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Summary 
 

In the first part of the Thesis, the theoretical background will be provided for Artificial Intelligence, 

Machine Learning, Supervised and Unsupervised Learning and Clustering in order to provide the basis for 

understanding the next chapters. In the second chapter, the theoretical and mathematical background is 

provided for each clustering algorithm that will be implemented. In the third chapter of the Thesis the 

different clustering assessment metrics are discussed and their mathematical background is presented. In the 

fourth chapter the basic steps of the implementation that will be carried out in order to provide the necessary 

outputs will be described. The intended output/result of the Thesis is the development of a software script in 

Python capable to take different datasets as an input, implement different clustering methods and export the 

clustering performance metrics. The correct operation of the developed script is shown in the final chapter 

where an example dataset is used to showcase the capabilities of the script by presenting the results/outputs 

of the script along with commentary. A manual covering the basic elements of the script can be found in the 

same chapter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Chapter 1 - Theoretical Background  
 

 

Artificial Intelligence (AI) 

 

Artificial Intelligence is a developing technology which tries to simulate human intellectual and how the 

human mind functions. In the year 1950, John McCarthy was the first to conceive the term Artificial 

Intelligence. He stated that every single part of learning or any other element of intelligence can be precisely 

described in a way that a machine can simulate it. He also stated that an effort will be made to explore ways 

to make machines improve themselves and solve the kind of problems that are typically reserved only for 

humans. 

(Source: https://towardsdatascience.com/advantages-and-disadvantages-of-artificial-intelligence-182a5ef6588c) 

 

Artificial Intelligence is the ability of a computer program to perform tasks that would normally require 

human intelligence. Such tasks are language translation, speech recognition, decision-making, and visual 

awareness and perception. AI combines a very extensive range of technologies that include machine 

learning, natural language processing, computer vision, cognitive computing, deep learning and neural 

networks. 

 

 

Branches of AI Based on Capabilities 

Source: https://rancholabs.medium.com/6-major-sub-fields-of-artificial-intelligence-77f6a5b28109 



 

 

The six primary subfields of Artificial Intelligence are:  

 

• Machine Learning is a subfield of artificial intelligence that enables computers to learn from various 

data, be able to recognize patterns and also improve their performance by themselves without human 

interference and input. Machine learning is able to classify, interpret and estimate data from even a 

complex data set. 

 

• Natural language processing (NLP) is a subfield of artificial intelligence that allows computers and 

humans to effectively communicate using natural language. This is accomplished through various 

methods such as text translation, speech recognition and sentiment analysis. 

 

 

• Neural Network is a subfield of artificial intelligence that integrates cognitive science into machines 

in order to perform tasks. In more simple words, a Neural Network imitates how the human brain 

works by identifying existing connections among large amounts of data. Neural Networks are 

currently used for risk analysis, fraud detection, sales forecast etc. 

 

• Computer vision is a subfield of artificial intelligence that enables the computer to interpret visual 

input from real images. Computer vision is extensively applied in the healthcare sector in order to 

evaluate a patient’s status and existing condition by interpreting MRI scans, X-rays and other 

available imaging methods.  

 

• Deep Learning is a method of learning in which the machine analyses the input data until it identifies 

a sole satisfactory output. This method is also known as self-learning of machines/computers. The 

main concept of Deep Learning is that a machine/computer is be able to find an acceptable solution 

by performing a loop of repetitive takes and self-analyzing. 

 

• Cognitive Computing is a subfield of artificial intelligence that is capable of simulating human 

intelligence in machines/computers. In order to do that it uses self-learning algorithms that are in turn 

making use of a range of technologies like data mining, pattern recognition, and natural language 

processing. The aim is to manage to effectively simulate the human thought process in a computer 

model. A currently popular example of cognitive computing is Google Assistant. 

 

 

Sources: 

https://www.softwaretestinghelp.com/what-is-artificial-intelligence/ 

https://www.dataversity.net/what-is-cognitive-computing/ 

 

https://en.wikipedia.org/wiki/Data_set
https://en.wikipedia.org/wiki/Machine_learning


 

 

Machine Learning (ML)  

 

Machine learning is a subfield of artificial intelligence, which is defined as the ability of a machine to 

emulate intelligent human thinking and solve problems like humans do. Machine learning was defined in the 

1950s by Arthur Samuel as the area of study that gives the ability to computers to learn without the need of a 

human input to program them. The main approach of Machine learning is to let computers program 

themselves through previous human inputs and experience. 

 

There are three main types of machine learning:  

• supervised learning  

• unsupervised learning 

• reinforcement learning  

 

Supervised machine learning models are trained with data that has labels, which allows the models to learn 

and become more precise in their future predictions. For example, an algorithm would be trained with 

images of fruits and other random things, that are already labeled by a human. The machine would then 

learn different ways to identify labels of new and unseen pictures of fruits on its own without human 

interference and input. Unsupervised machine learning models on the other hand are able to work with data 

that has no available labels. Unsupervised machine learning algorithms are capable to discover patterns that 

people aren’t intentionally looking for and/or are unable to pinpoint. As an example, an unsupervised 

machine learning program is able to explore and analyze sales data and then classify different categories of 

the existing customers that are making purchases. Lastly, Reinforcement machine learning models are 

capable of learning through their mistakes by trial and error and then get feedback in the form of a reward or 

a penalty.  

 

 

Main types of machine learning 

Source: https://techlech.com/what-are-the-three-types-of-machine-learning-supervised-learning-

unsupervised-learning-and-reinforcement-learning/ 



 

 

More details about supervised and unsupervised learning are presented below. This project will focus on 

clustering which is an unsupervised machine learning method. 

 

Sources: 

https://mitsloan.mit.edu/ideas-made-to-matter/machine-learning-explained 

https://www.cs.cmu.edu/~tom/pubs/Science-ML-2015.pdf 

Jordan, M. I., & Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and prospects.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://mitsloan.mit.edu/ideas-made-to-matter/machine-learning-explained


 

 

Supervised learning 

 

Supervised learning refers to a specific category of machine learning algorithms in which a model is trained 

on a dataset where each data point has an available matching label. The aim of supervised learning is to 

learn a function that connects the input data points to the correct output labels therefore allowing the 

function to forecast and predict the labels of unseen and unknown data. Supervised learning plays an 

important role in numerous tasks like email spam filtering, image classification, natural language processing 

and also speech recognition. 

 

 

Supervised Learning Model 

Source: 

https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=deb44af9d65763af055ec66b29e9b12f9b8

0f564 

 

The input data in supervised learning is a set of features/ attributes which are the characteristics of the data 

using numerical or categorical variables or mixed. The output labels can be categorical or continuous or 

have binary labels like true/false and multi-class labels like "A", "B", "C". Supervised learning algorithms 

can be split into two distinct categories/types: classification and regression. Classification algorithms 

forecast and predict categorical labels based on the input data. Regression algorithms are able to predict 

continuous values. 

 

 

 



 

 

Supervised learning can be accurately presented mathematically as follows: 

 

With a training dataset D, 

D = {(x1, y1), (x2, y2), ..., (xn, yn)}, 

Where: 

xi is an input feature vector,  

yi is its matching output/label 

 

The goal of the algorithm is to construct a function f(x) that connects the inputs x to the outputs y. This 

function can be constructed by minimizing a loss function L(f(x), y), which measures the difference between 

the predicted output f(x) and the true/real output y. This loss function can be defined depending on the 

specific problem that we have to tackle, such as mean squared error for the regression problems and cross-

entropy loss for the classification problems. Various optimization techniques can be used to minimize the 

loss. When using the gradients of the loss function the model parameters are constatly changing in each 

iteration/loop until the loss function is minimized. 

 

Some very well-known supervised learning algorithms include support vector machines (SVMs), decision 

trees and neural networks. These algorithms have a different model complexity and make use of different 

optimization methods to fit the model. In order to train a supervised learning algorithm, we use a dataset 

with available matching labels to fit a model to the data. The performance of the model is assessed on a 

distinct test dataset and the model is then used to forecast and predict the labels of unseen data. 

 

It must be highlighted that acquiring labeled data to use for supervised learning can be difficult and also 

expensive. Also, the quality and precision of the labels can have an impact on the performance of the 

algorithm and special attention must be given to the selection process of the training data. 

 

 

Sources:  

Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer. 

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: Data mining, 

inference, and prediction. Springer Science & Business Media. 

 

 



 

 

Unsupervised learning 

 

Unsupervised learning refers to a specific category of machine learning algorithms in which an algorithm is 

trained using a dataset without supervision. In unsupervised learning the algorithm is provided with an 

dataset without matching labels and it must identify relationships present within the data, unlike supervised 

learning where the algorithm is provided with examples with matching labels (training data set) and is 

prepared in order to forecast and predict the labels of new data.  

