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Abstract

Technological advancements have increased the availability of spa-

tiotemporal data. However, meteorological data are usually non-

Gaussian and correlated in space and time. In this dissertation, state-

of-the-art geostatistical and machine-learning methodologies were uti-

lized to analyze large-scale non-Gaussian meteorological space-time

data. We carried out a series of numerical investigations utilizing 26

surface variables from the ERA5 reanalysis data sets collected for 65

grid locations on the island of Crete, Greece. The data sets corre-

spond to multiple temporal scales (hourly to annually) and span the

period from 1979 until 2019.

Four distinct approaches were implemented for the analysis of the

meteorological parameters:

1. The ERA5 data set was used for the estimation of the standard-

ized precipitation index (SPI) and the standardized precipitation

evapotranspiration index (SPEI) to reveal the spatiotemporal

patterns of drought in Crete.

2. Gaussian Anamorphosis with Hermite polynomials (GAH) was

employed to transform non-Gaussian precipitation data into nor-

mally distributed variables. Ten processing scenarios were inves-

tigated and their performance with respect to spatial interpola-

tion (based on Ordinary kriging) was evaluated. The scenarios

include the application or exclusion of GAH with varying polyno-

mial degrees, the utilization of either the exponential or Spartan

variogram models, and the incorporation or omission of Monte

Carlo simulations.



3. Twelve machine learning (ML) techniques were compared for the

classification of precipitation data into eight classes. Twenty-

six (26) numerical and categorical variables were used in a spa-

tiotemporal predictive framework for precipitation. Due to pro-

nounce class imbalance (dominance of “no rain” events), we first

divided the data into two classes that represent the absence or

occurrence of precipitation events. Then, the occurrence data

set was split in five different classes to characterize the intensity

of precipitation events.

4. Finally, we applied the Stochastic Local Interaction (SLI) model

to perform temporal (precipitation, temperature and solar radi-

ation) and spatiotemporal (precipitation and temperature) esti-

mation of missing values (data gaps).

The most important conclusions derived in this dissertation are as

follows:

1. The dry climate of Crete was confirmed by the estimation of

the SPI and SPEI drought indices. It was found that the eastern

part of the island is more prone to desertification than the north-

western part. Moreover, a temperature-inclusive drought index

was shown to be more appropriate than a purely precipitation-

based index for the study area.

2. Using higher-order (35 versus 20) polynomials in GAH has little

effect on the cross-validation results for the monthly total pre-

cipitation data. In addition, the incorporation of Monte Carlo

simulations does not universally improve the statistical measures.

3. With respect to the classification of hourly precipitation data,

the method of Random Forests (Bagged Ensemble Trees) per-

forms best for both the “Binary” (“rain” versus “no rain”) and

the “Only Rain” classification cases.

4. SLI is a competitive method for interpolating large temporal

and spatiotemporal data since it is fast and it performed very



well (compared to nearest-neighbor interpolation) across all the

different hourly data sets (temperature, precipitation, and solar

radiation).

The present study investigates a variety of methodological approaches

for the analysis of non-Gaussian, large-scale meteorological variables.

It provides an extensive analysis of precipitation, temperature, and

solar radiation for the island of Crete using the ERA5 reanalysis data

set. The meteorological data used involve multiple timescales. Two

drought indices are evaluated and compared in order to assess the

effect of warming trends on drought events. Various data processing

scenarios that combine GAH, kriging interpolation and bootstrap-

ping are studied and assessed. In addition, a comparison of twelve

machine learning methods for the classification of precipitation data

supported by 26 meteorological variables is conducted. Lastly, the

computationally efficient SLI models are herein applied for the first

time to spatiotemporal precipitation and solar radiation data.



Περίληψη

Οι τεχνολογικές εξελίξεις σε κλάδους όπως η τηλεπισκόπηση και το

crowd-sourcing έχουν οδηγήσει σε αύξηση των διαθέσιμων χωροχρονι-

κών δεδομένων. Τα πιο πρόσφατα διαθέσιμα δεδομένα τηλεπισκόπησης,

όπως τα ERA5, έχουν αποδειχθεί πιο ακριβή από προηγούμενες συλλο-

γές και επιτρέπουν την διερεύνηση σε περιοχές όπου το επίγειο δίκτυο

σταθμών καταγραφής είναι περιορισμένο. Ωστόσο, η αποτελεσματική

και ακριβής ανάλυση χωροχρονικών μετεωρολογικών δεδομένων εμπε-

ριέχει διάφορες δυσκολίες. Κατά κανόνα τέτοιου είδους δεδομένα παρου-

σιάζουν εγγενείς συσχετίσεις μεταξύ χωρικών και χρονικών διαστάσεων

και χαρακτηρίζονται από μη-Γκαουσιανές ιδιότητες.

Η ανάλυση χωροχρονικών δεδομένων για μια συγκεκριμένη περιοχή ε-

ίναι ζωτικής σημασίας, διότι οι παρούσες τοπικές συνθήκες είναι ικα-

νές να επηρεάσουν και να μεταβάλουν σημαντικά υποθέσεις οι οποίες

προκύπτουν από μεγαλύτερης έκτασης μοντέλα. Συνεπώς, εμπειρικά

μοντέλα που βασίζονται στην ανάλυση δεδομένων είναι απαραίτητα για

ακριβείς προβλέψεις. Η ανάλυση τέτοιων μεταβλητών έχει διερευνηθεί

εκτενώς μέσω γεωστατιστικών προσεγγίσεων, ωστόσο, πολλές φορές η

εξάρτηση τους στην Γκαουσιανή υπόθεση δημιουργεί περιορισμούς. Ως

εκ τούτου, είναι σημαντικό να αναπτυχθούν υβριδικές μεθοδολογίες οι

οποίες θα αξιοποιούν τα πλεονεκτήματα διαφόρων διακριτών τεχνικών.

Ο πρωταρχικός στόχος αυτής της διατριβής είναι να διερευνήσει διαφο-

ρετικές μεθοδολογίες για χωροχρονική μοντελοποίηση εκτεταμένων και

μη-Γκαουσιανών χωροχρονικών συνόλων δεδομένων. Χρησιμοποιήθη-

καν προηγμένες γεωστατιστικές μεθοδολογίες και μεθοδολογίες μηχα-

νικής μάθησης για την ανάλυση μετεωρολογικών δεδομένων που απο-

κλίνουν από τις συμβατικά χρησιμοποιούμενες παραμετρικές κατανομές.



Πραγματοποιήσαμε μια σειρά αριθμητικών πειραμάτων για το νησί της

Κρήτης, χρησιμοποιώντας 26 επιφανειακές μεταβλητές από το ERA5

σύνολο δεδομένων οι οποίες συλλέχθηκαν για 65 τοποθεσίες σε κανονι-

κό πλέγμα. Τα σύνολα δεδομένων αντιστοιχούν σε πολλαπλές χρονικές

κλίμακες (ωριαία έως ετήσια) και καλύπτουν την περίοδο από το 1979

έως το 2019.

Τέσσερις διακριτές προσεγγίσεις εφαρμόστηκαν για την ανάλυση των

μετεωρολογικών παραμέτρων:

1. Το σύνολο δεδομένων ERA5 χρησιμοποιήθηκε για τον προσδιο-

ρισμό των χαρακτηριστικών ξηρασίας για το νησί της Κρήτης.

Η εκτίμηση πραγματοποιήθηκε χρησιμοποιώντας τους δείκτες ξη-

ρασίας standardized precipitation index (SPI) και standardized

precipitation evapotranspiration index (SPEI) για έξι χρονικές

κλίμακες. Σκοπός της παρούσας μελέτης είναι να διαπιστωθεί η

επίδραση της αύξησης της θερμοκρασίας στην συχνότητα των φαι-

νομένων ξηρασίας.

2. Προκειμένου να καταστεί δυνατή η βέλτιστη απόδοση των κλασι-

κών γεωστατιστικών μεθόδων όπως το kriging, χρησιμοποιήθηκε

η Γκαουσιανή Αναμόρφωση με Ερμιτιανά πολυώνυμα (GAH) για

τη μετατροπή των μη-Γκαουσιανών δεδομένων βροχόπτωσης σε κα-

νονικά κατανεμημένα. Διερευνήθηκαν δέκα σενάρια επεξεργασίας

και αξιολογήθηκε η απόδοσή τους σε σχέση με τη χωρική παρεμ-

βολή (με βάση το κανονικό kriging). Τα σενάρια περιλαμβάνουν

τη χρήση ή μη της GAH με ποικίλους πολυωνυμικούς βαθμούς,

τη χρήση είτε του εκθετικού είτε του Σπαρτιάτικου μοντέλου βα-

ριογράμματος και την ενσωμάτωση ή παράλειψη προσομοιώσεων

Monte Carlo.

3. Χρησιμοποιήθηκαν δώδεκα τεχνικές μηχανικής μάθησης (ML) για

την ταξινόμηση των δεδομένων βροχόπτωσης σε οκτώ τάξεις. Οι

μέθοδοι περιλαμβάνουν τα fine, medium, και coarse classification

trees, linear, quadratic, cubic, fine Gaussian, medium Gaussian,

και coarse Gaussian Support Vector Machines, Boosted Ensem-



ble trees, Bagged Ensemble trees, και Ensemble RUSBoosted

trees. Διερευνήθηκε η επίδραση είκοσι έξι (26) βοηθητικών μετα-

βλητών (ποιοτικές και ποσοτικές) στα πλαίσια της χωροχρονικής

ταξινόμησης των βροχοπτώσεων. Λόγω της ανισοκατανομής των

δεδομένων (κυριαρχία των γεγονότων «χωρίς βροχή»), το σύνολο

χωρίστηκε περαιτέρω σε δύο ξεχωριστά σύνολα δεδομένων. Το

πρώτο σύνολο περιέχει δύο κλάσεις, οι οποίες καθορίζονται από

ένα ορισμένο κατώφλι και χαρακτηρίζεται ως το “Binary” σύνο-

λο δεδομένων, το οποίο ταξινομεί την απουσία ή την ύπαρξη βρο-

χόπτωσης. Το δεύτερο σύνολο αποτελείται αποκλειστικά από τις

τάξεις που υπερβαίνουν το όριο κατωφλίου (πέντε τάξεις) και χα-

ρακτηρίζεται ως το “Only Rain” σύνολο δεδομένων, το οποίο τα-

ξινομεί την ένταση των συμβάντων βροχόπτωσης.

4. Τέλος, χρησιμοποιήσαμε τα Στοχαστικά μοντέλα Τοπικών Αλλη-

λεπιδράσεων (Stochastic Local Interaction models, SLI) για την

πλήρωση κενών σε δεδομένα βροχόπτωσης, θερμοκρασίας και η-

λιακής ακτινοβολίας. Στη μελέτη μας χρησιμοποιήσαμε τη μέθοδο

SLI για ανάλυση στο χρόνο και στο χωροχρόνο. Οι αναλύσεις στο

χρόνο αποτελούνταν από 2 535 χρονοσειρές για τη βροχόπτωση,

2 600 χρονοσειρές για τη θερμοκρασία και επιπλέον 2 600 χρονο-

σειρές για δεδομένα ηλιακής ακτινοβολίας. Οι χωροχρονικές ανα-

λύσεις αναφέρονται σε εκτιμήσεις βροχόπτωσης και θερμοκρασίας.

Το χωροχρονικό σύνολο βροχόπτωσης περιλαμβάνει 10 920 ωριαίες

τιμές που αντιστοιχούν σε επτά συνεχόμενες ημέρες και το σύνολο

δεδομένων θερμοκρασίας περιέχει 10 920 ωριαίες τιμές για το ίδιο

χρονικό διάστημα.

Τα σημαντικότερα συμπεράσματα που προκύπτουν σε αυτή τη διατριβή

είναι:

1. Το ξηρό κλίμα της Κρήτης επιβεβαιώθηκε μέσω της εκτίμησης των

δεικτών ξηρασίας SPI και SPEI. Το ανατολικό τμήμα του νησιού

βρέθηκε να είναι πιο επιρρεπές στην ερημοποίηση από το βορειο-

δυτικό τμήμα. Επιπλέον, το Ηράκλειο πλήττεται σοβαρά από την



άνοδο της θερμοκρασίας και την αυξημένη εξατμισοδιαπνοή λόγω

της κλιματικής αλλαγής. Οι αποκλίσεις μεταξύ των δεικτών που πα-

ρουσιάζονται στις τελευταίες δεκαετίες υποδηλώνουν ότι ο δείκτης

ξηρασίας που περιλαμβάνει τη θερμοκρασία είναι πιο κατάλληλος

για την εκτίμηση των φαινομένων ξηρασίας στην περιοχή μελέτης.

2. Η αύξηση της τάξης των πολυωνύμων στην εφαρμογή GAH έχει

μικρή επίδραση στην ακρίβεια των αποτελεσμάτων για τα μηνιαία

δεδομένα βροχόπτωσης. Επιπλέον, η ενσωμάτωση προσομοιώσε-

ων δεν βελτιώνει απαραίτητα τα αποτελέσματα. Το Σπαρτιάτικο

μοντέλο συνδιακύμανσης βρέθηκε να είναι πιο κατάλληλο για την

αναμόρφωση χωρίς τις προσομοιώσεις, ενώ το εκθετικό μοντέλο

βρέθηκε να είναι πιο κατάλληλο για τα σενάρια που ενσωματώνουν

τις προσομοιώσεις.

3. Στην εφαρμογή των μοντέλων μηχανικής μάθησης για την τα-

ξινόμηση της ωριαίας βροχόπτωσης, τα Τυχαία Δάση (Random

Forests ή Bagged Ensemble Trees) έχουν την καλύτερη ακρίβεια

και στα δύο σύνολα δεδομένων (“Binary” και “Only Rain”). ΄Ενα

υβριδικό μοντέλο μπορεί να είναι πιο κατάλληλο για το σύνολο δε-

δομένων “Only Rain” λόγω του πολύ μικρού δείγματος δεδομένων

στις υψηλότερες τάξεις.

4. Το μοντέλο SLI είναι μια αποτελεσματική μέθοδος παρεμβολής με-

γάλου συνόλου χρονικών και χωροχρονικών δεδομένων, καθώς δεν

απαιτεί την αντιστροφή μεγάλων πινάκων ή εκτεταμένη προεργα-

σία. Το SLI είναι πολύ αποτελεσματικό για όλα τα διαφορετικά

σύνολα δεδομένων (θερμοκρασία, βροχόπτωση, ηλιακή ακτινοβο-

λία) σε σύγκριση με την μέθοδο του κοντινότερου γείτονα (Nearest

Neighbor interpolation).

Η παρούσα μελέτη διερευνά ένα εύρος μεθοδολογικών προσεγγίσεων

για την ανάλυση μη-Γκαουσιανών, μεγάλης κλίμακας μετεωρολογικών

μεταβλητών. Παρέχει μία εκτενή ανάλυση για δεδομένα βροχόπτωσης,

θερμοκρασίας και ηλιακής ακτινοβολίας για το νησί της Κρήτης, χρησι-

μοποιώντας τα δεδομένα ERA5 σε πολλαπλές χρονικές κλίμακες. Επι-



πλέον, δύο δείκτες ξηρασίας συγκρίνονται με σκοπό να αξιολογηθεί η

επίδραση της αύξησης της θερμοκρασίας λόγω κλιματικής αλλαγής στα

φαινόμενα ξηρασίας στο νησί. Ποικίλα σενάρια επεξεργασίας τα οποία

χρησιμοποιούν την GAH σε συνδυασμό με την εκτίμηση kriging και προ-

σομοιώσειςMonte Carlo διερευνώνται και αξιολογούνται. Επιπρόσθετα,

πραγματοποιείται σύγκριση δώδεκα μεθόδων μηχανικής μάθησης για την

ταξινόμηση των δεδομένων βροχόπτωσης που ενισχύονται από πληρο-

φορία από 26 μετεωρολογικές μεταβλητές. Τέλος, τα SLI μοντέλα εφαρ-

μόζονται εδώ για πρώτη φορά σε δεδομένα χωροχρονικής βροχόπτωσης

και ηλιακής ακτινοβολίας.
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Chapter 1

Introduction

1.1 Motivation

In recent years due to technological advancements, the availability of large spa-

tiotemporal data sets has increased exponentially. Sources of these data sets

include remote sensing and crowd-sourcing. Especially for the meteorological

parameters from remote sensing sources, the data values have become more rep-

resentative of the true ground values compared to the past collections and help

vastly in cases where the ground station network is sparse. However, in order to

understand the spatiotemporal meteorological values there are specific issues that

need to be addressed. Usually, spatiotemporal data exhibit intrinsic correlations

between space and time and they are non-Gaussian. There are many reasons why

we need to analyze spatiotemporal data. Many times the variable that we need

to understand is qualitative, other times a theoretical model able to describe the

variable does not exist. Specifically for the analysis of meteorological parameters,

the need lies in the significance of comprehending the patterns that determine

the weather and climate. This is important because while general fundamental

equations are established for the characterization of such phenomena, each area

of interest experiences different patterns driven by local conditions. In this case,

predictions are dependent on empirical models at the core of which is data anal-

ysis. For the analysis of variables that are correlated in space and time, such as

meteorological parameters, classical geostatistical methodologies have been ap-
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plied widely [Goovaerts, 2000; Kyriakidis and Journel, 1999; Wackernagel, 2003;

Webster and Oliver, 2007]; however, they have several shortcomings such as their

dependence on the Gaussian assumption. Additionally, because of the abundance

of data available from remote sensing, and the number of correlated variables,

their size has grown considerably. Machine learning methods that are able to

handle big data can help in revealing the spatiotemporal patterns [Hastie et al.,

2009; Huntingford et al., 2019] without the need for a deep understanding of the

mathematical background, thus allowing non-experts to use them.

The stability of the climate in the lower layers of the atmosphere has allowed

the viability of the human species as well as all forms of life on Earth. These

conditions are created and directly depend on various meteorological parameters.

Key parameters include precipitation, temperature, solar radiation, wind speed,

and wind direction, humidity, and air pressure. Observations of these variables

are used by experts to predict the weather and usually they do not follow the

Gaussian distribution. Water is essential to life, household uses, industrial ac-

tivities, agriculture, transportation, and virtually all processes that sustain life.

Consequently, water resources are an integral part of life on Earth.

To understand and early acknowledge changes in the freshwater reserves ei-

ther on a global or a local scale one must first estimate how precipitation is

distributed in space and time. Improved models of spatiotemporal variations of

precipitation are important for hydrological and climate studies as well as for wa-

ter resources management [Agou et al., 2019; Kavetski et al., 2006; Varouchakis

et al., 2018]. In particular, there is strong interest in the Mediterranean region

where local economies depend on scarce water resources and climate change is

expected to adversely affect water availability [Cannarozzo et al., 2006; Coscarelli

and Caloiero, 2012; IPC, 2013].

Because of the uncertainties involved (spatial and temporal variability), prob-

abilistic approaches are required to enable water resources managers to analyze

risk under scenarios of climate change. Investigation of precipitation at fine tem-

poral resolution, such as monthly [Hellström et al., 2001; Mendez et al., 2020] or

even daily scales [Black, 2009; Chu et al., 2010; Zhang et al., 2011] is preferable,

considering variations in seasonal patterns [Portmann et al., 2009; Vera et al.,

2006] and the probability of extreme events [Kjellström et al., 2007; O’Gorman
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and Schneider, 2009; O’Gorman, 2015]. However, because of the computational

load, the lower availability of data at finer temporal scales, and the mathemati-

cal challenges involved in treating fast-changing values, most of the studies from

previous years involve lower resolution data sets [Kovats et al., 2014].

Geostatistical approaches have been successfully employed in different envi-

ronmental and Earth sciences disciplines. One of the main advantages of geo-

statistical methods is their ability to handle sparse measurements [Agou et al.,

2019; Varouchakis and Hristopulos, 2013]. Hence, they can provide space-time

predictions for variables with environmental and socio-economic importance sup-

plemented with estimates of the uncertainty of the results. Geostatistical methods

are widely used nowadays, and they remain a big part of the proposed method-

ologies. However, in the last decades, due to the explosion in computing power,

more demanding approaches are investigated such as Neural Networks [Moustris

et al., 2011], simulations [Richardson, 1981], and hybrid approaches [Li et al.,

2012] that incorporate more than one method.

Standard geostatistical techniques often rely on the normality assumption,

meaning that the target variable must approximate the normal distribution.

Nonetheless, this is not the case in environmental variables such as precipita-

tion, which are oftentimes incomplete, and highly skewed [Agou et al., 2019].

Depending on the investigated timescale and the geographical location, the dis-

tribution of the data set could vary greatly. A few of the available options that

address non-Gaussianity include the removal of a trend function or the applica-

tion of a normalization technique such as the Box-Cox transform [Box and Cox,

1964]. The simplest normalization transforms, which are routinely used, are not

always appropriate for the analyzed data. For example, in the case of precipita-

tion height, because of the existence of zero values in the data set, the application

of the Box-Cox or the logarithm transform without modifications is unsuited.

This thesis is motivated by the need for accurate interpolation methodologies

that can help to determine the spatiotemporal variability of parameters which

do not necessarily follow known probability distribution models [Pavlides et al.,

2022]. ERA51 data became recently available to the public. They include val-

1ERA5 is a climate reanalysis data set (5th generation) from ECMWF (the European Cen-
tre for Medium-Range Weather Forecasts) with a spatial resolution of 0.25°(31 km), lower time

3
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ues of meteorological parameters at fine temporal resolution across threatened,

due to climate change geographical areas. The parameters available in ERA5

data include many variables relevant to precipitation estimation, such as tem-

perature and cloud cover, they are also more accurate than their predecessor

ERA-Interim [Hassler and Lauer, 2021] and they have many characteristics of

the problems commonly found when analyzing spatiotemporal data such as the

big data size, the non-Gaussianity and the hidden correlations in the data struc-

tures. Hence, ERA5 data are the focus of this research. Herein, we introduce

spatiotemporal methodologies applied to reanalysis products, such as precipi-

tation, temperature and solar radiation. It is quite demanding to capture the

distribution of non-Gaussian meteorological data, e.g., precipitation, due to its

complex spatiotemporal variability and physical mechanisms. Additional moti-

vations of this thesis are the extreme events, the irregularities found in multiple

meteorological variables, the changing climatic conditions, and the risk of deser-

tification in various Mediterranean basins. All these reasons emphasize why a

tool for accurate spatiotemporal modeling of parameters that vary depending on

the latitude, the longitude and the timescale is crucial. Furthermore, the tem-

perature increase over the last decades has affected the estimation of the drought

conditions over an area. Localized estimations of drought events can be accom-

plished by the application of techniques that are able to fill in the missing gaps

effectively which are usually present in ground station data.

In the following sections, several methodologies will be reviewed, however,

every method has its limitations and drawbacks. There is yet to find the “perfect”

algorithm for modeling data that do not follow parametric distributions, and we

are still far from achieving that perfection. We aim to take steps towards that

ultimate goal.

resolution at 1 hour, 137 vertical levels from the surface up to a height of 80 km into the at-
mosphere, and is spanning the period 1950 to present (available for use in 2020) [Copernicus
Climate Change Service C3S, 2018]. Reanalysis is a systematic approach that employs data as-
similation and numerical methods to generate weather and climate products over high-resolution
grids [Dee et al., 2016].
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1.2 Objectives

The main objective of this thesis is to provide various methodologies for space-

time modeling of potentially large and non-Gaussian space-time data sets. In

order to test progress towards this objective we use an extensive set of meteoro-

logical reanalysis data for the island of Crete, Greece. The specific goals pursued

in this thesis are as follows:

1. We aim to show that geostatistical methods can be used to investigate the

spatial and temporal variability of non-Gaussian data (e.g., precipitation)

and provide a more user-friendly formulation, which does not require sig-

nificant pre-processing. Most of the classical geostatistical methodologies

such as kriging rely on the normality assumption, which is not met in pre-

cipitation data at fine temporal resolutions. According to the relevant bib-

liography [Andreou, 2022; Baxevani and Lennatsson, 2015; Gellens, 2002;

Koutsoyiannis, 2004; Li et al., 2013; Papalexiou et al., 2018; Rho and Kim,

2019; Shoji and Kitaura, 2006; Ye et al., 2018], precipitation height can be

approximately modeled by a variety of model distribution functions (pareto,

GEV, gamma, lognormal etc.). The appropriate distribution is usually esti-

mated from the data set that corresponds to a specific area and has a fixed

temporal step. This introduces several steps prior to the actual estimation

of the variable of interest, especially when the chosen approach relies on the

Gaussian hypothesis, such as kriging methods. On that note, the objective

was to incorporate a methodology that omits the fitting to a parametric

distribution step but its application will result in a field of approximately

normally distributed values, and at the same time it can be consistently ap-

plied regardless of the time step and the optimal fitted distribution for the

specified data set [Agou et al., 2022; Pavlides et al., 2022]. We implement a

normalization technique based on the Hermite polynomials (GAH) to drive

high-resolution precipitation data to meet these requirements [Hristopulos,

2020; Wackernagel, 2003]. GAH uses the Hermite polynomials for the trans-

formation of the data-based cumulative distribution function (CDF) to a

Gaussian CDF. The same approach can be applied to other high resolu-

tion data that do not approximate the Gaussian distribution. Additional
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to kriging methods, we utilized stochastic simulation in order to capture

the entire variability of precipitation for the island of Crete.

