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Abstract

Graph alignment is a computational problem which aims to find a correspondence between
vertices of graphs that minimizes their node and edge disagreements. This problem arises in
many fields, such as computational biology, where finding conserved functional components
between species can lead to gene-disease associations or drug discoveries, social sciences,
where unveiling unique users on different platforms can remove bots, and computer vision
for recognising objects. Compared with the exact graph (sub)isomorphism problem often
considered in a theoretical setting, the inexact graph alignment problem is often cast as a
Quadratic Assignment Problem (QAP), which has attracted significant research interest.
This thesis presents a comprehensive review of the recent research activity concerning the
global pairwise one-to-one alignment, detailing the methodologies and formulations of four
state-of-the-art graph alignment algorithms.

Specifically, Umeyama’s method solves the orthogonal relaxation of the QAP by us-
ing spectral embeddings, IsoRank applies random walks with restarts on the normalized
Kronecker product graph, LowRank-Align solves a rank-k approximation of the orthogo-
nal relaxation of the QAP using an alternating optimization framework, and CONE-Align
uses embeddings obtained with the NetMF method and aligns their subspaces using a
Wasserstein-Procrustes framework.

To evaluate these algorithms, a standard experimental setup is adopted. A graph, G1,
is aligned with a “noisy” and permuted version of itself, G2, in order to create an instance
of the graph alignment problem. The noise level is the percentage of extra edges in G2

with respect to the total edges in G1. Only simple (unweighted, undirected, with no loops
or multiple edges) graphs are considered. Several widely-used quality measures are used,
such as the Node Correctness (NC), the Edge Correctness (EC), the Induced Conserved
Structure (ICS), the Symmetric Substructure Score (S3), the Matched Neighborhood Con-
sistency (MNC), and the wall time.

The experiments suggest that CONE-Align performs well for both synthetic and real-
world networks, LowRank-Align performs well in some occasions, Umeyama’s method has
moderate performance, but steady over datasets, and IsoRank is the overall worst. As for
the quality measures, MNC and S3 seem to be the most fair.
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Chapter 1

Introduction

Networks are intuitive and powerful structures that capture relationships between different
entities in many domains, such as electric networks, social networks, biological networks,
citation networks, and others. Studying and comparing the structural representations in
the form of complex networks has been a very fruitful and fascinating research area [1].
The term graph alignment (or network alignment) includes several distinct but related
problem variants [2]. In general, graph alignment aims to find a bijective mapping across
two (or more) graphs so that, if two nodes are connected in one graph, their images are
also connected in the other graph(s). The case of an exact graph alignment is known as the
graph isomorphism problem [3]. However, in general, an exact alignment scheme may not
be feasible. In such cases, graph alignment aims to find a mapping with the minimum error
and/or the maximum overlap, i.e. the subgraph isomorphism, where a part of a graph is
matched to a part of another graph. In its most general form, the graph alignment problem
is equivalent to a Quadratic Assignment Problem (QAP) [4].

Network alignment can be used in numerous application domains. In bioinformat-
ics, aligning different Protein-Protein Interaction (PPI) networks can result in identifying
functionally similar regions across different species and benefit studying more sophisticated
problems such as gene-disease associations [5]. In computer vision, object recognition can
be attained by matching similar images [6]. In social analysis, network alignment is used
to unveil unique users on different social platforms [7]. For knowledge completion, entities
in knowledge graphs are aligned to construct a unified knowledge base [8].

While all graph alignment algorithms aim to find corresponding nodes in different
networks, they may begin from different objective formulations. Typically, the optimization
problem is to find a correspondence that maximizes a similarity score or minimizes the
cost of transforming the second graph to the first. The most common input data are the
adjacency matrices of the graphs to be aligned. Some algorithms may require additional
information as input, such as preferred or known prior alignments. In the biology domain,
such pre-processed input, e.g. BLAST scores, is needed as nodes typically have roles and
semantics beyond structural properties.

This thesis is organized as follows. Chapter 2 provides basic definitions on the graph
alignment problem and some useful mathematical formulations. Chapter 3 illustrates the
connection of the Linear Assignment Problem (LAP) to the graph alignment problem.
Chapter 4 includes a detailed analysis of four recent methods used for graph alignment.
Chapter 5 presents the experimental setup and the performance of each studied algorithm
for real-world and synthetic networks. The thesis concludes in Chapter 6.
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Chapter 2

The Graph Alignment Problem

Graph theory has existed for almost three centuries as a principal branch in mathematics.
It has been used for a long time in computer science, biology, chemistry, social sciences,
engineering, and linguistics. The beginning of graph theory is considered the paper of
Leonhard Euler on the Seven Bridges of Königsberg [9], published in 1736. Recently,
graph theory has been a rapidly developing application and research area with many open
problems. The focus of this thesis is the fundamental problem of graph alignment. A short
review of the basic graph definitions and the graph alignment problem will be presented
in this chapter.

2.1 Graphs

Graphs are a widely used data structure for describing complex systems. In the most
general setting, a graph is a set of objects (i.e., nodes), along with a set of interactions
(i.e., edges) between pairs of these objects [3]. For example, a graph can represent a social
network, by encoding individuals as nodes and their friendships as edges.

The abstraction of graphs gives them a powerful formalism. The same graph formalism
can be used to represent, for example, social networks, co-authorship networks, interactions
between proteins, or the connections between terminals in a telecommunications network.
In addition to providing an elegant theoretical framework, graphs offer a mathematical
foundation for analyzing, understanding, and learning from real-world complex systems
[10]. With the recent increase in the quantity and quality of graph-structured data that
led to the advent of large-scale social networking platforms, billions of interconnected web-
enabled devices, massive scientific initiatives to model the interactome, and databases of
molecule graph structures, there is no shortage of meaningful graph data for researchers
to analyze.

Before discussing the graph alignment problem, we give a formal description of “graph
data,” following the basic definitions of [11]. Formally, a graph G = (V, E) is defined by
a set of nodes V and a set of edges E ⊂ V × V between these nodes. We denote an edge
going from node u ∈ V to node v ∈ V as (u, v) ∈ E . A graph can be directed or undirected.
In the case of undirected graphs, it is assumed that the edge connecting the vertex u to
the vertex v also connects the vertex v to the vertex u. This means that if (u, v) ∈ E then
(v, u) ∈ E . In general, this property does not hold for directed graphs. Undirected graphs
can be considered as a special case of directed graphs.

For a given set of vertices and edges, the graph can be represented by an adjacency
matrix A. If there are n vertices, then A is an n × n matrix. The elements Auv of the
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36

1 2

45

A =



0 1 0 0 0 1
1 0 1 0 0 1
0 1 0 1 0 1
0 0 1 0 0 0
0 0 0 0 0 1
1 1 1 0 1 0


Figure 2.1: A toy example of a simple graph and its adjacency matrix A.

adjacency matrix A take values Auv ∈ {0, 1}. More specifically,

Auv =

 1, if (u, v) ∈ E ,

0, if (u, v) /∈ E .
(2.1)

If the graph is undirected, then its adjacency matrix is symmetric, A = AT , but if the
graph is directed (i.e., edge direction matters), then A is not necessarily symmetric.

In general, the edges can be weighted. If the weights of the edges are defined, a weighted
graph is obtained. The set of weights W corresponds to the set of edges E . A weighted
graph is a more general object than an unweighted graph. Commonly, it is assumed that the
edge weights are nonnegative real numbers. If weight 0 is associated with the nonexisting
edges, then the graph can be described with a weight matrix W similar to the adjacency
matrix A. A nonzero element Wuv determines the weight of the edge between vertices u

and v. The value Wuv = 0 means that there is no edge between vertices u and v.

A degree matrix of a graph, denoted by D, is a diagonal matrix where the main diagonal
elements Duu are equal to the sum of weights of all edges connected with the vertex u,

Duu =
∑
v∈V

Wuv. (2.2)

In the case of an unweighted and undirected graph, the value of Duu is equal to the number
of edges connected to the u-th vertex.

The normalized adjacency matrix is defined as

Ã = D−1/2AD−1/2. (2.3)

The normalized adjacency matrix captures the local structure of a graph by scaling the
entries of the adjacency matrix based on the degrees of the nodes in the graph. This
normalization process ensures that each entry in the normalized adjacency matrix reflects
not only the presence of a connection between two nodes, but also the relative importance
of that connection based on the degrees of the nodes.

The Laplacian matrix captures structural properties of a graph because it encodes
information about the connectivity patterns and the degree distribution of the nodes in
the graph and is defined as

L = D−A. (2.4)
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Figure 2.2: Kronecker (tensor) product of two graphs.