 

 

Unsupervised Learning Model 

Source: 

https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=deb44af9d65763af055ec66b29e9b12f9b8

0f564 

 

 

 

 

 

 



 

 

Unsupervised learning can be accurately presented mathematically as follows: 

 

With a training dataset D, 

D = {x1, x2, ..., xn}, 

Where: 

xi is an input feature vector 

 

The aim of the algorithm is to to construct a function f(x) that matches inputs x to outputs y without any 

previous knowledge or experience of y. Clustering is a popular and common use of unsupervised learning, 

where the algorithm clusters data points that are similar into distinct groups. Clustering can be implemented 

for a variety of different tasks and applications like customer and image segmentation. 

 

Dimensionality reduction is another well-known application of unsupervised learning where the algorithm 

effectively reduces the number of features/attributes in the dataset while keeping as much information as 

possible. This is very useful for visualization purposes, feature selection tasks, and cases where speeding up 

computation speed and/or reducing computational load is needed. Unsupervised learning is also commonly 

used as a pre-processing phase before working with supervised learning methods. The unsupervised machine 

learning algorithm is used to discover different hidden patterns in the data before finally training the 

supervised model.  

 

Some of the most well-known unsupervised learning algorithms include k-means clustering, hierarchical 

clustering, Gaussian mixture models (GMM) and principal component analysis (PCA). These algorithms can 

be used to solve problems in a broad range of sectors like finance, healthcare and marketing by discovering 

hidden structures/connections and recognizing patterns in the various datasets.  

 

Sources: 

https://www.javatpoint.com/difference-between-supervised-and-unsupervised-learning 

https://towardsdatascience.com/supervised-vs-unsupervised-learning-14f68e32ea8d 

Ng, A. (2012). Unsupervised feature learning and deep learning. In Proceedings of the 2012 IEEE 

conference on computer vision and pattern recognition  

 

 

 

 



 

 

Clustering 

 

Clustering is an unsupervised machine learning method that has the capability to split a dataset into distinct 

groups (known as clusters) based on the patterns that can be recognized in the different datasets. Clustering 

has a very wide range of real-world applications in different fields like customer segmentation, image 

processing and segmentation and anomaly detection. 

 

The main families/groups of clustering algorithms are as follows: 

 

• Partitioning-based clustering:  This type of clustering algorithm/method splits the dataset into a 

pre-determined number of partitions/clusters. The goal of partitioning-based clustering is to group 

similar data points together while separating the non-similar data points into different clusters. In 

partitioning-based clustering, the number of clusters is defined before the clustering begins and the 

algorithm splits the dataset into the chosen number of pre-determined clusters. The partitions/clusters 

are constructed by optimizing an objective function that aims to minimize the distance between data 

points that are in the same cluster while also maximizing the distance between data points that are in 

different clusters. The most well-known examples of partitioning-based clustering algorithms are K-

means and K-medoids. 

 

• Hierarchical clustering: This clustering method creates a hierarchy of clusters by repeating the 

splitting of the data into smaller groups. Two well-known types of hierarchical clustering methods 

are agglomerative and divisive clustering are. 

 

• Density-based clustering: This type of clustering method groups together points that are close to 

each other and are of high density (compact), while seeing outliers as noise. A popular density-based 

clustering algorithm is DBSCAN. 

 

• Grid-based clustering:  This type of clustering method involves splitting the data into a grid of 

cells, where each cell is representing a possible cluster. Grid-based clustering algorithms merge 

adjacent cells that meet specific similarity criteria to form clusters. Examples of grid-based clustering 

algorithms include WaveCluster, STING and CLIQUE. 

 

• Model-based clustering: This clustering algorithm assumes that the data is formed from a mixture 

of probability distributions and tries to approximate the parameters of these distributions. An 

example of a model-based clustering algorithm is Gaussian mixture models (GMM) 

 

 



 

 

 

Broad classification of clustering algorithms  

Source: https://www.researchgate.net/figure/Broad-classification-of-clustering-algorithms_fig2_341111980 

 

The above graph shows the main categories of clustering methods. The choice of algorithm depends on the 

characteristics of the data and the problem being solved as each of these families of clustering algorithms 

has its own strengths and weaknesses when compared to each other. Note that this graph is not exhaustive as 

it does not contain all algorithms that exist and there are many other clustering methods that do not clearly 

fit into one of these categories. 

 

Sources: 

Ng, A. (2014). CS229 Lecture notes: Unsupervised learning. Stanford University. 

https://scikit-learn.org/stable/modules/clustering.html 

Han, J., Kamber, M., & Pei, J. (2011). Data mining: concepts and techniques 

Jain, A. K., & Dubes, R. C. (1988). Algorithms for clustering data. Prentice-Hall. 

 

 

 

 

https://scikit-learn.org/stable/modules/clustering.html


 

 

Chapter 2 - Clustering algorithms 

 

The clustering methods that will be implemented in later stages of the thesis are presented thoroughly in this 

chapter. 

 

K-means clustering 
 

K-means clustering is a clustering method capable to partition a set of data points into K clusters, where K is 

the selected number of clusters that is predefined.  The algorithm works by iteratively assigning each data 

point to the closest available cluster centroid and then updating the centroids to be the mean of the points 

that are currently assigned to them. The algorithm proceeds to do the same for another iteration until either 

the centroids stop moving/changing or the assignments of data points to the different clusters stop changing. 

The algorithm intents to reduce the sum of squared distances between the various data points and their 

respective cluster centroids. 

The discrete steps of the K-means algorithm are as follows: 

1. K cluster centroids are initialized. This can be done by randomly selecting K data points to act as the 

initial centroids. 

2. Each data point is assigned to the closest cluster centroid by calculating the distance (using a distance 

metric like the Euclidean distance) between each data point and each centroid.  

3. The cluster centroids are then updated in order to to be the mean of the points that are assigned to 

them. 

1. Steps 2 and 3 are repeated until the centroids are staying the same or the assignments of points to 

clusters stay the same between two runs of the algorithm. 

 

The K-means algorithm has one main advantage which is that it is fast and very easy to implement, 

especially when working with large datasets. On the other hand, it can be sensitive to the initialization of the 

centroids and it also may not always lead to the clustering solution that is the most optimal. Also, a non-

optimal choice of K can lead to suboptimal clustering which is why it is very important to carefully choose 

the number of clusters that is given as an input to the algorithm.  Finally, a disadvantage of the K-means 

algorithm is that it assumes that the clusters have a spherical shape which may not always be true. The 

algorithm can also be affected by outliers and noise 

Sources:  

https://towardsdatascience.com/k-means-clustering-algorithm-applications-evaluation-methods-and-

drawbacks-aa03e644b48a). 

https://devopedia.org/k-means-clustering#Singh-2018 

https://scikit-learn.org/stable/modules/clustering.html#k-means 

https://towardsdatascience.com/k-means-clustering-algorithm-applications-evaluation-methods-and-drawbacks-aa03e644b48a
https://towardsdatascience.com/k-means-clustering-algorithm-applications-evaluation-methods-and-drawbacks-aa03e644b48a


 

 

 

 

Flowchart of k-means algorithm. 

Source: Singh, Seema. 2018. "K-Means Clustering." Data Driven Investor 

 

 

Example of K-means algorithm iterations until final clustering result. 

Source: Page, Justin T, Zachary S Liechty, Mark D Huynh, and Joshua A Udall. 2014. "BamBam: genome 

sequence analysis tools for biologists." BMC Research Notes, November.  

https://www.researchgate.net/publication/268880805_BamBam_Genome_sequence_analysis_tools_for_biologists
https://www.researchgate.net/publication/268880805_BamBam_Genome_sequence_analysis_tools_for_biologists


 

 

K-medoids clustering 

 

K-medoids clustering is a slightly modified version of the K-means algorithm that is more robust to outliers 

and noise. K-medoids clustering uses an actual point in the cluster to represent it instead of using the mean 

point as the center of a cluster. The basic principle of this algorithm is that it aims to minimize the sum of 

dissimilarities (sum of distances) between each object/data point and its corresponding reference point. The 

most centrally located object/data point of the cluster has the minimum sum of distances to other points and 

is called a medoid. A drawback of K-Medoids clustering in that is does not always generate the same result 

with each run, as the resulting clusters are subject to the initial assignments that are random. 

 

The discrete steps of the K-medoids algorithm are as follows: 

2. K cluster medoids are initialized. This can be done by randomly selecting K data points to act as the 

initial medoids. 

3. The sum of the squared distance between data points and all medoids is calculated and then each data 

point is assigned to the closest cluster/medoid. 

4. A non-medoid object Orandom is selected. 

5. The total points S of swaping object Oj with Orandom are computed 

6. If S<0 then Oj is swapped with Orandom (the medoid is updated) 

7. The algorithm continues iterating until the medoids stay the same between two runs of the algorithm. 

Source: https://www.academia.edu/8446443/K_Medoid_Clustering_Algorithm_A_Review 

 

 

Example where the output of the k-medoid algorithm is different than the output of the k-means algorithm 

Source: https://stats.stackexchange.com/questions/156210/an-example-where-the-output-of-the-k-medoid-

algorithm-is-different-than-the-outp 

 



 

 

Partitioning K-means 

 

Partitioning K-Means is a modified version of the K-means algorithm that is designed to beeter work with 

larger datasets. In the standard K-Means algorithm each iteration computes the distances between all data 

points and all centroids. This can be computationally heavy especially for large datasets. In Partitioning K-

Means instead of updating all existing centroids in every iteration, a subgroup of data points is selected 

randomly so that only the centroids of the clusters that contain these data points are then updated. This 

subgroup of data points is mentioned as a mini-batch. On the other hand, using mini-batches can also lead to 

some noise into the clustering procedure because only a subgroup of the data is used to determine if the 

centroids must be updated. The mini-batch size and the frequency of updating the centroids can have an 

impact on the quality of the clustering results as smaller mini-batch sizes can lead to faster convergence 

while also leading to lower quality clustering outputs. 