2. Another goal was to use the Stochastic Local Interaction (SLI) method-

ology for the interpolation of meteorological variables in the space-time

domain [Hristopulos and Agou, 2020]. Running large data sets with clas-

sical geostatistical methodologies such as kriging demands the covariance

matrix inversion which is computationally expensive, in terms of computa-

tional power, memory and time. Consequently, this limits the number of

case studies that qualify for such applications. Additionally, in methodolo-

gies such as the nearest neighbors interpolation, the number of neighbors

should always be larger than the number of missing ones in a row, which

is not needed in the case of the SLI method. Herein, we show that the

SLI methodology proposed by Hristopulos [2015b], an alternative to krig-

ing for large data sets, which uses local interactions of the data and the

joint probability density function defined by energy functionals is sufficient

for the interpolation of spatiotemporal meteorological data. We also show

that the method gives improved predictions to those acquired by classic

geostatistical methods.

3. We apply several machine learning methods (fine, medium, and coarse

classification trees, linear, quadratic, cubic, fine Gaussian, medium Gaus-

sian, and coarse Gaussian Support Vector Machines, Boosted Ensemble

trees, Bagged Ensemble trees, and Ensemble RUSBoosted trees) for the

classification of an imbalanced response variable based on various auxil-

iary meteorological variables in order to identify the most accurate among

them [Breiman, 1996; Chase et al., 2022; Freund and Schapire, 1996; Opitz

and Maclin, 1999; Rokach and Maimon, 2014; Rolnick et al., 2022; Seiffert

et al., 2008; Wu et al., 2008]. As mentioned previously, the pre-processing

steps for the interpolation of non-Gaussian variables are intricate and time-

consuming. Furthermore, previous machine learning applications that in-

clude but not focus on the area of interest are scarce and contain informa-

tion from a small number of parameters [Moustris et al., 2011; Papachar-

alampous et al., 2018]. We use machine learning methods because they
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do not rely on parametric assumptions and are able to improve the esti-

mation by incorporating supplementary information. For our case study,

the response variable is precipitation intensity and occurrence and the aux-

iliary variables are twenty six high-resolution meteorological parameters.

We identified the most relevant parameters to the amount of precipitation

and then we used them to evaluate the performance of the models to binary

and non-binary classification of precipitation for the island of Crete. The

binary classification aims to identify if an event is without precipitation

(zero) or with precipitation (one), meaning that in this case, we classify the

occurrence of precipitation. The non-binary classification aims to classify

the precipitation events into five separate distinctive classes that correspond

to intensity ranges.

4. Lastly, we aim to investigate the drought characteristics of the area of in-

terest based on the newly available ERA5 data and determine if the effects

of climate change are noticeable by incorporating one index that accounts

for temperature and one that does not. In previous studies, usually, one

drought index is applied and most of the time it is calculated over one

timescale [Koutroulis et al., 2011; Tsakiris et al., 2007b; Vrochidou and

Tsanis, 2012]. Rarely, the use of multiple indices for various timescales is

seen in practice. This prevents the comparison of widely used indices and

the effects of precipitation and temperature trends in short and long-term

drought conditions. In this research, we use two drought indices for the

estimation of upcoming (hydrological or meteorological) droughts, namely

the Standardized Precipitation Index (SPI) and the Standardized Evapo-

transpiration Index (SPEI). The estimation of the drought indices aims to

identify the spatiotemporal character of drought events in Crete.

Since we performed temporal and spatial precipitation analysis based on the

proposed methodologies, the comparison of the spatiotemporal results to the

spatial and the temporal results was natural. This thesis may prove itself valuable

to policymakers, further environmental studies, agricultural management and

planning.
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1.3 Innovation

The present study addresses the analysis of meteorological data on the island

of Crete using state-of-the-art geostatistical and machine learning tools. The

methodologies that we present include stochastic methods and machine learning

classification methods for the spatial, temporal, and spatiotemporal analysis of

non-Gaussian variables, while the data sets used for proof of concept are ERA5

reanalysis products for the island of Crete, analyzed at different time scales (refer

to Section 1.5.8 for details on the variables and the timescales used for each

methodology).

1. Stochastic Local Interaction models (SLI) models [Hristopulos, 2015a; Hristop-

ulos and Agou, 2020] are herein applied for the first time to temporal and

spatiotemporal precipitation and solar radiation data. The SLI models are

inspired by Gaussian field theories and Gaussian Markov random fields.

They are based on the creation of correlations generated by interactions

between neighboring sites and times and can be used in scattered data

compared to the Gaussian Markov random fields. The interactions between

neighboring points are expressed in terms of suitably selected weighting

functions, which are supplied by kernel functions. In SLI models the cor-

relations are determined employing sparse precision matrices, in addition,

there is no need for inversion of large covariance matrices, thus allowing

their use even in standard computers for significantly bigger data sets than

what would have been possible with classical geostatistical methods.

2. The ERA5 data are used for the first time for an extensive, localized analysis

of precipitation, temperature, and solar radiation and for the estimation

of the drought characteristics to the extent used herein for the island of

Crete. To address the sparsity of the precipitation record commonly found

in the ground data for Crete [Agou et al., 2019], we use ERA5 reanalysis

products [Copernicus Climate Change Service C3S, 2018]. We focus on the

total precipitation for timescales ranging between 1 hour to 1 year at the

locations of the ERA5 grid. The use of an extensive set of ERA5 variables

(26 parameters are used herein) for the island of Crete has not yet been
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used outside the context of General Circulation Models (GCMs). Lastly,

even with the ground station data, most of the studies that investigate the

patterns of climatological data for the island of Crete usually focus only on

a single timescale.

3. We use the Gaussian Anamorphosis with Hermite polynomials (GAH) to

transform the non-Gaussian precipitation data to normally distributed in

order to permit classic geostatistical methods such as kriging to perform op-

timally. GAH is not usually used in this context because of the complexities

involved in the calculation of the relevant coefficients. We further generate

several scenarios with different configurations and we evaluate their per-

formance. The separate elements used for the scenarios include the use or

not of the GAH with different polynomial orders, the variogram estima-

tion based on the exponential or the Spartan variogram model, the Ordi-

nary Kriging, and the use or not of Monte Carlo simulations. We generate

precipitation estimates and their associated uncertainties across the island

using geostatistical methods coupled with Monte Carlo simulation. We em-

ploy Monte Carlo simulations because precipitation data in every analyzed

timescale does not obey a specific probability distribution, and the data in

all cases are non-Gaussian.

4. We estimate and compare several drought indices (SPI, SPEI) based on the

ERA5 data. We use these indices to generate finer-resolution maps which

can help identify the most prone to desertification areas. To our knowledge,

this is the first time that ERA5 data are used for the estimation of drought

indices for the island of Crete. Furthermore, the estimation of SPEI for the

area of interest has not been published before. Since the length of the data

set is quite long (41 years), the presentation of all the results (SPI and SPEI

for 1-, 3-, 6-, 9-, 12-, and 24-months) for all the locations (65 locations) is

impossible. Therefore, we propose specific years that represent the range of

the data, as well as specific locations that are of higher interest due to their

geographic location. We suggest the use of the estimated characteristic year,

based on the precipitation data, for the comparison of the indices results

to the years that recorded the lowest and the highest annual precipitation.
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Past research for the island of Crete has focused on a single drought index

(usually SPI or a custom index) and a single time scale (3-, 12-, 24-, or

48-months) [Koutroulis et al., 2011; Tsakiris et al., 2007b; Vrochidou and

Tsanis, 2012]. In addition, we take advantage of index calculations for

multiple timescales (1-, 3-, 6-, 9-, 12-, and 24-months), which allows us to

capture in more detail the area’s drought characteristics regarding short

and long-term patterns.

5. We use several machine learning (ML) methods to study and classify im-

balanced precipitation ERA5 data (fine, medium, and coarse classification

trees, linear, quadratic, cubic, fine Gaussian, medium Gaussian, and coarse

Gaussian Support Vector Machines, Boosted Ensemble trees, Bagged En-

semble trees, and Ensemble RUSBoosted trees). We study the impact of

several meteorological and hydrological variables in a spatiotemporal pre-

dictive framework for precipitation. While it is not the first time that

classification methodologies have been applied to precipitation data (for a

review paper see Tyralis et al. [2019]), the aforementioned machine learning

methods are for the first time applied to an extensive set of 27 meteoro-

logical variables (the original 26 variables and one additional categorical

variable that signifies the month) for the island of Crete.

1.4 Dissertation Outline

The remainder of this thesis is organized as follows:

• Section 1, Introduction, presents the basic concepts and variables that are

commonly used to define the climate, including the definitions of precipita-

tion and drought, temperature, solar radiation and wind. Also, it describes

the most commonly used methodologies for the analysis of precipitation

data, the problems encountered in reanalysis products, and the importance

of the different spatial and temporal scales.

• Section 2, Basic Concepts of Geostatistics, focuses on the main background

necessary for the application of geostatistical methodologies, as well as the
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description of specific approaches. Specifically, it includes the definitions of

random fields, and concepts used to characterize them such as probability

distributions, statistical moments such as the covariance function, statis-

tical homogeneity, and isotropy. Additionally, commonly used variogram

models are presented, followed by a brief introduction to Kriging meth-

ods, simulation methods, Cross-validation techniques, and typically used

validation metrics. Relevant bibliography accompanies the methodologies.

• Section 3, Exploratory Data Analysis, introduces the data sets that will

be used for evaluating the performance of the different methods and their

characteristics. This section also presents exploratory statistical analysis of

the main variables and relevant information for the study area.

• Section 4, Estimation of Drought Indices for the Island of Crete, presents a

brief description of the drought indices concept, discusses commonly used

indices in areas with similar characteristics to the study area, and contains

the definitions of the indices (SPI, SPEI, PET) used in this research. Fur-

thermore, this section includes the calculation of the drought indices based

on the previously presented precipitation and temperature data for numer-

ous timescales (1-, 3-, 6-, 9-, 12-, and 24-months), finer-resolution maps and

finally the results and comparison between the indices.

• Section 5, Gaussian Anamorphosis of Precipitation Data, introduces the for-

malism of normalization methods. Additionally, the application of Gaus-

sian Anamorphosis with Hermite polynomials coupled with geostatistical

simulation (for the estimation of monthly precipitation) is presented and

compared in the framework of ten different scenarios.

• Section 6, Space-time Modeling with Machine Learning Methods, briefly in-

troduces widely used classification methodologies focusing on the one known

as Random Forests. It describes the problems occurring if the data sets are

not uniformly distributed, and presents the application of the methods us-

ing 27 environmental variables for the classification of hourly precipitation

values. Because our data set is extremely imbalanced, we studied various
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data splits. Finally, the classification methodologies applied and their re-

sults are compared. The Random Forests method was proven to be the

most accurate method for precipitation classification for all our test cases.

• Section 7, Stochastic Local Interaction Models, presents the theory behind

the Stochastic Local Interactions methodology, its application to temporal

and spatiotemporal data sets and the results obtained. In particular, we

apply the SLI methodology proposed by Hristopulos [2015b], an alterna-

tive to kriging for large data sets, which uses local interactions of the data

and the joint probability density function defined by energy functionals,

to temporal hourly precipitation, temperature, and solar radiation data,

and spatiotemporal hourly precipitation and temperature data. The SLI

method gives improved results compared to those acquired by simple inter-

polation methodologies (nearest-neighbor interpolation) for precipitation

and significantly better for the temperature and solar radiation data sets.

• Finally, Section 8, Conclusions presents a general discussion of the results

and concluding remarks.

• Appendix A presents the theoretical probability density functions (PDFs)

and cumulative density functions (CDFs) of commonly used probability dis-

tributions for precipitation data modeling, as well as widely known method-

ologies used to test the proximity of a data set to the Gaussian (or another)

distribution.

• Appendix B presents the summary statistics of the precipitation and tem-

perature data in different timescales.

• Appendix C presents the summary statistics of the monthly precipitation

for the dry period as well as the variogram fits with the exponential and

the Spartan variogram models for each month for the entire period. Addi-

tionally, the validation results of the four scenarios (S1-S4) investigated in

Section 5 are presented in detail.

12



1. Introduction

1.5 Preliminaries

Weather is defined by means of the meteorological conditions at any given time.

Climate is typically described as the average weather (or more precisely by means

of the mean and the variability of pertinent parameters) over a period that can

range from months to millions of years. According to the World Meteorological

Organization (WMO), averaging meteorological variables over 30 years is con-

sidered adequate. The most appropriate variables are measured at the Earth’s

surface such as temperature, precipitation and wind [Hartmann et al., 2013].

Life, as we know it today, is strongly linked to weather and climate. The pros-

perity of human societies relies upon the relatively stable climate conditions that

Earth has experienced since the ice age. Extreme events occurring with increas-

ing frequency during the last century have raised awareness over climate change.

Steps that individuals and societies can take to mitigate the effects of climate

change have been proposed. However, the first step to planning any strategy is

understanding and thoroughly evaluating the key factors that contribute to the

changing climate.

As stated by the Sixth Assessment Report of the Intergovernmental Panel

on Climate Change (IPCC) [IPCC, 2021], for the last four decades after 1850,

every decade is characterized by higher global surface temperature compared to

the preceding decade. Specifically, for 2001–2020 global surface temperature was

0.99 °Celsius higher than during the period 1850–1900 (Fig. 1.1). Based on 5

different emission scenarios, the global surface temperature is characterized by

an increasing trend until at least 2050. Certain projections suggest that be-

fore the end of the 21st century, unless extensive reduction in CO2 emissions is

achieved, the annually-averaged global surface temperature is going to increase by

1.5 °Celsius – 2 °Celsius over the global surface temperature relative to 1850–1900

(Fig. 1.1) [IPCC, 2021].

The estimations for the globally averaged precipitation indicate an increase

since 1950 with medium confidence. However, with high confidence it can be said

that the frequency and the intensity of heavy precipitation events has increased

for areas with adequate observations (Fig. 1.2b). In addition, it is clear that

human influence likely contributed to the aforementioned changes with medium
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Figure 1.1: History of global temperature change and causes of recent warm-
ing. Left: Changes in global surface temperature reconstructed from paleocli-
mate archives (solid gray line, 1–2000) and direct observations (solid black line,
1850–2020), both relative to 1850–1900 and decadally averaged. The gray shad-
ing with white diagonal lines shows the very likely ranges for the temperature
reconstructions. Right: Changes in global surface temperature over the past 170
years (black line) relative to 1850–1900 and annually-averaged, compared to cli-
mate models. Figure SPM.1 in IPCC [2021]. For a more detailed description, see
the original published figure.

to high confidence [IPCC, 2021].

More specifically, for the Mediterranean region evidence indicates with high

confidence that there will be an increase in summer temperature greater than

in the global mean, while a reduction of summer precipitation is expected in

southern Europe. Additionally, there are projections for expansion in the land

area in danger of aridification, and an increase in the number of drought, aridity

and fire weather events, which subsequently will affect the agriculture, forestry,

and health sectors [IPCC, 2021].

Earlier reports [Kovats et al., 2014] have identified southern Europe as more

sensitive than the rest of Europe and probably more severely affected by climate
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(a)

(b)

Figure 1.2: Changes in annual mean surface temperature, and precipitation. Top:
Comparison of observed and simulated annual mean surface temperature change.
The left map shows the observed changes in annual mean surface temperature
in the period of 1850–2020 per °C of global warming (°C). The local (i.e., grid
point) observed annual mean surface temperature changes are linearly regressed
against the global surface temperature in the period 1850–2020. Bottom of a):
Simulated annual mean temperature change (°C), and b) precipitation change
(%) at global warming levels of 1.5°C, 2°C, and 4°C (20-yr mean global surface
temperature change relative to 1850–1900). Figure SPM.5 in IPCC [2021]. For a
more detailed description, see the original published figure.
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change. Recently, with many devastating events ravaging the Mediterranean, such

as extensive fires and record temperatures, these effects are very pronounced. For

example, in the middle of the summer of 2021 across the Mediterranean, many

fires took place, while multiple were occurring synchronously at different locations

in Greece, Italy, Spain, Turkey, North Macedonia (Skopje). Temperatures were

recorded at 48.8 °Celsius in Sicily, on 11 August 2021, unofficially breaking the

highest record in Europe, previously recorded at 48 °Celsius in Athens in 1977.

These events resulted in many human and animal deaths, even more injuries,

unprecedented loss of flora, constructions, and resources.

The situation is not different outside of Europe, with fires devastating Califor-

nia, Brazil, North and South Africa, Australia, India, and China [Aytekin, 2021].

The heatwave that hit North America on 28 June 2021, with extreme tempera-

tures recorded at 49.6 °Celsius (new Canada record), destroyed the entire village

of Lytton. The temperatures experienced could not be simulated, and accord-

ing to the scientists it would have been “virtually impossible” without human

influence [WMO, 2021].

Regarding precipitation, in the latest report of the IPCC, it is pointed out that

precipitation trends over the Mediterranean depend on the time period as well as

the study region and the season. While the projections for precipitation changes

indicate an increase in high latitudes, over tropical regions and in parts of the

monsoon region, over the subtropicals, including the Mediterranean, a decrease

in precipitation is expected [IPCC, 2021].

Changes in temperature and precipitation due to climate change will pro-

foundly affect multiple sectors of the society and the economy, starting with an

extremely high number of deaths caused by fires, heatwaves, and other natural

disasters. Grain harvest losses due to either flood, water deficiency, or fires will

become more frequent, the pollution levels will get higher and we will experi-

ence great losses in terms of forest land, and flora in general, including several

protected conservation sites (Natura, 2000) [Kovats et al., 2014].
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1.5.1 Precipitation and Drought

1.5.1.1 Precipitation

In meteorology, any product of the condensation of atmospheric water that falls

to Earth is called precipitation, and occurs when a portion of the atmosphere

becomes saturated with water vapor so that the water condenses and “precipi-

tates”. The primary component of the water cycle, precipitation, is responsible

for depositing fresh water on Earth and has a complicated spatiotemporal vari-

ability (Fig. 1.3). According to Chowdhury [2005], approximately 505 000 km3

of water falls as precipitation each year, 398 000 km3 of it over the oceans and

107 000 km3 over land. The aforementioned suggests that the average annual

precipitation across the entire Earth’s surface is 990 mm, however only 715 mm

of that precipitation falls over land.

Fresh water accounts for less than 4% of the world’s total water supply, with

more than 68 percent trapped in ice and glaciers and another 30 percent de-

posited underground. Fresh surface water sources, such as rivers and lakes, only

constitute about 93 100 km3, which is about 1/150th of one percent of the total

water on the Earth. Nevertheless, rivers and lakes supply with fresh water the

majority of the population [Shiklomanov, 1993].

The most commonly used data sources to obtain precipitation data fall into

three categories. The first source involves the point measurements procured from

rain gauges. The data acquired from this category are widely used to pro-

duce spatiotemporal estimates by applying numerous interpolation methodolo-

gies. However, they can be problematic in generating reliable precipitation esti-

mates because the rain gauge network in some areas is too sparse in space or in

time [Goovaerts, 2000]. For in-situ measurements of the precipitation height, the

standard instrument is the standard rain gauge, consisting of a funnel emptying

into a graduated cylinder, 2 cm in diameter, which fits inside a larger container

which is 20 cm in diameter and 50 cm tall [Strangeways, 2006]. Other types of

gauges include the wedge rain gauge (the most affordable and most fragile rain

gauge), the tipping bucket rain gauge, and the weighing rain gauge.

The second source of precipitation data includes observations acquired from

satellites or radars. These are available in specific areas, and the measurements
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Figure 1.3: Water Cycle. Figure taken from Shiklomanov [1993].

are a direct interpretation of the water droplets’ reflectivity [Atlas, 1990; Hong and

Gourley, 2015]. As described in Seo et al. [1999] and Grzegorz et al. [2007], these

measurements convey errors; thus, the appropriate correction must be applied

before further use [Park et al., 2017]. In particular, precipitation measurements

in vast expanses of the ocean and isolated land areas rely on satellite observations.

Satellite sensors record electromagnetic spectrum, which is afterward translated

via a mathematical formula to occurrence and intensity of precipitation. Sensors

are classified based on the wavelength that they record into two categories. The

thermal infrared (IR) sensor records a channel around 11-micron wavelength and

primarily gives information about cloud tops (works best in the tropics). The

second category includes sensors that record the microwave part of the electro-

magnetic spectrum (10 GHz to a few hundred GHz).

Finally, the last source for the acquisition of precipitation data involves the

reanalysis estimates. Reanalysis estimates come from satellite missions that use

their data to produce a more extensive data set. Such operations have been
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functioning since 1990. A few of them include the Tropical Rainfall Measuring

Mission (TRMM) Multisatellite Precipitation Analysis (TMPA), the Global Pre-

cipitation Mapping (GPM), and the Global Change Observation Mission-Water

(GCOM-W) [Hou et al., 2014; Imaoka et al., 2010; Kummerow et al., 1998].

In the last decades, remote sensing methods, and analysis methods that can

handle bigger and longer data sets have evolved. This change brought progress

in the quantitative mapping of various environmental variables, including precip-

itation. Consequently, the information that the meteorological variables enclose

across different spatiotemporal scales became more understandable [Hu et al.,

2019].

In our case, the data collections that we acquired and used for the applications

in this dissertation are the ERA5 reanalysis products, from the ECMWF (the

European Centre for Medium-Range Weather Forecasts). The introduction and

the analysis of the data sets are presented in Section 3.

1.5.1.2 Drought

Drought is a difficult concept to define since several interpretations are possible.

Drought is defined by the majority of people as a “prolonged absence or marked

deficiency of precipitation,” a “deficiency of precipitation that results in water

shortage for some activity or for some group,” or a “period of abnormally dry

weather sufficiently prolonged for the lack of precipitation to cause a serious

hydrological imbalance” [Heim, 2002].

Human activities, the underground surface, and the area’s climatic conditions

combined are the factors that can disturb the water budget equilibrium. The

process of drought is much slower than other natural disasters such as hurricanes

or floods. Since the consequences of drought are not that catastrophic until its

full rise, it is often ignored throughout its development time [Dai, 2013; Mishra

and Singh, 2010].

The types of drought are classified as meteorological/climatological, hydrolog-

ical, and agricultural/ecological (Fig. 1.4). Meteorological is region-specific and

links the deficiency of rainfall to the norm of the region. Hydrological drought

suggests water deficiencies over a prolonged period that also affect the subsurface
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Figure 1.4: Climatic drivers of drought, effects on water availability, and impacts.
Plus and minus signs denote the direction of change that drivers have on factors
such as snowpack, evapotranspiration, soil moisture, and water storage. The
three main types of drought are listed, along with some possible environmental
and socioeconomic impacts of drought (bottom). Figure 8.6 in IPCC [2021].

water supply. Finally, agricultural drought can be identified by its most preva-

lent characteristic, the lack of soil moisture. All types of droughts may have

environmental and socioeconomic impacts. The environmental impacts include

loss of habitat, fires, erosion and decline of the water quality. On the other hand,
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the socioeconomic impacts include food and water supply shortages, livestock

mortality and reduction in the produced hydropower which have resulted from

meteorological, agricultural, and hydrological drought elements.

Changes in the timing and the amount of soil moisture, evaporation, tran-

spiration rates, and precipitation have an impact on the hydrology of a region,

which in turn affects the region’s susceptibility to drought. The effect of a drought

varies according to vulnerability. For instance, subsistence farmers are more in-

clined to migrate during droughts because they do not have access to alternative

food sources. Areas with populations that depend on water resources for food

production are more vulnerable to famine.

1.5.2 Temperature

Temperature is a physical quantity that expresses hot and cold and can be mea-

sured with a thermometer. Various thermometers exist with numerous tempera-

ture scales. The most common temperature scales include the Celsius scale (°C),
the Fahrenheit scale (°F), and the Kelvin scale (K).