The diagonal entries of the Laplacian matrix are equal to the degree of each node in the
graph, while the off-diagonal entries represent the strength of the connections between
the nodes. Thus, the Laplacian matrix captures the degree distribution of the nodes in
the graph, which is an important structural property. Furthermore, the Laplacian matrix
reflects the connectivity patterns of the nodes in the graph by indicating which nodes are
connected and the strength of the connections. This information can be used to identify
clusters of nodes that are densely connected to each other, as well as nodes that are sparsely
connected to the rest of the graph. This reflects the local structural properties of the graph.

The normalized Laplacian matrix is a variant of the Laplacian matrix that captures
additional structural properties of a graph. The normalized Laplacian matrix is defined as

L̃ = D−1/2LD−1/2 = D−1/2(D−A)D−1/2 = I−D−1/2AD−1/2. (2.5)

where I is the identity matrix of appropriate size. The normalized Laplacian matrix cap-
tures additional structural properties of the graph that are not captured by the standard
Laplacian matrix, such as the geometry, by normalizing the weights of the edges based
on the degrees of the nodes, and the clustering of the nodes, by normalizing the diagonal
entries of the Laplacian matrix based on the degree of the nodes.

In this thesis, only simple graphs are considered, where there are no self-loops and no
multiple edges, and the edges have no weights and are all undirected. A toy example of a
simple graph is illustrated in Figure 2.1.

Kronecker (tensor) product of two disjoint simple graphs G1 = (V1, E1) and G2 =

(V2, E2) is a graph G = (V, E), where V = V1 × V2 and ((u1, v1), (u2, v2)) ∈ E only if
(u1, u2) ∈ E1 and (v1, v2) ∈ E2. The adjacency matrix of G, A ∈ {0, 1}n2×n2 , is equal to
the Kronecker product of the adjacency matrices A1 and A2,

A = A1 ⊗A2. (2.6)

The tensor product operator is commutative, associative, and has many other interesting
and useful properties [12]. Performing a random walk on the tensor product graph G =

G1 ⊗G2 is equivalent to performing two simultaneous random walks on G1 and G2. This
means that the tensor product graph G can encode the commonalities between the two
input graphs G1 and G2. Figure 2.2 shows an illustrative example of the tensor product
between two simple graphs.
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2.2 Embeddings

Node proximities in a graph refer to measures that quantify the similarity or relatedness
between pairs of nodes in the graph. Formally, given a graph G = (V, E), a node proximity
function is a mapping p : V ×V → Rd, where d≪ |V|, that assigns a real-valued proximity
score to each pair of nodes (i, j) in the graph. The proximity score can be interpreted as a
measure of how “close” or “similar” the nodes i and j are in the graph. Edge weights Wuv

are also called first-order proximities between nodes u and v, since they are the primary
measures of similarity between nodes [13]. Likewise, the second-order proximity between
a pair of nodes describes the similarity of the pair’s neighborhood structure. Higher-order
proximities are a family of measures that capture the similarity between nodes in a graph
based on their higher-order relationships, rather than just their direct connections. Higher-
order relationships refer to relationships between nodes that involve more than two hops
or degrees of separation in the graph. The concept of higher-order proximities is closely
related to the idea of graph transitivity, which refers to the tendency of nodes to form
triangles in a graph. Higher-order proximities extend the concept of transitivity to capture
relationships between nodes that involve more than just triangles. There are several types
of higher-order proximities, including Rooted PageRank, Common Neighbors, Katz Index,
Adamic Adar, etc. (for more details see [14]).

Graph embedding and node embedding are techniques used to transform a graph into a
low-dimensional vector space. Graph embedding involves learning a low-dimensional rep-
resentation of the entire graph, while node embedding involves learning a low-dimensional
representation for each individual node in the graph. Formally, given a graph G = (V, E),
graph embedding aims to learn a function f : G → Rd that maps the entire graph to
a d-dimensional vector space. The goal is to capture the global structure of the graph,
including its communities, hubs, and other structural features. Node embedding, on the
other hand, aims to learn a function g : V → Rd that maps each individual node in the
graph to a d-dimensional vector space. The goal is to capture the structural properties of
each node, including its neighbors, degree, and other properties. The functions f and g

preserve some proximity measure defined on graph G [13].

In Chapter 4, the NetMF method [15], which is described in Algorithm 5, is used to
obtain node embeddings that capture both the local and global structural properties of
the graph. To achieve this, NetMF constructs a high-order proximity matrix that cap-
tures the structural information of the graph, and factorizes it using truncated Singular
Value Decomposition (SVD) to obtain a low-dimensional representation of the graph. At
first, NetMF approximates the normalized adjacency matrix Ã with its top-h eigenpairs
UhΛhU

T
h . Then, given a window size T , the algorithm constructs a proximity matrix

M by adding T different powers of matrix Λh. Each power of matrix Λh captures dif-
ferent levels of structural information in the graph, and adding them together produces
a proximity matrix that filters all the negative and small positive eigenvalues of matrix
Ã. The factorization of the DeepWalk matrix logM, where

[
logM

]
ij
= logMij , is equiv-

alent to the maximization of the objective function of LINE [16] and presents compu-
tational challenges due to the element-wise matrix logarithm. The matrix is not only
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ill-defined (since log 0 = −∞), but also dense. The NetMF algorithm factorizes logM′,
where M ′

ij = max(Mij , 1), by using SVD and constructs a node embedding matrix by using
its top-d singular values/vectors.

2.3 Problem Definition

Graph1 alignment (or matching) is the process of finding a correspondence between the
nodes and the edges of two graphs that satisfies some (more or less strict) constraints,
ensuring that similar substructures in one graph are mapped to similar substructures in
the other. The problem can be classified [17] as:

• Local or Global alignment
The target of local alignment is to identify the closely mapping subgraphs between
different graphs. Typically, local alignment reports multiple subgraphs across graphs,
which may be mutually inconsistent (i.e., a node might be mapped differently under
each alignment). On the other hand, global alignment tries to match different graphs as
a whole, and the output result is a single mapping between the nodes of the graphs.

• Pairwise or Multiple alignment
Pairwise alignment compares two graphs, while multiple alignment considers more than
two graphs at the same time. The computational complexity increases exponentially in
the number of graphs [17].

• One-to-one, One-to-many or Many-to-many alignment
One-to-one alignment produces one-to-one (or injective) node mappings, where a node
from a given graph can be mapped to at most one node from another graph. Following
the same logic, one-to-many alignment maps a node from a given graph to multiple
nodes from another graph, while a node from the later graph can be mapped to at most
one node from the former graph. A many-to-many alignment produces a many-to-many
node mapping, where a node from a given graph can be mapped to several nodes from
another graph.

2.4 Problem Formulation for Global Pairwise One-to-one
alignment

For simplicity, this work considers a pair of simple graphs with the same number of nodes n.
Let G1 = (V1, E1) and G2 = (V2, E2) be this pair, with adjacency matrices A1 ∈ {0, 1}n×n

and A2 ∈ {0, 1}n×n, respectively. Let their eigendecompositions be A1 = U1Λ1U
T
1 and

A2 = U2Λ2U
T
2 , respectively.

1Graph or network? Both terms are used interchangeably in this thesis, but a distinction should
be made between the usage of these terms. According to their current popular usage, the term “graph”
describes an abstract data structure, while the term “network” describes specific, real-world instantiations
of this data structure (e.g., social networks). Network analysis is generally concerned with the properties of
real-world data, whereas graph theory is concerned with the theoretical properties of the mathematically
abstract graph.
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The graph alignment problem can be divided into two broad categories: exact and
inexact (for more information see [18] and [19]). The case of exact graph alignment is known
as the graph isomorphism problem. Inexact graph alignment refers to problems where exact
matching is impossible, which is the most common case for real-world applications.

2.4.1 Graph Isomorphism Problem

An isomorphism from G1 to G2 is a one-to-one mapping π, from the vertices of the first
graph V1 onto the vertices of the second graph V2, that preserves adjacency and nonadja-
cency, that is, (u, v) ∈ E1 iff (π(u), π(v)) ∈ E2 for all pairs (u, v) of vertices in V1.

In matrix forms, G1 and G2 are isomorphic iff there exists a permutation matrix P

such that A1 = PA2P
T [20]. The computational problem of determining whether two

finite graphs are isomorphic is called the graph isomorphism problem. Moreover, given
two isomorphic graphs G1 and G2, in the graph isomorphism problem one aims to find the
permutation matrix P such that A1 = PA2P

T .

The graph isomorphism problem remains one of the few natural problems in NP that
is suspected to be neither in P nor NP-complete. This class is called NP-intermediate and
exists iff P ̸= NP [21].