 

The discrete steps of the Partitioning K-Means algorithm are as follows: 

 

1. In the beginning, the centroids are initialized by randomly selecting k centroids from the data points. 

These centroids will act as the initial cluster centers. 

 

2. The data is then divided into mini-batches which are subgroups of the original dataset so that each 

mini-batch/subgroup contains only a portion of the entire data. 

 

3. Then for each mini-batch/subgroup of the data: 

 

 

a. Each data point is assigned to the nearest centroid: More specifically, each data point in the 

mini-batch/subgroup is assigned to the nearest centroid using the same distance metric as in 

the original K-Means algorithm (e.g., Euclidean distance). Therefore, a set of mini-clusters is 

produced. 

 

b. The mini-centroids are updated as for each mini-cluster, the Partitioning K-Means algorithm 

calculates the mean of all the data points in the mini-cluster and it then updates the mini-

centroid. 

 

c. The mini-clusters are merged after all the mini-batches have been processed to form the final 

clusters. This can be achieved by assigning each data point to the nearest centroid from all the 

existing mini-centroids. 

 



 

 

4. The same steps are repeated until convergence, as the algorithm uses mini-batches to update the 

centroids in each iteration until convergence. When the centroids no longer move/change between 

different iterations or when a maximum number of iterations is reached, then convergence is 

achieved and the algorithm stops iterating. 

 

One key variable in Partitioning K-Means is the size of the mini-batches as a larger mini-batch size can 

improve the clustering accuracy while also requiring more computational power. A smaller mini-batch size 

on the other hand can reduce computer memory requirements and computational cost but it leads to inferior 

clustering accuracy and also slower convergence of the Partitioning K-Means algorithm. Another important 

variable is the number of iterations that the algorithm is meant to run until a solution is reached. Similar to 

the original K-Means algorithm, Partitioning K-Means can converge to a local minimum. By running the 

Partitioning K-Means algorithm several times while choosing different initial centroids, the likelihood of 

finding the global minimum is increased. 

 

Sources: 

https://www.geeksforgeeks.org/partitioning-method-k-mean-in-data-mining/ 

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.MiniBatchKMeans.html 

https://scikit-learn.org/stable/modules/clustering.html#mini-batch-kmeans 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.MiniBatchKMeans.html


 

 

DBSCAN (Density-Based Spatial Clustering of Applications with Noise) 

 

DBSCAN (Density-Based Spatial Clustering of Applications with Noise) is a clustering algorithm that can 

find groups of data points and create clusters that are compactly and closely grouped together. The algorithm 

also has the capability to recognize the points that do not belong to any existing cluster. Those points are 

called noise. 

 

The DBSCAN algorithm works by firstly defining a distance (which is referred to as Eps) and a minimum 

number of points (which is referred to as MinPts) that need to be within that distance of a point in order for 

it to be considered to be a part of a cluster. After that the DBSCAN algorithm starts at a point that is chosen 

randomly and in the case that there are enough points within Eps distance of that point, it creates a cluster 

around it. After that, the algorithm then moves to the next point and if it is within Eps distance of a 

previously identified cluster, it is also added to that cluster. If it is not within Eps distance of any existing 

identified cluster but there are enough points within Eps distance of that point, it becomes the seed for a new 

cluster. In case that there are not enough points within Eps distance of that point, it is then labeled as noise. 

 

The DBSCAN algorithm has several advantages when directly compared to other widely used clustering 

algorithms: 

• Firstly, it does not require the user to provide the number of clusters existing in the dataset 

beforehand. 

• Secondly, it is capable to distinguish points that do not belong to any existing cluster (that are 

referred to as noise). 

• Lastly, it is able to discover and form clusters of any shape as long as they are dense (data points are 

compactly and closely grouped together). 

 

On the other hand, one disadvantage of the DBSCAN algorithm is that it can be sensitive to the values 

chosen for Eps and MinPts (these values are given from the user as an input to the algorithm). It is also not 

suitable to be used with high-dimensional datasets, because the distance between points is less meaningful as 

the number of dimensions increases.  

 

Source: https://towardsdatascience.com/dbscan-clustering-explained-97556a2ad556 

 

 

 

 

 

https://towardsdatascience.com/dbscan-clustering-explained-97556a2ad556


 

 

Gaussian Mixture Model 

 

GMM (Gaussian Mixture Model) is a probabilistic model that makes the assumption/hypothesis that all the 

data points/observations of the given dataset are a mix of multi-dimensional Gaussian probability 

distributions with unknown parameters. The GMM algorithm uses the Expectation-Maximization (EM) 

algorithm to estimate the parameters of the Gaussian distributions and also the number of existing clusters. 

The EM algorithm iteratively estimates the probability of each data point belonging to each cluster (this step 

is referred to as the E-step) and then updates the parameters of each cluster using the estimated probabilities 

(this step is referred to as the M-step), until finally convergence is reached. 

 

The objective function of GMM is to maximize the probability p(X) for the data X, or the log-likelihood 

value L. By approximating that a mixture of K Gaussian distributions have produced the data,  p(X) is 

written as marginalized probability summed over all K clusters for all available data points. 

 

 

 

 

 

Because we do not have the ability to get an analytical solution for the summation inside the log function 

above, we make use of the Expectation Maximization (EM) algorithm. The Expectation Maximization 

algorithm is an iterative algorithm that can be used to find maximum likelihood estimates (MLE) of models 

where parameters cannot be calculated in a direct way. The EM algorithm consists of two stages which are 

the expectation step and the maximization step. 

 

In the Expectation Step the membership values 𝑟𝑖𝑐 are computed. This value represents the probability that 

data point 𝑥𝑖 belongs to the cluster c. 

 

 

 



 

 

In the Maximization Step a new parameter 𝑚𝑐 is calculated, which controls the portion of points assigned to 

different clusters. By calculating Maximum Likelihood Estimators (MLE’s) for every cluster c, the 

parameters μ, π, Σ are updated. 

 

 

The E-M steps are repeated until the log-likelihood value L finally converges. 

 

One of the key advantages of the Gaussian Mixture Model algorithm compared to other clustering 

algorithms is that it can perform better when working with more complex cluster shapes because it does not 

make the assumption/hypothesis that the clusters have a spherical shape so it does not have a bias for 

circular clusters.  

 

 

Sources:  

https://towardsdatascience.com/gaussian-mixture-models-gmm-6e95cbc38e6e 

https://scikit-learn.org/stable/modules/mixture.html  

https://www.sciencedirect.com/topics/engineering/gaussian-mixture-model 

 

 

 

 

 

 

 

 

 

 

https://www.sciencedirect.com/topics/engineering/gaussian-mixture-model


 

 

Determination of the number of clusters 

 

The elbow method is a widely used method for determining the optimal number of clusters in a dataset. This 

is a method used when working with unsupervised learning algorithms like clustering. 

The Sum of Squared Errors (SSE) is a measure of how capable the clustering algorithm is to form clusters 

with similar data points. In the case of k-means clustering, the SSE is calculated as the sum of the squared 

distances between each data point and its closest centroid. A lower SSE value therefore indicates that the 

clusters are more closely grouped together and that the data points that belong to each cluster are more 

similar.  

The Bayesian Information Criterion (BIC) is a metric of the quality of fit of the model to the data in GMM 

(Gaussian Mixture Model) clustering, with a lower BIC representing a better fit. The BIC value is calculated 

as the log-likelihood of the data under the model plus a penalty term for the number of parameters in the 

model. The BIC metric penalizes the model for its complexity so that more complex models will have a 

worse score. 

 

Elbow method example 

Source: https://s3.amazonaws.com/assets.datacamp.com/production/course_10628/slides/chapter4.pdf 

 

In order to find the optimal number of clusters to provide as an input to a clustering algorithm, the SSE/BIC 

is plotted as a function of k and the elbow point can be recognized as the point where the SSE/BIC begins to 

decrease at a slower rate, meaning that the higher number of clusters are not significantly improving the 

clustering performance. 