Air temperature is another essential parameter that affects the climate and

consequently the life on earth. The variability of the temperature measurements

can yield devastating effects on human life and ecosystems. For instance, the rise

of the air temperature leads to a higher probability of heat waves occurring, which

endangers life and may induce more deaths, especially in the more vulnerable

population [U.S. Environmental Protection Agency, 2021].

As mentioned earlier, the average surface temperature for each of the last four

decades was warmer than any decade that preceded it since 1850 and is expected

to continue rising [IPCC, 2021]. The consequences of an increase in the average

global temperature can be catastrophic. The rise of the surface temperature

results in more evaporation which consequently increases precipitation. However,

an increase in the precipitation amount does not necessarily mean an increase in

water resources. This is due to the increase of heavier precipitation events causing

damage to crops, elevating the flood risk, and not enabling the replenishment of

the underground aquifers [U.S. Environmental Protection Agency, 2021].
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1.5.3 Solar Radiation

Solar irradiance represents the electromagnetic radiation measured by the appro-

priate instruments (pyranometers) per unit area, measured in watt per square

meter (W /m2). Most commonly used is the integration of solar irradiance over

a given time period, which represents the solar irradiation, or the global hori-

zontal irradiance (GHI) which is calculated taking into account the angle of the

sun to the horizontal surface (the Earth’s locations in measuring) and the diffuse

horizontal irradiance [Stickler, 2015].

Research interest in solar irradiance, among other reasons, arises from the fact

that it contributes the most to the prediction of energy production from solar

power plants [Koutroulis et al., 2021], and plays a big part in climate modeling

and forecasting. For example, the spatiotemporal distribution of solar radiation

can greatly impact the timing and magnitude of snowmelt [Elder et al., 2015;

Marks and Dozier, 1992].

1.5.4 Wind

In atmospheric sciences, the velocity of the air masses moving in the atmosphere

from high to low-pressure areas is called wind speed and is highly affected by

temperature changes. Wind speed is measured in meters per second (m/s in

the SI) or another equivalent measure such as kilometers per hour (km/h) with

anemometers. Another notable scale describing wind speed is the Beaufort scale.

Nonetheless, it is an empirical scale based on visual observation of the sea, and

every Beaufort number represents a range of wind speeds, thus, it is not used in

scientific applications. Different wind speed measurements can have from assist-

ing (pollination) to catastrophic effects (tornadoes) on the environment and the

society.

1.5.5 Drought Indices

Drought indicators or indices have been developed to characterize and help mon-

itor possible upcoming droughts in terms of their severity and duration. The

consequences of droughts can vary greatly, from food supply and security to ac-
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cess to education. Depending on the relevant impacts of a drought, determining

the proper drought indicator for early warning monitoring is crucial [World Me-

teorological Organization (WMO) and Global Water Partnership (GWP), 2016].

Drought indices are quantitative measures created to characterize the drought

levels, utilizing one or several variables (indicators). Some of these indicators are

precipitation, evapotranspiration, temperature, and soil moisture. Depending on

the target index, a large amount of data for one or multiple indicators are em-

ployed to calculate one single value. Since the possible combinations of variables

are endless, the indices developed are over 150 according to Niemeyer [2008],

and additional indices have recently been proposed [Karamouz et al., 2009; Rhee

et al., 2010; Vasiliades et al., 2011; Vicente-Serrano et al., 2010; Zargar et al.,

2011].

Drought indices have been implemented from the perspective of meteorology,

hydrology and agriculture by scientists of different disciplines. Representative

drought indices include the Standardized Precipitation Index (SPI, [McKee et al.,

1993; Vrochidou, 2013; Wu et al., 2005]), the Standardized Precipitation Evap-

otranspiration Index (SPEI, [Vicente-Serrano et al., 2010]), the Palmer Drought

Severity Index (PDSI, [Dai et al., 2004; Palmer, 1965]), the Drought Reconnais-

sance Index (DRI, [Tsakiris et al., 2007a]), the Rainfall deciles (RD Gibbs and

Maher [1967]), the Reclamation Drought Index (RDI, [Weghorst, 1996]), the Crop

Moisture Index (CMI, [Palmer, 1968]), the Surface Water Supply Index (SWSI,

[Doesken and Garen, 2004; Doesken et al., 1991; Shafer and Dezman, 1982]), the

Aggregate Drought Index (ADI, [Keyantash and Dracup, 2004]), and the Nor-

malized Difference Vegetation Index (NDVI, [Kogan, 1995; Tarpley et al., 1984]).

In Section 4 we estimate the Standardized Precipitation Index (SPI) and the

Standardized Evapotranspiration Index (SPEI) to monitor and extract conclu-

sions for Crete —a drought-prone area— to assist the water resources manage-

ment agencies with drought management policies and preparedness plans. We

identified multiple drought occurrences across the investigation period and spa-

tial “hot spots” more affected from the temperature increase during the last

decades.
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1.5.6 Bias Correction Methodologies

Methods employed to correct bias from model-derived data sets have different

names in the literature. These include statistical downscaling, quantile mapping,

histogram equalizing, and bias correction. Bias correction techniques usually in-

volve a transfer function obtained through the observed and simulated cumulative

density functions (CDF) (for CDF definition see Section 2.4) [Hansen et al., 2006;

Piani et al., 2010]. In other words, bias correction is the process of calibrating

climate model products to account for their systematic errors.

An abundance of satellite precipitation products followed the growth of the

remote sensing field. However, as mentioned in Section 1.5.1.1, satellite data

have some shortcomings despite the advancement of the field. First, downscaling

techniques are inevitable for a local-scale analysis because of the coarse spatial

resolution, especially in areas where rain gauges are sparse [Atkinson, 2013]. Nu-

merous methodologies have been proposed for spatial downscaling, some of which

use statistics/geostatistics while others use machine learning techniques [Ma et al.,

2020; Park et al., 2017; Sharifi et al., 2019]. Additionally, some integrate auxiliary

environmental variables. Apart from the estimation errors that every downscaling

method produces, the model’s performance is eventually subject to the accuracy

of the input satellite precipitation product.

Rain gauge data have complementary characteristics in terms of availability

and accuracy with satellite products; thus, they can be a valuable addition in

precipitation mapping when appropriately integrated. Records retrieved from

rain gauges are considered as true measurements, consequently, they can be used

to correct biases in the remote sensing products, improving the model’s prediction

performance.

Integrating rain gauge data with satellite precipitation products poses some

challenging issues, including the differences in scale, either spatial or temporal.

For instance, data from a rain gauge corresponds to point measurements, whereas

satellite precipitation products refer to the aggregated amount over a spatial grid

cell. Inconsistencies between records from remote sensing and ground sources are

common, exhibiting many wet days with low-intensity rainfall or extreme tem-

peratures [Ines and Hansen, 2006], and under- or overestimation and incorrect
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seasonal variations of precipitation [Christensen et al., 2008; Terink et al., 2009;

Teutschbein and Seibert, 2010, 2012], yielding unrealistic results in hydrological

simulations [Soriano et al., 2019]. Hence, differences in scale or mismatching

should be addressed appropriately during data integration from different sup-

ports [Porcù et al., 2014].

A variety of bias correction methodologies for merging rain gauge and satel-

lite or radar precipitation products have been proposed and applied [Schmidli

et al., 2006], some of which depend on geostatistics and specifically on differ-

ent kriging methods [Berndt et al., 2014; Chappell et al., 2013; Erdin et al.,

2012; Goudenhoofdt and Delobbe, 2009]. Other available methodologies include

Bayesian techniques [Todini, 2001], double kernel smoothing [Li and Shao, 2010],

conditional merging [Baik et al., 2016], and Quantile mapping (QM) [Li et al.,

2010; Soriano et al., 2019; Teutschbein and Seibert, 2012]. Park et al. [2017]

present a comparison between simple kriging with local means, kriging with an

external drift, and conditional merging. Some of the methods are simple to apply,

consisting of a linear model, or just an offset rainfall value, while others are more

complex and require separate modeling.

In an attempt to map precipitation over South Korea Park et al. [2017] in-

tegrated coarse-resolution satellite monthly accumulated precipitation products

(TRMM 0.25 degrees = 25km) and gauge data. They concluded that when the

ground station network is sparsely distributed, incorporating satellite-derived es-

timates can significantly improve the precipitation mapping estimates. However,

this is not the case when the ground station network is extensive. Additionally,

the assimilation generates precipitation estimates that are more variant compared

with the smoothed estimates that ordinary kriging (OK) generates, highlighting

the benefit of the integration in areas with sparse rain gauge networks and the

requirement of high-resolution mapping.

Soriano et al. [2019] applied different bias correction techniques to climate

model projections of temperature and precipitation to estimate the influence on

flood response for four catchments in Spain. They concluded that precipitation

is the most crucial input on flood response, and quantile mapping was the best

methodology for precipitation correction. To correct the daily projected tem-

perature values, Soriano et al. [2019] measured the difference between the mean
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monthly values of the projected and the ground station values, and added the

difference to the projected values, known as seasonal bias correction [Bergström

et al., 2001]. Various studies proved that QM is the most appropriate method for

precipitation bias correction, especially in cases with extreme values.

In this case study, we do not apply bias correction methodologies due to

several reasons. Firstly, the ground stations network is very sparse in many

regions around Crete which made the association of the ground measurements

to the reanalysis products very difficult. Additionally, the first reason combined

with the extreme variability of the ground measurements across the island [Agou,

2016] makes it impossible to estimate a universal model that can be applied to

correct the data for the entire island. And finally, the ground measurements

available correspond to different time period, and different time scale while also

having many missing values. This means that before we could apply any bias

correction methodology, we must fill in the missing values of the ground data set

and downscale to a finer resolution, incorporating bias and uncertainty.

1.5.7 Statistical Modeling

A different approach for the characterization and the evaluation of the climatic

conditions of a region besides the General Circulation Models (GCMs)1, Regional

Climate Models (RCMs)2, and the drought indices is the geostatistical analysis.

A wide range of methods comprises the geostatistical analysis, the foundation

of which are mathematical functions. In this particular approach, mathematical

expressions are utilized to model a variable of interest, such as precipitation, and

to ascertain potential associations through space and time.

Studies that utilize geostatistical methodologies and incorporate topographi-

cal parameters in the algorithms are presented by Agou et al. [2019]; Goovaerts

[2000]; Moral [2010]; Tushaus [2014], while studies such as those by Baxevani and

Lennatsson [2015]; Li et al. [2013] focus on the generation of weather fields. Most

1GCMs are mathematical equations that reflect physical processes in the atmosphere,
oceans, cryosphere, and land surface. They are the most prevalent used tools for climate
simulation by dividing the earth, ocean and atmosphere into grid blocks [IPCC, 2015].

2RCMs is the most prevalent downscaling technique of GCMs with a horizontal grid reso-
lution of around 25–50 km [Soriano et al., 2019].
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of the studies in the field of geostatistics associated with precipitation use para-

metric distribution functions to approximate the distribution of the field [Gellens,

2002; Koutsoyiannis, 2004; Rho and Kim, 2019; Shoji and Kitaura, 2006], how-

ever studies that use non-parametric approximation are available [Harrold et al.,

2003; Mosthaf and Bárdossy, 2017; Pavlides et al., 2021; Sharma and Lall, 1999].

Many meteorological variables display non-Gaussian characteristics, and vari-

ability thought space and time. Main step in most geostatistical methodologies

is the identification of a probability distribution model that fits the variable of

interest properly. For instance, precipitation displays significant spatial and tem-

poral variability, therefore it can be modeled as a stochastic variable. Several

probability distributions have been used to model precipitation. Commonly used

parametric models include the exponential, gamma, lognormal, Weibull, gener-

alized extreme value (GEV), pareto [Baxevani and Lennatsson, 2015], as well as

hybrid mixtures of exponential with a Pareto tail [Li et al., 2013; Ye et al., 2018].

Recently, Andreou [2022] suggested the use of the compound Poisson-Gamma

model which is a mixed type distribution that models the occurrence and the

intensity of precipitation at the same time.

The gamma distribution has been extensively used in the analysis of precipita-

tion for different time scales [Ye et al., 2018], including for modeling the daily rain

rate [Cho et al., 2004], the monthly and seasonal anomalies [Wilks, 1990; Wilks

and Eggleston, 1992], as well as to fit precipitation for the SPI development

[McKee et al., 1993; Vrochidou, 2013]. Nevertheless, the gamma distribution is

not defined for zero values that are present in precipitation measurements. Zero

precipitation values are taken into account in the gamma model using Type I

censoring of the distribution on the left [Wilks, 1990]. Left censoring means that

the number of values that fall under a threshold is known but their values are

considered unknown. This type of censoring can be applied to the distributions

presented below. Nonetheless, recent studies have emphasized that the tails of the

gamma distribution are not adequately heavy for heave rain events [Nerantzaki

and Papalexiou, 2019; Wilson and Toumi, 2005]. This is because the exponential

part of the gamma tail dominates the power-law term, and therefore in numerous

cases the gamma tail behaves similarly to the exponential.

In other studies, the lognormal distribution is utilized to approximate rain-
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rate [Biondini, 1976; Kedem and Chiu, 1987; Sauvageot, 1994], cumulus cloud

populations [López, 1977], amount of precipitable water [Foster and Bevis, 2003;

Foster et al., 2006], hourly precipitation [Shoji and Kitaura, 2006], and the aver-

age rain rate from satellite observations [Cho et al., 2004; Kedem et al., 1990]. In

a recent study, Cho et al. [2004] concluded that the lognormal and gamma dis-

tributions fit adequately the TRMM data (obtained from the Tropical Rainfall

Measuring Mission research satellite which operated from 1997 to 2015) of daily

average rain-rate.

The GEV distribution, which is developed within extreme value theory, com-

bines the Gumbel, Fréchet, and Weibull families also known as type I, II and

III extreme value distributions respectively. It is applied in various studies to

model precipitation and extremes for different time scales, including one-day max-

imum [Coles, 2001; Wang et al., 2017], k-day extreme precipitation (for k ranging

between 1 and 30) [Gellens, 2002], daily precipitation forecasts [Scheuerer, 2014],

and annual maximum precipitation [Koutsoyiannis, 2004]. In the earth system

sciences, the GEV distribution finds oftentimes applications in hydrology for the

study of extremes of several natural phenomena, including rainfall, floods, wind

speeds and wave heights [Soriano et al., 2019]. Hybrid GEV models that allow

more flexible tail behavior are considered in Papalexiou and Koutsoyiannis [2012];

Papalexiou and Serinaldi [2020]; Rho and Kim [2019].

In Appendix A we present the PDF (Eq. A.1) and CDF (Eq. A.2) equations

as well as the plots of several relevant probability distribution functions including

the Gaussian, gamma, GEV, lognormal, Weibull, Pearson’s Type III, and Pareto

Type II distribution (Figs. A1 and A2).

1.5.8 The Role of Spatial and Temporal Scales

Many studies are widely available that investigate the patterns of temperature and

precipitation on a global scale. For example, while global scale models indicate

an increase in mean temperature, downscaling to local and regional scales reveals

different trends. This fact demonstrates that it is important to study different

spatial scales to view the entire picture, and especially important to analyze local

scales to yield conclusions for local regimes.
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In the analysis of precipitation data, the selection of the time and spatial res-

olution is important. The time resolution can vary, for example, between daily,

weekly, monthly, annual, seasonal, wet and dry periods. Annual precipitation is

the sum of precipitation over the course of a year (365 days), wet periods corre-

spond to October till March and dry periods to April till September. The seasonal

time scale is calculated by summing the precipitation over the total days of each

season. The time scale for the analysis must be determined according to the

application. For instance, when investigating the precipitation for a region with

arable crops, results based on the seasonal time-scale are more valuable [Rotter

and Van De Geijn, 1999], while a daily temporal resolution is more appropriate

when studying the impact of extreme precipitation.

According to McKee et al. [1993], at longer time scales drought becomes less

frequent and lasts longer. In terms of precipitation this suggests that at longer

time scales small amounts of precipitation become less frequent and have longer

duration. In addition, the correlation between precipitation and topography in-

creases with the length of the time interval. Finally, Bárdossy and Pergam [2013]

demonstrated that interpolation quality correlates to aggregation time; longer

aggregation times decrease the interpolation relative error.

Steps toward the understanding of precipitation distribution and change on

global or large spatial scales have extensively been analyzed in the last decades.

Although there is still an unknown territory on large scale estimation, the esti-

mation on a smaller scale with finer resolution estimations is still in its first steps

and needs to be addressed more thoroughly. This problem arises mostly because

of the lack of an extensive ground stations network, or a higher resolution grid

with remote sensing records. Nevertheless, the need for reliable estimations on a

regional scale is necessary because of the imminent threats that the environment

is projected to encounter in the next decade [IPCC, 2018].

The effects of climate change and the increase of 1.5 °C globally are very

troubling [IPCC, 2018]. The value of mean temperature presents the outline on

the effect of climate change on a global scale; however, the impacts will affect

every region economically and socially at different levels [Marotzke et al., 2017].

Modeling the climate at large scales, e.g., global or continental, has been the field

of study for many researchers in the last decades with significant results. Yet, we
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still need to break new ground in modeling climate change at local scales if we

want to grasp the future. A better understanding at a regional level will allow each

country’s relevant authorities to take measures against climate change’s adverse

consequences [Marotzke et al., 2017].

The intermittent rainfall behavior is unveiled by the fluctuations in rainfall

intensity and the alternation of wet and dry periods [Agnese et al., 2014; Molini

et al., 2009; Schmitt et al., 1998]. The intermittence in rainfall rises with the

decrease in the time-step; consequently, information noticeable in small time-

scales is concealed at larger scales.

Onyutha and Willems [2017] displayed how the change in spatial and temporal

resolution affected the variability in the rainfall amount and the computed climate

indices in the Nile basin. Specifically, they noted that the variation in the indices

explained the variability better at regional than location-specific scales. The

aforementioned are indicators of the need to focus and extensively analyze areas at

regional scales and not support all the planning and water management decisions

on large-scale estimation results.

In this thesis we use multiple time scales, the finer temporal resolution in use is

one hour in the temporal SLI application for the temperature, solar radiation, and

precipitation data (Section 7.7, and in the spatiotemporal SLI application for the

temperature and precipitation data (Section 7.8). Similarly, for the classification

of precipitation presented in the Section 6.5 we use the hourly data from all the

26 variables included in the data set covering and surrounding the island of Crete.

In the GAH applications we use the monthly ERA5 precipitation products for

the wet period which includes 246 months (from January to March and October

to December 1979 to 2019 - 41 years) for the entire grid (Section 5.6). Lastly, the

investigation of the frequency and intensity of the drought occurrences is carried

out with the monthly precipitation and temperature data based on the historical

records during the period 1979–2019 (Section 4.5).
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Chapter 2

Basic Concepts of Geostatistics

2.1 Summary

This chapter introduces several definitions and concepts that are helpful in spatial

data modeling. They include definitions for random fields, statistical moments

such as the mean value and the covariance function, statistical homogeneity and

isotropy, different variogram models, modeling formulas for the kriging method,

spatial model estimation via maximum likelihood estimation, a brief description

of simulation methods, cross-validation types, and validation metrics.

2.2 Introduction

Earth science data exhibit vast variability in space and time. Geostatistics pro-

vides the tools to model and characterize the spatio-temporal attributes, includ-

ing variability, based on the theory of random fields. The use of geostatistical

methods to analyze data facilitates the estimation or prediction of the system’s

response and helps practitioners make informed decisions. The field of geostatis-

tics originated from the mining and petroleum industries, which is apparent in the

applications discussed in various geostatistical books (see Journel and Huijbregts

[2003]; Olea [1999]) [Hristopulos, 2020]. However, since those initial applications,

the field has expanded to many other areas, including hydrology, meteorology,

forestry, and geochemistry. Some example applications using geostatistical meth-



Random Fields

ods involve random variables such as mineral grades [Hristopulos et al., 2021;

Pavlides et al., 2015], porosities and pollutant concentrations, underground wa-

ter [Varouchakis and Hristopulos, 2013] and meteorological variables such as tem-

perature, precipitation [Agou et al., 2019, 2022; Varouchakis et al., 2018] and

pressure [Chilès and Delfiner, 2012; Christakos, 1992; Goovaerts, 1997].

The motive behind the development of methods that can integrate the dis-

tribution of the data and their spatial correlations was profit. For the variable

of interest (e.g. gold deposits), increasing the sample size will normally decrease

the uncertainty of the estimation on neighboring positions, yet, it will also re-

markably increase the cost. Geostatistics decreases the uncertainty by utilizing

the current sample network, while simultaneously offering guidance if a network

expansion is needed.

Measurements for a real-world variable distributed in space and/or time com-

monly appear to be correlated with each other. One of the most frequently

followed approaches in geostatistics include the estimation of such correlations

via the ”structural analysis” also known as ”variogram modeling”, followed by

the application of interpolation methods, such as kriging, for the estimation of

the modeled process at unsampled locations, and finally the assessment of the

uncertainty of the estimates.

2.3 Random Fields

A random variable is used to quantify outcomes from random occurrences, such

as the result from a dice roll, the voltage of a random source, the cost of a ran-

dom component, plume concentrations, temperature measurements, or any other

numerical quantity. A random variable is a function whose domain is the set s

of all experimental outcomes [Papoulis and Pillai, 2002]. A random variable x

can be a discrete or continuous variable, if its sample domain is discrete (e.g.

x(s) = 0,1,2, ...) or continuous. Most environmental variables are continuous, for

instance precipitation, wind speed, and solar irradiance. Because of the continu-

ity, it is not possible to assign probabilities to all probable values of the random

variable in a meaningful way [Coles, 2001].

A random field (RF) is a set of interdependent random variables that describe
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the spatial or spatiotemporal range of an attribute. They have unique mathemat-

ical properties that distinguish them from a set of independent random variables.

Ω denotes a probability space, F is the σ–algebra on Ω, which is a collection

of subsets of Ω that contains the full set and is closed under complementation

and countable unions, and P is the family of probability measures. Let (Ω,F , P )
denote a probability space and D ⊆ Rd the spatial domain of interest. Then an RF

X(s;ω) is a collection of real-valued random variables distributed over D. The

RF is defined by a mapping from Ω × D into the set of real numbers R. Hence,

for any fixed s ∈ D, X(s;ω) → X(ω) is F -measurable as a function of ω, and for

a fixed ω, X(s;ω)∣ω=fixed = x(s) is a deterministic function of s [Gikhman and

Skorokhod, 1996].

Overall, we denote a field marked as X(s) where the vector s corresponds to

the position of a point in the study area, x(s) denotes the values corresponding to
a unique realization, and X ′(s) denotes the fluctuation of the field [Hristopulos,

2020]. Equivalently, a random field can be i) a field of discrete values, ii) a field of

continuous values, iii) a lattice field if the locations where the field is defined are

lying on a grid, and iv) a continuum field if the field extends over a continuous

space.

It is important to point out that if the interdependence of the random vari-

ables is absent, the random field does not exhibit spatial continuity. Physical

processes have intrinsic correlations, making it possible to model. For example,

the distribution of precipitation over an area is governed by complex physical

phenomena and attributes such as the movement of clouds in the atmosphere,

the topography of the area, and the temperature. The regionalized aspect of

fields is the single characteristic that differentiates geostatistics from pure statis-

tics. Without spatial continuity, prediction of the field’s value at an unobserved

would not be possible.

In this case study, the main variables of interest are precipitation, temperature

and solar radiation. We assume that they can be modeled as a random field

defined in continuum space.
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2.4 Probability Density Function

The probability density function (PDF) of the field is denoted with the symbol

f
X
[x(s)], while the PDF f

X
(x) refers to a single point. In both cases, the subscript

is the symbol indicating the field. This means that f
X
[x(s)] describes the joint

PDF of the field values for any number (even infinite) of points. Therefore, the

PDF in the case of the random field involves much more information than the

PDF of a single variable.

The multidimensional PDF, is defined as f
X
(x1, . . . , xN ; s1, . . . , sN) and de-

scribes the interdependence of possible states for a set of N points [Isaaks and

Srivastava, 1989]. In the case of a single random variable, the PDF is the first

derivative of the cumulative density function F
X
(x) (at every continuity point).

It is normalized so that the total probability of all possible outcomes is equal to

1, i.e.,
b

∫
a

f
X
(x) dx = 1. (2.1)

The integral limits depend on the space where the field X is defined, with values

ranging from −∞ to ∞ or being limited to a specific interval [a,b].

In many cases, Gaussianity is a prerequisite for many applications; several

tests may be used to determine how dissimilar the sample data are from Gaussian

distributed data. For a brief introduction see Appendix A. Techniques to trans-

form non-Gaussian to Gaussian distributed data are presented in Sections 5.3

and 5.4.

