
Technical University of Crete
School of Electrical & Computer Engineering

Pro-active Automatic scaling support for
Apache Flink in Kubernetes in the Cloud

by

Alexandros Nikolaos Zafeirakopoulos

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DIPLOMA OF ELECTRICAL AND COMPUTER

ENGINEERING

THESIS COMMITTEE
Professor Euripides G. M. Petrakis, Thesis Supervisor

Associate Professor Vasileios Samoladas
Professor Michail Zervakis

Chania, November 2022

“Sic Parvis Magna - Greatness from Small Beginnings”
Sir Francis Drake, English Explorer

1

Abstract

Apache Flink is a framework and distributed processing engine for stateful
computations over unbounded and bounded data streams. It executes arbi-
trary dataflow programs in a data-parallel and pipelined manner in event-
driven applications such as, fraud detection (i.e. detection of suspicious trans-
actions), anomaly detection (i.e. detection of rare or suspicions events), rule-
based alerting (i.e. identification of data which satisfy one or more rules) and
many more. Despite its versatility, Apache Flink cannot automatically and
optimally adjust the utilization of its underlying computing resources when
streaming sources produce data at varying speeds. In order to address this
issue, we describe an autonomous agent to support dynamic autoscaling for
Apache Flink on Kubernetes. This agent monitors, models and adjusts Flink’s
behaviour by optimally modifying its allocated resources in order to match
the incoming workload while achieving minimum cost. The decision making
process is based on operator idleness and changes to the input’s record lag.
We prove that our model not only successfully maintains the performance
of the application while minimizing infrastructure costs, but can provide a
better performance-to-cost ratio compared to already existing work on Flink
autoscaling. The effectiveness of our model is supported by an exhaustive set
of synthetic and real life workloads aimed to simulate a plethora of possible
scenarios.

2

Contents

Abstract 2

1 Introduction 6
1.1 Problem Definition . 6
1.2 Scope of Thesis . 7
1.3 Thesis Structure . 8

2 Related Work 9
2.1 Background . 9
2.2 Related Work . 12

3 Infrastructure and Tools 15
3.1 Apache Flink . 15

3.1.1 Stream and Batch Processing 15
3.1.2 Use Cases . 16
3.1.3 Flink Jobs . 18
3.1.4 Stateful Stream Processing . 20
3.1.5 Flink Cluster Architecture . 21
3.1.6 Cluster Modes . 23

3.2 Kubernetes . 25
3.2.1 Overview . 25
3.2.2 Infrastructure and Components 26
3.2.3 Services and Network Traffic 27

3.3 Apache Kafka . 28
3.3.1 Apache Zookeeper . 30

3.4 Prometheus . 31

4 Autoscaler Model for Apache Flink 33
4.1 System Architecture in Kubernetes 33
4.2 HYAS: Hybrid Autoscaling Agent for Apache Flink 38

5 Evaluation 44
5.0.1 Smilax . 44
5.0.2 Horizontal Pod Autoscaler (HPA) 45
5.0.3 Flink application: Clicks Fraud Detection 46

5.1 Testbed . 47
5.1.1 Configurations . 47

3

5.1.2 Infrastructure Cost Calculating Function 50
5.2 Experiments . 52

5.2.1 Gaussian . 52
5.2.2 Spike . 58
5.2.3 FIFA 98 World Cup Dataset 62

6 Conclusions 68

7 Future Work 69

References 71

List of Figures

1 Microservice Architecture . 9
2 Vertical vs Horizontal scaling . 10
3 Traditional vs Virtualized vs Container deployment 11
4 Bounded vs Unbounded data streams 15
5 traditional vs event-driven application architecture 16
6 batch vs streaming analytics . 17
7 An example of a streaming dataflow 18
8 An abstract depiction showing the variety of systems that can connect

to Flink either as a source or sink operators 19
9 How a streaming dataflow can be depicted in parallel view 19
10 A typical Flink Cluster with one JobManager and two TaskManagers 21
11 Abstract depiction of scaling the whole pipeline from 1 to 2 TaskMan-

agers which will result in a parallelism of 2 for each operator 22
12 An anatomy of a Kubernetes cluster and its components. 26
13 Anatomy of a Kakfa topic. 30
14 Zookeeper’s ensemble of servers and its clients connections. 30
15 Abstract system architecture of our infrastructure on Kubernets in

the cloud depicting a Flink cluster with 2 TaskManagers. 33
16 System architecture of our infrastructure with 4 TaskManagers present

on the Flink cluster in Node A. Note that the autoscaler is not depicted 35
17 System architecture of our infrastructure with 3 TaskManagers present

each populating its own node . 37
18 Reactive Mode of Apache Flink . 48

4

19 Gaussian Distribution Workload. Note that our workload curve starts
from zero and hitting a peak of ∼18000 records/s over a period of 1
hour. 52

20 Time Shift for each Algorithm . 54
21 Average Usage of Task Managers . 55
22 Average Hourly Cost (Gaussian) . 55
23 Average Monthly Cost (Gaussian) . 56
24 Time for each Algorithm to Empty the Kafka Queue 57
25 Maximum Observed Queue Lag Under Stress 57
26 Abstract form of a Spike Workload 58
27 Time Shift for each Algorithm . 59
28 Maximum Observed Queue Lag Under Stress 59
29 Time for each Algorithm to Empty the Kafka Queue 60
30 Average Hourly Cost (Spike) . 61
31 Average Monthly Cost (Spike) . 61
32 FIFA 98 World Cup Workload . 62
33 Time Shift for HYAS and HPA . 63
34 Time Shift for HYAS and Smilax . 64
35 Average Usage of Task Managers . 65
36 Average Monthly Cost (FIFA 98) . 66
37 Time for each Algorithm to Empty the Kafka Queue 67
38 Maximum Observed Kafka Lag Under Stress 67

5

1 Introduction

1.1 Problem Definition

In the ever growing world of cloud-computing, dynamic resource management is im-
perative in order to achieve a healthy balance between cost and performance. The
microservice architecture model [30] consists of several fine-grained services that
are independently scalable and deployable. A scalable service should be able to
handle dynamically varying workloads without noticeable degradation in system
performance while simultaneously making sure that no significant resource under-
utilization occurs.

Stream processing enables a variety of brand-new applications characterized by
increased data generation and low latency response. Apache Flink is an open-source,
distributed stream processing engine for stateful computations over unbounded and
bounded data streams. Streaming jobs are typically long running and thus workload
variations are expected to occur over an application’s lifetime. Static provisioning of
cloud resources, by setting the job’s parallelism at launch-time, can prove inefficient
and costly. If too few resources are allocated (under-provisioning), the application
will not keep up with the increasing workload. If too many resources are allocated,
so as to match the maximum workload, the system will run over-provisioned for a
significant portion of the time and incur unnecessary infrastructure costs.

The parallelism of a Flink application cannot be modified during runtime [25]. It
can only be changed by manually stopping the job, taking a savepoint of the current
state of the stream and then restarting the job with a different parallelism from this
snapshot.

When restarting a job, the state must be written either on a persistent storage or
on memory (depending on its size) [41]. This action can be done asynchronously so
as to not disturb the flow of the pipeline, therefore any time delay can be considered
negligible. However, restoring from this savepoint can take a significant amount of
time in which no incoming records are being processed until the pipeline is restored
to its previous state. This means that when the application is successfully restarted
it must try to catch up to any accumulated records that were not being processed
during this downtime.

Decision making models which take into consideration the above limitation while
simultaneously adapting to the incoming workload allow for efficient and dynamic
scaling of Apache Flink applications with the goal of minimizing the expected down-
time.

6

1.2 Scope of Thesis

In this thesis we present HYAS, a hybrid, threshold-based decision making agent
which attempts to model the behaviour of a Flink cluster when under load and suc-
cessfully react to various changes in the workload by provisioning or un-provisioning
the required infrastructure resources efficiently.

There are two main types of autoscaling methods to consider when implementing
elasticity in a cloud environment. Reactive scaling and proactive scaling. With
reactive scaling, resources are scaled based on changes in the workload which are
monitored in real-time. Alternatively in proactive scaling, machine learning and
artificial intelligence techniques are used to analyze workloads and predict when
more or fewer resources will be needed by training a behaviour model. HYAS can be
considered a hybrid approach of these two methods since it relies on metrics from a
real-time monitoring system in order to calculate the rate of change of unprocessed
records of its input and predict whether a scale up or scale down decision must be
made without the need of training a machine learning model.

We compare HYAS with Smilax’s exploration mode [19], a reactive autoscaling
agent for Apache Flink as well as with Kubernetes’ own Horizontal Pod Autoscaler
(HPA) [21], a general purpose scaling controller for container-based applications.
From these comparisons, we can claim that HYAS provides better resource utilisation
(cost reduction) and performance when deployed on a cloud environment from both
Smilax and HPA. This can be attributed to HYAS’s unique decision making process
which monitors the rate of change of records not yet processed by Flink (decreasing
or increasing) and allows for a more accurate and cost-efficient scaling action to be
made.

Lastly, as stated on paragraph 1.1 Flink requires a minimum amount of down-
time when rescaling to a new parallelism as the job must be first be stopped and
then restarted. In this thesis, we have not found an adequate solution in order to
tackle this issue and thus we have implemented a minimum amount of downtime (90
seconds) between scaling actions. That is, that no scaling decisions will be made for
this period of time. The Flink community is aware of this limitation but no plans
of presenting a solution are underway since this would require changing Flink from
a stateful stream processing engine to a stateless one [36].

7

1.3 Thesis Structure

The remainder thesis structure is as follows:

• Chapter 2 provides some necessary background on scaling a microservice ar-
chitecture as well as the related work on Flink Autoscaling.

• Chapter 3 has a more in depth look at the inner workings and configurations
of Apache Flink. It also presents the Kubernetes environment, all the features
of Kubernetes that we use in this work along with all the tools and services
used for our infrastructure.

• Chapter 4 presents the architecture of our cluster, which was deployed in the
Google Cloud Platform. This chapter also describes the implementation of our
work in the form of the autoscaling agent and its behaviour.

• Chapter 5 presents the experiments implemented to test the efficiency of the
proposed autoscaling model as well as all the results and comparisons between
other autoscaling methods.

• Chapter 6 and 7 generalize the conclusions of this work and provide input on
possible future work respectively.

8

2 Related Work

2.1 Background

Microservices

Microservices are an architectural and organizational approach to software develop-
ment where software is composed of small independent services that communicate
over well-defined APIs [44]. Microservices architectures make applications easier to
scale and faster to develop, enabling innovation and accelerating time-to-market for
new features.

A well defined aspect of microservices is autonomy and specialization. Each com-
ponent service in a microservices architecture can be developed, deployed, operated,
and scaled without affecting the functioning of other services while simultaneously,
each service is designed for a set of capabilities and focuses on solving a specific
problem.

Figure 1: Microservice Architecture

One of the key benefits of adopting this architectural approach is scalability.
Microservices allow each service to be independently scaled to meet demand for the
application feature it supports. In cloud computing there are two main forms in
which a service can be scaled, horizontal and vertical scaling.

Horizontal scaling, commonly referred to as scale-out, is the capability to au-
tomatically add services/instances in a distributed manner in order to handle an
increase in load [22]. Conversely, with vertical scaling (scaling up or down), you
can increase or decrease the capacity of existing services/instances by upgrading the

9

memory (RAM), storage, or processing power (CPU) [42]. One common example of
both of these kinds of scalability involves a hardware server. Suppose that network
demand means a server has to handle significantly more data transfers. IT managers
could add processing power or memory to the single server to increase its capability,
or they could link it to other servers. The former approach illustrates vertical scaling
while the latter illustrates horizontal scaling.

Figure 2: Vertical vs Horizontal scaling

When designing an autoscaler mechanism in a cloud environment the are two
main techniques one must adopt in order to best suit its needs. These auto-scaling
techniques are classified into two major groups [34]:

• Reactive techniques, where the scaling action is in reaction to a change in the
system, and therefore does not anticipate such a change.

• Predictive or proactive techniques, which attempt to anticipate future changes
in the system by performing the necessary scaling actions before such changes
occur.

When defining a scaling action to be made by a controller, we essentially need
to describe what form of resources must be scaled (e.g. processing power, memory,
storage, read/write speeds), when should the action be taken, how many resources

10

must adjusted (added or removed) and which scaling method must be used (horizon-
tal or vertical). This scaling action will be made based on one or more inputs (SLA
violations, workload changes, predictive models) and result in the system changing
on a reactive or proactive manner.

