 hours 97% 10% 50%
GRU 12 hours 98% 20% 79%
LSTM 12 hours 98% 22% 80%

GRU-GCN 24 hours 99% 15% 45%
Variation 1 24 hours 99% 11% 41%
Variation 2 24 hours 99% 16% 42%
Variation 3 24 hours 99% 18% 35%

GCN 24 hours 98% 13% 37%
GRU 24 hours 98% 20% 40%
LSTM 24 hours 98% 25% 41%

Table 5.1: Model and baseline performance with the target of high recall.

39

Models
Model Memory Accuracy Precision Recall

Original set 4 GB 99% 20% 95%
A.E. set 0.8 GB 99% 18% 89%

Table 5.2: Original data versus Autoencoder output

As indicated in Table 5.1 the proposed model has a significantly better
recall than all other models in both 12 and 24 hour predictions horizons.
In the higher horizon of 24 hours I observe a performance drop in all cases,
caused by the complex nature and size of the input data. I suspect that
a partitioning of the graph into smaller ones and optimizing different
training sessions with the said graphs may improve both short and long
term predictions. Nevertheless I succeeded in reaching the goal of high
recall using the full set of antennas.
A final experiment for this work would be training the model using the

data produced by the autoencoder. The goal of doing this is lowering the
resource requirements of the model as much as possible. It is expected to
have a small loss in performance, as the compressed data contain noise,
that is naturally created in the process of the autoencoder. As shown in
table 5.2 training the model using this set of data has a small reduction
in recall , but with a high reduction in memory usage. This gives the
option of training even bigger graphs in cases where the graphs are so
big that small drop of performance can be tolerated.

5.2 Class weights and precision/recall
trade-off

A new, secondary goal is now switching the models target to increased
precision while trying to maintain recall. To do this I need to re-optimize
the class weights, in order to calibrate the value of the true positive
compared to the true negative. I noticed in my tests with the class
weights, that any weight higher than 1 returns a high recall in exchange
to precision, while with lower values the predictor always returns 0 due
to the high class imbalance. Since I now have an already trained model

40

Models with prediction horizon 12 hours
Model Weight Accuracy Precision Recall

GRU-GCN A 99% 40% 55%
Variation 1 A 99% 43% 45%
Variation 2 A 99% 42% 46%
Variation 3 A 99% 30% 49%

GCN A 98% 5% 15%
GRU A 99% 22% 40%
LSTM A 99% 21% 40%

GRU-GCN B 99% 65% 22%
Variation 1 B 99% 51% 25%
Variation 2 B 99% 55% 24%
Variation 3 B 99% 57% 19%

GCN B 97% 9% 1%
GRU B 98% 31% 12%
LSTM B 98% 30% 14%

Table 5.3: Model and baseline performance with the target of higher pre-
cision at horizon of 12 hours ahead.

capable of finding true positives and having a high recall, I experiment
continuing training it with a class weights smaller than two. I observed
that after a small number of epochs the model reaches higher numbers
of precision, as shown in Table 5.3. The highest precision is reached is
65%. The problem that exists is, that even with weights closer to the
optimal value of two, the recall drops significantly. This is problematic,
since the main goal was maintaining this high recall. On the other hand
the maximum precision gained is not optimal enough to consider it a
good result in case the network engineers requirements change to that.

41

6 Conclusions

After a significant amount of testing, optimizing and comparing the
models I made a number of important observations. In this chapter I
will showcase those observations while also proposing ideas for further
improving the proposed models performance and architecture.

6.1 General observations

I am going to begin with the observations made during the architec-
ture design with the goal of high recall. There, from the results of the
baseline tests using only a recurrent unit , both LSTM and GRU have
a fairly close yet worse performance to the proposal, meaning that it
is actually benefiting from spatial information using an embedded GCN
module. The memory buffer in the said recurrent unit does not offer a
significant difference in performance when using higher history lengths
than 24 hours, and as such 24 is a preferred value. The two factors which
impacted the model the most were the neighbour logic used in the GCN
part and the class weights of the loss function.
Regarding the neighbour logic, it is obvious using a high number of

neighbours inserts too much noise in the computation, resulting in very
low performance. Thus limiting the neighbours and only taking into
consideration the closest ones provides just enough information to have
a gain in performance, while also requiring lower resources since less
matrices are being aggregated on the message passing of the GCN.
Class weights affected how well the model fitted to the research goal.