Sources: 

https://www.datanovia.com/en/lessons/determining-the-optimal-number-of-clusters-3-must-know-methods/ 

https://www.researchgate.net/publication/339670247_Determining_The_Appropiate_Cluster_Number_Usin

g_Elbow_Method_for_K-Means_Algorithm 

https://www.researchgate.net/figure/Elbow-plots-of-the-Bayesian-information-criterion-BIC-and-consistent-

Akaike-information_fig2_347946003 

https://machinelearningmastery.com/probabilistic-model-selection-measures/ 

https://www.datanovia.com/en/lessons/determining-the-optimal-number-of-clusters-3-must-know-methods/
https://www.researchgate.net/publication/339670247_Determining_The_Appropiate_Cluster_Number_Using_Elbow_Method_for_K-Means_Algorithm
https://www.researchgate.net/publication/339670247_Determining_The_Appropiate_Cluster_Number_Using_Elbow_Method_for_K-Means_Algorithm
https://www.researchgate.net/figure/Elbow-plots-of-the-Bayesian-information-criterion-BIC-and-consistent-Akaike-information_fig2_347946003
https://www.researchgate.net/figure/Elbow-plots-of-the-Bayesian-information-criterion-BIC-and-consistent-Akaike-information_fig2_347946003


 

 

Chapter 3 - Assessment metrics for clustering algorithms 
 

 

Evaluating the results of a clustering algorithm is a crucial part of the process of clustering data. Assessment 

metrics are used to assess the performance of clustering algorithms by comparing the clustering results to a 

known truth (true cluster labels) or by measuring the quality of the clustering results based on different 

criteria. There are numerous types of assessment metrics that are used to evaluate the performance of 

clustering algorithms and each clustering assessment metric contains a mix of different criteria to measure 

the quality of the clustering results. These metrics can be split into three distinct categories: 

 

• External assessment metrics: These metrics evaluate the performance of a clustering algorithm by 

comparing the clusters formed by the algorithm to the actual/real clustering labels. As an example, 

the Adjusted Rand Index (ARI) measures the similarity between the clustering produced by the 

algorithm and a reference clustering result (real clustering labels). These metrics are not applicable to 

typical clustering problems in which the real class labels are not available. 

 

• Internal assessment metrics: These metrics evaluate the performance of a clustering algorithm 

based only on the information provided by the dataset itself and the clustering results. In this case 

there is no use of external information. For example, the Silhouette Coefficient measures the 

compactness and separation of the clusters formed by the algorithm, while the Calinski-Harabasz 

Index measures the ratio of between-cluster variance to within-cluster variance.  

 

• Relative assessment metrics: These metrics compare the performance of different clustering 

algorithms that are applied on the same dataset. For example, the Normalized Mutual Information 

(NMI) measures the mutual information that is shared by the clustering result produced by two 

different clustering algorithms, while the Adjusted Mutual Information (AMI) corrects for 

coincidental agreements between the clustering result of two algorithms. 

 

Some common assessment metrics that are used are: 

• Adjusted Rand Index (ARI) 

• Adjusted Mutual Information (AMI) 

• Normalized Mutual Information (NMI) 

• Silhouette Coefficient 

• Calinski-Harabasz Index (CHI) 

• Davies-Bouldin Index (DBI) 

• Dunn Index (DI) 

 



 

 

It must be highlighted that the choice of the appropriate assessment metric will be subject to each individual 

problem and also the type of clustering algorithm being assessed. Making use of multiple clustering 

performance metrics is advised in order to get a more complete picture of the clustering algorithm's 

performance. 

 

Sources: 

https://www.datanovia.com/en/lessons/cluster-validation-statistics-must-know-methods/ 

http://www.sthda.com/english/wiki/wiki.php?id_contents=7952  

https://blog.paperspace.com/ml-evaluation-metrics-part-2/ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Adjusted Rand Index (ARI) 

 

The Adjusted Rand Index is used to measure whether two cluster results are similar to each other. It takes 

into consideration all pairs of samples and measures how often they are assigned to the same or different 

clusters in the two distinct clustering results. The ARI ranges from -1 to 1, where 1 indicates perfect 

agreement between the two cluster results (the two cluster results are same), 0 indicates that the points are 

assigned into clusters randomly, and -1 indicates complete disagreement between the two clustering results. 

The ARI formula is as follows: 

 

𝐴𝑅𝐼 =  
𝑅𝐼 −  𝐸[𝑅𝐼]

𝑚𝑎𝑥(𝑅𝐼)  −  𝐸[𝑅𝐼]
  

 

where RI stands for the Rand Index and E[RI] is the expected value of the Rand Index. The Rand Index 

calculates the percentage of pairs of samples that are either in the same cluster in both clustering results or in 

different clusters in both clustering results. The Adjusted Rand Index is obtained by subtracting to the RI an 

estimator of its expected value obtained under the assumption of two independent clustering results. 

 

Source: https://www.sciencedirect.com/topics/computer-science/adjusted-rand-index 

 

 

Adjusted Mutual Information (AMI) 

 

Adjusted Mutual Information (AMI) is a measure of the similarity between two clustering results and it is a 

normalized version of Mutual Information (MI), which measures the quantity of information that one 

clustering result offers about the other. It corrects the effect of coincidental agreement between clustering 

results with a factor that takes into consideration the expected mutual information with a random labeling of 

the data. This is comparable to the way the Adjusted Rand Index (ARI) corrects the Rand Index (RI). The 

range of values of AMI is from 0 to 1, with 0 representing that the two clustering results are independent and 

1 representing that they are matching. The AMI formula is as follows: 

 

𝐴𝑀𝐼(𝑋, 𝑌)  =  
𝑀𝐼(𝑋, 𝑌)  −  𝐸[𝑀𝐼(𝑋, 𝑌)] 

𝑚𝑎𝑥(𝐻(𝑋), 𝐻(𝑌))  −  𝐸[𝑀𝐼(𝑋, 𝑌)]
 

 

 

 

https://www.sciencedirect.com/topics/computer-science/adjusted-rand-index


 

 

Where: 

X and Y are the two clustering results,  

MI(X, Y) is their mutual/shared information,  

H(X) and H(Y) are the entropies of X and Y, 

E[MI(X, Y)] is the expected mutual information with a random labeling of the data 

 

Sources: 

https://jmlr.csail.mit.edu/papers/volume11/vinh10a/vinh10a.pdf 

https://scikit-

learn.org/stable/modules/generated/sklearn.metrics.adjusted_mutual_info_score.html#sklearn.metrics.adjust

ed_mutual_info_score 

 

 

Normalized Mutual Information (NMI) 

 

The Normalized Mutual Information is a measure of the amount of information that is mutual/common 

between two clustering results. NMI is based on Mutual Information and includes a normalization factor. 

The value of NMI ranges from 0 to 1, with a higher value indicating a better performance. NMI is not 

adjusted for chance which means that even a random clustering result would be given positive score. The 

NMI formula is as follows: 

𝑁𝑀𝐼 =
 2 ∗  (𝑀𝐼(𝐶, 𝐾)) 

𝐻(𝐶)  +  𝐻(𝐾)
 

 

Where: 

MI(C, K) is the mutual information between the two clustering results,  

H(C) is the entropy of the true class labels, 

H(K) is the entropy of the predicted cluster labels 

 

Sources: 

https://luisdrita.com/normalized-mutual-information-a10785ba4898  

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.normalized_mutual_info_score.html 

https://jmlr.csail.mit.edu/papers/volume11/vinh10a/vinh10a.pdf


 

 

Silhouette Coefficient 

 

The Silhouette Coefficient is a clustering assessment metric that measures of the compactness of a single 

cluster and the separation between distnct clusters. The metric takes values in the range [-1,1], with a value 

closer to 1 representing superior clustering performance. The silhouette coefficient is calculated using the 

following formula: 

 

𝑆𝐶 =
 𝑏 −  𝑎

𝑚𝑎𝑥(𝑎, 𝑏)
  

 

Where: 

a is the average distance between the sample/data point and all other samples/data points in the same 

cluster,  

b is the minimum average distance between the sample/data point and all samples/data points in a 

different cluster. 

 

Clustering algorithms like K-means, K-medoids etc. expect the number of clusters k the data has to be 

predefined as an input from the user to the algorithm. This is the primary reason why the the silhouette score 

method is implemented. By implementing the silhouette score, the user chooses a range of clusters k and 

the silhouette method calculates a score for each one by applying the clustering algorithm to the dataset. The 

silhouette value/score represents how similar a data point is to the cluster that it assigned to compared to 

other existing clusters. 

 

 

The silhouette score of a specific datapoint i is defined as: 

𝑠𝑖 =
𝑏𝑖 − 𝑎𝑖

𝑚𝑎𝑥(𝑏𝑖, 𝑎𝑖)
 

Where: 

 

• 𝑎𝑖 is defined as the mean distance between the datapoint i and all other data points the exist in the 

same cluster (a smaller value is better) 

• 𝑏𝑖 is defined as the smallest mean distance of the datapoint i to all points in any other existing 

cluster, of which i is not a member of (a large value shows that the datapoint is not well matched to 

the neighboring cluster) 

 

 



 

 

 

Example: Calculation of the silhouette coefficient 𝑆𝑖𝑙(𝑥1) for the datapoint 𝑥1that is assigned to the cluster 

𝐶1.  