Containers

Each microservice runs in a container [17], a standard unit of software that packages
up code and all its dependencies, so the application runs quickly and reliably from
one computing environment to another.

Figure 3: Traditional vs Virtualized vs Container deployment

In a traditional deployment, applications would run on physical servers. There
was no way to allocate specific resources for each application in a physical server and
thus one application would take up most of the resources, and as a result, the other
applications would underperform.

To counteract this problem, virtualization was introduced. It allows multiple
Virtual Machines (VMs) to run on a single physical server’s CPU. Virtualization
allows applications to be isolated between VMs and provides a level of security as
the information of one application cannot be freely accessed by another application.
Each VM is a full machine running all the components, including its own operating
system, on top of the virtualized hardware.

A natural extension of this era are containers, which are similar to virtual ma-
chines, with the ability to share the Operating System (OS) between the applications.
As they are decoupled from the underlying infrastructure, they are portable across
clouds and OS distributions.

11

A few key benefits of packaging an application in a container are:

• Lightweight application deployment and creation.

• Environmental consistency across development, testing, and production. Runs
the same on a laptop as it does in the cloud.

• Cloud and OS distribution portability

• Resource isolation

• Loosely coupled, distributed and elastic microservices. Applications are broken
into smaller, independent pieces and can be deployed and managed dynamically

2.2 Related Work

The main idea of our hybrid decision making agent has been described initially in
[41]. Varga et al. present an architecture that automatically scales the parallelism
of Flink jobs by utilizing the Horizontal Pod Autoscaler (HPA) framework provided
by Kubernetes and adjusting the available number of TaskManagers in the cluster
thus, scaling the parallelism of the whole job accordingly. The scaling policy receives
metrics from Kafka and Flink through Prometheus (record lag, throughput, idle time
of operators) and makes a decision whether a scale up or down action must be taken.

Additionally, they analyze the downtime caused by the scaling operation and how
it is affected by the size of the application state Flink has to store before restarting
its job. They were able to establish a linear relationship between state size and the
duration of savepointing to a persistent storage.

Contrary to our work, Varga et al. have not compared their autoscaling agent
against other autoscaling systems. Additionally, our autoscaling agent is not imple-
mented using HPA’s framework but is running as separate python script independent
of the Kubernetes cluster. While we have based our own scaling policy from the equa-
tions of [41], our goal was to establish if there was room to implement a more cost
efficient and effective scaling agent specifically for Flink compared to Kubernetes’
HPA and Smilax under a dynamic workload.

Smilax [19] is a statistical machine learning autoscaler agent for applications run-
ning on Apache Flink. Smilax agent acts proactively by predicting the forthcoming
workload in order to adjust the allocation of workers to the actual needs of an ap-
plication ahead of time.

12

During an online training phase (exploration mode), Smilax builds a model which
maps the performance of the application to the minimum number of servers. Dur-
ing the work (optimal) phase, Smilax maintains the performance of the application
within acceptable limits (i.e. defined in the form of SLAs) while minimizing the
utilization of resources. Apache Flink and Smilax are deployed on Docker Swarm, a
low-footprint virtualization platform based on Docker containerization.

In our work, we will be using Smilax as a baseline benchmark for our decision
making agent in terms of both performance and cost comparisons.

The DS2 controller [25] is an automatic scaling controller for dynamic resource
allocation of streaming analytic applications at the operator level. While DS2 was
designed to be stream engine agnostic it was tested on Apache Flink, Apache Heron
[10] and Timely Dataflow [39] on native machines running Debian GNU/Linux. It is
able to calculate, in real-time, the optimal parallelism for each operator by detect-
ing possible bottlenecks in the dataflow (i.e. which operator slows down the whole
application) and thus it operates online and in a reactive manner.

In contrast to our work, which monitors and scales applications at job level (i.e.
multiple operators or tasks may execute in a job), DS2 is designed to adjust the
parallelism of each operator separately in order to maintain high throughput. This
is a desirable and more fine-grained approach to autoscaling streaming applications
which can be applied to HYAS if our scaling policy is changed to calculate the true
(i.e. maximum) and observed processing rates of each operator as described on [25].

Ververica Autopilot [43] is a proprietary solution for autoscaling Apache Flink
resources developed by Ververica and introduced in Ververica Platform 2.2. The
autoscaler performs dynamic resource adjustments horizontally, in a reactive man-
ner on Apache Flink applications by scaling the whole pipeline (i.e. changing the
parallelism of the whole executed job).

Autopilot supports applications with multiple sources, while in our work, the
supported applications contain only one source.

Lastly, Wybe J. C. Koper presents in his Masters thesis [26] a comparison be-
tween different autoscaling techniques, specifically for Apache Flink, based on average
number of resources used, average latency and the number of scaling actions. Koper
implements modified versions of DS2 [25], Varga et al. [41], Dhalion [1] as well as
Kubernetes’ Horizontal Pod Autoscaler (HPA). The evaluation of each algorithm is
made using three different queries from the Nexmark benchmark suite [40] with a
sinusoidal load pattern. Results from each comparison highlight the significance of

13

a cooldown period between scaling actions, the importance of message queue spe-
cific metrics when scaling and that general purpose autoscaling controllers based
on coarse metrics such as CPU utilization and memory are ill-equipped for stream
applications.

In contrast to our work, we compare our autoscaling agent with only HPA and
Smilax using a single application (query) running on Flink (instead of 3) but with 3
different workload variations (instead of 1). Additionally, we examine the cost dis-
crepancies of each algorithm when deployed on Google’s Kubernetes Engine (GKE).

The following autoscaling solutions where not designed specifically for Apache
Flink or any stream processing engine but for general purpose web-applications.

Arabnejad et al. [13] compare two different autoscaling types of Reinforcement
Learning (RL), which is SARSA and Q-learning. The autoscaler dynamically resizes
Web applications in order to meet the quality of service requirements.

Bibal Benifa and D. Dejey [24] propose the RLPAS algorithm, which applies RL
using a neural network in order to reduce the time for convergence to an optimal
policy.

Rossi, Nardelli and Cardellini [37] propose RL solutions for controlling the hor-
izontal and vertical elasticity of container-based applications in order to cope with
varying workloads.

14

3 Infrastructure and Tools

3.1 Apache Flink

Apache Flink is a framework and distributed processing engine for stateful computa-
tions over unbounded and bounded data streams [6]. ‘Stateful’ means that applica-
tions can maintain an aggregation or summary of data that has been processed over
time as a state.

3.1.1 Stream and Batch Processing

Any kind of data is produced as a stream of events. Credit card transactions, sensor
measurements, machine logs, or user interactions on a website or mobile application,
all of these data are generated as a stream [38]. Data can be categorized in unbounded
and bounded streams.

As depicted on figure 4, bounded streams have a defined start and a finite end
and thus each portion of the stream can first be consumed in its entirety before being
processed. This is called batch processing, where the entire dataset is ingested to
a batch processor (e.g. Flink) before producing any results. Conversely, unbounded
streams have a defined start but no finite end as they are constantly producing data
that must be continuously processed. This is called stream processing, where the
input may never end, and so the data has to be processed at the moment it arrives.

In our work we will be handling inputs in the form of unbounded data streams
which are generated constantly and must be promptly handled after they have been
ingested.

Figure 4: Bounded vs Unbounded data streams

15

3.1.2 Use Cases

Event-driven Applications

An event-driven application is a stateful application that is characterized by the
need to trigger an action based on incoming events [9]. An event is a change in state,
or an update, like an item being placed in a shopping cart on an e-shop website.

Figure 5 depicts the differences between the traditional application architecture
and an event-driven architecture. In the traditional application design, applications
read and store data to a remote transactional database which is independent of
the application. The main difference between the traditional application design and
an event-driven application, which is based on stateful stream processing, is that
data and computation are co-located within the application (as depicted on figure
5) which in turn achieves local (in-memory or disk speed) data access. A persistent
remote storage is only used in fault-tolerance which is achieved by periodically writing
asynchronous checkpoints to said storage.

Figure 5: traditional vs event-driven application architecture

Typical real life examples of an event-driven applications are [9]:

• Fraud detection

• Anomaly detection

• Rule-based alerting

• Web application (social network)

16

Data Analytics Applications

Analytical jobs ingest raw data with the purpose of obtaining information, pat-
terns and insights [9]. Figure 6 is helpful in visualizing some key differences between
streaming and batch analytical applications. Traditionally, batch analytics are pro-
cessed as a collection of periodic queries or applications on bounded data sets. When-
ever new data changes need to be incorporated to the result of the analysis, new data
must first be added to the existing dataset and the query needs to be resubmitted
or any applications rerun. This is in contrast with streaming analytics which have
the ability to ingest real-time event streams in the form of continuous queries as un-
bounded data sets. This allows for the continuous production of up-to-date analytical
results as new events are consumed in a streaming manner.

The results can then be stored to a persistent storage (for both batch and stream
analytics), produced in a user friendly format as reports (for batch analytics) or
retained as an internal state to be queried by dashboard applications in a real-time
fashion (for stream analytics).

Figure 6: batch vs streaming analytics

Typical real life examples of data analytics applications are [9]:

• Quality monitoring of Telcommunication networks

• Analysis of product updates and experiment evaluation in mobile applications

• Ad-hoc analysis of live data in consumer technology

• Large-scale graph analysis

17

3.1.3 Flink Jobs

In Apache Flink, applications (or Jobs) are composed of streaming dataflows that
can be transformed by user-defined operators which contain custom functions. These
dataflows form directed graphs (i.e. data pipelines) that start with one or more
sources, and end in one or more sinks [3].

Figure 7 presents an example of a streaming dataflow in the form of a data
pipeline. In this particular example, records are entering the dataflow through a
source operator (e.g. a Kafka consumer), they are transformed [18] consecutively by
two operators with one or more functions and lastly they exit the dataflow through
a sink.

Figure 7: An example of a streaming dataflow

Figure 8 depicts an abstract form of the several connectors that can act as source
and sink operators for Flink. An application can ingest real-time data from streaming
sources such as message queues or distributed logs, like Apache Kafka [11] or Amazon
Kinesis [2] in the form of source operators. Flink also supports the ability to consume
bounded data-sets and historic data from transactional databases or any other file
repository [3]. Similarly, the streams of results being produced by a Flink application
can be sent to a wide variety of systems that can be connected as sinks (i.e other
applications, databases, streams).

18

Figure 8: An abstract depiction showing the variety of systems that can connect to
Flink either as a source or sink operators

Applications running in Flink are inherently parallel and distributed [3]. Figure
9 presents a parallel view of a dataflow with all operators having a parallelism of 2
except for the sink operator which has 1.

A stream has one or more stream partitions (depicted as edges on fig. 9) and
each operator has one or more operator subtasks (depicted as nodes on fig. 9). The
operator subtasks are independent and execute in different threads or even different
machines. The number of operator subtasks is the parallelism of the whole operator.
Different operators of the same program can have different levels of parallelism (as
seen with with the sink operator on fig. 9).

Figure 9: How a streaming dataflow can be depicted in parallel view

19

3.1.4 Stateful Stream Processing

Operations in Apache Flink can be stateful. In simple terms this can mean that past
events can influence the way a current event is being processed.

Some examples of stateful operations: [8]

• When an application searches for certain event patterns, the state will store
the sequence of events encountered so far.

• When aggregating events per minute, the state holds the aggregates.

• When training a machine learning model over a stream of data points, the state
holds the current version of the model parameters.

• When historic data needs to be managed, the state allows efficient access to
events that occurred in the past.

In Flink, the state is considered a snapshot of an individual operator at any given
time which holds information about the application’s execution till a particular point
in time. Multiple snapshots of all the operators in the dataflow are able to capture
the entire state of the pipeline and store it in memory or at a persistent storage.
This way Flink can keep track of how many and which records have been processed
up to a certain point.

There are two main types of snapshots:

• Checkpoint [5]: a snapshot taken automatically by Flink for the purpose of
being able to recover from faults.

• Savepoint [7]: a snapshot triggered manually by a user (or an API call).

When a failure occurs or a manual restart of the job graph is triggered (i.e. when
a rescaling action is made) the state is accessed either remotely or locally and is
then redistributed across all parallel instances allowing processing to resume from
the point in time which the snapshots have been taken.

20

3.1.5 Flink Cluster Architecture

The Flink runtime consists of two types of processes: a JobManager and one or more
TaskManagers [4]. Figure 10 depicts a typical Flink Cluster including the client.