2.5 Statistical Moments

Statistical moments are deterministic functions that represent expectations over

all possible states of the field. They are defined for various combinations of field

values at one or more locations. In practice, the most commonly used moments

are low order moments such as mean value, variance, covariance function, and

semivariogram (or variogram) [Cressie, 1993].

The central value (mean value) of a distribution, also known as the first central

moment, is the expectation E[X(s)] of the random field X(s) at the position s
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of a point in the study area calculated over the ensemble of all states, i.e.

m
X
(s) = E[X(s)] =

∞

∫
−∞

xf
X
(x; s)dx, (2.2)

where x are the values that correspond to a given state.

The central value of highly asymmetric distributions is more appropriately de-

picted by the median value, Mx, which is the value corresponding to a cumulative

frequency of 0.5 [Goovaerts, 1997].

The variance of a distribution, also known as the second central moment,

captures the dispersion of the values around the mean value. It is given by the

mean value of the squared fluctuation, i.e.

σ2
X
(s) ≡ E [{X(s) −m

X
(s)}2] = E [X ′2(s)] . (2.3)

Variance is sensitive to irregular high values due to the squared differences in

the formulation [Hristopulos, 2020]. The square root of the variance, σ, is called

standard deviation, and its ratio to the mean, σ/m, is the unit-free coefficient of

variation for non-negative variables [Wackernagel, 2003].

Higher order moments include the skewness and the kurtosis of the distribu-

tion. The skewness is used to measure the asymmetry of the distribution about

its mean value, however, its interpretation is complicated due to the fact that

it cannot differentiate between fat and long tails. In other words, zero skewness

indicates that the tails on either side of the mean balance out, yet, it does not

necessarily indicate a symmetric distribution. The skewness is usually defined as

coefficient of skewness =
E [X ′3(s)]

σ3
X

. (2.4)

The kurtosis k
X
is a scaled fourth order moment measure that describes the

shape of the distribution. It is used to assess how spread the tails of the distri-

bution are around the mean value. Namely, high kurtosis implies that more of

the variance is the outcome of extreme fluctuations, instead of recurring fairly

sized fluctuations [Balanda and Macgillivray, 1988]. It is typical in practice to

use the excess kurtosis, which is defined based on the kurtosis of a univariate
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normal distribution which is equal to 3, and is calculated by the equation

excess kurtosis =
E [X ′4(s)]

σ4
X

− 3 = k
X
− 3. (2.5)

In the rest of the text, for the sake of brevity, we will refer to the excess kurtosis

as kurtosis. Both skewness and kurtosis can be unreliable estimators if the sample

size is small, however, large values even for small sample sizes may merit atten-

tion, because they indicate that statistical approaches that lie on the Gaussian

assumption may be improper [Williams, 2000].

2.6 Covariance Function

The centered covariance function (CCF), also known as covariance function for

conciseness, is a mixed statistical moment that represents quantitatively the de-

pendence of the fluctuations between two different points and is defined by the

following equation:

c
X
(s1, s2) ≡ E [X(s1)X(s2)] − E [X(s1)]E [X(s2)]

≡ E [{X(s1) −mX
(s1)}{X(s2) −mX

(s2)}]
≡ E [X ′(s1)X ′(s2)] .

(2.6)

If the arguments of the covariance function coincide, its value becomes equal

to the variance of the field at that point, that is

c
X
(s1, s1) = σ2

X
(s1). (2.7)

A function has to fulfill the permissibility conditions defined by Bochner’s

theorem to be accepted as a covariance function. This is expressed by means of

the spectral density, which is given by the Fourier transformation of the covariance

function c̃
X
(k) [Bochner et al., 1959]. According to the theorem, a function c

X
(r)

is a permissible covariance function if the power spectral density c̃
X
(k) exists, is

non-negative throughout the frequency domain, and the integral of c̃
X
(k) over

the entire frequency domain is bounded [Agou, 2016].
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2.7 Statistical Homogeneity & Isotropy

Statistical homogeneity and isotropy are two more concepts that are used to

characterize a random field. A homogeneous field X(s) in the weak sense has

constant mean value, i.e., m
X
(s) = m

X
. Also the covariance function of the field

is defined and depends only on the distance vector r = s1−s2 between two points,

in other words c
X
(s1, s2) = cX(r), which implies that the variance of the field is

constant. A random field is statistically homogeneous in the strong sense if the

multidimensional PDF for N points, where N is any positive integer, remains

unchanged by transformations that change the location of the points without

changing the distances between them.

Therefore, statistical homogeneity indicates that the statistical characteristics

of the field are independent of the spatial coordinates of the center of mass of the

N points. Practically, statistical homogeneity insinuates the absence of spatial

trends; thereby, fluctuations around a fixed level equal to the mean value can be

used to explain the spatial variability of the field [Hristopulos, 2020].

Providing that a field is statistically homogeneous, even in the weak sense, it

is also isotropic if the covariance function depends only on the distance r, and

not on the direction of the distance vector r. This addition is significant from

a practical point of view because it facilitates identifying the spatial dependence

through the omnidirectional variogram. Consequently, the field is by definition

statistically homogeneous, if the covariance function is isotropic, but not the other

way around [Olea, 1999].

2.8 Variogram Modeling

The semivariogram or variogram is a statistical moment that assesses how much

the average similarity between two random variables declines as their distance

increases. Stochastic interpolation algorithms, such as kriging-based methods,

demand knowledge of the variogram or the covariance [Olea, 1999].

The variogram of a random field is defined by the following equation

γ
X
(s,r) = 1

2
Var [X(s + r) −X(s)] . (2.8)
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The variogram is thus defined with respect to a pair of points, using the

variance of the increment field (a.k.a. distance step r), where the latter is defined

as δX(s;r) ≡X(s+r) −X(s).
If the field X(s) is statistically homogeneous, the variogram is directly con-

nected to the covariance function by means of the equation

γ
X
(r) = σ2

X
− c

X
(r). (2.9)

It follows from Eq. (2.9) that the variogram tends asymptotically to the variance

c
X
(0), and if the covariance is known, the variogram is also known [Chilès and

Delfiner, 2012]. However, the variogram can increase indefinitely if the variability

of the process does not approach a limit at long distances. This is evidence that

the random field is not statistically homogeneous. It is a commonly occurring

practice to utilize the variogram than the covariance function to estimate the

spatial dependence since it has a more general function and does not require

knowledge of the mean value.

In practical applications, the variogram near the origin demonstrates two

typical behaviors. On the one hand, it may show a discontinuity at distance zero;

thus, γ
X
(r) does not seem to tend to zero as r → 0 but to c0, which is also called as

nugget effect. The nugget effect might be present due to unresolvable fluctuations,

a component of the phenomenon with a range shorter than the sampling support,

measurement, or positioning errors [Chilès and Delfiner, 2012]. On the other

hand, the experimental variogram might be a flat curve, indicating a pure nugget

effect or white noise. This means that there is no correlation between any two

points; it is an extreme case of a total absence of spatial structure.

The correlation length ξ specifies the distance over which the field values are

statistically correlated, and the “speed” with which the variogram approaches

the sill. An anisotropic dependence exists when correlation properties change in

different directions in space. In practice, two types of anisotropy are observed:

geometrical anisotropy and zonal anisotropy. Geometrical anisotropy refers to

cases where the sill is independent of the direction, but the “speed” of approach

to the sill depends on the direction, while in zonal anisotropy the sill depends on

the spatial direction [Goovaerts, 1997].
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Variogram models that are commonly used in practice include the Gaussian,

the exponential, the spherical, the power-law, and the Matérn model [Hristopulos,

2020]. Their respective isotropic equations are listed below. For the following

equations σ2
X
is the variance, ∥r∥ is the Euclidean norm of the lag vector r, and ξ

is the characteristic length.

Exponential model:

γ
X
(r) = σ2

X
[1 − exp (−∥r∥/ξ)] . (2.10)

Gaussian model:

γ
X
(r) = σ2

X
[1 − exp (−∥r∥2/ξ2)] . (2.11)

Spherical model:

γ
X
(r) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

σ2
X
[1.5(∥r∥

ξ
) − 0.5(∥r∥

ξ
)
3

] , if ∥r∥ ≤ ξ

σ2
X
, if ∥r∥ ≥ ξ.

(2.12)

Power-law model:

γ
X
(∥r∥) = α∥r∥2H , where 0 <H < 1, (2.13)

where H is the Hurst exponent.

Matérn model:

γ
X
(∥r∥) = σ2

X
[1 − 1

2ν−1Γ(ν) (
2
√
ν

R
∥r∥)

ν

Kν (
2
√
ν

R
∥r∥)] , (2.14)

where ν > 0 is the smoothness parameter, Γ(⋅) is the gamma function and Kν(⋅)
is the modified Bessel function of the second kind of order ν [Stein, 1999].

Spartan model

The Spartan spatial random fields (SSRFs) are a relatively recently introduced

family of geostatistical models [Hristopulos, 2003]. The SSRFs have been success-

fully applied in environmental risk assessment [Hristopulos and Elogne, 2007], at-
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mospheric environment [Agou et al., 2019; Ẑukoviĉ and Hristopulos, 2008], hydro-

logical data [Varouchakis, 2012; Varouchakis et al., 2012], and mining [Pavlides,

2016]. The SSRFs are generalized Gibbs random fields, equipped with a coarse-

graining kernel that acts as a low-pass filter for the fluctuations [Hristopulos,

2003]. SSRFs are defined by means of physically motivated spatial interactions

and a small set of free parameters.

Spartan model (d=1):

γ0(r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ2
0 − η0e−∣r∣β2/ξ [cos(∣r∣β1/ξ)

4β2

+ sin(∣r∣β1/ξ)
4β1

] , ∣η1∣ < 2,

σ2
0 − η0

1 + ∣r∣/ξ
4

e−∣r∣/ξ, η1 = 2,

σ2
0 −

η0√
η21 − 4

[e
−∣r∣ω1/ξ

2ω1

− e−∣r∣ω2/ξ

2ω2

] , η1 > 2,

(2.15a)

Spartan model (d=2):

γ0(∥r∥) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ2
0 −

η0

π
√
4 − η21

I [K0 (
∥r∥
ξ

ω1)] , ∣η1∣ < 2,

σ2
0 −

η0∥r∥
4πξ

K−1 (
∥r∥
ξ
) , η1 = 2,

σ2
0 −

η0

2π
√
η21 − 4

[K0 (
∥r∥
ξ

ω1) −K0 (
∥r∥
ξ

ω2)] , η1 > 2,

(2.15b)

Spartan model (d=3):
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γ0(∥r∥) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ2
0 −

η0 e−∥r∥β2/ξ

2π
√
4 − η21

[sin (∥r∥β1/ξ)
∥r∥/ξ ] , ∣η1∣ < 2,

σ2
0 −

η0 e−∥r∥/ξ

8π
, η1 = 2,

σ2
0 −

η0

4π
√
η21 − 4

(e
−∥r∥ω1/ξ − e−∥r∥ω2/ξ

h
) , η1 > 2.

(2.15c)

For the Spartan model, the variance σ2
0 is determined from the hyperparame-

ters η0 (scale parameter), η1 (rigidity coefficient) and ξ (characteristic length) as

follows [Hristopulos, 2015a]:

(d = 1) σ2
0 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

η0
2
√
2+η1

, ∣η1∣ < 2,

η0
4 , η1 = 2,

η0

2
√

η21−4
(ω−11 − ω−12 ) , η1 > 2 .

(2.16a)

(d = 2) σ2
0 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

η0

2π
√

4−η21
[π2 − arctan(

η1√
4−η21
)] , ∣η1∣ < 2,

η0
4π , η1 = 2,

η0

4π
√

η21−4
ln(η1+

√
η21−4

η1−
√

η21−4
) , η1 > 2 .

(2.16b)

(d = 3) σ2
0 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

η0
4π
√
2+η1

, ∣η1∣ < 2,

η0
8π , η1 = 2,

η0

4π
√

η21−4
(ω2 − ω1), η1 > 2 .

(2.16c)

In Eqs. (2.15) and (2.16), η0 determines the total variance of the fluctuation,

while η1 > −2 is the rigidity hyperparameter (smaller η1 allow oscillatory behavior

of the covariance while η1 ≥ 2 lead to exponential decay). The hyperparameters

ω1,2 and β2 are dimensionless damping coefficients, β1 is a dimensionless wave
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number. The coefficients β1,2 are determined as β1,2 = 1
2 ∣2∓η1∣1/2. The coefficients

ω1,2 determine the decay of the slow and fast exponential functions (for η1 > 2)
and are given by means of ω1,2 = [ (η1 ∓

√
η21 − 4) /2]

1/2
. The normalized lag

vector is given by ∥h∥ = ∥r∥/ξ, while r = ∣r∣ is the Euclidean norm and σ2
X
is the

variance. The exponential covariance function is obtained from Eq. (2.15c) for

η1 = 2 [Hristopulos, 2003, 2020].

In this case study, the exponential and the Spartan variogram models are

used for the estimation of the spatial variability of the corresponding fields in

Section 5.6.

2.9 Spatial Estimation (Kriging)

In geosciences, one of the most common problems to resolve is how to eval-

uate a variable in a location that does not coincide with the locations of the

sampling network. Besides simple deterministic methods such as the inverse dis-

tance weighting or the natural neighbor interpolation [Mitas and Mitasova, 2005],

stochastic methods are another family of approaches that can be employed for

spatial prediction. Stochastic methods are in general more complex than de-

terministic methods, however, they provide more precise spatial predictions and

additionally, a measure of their uncertainty.

Stochastic methods involve the use of multiple parameters that have to be

estimated to optimally fit the spatial data. The estimate results from the op-

timization of a statistical measure, e.g. the maximization of likelihood [Fisher,

1922, 1925] or the minimization of the mean square estimation error [Chilès and

Delfiner, 2012]. The stochastic spatial prediction methods are also known as krig-

ing methods [Chilès and Delfiner, 2012; Christakos, 1992; Cressie, 1993; Olea,

1999; Wackernagel, 2003].

Kriging methods are named in honor of Danie Krige [Krige, 1951] who in-

troduced stochastic linear interpolation in conjunction with the minimization of

the mean square error of the estimate to estimate mineral deposits on unsampled

locations [Matheron, 1963]. In most cases of practical interest, the ultimate goal

is to estimate the field at a set of points. The estimated values at the new do-

main can be used for the construction of maps (e.g., precipitation maps) or the
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estimation of the concentration of the variable over that domain (e.g., mineral

reserves). Kriging has been successfully used in environmental, meteorological

and hydrological studies to generate spatial maps based on partial data [Agou

et al., 2019; Boer et al., 2001; Guan et al., 2005; Moral, 2010; Verdin et al., 2016].

The problem of local estimation is usually expressed as follows: Based on a

data set x(si), at si (where i = 1, . . . ,N) points located in a region Ω, calculate

the value of the field at the estimation point u ∈ Ω, which does not coincide

with any of the si. The estimate at point u is denoted as X̂(u), while with

x̂(u) we denote the specific value of the estimate derived from the available data,

supplemented by an estimate of reliability, which determines the uncertainty of

the estimation at each point [Agou, 2016].

Let ω(u) represent the correlation neighborhood of the point u, which in-

cludes n(u) ≤ N points than the size of si. Due to computational difficulties

encountered when processing large data sets, the estimation of the value X̂(u)
is performed inside a neighborhood and not over the entire domain. The size of

the neighborhood is defined in terms of the correlation length.

Kriging is a form of generalized linear regression that formulates the optimal

estimator X̂(u) using linear weights that minimize the estimation error variance

[Agou, 2016; Chilès and Delfiner, 2012]. The predictive equations used by kriging

also appear in the framework of Gaussian process regression (GPR) [Hristopulos,

2020; Rasmussen and Williams, 2006]. Kriging and GPR methods assume that

the data have an underlying joint normal (Gaussian) distribution, which simplifies

the calculations and leads to explicit predictive expressions [Agou et al., 2022].

Several variations of kriging exist based on their underlying characteristics (e.g.,

ordinary kriging, regression kriging, co-kriging, etc.) [Goovaerts, 1997; Hristop-

ulos, 2020; Journel, 1989]. Below, we present the most common formulation of

kriging, the ordinary kriging (OK). Other formulations can derive from OK with

the appropriate modifications to the mean m
X
(u) and the trend function. We

present briefly the formulation of Simple and Regression Kriging.

Ordinary Kriging (OK)

Ordinary kriging (OK) is used when the mean value m
X
(u) is constant but un-
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known inside the local neighborhood ω(u) of the estimate point. The mean

m
X
(s) may vary from neighborhood to neighborhood if the ordinary kriging is

not applied over the entire domain.

The unknown local mean is filtered from the linear estimator by forcing the

kriging weights λα to sum to one. This constraint enforces the zero bias condition.

The ordinary kriging estimator X̂(u) is thus written as a linear combination of

the X(sα) where α = 1, . . . , n(u), as

X̂(u) =
n(u)

∑
α=1

λαX(sα), (2.17)

with
n(u)

∑
α=1

λα = 1. (2.18)

Equation (2.18) is the unbiasedness constraint. The estimator X̂(u) is a random

variable, because it consists of a linear combination of random field values.

In the case of ordinary kriging, minimum mean square error should be cal-

culated using the restriction imposed by the unbiasedness constraint. The mini-

mization of the error variance under the non-bias condition ∑n(u)
α=1 λα = 1 uses the

Lagrange multiplier method for constrained minimization. The error variance is

calculated by means of the equation

σ2
E,OK
(u) = σ2

X
(u) +

n(u)

∑
α=1

n(u)

∑
β=1

λαλβE [X ′(sα)X ′(sβ)]

−2
n(u)

∑
α=1

λαE [X ′(sα)X ′(u)] + 2µ
n(u)

∑
β=1
(λα − 1),

(2.19)

where the constant 2µ is the Lagrange parameter. Using the covariance function,

Eq. (2.19) is expressed as

σ2
E,OK
(u) = σ2

X
(u) +

n(u)

∑
α=1

n(u)

∑
β=1

λαλβ c
X
(sα, sβ)

−2
n(u)

∑
α=1

λαcX(sα,u) + 2µ
n(u)

∑
β=1
(λα − 1).

(2.20)
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The optimal values of the linear weights and the parameter µ minimize the

error variance. The weights are obtained by setting each of the (n(u)+1) partial
first derivatives equal to zero, i.e.,

∂σ2
E,OK(u)
∂λα

= 0, α = 1, . . . , n(u), (2.21)

∂σ2
E,OK(u)
∂µ

= 0. (2.22)

These conditions lead to the following linear system of equations for the linear

weights,

n(u)

∑
β=1

λβ c
X
(sα − sβ) + µ = cX(sα − u), α = 1, . . . , n(u), (2.23)

n(u)

∑
α=1

λα = 1. (2.24)

The above linear system of equations is written in the form of matrices as

follows:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

σ2
X

c
X
(s1 − s2) . . . c

X
(s1 − sn) 1

c
X
(s2 − s1) σ2

X
. . . c

X
(s2 − sn) 1

⋮ ⋮ ⋮ ⋮ ⋮

c
X
(sn − s1) c

X
(sn − s2) . . . σ2

X
1

1 1 . . . 1 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

λ1

λ2

⋮

λn

µ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

c
X
(s1 − u)

c
X
(s2 − u)

⋮

c
X
(sn − u)

1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (2.25)

The solution of the linear system is given by the following equation:

λβ = C−1β,α Cα,u, ∀ β = 1, . . . , n(u). (2.26)

The optimal estimate of the kriging error variance is respectively given by the

equation

σ2
E,OK
(u) = σ2

X
−

n(u)

∑
α=1

λα c
X
(u, sα) − µ, (2.27)

with parameter µ < 0 [Christakos, 1992; Goovaerts, 1997].
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Simple Kriging (SK)

Simple kriging (SK) is a simple case of OK and is applied when the mean m
X
(u)

is known and constant over the entire study area Ω, i.e. E[X(s)] = m
X
. In this

case the kriging estimator is defined by the following equation:

X̂(u) =
n(u)

∑
α=1

λαX(sα) −mX

⎡⎢⎢⎢⎢⎣

n(u)

∑
α=1

λα − 1
⎤⎥⎥⎥⎥⎦
. (2.28)

The Gaussian process regression (GPR) equations are similar to those of sim-

ple kriging and equivalent to those of universal kriging [Chilès and Delfiner, 2012].

In GPR the mean can comprise a superposition of basis functions with unknown

coefficients (hyperparameters) which are estimated by maximizing the likelihood

of the model [Rasmussen and Williams, 2006], while in simple kriging the mean

is assumed constant and known [Agou et al., 2022].

Regression Kriging (RK)

With appropriate adaptations to the OK formulas, Regression Kriging (RK) is

generated. RK combines a trend function with interpolation of the residuals. In

RK the estimate is expressed as

X̂(u) =m
X
(u) + X̂ ′(u), (2.29)

where m
X
(u) is the trend function, and X̂

′(u) is the interpolated residual by

means of OK [Rivoirard, 2002]. In the trend function a variety of auxiliary vari-

ables can be incorporated such as the topography of an area [Agou, 2016; Agou

et al., 2019].

The method of regression kriging is used in applications, such as mapping

of leaf area index (LAI) [Berterretche et al., 2005], mapping soil particle size

fractions [Wang et al., 2020], mapping of precipitation height [Agou, 2016; Agou

et al., 2019], mapping of groundwater levels [Varouchakis et al., 2012], and min-

eral resources [Hristopulos et al., 2021]. Generally, kriging methods are considered

robust spatial prediction approaches that can be used to interpolate a variety of

environmental variables. Kriging formulations that allow the incorporation of
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auxiliary variables (such as topographical characteristics) are particularly power-

ful, especially for the analysis of variables that are affected by various parameters,

such as meteorological variables. Additionally, they allow the interpretation of

the separate components. The complexity both of the implementation and the

interpretation of RK makes its use limited.

In this thesis, we use OK to estimate the precipitation over the entire grid

which covers the island of Crete based on the ERA5 precipitation data. The

optimization of the parameters of the model is performed by maximizing the

likelihood of the sample data [Fisher, 1922, 1925] and by minimizing the mean

square estimation error [Chilès and Delfiner, 2012]. We use several cases of the

initial precipitation values, including the original aggregated monthly precipita-

tion, the normalized values calculated by means of the Gaussian Anamorphosis

with Hermite polynomials, and the Monte Carlo simulations of the original or the

normalized values (Section 5.6).

2.10 Spatial Model Estimation

Maximum likelihood estimation (MLE) is a method of estimating the optimal

parameters of a predefined spatial model to fit the sample data [Fisher, 1922,

1925; Norden, 1972]. The estimation of the optimal parameters is a result of the

maximization of the probability that the sample values will be generated for the

given set of parameters [Chilès and Delfiner, 2012]. Applications of the MLE

method for spatial data are widely available [Kitanidis and Lane, 1985; Mardia

and Marshall, 1984; Mardia and Watkins, 1989].

For a sample set x with values x1, x2, . . . , xn and a candidate parameter vec-

tor θθθ for the determined spatial model, the optimal parameter vector θ̂̂θ̂θ can be

estimated by maximizing the likelihood of the data set as follows

θ̂̂θ̂θ = argmax
θθθ

L(θθθ;x), (2.30)

where L(θθθ;x) = fx(x∣θθθ), and fx is the joint the probability of the data. To

discourage the fast changes of the likelihood, the maximization of its logarithm

(logarithm is a monotonically increasing function) is broadly calculated, or equiv-
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alently the minimization of the negative log-likelihood.

2.11 Simulation

In the earth sciences, oftentimes it is required to generate a realization of a domain

based on sample values. Commonly used techniques include spatial and temporal

interpolation such as kriging. A drawback of those methods is that they tend to

over-smooth the estimation field. Simulation techniques are capable of estimating

even the lower and higher probabilities, therefore they capture the true variability

of the process. This is very important especially for the assessment of extreme

events, and resource planning.

Simulation methods involve the generation of synthetic realizations based on

the joint PDF of the field, respecting the field’s basic characteristics such as the

mean value, the variance, and the variogram. Simulations can be divided into two

main categories, the conditional and the unconditional simulations. The former

category additionally to the main statistical properties of the field also preserves

the field values locally, while the latter does not. Most broadly encountered in

field studies is the conditional simulation due to the constraints involved [Hristop-

ulos, 2020].

Simulation approaches are complimentary to kriging because of their ability

to provide a deeper understanding of the uncertainty of the estimated process

due to the multiple calculated realizations. However, this advantage has a high

computational cost, especially when the estimation grid is large.