2.4.2 Quadratic Assignment Problem

Following the above definition of graph isomorphism, inexact graph alignment can be
formulated as the optimization problem

minimize
P∈P

∥∥∥A1 −PA2P
T
∥∥∥2
F
, (2.7)

where ∥ · ∥F denotes the Frobenius norm of a matrix, while the feasible set P denotes the
set of all n× n permutation matrices, which can be compactly expressed as

P :=
{
P ∈ {0, 1}n×n | PT1n = 1n, P1n = 1n

}
. (2.8)

Note that the cost function of (2.7) can be expressed as∥∥∥A1 −PA2P
T
∥∥∥2
F
=
∥∥A1

∥∥2
F
+
∥∥A2

∥∥2
F
− 2
〈
A1,PA2P

T
〉
F

(2.9)

=
∥∥A1

∥∥2
F
+
∥∥A2

∥∥2
F
− 2 trace

(
AT

1 PA2P
T
)
. (2.10)

Hence, problem (2.7) is equivalent to

maximize
P∈P

trace
(
A1PA2P

T
)
, (2.11)

which corresponds to an NP-hard problem; the Quadratic Assignment Problem (QAP)
[22].



2.4. Problem Formulation for Global Pairwise One-to-one alignment 17

2.4.3 Embedding alignment

An interesting approach towards the solution of an approximation to the graph alignment
problem is based on learned representations of the nodes, i.e. node embeddings. The
advantage of using node embedding methods for graph alignment is that, in contrast to
the NP–hard problem (2.11), if E1,E2 ∈ Rn×d denote d-dimensional node embeddings
(with d≪ n) of G1 and G2, respectively, then the alignment problem can be solved by the
following LAP

minimize
P∈P

∥E1 −PE2∥2F ⇐⇒ maximize
P∈P

trace
(
PE2E

T
1

)
, (2.12)

which, as we shall see in the sequel, is a subproblem which is solved by every algorithm
of graph alignment that is studied in this thesis. The next chapter provides a detailed
description on this problem and its connection with graph alignment.
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Chapter 3

The Linear Assignment Problem

The Linear Assignment Problem (LAP) is a fundamental optimization problem. In its
most general form, the problem consists of finding the best way to assign a number of
tasks to a number of agents, given the cost of each task for each agent.

A simple instance of the problem has n agents and n tasks. It is required to perform all
tasks by assigning exactly one agent to each task and exactly one task to each agent. Let
the assignment of task i to agent j, represented by a binary variable Xij , incur a cost Cij .
In order to complete all tasks in the cheapest possible way, the problem can be formulated
as a 0-1 linear program [23]:

minimize
n∑

i=1

n∑
j=1

CijXij

subject to
∑
i

Xij = 1, ∀j = 1, 2, . . . , n∑
j

Xij = 1, ∀i = 1, 2, . . . , n

xij ∈ {0, 1}, ∀i, j = 1, 2, . . . , n.

(3.1)

Alternatively, as shown in Figure 3.1, an assignment can be viewed as a bijective mapping
of a finite set into itself, i.e., a permutation. Every permutation π of the set N = {1, . . . , n}
corresponds in a unique way to a permutation matrix Xπ with Xij = 1 for j = π(i) and
Xij = 0 for j ̸= π(i). Matrix Xπ can be viewed as the adjacency matrix of a bipartite graph
Gπ = (V1,V2, E), where the vertex sets V1 and V2 have n vertices, i.e., |V1| = |V2| = n,
and there is an edge (i, j) ∈ E iff j = π(i).

A similarity score matrix M can be viewed as an adjacency matrix of a weighted
bipartite graph G = (V1,V2,W), where V1 ∩ V2 = ∅, W ⊆ V1 × V2. Each row of matrix
M represents a vertex in V1 and each column a vertex in V2. A non-zero entry, Mij , of
matrix M is interpreted as an edge between the i-th row and j-th column vertices, with
edge weight Mij . A matching in the bipartite graph is defined as a subset M ⊆ W such
that no pair of edges of M are incident on the same vertex. A maximum (cardinality)
matching contains the largest possible number of edges. In a perfect matching, all vertices
of the graph are matched and the matching is maximum. Finding a perfect matching,
in which the sum of the edge weights is maximum, is called Maximum Weight Matching
(MWM). The total weight of the matching is defined as

∑
(i,j)∈MMij and corresponds to

the matching pairs with the highest cumulative similarity score.

If its weights of matrix M are ignored, e.g. by setting them equal to 1, the adjacency
matrix of the matching M yields the permutation matrix Xπ. Thus, the MWM can be
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π =

(
1 2 3 4
4 2 1 3

)

Xπ =


0 0 0 1
0 1 0 0
1 0 0 0
0 0 1 0



1

2

3

4

1

2

3

4

Figure 3.1: Different representations of assignments

considered as the projection of similarity score matrix M onto the set of permutation
matrices P and is equivalent to the LAP, as proved in the sequel. The permutation matrix
P of the alignment can be computed by solving the LAP:

minimize
P∈P

∥M−P∥2F ⇐⇒ maximize
P∈P

trace
(
MPT

)
. (3.2)

Using properties of the trace operator, the objective function can be expressed as follows:

trace
(
MPT

)
=

n∑
i=1

n∑
j=1

MijPij =
∑

(i,j)∈M

Mij . (3.3)

Using (3.3), the equivalence of (3.1) and (3.2) is clear. The intuition behind the computa-
tion of matrix P is that:

If node i ∈ V1 has high similarity Mij with node j ∈ V2 in M, then node
j = π(i) is likely to be a permutation of node i.

There exists an amazing amount of algorithms for the LAP, ranging from the simple Hun-
garian method [24] to more recent developments, involving sophisticated data structures
and including parallel algorithms [25]. The majority of the algorithms studied in Chap-
ter 4 use the exact Hungarian method, running in O(n3) time, which is acceptable for
small networks, but for the networks used in Chapter 5, which have over 103 nodes, this
method is inadequate. Hence, in this work, a greedy heuristic algorithm is used, namely
GreedyMatching [26, 27], with O(n2 log n) complexity, which has been shown to have
good performance in practice [28]. Using the similarity matrix M, the highest score Mij

is located, the pairing (i, j) is recorded, i.e. Pij = 1, and all scores involving either i or j

are deleted until all nodes are paired. The GreedyMatching algorithm is described in
Algorithm 1.
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Algorithm 1 Greedy Matching
Input: bipartite graph G = (V1,V2,W)
Output: a maximum weight matchingM⊂W

1: M← ∅
2: sort edges in W in descending order
3: while W ≠ ∅ do
4: take the edge (u, v) ∈ W with the highest weight
5: M←M∪ (u, v)
6: remove all edges incident to u or v from W
7: end while
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Chapter 4

Algorithms for the graph alignment
problem

The combinatorial nature of graph alignment implies approximate solutions, using various
optimization approaches (see [29, 30, 31]). Using linearization methods, the QAP can be
reformulated as a Mixed Integer Linear Program (MILP), which introduces a large number
of new variables and linear constraints [32]. This makes the efficient solution of the resulting
MILP a practical challenge. Various relaxations have been applied to the combinatorial
constraints of the QAP, such as convex and non-convex quadratic programming relaxations
[33], [34], Lagrangian-based relaxations [35], and semidefinite relaxations [36], which are, in
general, computationally intensive and there is no guarantee that the obtained solution will
be feasible for the original QAP. In order to obtain a feasible solution, a post-processing
discretization step often has to be performed on the result, which may increase complexity.
These considerations limit the application of such methods to small problem instances.

Spectral methods [4, 37, 38, 39] are scalable approximation methods for graph alignment
with relatively low complexity. They compute a matching based on the spectral content
of the input graph adjacency matrices. The main motivation behind this approach is
that the eigenvalues and the eigenvectors of the adjacency matrix of a graph are invariant
with respect to node permutations, meaning that, if two graphs are isomorphic, then their
adjacency matrices have the same eigenvalues and eigenvectors (the converse is not true)
[40]. There is a great interest in using eigenvalues/eigenvectors for graph alignment, since
their computation is a well studied problem, that can be solved in polynomial time [41].

As shown in Chapter 2, the graph alignment problem can be expressed in terms of
node embeddings of a given pair of graphs and, as a result, may potentially lead to more
tractable formulations of the graph alignment problem. Graph embedding approaches can
be usually viewed as finding mappings that embed nodes, subgraphs, or even whole graphs,
as points in a low-dimensional vector space [42, 43]. The main goal of these approaches
is to capture valuable information and properties of a graph in geometric relationships
in the embedding space, where several tasks can be performed naturally and at lower
complexity. One example of embedding based methods is REGAL [44], which computes
degree-based features from a node’s neighborhood at different hop-lengths, and then uses an
implicit factorization of the resulting feature matrix to form embeddings that are suitable
for network alignment. Recently, the same authors proposed CONE-Align [45], which
uses the NetMF node embeddings [15] of the two graphs and produces a matching based
on aligning the representations of the embedding subspaces. GWL [46] solves a Gromov-
Wasserstein optimization problem to jointly find node embeddings and the graph matching.