Figure 10: A typical Flink Cluster with one JobManager and two TaskManagers

The Client is not part of the runtime and program execution, but is used to
prepare and send a dataflow to the JobManager.

JobManager

The JobManager has a number of responsibilities related to coordinating the dis-
tributed execution of Flink Applications. It decides when to schedule the next task
(or set of tasks), reacts to finished tasks or execution failures, coordinates checkpoints
and coordinates recovery on failures [4].

The JobManager consists of three different components:

• The ResourceManager, which is responsible for resource de-/allocation and
provisioning in a Flink cluster (task slots).

• The Dispatcher, which provides a REST interface to submit Flink applications
for execution and starts a new JobMaster for each submitted job.

• A JobMaster, which is responsible for managing the execution of a single Job-
Graph.

21

TaskManager [4]

The TaskManagers execute the tasks of a dataflow and exchange the data streams.
The smallest unit of resource scheduling in a TaskManager is a task slot. The number
of task slots in a TaskManager indicates the number of concurrent processing tasks
(operators). Flink requires that at least one TaskManager must be present at all
times in a cluster.

Each worker (TaskManager) is a JVM (Java Virtual Machine) process, and may
execute one or more subtasks in separate threads. Each task slot represents a fixed
subset of resources of the TaskManager. A TaskManager with three slots, for exam-
ple, will dedicate 1/3 of its managed memory and CPU to each slot.

In our work, each TaskManager will be configured with only one task slot con-
taining a part of the executed parallel dataflow as depicted on figure 11. This will
mean that each time we add or remove a TaskManager the whole pipeline will be
scaled accordingly as more operator subtasks are created or destroyed.

Figure 11: Abstract depiction of scaling the whole pipeline from 1 to 2
TaskManagers which will result in a parallelism of 2 for each operator

22

3.1.6 Cluster Modes

The jobs of a Flink Application can either be submitted to a long-running Flink
Session Cluster, a dedicated Flink Job Cluster, or a Flink Application Cluster [4].
The difference between these options is mainly related to the cluster’s life cycle and
to resource isolation guarantees.

We will analyze only the differences between a Flink Session Cluster and a Flink
Application Cluster since a Flink Job Cluster is deprecated.

Flink Application Cluster

• Cluster Lifecycle: a Flink Application Cluster is a dedicated Flink cluster that
only executes jobs from one Flink Application and where the main() method
runs on the cluster rather than the client. There is no need to start a Flink
cluster first and then submit a job to the existing cluster session instead, the
application logic and dependencies are packaged into an executable job JAR
and the cluster entry-point is responsible for calling the main() method to
extract the JobGraph. This allows a Flink Application to be deployed like
any other application on Kubernetes, for example. The lifetime of a Flink
Application Cluster is therefore bound to the lifetime of the Flink Application.

• Resource Isolation: in a Flink Application Cluster, the ResourceManager and
Dispatcher are scoped to a single Flink Application, which provides a better
separation of resources than the Flink Session Cluster.

Flink Session Cluster

• Cluster Lifecycle: in a Flink Session Cluster, the client connects to a pre-
existing, long-running cluster that can accept multiple job submissions. Even
after all jobs are finished, the cluster (and the JobManager) will keep running
until the session is manually stopped. The lifetime of a Flink Session Cluster
is therefore not bound to the lifetime of any Flink Job.

• Resource Isolation: TaskManager slots are allocated by the ResourceManager
on job submission and released once the job is finished. Because all jobs are
sharing the same cluster, there is some competition for cluster resources —
like network bandwidth in the submit-job phase. One limitation of this shared
setup is that if one TaskManager crashes, then all jobs that have tasks running
on this TaskManager will fail.

23

In most cases, users will deploy Flink as an Application Cluster as it provides by
far the easiest configuration needed since all the application logic is packaged into a
executable job JAR. However, if multiple jobs need to run on a single cluster a Flink
Session Cluster is much better suited due to the independence provided between the
cluster lifecycle and any Flink job.

In our work, we have chosen to deploy Flink as an Application Cluster primarily
because we wanted to utilize Flink’s Reactive Mode [35] (further analyzed on section
5.1.1) which is available only on this cluster mode for the time being.

24

3.2 Kubernetes

3.2.1 Overview

Kubernetes, is an open source container orchestration platform that automates many
of the manual processes involved in deploying, managing, and scaling containerized
applications. It provides a framework with which to run distributed systems effi-
ciently.

Kubernetes’ main benefits include [28]:

• Service discovery and load balancing: Kubernetes can expose a container using
the DNS name or using their own IP address. If traffic to a container is high,
Kubernetes is able to load balance and distribute the network traffic so that
the deployment is stable.

• Storage orchestration: Kubernetes allows for automatic mounting of various
storage systems such as local storages, public cloud providers, and more.

• Automated rollouts and rollbacks: By describing the desired state of a deployed
container using Kubernetes, this state can be maintained at a controlled rate.
For example, Kubernetes can automate the creation of new containers for a
deployment, remove existing containers and adopt all their resources to the
new container.

• Automatic bin packing: A user-defined cluster of nodes can be defined to run
containerized tasks with a set amount of CPU and memory for each container.
Kubernetes can then fit containers onto those nodes accordingly in order to
make the best use of available resources automatically.

• Self-healing: Kubernetes restarts containers that fail, replaces containers, kills
containers that don’t respond to user-defined health checks and doesn’t adver-
tise them to clients until they are ready to serve.

• Secret and configuration management: Kubernetes lets you store and manage
sensitive information, such as passwords, OAuth tokens, and SSH keys. Secrets
and application configurations can be deployed and updated without the need
to rebuild container images.

25

3.2.2 Infrastructure and Components

A Kubernetes cluster consists of a set of worker machines, called nodes, that run
containerized applications in the form of Pods. Every cluster has at least one worker
node. The worker node(s) host the Pods that are the components of the application
workload. The control plane manages the worker nodes and the Pods in the cluster.

Figure 12 presents the architecture and the components of a Kubernetes cluster.

Figure 12: An anatomy of a Kubernetes cluster and its components.

The control plane’s components make global decisions about the cluster [27] (i.e.
scheduling as well as detecting and responding to cluster events).

• The API server is a component that exposes the Kubernetes API. The API
server is the front end for the Kubernetes control plane.

• Etcd is a consistent key-value storage used by Kubernetes to store all cluster
data.

• The scheduler is a component that watches for newly created Pods with no
assigned node, and selects a node for them to run on.

• The kube-controller-manager runs all controller processes, and the cloud-controller-
manager is responsible for linking the cluster to the cloud provider’s API and

26

exposes the components that interact with the cloud platform if the cluster is
not running locally.

Node components run on every node, maintaining running pods and providing
the Kubernetes runtime environment [27].

• kubelet is an agent that runs on each node in the cluster that makes sure that
containers are running in a Pod and manages the containers that Kubernetes
creates.

• The kube-proxy component is responsible for maintaining network rules on the
Node, which allow the Pods to communicate with other services inside and
outside of the cluster.

3.2.3 Services and Network Traffic

Kubernetes uses IP addresses to enable communication between services and com-
ponents. A Pod is assigned an IP address upon creation, but this IP address is
temporary and changes every time the Pod restarts (due to a crash or update). For
this reason, Kubernetes introduced a resource called Kubernetes Services [29].

Kubernetes Services are abstractions that allow the Pod to use the network to
communicate (either for internal cluster communication or external network commu-
nication). Each Pod bounds with its respective Kubernetes Service, and the Service
is responsible for forwarding any traffic to the Pod. The Service discovers the Pod’s
IP address upon creation or change and exposes a permanent address (user-defined
in the Kubernetes Service YAML configuration) and a port so that other services can
communicate. A Kubernetes Service can be a ClusterIP, NodePort, LoadBalancer
or External Name type.

The LoadBalancer type exposes the Service to the external network, using the
cloud provider’s load balancer routes. The NodePort type exposes the Service on
each Node’s IP at a predefined port. Allowing this port through the cluster’s firewall
makes the Service accessible through the external network. The ClusterIP service is
the most used one and exposes the Service on a cluster-internal IP, so it’s accessible
to the rest of the cluster’s services.

27

3.3 Apache Kafka

Apache Kafka is an open-source distributed event streaming platform used by thou-
sands of companies for high-performance data pipelines, streaming analytics, data
integration, and mission-critical applications [11].

Event streaming is the practice of capturing data in real-time from event sources
like databases, sensors, mobile devices, cloud services, and software applications in
the form of streams of events. Event streaming thus ensures a continuous flow and
interpretation of data so that the right information is at the right place, at the right
time.

Some key use case examples for event streaming are [11]:

• To process payments and financial transactions in real-time, such as in stock
exchanges, banks, and insurances.

• To track and monitor cars, trucks, fleets, and shipments in real-time, such as
in logistics and the automotive industry.

• To continuously capture and analyze sensor data from IoT devices or other
equipment, such as in factories and wind parks.

• To serve as the foundation for event-driven architectures and microservices.

Kafka combines three key capabilities for event streaming [11]:

1. To publish (write) and subscribe to (read) streams of events, including contin-
uous import/export of your data from other systems.

2. To store streams of events durably and reliably for as long as you want.

3. To process streams of events as they occur or retrospectively.

Kafka is a distributed system consisting of servers and clients that communicate
via a high-performance TCP network protocol. Kafka is run as a cluster of one or
more servers that can span multiple datacenters or cloud regions. Some of these
servers form the storage layer, called the brokers. Clients are considered distributed
applications and microservices that read, write, and process streams of events in
parallel, at scale, and in a fault-tolerant manner even in the case of network problems
or machine failures.

28

Events

Kafka reads and writes data in the form of events. Conceptually, an event has a
key, value, timestamp, and optional metadata headers.

• Event key: ”Alice”

• Event value: ”Made a payment of $200 to Bob”

• Event timestamp: ”Jun. 25, 2020 at 2:06 p.m.”

Producers are those client applications that publish (write) events to Kafka, and
consumers are those that subscribe to (read and process) these events. In Kafka,
producers and consumers are fully decoupled and agnostic of each other, which is
a key design element to achieve the high scalability. For example, producers never
need to wait for consumers.

Events are organized and durably stored in topics. A topic is similar to a folder
in a filesystem, and the events are the files in that folder. Topics in Kafka are al-
ways multi-producer and multi-subscriber (i.e a topic can have zero, one, or many
producers that write events to it, as well as zero, one, or many consumers that sub-
scribe to these events). Events in a topic can be read as often as needed, and unlike
traditional messaging systems, events are not deleted after consumption. Instead, if
event deletion is necessary, a custom duration for how long Kafka should retain said
events can be defined through a per-topic configuration setting.

Partitions

Topics are partitioned, meaning a topic is spread over a number of ”buckets”
located on different Kafka brokers. This distributed placement of data is very im-
portant for scalability because it allows client applications to both read and write
the data from/to many brokers at the same time. When a new event is published
to a topic, it is appended to one of the topic’s partitions. Events with the same
event key (e.g., a customer or vehicle ID) are written to the same partition, and
Kafka guarantees that any consumer of a given topic-partition will always read that
partition’s events in exactly the same order as they were written.

Figure 14 depicts a topic which has four partitions P1 to P4. Two different
producer clients are publishing, independently from each other, new events to the
topic by writing events over the network to the topic’s partitions. Events with the
same key (denoted by their color in the figure) are written to the same partition.
Note that both producers can write to the same partition if appropriate.

29

Figure 13: Anatomy of a Kakfa topic.

3.3.1 Apache Zookeeper

ZooKeeper is a distributed, open-source coordination service for distributed applica-
tions. It exposes a simple set of primitives that distributed applications can build
upon to implement higher level services for synchronization and configuration main-
tenance [12].

ZooKeeper allows distributed processes to coordinate with each other through a
shared hierarchical namespace which is organized similarly to a standard file system.
The namespace consists of data registers, called znodes, and these are similar to files
and directories. Unlike a typical file system, which is designed for storage, ZooKeeper
data is kept in-memory, which means ZooKeeper can achieve high throughput and
low latency numbers.

Figure 14: Zookeeper’s ensemble of servers and its clients connections.

30

Like the distributed processes it coordinates, ZooKeeper itself is intended to be
replicated over a set of hosts called an ensemble. The servers that make up the
ZooKeeper service must all know about each other. They maintain an in-memory
image of state, along with a transaction logs and snapshots in a persistent store.
As long as a majority of the servers are available, the ZooKeeper service will be
available.