Monte Carlo simulation approaches are very popular, and they can be di-

vided into rejection sampling, importance sampling, and Markov Chain Monte

Carlo. In Monte Carlo simulation a part of the simulated states is used and not

all of them; this is the reason why there is a debate on whether they belong to

the simulation methods or not. Other simulation techniques include the covari-

ance matrix decomposition combined with kriging conditioning [Goovaerts, 1997;

Pavlides, 2016], spectral methods such as the Fast-Fourier-Transform, sequential

simulation, and simulated annealing [Hristopulos, 2020].
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2.12 Cross Validation

Several methods are available for the evaluation of the predictive performance

of the model. Those include the aforementioned MLE, and method of moments

(MoM), as well as the Cross-validation (CV). CV is a very popular statistical

approach often used for the selection of the model, the model’s parameters, and

the assessment of the model’s performance. Essentially, to apply CV the data

are split into two different sets, the training, and the validation set. The training

set is used for the estimation of the model (or the model parameters) and the

validation set is used for the comparison of the estimates at the locations of the

validation set with the real values [Hristopulos, 2020].

The selection of the “best” model lies in the minimization of a statistical

error measure (e.g., mean error) or a combination of multiple measures. In sum-

mary, CV combines average measures of fit (i.e., prediction error) to minimize

the estimation error and obtain a more precise estimate of the model’s predictive

performance [Grossman , edit.].

Several statistical measures of predictive performance can be used in CV; a

list is given below. In classification problems, CV is shown to be comparable

with the bootstrap and the Akaike selection criterion in terms of model selection

performance [Hastie et al., 2009; Hristopulos, 2020].

For the application of CV, three different strategies can be followed to split

the data into training and validation sets: the k-fold CV, the leave-P-out CV,

and the leave-one-out CV.

k-fold cross-validation In k-fold cross-validation, the sample is partitioned

into k disjoint subsets (folds) of approximately equal size [Kohavi, 1995]. For k

times, each of the k folds is selected as the validation set, while the remaining sets

serve as the training set. The validation measures are obtained as the average

over the k configurations. A standard number of splits is k = 4 or k = 10, but

generally, k is an unfixed parameter [McLachlan et al., 2004]. We use the k-fold

CV in the Random Forests application in Section 6.5.
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Leave-p-out cross-validation The main idea in Leave-p-out cross-validation

(LPO) is that the validation set contains p observations, and the remaining val-

ues specify the training set. The process of splitting the data and estimating-

validating the model can be performed in an exhaustive way (all possible combi-

nations of sets with p and n−p points) or the number of splitting repetitions can

be set at a specified low number to avoid the computational cost.

Leave-one-out cross-validation Leave-one-out cross-validation (LOOCV or

LVO) is a special case of leave-p-out CV if p = 1, or a special case of the k-fold

CV if k = n (the number of observations). The advantage of the LOOCV is the

low computational strain compared to the other approaches, and also the fact

that the LOOCV error estimate is considered an almost unbiased estimate of

the true error [Varma and Simon, 2006]. We use the LOOCV in the Stochastic

Local Interaction models application as well as in the Gaussian Anamorphosis

applications in Sections 7.8.1, and 5.6 respectively.

Cross-validation Metrics

To appraise the model’s performance the following measures are commonly used.

Those include: the mean error (bias) (ε
bias

), the mean absolute error (ε
MA

), the

root mean square error (ε
RMS

), the mean absolute relative error (ε
MAR

), the root

mean square relative error (ε
RMSR

), the Pearson’s linear correlation coefficient (ρP)

the Spearman’s (rank) correlation coefficient (ρ
rank

), the minimum error (ε
min

), and

the maximum error (εmax). Below we define these measures in the case of LOOCV.

The values x̂−i(si) and x(si) are, respectively, the estimated (based on the N − 1
data points excluding si) and true value of the field at point si, x(si) denotes
the spatial average of the data and x̂−i(si) the spatial average of the predictions,
while N is the number of observations [Agou, 2016].

Mean error (bias) (ME):

ε
bias
= 1

N

N

∑
i=1
[x(si) − x̂−i(si) ] . (2.31)
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The bias of the predictor is a crucial measure but needs to be interpreted carefully.

For example, low mean error values do not necessarily indicate low bias but they

may also signify that high positive errors are canceled out by large negative errors.

Mean absolute error (MAE)

ε
MA
= 1

N

N

∑
i=1
∣ x̂−i(si) − x(si) ∣ . (2.32)

The absolute value in the formulation of the MAE helps to overcome the problem

of ME to counterbalance large positive and negative errors. Thus, providing a

measure of the true magnitude of the deviations between the estimations and the

true values [Hristopulos, 2020].

Root mean square error (RMSE):

ε
RMS
=
¿
ÁÁÀ 1

N

N

∑
i=1
[ x̂−i(si) − x(si) ]2. (2.33)

Similar to the ε
MA

, the ε
RMS

measures the magnitude of the deviations between

the estimations and the true values, however, it weighs more in favor of large

errors.

Mean absolute relative error (MARE):

ε
MAR
= 1

N

N

∑
i=1
∣ x̂(si) − x(si)

x(si)
∣ . (2.34)

The ε
MAR

is a dimensionless measure that represents the difference between the

true values and the approximations. It is important to note that the ε
MAR

is

undefined if the true value is zero, and it is a meaningful measure when the

variable in question is measured on a ratio scale (i.e., values do not fall below zero).

Precipitation is measured on a ratio scale, therefore the ε
MAR

will not be sensitive

to measurement units. However, in multiple time scales, true precipitation is

zero, resulting in undefined MARE values.
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Root mean square relative error (RMSRE):

ε
RMSR

=

¿
ÁÁÀ 1

N

N

∑
i=1
[ x̂−i(si) − x(si)

x(si)
]
2

. (2.35)

The characteristics of the ε
RMSR

are similar to the ε
MAR

, but it weighs heavier for

large error values.

Pearson’s Linear correlation coefficient (RP):

The correlation coefficient, ρP, measures the correlation between two variables.

The formula for Pearson’s linear correlation coefficient ρP is [Isaaks and Srivas-

tava, 1989]

ρP =
Cov(x, x̂)

σx σx̂

=
∑N

i=1 [x(si) − x(si)][x̂−i(si) − x̂−i(si)]
√
∑N

i=1 [x(si) − x(si)]
2
√
∑N

i=1 [x̂−i(si) − x̂−i(si)]
2
. (2.36)

The Pearson correlation coefficient measures the dispersion of estimates with

respect to the observed values and is a reliable measure when linear correlations

are expected. The ρP takes values in the interval −1 ≤ ρP ≤ 1. The higher the ∣ρP∣
value, the higher the linear correlations between the data sets.

Spearman (rank) correlation coefficient (RS)

ρ
rank
= 1 − 6∑N

i=1(Rxi
−Rx̂i

)2
N(N2 − 1) , (2.37)

where Rxi
is the rank (order) of xi among all the other x values. The lowest x

value appears first on a sorted list and therefore receives a rank of 1; the highest

x value appears last on the list and receives a rank of N.

Similar to Pearson’s correlation coefficient, the Spearman correlation coeffi-

cient ρ
rank

measures the correlation between two variables and ranges between −1
and 1, however, the ρ

rank
can characterize non-linear relations. Large differences

between ρ
rank

and ρP are often quite revealing about the existence of extreme pairs

on the scatterplot.

52



2. Basic Concepts of Geostatistics

Error minimum

ε
min
= min

i=1,...,N
{x(si) − x̂−i(si) } (2.38)

The ε
min

shows the minimum estimation error over all locations.

Error maximum

εmax = max
i=1,...,N

,{x(si) − x̂−i(si) } (2.39)

The εmax shows the maximum estimation error over all locations.
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Chapter 3

Exploratory Data Analysis

3.1 Summary

This chapter focuses on the study area and introduces the data sets (26 atmo-

spheric reanalysis variables from the beginning of 1979 to February 2020) that

will be used in the following chapters of this thesis. Initially, general information

about the study area is presented, including topographic and demographic fea-

tures. Then, the data are described followed by pre-processing operations on the

main meteorological variables (precipitation and temperature). Finally, summary

statistical properties for the monthly precipitation and temperature data for the

wet season are illustrated by means of auxiliary tables and figures. The sum-

mary measures include the mean value, the median, the minimum and maximum

values, the standard deviation, the coefficient of variation, the skewness and the

kurtosis. This chapter is supplemented by Appendix B where the corresponding

tables and figures for the daily, weekly and annual timescales are presented.

3.2 Information about the Study Area

The study area is the island of Crete (Greece) in the southeastern part of the

Mediterranean basin. Crete is the largest island in Greece with an area of

8 336 km2, length of 260 km, width ranging from 12 km to 57 km, and max-

imum elevation of 2 456 m [Hellenic Statistical Authority, 2014]. The island’s
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climate exhibits a transition from Mediterranean to semi-arid as is common in

Mediterranean regions [Agou et al., 2019; Watrous, 1982]. In spite of its rather

small geographical size, temperature and precipitation exhibit significant local

variations due to three mountain ranges which are among the highest in Europe.

From west to east, the island is divided into four administrative regional units:

Chania, Rethymno, Heraklion, and Lasithi.

The population of Crete approaches 624 408 people according to the 2021

census [Hellenic Statistical Authority, 2023]. Most of the population lives closer

to the coastal areas where the most important agricultural areas are located

(Fig. 3.1). Messara valley in the south of Heraklion prefecture is the island’s

largest and most productive plain. The valley of Ierapetra in the south-east

also has significant agricultural activity. Agriculture is an important revenue

contributor for the Cretan region, accounting for 13% of the local Gross Domestic

Product (GDP) [Chartzoulakis et al., 2001].

Figure 3.1: Geomorphological map of Crete showing the 65 ERA5 grid locations
(blue markers) used in this study [Google Earth, 2015].

56



3. Exploratory Data Analysis

3.3 Data sets

Drought monitoring has become a prevalent research topic in the last century.

The majority of the available studies from past decades involve data from ground

stations. The low availability of older studies with applications on satellite images

is due to the technical limitation that comes with big size data sets, as well as

the low resolution that satellite and radar records used to have.

As remote sensing technology developed, and satellite or reanalysis data sets

were widely and freely available for academic purposes, their use started to grow.

Nowadays, satellite data consist of long-term and large-scale meteorological data

that can be used to monitor environmental disasters [Tian et al., 2014; Xue et al.,

2019]. Their spatial resolution commonly ranges between 0.25°(≈ 31 km) to 2.5°(≈
310 km), while their time resolution ranges from 1 hour to one month, covering

the globe.

Reanalysis is a systematic methodology that employs data assimilation and

numerical methods to generate weather and climate products over high-resolution

grids [Dee et al., 2016]. Data assimilation entails the application of mathematical

tools to fuse data from many sources. Reanalysis products may contain bias

due to errors and approximations in the observations and models used. This

study does not employ bias correction approaches since the goal is to validate the

proposed methodologies rather than to compare reanalysis-based interpolation to

results obtained from ground measurements.

ERA5 is a climate reanalysis data set (5th generation) from ECMWF (the

European Centre for Medium-Range Weather Forecasts) with a spatial resolution

of 0.25°(31 km), lower time resolution at 1 hour, 137 vertical levels from the

surface up to a height of 80 km into the atmosphere, and is spanning the period

1950 to present (available for use in 2020). Those high-resolution data sets can

be utilized for weather and climate analysis and upcoming disaster prediction,

but also for the assimilation of a sparse ground station network, like in our case.

Recently, studies use reanalysis data for climate simulation prediction [Chen et al.,

2019; Wang et al., 2016].

Several studies use the ERA-Interim data, the predecessor of the ERA5, to

produce a global climatology of the stratosphere-troposphere exchange [S̆kerlak
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et al., 2014], to estimate the variability of the temperature globally [Simmons

et al., 2014], to detect surface and upper-air temperature and humidity trends

over Greece [Tzanis et al., 2019], or to estimate drought indices [Mavromatis

and Voulanas, 2020]. According to Hassler and Lauer [2021], ERA5 outperforms

ERA-Interim data. Although biases are still present in ERA5 data, issues such

as the wet bias over Central Africa and the Indian Ocean and the dry bias over

Northern Hemisphere continental regions are significantly decreased when com-

pared to ERA-Interim. Furthermore, ERA5 show smaller biases in precipitation

against other commonly used datasets such as JRA-55 and MERRA-2.

3.4 ERA5 Data

The ERA5 reanalysis data collection used to support this study was downloaded

from the Copernicus Climate Change Service [Copernicus Climate Change Service

C3S, 2018]. Based on the availability of the data, we selected twenty six (26)

atmospheric reanalysis variables from 1979 to 2020, with the main variables being

total precipitation and near-surface temperature. The entire collection of the

atmospheric variables processed in this thesis are presented in Table 3.1 with their

corresponding units. For a more detailed description of the variables, refer to the

Climate’s Data Store variable description available online in the Table: (MAIN

VARIABLES).

3.4.1 Precipitation Data

The ERA5 reanalysis precipitation data correspond to hourly precipitation amount

measured in m [Copernicus Climate Change Service C3S, 2018]. The data set in-

cludes 23 360 610 values of hourly total precipitation for a period of 41 years (from

01-Jan-1979 06:00:00 to 31-Dec-2019 23:00:00) at the nodes of a 5×13 spatial grid

(see Fig. 3.1); the grid nodes cover the Greek island of Crete (see Fig. 3.1). The

average spatial resolution is ≈ 0.28 degrees (grid cell size ≈ 31km). A total of

359 394 hourly precipitation values are available at each node.

Precipitation is higher at the west part of the island than it is in the rest of the

island with the highest precipitation values for the weekly, monthly and annual
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Table 3.1: ERA5 reanalysis atmospheric variables available from the Copernicus
Climate Change Service [Copernicus Climate Change Service C3S, 2018]. All
listed variables represent surface values.

Variable name Unit Type

10 metre U wind component m/s instantaneous

10 metre V wind component m/s instantaneous

2 metre dewpoint temperature K instantaneous

2 metre temperature K instantaneous

Evaporation m of water equivalent accumulations

Mean sea level pressure Pa instantaneous

Runoff m accumulations

Sea surface temperature K instantaneous

Snow density kg/m3 instantaneous

Snow depth m of water equivalent instantaneous

Snowfall m of water equivalent accumulations

Soil temperature level 1 K instantaneous

Surface latent heat flux J/m2 accumulations

Surface sensible heat flux J/m2 accumulations

Surface net solar radiation J/m2 accumulations

Surface net thermal radiation J/m2 accumulations

Surface solar radiation downward clear-sky J/m2 accumulations

Surface solar radiation downwards J/m2 accumulations

Surface thermal radiation downward clear-sky J/m2 accumulations

Surface thermal radiation downwards J/m2 accumulations

Top net solar radiation J/m2 accumulations

Top net thermal radiation J/m2 accumulations

Total cloud cover (0-1) instantaneous

Total precipitation m accumulations

timescales occurring to the closest data node to the city center of Chania. Ad-

ditionally, precipitation across the island, both geographically (east versus west)

and physiographically (plains versus mountainous areas) varies greatly. Monthly

precipitation peaks in December or January and attains a minimum in July and

August which are almost dry months across the low-lying areas of Crete [Agou,

2016; Region of Crete Information Bull., 2002]. During the dry season months,
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Table 3.2: Mean, median, minimum and maximum values (shown across rows) of
monthly ERA5 precipitation statistics (shown across the columns) based on 246
monthly values. Each monthly statistic is based on the data at the 65 ERA5 grid
nodes. The values for CoV (coefficient of variation), Skew (skewness) and Kurt
(kurtosis) are dimensionless. All other values are measured in mm.

Mean Median Min Max Std CoV Skew Kurt

Mean 61.25 55.69 26.19 132.70 25.53 0.48 0.82 3.16

Median 59.19 51.78 21.23 123.98 23.67 0.45 0.81 3.04

Minimum 1.75 1.05 0.05 6.10 1.16 0.16 −0.01 1.56

Maximum 198.27 194.15 110.03 375.32 81.54 1.57 2.26 7.75

that is from April to September, almost zero precipitation is present in the island.

Therefore, for the monthly timesscale our analysis focuses on the wet period, that

is from October to March [Nastos and Zerefos, 2009]. Daily, weekly, monthly and

annual precipitation data sets were generated by aggregating the hourly values

at each location over respective time windows.

Table 3.2 presents the summary statistics of the monthly precipitation data

for the wet season. From the data of every time step (246 months) the mean

value, the median, the minimum and maximum values, the standard deviation,

the coefficient of variation, the skewness and the kurtosis are calculated. The

mean, median, minimum, and maximum values of the resulted collection are

calculated and presented in Table 3.2. The table is supplemented by Fig. 3.2

which shows the probability distribution of the monthly statistics (corresponding

to different columns of Table 3.2) calculated over the 246 months. These plots

exhibit asymmetric distribution of the statistics and considerable dispersion. The

non-zero skewness, the deviation of the minimum and maximum kurtosis from the

Gaussian value of three, and the unsuccessful fitting of the monthly histograms to

the normal distribution (see Fig. 3.3 and Table B5), strongly suggest that monthly

precipitation data follow non-Gaussian distributions. For the daily, weekly, and

annual timescale see Appendix B.

To investigate the deviations from Gaussian behavior the data are first grouped
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(a) Statistics measured in mm (b) Dimensionless statistics

Figure 3.2: Violin plots for the mean, median, minimum and maximum values
of monthly ERA5 precipitation statistics based on 246 monthly values. Each
monthly statistic is based on the data at the 65 ERA5 grid nodes. The values for
CoV (coefficient of variation), Skew (skewness) and Kurt (kurtosis) are dimen-
sionless. All other values are measured in mm.

by location and then by month. The following probability distribution models

are tested: generalized Pareto, inverse Gaussian, lognormal, t-Scale location,

Generalized Extreme Value, Weibull, Gaussian, Birnbaum-Saunders, exponen-

tial, extreme value, gamma, Nakagami, logistic, log-logistic, Rayleigh, and Rician.

For the monthly precipitation data according to Akaike’s Information Criterion

(AIC), the Nakagami model is optimal at 45 of 65 nodes, the Weibull at 14, the

gamma at 4 and the Rayleigh distribution at the remaining two locations. The

results based on the Bayesian Information Criterion (BIC) are similar, with the

Nakagami model being optimal at 40 of 65 nodes, the Weibull at 12, the gamma

at 4, and the Rayleigh distribution at the remaining 9 nodes (Table B4). For

the daily precipitation data according to Akaike’s Information Criterion (AIC),

the generalized Pareto model is optimal at all 65 nodes. The results based on

the Bayesian Information Criterion (BIC) are identical. For the weekly scale, the

generalzied Pareto distribution is optimal at 58 (or 50 based on the AIC) of 65

nodes, the gamma at one node, and the exponential at the remaining nodes. For

the annual precipitation, AIC and BIC select the Nakagami model at 17 nodes,

the gamma at 16, the inverse Gaussian at 8, the Rician at 8, the Birnbaum-

Saunders at 5, the Weibull and the logistic at 4 each, the log-logistic at 2, and
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the lognormal at the last node.

For the monthly precipitation data grouped by month, the optimal distribu-

tion according to AIC is the Nakagami model for 8 out of the 246 wet months,

the Weibull for 3, the gamma for 13, the GEV for 25, the Rayleigh for 1, the gen-

eralized Pareto for 126, the log-logistic for 2, the lognormal for 3, the Birnbaum-

Saunders for 25, and the inverse Gaussian distribution for the remaining 40 wet

months. Similar are optimal fits according to BIC, concluding to the generalized

Pareto for most of the time steps (Table B5).

Figure 3.3: Distribution of monthly precipitation during the wet season of 1980.
Histograms are based on ERA5 precipitation data at 65 grid locations over and
around the island of Crete. Best fits to the optimal Gaussian PDF models (red
line) are also shown. The vertical axis of the histograms represents frequency;
the horizontal axis represents precipitation amount measured in mm.

According to calculations based on the hourly, daily, and monthly precip-

itation data, the characteristic year is 2006, 2006 and 1980 respectively. For
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Table 3.3: Optimal probability distribution fits (based on BIC and AIC) for the
monthly ERA5 precipitation data in the year 1980. The models studied include
the following: “GP”: Generalized Pareto, “InvGauss”: Inverse Gaussian, “B-S”:
Birnbaum-Saunders, and “GEV”: Generalized Extreme Value distribution.

January February March October November December

BIC GP InvGauss B-S GP GP GEV

AIC GP InvGauss B-S InvGauss GP InvGauss

illustration, the precipitation probability distributions for the year 1980 are in-

vestigated. Sixteen parametric probability distribution models (as listed above)

were tested. The optimal probability model for the monthly data per each wet

season month is presented in Table 3.3 (based on the BIC and AIC) (see also

Fig. 3.3). The optimal distribution for most months is the generalized Pareto

(GP) with the AIC and either the GP or the inverse Gaussian based on the BIC.

The best model in these cases only mean that the GP (or the inverse Gaussian)

achieves a better AIC (or BIC) value than the other models, but it does not

ensure that the model is an accurate representation of the empirical distribution.

3.4.2 Temperature

The ERA5 reanalysis temperature data set includes 23 361 000 values of hourly 2

metre temperature (from now on referred to simply as temperature) for a period

of 41 years (from 01-Jan-1979 00:00:00 to 31-Dec-2019 23:00:00) at the nodes of a

5×13 spatial grid that cover the Greek island of Crete (see Fig. 3.1). The average

spatial resolution is ≈ 0.28 degrees (grid cell size ≈ 31km). A total of 359 400

hourly temperature values are available at each node. It must be noted that in

the case of the instantaneous variables each location includes 6 more values. We

have 390 more values in the entire temperature data set than in the precipitation

(accumulations) data set because the first value of the set corresponds to the

01-Jan-1979 00:00:00 instead of the 01-Jan-1979 06:00:00.

Temperature is higher at the east part of the island than it is in the rest of

the island with the highest temperature values for the daily, weekly, and monthly
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timescales for the ERA5 data set occurring in the south part of Heraklion pre-

fecture while for the annual timescale the highest temperature is measured at

the south-eastern part the entire grid. Our analysis focuses on the full period

for all the timescales. Daily, weekly, monthly and annual temperature data sets

were created by averaging the hourly values at each location over respective time

windows.

Table 3.4 presents the summary statistics of the monthly temperature data

for the full period. They include the mean value, the median, the minimum and

maximum values, the standard deviation, the coefficient of variation, the skew-

ness and the kurtosis. The way to read this table is as follows: the second column

corresponds to the minimum value (evaluated over all months) of the monthly

statistic shown along a given row (evaluated for each month from the 65 sites).

The table is supplemented by Fig. 3.4 which shows the probability distribution

of the monthly statistics (corresponding to different columns of Table 3.4) calcu-

lated over the 492 months. Unlike the precipitation plots (Fig. 3.2) which exhibit

highly asymmetrical distribution of the statistics, the plots of the temperature

statistics as shown in Fig. 3.4 are distributed around a range of values without big

dispersion almost presenting a bimodal distribution pattern. The non-zero skew-

ness, the deviation of the minimum and maximum kurtosis from the Gaussian

value of three, and the unsuccessful fitting of the monthly histograms to the nor-

mal distribution (see Fig. 3.5), strongly suggest that monthly temperature data

follow non-Gaussian distributions. For the daily, weekly, and annual timescale

see Section B2 in Appendix B.

Similarly to the precipitation data, we investigate the deviations of the tem-

perature data from the Gaussian by location and then by month. The same

seventeen probability distribution models tested for the precipitation data are

tested for the temperature data. According to both criteria, AIC, and BIC, the

GP model is optimal for the monthly temperature for all 65 nodes. The statistical

criteria agree on the optimal model except for the annual scale (Table B9).

For the monthly temperature data grouped by month, the optimal distribution

according to AIC is the GP model for 229 out of the 492 months, with second best

the GEV for 114 months. Similar optimal fits gave the BIC, concluding to the

generalized Pareto for most of the time steps (Table B10). For the data grouped
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Table 3.4: Mean, median, minimum and maximum values (shown across rows) of
monthly ERA5 mean hourly temperature statistics (shown across the columns)
based on 492 monthly values (full period). Each monthly statistic is based on the
data at the 65 ERA5 grid nodes. The values for CoV (coefficient of variation),
Skew (skewness) and Kurt (kurtosis) are dimensionless. All other values are
measured in °C.