24 Chapter 4. Algorithms for the graph alignment problem

A general algorithmic idea behind most graph aligners is the two-step approach. The
first step is to compute similarities between nodes in different networks with respect to some
cost function. Then, the second step is to identify, with respect to the node similarities,
a high-scoring alignment from all possible alignments, i.e. solving the Linear Assignment
Problem.

4.1 Umeyama’s Method

A pioneering work on spectral methods is the method proposed by Umeyama [4] in 1998.
This work proposed an algorithm for the Weighted Graph Matching Problem (WGMP),
which is equivalent to (2.7).

In order to construct a similarity matrix between the vertex sets of the two graphs,
the algorithm obtains the solution to the relaxation of the QAP over the set of orthogonal
matrices, in closed form, by using the eigendecomposition of both adjacency matrices A1

and A2. Then, the similarity matrix is used to instantiate a LAP, the solution of which
corresponds to the final estimate of the alignment. The method is presented below.

Theorem 4.1.1. [47] If A and B are Hermitian matrices (A = A∗ and B = B∗) with
eigenvalues α1 ≥ α2 ≥ . . . ≥ αn and β1 ≥ β2 ≥ . . . ≥ βn, respectively, then

∥∥A−B
∥∥2
F
≥

n∑
i=1

(αi − βi)
2. (4.1)

Theorem 4.1.2. Let A and B be n×n real symmetric matrices with n distinct eigenvalues
α1 > α2 > . . . > αn and β1 > β2 > . . . > βn, respectively, and their eigendecompositions
be given by

A = UAΛAU
T
A, (4.2)

B = UBΛBU
T
B, (4.3)

where UA and UB are orthogonal matrices and ΛA = diag(αi) and ΛB = diag(βi). Then,
the following problem

minimize
Q∈O

∥∥∥A−QBQT
∥∥∥2
F
, (4.4)

where the feasible set O denotes the set of all n × n orthogonal matrices, which can be
compactly expressed as

O := {Q ∈ Rn×n | QTQ = QQT = In}, (4.5)

has closed form solution, given by

Q = UASU
T
B,

S ∈ S1 = {diag(s1, s2, . . . , sn) | si = 1 or − 1}.
(4.6)

The minimum value achieved is
∑n

i=1(αi − βi)
2.
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Proof. [4] From Theorem 4.1.1, we have that, for any orthogonal matrix R, the following
hold: ∥∥∥A−RBRT

∥∥∥2
F
≥

n∑
i=1

(αi − βi)
2, (4.7)

since eigenvalues of RBRT are the same as those of B.
On the other hand, if we use matrix Q given in (4.6), we have∥∥∥A−QBQT

∥∥∥2
F

(∗1)
=
∥∥∥UAΛAU

T
A −UASU

T
BUBΛBU

T
BUBSU

T
A

∥∥∥2
F

=
∥∥∥UA(ΛA − SΛBS)U

T
A

∥∥∥2
F

(∗2)
=
∥∥∥ΛA − SΛBS

∥∥∥2
F

(∗3)
=
∥∥∥ΛA −ΛB

∥∥∥2
F

=

n∑
i=1

(αi − βi)
2,

(4.8)

where we used

(∗1) : A = UAΛAU
T
A, B = UBΛBU

T
B and Q = UBSU

T
A,

(∗2) :
∥∥UX

∥∥
F
=
∥∥XUT

∥∥
F
=
∥∥X∥∥

F
, for any orthogonal matrix U,

(∗3) : SΛBS = S2ΛB = ΛB, since S and ΛB are both diagonal matrices and S2 = I.

Thus, the minimum value of
∥∥∥A−QBQT

∥∥∥2
F

is attained for Q’s given in (4.6). ■

In the sequel, we assume that G1 and G2 are isomorphic, meaning that ∃P ∈ P ⊂ O
such that A1 = PA2P

T , where A1 = U1Λ1U
T
1 and A2 = U2Λ2U

T
2 are the eigende-

compositions of the corresponding adjacency matrices. Thus, there exists Ŝ ∈ S1 which
renders an optimal orthogonal matrix Q of problem (4.4) a permutation matrix, expressed
as P̂ = U1ŜU

T
2 , corresponding to the permutation π̂. The following holds:

trace
(
P̂TU1ŜU

T
2

)
= trace

(
P̂T P̂

)
= trace

(
In

)
= n. (4.9)

Also, we have

trace
(
P̂TU1ŜU

T
2

)
=

n∑
i=1

n∑
j=1

ŝjU1[i, j]U2[π̂(i), j]. (4.10)

The following holds:

n∑
j=1

ŝjU1[i, j]U2[π̂(i), j] ≤

∣∣∣∣∣
n∑

j=1

ŝjU1[i, j]U2[π̂(i), j]

∣∣∣∣∣
≤

n∑
j=1

∣∣∣ŝjU1[i, j]U2[π̂(i), j]
∣∣∣

=

n∑
j=1

∣∣∣U1[i, j]
∣∣∣∣∣∣U2[π̂(i), j]

∣∣∣.
(4.11)
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Thus,

trace
(
P̂TU1ŜU

T
2

)
≤

n∑
i

n∑
j

∣∣U1[i, j]
∣∣∣∣U2[π(i), j]

∣∣ = trace
(
P̂TU1U

T
2

)
, (4.12)

where U1 and U2 are the matrices whose elements are the absolute values of the correspond-
ing elements of U1 and U2, respectively. Since the matrices U1 and U2 are orthogonal,
the following hold:∥∥∥U1[i, :]

∥∥∥
2
=
∥∥∥U1[:, i]

∥∥∥
2
=
∥∥∥U1[i, :]

∥∥∥
2
=
∥∥∥U1[:, i]

∥∥∥
2
= 1, ∀i = 1, . . . , n, (4.13)

and ∥∥∥U2[j, :]
∥∥∥
2
=
∥∥∥U2[:, j]

∥∥∥
2
=
∥∥∥U2[j, :]

∥∥∥
2
=
∥∥∥U2[:, j]

∥∥∥
2
= 1, ∀j = 1, . . . , n. (4.14)

Obviously, for all vectors x ∈ Rn holds that

∥x∥2 = ∥x∥2, (4.15)

where x is the vector whose elements are the absolute values of the corresponding elements
of x.

The Cauchy-Schwarz inequality yields:

U1[i, :]U
T
2 [j, :] ≤

∥∥∥U1[i, :]
∥∥∥
2

∥∥∥UT
2 [j, :]

∥∥∥
2
= 1. (4.16)

Thus, the following holds for each element Mij of M = U1U
T
2 :

0 ≤Mij ≤ 1. (4.17)

Thus, we have
trace

(
PTU1U

T
2

)
≤ n, (4.18)

for any permutation matrix P.
Thus, from (4.9), (4.12), and (4.18), we have

n ≤ trace
(
P̂TU1U

T
2

)
≤ n. (4.19)

This means that P̂ maximizes trace
(
PTU1U

T
2

)
, for any permutation matrix P. Therefore,

when G1 and G2 are isomorphic, the optimum permutation matrix can be obtained as a
permutation matrix P which maximizes trace(PTU1U

T
2 ); this is an instance of the LAP,

with similarity matrix M = U1U
T
2 , that is,

maximize
P∈P

trace
(
MPT

)
. (4.20)

This method computes an optimal permutation matrix when the two graphs are isomorphic
and a suboptimal permutation matrix if the graphs are nearly isomorphic. However, the
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Algorithm 2 Umeyama’s method
Input: adjacency matrices A1 and A2

Output: an estimated permutation matrix P

1: Eigenvalue Decomposition U1Λ1U
T
1 ← A1, U2Λ2U

T
2 ← A2

2: Absolute value of each element U1 ← abs(U1), U2 ← abs(U2)

3: Compute M = U1U
T
2

4: Estimate P← GreedyMatching(M)

most general case is when the graphs might even not be nearly isomorphic. In these cases,
this method may produce poor results. Umeyama’s method is presented in Algorithm 2.