They dictated how important the true positives were compared to false
positives. In the case of recall, a weight with the value of two was high
enough to let the model find most true hotspot cases , while reaching an
acceptable number of false hotspots. Changing the weight into a value
closer to 1 lets the model focus on finding mostly true positives, but

42

due to the imbalance only classifies everything as non hotspot. Here it
was found that retraining an already trained model with a different class
weight helped tackling the imbalance and achieving higher precision, but
decreased the wanted recall.
An important observation that also made during testing is , that most

of the model’s run-time and performance problems derive from the size of
the graph. I suspect that the inclusion of so many different antennas into
the same training and prediction cycle makes the problem too complex.
The behavioural patterns are just too many. This also contributes to the
high dilation of the GCN aggregation when a using different neighbour
logic to KNN, and to the long run-time and high resource usage.
Finally the introduction of feature extraction using an Autoencoder re-

duces the resource usage of the model, with a minor performance penalty.
This allows running the predictor using bigger graphs, although as con-
cluded this is not optimal due to a minor drop in performance.

6.2 Thesis conclusion

In this thesis I proposed a machine learning model capable of predict-
ing long term performance drops in cellular antennas. The model takes
advantage of both spatial and temporal information using an ensemble of
GCN and GRU networks and achieves forecasting with high accuracy and
recall. It is also capable of handling sizable graphs and outperforming
state of the art designs in such cases.
In the goal of higher precision the GRU-GCN model achieves accept-

able results on 65% , maintaining a recall of 22% and high accuracy,
significantly dropping recall. In the final segment of the conclusion I
provide ideas on gaining better results regarding that goal.

6.3 Alternative implementations/Future plans

Following the conclusion there are some interesting ideas that can fur-
ther improve the proposed model. As it was observed the origin of most
problems is the size of the graph. Including a large number of antennas
,that vary in behaviour, into the same predictions makes the problem

43

too complex and heavyweight. I suspect that partitioning the graph into
sub-graphs will allow the model to capture both spatial and temporal
dependencies faster. Partitioning could perhaps assist addressing the is-
sue of the low positive class ratios. This will give the forecaster better
performance and possibly allow prediction in greater prediction horizons.
The addition of the sub-graphs will also make the model much lighter

in resource requirements. This will allow running it on lightweight com-
puting units such as Field Programmable Gate Arrays (FPGAs). FPGAs
have the advantage of being low cost, needing low energy consumption,
while also potentially providing performance increases in cases similar
to ours. They will also allow mobile service providers to predict perfor-
mance drops in the edge in each individual antenna.

44

Bibliography

[1] Joseph Yacim and Douw Boshoff. Impact of artificial neural net-
works training algorithms on accurate prediction of property values.
Journal of Real Estate Research, 40:375–418, 11 2018.

[2] Hirokjyoti Kalita, Adithi Krishnaprasad, Nitin Choudhary, and
Sonali Chen, Das. Artificial neuron using vertical mos2/graphene
threshold switching memristors. Scientific Reports, 2019.

[3] Linear activation function. https://iq.opengenus.org/

linear-activation-function/. Accessed: 2022:12:01.

[4] Fan Cheng, Chen Meiling, and Wang Xinghua. A re-
view on data preprocessing techniques toward efficient
and reliable knowledge discovery from building opera-
tional data. https://www.frontiersin.org/articles/

10.3389/fenrg.2021.652801/full?fbclid=IwAR0wGACYLg_

vvy9FX3wPqximu9gvh3NVU49yJWeaKpKWGtj0F7y2DFf6jsU. Ac-
cessed: 2022:12:01.

[5] Convolutional neural networks. https://paperswithcode.com/

methods/category/convolutional-neural-networks. Accessed:
2022:12:01.

[6] Graph convolutional networks. https://tkipf.github.io/

graph-convolutional-networks/. Accessed: 2022:12:01.

[7] Recurrent neural network tutorial. https://www.datacamp.com/

tutorial/tutorial-for-recurrent-neural-network. Accessed:
2022:12:01.

[8] Long short-term memory (lstm). https://d2l.ai/chapter_

recurrent-modern/lstm.html. Accessed: 2022:12:01.

45

https://iq.opengenus.org/linear-activation-function/
https://iq.opengenus.org/linear-activation-function/
https://www.frontiersin.org/articles/10.3389/fenrg.2021.652801/full?fbclid=IwAR0wGACYLg_vvy9FX3wPqximu9gvh3NVU49yJWeaKpKWGtj0F7y2DFf6jsU
https://www.frontiersin.org/articles/10.3389/fenrg.2021.652801/full?fbclid=IwAR0wGACYLg_vvy9FX3wPqximu9gvh3NVU49yJWeaKpKWGtj0F7y2DFf6jsU
https://www.frontiersin.org/articles/10.3389/fenrg.2021.652801/full?fbclid=IwAR0wGACYLg_vvy9FX3wPqximu9gvh3NVU49yJWeaKpKWGtj0F7y2DFf6jsU
https://paperswithcode.com/methods/category/convolutional-neural-networks
https://paperswithcode.com/methods/category/convolutional-neural-networks
https://tkipf.github.io/graph-convolutional-networks/
https://tkipf.github.io/graph-convolutional-networks/
https://www.datacamp.com/tutorial/tutorial-for-recurrent-neural-network
https://www.datacamp.com/tutorial/tutorial-for-recurrent-neural-network
https://d2l.ai/chapter_recurrent-modern/lstm.html
https://d2l.ai/chapter_recurrent-modern/lstm.html

[9] Gated recurrent units (gru). https://d2l.ai/chapter_

recurrent-modern/gru.html. Accessed: 2022:12:01.