Mean Median Min Max Std CoV Skew Kurt

Mean 18.59 18.79 16.18 20.09 0.88 0.05 −0.57 4.41

Median 18.31 18.57 15.62 19.71 0.78 0.04 −1.10 3.84

Minimum 10.39 10.94 6.46 11.89 0.41 0.02 −2.01 1.72

Maximum 26.85 26.79 25.83 29.16 1.50 0.13 1.96 8.87

(a) Statistics measured in °C (b) Dimensionless statistics

Figure 3.4: Violin plots for the mean, median, minimum and maximum values
of monthly ERA5 temperature statistics based on 246 monthly values. Each
monthly statistic is based on the data at the 65 ERA5 grid nodes. The values for
CoV (coefficient of variation), Skew (skewness) and Kurt (kurtosis) are dimen-
sionless. All other values are measured in °C.

by the time-step for all the analyzed timescales, see Table B10 in Appendix B.

For illustration, the temperature probability distributions for the year 1980

are investigated. Seventeen parametric probability distribution models (as listed

above) were tested. The optimal probability model per month is presented in

Table 3.5 (based on BIC). The optimal distribution for most months is the gen-
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Table 3.5: Optimal probability distribution fits (based on BIC and AIC) for the
monthly ERA5 temperature data in the year 1980. The models studied include
the following: “GP”: Generalized Pareto, “GEV”: Generalized Extreme Value, “t-
scale”: t-scale location, “Log”: Logistic, and “EV”: Extreme Value distribution.

January February March April May June

BIC GP GP GEV GEV t-scale t-scale

AIC GP GP GEV GEV t-scale t-scale

July August September October November December

BIC GEV t-scale Log EV GEV GP

AIC GEV t-scale Log GEV GEV GP

eralized extreme value (GEV) (Table 3.5).

3.5 Computational environment

We implement the data analysis in the Matlab programming environment (Ver-

sion 2018b) and in Python 3 (Version 3.8.2 64-bit) on a quad core Intel(R)

Core(TM) i5-4570 CPU at 3.20GHz workstation with 24 GB installed RAMmem-

ory, running a 64-bit Windows 10 Education operating system.
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(a) January–June of 1980

(b) July–December of 1980

Figure 3.5: Distribution of monthly temperature of January till June (top (a))
and July till December (bottom (b)) of 1980. Histograms are based on ERA5
temperature data at 65 grid locations over and around the island of Crete. Best
fits to the optimal Gaussian PDF models (red line) are also shown. The ver-
tical axis of the histograms represents frequency; the horizontal axis represents
temperature measured in °C.
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Chapter 4

Estimation of Drought Indices for

the Island of Crete

4.1 Summary

In this chapter, we define drought, drought events and comment on their socio-

economic consequences such as habitat loss and famine. Moreover, we provide

details about the characteristics and the computational steps needed for the es-

timation of the Standardized Precipitation Index (SPI) and the Standardized

Precipitation Evapotranspiration Index (SPEI), which are used in this research.

We use SPI and the SPEI drought indices to estimate and characterize the severity

and intensity of droughts on the island of Crete. We calculate the indices based

on the ERA5 monthly data. The spatial distribution of each index is visualized

with interpolation maps for selected time steps, while their temporal distribution

is presented in time-series plots that illustrate the temporal trends at different lo-

cations. For SPEI estimation, we first calculate the Potential Evapotranspiration

(PET) from the temperature data.

4.2 Introduction

Drought is a natural disaster caused by water shortage over a prolonged period,

resulting in disturbance of the water balance equilibrium. The consequences of a
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drought event for an area can be quite catastrophic, including deaths from water

and food shortage. According to the World Meteorological Organization (WMO)

[2014], for the period 1970–2012, there have been reported almost 690 000 deaths

globally attributed to droughts. Although drought events occupy only 6% of

all the natural disasters for that period, they result in 35% of the total deaths

(1 944 653 deaths) and 8% of the total economic losses (2 390.7 billion USD). The

correlation of the event occurrence and the death expectancy can characterize

droughts as the highest fatality rate disaster. Drought monitoring and prediction

are highly studied in the last century; however, most researchers used weather

station data, which have their limitations as described in Section 1.5.1.1. The

evolution of remote sensing has provided an abundance of new data products,

making it easier to investigate regions that do not have established weather sta-

tions or their ground station networks are inadequate. Following these develop-

ments, monitoring environmental disasters using satellite and radar data became

more widespread [Duan et al., 2014; Ezzine et al., 2014; Tian et al., 2014].

For the computation of a drought index, one or multiple indicators are re-

quired. The term indicators is used to denote the various variables and parame-

ters, including precipitation, temperature, humidity, streamflow, evapotranspira-

tion, groundwater levels, soil moisture and snowpack. As mentioned, indices are

computed values that represent the drought severity, and they attempt to mea-

sure the qualitative state of droughts on the landscape for a distinct time period.

Their main contribution is that they simplify a very complex event, helping a

diverse audience understand and communicate the appropriate actions that need

to be in place to resolve an upcoming adverse event.

The time in combination with the severity of a drought event’s occurrence is

crucial since it can be more catastrophic to have a low-severity event in a sensitive

period (e.g. moisture-sensitive period of a stable crop) of the agricultural cycle

than a more severe event in a less sensitive time. Hence, additional information

on the exposed area and its vulnerable characteristics must be considered for the

interpretation of an index result.

In this case study, we use the standardized precipitation index (SPI) and the

standardized precipitation evapotranspiration index (SPEI) to monitor and ex-

tract conclusions for Crete —a drought-prone area— to assist the water resources
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management teams with drought management policies and preparedness plans.

For the estimation of the SPEI we also calculate the Potential Evapotranspiration

(PET).

Since the length of the data set is quite long (41 years), the presentation

of all the results (SPI and SPEI for 1-, 3-, 6-, 9-, 12-, and 24-months) for all

the locations (65 locations) is impossible. Therefore, we propose specific years

that represent the range of the data, as well as specific locations that are of

higher interest due to their geographic location. Based on the hourly, and the

daily precipitation data, the estimated characteristic year is 2006, while for the

monthly precipitation data, the estimated characteristic year is 1980. Since we

are working on monthly data, we will consider 1980 as the characteristic year for

precipitation on the island of Crete, and we will focus our results on that year.

Additionally, we will compare the results for the year 1980 with the results for the

years that had the lowest (1990) and the highest (2019) total annual precipitation.

To our knowledge, this is the first time where ERA5 data are used for the

estimation of drought indices for the island of Crete. Furthermore, the estimation

of SPEI for the area of interest has not been published before. Past research

for the island of Crete has focused on a single drought index (usually SPI or a

custom index) and a single time scale (3-, 12-, 24-, or 48-months). In addition,

we take advantage of index calculations for multiple timescales (1-, 3-, 6-, 9-, 12-,

and 24-months), which allows us to capture in more detail the area’s drought

characteristics regarding short and long-term patterns.

4.3 Drought Indices

Monitoring drought for early warning and risk assessment, utilizing drought in-

dices, can be performed by estimating one or multiple indices or using/creating

a composite or hybrid index. The most common approach until recently was

to assess one or various indices. However, with the technological advancements

and the need for more targeted results based on the specific area, scientists de-

veloped new indices and improved the visualization tools [World Meteorological

Organization (WMO) and Global Water Partnership (GWP), 2016].

With an abundance of indices available, determining which one is the most ap-
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propriate for the area of interest becomes almost impossible. Given that drought

severity is best assessed based on multiple variables associated with water avail-

ability for a region, the composite or hybrid approach gained popularity in the

last decade because it enables a collection of elements to be integrated into the

estimation.

Determining which is the most suitable indicator, index, or combination of

the above depends on a variety of reasons. It should be decided upon investi-

gation and thorough analyses and after establishing the needs for a particular

application, i.e., climate regimes, regions, basins and locations.

The most commonly used indices in Greece are the Standardized Precipitation

Index, the Palmer Drought Severity Index, the Reclamation Drought Index and

the Palfai Drought Index, while in Cyprus are the Standardized Precipitation In-

dex and the Bhalme–Mooley Drought Intensity Index. Similar climatic conditions

to Greece are observed in Spain, where the predominant indices are the Standard-

ized Precipitation Index and the soil water content (available water calculated as

percentage of soil water capacity from a soil water balance model). Likewise, in

Turkey the Standardized Precipitation Index, the Percent of Normal Index and

Palmer Drought Severity Index are the most widely used indices [World Meteo-

rological Organization (WMO) and Global Water Partnership (GWP), 2016].

The Palmer Drought Severity Index [Palmer, 1965], the self-calibrated Palmer

Drought Severity Index [Wells et al., 2004], the Palmer Hydrological Drought

Index, the Palmer moisture anomaly index (Z-Index), and the Palmer Modi-

fied Drought Index [Palmer, 1965] while available from the Python package used

herein, will not be estimated due to lack of the available water content variable.

Below we will present the fundamental properties of the indices that we used

in this study for the detection of drought in the study area. Those include:

the Potential Evapotranspiration (PET), the Standardized Precipitation Index

(SPI) and the Standardized Precipitation Evapotranspiration Index (SPEI). We

opted out on estimating the Percentage of Normal Precipitation (PNP) because

it is region-specific, making the comparison between regions or even seasons hard.

Another reason for putting the index under scrutiny is that the precipitation data

are not transformed, meaning that the mean and the median values can differ

significantly, underestimating or overestimating the results and consequently its
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Table 4.1: Indices used in this case study. P: precipitation and PET: potential
evapotranspiration. Green: easy, Yellow: medium, Red: difficult, Part of the
table taken from World Meteorological Organization (WMO) and Global Water
Partnership (GWP) [2016].

Meteorology/Hydrology Ease of use Input
parameters

Additional information

Standardized Precipitation
Index (SPI)

Green P Highlighted by the World Me-
teorological Organization as a
starting point for meteorolog-
ical drought monitoring

Standardized Precipitation
Evapotranspiration Index
(SPEI)

Yellow P, PET Serially complete data re-
quired; output similar to SPI
but with a temperature com-
ponent

accuracy [Hayes, 2006; Zargar et al., 2011].

4.3.1 Standardized Precipitation Index

The Standardized Precipitation Index (SPI) [McKee et al., 1993] is probably the

most popular meteorological drought index, mainly because it is easy to interpret

and needs only precipitation data for its calculation. Also, it is effective in an-

alyzing wet as well as dry periods [World Meteorological Organization (WMO),

2012]. For comparison purposes in drought severity between countries and re-

gions, WMO recommended SPI in 2009 as the main meteorological drought index

that countries should use [Hayes et al., 2011; World Meteorological Organization

(WMO) and Global Water Partnership (GWP), 2016].

To calculate the SPI index, the user needs to have ideally at least 20–30

years of monthly precipitation values, while 50–60 years are considered opti-

mal [Guttman, 1999]. The data set is allowed to have missing values, although

the way they are distributed in the entire data set can dramatically affect the

results. The ideal scenario would be to have a data set without missing data; yet,

this scenario is unrealistic in our world, where most data sets have 90% or even

85% complete records. In some cases, where the records have even lower com-

pletion percentages, the user might need to apply first interpolation techniques

to fill the missing values and afterward estimate the index. The confidence of
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the estimation index depends on the estimations’ confidence and estimation er-

ror, meaning that the fewer the estimated data, the better the result [World

Meteorological Organization (WMO), 2012].

The SPI was created to quantify the precipitation deficit over a variety of

timescales. These timescales account for the impact of drought on the availability

of various water resources. For example, short scale precipitation anomalies have

effect on soil moisture, whereas longer scale anomalies reflect on groundwater,

stream-flow and reservoir storage water availability. For these reasons, the SPI

was initially estimated by McKee et al. [1993] for durations of 3, 6, 12, 24, and

48 months.

Nowadays, the index can be calculated at any number of timescales, from 1

month to 48 months or longer, typically it is applied for the 3, 6, 12, 24, and 48

month periods. The ability of SPI to be calculated at various timescales allows

for a wide range of applications, depending on the drought impact. For instance,

SPI values for 3 months or less might be useful for basic drought monitoring,

values for 6 months or less for monitoring agricultural impacts and values for 12

months or longer for hydrological impacts [World Meteorological Organization

(WMO) and Global Water Partnership (GWP), 2016].

The initial step towards estimating the SPI index is the transformation of the

input parameter to normally distributed. This is accomplished using an equal-

probability transformation after fitting precipitation to a gamma or a Pearson

Type III distribution. The mean value is set to zero so that the positive val-

ues correspond to wet periods, while the negative values indicate the dry peri-

ods. Specifically, the value of the index denotes how many standard deviations

the cumulative precipitation differs from the normalized average [Zargar et al.,

2011]. Positive SPI values indicate precipitation greater than the median precip-

itation, and negative values indicate precipitation less than the median precipi-

tation [Tsakiris et al., 2007b]. Essentially, the SPI shows the actual precipitation

compared to the probability of precipitation for different timescales.

For example, the estimation of the 3-month SPI for a specific 3-month period

compares the precipitation over that specific period to the precipitation from the

same 3-month period for all the years included in the historical record [Tsakiris

and Vangelis, 2004]. In simple words, the SPI-3 at the end of November compares
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the September-October-November precipitation total in that specific year with

the September-October-November precipitation totals of all the years on the his-

torical record for that location [World Meteorological Organization (WMO) and

Global Water Partnership (GWP), 2016]. The SPI-3 at the end of May indicates

the soil moisture conditions as the growing season begins. Because the 3-month

SPI reflects the short term precipitation shortage, normal values of the index

could be misleading in a region where it is normally dry during that 3-month

period, and might mask drought events that will be obvious in longer timescales.

A 6-month SPI can be highly useful for displaying seasonal precipitation and

detecting medium-term trends in precipitation.

An event is considered as drought event when the index reaches values of

−1 or less (see Table 4.2); the drought is considered in progress until the index

value returns to zero [McKee et al., 1993]. Because SPI values are generated

from the Gaussian distribution, it is natural that the probabilities are drawn

based on that. This means that (for the selected time scale at a specific location)

the probability of an event to be considered extremely wet (SPI ≥ 2) is 2.3%.

The rest of the probabilities are shown in Table 4.2. The percentages based

on this standardization indicate the rarity of the event. This means that we

expect 1 extremely dry event per 50 years (2.3 per 100 years). Each drought

event, has a “duration” defined by its beginning and end (in months), and an

“intensity” for each month that the event continues. “Intensity” is the mean

value of the SPI during the drought event. The absolute sum of the SPI for all

the months within a drought event is called the drought’s “magnitude” (DM)

(a.k.a drought severity) [World Meteorological Organization (WMO) and Global

Water Partnership (GWP), 2016]. DM is defined as:

DM = −(
x

∑
i=1

SPIij)

where j starts with the first month of a drought event and continues to increase

until the end of the drought (x) for any of the i time scales. The DM has units of

months and would be numerically equivalent to drought duration if each month

of the drought has SPI = -1.0. In fact, many droughts will have a DM very

similar to the duration in months since most of the SPI values are between 0 and
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-2.0 [McKee et al., 1993].

Table 4.2: Classification of the SPI and SPEI values.

Value Characterization Probability (%)

2.0+ Extremely wet 2.3

1.5 to 1.99 Very wet 4.4

1.0 to 1.49 Moderately wet 9.2

−0.99 to 0.99 Near normal 68.2

−1.49 to −1.0 Moderately dry 9.2

−1.99 to −1.5 Severely dry 4.4

< −2 Extremely dry 2.3

SPI does not come without shortcomings. By using precipitation records

solely for its calculation, it disregards the impact of temperature (and of other

parameters), which is an essential indicator of the overall water balance and wa-

ter use, in the interpretation of the drought severity. This weakness can make

the comparison between regimes with similar SPI values but with temperature

differences more challenging. The flexibility of the index will help many people

apply it. At the same time, without guaranteeing that the data’s prior distri-

bution agrees with the distribution that the index assumes, the results will be

useless. Zargar et al. [2011] present an extensive review of various drought indices,

including SPI, and identify their advantages and disadvantages.

The SPI has been investigated in numerous research papers. Utilizing the SPI

for describing drought in the region of Crete, Tsakiris and Vangelis [2004] came

to the conclusion that, the eastern side of the island experiences droughts more

frequently. They also concluded that in the years 1973–74, 1976–77, 1985–86, and

1999–2000 distinct drought occurrences happened, whereas the years 1987–94 saw

a relatively lasting drought event. Another study that was focused on the island

of Crete was carried out by Koutroulis et al. [2011], where they introduced a

variation of the SPI index in which the spatial patterns of precipitation are taken

into account, resulting in an index that can be compared not only temporarily

but also spatially. Their results (based on the SPI and their variant) showed that

the southern and eastern part of the island suffers from drought occurrences.
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Furthermore, according to the future scenarios they estimated that for the 48-

month timescale, more than half of Crete will experience drought conditions

during 28% of the 2010-2040 period.

4.3.2 Standardized Precipitation Evapotranspiration In-

dex

Standardized Precipitation Evapotranspiration Index (SPEI) [Vicente-Serrano

et al., 2010] is an extension of the SPI that also uses temperature and evapo-

transpiration data. It is sensitive to long-term temperature trends and becomes

almost equivalent to SPI if no apparent trends are present. Indices that are solely

dependent on precipitation, such as the SPI rely on the assumption that the vari-

ability of precipitation is higher than it is for other variables (e.g., temperature,

PET), while these other variables are temporary stationary. This means that the

driving parameter for droughts is precipitation. However, climate change and the

evident rise in temperature (resulting in an increasing rate in evapotranspiration)

has been shown by several studies that is not to be neglected in the estimation

of drought severity [Vicente-Serrano et al., 2010]. The catastrophic 2003 cen-

tral European heat wave made clear the significant impact of temperature on

the severity of the drought. The extremely high temperatures substantially in-

creased evapotranspiration and amplified summer drought stress [Martine et al.,

2006]. Similar effects were observed throughout the summer of 2010, when a

hot spell heightened forest drought stress and triggered extensive forest fires in

eastern Europe and Russia [Barriopedro et al., 2011]. More recently, Rakovec

et al. [2022] observed that the intensity of the 2018–2020 multi-year drought was

record-breaking compared to the past 250 years. The temperature anomaly had

great implications in the crops’ yield. They estimated that the future events based

on climate model simulations will have similar intensities but longer durations.

Hence, empirical research has shown that rising temperatures amplify the effects

of drought stress, and since the temperature increase during the last century has

obvious side effects, it is safe to expect that these rising temperatures will have

profound impacts on the drought conditions, with a reduced water availability as

a result of evapotranspiration [Justin and Eric F., 2008].
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The calculation of the SPEI is equivalent to the one used for the SPI. However,

the SPEI takes the difference between precipitation and potential evapotranspi-

ration (P - PET) as input rather than only precipitation (P). Essentially, the

water balance compares the available water (precipitation) to the atmospheric

evaporative demand (PET), providing a more reliable estimate of drought sever-

ity than explicitly considering precipitation. The water balance values are fitted

to a probability distribution (in our case the gamma or the Pearson Type III

distribution) and then the values are converted to standardized values that are

comparable in space and time and at different time scales [Begueŕıa et al., 2014].

To fit the water balance data different probability distributions have been uti-

lized, those include the log-logistic [Vicente-Serrano et al., 2010], the generalized

logistic, the generalized extreme value, the Gaussian, and the Pearson Type III

distributions [Stagge et al., 2015]. The Thornthwaite equation was proposed in

the original SPEI formulation for estimating PET [Thornthwaite, 1948]. Due to

limited data availability, this equation only requires the mean daily temperature

and latitude of the site. The FAO-56 Penman-Monteith equation [Allen et al.,

1998] is considered more robust and is recommended if data is available (relative

humidity, temperature, wind speed and solar radiation). If the required data are

not available, the Hargreaves equation [Hargreaves and Samani, 1982] (first) or

the Thornthwaite equation (second) are suggested.

Similar to SPI, SPEI takes positive and negative values identifying wet and

dry events, respectively. It can be calculated for different time scales, starting

from 1 month, creating an index that can identify slower developing droughts,

but may miss recognizing the fast-developing. As stated previously, integrating

temperature data into the computation of the SPEI, helps overcome the SPI’s

weakness to account for the impact of temperature changes. The requirement of

a complete and extended monthly data set for both precipitation and tempera-

ture data might be a considerable drawback [World Meteorological Organization

(WMO) and Global Water Partnership (GWP), 2016].

From multiple studies across the Mediterranean area, based on the SPEI and

the Palmer Drought Severity Index (PDSI), the probability and intensity of agri-

cultural and ecological droughts has been increased. Increase of drought severity

in South Europe was observed by Dai and Zhao [2017]; Spinoni et al. [2019];
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Stagge et al. [2017], and in the Iberian Peninsula by González-Hidalgo et al.

[2018]; Vicente-Serrano et al. [2014][IPCC, 2021, Table 11.18].

4.3.3 Potential Evapotranspiration

Potential evapotranspiration (PET) represents the summation of the water that

transpires through the plants and the water that evaporates through the soil for

a given area and during a constrained time period if a sufficient water source was

available [Kirkham, 2014; Milly and Dunne, 2016]. It only occurs at the potential

rate when the water available for this process is non-limiting. The rate of evap-

oration is influenced by climatic conditions, including the sun’s solar radiation,

wind, the air’s vapor deficit, and temperature. Potential evaporation is often cal-

culated from these measurements using the Penman Monteith equation [Penman,

1948]. It can also be estimated from readily available rainfall and temperature

data using simple equations such as that of Thornthwaite [1948], and Hargreaves

and Samani [1982]. This indicator describes the capacity of the prevailing climate

to evaporate water from the soil, plants, open water, or other surfaces [Imeson,

2023]. Actual evapotranspiration is always less than or equal to PET because

it is constrained by the amount of water available. In cases where the monthly

precipitation is higher than the monthly PET, the residual water recharges the

ground and runs off as steamflow. On the contrary, if the PET is higher than the

precipitation for the month, the soil loses water. In dry (arid) climates annual

potential evaporation exceeds annual precipitation.

The calculation of the SPEI relies on precipitation and PET values. In our

study the calculation of the PET values from temperature data is performed based

on the Thornthwaite equation. The potential evapotranspiration according to the

Thornthwaite (1948) equation (mm/day) is calculated as follows

PET = 16( L
12
)(N

30
)(10T

I
)
α

, (4.1)

where T is the mean daily air temperature (°C), N is the number of days in

the month being calculated, L is the mean day length (hours) of the month

being calculated, and I is a heat index which depends on the 12 monthly mean
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temperatures and is calculated as

I =
Dec

∑
Jan

(max (0, Tm)
5

)
1.514

, (4.2)

where Tm is the mean air temperature for each month in the year (°C). The
exponent α is calculated by the following regression formula

α = 6.75 × 10−7 I3 − 7.71 × 10−5 I2 + 1.792 × 10−2 I + 0.49239. (4.3)

4.4 Case Study

The data used in this case study consists of the monthly precipitation and tem-

perature for the period between 01.01.1979 to 31.12.2019 (41 years) from the

ERA5 data set (dd.MM.yyyy). The data values correspond to the grid locations

shown in Fig. 3.1, and they are complete without missing values. We will focus

our analysis for this chapter in four main nodes, the two biggest cities of Crete,

Heraklion and Chania, and the two main argicultural areas, the Messara plane

and Ierapetra valley. The investigation nodes are those closer to those four loca-

tions. In Table 4.3 we present the selected locations, their coordinates and their

mean precipitation, temperature and estimated PET. Furthermore, the variation

of the monthly distribution of precipitation against the monthly variation of the

estimated PET is shown in Fig. 4.1.

For the following analysis we use an open source Python package [Adams,

2019] downloaded from https://github.com/monocongo/climate_indices. It

contains a variety of climate index algorithms that can offer information about

the severity of temperature and precipitation anomalies in space and time, which

can prove helpful for climate monitoring. The available indices are: SPI, SPEI,

PET, PDSI, scPDSI, PHDI, Z-Index, PMDI, and PNP. Additional packages that

are used include: numpy, pandas, scipy, matplotlib. The data set has to be

formatted into a NetCDF file to be further processed.

Network Common Data Format (NetCDF) is a way to format a data set in a

hierarchical structure that lets the users to access parts of the data set without

loading the entire data set into the machine’s memory. Thus, it is well suited to
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manage big numerical data sets. It is a commonly used format in the geoscience

community. The NetCDF4 module is available from the Python Package Index

(PyPi).

Table 4.3: Selected locations and their characteristics. The coordinates are in the
World Geodetic System (WGS 84).

Name Latitude (°) Longitude (°)
Mean

Precipitation
(mm)

Mean
Temperature

(°C)

Mean
Estimated
PET (mm)

Chania 35.5 24.00 865 17.3 843

Heraklion 35.25 25.00 546 16.7 837

Messara 35.00 25.00 355 18.4 927

Ierapetra 35.00 25.75 299 18.1 884

As mentioned previously, when the mean PET for a location is higher than the

mean precipitation for the same location, water has to be evaporated from the soil

reserves. From Table 4.3 and Fig. 4.1 it is obvious that the climate of Crete has

big variations from the west to the east as well as from the north to the south.