Source: https://www.researchgate.net/figure/Derivation-of-the-Overall-Silhouette-Coefficient-

OverallSil_fig1_221570710 

 

The Euclidean distance or the Manhattan distance can be used as a distance metric for the silhouette score 

calculation. A high value of the silhouette metric means that each datapoint is well matched to the cluster 

that it is assigned to and badly matched to its neighboring clusters. The mean 𝑠𝑖 of all datapoints existing in 

a dataset is a measure of how appropriate/correct the clustering result is. 

 

Source: https://www.sciencedirect.com/science/article/pii/0377042787901257?via%3Dihub 

 

 

 

 

 

 

 

 

 



 

 

Calinski-Harabasz Index 

 

The Calinski-Harabasz Index is a clustering evaluation measure that is used to evaluate the quality of a 

clustering solution and is also known as the Variance Ratio Criterion. It is calculated as a ratio of the sum of 

inter-cluster dispersion (between-cluster variance) and the sum of intra-cluster dispersion (within-cluster 

variance) for a given clustering output. It calculates the ratio of the sum of squares between clusters to the 

sum of squares within clusters, multiplied by the ratio of the number of data points to the number of clusters 

minus one. The Calinski-Harabasz Index outputs a score for each clustering result, with higher scores 

representing a superior clustering solution. This score can be used to compare different clustering methods 

or to find the optimal number of clusters in a given data set. 

 

The between-cluster sum of squares or between-cluster variance shows the degree to which the centroids of 

different clusters are separated from each other. The formula for BCSS is as follows: 

 

𝐵𝐶𝑆𝑆 =  ∑  𝑛𝑘 ||𝐶𝑘  −  𝐶||2

𝐾

𝑘=1

 

 

Where: 

𝑛𝑘 is the number of data points in the cluster k,  

𝐶𝑘 is the centroid of cluster k,  

C is the centroid of all the data points,  

K is the number of clusters 

 

 

The within-cluster sum of squares or within-cluster variance shows the compactness of the clusters 

themselves. The formula for WCSS is defined as follows: 

 

𝑊𝐶𝑆𝑆 = ∑ 𝑊𝐺𝑆𝑆𝑘

𝐾

𝑘=1

=  ∑ ∑ || 𝑋𝑖𝑘  −  𝐶𝑘||2

𝑛𝑘

𝑖=1

𝐾

𝑘=1

  

 

 

 



 

 

Where: 

𝑛𝑘 is the number of data points in the cluster k, 

𝑋𝑖𝑘 : the 𝑖𝑡ℎ observation of cluster k, 

𝐶𝑘 is the centroid of cluster k, 

K is the number of clusters 

 

 

The Calinski-Harabasz Index is then calculated with the following formula: 

 

𝐶𝐻(𝑘) =  

𝐵𝐶𝑆𝑆
𝐾 − 1
𝑊𝐶𝑆𝑆
𝑁 − 𝐾

=
𝐵𝐶𝑆𝑆

𝑊𝐶𝑆𝑆
 
𝑁 − 𝐾

𝐾 − 1
 

 

Where: 

K is the number of clusters,  

N is the total number of samples,  

BCSS is the between-cluster sum of squares (between-cluster variance), 

WCSS is the within-cluster sum of squares (within-cluster variance)  

 

A higher value of CH(k) represents better clustering quality, since it shows that the centroids of different 

clusters are well-separated (between-cluster variance) and the data points within each cluster are compact 

(within-cluster variance). The Calinski-Harabasz Index has the advantage of being relatively easy and fast to 

compute and easy to interpret. One limitation is that the index is designed to work with convex clusters, and 

may not work as well with non-convex or irregularly shaped clusters. As the index is not normalized, the 

value is influenced by the number of clusters and the number of observations. The Calinski-Harabasz Index 

values can range from 0 to several hundred. 

Sources: 

https://pyshark.com/calinski-harabasz-index-for-k-means-clustering-evaluation-using-python/ 

Caliński, T., & Harabasz, J. (1974). A dendrite method for cluster analysis. Communications in Statistics-

theory and methods 

Halkidi, M., Batistakis, Y., & Vazirgiannis, M. (2001). On clustering validation techniques. Journal of 

intelligent information systems 

https://pyshark.com/calinski-harabasz-index-for-k-means-clustering-evaluation-using-python/


 

 

Davies-Bouldin Index 

 

The Davies-Bouldin Index (DBI) is another clustering evaluation measure that is used to measure the quality 

of a clustering solution. The Davies-Bouldin Index measures the similarity between clusters and the 

dissimilarity between clusters for a specific clustering result. It calculates the average similarity between 

each cluster and a cluster that is most similar, divided by the average dissimilarity between each cluster and 

its least similar cluster. 

 

The Davies-Bouldin Index outputs a score for each clustering result. Lower scores indicate better clustering 

results. It can be used to compare different clustering algorithms or to find the ideal number of clusters in a 

group of data. One main advantage of the Davies-Bouldin Index is that it does not assume any specific size 

or shape for the clusters and it does not give a higher score for clustering results with a greater number of 

clusters. Another advantage is that the index is easy to calculate and interpret. In order to calculate the DBI, 

we follow the steps described below: 

 

Step 1: The intra-cluster dispersion is calculated 

 

 

  

 

where: 

i is the particular identified cluster, 

 

Ti  is the number of vectors (observations) in cluster i, 

 

Ti is the number of vectors (observations) in cluster i, 

 

Xj is the j-th vector (observation) in cluster i, 

 

Ai is the centroid of cluster i 

 

 

The intra-cluster dispersion is the average distance between each observation within the cluster and its 

centroid. When the value q is set to 2 it calculates the Euclidean distance. 

 

 

 



 

 

Step 2: The separation measure is calculated: 

 

 

where: 

 

𝑎𝑘𝑖 is the k-th component of n-dimensional centroid Ai 

𝑎𝑘𝑗 is the k-th component of n-dimensional centroid Aj 

N is the total number of clusters 

 

When P is set equal to 2 so the above formula, it calculates the Euclidean distance between the centroids of 

clusters i and j. 

 

Step 3: The similarity between clusters is calculated: 

The similarity between clusters is calculated as a sum of two intra-cluster dispersions divided by the 

separation measure.  

 

where: 

 

𝑆𝑖 is the intra-cluster dispersion of cluster i 

𝑆𝑗 is the intra-cluster dispersion of cluster j 

𝑀𝑖𝑗  is the distance between centroids of clusters i and j 

 

 



 

 

Step 4: The most similar cluster for each cluster i is found: 

 

having: i≠j 

 

For each cluster i we find the highest ratio from all 𝑅𝑖𝑗 calculated 

 

 

 

Finally, the mathematical formula for DBI is written as follows: 

 

 

which is the average of the similarity measures of each cluster with the cluster most similar to it. 

 

 

To summarize the above steps, for each cluster i, the DBI calculates the average distance between each point 

in that cluster and the centroid of the cluster. It then calculates the same measure for all other clusters j, and 

takes the maximum value over all j. Then this quantity is divided by the distance between the centroids of 

clusters i and j, which measures how separated the clusters are. DBI gives an overall measure of the quality 

of the clustering result by averaging this quantity over all clusters i. It must be noted that different choices of 

distance metrics can give different results for the DBI. One restriction/limitation of the Davies-Bouldin 

Index is that it accepts that the clusters are spherical and have equal variance. The index may also not 

perform as well when the clusters have very different densities or sizes. The Davies-Bouldin Index ranges 

from 0 to infinity, with lower values representing superior clustering solutions. 

 

Sources: 

https://pyshark.com/davies-bouldin-index-for-k-means-clustering-evaluation-in-python/ 

Davies, D. L., & Bouldin, D. W. (1979). A cluster separation measure. IEEE Transactions on Pattern 

Analysis and Machine Intelligence 

 



 

 

Dunn Index 

 

The Dunn Index (DI) is another clustering evaluation metric that is used to evaluate the quality of a 

clustering results. The Dunn Index evaluates the compactness of clusters and the separation between clusters 

for a given clustering solution by calculating the ratio of the minimum inter-cluster distance to the maximum 

intra-cluster distance. A high DI shows a better clustering since the observations in each cluster are closer 

together while the clusters are further away from each other. This means that the clusters are well separated. 

The DI can be used to compare different clustering algorithms or to find the best number of clusters in a 

given data set. 

 

To calculate the Dunn Index for a given clustering solution, the minimum distance between any two data 

points belonging to different clusters is computed. After that, the maximum distance between any two data 

points belonging to the same cluster is computed. Finally, the minimum inter-cluster distance is divided by 

the maximum intra-cluster diameter in order to obtain the Dunn Index. 

 

The formula for Dunn Index is written as follows: 

 

𝐷𝐼 =  
𝑀𝑖𝑛 𝑖𝑛𝑡𝑒𝑟 − 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 

𝑀𝑎𝑥 𝑖𝑛𝑡𝑟𝑎 − 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 
 

 

where: 

Min inter-cluster distance is the minimum distance between any two data points belonging to 

different clusters, 

 

Max intra-cluster diameter is the maximum distance between any two data points belonging to the 

same cluster. 