[10] Applied deep learning - part 3: Autoen-
coders. https://towardsdatascience.com/

applied-deep-learning-part-3-autoencoders-1c083af4d798.
Accessed: 2022:12:01.

[11] How to handle missing data. https://towardsdatascience.

com/how-to-handle-missing-data-b557c9e82fa0. Accessed:
2022:12:01.

[12] K nearest neighbor : Step by step tuto-
rial. https://www.listendata.com/2017/12/

k-nearest-neighbor-step-by-step-tutorial.html. Accessed:
2022:12:01.

[13] Recent advances in graph convolutional net-
work (gcn). https://towardsdatascience.com/

recent-advances-in-graph-convolutional-network-gcn-9166b27969e5.
Accessed: 2022:12:01.

[14] Joan Serrà, Ilias Leontiadis, Alexandros Karatzoglou, and Kon-
stantina Papagiannaki. Hot or not? forecasting cellular network
hot spots using sector performance indicators. In 2017 IEEE 33rd
International Conference on Data Engineering (ICDE), pages 259–
270, 2017.

[15] Lixia Zhou, Xia Chen, Runsha Dong, and Shan Yang. Hotspots pre-
diction based on lstm neural network for cellular networks. Journal
of Physics: Conference Series, 1624:052016, 10 2020.

[16] Wei-Lun Chao. Machine learning tutorial. 2012.

[17] A.K. Jain, Jianchang Mao, and K.M. Mohiuddin. Artificial neural
networks: a tutorial. Computer, 29(3):31–44, 1996.

[18] Massimo Buscema. Back propagation neural networks. Substance
use and misuse, 33:233–70, 02 1998.

46

https://d2l.ai/chapter_recurrent-modern/gru.html
https://d2l.ai/chapter_recurrent-modern/gru.html
https://towardsdatascience.com/applied-deep-learning-part-3-autoencoders-1c083af4d798
https://towardsdatascience.com/applied-deep-learning-part-3-autoencoders-1c083af4d798
https://towardsdatascience.com/how-to-handle-missing-data-b557c9e82fa0
https://towardsdatascience.com/how-to-handle-missing-data-b557c9e82fa0
https://www.listendata.com/2017/12/k-nearest-neighbor-step-by-step-tutorial.html
https://www.listendata.com/2017/12/k-nearest-neighbor-step-by-step-tutorial.html
https://towardsdatascience.com/recent-advances-in-graph-convolutional-network-gcn-9166b27969e5
https://towardsdatascience.com/recent-advances-in-graph-convolutional-network-gcn-9166b27969e5

[19] Chigozie Nwankpa, Winifred Ijomah, Anthony Gachagan, and
Stephen Marshall. Activation functions: Comparison of trends in
practice and research for deep learning. CoRR, abs/1811.03378,
2018.

[20] Shiv Ram Dubey, Satish Kumar Singh, and Bidyut Baran Chaud-
huri. A comprehensive survey and performance analysis of activation
functions in deep learning. CoRR, abs/2109.14545, 2021.

[21] Cheng Fan, Chen Wang, Jiayuan Wang, and Bufu Huang. A re-
view on data preprocessing techniques toward efficient and reliable
knowledge discovery from building operational data.

[22] David M. W. Powers. Evaluation: from precision, recall and f-
measure to roc, informedness, markedness and correlation. CoRR,
abs/2010.16061, 2020.

[23] Brian Liu and Madeleine Udell. Impact of accuracy on model inter-
pretations. CoRR, abs/2011.09903, 2020.

[24] Keiron O’Shea and Ryan Nash. An introduction to convolutional
neural networks. CoRR, abs/1511.08458, 2015.

[25] Zhen Zhao, Ze Li, Fuxin Li, and Yang Liu. Cnn-lstm based traf-
fic prediction using spatial-temporal features. Journal of Physics:
Conference Series, 2037(1):012065, sep 2021.

[26] Weiqing Zhuang and Yongbo Cao. Short-term traffic flow prediction
based on cnn-bilstm with multicomponent information. Applied Sci-
ences, 12(17), 2022.

[27] Di YANG, Songjiang LI, Zhou PENG, Peng WANG, Junhui WANG,
and Huamin YANG. Mf-cnn: Traffic flow prediction using convolu-
tional neural network and multi-features fusion. IEICE Transactions
on Information and Systems, E102.D(8):1526–1536, 2019.