In the north-eastern part (Chania) the mean monthly precipitation is almost

equal to the mean monthly PET, while in the northern central part of the island

(Heraklion) the precipitation is significantly less. Finally, in the south central

Crete (Messara) and south west Crete (Ierapetra) the monthly precipitation is

almost a third of the monthly PET, classifying the climate as dry.

4.5 Spatial and Temporal Analysis

In brief, the standardized values are calculated based on the following steps.

A set of monthly precipitation values is prepared from the 41 years monthly

data. For each timescale of i months (i.e., 1, 3, 6, 9, 12, 24 months) a set

with averaging values is generated. The set’s value for each month is created by

averaging the previous i months. For every timescale the data set is fitted with

the Pearson Type III probability distribution function. Then the probability for

any observation is calculated and used to return the corresponding values from

the standard normal distribution (Gaussian distribution with zero mean and one
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Figure 4.1: Mean precipitation versus mean PET calculated for the four locations
presented in Table 4.3, historical data: 1979–2019.

standard deviation). The resulted value is the SPI value for the corresponding

precipitation value. The same methodology is applied for the estimation of the

SPEI values, however the initial set that needs to be fitted with the Pearson’s

Type III probability distribution function consists of the difference between the

precipitation and the potential evapotranspiration.

An illustrative example for Crete is presented in Fig. 4.2 which shows the

evolution of the SPI and the SPEI at different time scales from 1979 to 2019 for

Chania located in the island of Crete (Greece). The most obvious characteristics

of the drought events is that drought changes as the time scale changes. At longer

time scales drought becomes less frequent but longer in duration (Fig. 4.2).

The SPI-1 is very closely related to the percentage of normal precipitation

(PNP) for a period of 1-month, but because of the normalization process lying in

the SPI calculation, the SPI-1 is a more accurate representation of monthly pre-
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cipitation [World Meteorological Organization (WMO) and Global Water Part-

nership (GWP), 2016]. However, SPI-1 (and the PNP) may be ambiguous in

regions where precipitation is usually low during a month. The same can be

said for the SPI-3 for a Mediterranean climate because it is common to have

dry conditions during a 3-month period (e.g., June–August). This may lead to

high or low index values where precipitation does not deviate far from the mean.

Because Crete has very low precipitation (many times equal to zero) during the

dry season (April to September), the use of SPI-1 and the PNP is avoided. We

present the SPI-1 in the temporal analysis figures (Figs. 4.2–4.5) but we do not

focus on that timescale.

4.5.1 Drought Event Identification

Monthly values of SPI and SPEI were estimated for the four locations to provide

an overview of drought events. Figures 4.2–4.5 present the estimated SPI and

SPEI values for the analyzed timescales. Any specific evaluation of drought and

its impacts requires a specification of time scale since drought initiation, intensity,

duration, and magnitude (severity) are all dependent on time scale. The ordinate

of the SPI/SPEI graphs has graduation lines at −2.5, −2, −1, 0, 1, 2, 2.5. Each

of these values of SPI has a unique value of the probability that the SPI will be

equal to or less than the stated value. These probability values are 0.006, 0.02,

0.16, 0.50, 0.84, 0.98, and 0.99 respectively.

Based on Figs. 4.2–4.5 we identify the following events:

• In 1982 a short dry event occurred for the locations in the north, however,

in the south (Messara, Ierapetra) for that period the standardized values

are near normal.

• In 1986–1987 we see a drought event for all four locations, with the lowest

intensity estimated in Chania.

• In 1990–1992 a drought event occurred in Heraklion, followed by a near

normal event for 2 years and another drought event in 1994–1996. Similar

pattern is observed in Chania, while in Messara the same applies for the
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SPEI values, however for the SPI-24 the drought was persistent and con-

tinued during 1992–1994. During this period we see the first big differences

between the indices. Interestingly, in Ierapetra, which is the driest location

of the four, the drought event had shorter duration and lasted from 1990–

1992. We see differences between the indices during 1990–1994, especially

for the 24-month timescale.

• Dry events occurred during 2000–2003 in Messara and Heraklion, while in

Chania the duration of the event was one year shorter (2000–2002), and in

Ierapetra half year longer.

• Between the years 2003 and 2016 in Heraklion and in Messara, no significant

drought events are observed, however, moderately dry events were observed

in Ierapetra during 2006–2011, and in Chania during 2009–2011. The most

profound differences between the indices are present during the period 2013–

2015 for all four locations.

• Lastly, dry events were identified during 2016–2019 in Heraklion with near

normal values only between 2017–2018 for some of the timescales. Similar

events were observed in Messara plane and in Ierapetra valley with higher

intensities, and in Chania with near normal or even a wet spell for the

3-month and 6-month scales in 2017. For this period the events are al-

most entirely classified as severely dry (−1.99 to −1.5) and in some cases as

extremely dry (≤ −2).

The differences between the indices and the events during the period 1990-

1996 might indicate that the temperature started deviating from the historical

normal values. The year that we estimated as the wettest (2019) can also be seen

in Figs. 4.2–4.5, where the indices values start moving fast from negative values

to positive values that are classified as severely and extremely wet events. Also,

the frequency of the drought events has increased noticeably for all the locations

after 2000.

Compared to the study by Tsakiris et al. [2007a] we observe drought occur-

rences during the period 2000–2003 while they resulted in wet events during the

same period. However, it should be noted that they used meteorological data
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from ground stations that might be closer to the real values compared to the

reanalysis products used herein or more unreliable due to the interpolation tech-

niques used to fill in the missing values. Additionally, their analyzed period ends

after the year 2005. Using data from a different period (especially if the climate

change impacts have not yet been substantial) might affect the fitted parame-

ters, and thus the standardized values. Nevertheless, during the years 1987–1994

where they observed a long drought event our results coincide and verify that

during that period there were multiple drought occurrences based on multiple

timescales from both SPI and SPEI results.

The frequency of droughts for the period 1979–2019 for the four areas is shown

in Figs. 4.6–4.7. For the SPI, the events below minus one (≤ −1) add up to 13.7%

for Chania, 14.8% for Heraklion, 16.5% for Messara, and 15% for Ierapetra. Ac-

cording to those values, Messara has experienced the most droughts during the

investigated time period. Based on the SPEI results, the sum of the moderately,

severely, and extremely dry events is 13.6% for Chania, 15.4% for Heraklion,

16.1% for Messara, and 14.2% for Ierapetra. The indices are very consistent for

Chania, and Messara, however a considerable decrease (from 15% to 14.2%) in the

amount of droughts is estimated based on the SPEI for Ierapetra and a consider-

able increase (from 14.8% to 15.4%) on the drought occurrences for the Heraklion

area. Temperature has affected substantially the drought characterization for the

eastern part of the island.
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Figure 4.2: SPI vs SPEI timeseries calculated for Chania (the four locations are presented in Table 4.3), the historical
data include values for the period 1979–2019 and the indices are calculated for time scales 1, 3, 6, 9, 12, and 24
months with the Pearson type III distribution.
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Figure 4.3: SPI vs SPEI timeseries calculated for Heraklion (the four locations are presented in Table 4.3), the
historical data include values for the period 1979–2019 and the indices are calculated for time scales 1, 3, 6, 9, 12,
and 24 months with the Pearson type III distribution.
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Figure 4.4: SPI vs SPEI timeseries calculated for Messara (the four locations are presented in Table 4.3), the
historical data include values for the period 1979–2019 and the indices are calculated for time scales 1, 3, 6, 9, 12,
and 24 months with the Pearson type III distribution.
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Figure 4.5: SPI vs SPEI timeseries calculated for Ierapetra (the four locations are presented in Table 4.3), the
historical data include values for the period 1979–2019 and the indices are calculated for time scales 1, 3, 6, 9, 12,
and 24 months with the Pearson type III distribution.
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(a) (b)

(c) (d)

(e)

Figure 4.6: Frequency of droughts based on the SPI-3 with the Pearson type III
distribution for the four locations presented in Table 4.3.
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(a) (b)

(c) (d)

(e)

Figure 4.7: Frequency of droughts based on the SPEI-3 with the Pearson type
III distribution for the four locations presented in Table 4.3.
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4.5.2 Drought Maps

A more understandable way to present the indices results compared to site spe-

cific data is by generating maps. The location data are placed on a map and

interpolation techniques are used to fill the space in between them. Common

interpolation methods include the kriging method (described in section 2.9, the

spline method where the overall surface curvature is minimized, and the Inverse

Distance Weighting especially in dense scattered data among others. In this case

study we use the piecewise cubic interpolant to create smoothly interpolation

maps 1. For each point, the estimation is performed based on a cubic interpola-

tion of the values at neighboring grid points.

Drought maps were generated using the estimated 3-month and 12-month

values of SPI and SPEI. In Figs. 4.8–4.13 and Figs. 4.14–4.15 typical samples

of these maps are presented. Specifically, for the 3-month timescale we focus on

the year 1980 which is considered the characteristic year, the year 2019 which

was the wettest year on record, and the year 1990 which was the driest year on

record based on the monthly precipitation. Depending on the month of the year

and the local conditions, the results are either equivalent or quite diverse. For

the 12-month timescale we present results for the hydrological years 2008 to 2019

(hydrological year is a twelve month period starting from October and ending in

September for the Northern Hemisphere).

We observe that while comparing the SPI-3 to the SPEI-3 results for the char-

acteristic year based on the precipitation data (1980 see Figs. 4.8, 4.9) the inte-

gration of temperature affects the results especially for the months of July (SPI-3

means May-July) and November (SPI-3 means September-November). The SPI-3

values for those months are considerably lower than for the SPEI, meaning that

the temperature values were not high enough to affect the equilibrium. However,

when we approach the more recent years (2019) where higher temperature values

1The piecewise cubic interpolation involves the triangulation of the input data for the gen-
eration of the convex hull by the Quickhull Algorithm [Barber et al., 1996], and the estimation
of the polynomial coefficients based on the Bezier polynomials on each triangle of the con-
vex [Alfeld, 1984; Farin, 1986]. The coefficients of the interpolant are selected so that the
curvature of the interpolating surface is minimized. The estimation is performed using the
global algorithm described in Nielson [1983] and Renka et al. [1984]. For more information see
scipy.interpolate.CloughTocher2DInterpolator.
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are present due to climate change, the differences between the indices are very

pronounced, with SPI values being lower than the SPEI (see Figs. 4.10, 4.11),

even though 2019 is the wettest year in our record. The differences between the

indices are particularly prominent for the second half of the year. According to

the SPEI, the increased evapotranspiration contributes to drier events compared

to those where the temperature is not accounted for. In the case of the driest

year (1990 see Figs. 4.12, 4.13), we observe the opposite behavior. Because tem-

peratures were not that different from the previous century’s mean temperatures,

the dry conditions are more exaggerated by the SPI. Additionally, because the

indices are calculated based on the historical data per location, for the first 3

months of the driest year the lower index values are higher in the eastern and

northern part of the island which is also the part with the highest precipitation.

Because droughts usually take more than a season to develop, we present

SPI-12 and SPEI-12 maps through September for twelve continuous years (2008–

2019). Longer timescales such as the 12-month, normally approximate zero values

because they consist of aggregated shorter periods, thus, values that deviate from

zero suggest ongoing distinct dry or wet spells. Negative values for the 12-month

timescale indicate that dryness has a considerable effect on water resources. This

timescale reflects long-term precipitation patterns and is usually tied to stream-

flows, and reservoir levels, and might indicate an imbalance in the groundwater

levels. The 12-month SPI is most highly correlated to the Palmer Index in certain

locations, and the two indices can portray similar conditions.

In Figs. 4.14–4.15 the comparison between the indices indicate that the hydro-

logical years 2010, 2013, 2016 and 2018 have significantly higher drought intensi-

ties according to the SPEI calculations versus the SPI results for the entire island.

Those results are also visible in the timeseries plots (Figs. 4.2–4.5) especially for

the locations of Heraklion, Messara and Ierapetra.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 4.8: SPI spatial map for 1980, historical data: 1979–2019 using 3-month time scale with the Pearson type III
distribution.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 4.9: SPEI spatial map for 1980, historical data: 1979–2019 using 3-month time scale with the Pearson type
III distribution.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 4.10: SPI spatial map for 2019, historical data: 1979–2019 using 3-month time scale with the Pearson type
III distribution.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 4.11: SPEI spatial map for 2019, historical data: 1979–2019 using 3-month time scale with the Pearson type
III distribution.
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(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 4.12: SPI spatial map for 1990, historical data: 1979–2019 using 3-month time scale with the Pearson type
III distribution.
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Figure 4.13: SPEI spatial map for 1990, historical data: 1979–2019 using 3-month time scale with the Pearson type
III distribution.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 4.14: SPI-12 spatial map through September for the years 2008 to 2019, historical data: 1979–2019 with the
Pearson type III distribution.
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(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 4.15: SPEI-12 spatial map through September for the years 2008 to 2019, historical data: 1979–2019 with
the Pearson type III distribution.
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4.6 Conclusions

The southernmost island of Greece, Crete is a drought-prone area with increased

agricultural interest due to its advantageous location in the southeast Mediter-

ranean sea. Reanalysis data covering the island are used to assess its drought

conditions based on the SPI and the SPEI drought indices. Both SPI and SPEI

are normalized, allowing the comparison between areas with different climates.

Nevertheless, SPI does not account for the effects of climate change in the sense

of the temperature rise, while SPEI does. This means that SPEI is more appro-

priate for comparison between areas that have diverse temperature profiles. The

indices can be estimated for different timescales, thus letting for the assessment of

short-term and long-term dry conditions. The historical record used in this anal-

ysis covers 41 continuous years starting in 1979, while the implementation was

carried out through an open source Python package [Adams, 2019] downloaded

from https://github.com/monocongo/climate_indices.

The temporal drought identification was focused on four important areas of

the island, i.e., Chania, Heraklion, Messara, and Ierapetra —the first two are

the biggest cities of Crete, while the rest are the main agricultural regions. The

indices provide similar patterns for the four areas, however, some discrepancies are

observed primarily at the longest timescales. Multiple drought events occurred

during the analyzed period with the most severe events during the years 1990–

1992, 2000–2002, and 2016–2019. Also, the frequency of the drought events has

increased noticeably for all the locations after 2000.

Drought maps for the 3-month and the 12-month timescales were generated

based on the piecewise cubic interpolation for both indices. The use of maps

allows the visual inspection of spatial patterns.

Based on both the temporal and spatial analysis, it is evident that the eastern

and southern parts of the island are more sensitive to drought events with longer

duration. Additionally, it is revealed by the analysis that Heraklion, the biggest

and the most urbanized city in Crete, had the most significant impact on drought

characterization due to temperature change, resulting in an approximate 0.6%

increase in drought events when the temperature (SPEI) is considered. Further-

more, significant changes in drought characterization we observe for Ierapetra,
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with 0.8% decrease in drought events below −1 when temperature is included in

the calculation.

The indices provide similar results in the earlier years, however, as time evolves

and the climate change impacts are more prominent the results start to differ-

entiate. The good correlation between SPI and SPEI at different time scales

for the early years implies that they were well adjusted to the study area, yet

the deviations present in the recent decade suggest that an index that considers

temperature is more appropriate.

Both indices are proven to be valuable tools for monitoring and assessment of

the drought concerns in the study area. In general, indices are easy to implement,

especially since the explosion in data availability from remote sensing sources,

and with a basic understanding of the underlying climate of the region under

inspection easy to comprehend and enable the appropriate agencies to take further

action. Sub-seasonal forecasts for weather and climate conditions would allow

water resource managers to prepare for changes in hydrologic regimes that can

pose dangers to the management of water resources.

A future extension of this study, might include the estimation of the PET

values from other formulations such as the Penman-Monteith equation [Allen

et al., 1998], and the Hargreaves equation [Hargreaves and Samani, 1982]. Fur-

thermore, the use of the log-logistic distribution for the SPEI calculation can

be implemented, which is the recommended distribution by the creators of the

SPEI [Begueŕıa et al., 2014].
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Chapter 5

Gaussian Anamorphosis of

Precipitation Data

5.1 Summary

In this chapter, we begin by emphasizing the non-Gaussian character of the vari-

ables from the natural world, such as precipitation at different temporal resolu-

tions. On the one hand, because Gaussianity is a prerequisite or an assumption

for the optimal application of classical geostatistical methodologies we present

strategies that are utilized to achieve that. We offer the definitions and formula-

tions for the Box-Cox and Yeo-Johnson transformations as well as the Gaussian

anamorphosis with Hermite polynomials (GAH) which is used in this research.

On the other hand, fitting a parametric distribution to the input data is needed.

The spatial and temporal scale of the data affects their variability, making it

impossible to hypothesize about the ideal parametric distribution before investi-

gation. This step introduces complexity and increases the pre-processing time.

GAH combined with kriging has been used before in a similar way, however, to

our knowledge never on precipitation data. The proposed approach overcomes

both problems by estimating the cumulative density function of the data with

Hermite polynomials (each time adapted to the data set) and further transform-

ing it to Gaussian distributed values. Ten processing scenarios were investigated

and their performance with respect to spatial interpolation (based on Ordinary
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kriging) was evaluated. The scenarios include the application or exclusion of

GAH with varying polynomial degrees, the utilization of either the exponential

or Spartan variogram models, and the incorporation or omission of Monte Carlo

simulations.

5.2 Introduction

Gaussianity is a prerequisite for applying various statistical methodologies; how-

ever, in the real world, most of the documented phenomena, including precip-

itation (as well as other environmental variables) can be described better with

non-Gaussian probability distribution functions [Papalexiou and Serinaldi, 2020;

Papalexiou et al., 2021]. This means that spatial or spatiotemporal data (e.g.,

precipitation, wind speed, etc.) exhibit one or more of the following characteris-

tics: asymmetric probability distributions, strictly positive values, long positive

tails, and compact support [Hristopulos, 2020].

Various methodologies are available to address the problem that non-Gaussianity

poses, yet it is still far from solved. The most widely known and used methods

involve non-linear transformations of latent Gaussian random fields that gener-

ate either binary-valued (e.g., indicators) or continuous (e.g., lognormal) non-

Gaussian random fields.

We will focus on non-Gaussian random fields generated by non-linear trans-

formations such as normal scores, Box-Cox, and Hermite polynomials.

The terms normal scores transform and “Gaussian anamorphosis” refer to

the bijective (one to one and invertible) mapping g ∶ X (s;ω) ↦ Y (s;ω) from a

random field X (s;ω) with non-Gaussian marginal distribution to a random field

Y (s;ω) = g [X (s;ω)] with a Gaussian marginal distribution [Chilès and Delfiner,

2012; Hristopulos, 2020; Wackernagel, 2003]. A similar “warping” approach has

been applied to Gaussian process regression [Snelson et al., 2004]. The term

“warping” herein refers to the nonlinear transformation of the Gaussian process.

For the transformation from a Non-Gaussian to Gaussian field the following

expression is true: If F
X
(x) is the marginal CDF of X (s;ω), the function g(⋅) is

defined by g ∶ x↦ y such that y = Φ−1 [F
X
(x)]. For the inverse transformation, i.e.,

from a Gaussian to Non-Gaussian field the following expression is true: Assuming
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that the inverse CDF, F −1
X
(⋅), exists, the anamorphosis function ϕ = g−1 defined

by ϕ ∶ y ↦ x so that x = F −1
X
[Φ(y)], is a bijective mapping from the Gaussian

variable y to the target variable x [Hristopulos, 2020].

The normal scores transform maps the sample values {x∗n}Nn=1 into a respec-

tive set of values y∗n = g(x∗n) that follow the standard normal distribution. It is

important to highlight that anamorphosis is not always attainable. For example,

transforming a probability distribution with significant weight at a single value

(e.g., if the observed process has a large number of zeros, a case commonly occur-

ring in mineral reserves and precipitation data sets), transformation to a normal

distribution does not work well [Armstrong and Matheron, 1986; Hristopulos,

2020].

Three of the most common and easily applicable normal scores transforma-

tions are the square root, the Johnson’s Hyperbolic Sine and the Box-Cox trans-

formations. The square root transformation has limited use because it can be

applied to only non-negative values. Also, it is non-integrable at zero values,

disqualifying it for applications on precipitation data. The parametric Johnson’s

Hyperbolic Sine transformation utilizes the hyperbolic sine function and is flexi-

ble enough to match any data set, due to its four parameters (a location, a scale,

and two shape parameters) [Hristopulos, 2020]. In the following sections we will

focus our applications on the ERA5 monthly precipitation data set in the island

of Crete.

5.3 Normality Transformations

A widely adopted transformation that aims to approximate the Gaussian distri-

bution is the Box-Cox transformation. The transformation is named after George

Edward Pelham Box and Sir David Roxbee Cox [Box and Cox, 1964], the statis-

ticians that developed the methodology.

The one-parameter Box–Cox transformation is defined as

Y (s;ω) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1

λ
[Xλ (s;ω) − 1], if λ ∈ R and λ ≠ 0

ln [X (s;ω)] , if λ = 0,
(5.1)
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and the two-parameter Box–Cox transformation as

Y (s;ω) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[X (s;ω) + λ2]λ1 − 1
λ1

, if λ ∈ R and λ1 ≠ 0

ln [X (s;ω) + λ2] , if λ1 = 0,
(5.2)

as described in the original article by Box and Cox [1964]. The transformation

Eq. (5.1) holds for X (s;ω) > 0, while Eq. (5.2) for X (s;ω) > −λ2. It is common

to use for the parameter λ2 the negative value of xmin, which guarantees that

the quantity [X (s;ω) + λ2] is always ≥ 0, thus viewing only λ1 as the model

parameter that needs optimization.

The parameter λ is estimated from the data so that the marginal probability

distribution of Y (s;ω) approximates the Gaussian distribution. The selection

can be settled via the maximum likelihood estimation or another model selection

criterion (e.g., AIC, BIC).

The inverse one-parameter Box-Cox transformation is defined as follows

X (s;ω) =
⎧⎪⎪⎨⎪⎪⎩

[λY (s;ω) + 1]1/λ , if λ ∈ R and λ ≠ 0
exp [Y (s;ω)] , if λ = 0.

(5.3)

The case λ = 0 implies that X (s;ω) follows the lognormal distribution if Y (s;ω)
is a normally distributed random field.

The Yeo–Johnson transformation [Yeo and Johnson, 2000] is more flexible

than the original Box-Cox transformation, since it allows also for zero and neg-

ative values of X (s;ω). λ can be any real number, where λ = 1 produces the

identity transformation. The transformation is defined as

Y (s;ω) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

λ
[(X (s;ω) + 1)λ − 1], if λ ≠ 0 and X (s;ω) ≥ 0

log [X (s;ω) + 1] , if λ = 0 and X (s;ω) ≥ 0

−[(−X (s;ω) + 1)(2−λ) − 1]
2 − λ , if λ ≠ 2 and X (s;ω) < 0

− log [−X (s;ω) + 1] , if λ = 2 and X (s;ω) < 0.

(5.4)

If X (s;ω) is strictly positive, then the Yeo-Johnson transformation is the
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same as the Box-Cox power transformation of [X (s;ω) + 1]. If X (s;ω) is strictly
negative, then the Yeo-Johnson transformation is the Box-Cox power transforma-

tion of [−X (s;ω) + 1], but with power of (2 − λ). As in the case of the Box-Cox

transformation, the parameter λ is estimated from the data so that the marginal

probability distribution of Y (s;ω) approximates the Gaussian distribution. The

selection can be settled via the maximum likelihood estimation or another model

selection criterion (e.g., AIC, BIC). In the original study, Yeo and Johnson [2000]

estimated the λ value by minimization of the Kullback-Leibler distance between

the normal distribution and the transformed distribution.

One main difference between the Yeo-Johnson and the Box-Cox transforma-

tion is their behavior when X (s;ω) has values closer to zero. In that case, the

Box-Cox creates a more significant difference between the original and the trans-

formed values closer to zero than the Yeo-Johnson does.

The drawback when using a power transformation such as the aforementioned

is that they work well only when the random fieldX (s;ω) differs slightly from the

Gaussian distribution. The majority of precipitation data calculated in different

timescales do not approximate the Gaussian distribution. The same is true for

wind speed data, and solar radiation on horizontal plain data. Moreover, in semi-

arid climates such as our case study, it is common to have zero precipitation even

on a monthly timescale. However, aggregated precipitation for longer periods

(e.g., annual) tends to approximate better the Gaussian distribution than for

shorter timescales (e.g., daily).