 

One disadvantage of the Dunn Index is that it can be sensitive to outliers because it is based on distances 

between data points. Also, the index may have not work as well when the clusters have significantly 

different densities and/or sizes. The range of the Dunn Index is theoretically without limits, but typically it 

can range between 0 and 1. The exact range of the Dunn Index can be different depending on the dataset and 

the number of clusters. 

Sources: 

https://pyshark.com/dunn-index-for-k-means-clustering-evaluation-using-python/ 

Dunn, J. C. (1974). Well-separated clusters and optimal fuzzy partitions. Journal of Cybernetics 



 

 

Chapter 4 - Implementation strategy 
 

The aim of this project is to develop a Python code from scratch that will demonstrate the above elements. 

The various tools that were used for the development of the script are presented below: 

 

Tools 

 

Python is a popular programming language used for a broad range of applications like data analysis, 

scientific computing and machine learning. Machine learning algorithms and tools for data preprocessing, 

model selection, data analysis and evaluation are provided in Python through libraries. Some of the most 

useful libraries for working with machine learning techniques in Python are: 

• Scikit-learn is a machine learning library that supports supervised and unsupervised learning and 

gives access to a wide range of algorithms for clustering, classification, regression and 

dimensionality reduction while also including tools for data preprocessing, feature extraction, and 

model selection. 

 

• Pandas is a library for data analysis and manipulation that gives access to tools for working with 

structured data. Pandas is used for preprocessing and cleaning data before using it as an input to 

machine learning models. 

 

• NumPy is a library for numerical computing in Python that gives access to tools for working with 

arrays and matrices. NumPy is used in machine learning for data preprocessing and feature 

extraction. 

 

 

• Matplotlib is the basic plotting library of the Python programming language and is used for creating 

static, animated, and interactive visualizations. 

 

These libraries and tools make it easy to implement different machine learning algorithms and techniques in 

Python and create visualizations showing the output of the machine learning algorithms in a more 

presentable way.  

Sources: 

https://scikit-learn.org/stable/getting_started.html  

https://pandas.pydata.org/ 

https://numpy.org/ 

https://matplotlib.org/ 

https://scikit-learn.org/stable/getting_started.html
https://pandas.pydata.org/
https://numpy.org/


 

 

Main implementation steps 

 

The main part of the work concerns the development of software that will perform the following steps for a 

real dataset: 

 

 

 

Steps list: 

 

1. Load selected dataset, in this case the iris dataset. 

 

2. Standardize the data by scaling it (to have zero mean and unit variance) 

 

3. Perform clustering on the dataset using 4 different clustering algorithms. Each algorithm is either 

loaded from the scikit-learn library or created from scratch and defined in the start of the script. 

Although the DBSCAN algorithm was presented in Chapter 3, it won’t be used in this part of the 

analysis as it required to be previously tuned in order to ensure that we have the best possible 

clustering result.  

 

4. Plot the SSE for the k-means family algorithms and BIC values for GMM for different number of 

clusters and use the Elbow Method to find the optimal number of clusters for all algorithms. The user 

will have to input the selected k number.  

 

5. After finding the optimal number of clusters, the script fits the clustering algorithms on the data and 

plots the results. It also plots scatter matrix to visualize the results.  

 

6. The various performance metrics like Adjusted Rand Index, Adjusted Mutual Information, Silhouette 

Score, etc. are calculated for all the algorithms. The different metrics are displayed in a bar plot for 

each clustering algorithm. The results will be accompanied by relevant commentary. 

 

 

 



 

 

Dataset description 

 

The script is designed to take different datasets as an input with minor adjustments. In order to demonstrate 

the capabilities of the software in a more visual and clear way, a simple dataset appropriate for clustering 

will be chosen.  

The Iris flower dataset or Fisher’s Iris dataset is a multivariate data set introduced by the British statistician 

and biologist Ronald Fisher. There are 4 attributes in this dataset (Four features were measured from each 

sample). These attributes are: 

1. sepal length in cm 

2. sepal width in cm 

3. petal length in cm 

4. petal width in cm 

 

 

Dataset preview (Source: https://www.mghassany.com/courses/MLcourse/pw-6.html) 

 

The data set contains 3 classes (Iris-setosa, Iris-versicolor, Iris-virginica) of 50 instances each, where each 

class refers to a type of iris plant. This dataset was chosen as it simple enough so the clustering results can 

be plotted without having the need for dimensionality reduction techniques (like PCA). It must be noted that 

the class label data will not be used as an input to the clustering algorithms. This column will be used only 

for the calculation of the external and relative clustering metrics 



 

 

Chapter 5 – Script presentation and results 
 

Script presentation 

 

The intended output/result of the Thesis is the development of a software script capable to take different 

datasets as an input, implement different clustering methods and export the clustering performance metrics. 

The correct operation of the developed script is shown in this chapter where the iris dataset is used as an 

example to showcase the capabilities of the script. 

The python script was created using the web-based interactive computing platform Jupyter Notebook 

(https://jupyter.org/install). Jupyter Notebook that allows the user to create documents comprising of code 

visualizations and text. It is very useful for data analysis and machine learning tasks as it allows you run 

independent executable code cells in any order and observe the output immediately. 

This code imports several libraries and modules from the scikit-learn package, as well as some other 

standard Python libraries like matplotlib and numpy. It also imports a specific function euclidean_distances 

from sklearn.metrics.pairwise module. Here's a brief description of what each imported module and function 

does: 

• datasets: A module in scikit-learn that provides some standard datasets for testing and 

experimenting with machine learning algorithms. 

• StandardScaler: A class in scikit-learn that scales input data to have zero mean and unit 

variance, which can be beneficial for some machine learning algorithms. 

• GaussianMixture: A class in scikit-learn that fits a mixture of Gaussian distributions to a 

given dataset using the expectation-maximization algorithm. 

• KMeans: A class in scikit-learn that performs K-Means clustering on a given dataset. 

• KMedoids: A class in scikit-learn-extra that performs K-Medoids clustering on a given 

dataset. K-Medoids is similar to K-Means, but instead of computing the mean of each 

cluster, it selects a medoid, which is the data point that is closest to the center of the 

cluster. 

• metrics: A module in scikit-learn that provides various evaluation metrics for machine 

learning models. 

• plt: A sub-library in matplotlib used for plotting graphs and visualizations. 

• numpy: A library for numerical computing in Python. 

• pandas: A library for data manipulation and analysis in Python. 

Source: https://scikit-learn.org/stable/user_guide.html 

The euclidean_distances function calculates the pairwise Euclidean distances between the rows of a given 

matrix. 



 

 

 

 

This code defines a function named plot_clustering_results that can be used to visualize the results of 

various clustering algorithms on a given dataset. It that takes in five arguments: 

• algorithm: a string that indicates the name of the clustering algorithm used 

• data: a 2D array of the data points being clustered 

• labels: a 1D array that assigns each data point to a cluster 

• centroids: a 2D array that represents the centroids of the clusters 

• n_attributes: an integer that specifies the number of attributes of the data points. 

 

The function first creates a Pandas DataFrame from the data and sets the column names using the feature 

names from the iris dataset. Next, the function creates a scatter matrix plot using the 

pd.plotting.scatter_matrix function from the Pandas plotting library. The color of each data point is set by its 

assigned cluster label. The plot is created using a subplot with size (n_attributes x n_attributes). The function 

then creates a Pandas DataFrame from the centroids and plots the centroids on the scatter matrix plot. For 

each subplot, the function plots a red 'x' at the position of each centroid. The position of the 'x' is determined 

by the value of the centroid along the x-axis and y-axis for that particular subplot. Finally, the function adds 

a title to the plot using the algorithm name and displays it. 

 

 

 

 

 



 

 

This code defines a class called PartitioningKMeans which implements the Partitioning K-means algorithm 

for clustering data. 

The __init__ method initializes the hyperparameters of the algorithm: n_clusters determines the number of 

clusters to form, max_iter determines the maximum number of iterations the algorithm should perform, and 

random_state sets the seed value for the random number generator, which ensures that the results are 

reproduceable. 

The fit method takes a dataset X as input and performs K-means clustering. The algorithm starts by 

randomly initializing the cluster centers and then updates iteratively the cluster assignments and the cluster 

centers until convergence is reached. The cluster assignments are made based on the Euclidean distance 

between the data points and the cluster centers. The algorithm stops when either the maximum number of 

iterations is reached or the cluster centers stop changing between the last two iterations. The fit method 

returns the fitted PartitioningKMeans object. 

The predict method takes a dataset X as input and returns the cluster assignments for each data point based 

on the cluster centers. 

The _inertia method is a function that calculates the sum of squared distances between each data point and 

its assigned cluster center. 

The _get_cluster_centers method is another function that calculates the coordinates of the cluster centers 

based on the assigned cluster labels. 

 

 

 

 

 

 

 



 

 

This code defines a function called davies_bouldin_index that computes the Davies-Bouldin Index for a 

clustering. It is computed as the average similarity between each cluster and its most similar cluster 

(similarity is defined as the ratio of the within-cluster distance to the between-cluster distance).  