[28] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann Lecun.
Spectral networks and locally connected networks on graphs. 12
2013.

47

[29] Mikael Henaff, Joan Bruna, and Yann LeCun. Deep convolutional
networks on graph-structured data. CoRR, abs/1506.05163, 2015.

[30] Ling Zhao, Yujiao Song, Chao Zhang, Yu Liu, Pu Wang, Tao Lin,
Min Deng, and Haifeng Li. T-GCN: A temporal graph convolu-
tional network for traffic prediction. IEEE Transactions on Intelli-
gent Transportation Systems, 21(9):3848–3858, sep 2020.

[31] Zhiyong Cui, Kristian Henrickson, Ruimin Ke, Ziyuan Pu, and Yin-
hai Wang. Traffic graph convolutional recurrent neural network: A
deep learning framework for network-scale traffic learning and fore-
casting, 2018.

[32] Xiaolei Ma, Zhimin Tao, Yinhai Wang, Haiyang Yu, and Yunpeng
Wang. Long short-term memory neural network for traffic speed
prediction using remote microwave sensor data. Transportation Re-
search Part C: Emerging Technologies, 54:187–197, 2015.

[33] Yanjie Duan, Yisheng L.V., and Fei-Yue Wang. Travel time predic-
tion with lstm neural network. In 2016 IEEE 19th International
Conference on Intelligent Transportation Systems (ITSC), pages
1053–1058, 2016.

[34] Zheng Zhao, Weihai Chen, Xingming Wu, Peter C. Y. Chen, and
Jingmeng Liu. Lstm network: a deep learning approach for short-
term traffic forecast. IET Intelligent Transport Systems, 11(2):68–
75, 2017.

[35] Yisheng Lv, Yanjie Duan, Wenwen Kang, Zhengxi Li, and Fei-Yue
Wang. Traffic flow prediction with big data: A deep learning ap-
proach. IEEE Transactions on Intelligent Transportation Systems,
16(2):865–873, 2015.

[36] Rui Fu, Zuo Zhang, and Li Li. Using lstm and gru neural network
methods for traffic flow prediction. In 2016 31st Youth Academic
Annual Conference of Chinese Association of Automation (YAC),
pages 324–328, 2016.

48

[37] Dor Bank, Noam Koenigstein, and Raja Giryes. Autoencoders.
CoRR, abs/2003.05991, 2020.

[38] Binghao Yan and Guodong Han. Effective feature extraction via
stacked sparse autoencoder to improve intrusion detection system.
IEEE Access, 6:1–1, 07 2018.

[39] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-
Antoine Manzagol. Extracting and composing robust features with
denoising autoencoders. In Proceedings of the 25th International
Conference on Machine Learning, ICML ’08, page 1096–1103, New
York, NY, USA, 2008. Association for Computing Machinery.

[40] Qiang Xu, Sanjeev Mehrotra, Z. Morley Mao, and Jin Li. Proteus:
Network performance forecast for real-time, interactive mobile appli-
cations. In MobiSys 2013- ACM International Conference in Mobile
Systems, Applications, and Services (MobiSys), June 2013.

[41] Bing Yu, Haoteng Yin, and Zhanxing Zhu. Spatio-temporal graph
convolutional neural network: A deep learning framework for traffic
forecasting. CoRR, abs/1709.04875, 2017.

[42] Pawan Kumar Sarika. Comparing LSTM and GRU for Multiclass
Sentiment Analysis of Movie Reviews. PhD thesis, 2020.

49

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Dissertation theme
	Object and motivation
	Problem formulation

	Project contribution
	Approach

	Chapter contents

	Background
	Introduction to Machine Learning
	Artificial Neural Networks
	Model training
	Activation functions
	Loss functions
	Data preparation
	Classification performance metrics

	Relevant NN architectures
	Convolutional Neural Networks(CNN)
	Graph Convolutional Networks
	Recurrent neural networks and Gated Recurrent Units
	Autoencoders

	State-of-the-art
	Existing solutions to general hotspot prediction

	Model architecture
	Data preparation
	Missing value imputation
	Feature analysis and feature extraction using Autoencoders

	Graph neighbour logic
	Neural Network design principles
	Importance of performance metrics and class imbalance
	Detection of temporal dependencies
	Detection of spatial patterns
	Activation function choices
	Loss function choices

	Optimization and hyper-parameter tuning
	Optimizer and learning rate
	Loss weights
	GCN and GRU configuration
	Epochs
	Graph logic optimization and comparison

	Results
	Final model tests and comparison to baselines
	Class weights and precision/recall trade-off

	Conclusions
	General observations
	Thesis conclusion
	Alternative implementations/Future plans