Clients connect to a single ZooKeeper server. The client maintains a TCP con-
nection through which it sends requests, gets responses, gets watch events, and sends
heart beats. If the TCP connection to the server breaks, the client will connect to a
different server.

3.4 Prometheus

Prometheus is an open-source systems monitoring and alerting toolkit. Prometheus
collects and stores its metrics as time series data, i.e. metrics information is stored
with the timestamp at which it was recorded, alongside optional key-value pairs
called labels [33].

Metrics, in their most simple term, are numeric measurements. Time series means
that changes are recorded over time. What users want to measure differs from ap-
plication to application. For a web server it might be request times, for a database
it might be number of active connections or number of active queries etc.

Prometheus fundamentally stores all data as time series, meaning streams of
timestamped values belonging to the same metric and the same set of labeled di-
mensions. Besides stored time series, Prometheus may generate temporary derived
time series as the result of queries [31].

Every time series is uniquely identified by its metric name and optional key-value
pairs called labels. The metric name specifies the general feature of a system that is
measured (e.g. http requests total - the total number of HTTP requests received).
Labels enable Prometheus’ dimensional data model. Any given combination of la-
bels for the same metric name identifies a particular dimensional instantiation of
that metric (for example: all HTTP requests that used the method POST to the
/api/tracks handler). The query language (PromQL) allows filtering and aggregation
based on these dimensions. Changing any label value, including adding or removing
a label, will create a new time series.

31

The Prometheus client libraries offer four core metric types [32].

• Counter: A counter is a cumulative metric that represents a single monoton-
ically increasing counter whose value can only increase or be reset to zero on
restart. For example, a counter can be used to represent the number of requests
served, tasks completed, or errors.

• Gauge: A gauge is a metric that represents a single numerical value that can
arbitrarily go up and down. Gauges are typically used for measured values like
temperatures or current memory usage, but also ”counts” that can go up and
down, like the number of concurrent requests.

• Histogram: A histogram samples observations (usually things like request du-
rations or response sizes) and counts them in configurable buckets. It also
provides a sum of all observed values.

• Summary: Similar to a histogram while also providing a total count of obser-
vations and a sum of all observed values, it calculates configurable quantiles
over a sliding time window.

32

4 Autoscaler Model for Apache Flink

4.1 System Architecture in Kubernetes

In this thesis, we have deployed our Apache Flink cluster in Kubernetes both lo-
cally and in a cloud environment. Figure 15 depicts an abstract architecture of our
infrastructure with one Kubernetes cluster and two worker nodes running in the
cloud.

It should be noted that each Pod runs a containerized application each with its
own respective Kubernetes service (as described on section 3.2.3) responsible for all
internal node communications as well as forwarding any external requests (i.e. any
metrics scraped by Prometheus will be sent to our autoscaler) outside of the cluster
as required.

Figure 15: Abstract system architecture of our infrastructure on Kubernets in the
cloud depicting a Flink cluster with 2 TaskManagers.

33

In node A we have deployed our Apache Flink Cluster with one JobManager and
at least one TaskManager (up to a maximum of 6) as containerized applications each
running in one Pod. The number of allocated TaskManagers varies over time and
is adjusted by our Autoscaler running outside the Kubernetes cluster (or even out-
side of the cloud environment) as a separate python script. The Autoscaler, receives
metrics from both Kafka and Flink from Prometheus (also present on node A) which
in turn are used as inputs for the decision making process of our autoscaling agent.
Any scaling actions are then forwarded in Kubernetes’ command line tool (kubectl)
which communicates with the cluster’s control plane and modifies the number of
TaskManagers (pods) available for Flink accordingly.

Node B contains all the necessary deployments for our Kafka cluster. The Kafka
producer houses a custom load testing application (described on section 5.1.1) nec-
essary for stressing our Flink job at various intervals. This application does not
necessarily need to be present inside the Kubernetes cluster and can also receive
input from outside sources such as news streams, twitter etc. Records are produced
at varying quantities (from the Kafka producer) which are then in turn written to
a specific Kafka topic in our broker. The Kafka broker is used as publish/subscribe
system and acts as Flink’s input stream. Each TaskManager depicts a Kafka con-
sumer which has subscribed to a specific topic in the Kafka broker and can read from
one or more partitions present there. Lastly, Zookeeper is a dependency of Apache
Kafka since it has the responsibility of managing the Kafka cluster. It has a list of
all the Kafka brokers and thus is able to notify Kafka if any broker or partition goes
down and if any new brokers or partitions are up.

In order to monitor Kafka, a JMX agent is used. The direct connection between
Kafka and Prometheus was not possible, so we use a JMX agent to retrieve any
necessary metrics from the Kafka broker such as the volume of records written to each
topic which when aggregated depicts the workload created by our Kafka producer.
Java Management Extensions (JMX) is a technology which enables managing and
monitoring applications, system objects, devices, and service-oriented networks [23].
The agent retrieves metrics from Kafka and makes them available by exposing a
HTTP server (housed inside the JMX exporter). Prometheus retrieves the Kafka
metrics by querying the HTTP endpoint of JMX exporter. In this way, we are able
to monitor the workload of Kafka topics and thus the workload of the running job.

34

Figure 16 presents our system architecture after a scaling action with 4 TaskMan-
agers (Pods) all present within a single node. Notice how only the pods containing
TaskManagers have been scaled (compared to figure 15) and no other resources in
both Nodes A and B.

Figure 16: System architecture of our infrastructure with 4 TaskManagers present
on the Flink cluster in Node A. Note that the autoscaler is not depicted

This is the default behaviour when adjusting the number of pods on a specific
deployment (i.e. TaskManager) in a Kubernetes environment. Each pod created or
destroyed is part of a single node unless the node capacity is exceeded (by default
up to 110 pods can exist in a single node) in which case a new node is created if
possible.

35

At this point it should be noted that the Google Cloud Platform (GCP), the cloud
provider which we have deployed our cluster, includes charges per virtual machine
(node) in a Kubernetes cluster. Our autoscaling algorithm (explained in detail on
section 4.2) adjusts the allocated resources on a per-pod basis in a node as depicted
in figure 16. This would mean that we would see no cost difference between our
implementation when compared to HPA and Smilax since the number of nodes would
remain the same through the whole scaling operation.

Normally, this is not an issue since a better pod allocation method on the same
amount of nodes would still entail fewer infrastructure costs implicitly. In figure 16 we
have made the assumption that in Node A only Apache Flink would be present and
no other resource intensive application. By loosening this assumption and populating
the node with a multitude of applications suddenly we have no way of knowing if the
node will be stressed either by Flink or any of the other applications, which would
result in the creation of additional nodes and thus incurring further infrastructure
costs. It is thus made clear that even in the scenario of having Flink’s entirety of
TaskManagers in one node, efficient resource allocation is still paramount in order
to achieve unnecessary costs.

The ideal scenario for an autoscaling agent which adjusts the number of pods in a
cluster would be to stress a kubernetes node with only Apache Flink. However, this
is not possible with our current processing capabilities since a node has a maximum
capacity of 110 pods, far above the maximum number of TaskManagers (6) we have
chosen for our evaluations.

Therefore, in order to better simulate the cost discrepancies between our al-
gorithm and it’s competitors, we have elected to make the assumption that each
TaskManager of Apache Flink would populate its own node. This would mean that
on the creation of a TaskManager a node would also be created and subseqeuntly at
the deletion of a TaskManager its corresponding node would also be deleted. This
scenario has been tested with all our experiments and has no practical limitations
by both Kubernetes and Apache Flink.

This can be better visualized on figure 17 in which a scaling action has resulted
in the creation of 3 TaskManagers (pods) and the subsequent creation of a node for
each one of them. Notice that Flink did not require the scaling of the pod containing
the JobManager which can still communicate with each TaskManager now present
on different nodes. Additionally neither Prometheus needed to be scaled and can
populate the original node containing the JobManager.

36

Figure 17: System architecture of our infrastructure with 3 TaskManagers present
each populating its own node

37

4.2 HYAS: Hybrid Autoscaling Agent for Apache Flink

The implemented scaling policy used by our agent is based on [41]. The algorithm
assumes that the streaming job of Flink reads input data from a Kafka topic, per-
forms some sort of calculations over the records (i.e. identifying fraud events) and
then either discards the results or feeds them again on another Kafka topic. The
records produced in the topic are evenly distributed among partitions resulting in
each consumer processing an equal workload.

In our work, a Kafka consumer exists in the form of a TaskManager. Each
consumer (TaskManager) reads data from a Kafka topic which can have one or more
partitions contained in the Kafka broker. The Kafka producer is responsible for
creating and writing said data on the broker.

In Kafka, if the rate of production of records exceeds the rate at which they
are being consumed, consumers will exhibit lag. This lag can be described as the
difference between the number of records read by a consumer (committed offset) and
the total number of records produced (latest offset) at a certain point in time.

The committed offset can only be calculated by the consumers (i.e. Flink), how-
ever accurately calculating this difference is not possible therefore Flink provides an
upper bound for the total lag using the records lag max metric which indicates how
far a consumer is behind the head of the message queue. In other words it represents
the maximum lag in terms of number of records for any partition read by a consumer.

To better visualize this metric lets assume, for example, a Kafka topic containing
100,000 records evenly distributed between 10 partitions (i.e. each partition hav-
ing 10,000 records) and 5 Kafka consumers (TaskManagers). For each consumer 2
partitions would be assigned each with 10,000 records. As the job is started, mes-
sages will begin to be consumed from each partition (faster than they are produced)
decreasing the number of records on each partition (i.e. the lag) and thus the met-
ric records lag max would give the largest value between the 2 partitions for each
consumer.

By summing this value for each source task of Flink (i.e. for each consumer) we
model the total lag of our application using equation (1).

totalLag =
∑

i∈TaskManager

record lag maxi (1)

A constant value of (1) indicates that our current amount of task managers are
able to keep up with the workload. If this value is increasing, we need to scale up

38

since we are underprovisioned. If this value is decreasing it means that we might be
overprovisioned for the current workload.

Since we are looking whether the value from equation (1) is increasing or decreas-
ing and not its numerical value a better representation of this would be to calculate
the derivative of (1) as the rate of change of the total lag (in records/second) over a
1 minute period. Additionally, we calculate the total rate at which our job consumes
records (throughput) by summing the records consumed rate metric from Flink for
each consumer. Equation (2) summarizes this.

throughput =
∑

i∈TaskManager

records consumed ratei (2)

The ratio between the derivative of (1) and (2) produces a dimensionless value
which represents the rate at which the total lag of our Kafka queue is increasing
(when having a positive value) or decreasing (when having a negative value) relative
to the current throughput of our Flink cluster. This relation can be summarized in
equation (3).

relativeLagChangeRate =
deriv(totalLag)

throughput
(3)

With equation (3) we have answered the question when should we scale our
resources which represents a prediction that the application will soon become over-
provisioned or underprovisioned without the aid of a machine learning algorithm.
A natural continuation of this thought would be how much should we scale our in-
frastructure. We begin by presenting the relation between the throughput of our
system and the number of deployed TaskManagers (deployments or replicas). In an
ideal scenario we would say that this is a one to one relationship. Meaning that if
we double the number of our TaskManagers the throughput would also double (and
vice versa an increase in throughput by a factor of two would mean that we have
added double the number of machines).

To answer the question of how many task managers we need to add in order to
match the incoming workload we basically need to answer the question of how much
throughput we need in order for (3) to be equal to zero. Since equation (3) is a ratio
it’s value can only be zero only if the numerator is also zero.

Consider the following example with which we base our reasoning. Let the rate
of change of the total lag be 4000 records/s and the throughput of our system 4000
records/s as well. The ratio of equation (3) would give us the dimensionless value of
1 as its result. In order for as to reduce the value of the numerator to zero we need
to increase our throughput to a value of 8000 records/s so as to match the rate at

39

which records are produced. By doubling the throughput of our system we have also
doubled the number of machines (task managers) available for our cluster since we
have established a one to one relationship between the throughput and the number
of deployments. This means that equation (3) holds the necessary information for
us to calculate the required amount of task managers needed in order to much the
incoming workload. The above reasoning can be summarised in equation (4).

requiredDeployments = ⌈currentDeployments× (relativeLagChange+ 1)⌉ (4)

By adding the identity element of the multiplication function (the number 1)
in relativeLagChangeRate the resulting number is the multiplier necessary for the
number of consumer replicas to keep up with the current workload. As stated in
the above example, we have reasoned that we require double the number of existing
machines in order to keep up with the load. To test the validity of equation (4)
we take the value of relativeLagChangeRate, we add 1 and then multiply it by the
number of current deployments present in our cluster (for example lets assume 2 task
managers). The resulting number from this operation is 4 meaning that we must at
least double our existing number of task managers in order to keep up with the load.