The function takes three inputs: 

• X: a numpy array of shape (n_samples, n_features) representing the data points 

• labels: a numpy array of shape (n_samples,) representing the cluster assignments for each 

data point 

• centroids: a numpy array of shape (n_clusters, n_features) representing the coordinates of 

the cluster centers 

The function first calculates the number of clusters n_clusters based on the number of rows in the centroids 

array. It then initializes the db_index variable to zero. 

The function then iterates over all pairs of clusters and calculates the mean distance between their centroids. 

For each cluster, it calculates the mean distance from each data point in the cluster to its centroid. It then 

adds the ratio of the sum of these two distances to the mean distance between the two cluster centroids to 

db_index. 

Finally, the function returns value representing the Davies-Bouldin Index which is the average value of 

db_index across all clusters. 

 

 

 

 

 

 

 

 

 

 

 



 

 

The dunns_index function calculates the Dunn's Index for a given clustering which is defined as the ratio 

between the minimum inter-cluster distance and the maximum intra-cluster distance. 

The function takes three arguments:  

• X is a numpy array of shape (n_samples, n_features) containing the data points,  

• labels is a numpy array of shape (n_samples,) containing the cluster labels assigned to 

each data point 

• centroids is a numpy array of shape (n_clusters, n_features) containing the cluster 

centroids. 

The function first initializes inter_cluster_distances to infinity, and then loops through all pairs of distinct 

clusters (all pairs of clusters with different indices) to compute the minimum distance between them. This 

minimum distance is stored in inter_cluster_distance, and the minimum of all such distances is stored in 

inter_cluster_distances. 

Next, the function initializes max_intra_cluster_distance to zero, and then loops through all clusters to 

compute the maximum distance between any data point in the cluster and the cluster centroid. This 

maximum distance is stored in intra_cluster_distance, and the maximum of all such distances is stored in 

max_intra_cluster_distance. 

The Dunn's Index is computed as the ratio between inter_cluster_distances and max_intra_cluster_distance. 

This value is returned as the output of the function. 

 

 

 

 

 

 

 

 

 



 

 

The code loads the Iris dataset from the scikit-learn library and stores it in the iris variable. Then, it extracts 

the features from the dataset and standardizes the feature values by scaling them to have zero mean and unit 

variance using the StandardScaler class from the sklearn.preprocessing module. The scaled data is then 

stored in the data variable for further use. 

 

 

It also plots the data, with the actual/real clustering labels. 

 

 

 

Clustering is performed on the dataset using four different methods after determining the optimal number of 

clusters to use for each method. The user is asked to input the optimal number of clusters, and the labels and 

centroids are printed for each method. The elbow method is used for K-Means, K-medoids and Partitioning 

K-Means clustering, while the BIC is used for GMM clustering to determine the optimal number of clusters. 

The SSE list stores the SSE values for each number of clusters. The for loop iterates over 1 to 10 clusters 

and initializes a KMeans object with the corresponding number of clusters, random state, and other 

parameters. The fit() method of the KMeans object is called on the data and the SSE value is appended to 

the SSE list. 

After computing the SSE for each number of clusters, the code generates a plot of SSE against number of 

clusters using the matplotlib library. The user is asked to input the optimal number of clusters, which is then 

used to perform K-Means clustering on the data again. The resulting labels and centroids are stored in 

kmeans_labels and centroids_kmeans respectively. The same is done for each one of the 4 algorithms. 



 

 

 

 

 



 

 

The code is plotting the results of the clustering algorithms applied to the Iris dataset. It calls the 

plot_clustering_results function for each algorithm, passing the algorithm name, the data, the cluster labels 

and the centroids. n_attributes is the number of attributes (columns) in the dataset, which is 4 in this case 

(sepal length, sepal width, petal length, petal width). 

The plot_clustering_results function creates a scatter plot matrix of the data, with each pair of attributes 

represented in a scatter plot. The points are colored according to their cluster labels, and the centroids are 

marked with red crosses. The function takes five arguments: 

• algorithm: a string with the name of the clustering algorithm 

• data: a numpy array with the data points 

• labels: a numpy array with the cluster labels for each point 

• centroids: a numpy array with the centroid coordinates for each cluster 

• n_attributes: an integer with the number of attributes in the dataset 

The function first creates a pandas DataFrame from the data array, with the attribute names as column 

names. It then creates a scatter plot matrix using the scatter_matrix function from pandas, with the c 

argument set to the cluster labels, and the diagonal argument set to 'hist', which makes the diagonal plots 

histograms of each attribute. 

The function then creates a pandas DataFrame from the centroid array, with the attribute names as column 

names. It loops over the subplots in the scatter plot matrix, and for each subplot, it checks if it is on the 

diagonal (where we have a histogram subplot) or not. If it is on the diagonal, it skips plotting the centroids. 

If it is not on the diagonal, it plots the centroids as red crosses at the centroid coordinates for each cluster. 

Finally, the function adds a title to the plot with the name of the clustering algorithm, and shows the plot 

using the show function from matplotlib.pyplot. 

 

 

 

 

 

 

 

 

 



 

 

Each block calculates the different metrics for each one of the four algorithms.  

The first three lines of code calculate the Adjusted Rand Index, Adjusted Mutual Information, Normalized 

Mutual Information. These metrics are used to evaluate the quality of the clustering results by comparing the 

clusters obtained by the algorithm with the actual labels (in this case, the actual class labels of the iris dataset 

- iris.target). 

The next lines of code calculate the internal evaluation metrics. Note that in order to calculate this metrics 

we do not require the actual labels (iris.target) as an input. The fourth line calculates the Silhouette Score, 

the fifth line calculates the Calinski-Harabasz Index, the sixth line calculates the Davies-Bouldin Index  and 

the last line of code calculates the Dunn Index (for the last two metrics the centroids are used as input 

arguments) 

 

 

 

 

 

 

 

 



 

 

The provided code calculates the coordinates of the real centroids based on the true labels of the Iris dataset. 

The code uses the NumPy library to calculate the mean of each feature for each cluster. It then stores the 

coordinates of the centroids in a list with the name centroids. After calculating the centroids, the code 

calculates four internal performance metrics for the actual labels: Silhouette score, Calinski-Harabasz score, 

Davies-Bouldin index, and Dunn's index.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

The first block of code defines the names of the metrics and stores the scores obtained from each algorithm 

for each metric in separate lists. 

The second part of the code creates a table using the pandas library, which displays the scores of each metric 

for each algorithm. 

The third part of the code creates bar plots using the matplotlib library. There are 7 subplots, with each 

subplot corresponding to one metric. The x-axis of each subplot represents the different algorithms, and the 

y-axis represents the scores obtained for each metric. The color of each bar represents a different algorithm. 

The title of each subplot denotes the metric being displayed. 

 

 

 

Overall, this script is performing clustering on the Iris dataset using K-Means, K-medoids, Partitioning K-

Means and Gaussian Mixture Model (GMM) algorithms.  

It first standardizes the data by scaling it. Then it uses the Elbow Method to find the optimal number of 

clusters for each algorithm. The script plots the SSE and BIC values for different number of clusters to help 

the user decide the best number of clusters.  

After finding the optimal number of clusters, the script fits all the algorithms on the data and plots the 

results. It also plots a scatter matrix to visualize the results.  

Finally, it calculates various performance metrics like adjusted rand index, adjusted mutual information, 

silhouette score, etc. for each algorithm and displays the values in a table format and also in bar plots. 

 

 



 

 

Results 

 

Elbow method results 

 



 

 

 

 

 

The user will have to choose and optimal number of clusters for each algorithm. The best k may be different 

for each algorithm. K=3 seems to be an optimal solution for this application. 



 

 

Clustering results 

 

Below, the clustering results for k = 3 (number of clusters) are presented. The color of each data point is set 

by its assigned cluster label. The centroids are also plotted on the scatter matrix plot. For each subplot, a red 

'x' is plotted at the position of each centroid. The diagonal plots are histograms of each attribute. 

 

 



 

 

 



 

 



 

 

 

 

 

 

 

 

 



 

 

True labels 

 

 

 

 

 

In most unsupervised clustering tasks, the actual class labels of the data points would not be available. In 

this case the actual labels are available so we can make use of this information to investigate further the 

clustering performance of the algorithms compared to the real results. 

 

 

 



 

 

Conclusion - Clustering metrics results and commentary 

 

The results for each algorithm are presented with a unique color. Red is k-means, Green is Partitioning k-

means, Blue is k-medoids and Purple is GMM. The results of each clustering metric are visualized in a 

different bar plot. There are 7 bar plots in total, each for a different clustering performance metric. 

 

 

Bar plots of clustering performance metrics results for k=3 

 

 

  K-means Partitioning K-means   
K-

medoids 
GMM 

Adjusted Rand Index 0.620 0.645 0.631 0.904 

Adjusted Mutual Information 0.655 0.657 0.665 0.898 

Normalized Mutual 

Information 
0.659 0.661 0.669 0.900 

Silhouette Score 0.460 0.457 0.459 0.374 

Calinski-Harabasz Index 241.904 239.485 239.748 187.774 

Davies-Bouldin Index 0.655 0.654 0.653 0.809 

Dunn Index 0.050 0.110 0.111 0.140 

 

Table of clustering performance metrics results for k=3 

 



 

 

The clustering metrics results will be calculated for k=2 and k=4 as well, in order to identify how their 

values change for varying k numbers. 