4.2 IsoRank

IsoRank is a spectral method, proposed by Singh et al. [48], for pairwise global alignment
of protein-protein interaction (PPI) networks, which considers a regularized form of the
QAP (2.11). In order to obtain the solution, the algorithm applies random walks with
restarts to compute the PageRank eigenvector of the normalized Kronecker product graph
C̃ = A1⊗̃A2 = Ã1 ⊗ Ã2 [49]. The solution, which is essentially a cross-network node
similarity matrix, is used to instantiate a LAP to obtain the final alignment. For the case
of undirected, unattributed graphs, IsoRank is a special case of the more general FINAL

algorithm [50].
The key idea behind IsoRank lies in the assumption that a pair of nodes has high

similarity if their immediate neighbors have high similarities (topological similarity). In
order to compute the similarity matrix, IsoRank solves an eigenvalue problem, which
is related to the original QAP. If, instead of the adjacency matrices A1 and A2, the
normalized ones are used Ã1 and Ã2, respectively, then the objective function of the QAP
(2.11) can be expressed as:

trace
(
Ã1PÃ2P

T
)
= vec

(
P
)T (

Ã1 ⊗ Ã2

)
vec
(
P
)
, (4.21)

where we used the property trace
(
ABCD

)
= vec

(
A
)T (

D⊗B
)
vec
(
C
)

and the symmetry
of Ã1 and Ã2.

Defining the m := n2 dimensional vector s = vec(P) and the m × m matrix C̃ =

A1⊗̃A2 = Ã1 ⊗ Ã2, the objective function of (2.11) can be expressed as the quadratic
function sT C̃s. The maximization of this function is equivalent with the minimization of
sT (I − C̃)s. Putting everything together, the optimization problem of IsoRank can be
stated as follows.

argmin
s

J(s) = αsT (I− C̃)s+ (1− α) ∥s− h∥2F , (4.22)

where α is the regularization parameter. The regularization term ∥s− h∥2F reflects the prior
alignment preference, where h = vec(H), with element Hij of matrix H corresponding to
the elemental similarity score between node i ∈ V2 and j ∈ V1. The norm of vector h is
normalized to unity. Topological similarity and elemental similarity of nodes are scaled by
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factors α ≤ 1 and 1−α, respectively. In the specific application context of [48], h encodes
protein sequence similarity scores (BLAST scores), and protein interaction networks G1

and G2 are undirected.

Using the fact that the objective function in (4.22) is quadratic, a solution can be found
[50] by setting its derivative to be zero, that is,

∂J(s)

∂s
= 2(I− αC̃)s+ 2(1− α)h = 0. (4.23)

This equation is difficult to solve directly, due to the very large dimension of C̃. Instead,
we use the following iterative procedure:

sk+1 = αC̃sk + (1− α)h, (4.24)

which computes a PageRank eigenvector

sk+1 = αGsk + (1− α)v, (4.25)

where the Google matrix G for one graph is replaced by the C̃ matrix (the Kronecker
product of the normalized adjacency matrices of two graphs) and the personalization vector
v (user preferences in browsing) is replaced by h (prior alignment preferences).

IsoRank is equivalent to FINAL-P (proof in A.1), which is a variant of FINAL with
unavailable node and edge attributes and uses the iteration step

sk+1 = αD
− 1

2
U (A1 ⊗A2)D

− 1
2

U sk + (1− α)h, (4.26)

where DU = D1 ⊗ D2, D1 and D2 are the degree matrices of A1 and A2, respectively.
FINAL avoids the costly computation of the Kronecker product between A1 and A2 by
using the property vec(ABC) = (CT ⊗A) vec(B). Thus, the iteration step becomes

sk+1 = αD
− 1

2
U (A2QA1) + (1− α)h, (4.27)

where Q is an n×n matrix reshaped by q = D
− 1

2
U sk in column order, i.e., Q = mat(q, n, n).

In order to obtain the final alignment, the last step of the algorithm entails the projec-
tion of similarity matrix S = mat(s, n, n) onto the set of permutation matrices P, which
can be done by solving the LAP

maximize
P∈P

trace
(
SPT

)
. (4.28)

IsoRank is described in Algorithm 3.

Equation (4.24) describes a random walk on the normalized Kronecker product graph
of G1 = (V1, E1) and G2 = (V2, E2). The standard way to define a random walk on a graph
is to allow a random walker to take off on an arbitrary node and then successively visit new
nodes by randomly selecting one of the outgoing edges, according to a Markov transition
kernel of the graph. In this case, the transition matrix is C̃. In every iteration, the random
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Algorithm 3 IsoRank (FINAL-P)
Input: adjacency matrices A1 and A2, prior alignment preference H, the regulariza-

tion parameter α, and the maximum iteration number kmax

Output: an estimated permutation matrix P

1: Construct degree matrix DU

2: Initiate the alignment s = h = vec(H), and k = 1
3: while k ≤ kmax do
4: Compute vector q = D

− 1
2

U s
5: Reshape q as Q = mat(q, n, n)

6: Update sk ← αD
− 1

2
U vec(A2QAT

1 ) + (1− α)h
7: if sk has converged to sk−1 then
8: Set k ← kmax

9: end if
10: Set k ← k + 1
11: end while
12: Reshape s as S = mat(s, n, n)
13: Estimate P← GreedyMatching(S)

walker has a probability C̃ij to go from node j to node i and a probability si to be in node
i. There is also a probability of going back to the starting node, i.e. restart. So, the task
is to find the value of s such that further iterations will not affect the probabilities. Thus,
IsoRank can be considered as a random walk with restarts.

4.3 Low-Rank Align (LRA)

LRA is a spectral alignment method for approximately solving the QAP (2.11) on undi-
rected graphs, recently proposed by Feizi et al. [39]. In the first step, LRA solves a rank-k
approximation of the QAP over the relaxed feasible set of orthogonal matrices. At the
second step, an alternating optimization framework is adopted to solve a variation of the
QAP with two optimization variables. The update of one variable entails solving a discrete
optimization problem, which is heuristically solved by searching in a reduced space (deter-
mined by the solution of the first step), while the second variable is updated by solving a
LAP.

Relaxing the QAP (2.11) as follows:

maximize
Q∈O

trace
(
A1QA2Q

T
)
, (4.29)

where the feasible set O denotes the set of all n × n orthogonal matrices, the problem
has closed form solutions given by Theorem 4.1.2. Other relaxations can be considered as
well. The feasible set of (4.29) can be any superset of permutation matrices P, but let
us consider the set of orthogonal matrices O. Recall that optimal solutions can be found
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using the eigendecomposition of matrices A1 = U1Λ1U
T
1 and A2 = U2Λ2U

T
2 as follows:

Q = U1SU
T
2 =

n∑
i=1

siU1[:, i]U2[:, i]
T ,

S ∈ S1 = {diag(s1, s2, . . . , sn) | si = 1 or − 1}.

(4.30)

Let the set that represents multiple optimal solutions of problem (4.29) be expressed as

P0 := {Q ∈ O | Q =
n∑

i=1

siU1[:, i]U2[:, i]
T , s ∈ {−1, 1}n}, (4.31)

where si is the i-th component of vector s. If v is an eigenvector of a matrix corresponding
to the eigenvalue λ, −v is also an eigenvector of the same matrix with the same eigenvalue.
P0 can have at most 2n distinct elements.

The authors of LRA proposed the following two variable variation of the QAP (2.11)

maximize trace
(
A1QA2P

T
)

subject to P ∈ P,

Q ∈ P0,

(4.32)

which considers all the optimal solutions of set P0.

By a slight abuse of notation, let

Q(r) =

n∑
i=1

sr[i]Λ1[i, i]Λ2[i, i]U1[:, i]U2[:, i]
T (4.33)

be the solution to problem (4.29) in terms of vertex sr of the hypercube S = {s1, . . . , sR},
where sr ∈ {−1, 1}n and R = 2n. Q(r) can be considered a similarity matrix using
simultaneous alignment of eigenvectors whose contributions in the overall alignment score
are weighed by their corresponding eigenvalues.

Following an alternating optimization framework, for a fixed Q(sr), ∀sr, (4.32) is a
LAP

maximize trace

((
n∑

i=1

sr[i]Λ1[i, i]Λ2[i, i]U1[:, i]U2[:, i]
T

)
PT

)
subject to P ∈ P,

sr ∈ {−1, 1}n, ∀1 ≤ r ≤ n.

(4.34)

The alignment with the highest score (maximum value of the objective function) is con-
sidered as the final alignment of the algorithm.

However, there are possibly exponentially many problems of the form of (4.34) and
corresponding optimal solutions and obtaining the resulting permutation matrices would
be computationally infeasible. Eigenvectors with small eigenvalues have no significant
contribution to the objective function of (4.34), meaning that a low rank approximation
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Algorithm 4 Low-Rank Align (LRA)
Input: adjacency matrices A1 and A2 and the approximation rank k
Output: an estimated permutation matrix P

1: Eigenvalue Decomposition using the largest k eigenvalues and their corresponding
eigenvectors U1Λ1U

T
1 ← A1, U2Λ2U

T
2 ← A2

2: Form all the R = 2k possible combinations of sign vectors, as the vertex set of the
hypercube S = {s1, . . . , sR}

3: for r = {0, . . . , R} do
4: Compute Q(r) =

∑k
i=1 sr[i]Λ1[i, i]Λ2[i, i]U1[:, i]U2[:, i]

T

5: Estimate P(r)← GreedyMatching(Q(r))
6: Compute g(r) = trace

(
A1P(r)A2P(r)T

)
7: end for
8: Find ropt where g(r) is maximum
9: return matrix P← P(ropt)

could be used as a good heuristic:

maximize trace

((
k∑

i=1

sr[i]Λ1[i, i]Λ2[i, i]U1[:, i]U2[:, i]
T

)
PT

)
subject to P ∈ P,

sr ∈ {−1, 1}k, ∀1 ≤ r ≤ k.