Most of the time the value of relativeLagChangeRate will not be an integer and
thus we must overestimate the number of task managers needed for the current work-
load in order to achieve a smooth operation of our application. This is the reason
why we have chosen to calculate the mathematical ceiling of (4).

Lastly, in order to prevent any outliers (such as spikes in the workload) from
impacting our scale up decision and resulting in a false-positive scaling action we
also use the backPressureMsPerSecond (with values from 0-1000 indicating how much
backpressured a task is) metric from Flink. Backpressure [14] refers to the situation
where a system is receiving data at a higher rate than it can process. Lets examine an
example between server communications. Backpressure can commonly occur in this
scenario when one server is sending requests to another faster than it can process
them. If server A sends 100 rps (requests per second) to server B, but server B
can only process 75 rps, we have a 25 rps deficit. Server B might be falling behind
because it needs to do processing or it might also need to communicate with other
servers downstream. The ideal reaction is to “backpressure” the whole pipeline from
sink to the source, and throttle the source in order to adjust the speed to that of
the slowest part of the pipeline, arriving at a steady state (this is how most stream
processing engines react to backpressure). Equation (5) calculates this metric by

40

finding the maximum value among all source tasks.

backPressure = maxsourceTasks(backPressureMsPerSecond) (5)

Equation 5 basically acts as a safety net alongside relativeLagChangeRate to make
sure that a scale up action is taken only when our consumers are backpressured and
their throughput must me adjusted to that of the slowest part in the pipeline. How-
ever, in our experiments we noticed no difference in scaling actions when using this
metric alongside relativeLagChangeRate most likely due to the fact that when the
value of relativeLagChangeRate increases (i.e. when lag occurs in the Kafka queue)
our consumers are already backpressured. Nevertheless, we will be presenting this
metric in our algorithm for completeness purposes.

relativeLagChangeRate is only meaningful for scale up decisions, since a decreas-
ing lag might still warrant the current number of replicas, until the application
catches up to the latest records. In simple terms, there are instances when the value
of relativeLagChangeRate is negative or even zero (i.e. our lag is decreasing or sta-
bilizing) that we have no way of knowing if we are overprovisioned and our current
number of consumers could decrease and still be able to keep up with the workload.
We require a metric that can provides us information about the capacity (or load)
that each consumer is operating at.

For this reason we can use the idleTimeMsPerSecond metric from Flink. This
metric represents (in milliseconds) the amount of time in which a task has no records
to process. The value of this metric can be between 0 and 1000 meaning that when
it has its maximum value the task is idle and when it has its minimum value the task
is processing records at maximum capacity. We use this metric for each consumer
of our application and calculate the minimum between all of them. Equation (6)
depicts this relation.

idleT ime = minnonSourceTasks(idleT imeMsPerSecond) (6)

It is worth noting that for our scale up decision, the resulting number of task
managers could change incrementally as well as non-incrementally due to calculating
the value of requiredDeployments as described above. For our scale down decision
we have chosen only to adjust the number of deployments in our cluster incremen-
tally (i.e decrease the current number of deployments by 1). Since a scaling action
which removes resources from a cluster is much more disruptive (especially in Flink)
we wanted to avoid any unnecessary fluctuations in the number of TaskManagers in
order to smooth out the resulting process.

41

By combining the above equations we can model Flink’s behaviour for various
workloads quite accurately and arrive at a decision making algorithm implemented
on a control loop.

Algorithm 1 Scaling policy of hybrid controller

1: while True do

2: totalLag =
∑

i∈TaskManager

record lag maxi

3: throughput =
∑

i∈TaskManager

records consumed ratei

4: relativeLagChangeRate = deriv(totalLag)
throughput

5: requiredDeployments = ⌈currentDeployments× (relativeLagChange+ 1)⌉
6: idleTime = minnonSourceTasks(idleT imeMsPerSecond)
7: backPressure = maxsourceTasks(backPressureMsPerSecond)

8: if relativeLagChangeRate > 0 and backPressure ≥ threshold then
9: scaleUp(requiredDeployments)
10: else if relativeLagChangeRate ≤ 0 and idleT ime ≥ threshold then
11: scaleDown(currentDeployments - 1)
12: end if

13: end while

Additionally, a cooldown period of 90 seconds is implemented between actions
(i.e. no scaling decisions will be made for this period of time) in order to accom-
modate for Flink’s required downtime when restarting with the new parallelism. It
is also worth noting that the statements presented in lines 8 and 10 of algorithm 1
must be true over a period of 1 minute in order for a scaling action to be made. This
is implemented in order to prevent outliers and small changes in relativeLagChang-
eRate to influence our scaling policy.

Line 8 contains a threshold value indicating when a scale up decision will be
made if the backpressure metric exceeds this value. In our work we have chosen to
set this threshold to the maximum value of backPressureMsPerSecond (i.e. 1000)
since we want a scale up decision to be made when at least one source task is fully
backpressured by the pipeline.

42

The threshold value presented on line 9 of algorithm 1 represents when a scale
down decision will be made. The value of idleTime allows as to effectively control how
fast our algorithm will release TaskManagers. For example, setting the value of the
threshold closer to 0 (e.g. 100) will mean that TaskManagers will be removed when
they are processing records almost at full capacity and the load cannot be shared
on fewer machines if some are removed. Alternatively, setting the threshold at a
value closer to 1000 (e.g. 900) will keep TaskManagers longer than they are needed
since they are processing records at low capacity and the load could be shared on
fewer machines. Optimally calculating this threshold is important in order to prevent
situations when a TaskManager is removed but immediately after lag is exhibited
and a scale up decision must be made. A good practice when not having sufficient
information about this threshold is to set it closer to 1000 rather than 0 to prevent
a situation as described above from happening, especially with Apache Flink.

In our work, we have chosen the value of the threshold at 500 since it represents
a good balance between having idle TaskManagers not processing any records (thus
increasing the cost of our infrastructure) and releasing TaskManagers too early when
there are still records to be processed.

43

5 Evaluation

In this section, we discuss the purpose of the experiments concluded on section
5.2, we briefly present the inner workings of both algorithms that will be used as a
benchmarks compared to HYAS (i.e. HPA and Smilax) and lastly present the appli-
cation (along with its use case) that is running as our job on Apache Flink.

By conducting comparisons between a purely reactive approach on autoscaling
Flink (Smilax’s exploration mode) and a general purpose scaling controller (HPA)
we aim to present scenarios where our hybrid approach (HYAS) can result in:

• More effective TaskManager allocation for a given workload (i.e. fewer ma-
chines used when not needed).

• Infrastructure cost reductions when deployed on a cloud environment using
Kubernetes.

• Better performance of Apache Flink applications by reducing the maximum
overall lag exhibited in the Kafka queue (i.e. better response times).

5.0.1 Smilax

Smilax [19] is an autonomous agent which monitors and maintains the performance of
Apache Flink within acceptable limits. During a training phase (exploration mode),
a reactive scaler collects workload and performance information and adjusts (scales-
up or down) the number of TaskManagers whenever the performance limit (i.e. the
SLA) is violated. During the optimal phase, the agent explores the performance
and builds a statistical machine learning model which registers the optimal mapping
between workload, performance and number of TaskManagers. For our experiments
we will be comparing results from Smilax’s reactive controller (exploration mode) as
due to time constraints the optimal phase could not be implemented on Kubernetes.

The autoscaler is based on a reactive mechanism which acts as soon as the SLA
is violated. The SLA is defined as the ratio between the number of records that have
not yet been processed and remain in the Kafka queue (i.e. the size of the queue)
and the rate of the workload. The simple reactive policy for a scale up decision on
Smilax can be depicted as:

queue length

workload
≥ SLA (7)

44

In this work, the SLA threshold is 90% (i.e. less than 10% of the number of
records can remain in the queue or more than 90% of the records are processed
instantly).

The theoretical capacity for each TaskManager (i.e. the maximum records/sec it
can handle) is calculated every time a scale up action is performed and is subsequently
used for a scale down decision to be made only when more than 90% of TaskManagers
are running than those needed.

It should be noted that Smilax implements a 4 minute cooldown between scaling
actions (up or down) in order to allow for the Flink application to catch up to any
accumulated records during its required downtime.

5.0.2 Horizontal Pod Autoscaler (HPA)

In Kubernetes the Horizontal Pod Autoscaler (HPA) [21] automatically scales the
number of pods (either up or down) in a deployment, based on that resource’s CPU
or RAM utilization incrementally.

In simple terms, the scaling policy of the Horiontal Pod Autoscaler can be de-
scribed as a ratio between a desired metric value and the current metric value of a
resource. Equation 8 describes this relationship.

desiredReplicas = ⌈(currentReplicas× (currentMetricV alue/desiredMetricV alue)⌉
(8)

For example, if the current metric value is 200, and the desired value is 100,
the number of replicas will be doubled, since 200/100 = 2.0. If the current value is
instead 50, the number of replicas is halved since 50/100 = 0.5.

It is also worth noting that HPA’s default behaviour includes a stabilization
window (i.e. a period when no scaling action will be made) in order to reduce the
fluctuation of the number of replicas in a deployment and prevent scaling up and
down decisions to be made one right after the other. The value of this stabilization
windows is 300 seconds (5 minutes) only when scaling down.

In our work, we have configured HPA with a target utilisation on CPU load of
90% (i.e. the desiredMetricValue of equation 8) meaning that the controller will
adjust the number of TaskManagers only when the target utilisation is above (or
below) this metric on average for each pod.

45

5.0.3 Flink application: Clicks Fraud Detection

In order to evaluate the performance of our decision making agent, a load testing
application [16] was required to run as a job for Apache Flink. This application
is based on click fraud [15] a type of fraud that occurs on the Internet in pay-per-
click (PPC) online advertising. The owners of websites that post the ads are paid
an amount of money determined by how many visitors to their sites click on the
ads. Fraud occurs when a person, automated script, or computer program imitates a
legitimate user of a web browser, by clicking on such an ad without having an actual
interest in the target of the ad’s link.

The application receives records from a Kafka topic which has the following JSON
format:

{

”ip”: ”205.0.44.187”,
”userID”: ”e61b8f7a-5029-433a-9e44-79d5f514d309”,
”timestamp”: 1595431611,
”eventType”: ”display/click”

}

The application attempts to capture these kinds of frauds by searching for three
patterns:

• Count the User IDs per unique IP address in a window of 60 seconds.

• Count the IP addresses per unique User ID in a window of 60 seconds.

• Calculate Click-Through Rate (CTR) per UID. In other words, is measures
how many times an ad is clicked on, as compared to the number of times the
ad is shown.

Consequently, the production rate of these records represents the workload of
our application. The results for each pattern can then be fed through to a new
Kafka topic, stored in persistent files or emitted as reports on dashboard applica-
tion outside of the cluster for live analytics but in our case they are discarded since
our application is mainly used as a load testing tool to stress the whole infrastructure.

46

5.1 Testbed

5.1.1 Configurations

We configured the Kubernetes cluster described on section 4.1 in the Google Cloud
Platform (GCP). Our cluster was deployed in the europe-west1-d region with Ku-
bernetes version (1.23.12). The type and amount of virtual machines running on the
cluster are configured as a node pool, a template which contains all the specifications
necessary to create a cluster node.

For our machines we decided to go with the e2-standard general purpose type
with 8 CPUs, 32GB of RAM and an SSD of 40GB for persistent storage. The
virtual machines are located in the same zone as our cluster running a Linux-based
container-optimized OS that runs flawlessly with containers.

A summary of our configurations in GCP for our Google Kubernetes Engine is
presented on table 1.

Attributes Configuration
Location Type Zonal
Zone europe-west1-d
Cluster Version 1.23.12-gke-600
Machine Type e2-standard-8
vCPU 8
RAM 32GB
Image Container-Optimized OS with containerd
Boot Disk SSD/40GB

Table 1: Cluster and Node configuration

Flink

Flink is deployed as a Flink Application Cluster. In this way, the lifecycle of the
cluster is dependent from the lifetime of the running job. For our evaluations we
have chosen to submit a single running job.