 

Bar plots of clustering performance metrics results for k=4 

 

 

  K-means 
Partitioning K-

means 
K-medoids GMM 

Adjusted Rand Index 0.495 0.579 0.518 0.824 

Adjusted Mutual Information 0.603 0.616 0.608 0.845 

Normalized Mutual 

Information 
0.609 0.623 0.615 0.847 

Silhouette Score 0.385 0.413 0.398 0.302 

Calinski-Harabasz Index 206.681 206.073 203.291 149.032 

Davies-Bouldin Index 0.851 1.008 0.863 1.278 

Dunn Index 0.106 0.056 0.121 0.107 

 

Table of clustering performance metrics results for k=4 

 

 

 

 

 



 

 

 

Bar plots of clustering performance metrics results for k=2 

 

 

  K-means 
Partitioning K-

means 
K-medoids GMM 

Adjusted Rand Index 0.568 0.568 0.568 0.568 

Adjusted Mutual Information 0.732 0.732 0.732 0.732 

Normalized Mutual 

Information 
0.734 0.734 0.734 0.734 

Silhouette Score 0.582 0.582 0.582 0.582 

Calinski-Harabasz Index 251.349 251.349 251.349 251.349 

Davies-Bouldin Index 0.297 0.297 0.293 0.297 

Dunn Index 0.508 0.508 0.482 0.508 

 

Table of clustering performance metrics results for k=2 

 

 

 

 

 

 



 

 

All algorithms give nearly the same clustering solution (class labels assigned to each point) for k=2. This 

explains why the values of almost all the metrics are identical.  

 

 

 

We can visually see that the clustering result for k=2 is very different from the actual cluster labels. That is 

why the ARI is lower that the k=3 case of clustering. 

 



 

 

 

 

Difference in DBI and DI is due to different centroid positions. K-medoids sets real datapoints as centroids 

whereas the other algorithms do not. Nevertheless, the output labels for the datapoints are the same for all 

the algorithms. 



 

 

 

 

Bar plots of clustering performance metrics results for k=2,3,4. The yellow bar represents the internal 

clustering metrics results for the actual labels of the iris dataset. 



 

 

 

 

Table of clustering performance metrics results for k=2,3,4 

 

 

 Range  

Adjusted Rand Index -1,1 Higher the better 

Adjusted Mutual Information 0,1 Higher the better 

Normalized Mutual Information 0,1 Higher the better 

Silhouette Score -1,1 Higher the better 

Calinski-Harabasz Index 0, ++ Higher the better 

Davies-Bouldin Index 0, ++ Lower the better 

Dunn Index 0,1 Higher the better 

 

Table showing the possible range of values for each algorithm. Higher values indicate a better clustering 

result for all metrics except for the Davies-Bouldin Index 

 

 

 

 

 

 

 

 

 

 

 

 

k=2 k=3 k=4 k=2 k=3 k=4 k=2 k=3 k=4 k=2 k=3 k=4

Adjusted Rand Index 0.568 0.62 0.495 0.568 0.645 0.579 0.568 0.631 0.518 0.568 0.904 0.824

Adjusted Mutual Information 0.732 0.655 0.603 0.732 0.657 0.616 0.732 0.665 0.608 0.732 0.898 0.845

Normalized Mutual Information 0.734 0.659 0.609 0.734 0.661 0.623 0.734 0.669 0.615 0.734 0.9 0.847

Silhouette Score 0.582 0.46 0.385 0.582 0.457 0.413 0.582 0.459 0.398 0.582 0.374 0.302

Calinski Harabasz Index 251.349 241.904 206.681 251.349 239.485 206.073 251.349 239.748 203.291 251.349 187.77 149.032

Davies-Bouldin Index 0.297 0.655 0.851 0.297 0.654 1.008 0.293 0.653 0.863 0.297 0.809 1.278

Dunn Index 0.508 0.05 0.106 0.508 0.11 0.056 0.482 0.111 0.121 0.508 0.14 0.107

K-means Partitioning K-means K-medoids GMM



 

 

The intended output/result of the Thesis is the development of a software script capable to take different 

datasets as an input, implement different clustering methods and export the clustering performance metrics. 

The correct operation of the developed script is validated in this Chapter as the script outputs are complaint 

with the theoretical background that was presented in the first Chapters of the Thesis. The main results and 

conclusions of this example use case of the software script are the following: 

The k-means family algorithms perform very similarly as they have almost the same values for the different 

metrics. No meaningful differences are observed between the 3 algorithms for the clustering of this specific 

dataset. However, this could change if we implemented the clustering for datasets with different 

characteristics (number of samples/observations, attributes, variance and ‘shape’ of the data). 

It is important to note that the ideal number of clusters according to the elbow method is different for the 

GMM algorithm compared to the k-means family algorithms. This means that if the clustering for all the 

algorithms is applied for the same number k which is ideal for k-means family algorithm, but not for GMM. 

Nevertheless, the score for k=2 and k=3 is very close for GMM so the impact is not significant when we 

compare the fourth algorithms for k=3. 

It is important to note that because clustering is an unsupervised learning method the real clustering labels 

will not be available in most cases and the point of these algorithms is to find the best possible solution to 

find clusters of the datapoints by making use of different criteria. In this specific case we are working with a 

well-known clustering dataset where we can use the true labels to further make even more comments on 

how these algorithms perform. 

The Adjusted Rand Index (ARI) measures the similarity between the clustering produced by the algorithm 

and a reference/true clustering which is available for the iris dataset. For k=2 we have better values for some 

clustering metrics but the ARI is lower which means that the clustering is very different than the true labels. 

ARI is lower (which indicates a worse clustering result) when we move further away from the ideal number 

of clusters which according to the elbow method is k=3. The higher values for GMM indicate that the 

clustering is better in terms of differentiating the different points into the correct cluster. This is expected as 

GMM may perform better on data with a more complex, non-linear structure or different variances within 

clusters compared to K-means which may perform better on data with a spherical structure and similar 

variances. The simplicity of the dataset, gives the ability to be able to visually assess the validity of the 

script results. The better clustering result can be visually validated by looking at the clustering plots 

presented above for GMM and the real clustering using the actual/true labels that are available through the 

dataset. Values for AMI and NMI are also higher for GMM for k=3 and k=4 compared to the k-means 

family algorithms. The value for k=4 decreases compared to k=3 as we move further away from the true 

clustering result. 

We notice that for k=2, we have the highest silhouette score which decreases for k=3 and further decreases 

k=4. The reason for this is that the clusters are much better defined/separated in case of k=2 as we can 

visually see from the clustering plots. The silhouette value/score measures how well matched a data point is 

to the cluster that it belongs and not well matched to neighboring clusters. It is important to note that high 

values for internal clustering metrics do not necessarily mean that the clustering is close to the real one. In 

this case the true labels are available so we can understand from the ARI score that the real clusters are 

different from the ones for k=2.  

The CHI shows that the centroids of different clusters are more well-separated and the data points within 

each cluster are more compact for k=2. The value of the index decreases as the number of clusters increase. 



 

 

For k=3 and k=4 the index is lower for GMM compared to the k-means family clustering result as the index 

is designed to work with convex clusters, and may not work as well with non-convex or irregularly shaped 

clusters. The metric decreases for k=4 compared to k=3 as we move further away from the optimal cluster 

result. 

The value of the DBI is lower for k=2 which indicates a better clustering solution. For k=3 and k=4 the 

metric is higher for GMM which indicates that it has a worse performance compared to the k-means family 

algorithms. This is because the DBI accepts that the clusters are spherical which is true for the k-means 

family algorithms but not for GMM. 

The Dunn Index gives a measure of how separated the clusters are but it can be sensitive to outliers. As there 

are no outliers for k=2, we have a much higher score compared to the value for k=3 and k=4 where the 

clusters are not so well separated. 

By comparing the metrics values for GMM with the values of the metrics for the actual labels, we can 

assume that GMM was very close to the real clustering result, although if we didn’t have access to the true 

labels, it would seem that GMM would be the worst performing algorithm of all four. 

Overall, it is very complex to decide on the single most reliable clustering metric. Any evaluation metric 

should be used in combination with other measures to assess the quality of clustering results. It is important 

to note that good scores on an internal criterion do not necessarily translate into good effectiveness in an 

application and that the clusters are close to reality. Good scores on an internal metrics means better results 

in specific criteria like separation, cohesion etc. and do not ensure that we are close to the real clustering. In 

most situations in unsupervised learning problems the actual labels would not be available so we would have 

to rely on the internal clustering metrics in order to choose a clustering method that has good performance in 

predicting the class labels. 

Ideas for future work and expansion of the project include the adjustment of the script to take multiple 

datasets as an input, the expansion of the number of clustering algorithms and assessment metrics and the 

creation of a user interface can so that the user will be able choose which clustering algorithms will be run 

and which metrics will be exported  
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