(4.35)

where k is a constant that determines the rank of the affinity matrix. LRA is described
in Algorithm 4. The number of the problems of the form (4.35) that are solved is equal to
2k ≪ 2n.

4.4 CONE-Align

CONE is a joint embedding and alignment algorithm proposed recently by Chen et al.
[45], and has three stages. In the first stage, the NetMF method is used to obtain node
embeddings of the two graphs. Then, the embedding subspaces are aligned by adopting a
Wasserstein-Procrustes framework [51]. In the last step, the final alignment is obtained by
employing kd-trees for fast nearest node embedding search.

The name of the algorithm stands for CONsistent Embedding-based network Align-
ment. The authors defined the principle of Matched Neighborhood Consistency (MNC):

Let NG1(i) be the neighbors of node i ∈ V1, i.e. nodes that share an edge with
i. Node i’s “mapped neighborhood” in G2 is defined as the set of nodes onto
which π maps i’s neighbors: Ñ π

G2
(i) = {j ∈ V2 : ∃k ∈ NG1(i) s.t. π(k) = j}.

The Matched Neighborhood Consistency (MNC) of node i ∈ V1 and j ∈ V2 is
defined as the Jaccard similarity of the two sets:

MNC(i, j) =

∣∣∣Ñ π
G2

(i) ∩NG2(j)
∣∣∣∣∣∣Ñ π

G2
(i) ∪NG2(j)

∣∣∣ . (4.36)
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Algorithm 5 NetMF
Input: the adjacency matrix A, the approximation rank h of eigenpairs, the embedding
dimension d, the window size T and the number of negative samples α
Output: node embedding E

1: Eigenvalue Decomposition using the largest h eigenvalues and their corresponding
eigenvectors UhΛhU

T
h ← D− 1

2AD− 1
2

2: Approximate M̂ = nnz(A)
α D− 1

2Uh

(
1
T

∑T
r=1Λ

r
h

)
UT

hD
− 1

2

3: Compute M̂′ = max
(
M̂, 1

)
4: Rank-d approximation of element-wise logarithm by SVD UdΣdV

T
d ← log

(
M̂′
)

5: return E = Ud

√
Σd

In the first step, the normalized node embeddings E1,E2 ∈ Rn×d are computed, using any
popular embedding method that preserves intra-graph node proximity. This means that,
if neighboring nodes in each graph have similar embeddings, then they will be mapped
closely by using embedding similarity, which preserves the MNC; even when nodes are not
neighbors due to missing edges [52], many node embedding algorithms preserve any higher-
order proximities they share. The authors used NetMF, which is described in Algorithm
5, with the default settings: approximation of the normalized graph Laplacian with 256
eigenpairs, embedding dimension d = 128, context window size w = 10 and α = 1 negative
samples.

The two node embeddings E1 and E2 may be translated, rotated, or rescaled relative
to each other, due to the invariance of the embedding objective. Thus, in order to com-
pare them, in the second step, embedding subspaces should be aligned. Inspired by [51],
an alternating optimization framework is adopted to solve the two variable problem of
Procrustes in Wasserstein distance, which is described in the sequel.

Procrustes analysis learns a linear transformation between two sets of matched points
E1 and E2. If the node correspondences were known, then a linear embedding transforma-
tion Q could be recovered from the set of orthogonal matrices O. Q aligns the columns of
the node embedding matrices, i.e. the embedding spaces, and can be obtained by solving
an orthogonal Procrustes problem (column permutation)

minimize
Q∈O

∥E1Q−E2∥2F . (4.37)

As shown by Schönemann [53], the orthogonal Procrustes problem has a closed form solu-
tion equal to Q∗ = UVT , where [U,Σ,V] = svd(ET

1 E2) is the Singular Value Decompo-
sition of ET

1 E2, i.e. ET
1 E2 = UΣVT .

The Wasserstein distance is used to measure the distance between sets of points. If
the embedding space transformation were known, then the optimal node correspondence
P could be recovered from the set of permutation matrices P. P aligns the rows of the
node embedding matrices, i.e. the nodes. It can be obtained by minimizing the squared
Wasserstein distance (row permutation)

minimize
P∈P

∥E1 −PE2∥2F , (4.38)
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Algorithm 6 Frank-Wolfe
Input: convex, differentiable real-valued function f(x) with convex domain D
Output: approximate solution x(n0) = argminx∈D f(x)

1: Let x(0) ∈ D
2: for k = {0, . . . , n0} do
3: Compute the direction, via Sinkhorn, s = argmins∈D⟨s,∇f(x(k))⟩
4: Set the step size γ = 2

k+2

5: Update x(k+1) = (1− γ)x(k) + γs
6: end for

Algorithm 7 Sinkhorn (LOT)
Input: transportation cost matrix M and transportation polytope Ur,c = {P ∈
Rn×n
+ | P1n = r,PT1n = c}

Output: a transportation matrix P = argminP∈Ur,c
⟨P,M⟩F

1: Compute the element-wise exponential K = exp(−λM)
2: Set u(0) = 1
3: while u changes do
4: Compute element-wise division v(i) = c⊘KTu(i−1)

5: Compute element-wise division u(i) = r⊘Kv(i)

6: end while
7: return P = diag(u)K diag(v)

which is an instance of the LAP.

However, neither the correspondences nor the transformation are known. Formally, the
goal is to learn an orthogonal matrix Q ∈ O, such that the set of points E1 is close to the
set of points E2 and one-to-one correspondences can be inferred. Using the Wasserstein
distance defined in (4.38), as the measure of distance between the two sets of points and
combining it with the orthogonal Procrustes defined in (4.37), leads to the problem of
Procrustes in Wasserstein distance

minimize
Q∈O,P∈P

∥E1Q−PE2∥2F ⇐⇒ maximize
Q∈O,P∈P

trace
(
QTET

1 PE2

)
. (4.39)

The authors solve this problem with a stochastic optimization scheme, alternating between
the Wasserstein and Procrustes problems. For T iterations, a temporary embedding trans-
formation Q is used to find a matching Pt for mini-batches E1t and E2t of size b × d

embeddings each, using GreedyMatching. The gradient of the Wasserstein Procrustes
distance ∥E1tQ − PE2t∥2F , with respect to Q, for fixed E1

T
t ,E2t and Pt, is equal to

2E1
T
t PtE2t and is used for the update of Q in gradient descent.

To initialize the above nonconvex procedure, a convex relaxation to the original QAP
(2.7) can be used

minimize
P∈B

∥A1P−PA2∥2F , (4.40)

where B is the convex hull of P, the set of doubly stochastic matrices, namely the Birkhoff
polytope, which can be compactly expressed as

B := {P ∈ Rn×n | PT1n = 1n, P1n = 1n}. (4.41)
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Algorithm 8 CONE-Align
Input: the adjacency matrices A1 and A1

Output: an estimated permutation matrix P

1: Get the node embeddings E1 ← NetMF(A1), E2 ← NetMF(A2)
2: Normalize the embeddings E1 =

E1
∥E1∥F , E2 =

E2
∥E2∥F

3: Approximate, via Frank-Wolfe, P∗ = argminP∈B ∥A1P−PA2∥2F
4: Singular Value Decomposition UΣVT ← ET

1 P
∗E2

5: Compute Q = UVT

6: for t = {1, . . . , T} do
7: Approximate Pt ← GreedyMatching(E1tQE2

T
t )

8: Compute gradient Gt = −2E1
T
t PtE2t

9: SVD of descending, with learning rate η, UΣVT ← Q− ηGt

10: Update Q = UVT

11: end for
12: Estimate P← GreedyMatching(E1QET

2 )

The global minimizer P∗ of (4.40) can be found via the conditional gradient method,
also known as Frank-Wolfe algorithm [54], which is described in Algorithm 6. The
authors solve the direction-finding subproblem with the Lightspeed Optimal Transport
(LOT) algorithm, which is a regularized variation of the Sinkhorn algorithm [55], with
regularization parameter λ0, and described in Algorithm 7. Using E1 and P∗E2, an initial
Q can be generated with orthogonal Procrustes (4.37).