The scaling operation on a Kubernetes cluster is presented on figure 17 in which
on the creation of a TaskManager (Pod) a Kubernetes node would also be created
and subsequently at the deletion of a TaskManager it’s corresponding node would
also be deleted. Each TaskManager has exactly one task slot. This means that the
number of TaskMangers reflects the parallelism of our job. By scaling the amount of
TaskManagers present we can scale the whole pipeline running on Flink as depicted

47

in figure 11. With pipeline scaling, we are able to achieve an evenly-balanced load
across tasks and operators and configure the parallelism of the running job by simply
changing the number of available TaskManagers.

We have also configured Flink to use its new Reactive Mode feature [35]. As
stated on section 1.1 Flink’s parallelism can only be changed manually by stopping
the job and restarting from the savepoint created during shutdown with a different
parallelism. With previous versions of Apache Flink, each step of the aforementioned
process needed to be initiated with an HTTP request to Flink’s REST API containing
all the necessary information for the scaling action. The Flink scheduler had no way
of detecting when a new TaskManager was available in the cluster and so the process
needed to be done manually.

Since Flink 1.13 an adaptive scheduler has been added as part of Flink’s Reac-
tive mode [35]. Reactive Mode configures a job so that it always uses all resources
available in the Flink cluster (i.e. TaskManagers) automatically without needing to
set up an external HTTP server to communicate with Flink’s API in order to signal
that a TaskManager has been added (or removed). With this mode, we only need
to change the replica factor of a Kubernetes deployment and Flink’s scheduler will
handle the process of stopping and restarting our job with the new parallelism. The
above description of Flink’s adaptive scheduler is depicted in figure 18.

Figure 18: Reactive Mode of Apache Flink

48

Kafka Broker

The Flink application consumes records from a specific Kafka topic by assigning
each TaskManager (Kafka consumer) a certain number of partitions. There are two
distinct cases which we need to keep in mind when scaling an application with Kafka
as its source.

• When there are more TaskManagers (consumers) than Kafka partitions, some
of the consumers will just remain idle, not reading any data. This will result in
an unbalanced distribution of the workload compared to the number of availabe
TaskManagers.

• When there are more Kafka partitions than TaskManagers, consumers will be
assigned to multiple partitions at the same time. If the total number of parti-
tions can not be evenly divided with the total number of TaskManagers then
some consumers will be assigned less partitions than some others unbalancing
the distribution of the workload.

Kafka does not support the dynamic increase or decrease of the partition number
for an existing topic. For this reason, we set a static number of partitions during
the creation of the topic. The number of partitions must be at least equal to the
maximum number of TaskManagers in our infrastructure in order to avoid having
idle consumers.

An adequate solution to counter the workload skew that is created when all con-
sumers are not assigned the same number of partitions could not be found and is
beyond the scope of this thesis. Thus, to circumvent this issue we have chosen to
create 60 partitions in a topic and have no more than 6 TaskManagers running in
our cluster. This aleviates the problem since the number 60 can be divided with a
remainder of zero for all the numbers from 1 through 6.

Kafka Producer

The Kafka producer for this particular application is responsible for generating
records at various rates to be written at a specific Kafka topic. This is a achieved
by using a python script which simulates a ’click’ in the form of a JSON file with
a randomly generated IP, UUID and timestamp representing a single record. These

49

records are then written to a Kafka topic at various intervals simulating a fluctuat-
ing real time workload. It should be noted, that in order to achieve a more evenly
distributed balance for our workload, the records are written in each partition of the
topic in a round-robin fashion.

The rate at which these records are written needs to be such that our applica-
tion will be stressed and thus would require additional machines in order to keep
up with the increasing workload. This fluctuating workload, allows us to simulate
various points in the application’s lifetime where our resources are overprovisioned
or underprovisioned and thus would require a corresponding scaling action to be
taken. In this way, we can efficiently test the validity, stability and performance of
our autoscaling agent.

5.1.2 Infrastructure Cost Calculating Function

In order to create a cost calculating function for our infrastructure, we must first
understand how the Google Cloud Platform (GCP) charges for it’s Kubernetes clus-
ter. According to the GCP pricing documentation [20], the main factors that GCP
charges upon are the CPU and RAM allocation per machine with prices varying
per region. Ingress network traffic is not charged, while egress traffic is charged
based on the amount of data exchanged between Nodes. In our work, egress traffic
is considered (as per figure 17) any data exchanged between Node Kafka and each
node containing a TaskManager (i.e. records sent to TaskManagers for consumption,
metrics from JMX to Prometheus etc.) as well as any necessary data or metrics ex-
changed between nodes with each TaskManager (Nodes 1 to 3). Allocated storage
space is also charged by GCP, but for comparison purposes it’s cost is constant for
all different algorithms since it is not adjusted.

Table 2 summarizes our infrastructure’s costs per machine.

Resources Cost (US$)
Predefined vCPU $0.023993/vCPU/hour
Predefined RAM $0.003216/GB/hour
Ingress Traffic $0 (not charged)
Egress Traffic $0.01/GB

Table 2: GCP pricing

From our experiments, we have observed that the total egress traffic in our Ku-
bernetes cluster is below 100GB therefore the total cost for each experiment is less
than $1. Thus we would be omitting it from our cost calculating function since the

50

main cost difference lies in the number of nodes (i.e. TaskManagers) each algorithm
chooses to create at any given time. Equation (9) summarizes this function.

totalCost = totalCostCPU + totalCostRAM (9)

where

totalCostCPU = nCPU × vCPUcost × nodes (10)

and

totalCostRAM = totalRAM ×RAMcost × nodes (11)

51

5.2 Experiments

In this section, we present all our experimental results regarding the performance
and cost of our autoscaling decision making agent for Apache Flink. We also make
comparisons between Smilax’s [19] exploration mode and Kubernetes’ default Hor-
izontal Pod Autoscaler [21] (HPA) configured at 90% CPU utilization (presented
briefly on sections 5.0.1 and 5.0.2 respectively).

Our benchmarks inlcude 3 set of workload tests aimed to reproduce as many
possible realistic scenarios for our application when under load.

• Synthetic workloads in the form of a Gaussian distribution and a volume spike
of records.

• Real life workloads: a dataset containing an aggregation of the requests made
to the 1998 FIFA World Cup Web site.

All our experiments run the clicks fraud detection application (described on sec-
tion 5.0.3) as a Flink job.

5.2.1 Gaussian

A Gaussian bell curve workload aims to reproduce a gradually increasing curve,
following with a peak period and then smoothly returning to its initial value. This
type of workload allows us to assess the behaviour of our autoscaling agent for a
gradual increase and decrease in the volume of records produced over a relatively
long period of time.

Figure 19: Gaussian Distribution Workload. Note that our workload curve starts
from zero and hitting a peak of ∼18000 records/s over a period of 1 hour.

52

Figure 20 depicts the time shift between our 3 algorithms (i.e. when each one of
them decided that a scale up or scale down decision must be taken for a certain point
in time). Note that the points in time our application was stressed and a scale up
action was required was on the 15 minute mark where all algorithms scaled from 1
to 2 TaskMangers and at the 27-28 minute mark where HPA and HYAS scaled from
2 to 3 and Smilax from 4 to 5 TaskManagers.

We observe that all 3 algorithms scaled up from 1 task manager to 2 at relatively
same time signatures with Smilax continuing to add TaskManagers up to a maximum
of 6. We can also observe from figure 20 that each algorithm scaled up incrementally
(i.e. added only one TaskManager at a time). This can be attributed to the fact
that a Gaussian workload is a gradual and predictable increase (or decrease) with
no abrupt changes in record production alleviating the need for making scaling up
decisions which add more than one TaskManager at a time.

Tables 3 and 4 depict various metrics taken at the moment Smilax and HYAS
decided that a scale up decision must be made respectively. We notice that Smi-
lax scales up in situations when the Kafka queue lag is decreasing, enabling only a
small number of records to be processed by Flink due to the downtime necessary
in order for the parallelism to be adjusted. This behaviour can be explained due
to the fact that Smilax’s scaling policy (as explained on section 5.0.1) is a static
number depicting the ammount of records that remain in the Kafka queue relative
to the workload and not the rate of change (i.e increase or decrease) of the queue. In
contrast with Smilax, HYAS decides that a scaling action will be taken only when
the rate of change of the Kafka queue is increasing thus resulting in fewer TaskMan-
agers needed in total compared to Smilax. This allows the Apache Flink application
running, to process records with the least amount of disruptions (downtime) possible.

Task Managers Lag change rate
Slow records
(SLA = 0.1 or 10%)

Workload

1 → 2 > 0 (lag is increasing) 0.14 9037
2 → 3 < 0 (lag is decreasing) 0.10 13395
3 → 4 < 0 (lag is decreasing) 0.82 16519
4 → 5 < 0 (lag is decreasing) 1.59 18186
5 → 6 < 0 (lag is decreasing) 1.41 14231

Table 3: Smilax metrics for each scale up action taken (6 maximum TaskManagers)

53

Task Managers Lag change rate
Slow records
(SLA = 0.1 or 10%)

Workload

1 → 2 > 0 (lag is increasing) 0.15 8974
2 → 3 > 0 (lag is increasing) 0.07 18270

Table 4: HYAS metrics for each scale up action taken (3 maximum TaskManagers)

Comparing HYAS with Kubernetes’ HPA we can observe that while both utilize
the same maximum number of Task Managers their main difference lies in the time
they require to scale back down to 1 task manager when the workload subsides.
We notice a 5 minute delay between the two implementations when reducing the
number of TaskManagers from 3 to 2 and a 10 minute delay when returning from
2 TaskManagers to 1. The main reason for this slow reaction from HPA to release
TaskManagers can be attributed to the 5 minute cooldown between scaling decisions
that exists to it’s default configuration (as explained in section 5.0.2) compared to
HYAS’s 90 seconds.

Figure 20: Time Shift for each Algorithm

Consequently, we can infer from figure 21 that our implementation utilizes, on
average, a smaller amount of task managers for the duration of the test thus resulting
in fewer infrastructure costs as depicted in figures 22 and 23 compared to both HPA
and Smilax. For the resulting differences in GCP pricing we have utilized equation
(9) described on sub-section 5.1.2

54

Figure 21: Average Usage of Task Managers

Figure 22: Average Hourly Cost (Gaussian)

55

Figure 23: Average Monthly Cost (Gaussian)

In order to better evaluate the efficiency of our autoscaling method, infrastructure
costs must be presented alongside performance comparisons for a certain system.
When measuring the performance of a Flink cluster which consumes records from a
message queue (such as Kafka) as its input stream, the only way of depicting if an
application is keeping up to a given workload is to determine whether records are
processed in a timely manner and no lag is exhibited (i.e. if consumers are keeping
up with the producers). This can be measured by observing the maximum record
lag for each system (i.e. each algorithm) when stressed in a particular point in time.

We present the performance of Apache Flink clusters by measuring the time each
algorithm requires to empty the Kafka queue when under stress for its correspond-
ing number of task managers. This response time, is directly associated with the
maximum number of record lag observed in the Kafka queue of each system when
under stress meaning that whichever algorithm produces a smaller maximum queue
lag when the application is stressed will have a faster response time.

Figures 24 and 25 depict this relationship between the response time (in minutes)
of each algorithm and its maximum observed queue lag when under stress. Note
that the response time does not include the downtime for Flink to restart its job.
Additionally, all algorithms are stressed the most at around the same point in time
(at around 18000 records/sec or the 27-30 minute mark on figure 19) despite having
a different amount of TaskManagers available at the time (throughput). This can
be attributed to the fact that Smilax has not allowed Flink sufficient time in order

56

to process the volume of records present on the queue since it triggers a scale up
decision every 4 minutes thus introducing unnecessary downtime where no records
are being processed and the lag is increased.

Figure 24: Time for each Algorithm to Empty the Kafka Queue

Figure 25: Maximum Observed Queue Lag Under Stress

From figures 24 and 23 we can observe that at best our algorithm performs
better compared to both HPA and Smilax and at worst outperforms Smilax but its
performance is on par with HPA while always incurring fewer infrastructure costs
for this particular workload distribution.

57

5.2.2 Spike

The purpose of creating a distribution that produces records at high volume abruptly
is to test the efficiency of our algorithm when confronted with these types of spikes in
the workload. With this test we can also assess the behaviour of our decision making
agent for taking non-incremental scale up actions. A feature which both HPA and
Smilax could not reproduce.

Our spike workload reaches∼20000 records/s almost instantaneously and remains
there for a period of 5 minutes where it then drops back down to 0.

Figure 26: Abstract form of a Spike Workload

Figure 27 depicts the observed time shift between our 3 algorithms. We no-
tice that our implementation reaches its maximum required TaskManager capacity
without delay in a non-incremental fashion while both HPA and Smilax do so in-
crementally. Notice that Smilax again reaches a maximum TaskManager number of
6 compared to only 3 which HPA and HYAS require. This is for the same reasons
presented on section 5.2.1 when compared to HYAS.

58

Figure 27: Time Shift for each Algorithm

This non-incremental fashion which HYAS chooses to adjust resources (i.e. add
as many TaskManagers as required) results in a significant decrease in the maximum
observed Kafka queue lag for our system and thus a much faster response time to
empty this queue as observed in figures 28 and 29.

Figure 28: Maximum Observed Queue Lag Under Stress

59

Figure 29: Time for each Algorithm to Empty the Kafka Queue

The performance differences presented on figures 28 and 29 are mainly attributed
to the required downtime that Flink needs in order to change the parallelism of a
job. When a scaling action is taken Flink must take a savepoint, restart the job with
the new parallelism and catch up to any accumulated records that were written in
the Kafka queue while it was restarting. In this particular test, our algorithm takes
only 1 scaling action (for scaling up) in order to match the incoming workload, while
HPA takes 2 and Smilax 5, reducing the time during which Flink is not processing
any records and resulting in less overall lag present.

Despite this non-incremental scaling action which our algorithm chooses to im-
plement (when scaling up) the resulting infrastructure costs depicted on figures 30
and 31 are still less than HPA and Smilax. Since our scaling method reacted to
the spike in the workload with only 1 scaling action it was able to empty the Kafka
queue faster which resulted in releasing any unnecessary task managers quicker (al-
beit non-incrementally) and thus incur less costs on average compared to both HPA
and Smilax.

60

Figure 30: Average Hourly Cost (Spike)

Figure 31: Average Monthly Cost (Spike)

61

5.2.3 FIFA 98 World Cup Dataset

The FIFA 98 Dataset consists of all the requests made to the 1998 World Cup Web
site between April 30, 1998 and July 26, 1998. During this period of time the site
received 1,352,804,107 requests.

The dataset exists in a format that could not be used as an input by our Kafka
producer. In order to address this issue, we converted and scaled the whole dataset
to be more in line with our synthetic experiments (i.e. having proportional peaks
and valleys in the workload) and chose a single day as our subset from the whole
dataset.

The resulting subset is a 24-hour period of aggregated requests per minute for
which we choose to conduct our test on a 9.5 hour slice. Since our previous evaluation
workloads where synthetic a real life distribution of requests per second provides a
more realistic insight on the behaviour of our autoscaling algorithm.

Figure 32: FIFA 98 World Cup Workload

The 9 and a half hour slice which we chose for our evaluation is between 1998-06-
30 14:00 and 1998-06-30 22:30 (from figure 32) since it is the period with the most
activity in terms of requests per minute for the world cup site.

Figure 33 and 34 represents the observed time shift between all algorithms when
compared to HYAS. Note that the points in time our application was stressed and
a scale up action was required was on the 15:00 and the 19:00 minute mark (where
all algorithms scaled from 1 to 2 TaskMangers) and at the 21:30 minute mark where
each algorithm chose to adjust the number of TaskManagers differently.

62

The most important key points that we can present when comparing HYAS with
HPA from figure 33 are as follows:

• When compared to HPA, we can observe that our algorithm chooses to adjust
the maximum available number of TaskManagers to 3 while HPA chooses to
remain with 2 when the application is stressed the most at around the 21:30
minute mark on figure 32.

• HPA decides to remain with 2 TaskManagers at around the 16:30 minute mark
when the workload subsides while HYAS reduces its available resources to 1
TaskManager.

• We observe fluctuations in the number of TaskManagers from HPA (at around
the 18:30 minute mark) indicating that a stable state cannot be reached and
the algorithm continuously adjusts the available resources. In contrast HYAS
makes a scaling action only when necessary, avoiding disruptions in Flink’s
processing.

Figure 33: Time Shift for HYAS and HPA

Additionally, when comparing HYAS with Smilax, the most important key points
that we can present from figure 34 are as follows:

63

• We observe that Smilax performs more in line with HYAS when presented
with a real life workload spanning around 9 hours. It seems that a slower,
more gradual increase in the production of records allows for Smilax sufficient
time to remove any records remaining in the queue and not trigger additional
scaling actions when the application is first stressed at around the 15:00 and
19:00 minute mark.

• However, the same cannot be said when the workload reaches its maximum
output at around the 21:30 minute mark. Here we again observe Smilax trig-
gering a chain reaction of scaling actions reaching a maximum number of 6
TaskManagers when the application is stressed the most. We can conclude that
an abrupt change in a small period of time when the application is stressed
the most (i.e. when we have reached the maximum capacity of the available
TaskManagers) is the situations where Smilax makes more scaling actions than
necessary.

• Similar with HPA, Smilax chooses to remain to 2 TaskMangers at around
the 16:30 minute mark (where HYAS scaled down to 1) finally reducing that
number to 1 at around the 17:45 minute mark.

Figure 34: Time Shift for HYAS and Smilax

64

Figure 35 presents the average usage of TaskManagers that each algorithm chose
to use for the whole 9.5 hour duration of the test. Note that Smilax and HPA have
the same usage of TaskManagers (on average) despite choosing a different number
of maximum machines. This can be attributed to the fact that on long running real
life workloads, variations in the number of TaskManagers have little impact on cost
when used on a small period of time (as we observe from Smilax’s and HYAS’s scale
up actions on the 21:30 minute mark that lasted for only about 30 minutes).

Figure 35: Average Usage of Task Managers

Consequently, we observe from figure 36 that HYAS results in fewer overall in-
frastructure costs compared to HPA and Smilax. This is mainly credited on HYAS’s
faster scale down action taken around the 16:30 minute mark on figures 33 and 34
which resulted on fewer TaskManager utilization (on average) and thus less costs in
contrast with HPA and Smilax.

65

Figure 36: Average Monthly Cost (FIFA 98)

Lastly, figures 37 and 38 present the performance (i.e. response time) and max-
imum record lag for each algorithm measured at the point in time in which our
application was stressed the most (i.e. the 21:30 minute mark). When comparing
performance metrics for each algorithm we can observe that HPA had the worst
performance followed by Smilax and then HYAS.

HPA’s reduced performance in this particular workload distribution is attributed
to the fact that it failed to make a scale up action when the application was stressed
the most at around the 21:30 minute mark, resulting in unprocessed records to be
piling up on the Kafka queue as the current number of TaskManagers (throughput)
could not keep up. This further illustrates the fact that general purpose autoscaling
controllers which base their scaling policy on simple metrics (such as CPU utilization)
are ill suited for adjusting the available resources of Apache Flink.

Smilax’s performance in this real life workload can be explained from the fact that
it reacted successfully when the application was stressed the most and thus triggering
a scale up decision (compared to HPA). However, this scaling action resulted in more
unnecessary scale up decisions to be made which hindered Flink’s ability to process
records effectively due to the downtime incurred by these decisions.

Conversely, HYAS achieves the best performance among the three algorithms due
to the fact that it successfully identified the need for a scaling decision to be made
when it was needed (compared to HPA) without overshooting the required number
of TaskManagers for this particular workload distribution (compared to Smilax).

66

Figure 37: Time for each Algorithm to Empty the Kafka Queue

Figure 38: Maximum Observed Kafka Lag Under Stress

67

6 Conclusions

In this thesis, we have worked to create and implement an effective decision
making agent for autoscaling Apache Flink with the goal of minimizing infrastructure
costs in a cloud environment while still maintaining acceptable performance metrics.
This work, has been deployed in the cloud using Google’s Kubernetes Engine in order
to utilize its effective elasticity mechanisms for creating and scaling container based
applications.

In order to support Flink’s high throughput and in-memory speed requirements
we have paired it with Apache Kafka, a distributed event streaming platform, as
its streaming source in the form of a publish/subscribe system. We expand the
capabilities of a static Flink cluster by providing dynamic resource allocation to
its task managers in order to accommodate the scaling need that a wide series of
fluctuating workloads creates.

A known limitation of Apache Flink that must be taken into account when design-
ing an autoscaling mechanism is that the parallelism of a Flink application cannot
be modified at runtime. Restarting the job with a new parallelism from a savepoint
can take a significant amount of time since the state must be written on a persis-
tent storage (or on memory), new resources must be allocated (pods) and then the
job must be restarted with the new parallelism. In this time no incoming records
are being processed until the pipeline is restored to its previous state. This means
that when the application is successfully restarted it must try to catch up to any
accumulated records that were not being processed during this downtime.

Our proposed solution to this limitation is implemented in the form of an autoscal-
ing agent which monitors Flink’s cluster and models its behaviour using changes to
the input’s record lag and operator idleness. Through a decision making algorithm,
optimal modification of Flink’s underlying resources is achieved.

We evaluate the performance and cost requirements of our decision making model
by comparing it with Kubernetes’ Horizontal Pod Autoscaler (HPA) and Smilax’s
exploration mode through a variety of synthetic and real life workloads aimed to
stress our application in various points in time. The results of these benchmarks have
shown that our implementation provides a better combination of performance-to-
cost ratio than both HPA and Smilax in all tested scenarios. The benefits mentioned
above prove that our decision making agent can be used as a proof of concept and
basis for designing and improving optimal autoscaling mechanisms specifically for
Apache Flink.

68

7 Future Work

The work presented on this thesis while effective on its original goal of creating an
autoscaler for Apache Flink leaves room for further improvements to be implemented.

• Currently, our autoscaler takes rescaling actions that effect the parallelism
of the whole pipeline in the Flink job since each Task Manager is equipped
with one task slot. Allowing Task Managers to be configured with more than
one task slot and rescaling each operator independently from the pipeline as
proposed on [25] would improve the overall resource utilization of the job and
thus reduce infrastructure costs.

• A (linear or non-linear) correlation could be established between the state
size that Flink needs to store when taking a savepoint and the total amount
of downtime required for restarting a job. This would greatly improve the
additional time (downtime) that the application requires in order to catch up
to any accumulated records when a new parallelism is implemented and a job
is restarted.

• Supporting multiple Flink Jobs with multiple Kafka topics. Currently, our
implementation utilizes only one job reading from a single Kafka topic as its
input stream.

In order for our infrastructure to support multiple topics on multiple jobs,
Flink’s cluster mode will have to change to a session cluster (3.1.6) being in-
dependent of all running jobs.

Additionally, we must determine whether more topics would require more repli-
cas of our Kafka broker in order to support the additional workload (a moni-
toring system targeting Kafka’s load and capacity would be required).

Lastly, our autoscaling algorithm would not have to change since it monitors
exchibited lag on all Kafka partitions regardless of the number of topics or jobs
running.

• While our current decision making agent is threshold-based, a more advanced
reinforcement learning (RL) method could be implemented.

Threshold-based rules are simple to implement and deploy in a cloud envi-
ronment but their performance is depended on the quality of those thresholds
which most of the time are unknown and differ from system to system.

69

The important feature of RL approaches is learning without prior knowledge
of the target scenario in an online fashion with actual observations. However,
the main drawback of this method is that it requires a training phase, and
the solution is tailored to the characteristics of the workload. This means that
a solution (if any) is not stable for floating workloads and that training has
to recommence each time the workload changes. In turn, the stability of the
existing solution has to be tested periodically in order to identify when training
has to be rerun.

70

References

[1] Leila Abdollahi Vayghan, Mohamed Aymen Saied, Maria Toeroe, and Fer-
hat Khendek. ≪Deploying Microservice Based Applications with Kubernetes:
Experiments and Lessons Learned≫. In: 2018 IEEE 11th International Confer-
ence on Cloud Computing (CLOUD). 2018, pp. 970–973. doi: 10.1109/CLOUD.
2018.00148.

[2] Amazon Kinesis. url: https://aws.amazon.com/kinesis/.

[3] Apache Flink Applications. url: https://nightlies.apache.org/flink/
flink-docs-release-1.16/docs/learn-flink/overview/.

[4] Apache Flink Architecture. url: https://nightlies.apache.org/flink/
flink-docs-release-1.16/docs/concepts/flink-architecture/.

[5] Apache Flink Checkpoints. url: https://nightlies.apache.org/flink/
flink-docs-release-1.16/docs/ops/state/checkpoints/.

[6] Apache Flink Description. url: https://flink.apache.org/flink-architecture.
html.

[7] Apache Flink Savepoints. url: https://nightlies.apache.org/flink/
flink-docs-release-1.16/docs/ops/state/savepoints/.