After aligning the embeddings with the final transformation Q, in the last step, the
authors proposed the use of a kd-tree for fast nearest neighbor search between E1Q and
E2 to match each node in G1 to its nearest neighbor in G2 based on Euclidean distance.
However, this stage does not find a one-to-one correspondence mapping in all cases. Thus,
the GreedyMatching algorithm is applied. CONE is described in Algorithm 8.
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Chapter 5

Experimental Evaluation

This chapter adopts a standard experimental setup and compares graph alignment algo-
rithms. The algorithms described in Chapter 4 are evaluated using both real and synthetic
graphs, where the edges have been perturbed with a fixed amount of noise and nodes have
been permuted.

All algorithms are implemented in MATLAB 2015a. For IsoRank (FINAL-P) 1 and
LRA 2 the authors’ original MATLAB codes are used. A simple script for Umeyama’s
method is implemented and for CONE the original Python code 3 is re-implemented in
MATLAB. The experiments were carried out on a Windows computer equipped with a
AMD Ryzen 5 CPU and 16 GB RAM.

5.1 Datasets

5.1.1 Real-world Networks

Standard network repositories provide plenty of network datasets. The real-world datasets
that are used in the experiments can be found in the Koblenz Network Collection (KONECT)
[56] and are listed in Table 5.1. These include (i) metabolic networks (C. Elegans and
Yeast), where nodes are chemical substances and edges represent chemical interactions,
(ii) a communications network at the University Rovira i Virgili (Arenas-Email), where
nodes are users and each edge represents that at least one email was sent, (iii) a social net-
work (PolBlog) of hyperlinks between political blogs about politics in the United States
of America, and (iv) infrastructure networks: (Airports) flights between US airports in
2010, where each edge represents a connection from one airport to another and E-road

the international E-road network, where each edge represents that two cities are connected
by an E-road.

5.1.2 Synthetic Networks

The synthetic networks are created following the Erdös-Rényi (ER) model and their statis-
tics are shown in Table 5.2. A random graph Gn,p has n nodes and each edge is formed
with probability p. Using p > (1+ϵ) lnn

n the graph will be connected with high probability
[57]. In the experiment, each random graph has 1024 nodes and edge probability in the
set {0.01, 0.1, 0.25, 0.3, 0.4, 0.5}.

1https://github.com/sizhang92/FINAL-KDD16
2https://github.com/SoheilFeizi/spectral-graph-alignment
3https://github.com/GemsLab/CONE-Align
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Graph n m d̄ c1
∣∣λ1
λ2

∣∣ Type

C. Elegans 453 2,025 8.9 0.124 1.752 Metabolic
E-road 1,039 1,305 2.5 0.035 1.023 Infrastructure

Arenas-Email 1,133 5,451 9.6 0.166 1.223 Communications
PolBlog 1,222 16,714 27.4 0.226 1.236 Hyperlink
Yeast 1,458 1,948 2.7 0.052 1.002 Metabolic

Airports 1,572 17,214 21.9 0.384 3.234 Infrastructure

Table 5.1: Description of the networks used: the number of vertices n, the number of edges
m, the average degree d̄, the global clustering coefficient c1, the spectral separation

∣∣λ1
λ2

∣∣
and the network type.

p n m d̄ c1
∣∣λ1
λ2

∣∣
0.01 1,024 5,403 10.6 0.01 1.746
0.1 1,024 52,502 102.5 0.1 5.399
0.25 1,024 131,254 256.4 0.25 9.199
0.3 1,024 157,398 307.4 0.3 10.566
0.4 1,024 210,628 411.4 0.4 12.978
0.5 1,024 261,592 510.9 0.5 15.944

Table 5.2: Description of the synthetic networks: the edge probability p, the number of
vertices n, the number of edges m, the average degree d̄, the global clustering coefficient
c1 and the spectral separation

∣∣λ1
λ2

∣∣.
5.2 Experimental Setup

The experimental setup of [58, 30, 59] is adopted. If the original graph is directed, it is
converted into undirected by performing a symmetrization step. Additionally, all self-loops
and edge weights are removed. Hence, every graph in the experiments is considered simple,
undirected, and unweighted. To increase fairness, only the largest connected component
of the input graph is considered.

In order to create an instance of the graph alignment problem, for each graph G1, a
“noisy” and permuted version is constructed by randomly adding new edges with probability
pe. The adjacency matrix of G2 is

A2 = PT [A1 + (1−A1)⊙Q]P, (5.1)

where the operator “⊙” denotes the Hadamard (element-wise) product, Q is the adjacency
matrix of a random Erdős-Rényi graph Gn,p [57], and P ∈ P denotes a randomly generated
permutation matrix. The number of additional edges that appear in A2 is controlled by
varying the noise level pe, such that the expected percentage of extra edges in G2 is equal
to a fixed number between 0% and 25% of the total edges in G1. Matrix (1 −A1) is the
adjacency matrix of the complement of graph G1 and has

(
n
2

)
−m edges, i.e., the maximum

possible edges of an undirected graph with n nodes minus the m edges of graph G1.
The element-wise multiplication with matrix Q yields a random selection of

((
n
2

)
−m

)
p

expected extra edges. Thus, in order to add pem edges, p should be chosen such that
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equation ((
n

2

)
−m

)
p = pem

holds. Hence,
p =

pem((
n
2

)
−m

) .
For each noise-level, the results are averaged over 20 Monte-Carlo runs.

5.3 Quality Measures

In the graph alignment problem, unfortunately there is no panacea for evaluation, i.e., a
best alignment is unknown. The existence of an alignment is guaranteed for the considered
problem setup, but the uniqueness of the minimizer is not, in general, given the possible
presence of topologically-invariant subgraphs, such as cliques and star graphs. Several
widely-used measurements in the field of graph alignment are introduced in this section.
In order to explain the definitions of the following metrics, let us recall that each algorithm
returns an alignment

P̂ = argmin
P∈P

∥∥A1 −PA2P
T
∥∥2
F
= argmax

P∈P
trace

(
A1PA2P

T
)
, (5.2)

and let the ground truth correspondence for the construction of adjacency matrix A2 in
(5.1) be P∗.

5.3.1 Node Correctness (NC)

NC is the percentage of the correctly aligned nodes with respect to the true alignment [60].
In matrix form:

NC =
nnz
(
P̂⊙P∗)
n

, (5.3)

where the nnz(·) function counts the nonzero elements of the argument matrix.

5.3.2 Edge Correctness (EC)

EC is the ratio of the number of conserved edges to the total number of edges in the source
network [60]:

EC =
nnz
(
A1 ⊙

(
P̂A2P̂

T
))

2m
. (5.4)

5.3.3 Induced Conserved Structure (ICS)

ICS is the ratio of the number of conserved edges to the number of edges in the subnetwork
of G2 induced on the nodes in G2 that are aligned to the nodes in G1 [38]:

ICS =
nnz
(
A1 ⊙

(
P̂A2P̂

T
))

nnz
(
P̂A2P̂T

) . (5.5)
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5.3.4 Symmetric Substructure Score (S3)

S3 normalizes the number of conserved edges over both the source and the target graphs
[61]:

S3 =
nnz
(
A1 ⊙

(
P̂A2P̂

T
))

2m+ nnz
(
P̂A2P̂T

)
− nnz

(
A1 ⊙

(
P̂A2P̂T

)) . (5.6)

5.3.5 Matched Neighborhood Consistency (MNC)

MNC is the Jaccard similarity of the mapped neighborhood of a node i ∈ V1 and a node
j ∈ V2 [45]. The matrix form of MNC is [62]:

MNC = A1P̂A2 ⊘
(
A1P̂1⊗ 1+ 1⊗A21−A1P̂A2

)
, (5.7)

where “⊘” denotes the element-wise division. The final score is the average MNC among
all nodes

MNC = mean
((

MNC⊙ P̂
)
1
)
. (5.8)

5.3.6 Wall time

Wall time (also called elapsed real time or runtime) is the actual time taken from the start
of an algorithm to the end.

5.4 Results and Discussion

5.4.1 Network Statistics

The network statistics of Table 5.1 are used in order to analyze the performance of each
algorithm. The number of vertices n and the number of edges m have already been given.
The other network statistics are defined in the KONECT Handbook [63].

The average degree d̄ is the average number of edges incident to a node in the network

d̄ =
1

|V|
∑
u∈V

d(u) =
2m

n
. (5.9)

The spectral separation
∣∣λ1
λ2

∣∣ equals the ratio of the largest absolute eigenvalue of the
adjacency matrix A to the second largest absolute eigenvalue.

The global clustering coefficient c1 (also called transitivity) of a network is the proba-
bility that two incident edges are completed by a third edge to form a triangle [64]

c1 =

∣∣{u, v, w ∈ V | (u, v), (v, w), (w, u) ∈ E}∣∣∣∣{u, v, w ∈ V | (u, v), (v, w) ∈ E}∣∣ =
3t

s
=

3 trace(A3)
3!∑

u∈V
(
d(u)
2

)
=

trace(A3)∑
u∈V d(u)(d(u)− 1)

,

(5.10)

where t is the number of triangles on the graph, which equals to the number of walks of
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length 3 divided by the number of permutations of 3 vertices 3! = 6, and s is the number
of 2-stars (also called wedges), which is a sum of combinations over all vertices. The factor
of 3 derives from the fact that the number of triangles ignores multiplicities, in contrast
with the number of wedges, and each triangle results in 3 connected triples of vertices, one
for each of its 3 vertices. Thus, the clustering coefficient c has values between zero, when it
is triangle free, and one, when all possible triangles are formed (i.e., the network consists
of disconnected cliques).

The average local clustering coefficient is defined as follows:

c2 =
1

|V|
∑
u∈V

c(u), (5.11)

where c(u) is the local clustering coefficient of node u. This metric places more weight on
the low degree nodes, while the transitivity ratio places more weight on the high degree
nodes. The local clustering coefficient is the probability that two randomly chosen and
distinct neighbors of u are connected [65]

c(u) =


∣∣{v,w∈V | (u,v),(v,w),(w,u)∈E}

∣∣∣∣{v,w∈V | (u,v),(v,w)∈E}
∣∣ = A3[u,u]

d(u)(d(u)−1) , when d(u) > 1,

0, when d(u) ≤ 1,

(5.12)

where A3[u, u] is the diagonal element of the third power of adjacency matrix A corre-
sponding to node u.

Some very clustered parts and some less clustered parts could exist in a network, while
another network might have many nodes with a similar clustering coefficient. Thus, the
distribution of the clustering coefficient over the nodes in a network raises interest. The
cumulative distribution of each real-world and each synthetic network, is illustrated in
Figures 5.1 and 5.2, respectively. The distributions are compared with their correspond-
ing normal distributions with mean and standard deviation derived from the true local
clustering coefficient of each dataset.
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Figure 5.1: Empirical Cumulative Distribution Function F̂ (c) of local clustering coefficient
c(u) across real-world datasets, compared with the Cumulative Distribution Function of
the corresponding normal distribution F (c;µc, σc), with mean µc and standard deviation
σc.

5.4.2 Real-world networks

Edge Correctness: The EC of each algorithm is shown in Figure 5.3. The performance of
Umeyama is similar across the datasets and unaffected by their network statistics, except
for the Yeast dataset, which is the most challenging one for all algorithms. IsoRank has
the worst performance, considering that no prior alignment preferences are given in order
to guarantee fairness in the experiment, and improves with spectral separation increasing.
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Figure 5.2: Empirical Cumulative Distribution Function F̂ (c) of local clustering coefficient
c(u) across synthetic datasets, compared with the Cumulative Distribution Function of the
corresponding normal distribution F (c;µc, σc), with mean µc and standard deviation σc.

The performance of LRA improves naturally with spectral separation increasing, given
that the algorithm relies on the k-largest eigenvalues of the adjacency matrix (k = 3 in the
experiments). CONE has the best overall performance and is affected by how close is the
distribution of the clustering coefficient is to a normal distribution in Figure 5.1.
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Figure 5.3: Edge Correctness vs. Noise level across real-world datasets. The higher the
score, the better.

Node Correctness: The NC of each algorithm is shown in Figure 5.4. Naturally, NC
is a more punishing metric than EC, even for 0% noise, considering the symmetries existing
in real-world networks [66]. Thus, NC exhibits lower performances, with CONE being the
overall best and declining less sharply than the other algorithms as noise increases.
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Figure 5.4: Node Correctness vs. Noise level across real-world datasets. The higher the
score, the better.

Matched Neighborhood Consistency: MNC, as shown in Figure 5.5, is more strict
than NC, except for 0% noise. Note that, in contrast with EC and NC, the theoretical
best is affected by the noise level depending on how much the structure of the network
changes, which explains the lower performance of the algorithms.
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Figure 5.5: Matched Neighborhood Consistency vs. Noise level across real-world datasets.
The higher the score, the better.

Induced Conserved Structure: An alignment with a high EC score may not neces-
sarily be the best alignment (Figures 5.4, 5.5). ICS penalizes alignments mapping sparser
network regions to denser ones. Thus, ICS scores are slightly lower than EC, following a
similar slope, as shown in Figure 5.6.
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Figure 5.6: Induced Conserved Structure vs. Noise level across real-world datasets. The
higher the score, the better.

Symmetric Substructure Score: S3 penalizes both alignments that map denser
network regions to sparser ones and alignments that map sparser network regions to denser
ones. Thus, S3 scores are slightly lower than ICS, following a similar slope, as shown in
Figure 5.7.
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Figure 5.7: Symmetric Substructure Score vs. Noise level across real-world datasets. The
higher the score, the better.

Wall time: The wall time of each algorithm, as shown in Figure 5.8, naturally depends
on the number of vertices n and the number of edges m and it appears to be unaffected by
the noise level. Umeyama takes the least time to execute and CONE the most, without
being unaffordable.
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Figure 5.8: Wall time (in seconds) vs. Noise level across real-world datasets. The lower
the curve, the better.

5.4.3 Synthetic Networks

Edge Correctness: As shown in Figure 5.9, CONE achieves high EC in synthetic net-
works, especially in cases where p ∈ {0.1, 0.25, 0.3}, considering that, as shown in Figure
5.2, their clustering coefficient distribution is concentrated around its mean, the average
local clustering coefficient. Umeyama, IsoRank and LRA have commonly low perfor-
mance, given that the spectrum of Erdös-Rényi graphs yields inadequate content, because
it has the same distribution as that of the Gaussian orthogonal ensemble [67]. Their
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Figure 5.9: Edge Correctness vs. Noise level across synthetic datasets. The higher the
score, the better.

performance improves as edge probability p increases.
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Figure 5.10: Node Correctness vs. Noise level across synthetic datasets. The higher the
score, the better.

Node Correctness: As |p − 0.25| increases the NC scores of CONE, as shown in
Figure 5.10, differ more from their corresponding EC in Figure 5.9, considering that the
asymmetries in a Erdös-Rényi graph are decreasing [68]. The other algorithms achieve zero
NC for noise higher than 5%.
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Figure 5.11: Matched Neighborhood Consistency vs. Noise level across synthetic datasets.
The higher the score, the better.

Matched Neighborhood Consistency: The theoretical best MNC, as shown in
Figure 5.11, is affected by noise level regardless of the edge probability p. This has influence
on the performance of the algorithms.
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Figure 5.12: Induced Conserved Structure vs. Noise level across synthetic datasets. The
higher the score, the better.

Induced Conserved Structure and Symmetric Substructure Score: ICS and
S3, as shown in Figures 5.12 and 5.13, respectively, follow the same pattern as in real-world
networks.
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Figure 5.13: Symmetric Substructure Score vs. Noise level across synthetic datasets. The
higher the score, the better.

Wall time: As shown in Figure 5.14, the wall time of IsoRank, LRA and CONE

is affected by the edge probability p and increases with noise level. The wall time of
Umeyama depends only on the number of nodes and is unaffected by the noise level.
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Figure 5.14: Wall time (in seconds) vs. Noise level across synthetic datasets. The lower
the curve, the better.
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Chapter 6

Conclusion and future work

In this thesis, we provide a comprehensive presentation and comparison of state-of-the-art
graph alignment techniques. With generalized mathematical formulations of the graph
alignment problem and the Linear Assignment Problem, the algorithms can be compared
fairly using several widely used measures in the literature, regarding network topological
properties.

Edge Correctness is the most common measure, but it is the most tolerant one. Node
Correctness is too strict, because it ignores the possible symmetries in a network. Symmet-
ric Substructure Score and Matched Neighborhood Consistency are the most fair measures.

CONE is affected by the distribution of the local clustering coefficient, performs excel-
lent over synthetic networks and has the best overall performance in real-world networks,
but is the most time costly. LRA succeeds when the largest absolute eigenvalues are far
apart. IsoRank has the worst overall performance, given that the method relies on prior
alignment preference and drops all the constrains of the Quadratic Assignment Problem.
Umeyama has steady, but not outstanding, performance over real-world datasets, is the
most time efficient and is unaffected by network topological properties.

As future work, one could include exhaustive parameter tuning for the algorithms,
instead of using the defaults. Furthermore, directed graphs and attributed networks may
need different formulations, leading to different algorithmic approaches. Finally, given that
there exist a vast amount of algorithms that solve the graph alignment problem, but are
not mentioned in this work, there is always room for further study.
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Appendix A

Proofs

A.1 Equivalence of IsoRank and FINAL-P

It is easy to show the equivalence of IsoRank and FINAL-P:
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