[8] Apache Flink Stateful Operations. url: https://nightlies.apache.org/
flink/flink- docs- release- 1.16/docs/concepts/stateful- stream-

processing/.

[9] Apache Flink Use Cases. url: https://flink.apache.org/usecases.html.

[10] Apache Heron. url: https://incubator.apache.org/clutch/heron.html.

[11] Apache Kafka. url: https://kafka.apache.org/.

[12] Apache Zookeeper. url: https://zookeeper.apache.org/doc/r3.8.0/
zookeeperOver.html.

[13] Hamid Arabnejad, Claus Pahl, Pooyan Jamshidi, and Giovani Estrada. ≪A
Comparison of Reinforcement Learning Techniques for Fuzzy Cloud Auto-
Scaling≫. In: May 2017. doi: 10.1109/CCGRID.2017.15.

[14] Backpressure. url: https : / / medium . com / @jayphelps / backpressure -

explained-the-flow-of-data-through-software-2350b3e77ce7.

[15] Click Fraud. url: https://en.wikipedia.org/wiki/Click_fraud.

[16] Click Fraud Application. url: https://github.com/Nada-S/Clicks_fraud_
detection_with_Kafka_and_Flink.

71

https://doi.org/10.1109/CLOUD.2018.00148
https://doi.org/10.1109/CLOUD.2018.00148
https://aws.amazon.com/kinesis/
https://nightlies.apache.org/flink/flink-docs-release-1.16/docs/learn-flink/overview/
https://nightlies.apache.org/flink/flink-docs-release-1.16/docs/learn-flink/overview/
https://nightlies.apache.org/flink/flink-docs-release-1.16/docs/concepts/flink-architecture/
https://nightlies.apache.org/flink/flink-docs-release-1.16/docs/concepts/flink-architecture/
https://nightlies.apache.org/flink/flink-docs-release-1.16/docs/ops/state/checkpoints/
https://nightlies.apache.org/flink/flink-docs-release-1.16/docs/ops/state/checkpoints/
https://flink.apache.org/flink-architecture.html
https://flink.apache.org/flink-architecture.html
https://nightlies.apache.org/flink/flink-docs-release-1.16/docs/ops/state/savepoints/
https://nightlies.apache.org/flink/flink-docs-release-1.16/docs/ops/state/savepoints/
https://nightlies.apache.org/flink/flink-docs-release-1.16/docs/concepts/stateful-stream-processing/
https://nightlies.apache.org/flink/flink-docs-release-1.16/docs/concepts/stateful-stream-processing/
https://nightlies.apache.org/flink/flink-docs-release-1.16/docs/concepts/stateful-stream-processing/
https://flink.apache.org/usecases.html
https://incubator.apache.org/clutch/heron.html
https://kafka.apache.org/
https://zookeeper.apache.org/doc/r3.8.0/zookeeperOver.html
https://zookeeper.apache.org/doc/r3.8.0/zookeeperOver.html
https://doi.org/10.1109/CCGRID.2017.15
https://medium.com/@jayphelps/backpressure-explained-the-flow-of-data-through-software-2350b3e77ce7
https://medium.com/@jayphelps/backpressure-explained-the-flow-of-data-through-software-2350b3e77ce7
https://en.wikipedia.org/wiki/Click_fraud
https://github.com/Nada-S/Clicks_fraud_detection_with_Kafka_and_Flink
https://github.com/Nada-S/Clicks_fraud_detection_with_Kafka_and_Flink

[17] Containers. url: https://www.docker.com/resources/what-container/.

[18] Flink Stream Transformations. url: https : / / nightlies . apache . org /

flink/flink-docs-master/docs/dev/datastream/operators/overview/.

[19] Panagiotis Giannakopoulos and Euripides Petrakis. ≪Smilax: Statistical Ma-
chine Learning Autoscaler Agent for Apache FLINK≫. In: Apr. 2021, pp. 433–
444. doi: 10.1007/978-3-030-75075-6_35.

[20] Google Cloud Platform Pricing. url: https://cloud.google.com/compute/
all-pricing.

[21] Horizontal Pod Autoscaler. url: https://kubernetes.io/docs/tasks/run-
application/horizontal-pod-autoscale/.

[22] Horizontal scaling. url: https://aws.amazon.com/blogs/architecture/
architecting-for-reliable-scalability/.

[23] Java Management Extensions (JMX). url: https : / / www . oracle . com /

technical-resources/articles/javase/jmx.html.

[24] Bibal Benifa Jv and Dejey Dharma. ≪RLPAS: Reinforcement Learning-based
Proactive Auto-Scaler for Resource Provisioning in Cloud Environment≫. In:
Mobile Networks and Applications 24 (Aug. 2019), pp. 1–16. doi: 10.1007/
s11036-018-0996-0.

[25] Vasiliki Kalavri, John Liagouris, Moritz Hoffmann, Desislava Dimitrova, Matthew
Forshaw, and Timothy Roscoe. ≪Three steps is all you need: fast, accurate, au-
tomatic scaling decisions for distributed streaming dataflows≫. In: 13th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 18). Carls-
bad, CA: USENIX Association, Oct. 2018, pp. 783–798. isbn: 978-1-939133-
08-3. url: https://www.usenix.org/conference/osdi18/presentation/
kalavri.

[26] Wybe J. C. Koper. ≪A Comparison of Auto-scaling Techniques for Distributed
Stream Processing≫. 2022. url: http : / / resolver . tudelft . nl / uuid :

0ae72b82-b3af-4afb-a8d8-8040a226f045.

[27] Kubernetes Components. url: https://kubernetes.io/docs/concepts/
overview/components/.

[28] Kubernetes Overview. url: https : / / kubernetes . io / docs / concepts /

overview/.

[29] Kubernetes Service. url: https://kubernetes.io/docs/concepts/services-
networking/service/.

72

https://www.docker.com/resources/what-container/
https://nightlies.apache.org/flink/flink-docs-master/docs/dev/datastream/operators/overview/
https://nightlies.apache.org/flink/flink-docs-master/docs/dev/datastream/operators/overview/
https://doi.org/10.1007/978-3-030-75075-6_35
https://cloud.google.com/compute/all-pricing
https://cloud.google.com/compute/all-pricing
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://aws.amazon.com/blogs/architecture/architecting-for-reliable-scalability/
https://aws.amazon.com/blogs/architecture/architecting-for-reliable-scalability/
https://www.oracle.com/technical-resources/articles/javase/jmx.html
https://www.oracle.com/technical-resources/articles/javase/jmx.html
https://doi.org/10.1007/s11036-018-0996-0
https://doi.org/10.1007/s11036-018-0996-0
https://www.usenix.org/conference/osdi18/presentation/kalavri
https://www.usenix.org/conference/osdi18/presentation/kalavri
http://resolver.tudelft.nl/uuid:0ae72b82-b3af-4afb-a8d8-8040a226f045
http://resolver.tudelft.nl/uuid:0ae72b82-b3af-4afb-a8d8-8040a226f045
https://kubernetes.io/docs/concepts/overview/components/
https://kubernetes.io/docs/concepts/overview/components/
https://kubernetes.io/docs/concepts/overview/
https://kubernetes.io/docs/concepts/overview/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/services-networking/service/

[30] Microservice Architecture. url: https://www.ionos.com/digitalguide/
websites/web-development/microservice-architecture/.

[31] Prometheus Data Model. url: https://prometheus.io/docs/concepts/
data_model/.

[32] Prometheus Metric Types. url: https://prometheus.io/docs/concepts/
metric_types/.

[33] Prometheus Overview. url: https://prometheus.io/docs/introduction/
overview/.

[34] Vı́ctor Rampérez, Javier Soriano, David Lizcano, and Juan A. Lara. “FLAS: A
combination of proactive and reactive auto-scaling architecture for distributed
services”. In: Future Generation Computer Systems 118 (2021), pp. 56–72.
issn: 0167-739X. doi: https://doi.org/10.1016/j.future.2020.12.
025. url: https : / / www . sciencedirect . com / science / article / pii /

S0167739X20330879.

[35] Reactive Mode. url: https://nightlies.apache.org/flink/flink-docs-
master/docs/deployment/elastic_scaling/.

[36] Rescalable State in Apache Flink. url: https://flink.apache.org/features/
2017/07/04/flink-rescalable-state.html.

[37] Fabiana Rossi, Matteo Nardelli, and Valeria Cardellini. ≪Horizontal and Verti-
cal Scaling of Container-Based Applications Using Reinforcement Learning≫.
In: 2019 IEEE 12th International Conference on Cloud Computing (CLOUD).
2019, pp. 329–338. doi: 10.1109/CLOUD.2019.00061.

[38] Stream Processing. url: https://flink.apache.org/flink-architecture.
html.

[39] Timely Dataflow. url: https://docs.rs/timely/latest/timely/.

[40] Peter A. Tucker, Kristin Tufte, Vassilis Papadimos, and David Maier. ≪NEX-
Mark – A Benchmark for Queries over Data Streams DRAFT≫. In: 2002.

[41] Balázs Varga, Márton Balassi, and Attila Kiss. ≪Towards autoscaling of Apache
Flink jobs≫. In: Acta Universitatis Sapientiae, Informatica 13.1 (2021), pp. 39–
59. doi: doi:10.2478/ausi-2021-0003. url: https://doi.org/10.2478/
ausi-2021-0003.

[42] Vertical Scaling. url: https://www.stormit.cloud/blog/scalability-in-
cloud-computing-horizontal-vs-vertical-scaling/.

73

https://www.ionos.com/digitalguide/websites/web-development/microservice-architecture/
https://www.ionos.com/digitalguide/websites/web-development/microservice-architecture/
https://prometheus.io/docs/concepts/data_model/
https://prometheus.io/docs/concepts/data_model/
https://prometheus.io/docs/concepts/metric_types/
https://prometheus.io/docs/concepts/metric_types/
https://prometheus.io/docs/introduction/overview/
https://prometheus.io/docs/introduction/overview/
https://doi.org/https://doi.org/10.1016/j.future.2020.12.025
https://doi.org/https://doi.org/10.1016/j.future.2020.12.025
https://www.sciencedirect.com/science/article/pii/S0167739X20330879
https://www.sciencedirect.com/science/article/pii/S0167739X20330879
https://nightlies.apache.org/flink/flink-docs-master/docs/deployment/elastic_scaling/
https://nightlies.apache.org/flink/flink-docs-master/docs/deployment/elastic_scaling/
https://flink.apache.org/features/2017/07/04/flink-rescalable-state.html
https://flink.apache.org/features/2017/07/04/flink-rescalable-state.html
https://doi.org/10.1109/CLOUD.2019.00061
https://flink.apache.org/flink-architecture.html
https://flink.apache.org/flink-architecture.html
https://docs.rs/timely/latest/timely/
https://doi.org/doi:10.2478/ausi-2021-0003
https://doi.org/10.2478/ausi-2021-0003
https://doi.org/10.2478/ausi-2021-0003
https://www.stormit.cloud/blog/scalability-in-cloud-computing-horizontal-vs-vertical-scaling/
https://www.stormit.cloud/blog/scalability-in-cloud-computing-horizontal-vs-vertical-scaling/

[43] Ververica Autopilot. url: https : / / docs . ververica . com / user _ guide /
application_operations/autopilot.html#.

[44] What are Microservices? url: https://aws.amazon.com/microservices/.

74

https://docs.ververica.com/user_guide/application_operations/autopilot.html#
https://docs.ververica.com/user_guide/application_operations/autopilot.html#
https://aws.amazon.com/microservices/

	Abstract
	Introduction
	Problem Definition
	Scope of Thesis
	Thesis Structure

	Related Work
	Background
	Related Work

	Infrastructure and Tools
	Apache Flink
	Stream and Batch Processing
	Use Cases
	Flink Jobs
	Stateful Stream Processing
	Flink Cluster Architecture
	Cluster Modes

	Kubernetes
	Overview
	Infrastructure and Components
	Services and Network Traffic

	Apache Kafka
	Apache Zookeeper

	Prometheus

	Autoscaler Model for Apache Flink
	System Architecture in Kubernetes
	HYAS: Hybrid Autoscaling Agent for Apache Flink

	Evaluation
	Smilax
	Horizontal Pod Autoscaler (HPA)
	Flink application: Clicks Fraud Detection

	Testbed
	Configurations
	Infrastructure Cost Calculating Function

	Experiments
	Gaussian
	Spike
	FIFA 98 World Cup Dataset

	Conclusions
	Future Work
	References