5.4 Gaussian Anamorphosis with Hermite Poly-

nomials

Gaussian Anamorphosis with Hermite Polynomials is a more sophisticated method-

ology than the preceding non-linear models. It aims to transform a given non-

Gaussian random field X (s;ω) to a random field Y (s;ω) that approximates

better the Gaussian distribution. In this case, the bijective transformation func-

tion ϕ = g−1 consists of several Hermite polynomials defined as derivatives of the

Gaussian density function. In other words, the method employs a series of orthog-
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onal Hermite polynomials to convert the original variable into a corresponding

variable that follows the normal distribution. This transformation modifies the

marginal distribution of the data to a normal marginal distribution [Hristopulos,

2020; Wackernagel, 2003].

The Hermite polynomials are defined as derivatives of the Gaussian den-

sity function. If f(y) denotes the standard Gaussian density function (fX(x) =
1

σ
√
2π
e−

1
2
(x−µ

σ
)2 , with µ = 0 and σ = 1), then the probabilists’ Hermite polynomials

[Hristopulos, 2020] are given by

Hm(y) = (−1)m
dm

dym (f(y))
f(y) , m ≥ 0. (5.5)

For example

H0(y) =
f(y)
f(y) = 1,

H1(y) = (−1)
d
dy(f(y))
f(y) = y,

H2(y) = (−1)2
d2

dy2 (f(y))
f(y) = y2 − 1.

(5.6)

The mth degree Hermitian polynomials are calculated from the following recur-

rence expression:

Hm+1(y) = yHm(y) −mHm−1, m ≥ 0. (5.7)

For example, based on Eq. (5.7)

H2(y) = yH1(y) −H0(y) = y2 − 1,
H3(y) = yH2(y) − 2H1(y) = y3 − 3y,
H4(y) = yH3(y) − 3H2(y) = y4 − 6y2 + 3.

(5.8)

For the application of the Gaussian Anamorphosis transformation, first, the

empirical cumulative distribution F̂
X
(x) of the non-Gaussian random variable

X (e.g., rainfall height) is constructed from the data set (Fig. 5.1a). Next, the

upper order M of the Hermite polynomials for the transformation g ∶ x ↦ y =
g [X (s;ω)] = Φ−1 [F

X
(x)] is selected so that the transformed random variable
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follows the standard normal distribution (Fig. 5.1b), i.e., Y ≈ N(0,1), where

F −1
X
(x) is the inverse CDF of Y (s;ω). The inverse transformation ϕ = g−1 ∶ y ↦

x = g−1 [Y (s;ω)] = F −1
X
[Φ(y)] functions as a retrieval mechanism for the original

variable X (s;ω) from the transformed one. Specifically, the random variable x

can be expressed by means of the Hermite polynomials and the the normal values

y as follows:

x = ϕ(y) =
∞
∑
m=0

cm
m!

Hm(y). (5.9)

The infinite series is usually truncated to an integer value M, which defines

the order of the transformation. The coefficient cm is equal to the expected value

(expectation) of the product x ×Hm(y). The calculation of the coefficients cm

from a sample with n elements (x1, x2, . . . , xn) is performed based on the following

equation [Wackernagel, 2003]:

cm = ∫
∞

−∞
ϕ̂(y)Hm(y) f(y)dy

=
m

∑
i=1

x[i]∫
An

Hn(y) f(y)dy

=
m

∑
i=1

x[i] (Hm−1(yi) f(yi) −Hm−1(yi−1) f(yi−1)) , m = 1, . . . ,M,

(5.10)

where ϕ̂(y) is the empirical Gaussian anamorphosis, f(⋅) is the probability density
function of the standard normal distribution and yi = G−1([FX

(xi)]), whereG−1(⋅)
is the inverse cdf of the standard normal probability, and where An, n = 1, . . . ,N
are the following half-open intervals An = (Φ−1 (n−1N

) ,Φ−1 ( nN )]. The order M ,

in practice takes values from M = 30 to M = 60. The Gaussian anamorphosis

transformation is then approached with a series of M + 1 Hermite polynomials of

order from m = 0 to m =M [Hristopulos, 2020]. For a more extensive analysis of

the steps and the functions involved see Hristopulos [2020]; Wackernagel [2003];

Webster and Oliver [2007], and Chilès and Delfiner [2012].

The method of Gaussian anamorphosis with closed form equations is widely

used for data transformations in signal analysis, time series, spatial data of en-

vironmental pollutants, ore concentration, and other applications [Alecu, 2006;
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(a) non Gaussian cdf

g ∶ x↦ y
y ↦ x ∶ ϕ = g−1

(b) Gaussian cdf

Figure 5.1: Cumulative density function (blue lines) and Gaussian model fits (red
lines) for non-Gaussian data (a) and their transformed (normalized) data (b) with
the application of the Gaussian anamorphosis function.

Chilès and Delfiner, 2012; Lien et al., 2016; Wackernagel, 2003]. However, the use

of the Gaussian anamorphosis with Hermitian polynomials is much more limited,

mainly due to the increased complexity of the method and the discontinuity of

the empirical probability distribution.

Although, the use of Hermite polynomials combined with the empirical cu-

mulative distribution of the data improves the empirical Gaussian anamorphosis,

it does not negate the fact that it uses the empirical cumulative density func-

tion F̂
X
(x), which has a staircase form. To further improve the results, a non-

parametric kernel-based density estimation as described in the work by Pavlides

et al. [2022] can be implemented; such functions allow continuous representations

of the probability density function.

5.5 Methodology

As mentioned before, precipitation does not follow the Gaussian distribution and

is commonly fitted with the gamma, the lognormal, or the Generalized Extreme

Value distributions, depending on the analyzed temporal and spatial scale. This

creates additional complexity in the pre-processing step to apply methods de-

pendent on the Gaussian assumption. Our proposed approach addresses this

problem by transforming the data into Gaussian distributed values via the ap-

plication of the Gaussian Anamorphosis with Hermite polynomials (GAH). After
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the transformation, the methodology consists of the following steps: (i) variogram

estimation, (ii) bootstrap simulation, (iii) kriging prediction, (iv) back-transfor-

mation of the normal estimates to precipitation values, and (v) cross-validation

measures. The steps are summarized in the flowchart of Fig. 5.2.

GAH in conjunction with kriging methods has been applied before. Methods

that are similar but with minor differences with the approach followed here include

the multi-Gaussian cokriging and factor kriging analysis [Buttafuoco et al., 2011],

and Bi-Gaussian disjunctive kriging [Armstrong and Matheron, 1986; Guibal and

Remacre, 1984; Matheron, 1984; Ortiz et al., 2005].

The spatial correlations of the precipitation field Xt (s) (or the transformed

gaussian field Yt (s)) are determined by means of the variogram function γ
Xt

[Chilès

and Delfiner, 2012]. For a specific month t, the variogram γ̂
Xt
(r) is defined as

the half variance of the increment field Xt (s + r)−Xt (s), where r is the distance
vector. The variogram measures the average increase of the deviation between

the field values Xt (s) and Xt (s + r) as the distance ∥r∥ between them increases.

The variogram can be estimated even in cases that the covariance function is

hard or impossible to estimate from the data. Thus, stochastic kriging methods

are based on the variogram to predict the values of the random field at unsampled

locations [Chilès and Delfiner, 2012; Cressie, 1993; Olea, 1999]. The estimation

of the variogram from the data is performed by means of the maximum likelihood

estimation [Aldrich, 1997; Fisher, 1922, 1925; Kitanidis and Lane, 1985; Mardia

and Marshall, 1984; Norden, 1972] and by minimizing the mean square estimation

error [Chilès and Delfiner, 2012].

To determine the spatial dependence at every possible lag distance r, we need

to fit the empirical precipitation variogram with a theoretical variogram func-

tion [Chilès and Delfiner, 2012]. We use the Spartan variogram family [Hristop-

ulos, 2003, 2015a; Hristopulos and Elogne, 2007], obtained from the Eq. (2.15b).

The Spartan variogram includes three parameters, i.e., the scale coefficient η0, the

rigidity coefficient η1, and the characteristic length ξ. For comparison reasons we

also fit the well known Exponential model, given by the Eq. (2.8). The lati-

tude and longitude of the data coordinates are expressed in degrees in the World

Geodetic System (WGS 84). Before any calculations, they were transformed to

the UTM (Universal Transverse Mercator) coordinate system.
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Figure 5.2: Flowchart summarizing the main methodological steps for normalization of the data, spatial model
estimation and mapping of the monthly precipitation field.
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To assess the performance of the model on the precipitation reanalysis data,

we use LOO-CV (see Section 2.12 for more details on the methodology). In LOO-

CV the training set contains N −1 values and the validation set contains a single

value. All N possible partitions of the data into training and validation sets are

used.

The predictive performance of different models is assessed by means of statisti-

cal measures which include: the bias or mean error (ME), the mean absolute error

(MAE), the root mean square error (RMSE), and the Pearson’s linear correlation

coefficient (RP) (see Section 2.12 for the definitions).

5.6 Results

In the following section we implement the newly described method that com-

bines Gaussian anamorphosis with Hermite polynomials coupled with geostatis-

tical simulation. The analysis is focused on the monthly ERA5 precipitation

products for the wet period of 246 months (from January to March and October

to December 1979 to 2019 - 41 years) for the entire grid. For brevity, we mostly

discuss results from a single randomly chosen year, the year of 2008. We chose

a year besides the characteristic (1980), the one with the lowest precipitation

(1990), and the one with the highest precipitation (2019) that were previously

discussed in Section 4 (Estimation of Drought Indices for the Island of Crete)

in order to present results that cover a wider range of the analyzed time period.

The scenarios tested include Ordinary Kriging, Gaussian Anamorphosis with Her-

mite polynomials, and Monte Carlo simulations. We use the Exponential or the

Spartan model to capture the spatial variability.

Specifically, the first scenario uses the GAH transformation of order 20 to the

monthly data, the exponential covariance model coupled with bootstrap simula-

tions, and the OK method (S1). The second scenario uses the GAH transforma-

tion of order 20 to the monthly data, the Spartan covariance model coupled with

bootstrap simulations, and the OK method (S2). The third scenario uses the

GAH transformation of order 20 to the monthly data, the exponential covariance

model, and the OK method (S3). The fourth scenario uses the monthly data,

the exponential covariance model and OK method (S4). The rest of the scenarios
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follow the same structure with different polynomial order or different covariance

model. All the scenarios are presented in Box 5.1.

Box 5.1 ∣ Scenarios Configuration

1. GAH transformation of order 20 to the monthly data, exponential

covariance model coupled with bootstrap simulations, and OK (S1)

2. GAH transformation of order 20 to the monthly data, Spartan co-

variance model coupled with bootstrap simulations, and OK (S2)

3. GAH transformation of order 20 to the monthly data, exponential

covariance model, and OK (S3)

4. Exponential covariance model and OK (S4)

5. GAH transformation of order 35 to the monthly data, exponential

covariance model coupled with bootstrap simulations, and OK (S5)

6. GAH transformation of order 35 to the monthly data, Spartan co-

variance model coupled with bootstrap simulations, and OK (S6)

7. Spartan covariance model and OK (S7)

8. GAH transformation of order 20 to the monthly data, Spartan co-

variance model, and OK (S8)

9. GAH transformation of order 35 to the monthly data, Spartan co-

variance model, and OK (S9)

10. GAH transformation of order 35 to the monthly data, exponential

covariance, and OK (S10)

In Table 5.1, the summary statistics of the wet period monthly precipitation

data are concentrated. They include the mean value, the median, the minimum

and maximum values, the standard deviation, the coefficient of variation (ratio of
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Table 5.1: Mean, median, minimum and maximum values (shown across different
rows) of monthly ERA5 precipitation statistics (shown across the columns) based
on 246 monthly values. Each monthly statistic is obtained from the 65 values in
the respective spatial layer. The values for CoV (coefficient of variation), Skew
(skewness) and Kurt (kurtosis) are dimensionless. All other values are measured
in mm.

Mean Median Min Max Std CoV Skew Kurt

Mean 61.25 55.69 26.19 132.70 25.53 0.48 0.82 3.16

Median 59.19 51.78 21.23 123.98 23.67 0.45 0.81 3.04

Minimum 1.75 1.05 0.05 6.10 1.16 0.16 −0.01 1.56

Maximum 198.27 194.15 110.03 375.32 81.54 1.57 2.26 7.75

the standard deviation over the mean), the skewness (coefficient of asymmetry)

and the kurtosis. Note that Table 5.1 is the same as Table 3.2 but we additionally

present it here for easy access and relevance to this Section. The table is sup-

plemented by Fig. 5.3 which shows the probability distribution of the monthly

statistics (corresponding to different columns of Table 5.1) calculated over the

246 months. As described in the Section 3.4.1, the monthly precipitation data

for the wet period do not approximate well the Gaussian distribution. This fact

can be supported by the statistical measures presented in Table 5.1 where the

non-zero skewness and the deviation of kurtosis from three imply non-Gaussian

distributions. The variability of the optimal fits is more obvious in Table B5.

The same conclusion can be drawn for the dry period monthly precipitation (see

Tables C1 and C2 in Appendix C).

For the data grouped by month, the optimal distribution according to AIC

is the Nakagami model for 8 out of the 246 wet months, the Weibull for 3, the

gamma for 13, the GEV for 25, the Rayleigh for 1, the generalized Pareto for 126,

the log-logistic for 2, the lognormal for 3, the Birnbaum-Saunders for 25, and the

inverse Gaussian distribution for the remaining 40 wet months.

Particularly for the year 2008, the optimal probability distribution fits for the

monthly ERA5 precipitation data based on the AIC and the BIC criteria are
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(a) Statistics measured in mm (b) Dimensionless statistics

Figure 5.3: Violin plots for the mean, median, minimum and maximum values
of monthly ERA5 precipitation statistics based on 246 monthly values from the
wet period. Each monthly statistic is based on the data at the 65 ERA5 grid
nodes. The values for CoV (coefficient of variation), Skew (skewness) and Kurt
(kurtosis) are dimensionless. All other values are measured in mm.

presented in Table 5.2. It is obvious that the distributions of the monthly precip-

itation data (Fig. 5.4) are not only non-Gaussian but they do not follow a specific

distribution throughout the year. The optimal distribution to the majority of the

optimal fits may be considered the generalized pareto (GP), however, this does

not mean that the fit of the GP is representative for the data. This can only mean

that from the 17 distributions tested, the GP gave the best fit based on the AICc

and the BIC criteria. The distributions tested include the: generalized pareto, in-

verse Gaussian, lognormal, t-Scale location, Generalized Extreme Value, Weibull,

Gaussian, Birnbaum-Saunders, exponential, extreme value, gamma, Nakagami,

logistic, log-logistic, beta, Rayleigh, and Rician distribution. This fact makes

even more urgent the need for a tool that can omit the distribution fitting step.

5.6.1 Data transformation with the Gaussian anamorpho-

sis with Hermite polynomials

Initially, we estimate the anamorphosis function ϕ̂(y), which is the empirical

transformation calculated from the ordered sample values (see Section 5.4). In

Fig. 5.4 the histogram of the initial precipitation values is plotted against the
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Table 5.2: Optimal probability distribution fits for the monthly ERA5 precipita-
tion data in the year 2008. The models studied include the following: “GP”: Gen-
eralized Pareto, “InvGauss”: Inverse Gaussian, “Logn”: Lognormal, and “Wei”
refers to the Weibull distribution.

January February March October November December

GP InvGauss Logn GP GP Wei

back-transformed values of the wet period monthly precipitation based on the GA

with Hermite polynomials up to degree 20 for the year of 2008. The histogram

of the monthly ERA5 precipitation appears to be in accord with the GAH in-

verted values. It can be expected that for a non-Gaussian field, the higher the

polynomial order, the closer the GAH inverted values will be to the original field.

However, as it will be obvious in the following sections, the computational strain

from higher polynomial order did not improve the results dramatically. Addi-

tionally, we performed a preliminary sensitivity analysis which resulted in very

small improvement of the estimations but with high computational cost when

increasing the polynomial order above 20 (not presented).

Schematically, in Fig. 5.5 the anamorphosis function of orders 20 and 35 are il-

lustrated against the empirical Gaussian anamorphosis for four different monthly

data sets. Herein, we faced a well-known problem of Gaussian anamorphosis

methodology, i.e., its difficulty to translate accurately the lowest and the highest

values of the sample data to normalized values. This happens due to the oscil-

lations created by the Hermite polynomials near the boundaries. This effect is

especially apparent when there are several sample values near the minimum or

maximum values in the sample.

5.6.2 Variogram estimation and modeling

The estimation of the theoretical model was carried out utilizing two covari-

ance models, the Spartan variogram which is a three parameter model inspired

from statistical physics [Hristopulos, 2003], and the extensively used exponen-

tial model. The empirical variograms of the monthly ERA5 precipitation for the
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Figure 5.4: Empirical histogram for the monthly precipitation in the year 2008
(gray-green bins) and empirical histogram for the back-transformed data with
GA using the first twenty Hermite polynomials (pink bins). The histograms are
based on precipitation amounts at the ERA5 65 grid locations over and around
Crete.

entire grid were estimated for all the time steps. We estimated the optimal pa-

rameters of the theoretical models using maximum likelihood optimization and

weighted least-squares distance so that the theoretical model approximates the

empirical model. We should point out that the data set for every timestep in-

cludes only 65 points. Note that this is a small data set for accurate estimation

of the variogram model. In addition to that, the Spartan covariance model while

being flexible due to its three parameters, it can vary a lot when there are not

enough data, resulting in optimizing part of the variogram curve and diverting

from the rest. This problem is more apparent with the MLE than it is with the

minimization of the cost function which in our case is the weighted least-squares
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(a) January 1979 (b) February 2008

(c) October 2015 (d) December 2018

Figure 5.5: Precipitation versus standardized values yn: empirical anamorphosis
(staircase, red), GAH with 20 polynomials (continuous black line), and GAH with
35 polynomials (dash line, blue). The data correspond to precipitation amounts
from (a) January 1979, (b) February 2008, (c) October 2015, and (d) December
2018 from the 65 ERA5 locations.

distance of the model fit to the empirical variogram. This commonly happens

with the MLE method after arriving to a local minimum, hence optimizing a part

of the variogram curve and not all of it.

Variogram estimation without transformation

The data sets representing the wet period, consists of the monthly precipitation

from October till March, while the dry period data comprises the precipitation

from April till September. The fitted variogram clouds for the wet period with the

Spartan and the exponential variogram are presented in Fig. 5.6. The variograms
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for the dry period (Fig. C1) as well as a more detailed visual classification of the

variogram clouds by month are presented in Appendix C (see Figs. C2 and C3).

It can be noted that the variograms are very dispersed and their range vary

greatly. The Spartan variograms estimated via the local MLE optimizer and the

global MLE optimizer give the same results. The highest value of the variograms

estimated with the WLS optimizer give almost 2000mm2 and 5000mm2 higher

than the highest values estimated from the MLE method for the Spartan and

the exponential variogram values respectively. Because the sill of the variogram

is representative of the sample variance, the differences in the variograms’ range

indicate that the variance of the estimates will be higher with the WLS estimated

parameters.

(a) Varios Wet GA false (b) Varios Wet GA false Exponential

Figure 5.6: Spartan (left) and exponential (right) variogram fits of the monthly
ERA5 precipitation obtained from different spatial layers for the wet period (from
October till March). Each of the variograms is calculated based on 65 spatial lo-
cations for 246 months (corresponding to 246 spatial layers for the wet period).
The precipitation values are used without the application of a normalizing trans-
form.

Variogram estimation for the normalized data with GAH up to poly-

nomial degree 20

Contrary to the variogram clouds estimated without the transformation, the var-

iogram clouds estimated for the monthly precipitation after the normalization

transform exhibit similar patterns, tend to concentrate more around the median
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variogram and have approximately the same range. Figure 5.7 presents the cloud

variogram fits for the wet periods with the Spartan and the exponential vari-

ogram separately after the application of the GAH transformation of order 20.

The corresponding cloud variograms for the dry period (Fig. C4) and the var-

iogram clouds per month are presented in Appendix C (see Figs. C5 and C6).

Even for the dry period where most of the values are close to zero we see that the

theoretical variograms for both models are more concentrated and follow similar

patterns when the GAH is applied.

(a) Varios Wet GA true (b) Vario Wet GA true Exponential

Figure 5.7: Spartan (left) and exponential (right) variogram cloud fits of the
monthly ERA5 precipitation obtained from different spatial layers for the wet
period (from October till March). Each of the variograms is calculated based on
65 spatial locations for 246 months (corresponding to 246 spatial layers for the
wet period). The normalized precipitation values are generated with the GAH
normalizing transform up to degree 20.

5.6.3 Bootstrapping simulation

The bootstrapping simulation was performed for every time step (492 months)

for four of the ten scenarios tested, namely (i) Gaussian anamorphosis of order

20 coupled with simulations and ordinary kriging with the exponential variogram

model (S1), (ii) Gaussian anamorphosis of order 20 coupled with simulations

and ordinary kriging with the Spartan model (S2), (iii) Gaussian anamorphosis

of order 35 coupled with simulations and ordinary kriging with the exponen-
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tial variogram model (S5), (iv) Gaussian anamorphosis of order 35 coupled with

simulations and ordinary kriging with the Spartan model (S6).

For every time step in every LOOCV step, 100 simulated fields were generated

based on the optimal parameters retrieved from the variogram estimation step.

The simulation resulted in a total of 6500 fields for all 246 months covering

the period under investigation. The spatial distribution of the estimated field

for every timestep was determined by averaging the 100 bootstrapped simulated

values obtained through the 65 LOOCV iterations. The resulting field contains

65 values, one for every location. While simulations are used mainly to capture

the variability of the entire field, oftentimes they result in inaccurate estimations

due to unreliable covariance function parameters.

5.6.4 Cross Validation

To assess the model’s performance, we use the validation measures of Leave-one-

out cross-validation. Table 5.3 presents the results for the scenarios tested. The

description of the configuration for each scenario is presented in Box 5.1. For a

detailed presentation of the validation measures for the first four scenarios see

Table C3 in Appendix C.

The distributions of the main LOO-CV values for all the cases with the MLE

method are illustrated in Figs. 5.8-5.11. Compared to the recent work by Agou

et al. [2022] where they used the same data set we observe that our results provide

some improvements. For the scenarios with anamorphosis we obtain lower ME

with the GAH up to 20 or 35 degrees utilizing the Spartan variogram model

(S8 and S9) that distribute around 0.5 mm (0.5 and 0.48), however with the

exponential model (S3 and S10) in both cases we get higher ME values. In terms

of the MAE, and RS metrics, we ended up with better measures by using the

GAH method for both variogram models (S3, S8, S9, S10), ranging for the MAE

from 6.49 to 6.89 mm compared to their 7.53 mm and for the RS from 0.91 to

0.94 versus their 0.90, while the RMSE metrics are better but quite similar. In

the S4 and S7 where we used the exponential and the Spartan model without

transformations, the average ME is −0.09 mm and −0.08 respectively, which is

lower than their −0.15 mm average ME for both the exponential and the Mátern
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model.

Figure 5.8: Violin plots of monthly precipitation cross-validation ME (CV) for
the wet time period (246 months). The scenarios’ configuration are shown in
Box 5.1.

According to both optimization methodologies (for MLE see Table 5.3 and for

WLS see Table 5.4) the addition of simulations for the scenario with the GAH

of order 20, and the exponential covariance model (S1 versus S3) improved or

maintained the same MARE, RMSRE, RS. However, for the scenarios with the

SSRF covariance (S2 versus S8, S6 versus S9) all the validation metrics are worse

with the incorporation of the simulations (S2, S6) than without them (S8, S9).

For the scenario with the GAH of order 35 and the exponential covariance model

(S5 versus S10) the results differ depending on the optimization method. With

the MLE method, the metrics improve with the simulations while with the WLS

most of the measures worsen or stay the same. Therefore, further investigation is

needed to clarify why the simulations in the majority of the scenarios deteriorated

the metrics contrary to what was expected. The RS results are comparable with

better values with the exponential model and slightly better or worse for the

Spartan depending on the optimization method (MLE gave slightly better RS
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and WLS gave slightly worse RS compared to the published work by Agou et al.

[2022]).

Figure 5.9: Violin plots of monthly precipitation cross-validation MAE (CV) for
the wet time period (246 months).

The average values of the validation metrics over the 246 time slices are shown

in Table 5.3 and Table 5.4. All the metrics have been rounded to the second dec-

imal place. We provide a more analytical presentation of the first four scenarios

in Table C3 in Appendix C, where we include the mean, median, minimum, max-

imum, and standard deviation values over the 246 time steps. According to the

metrics (e.g. the median) and Figs. 5.8-5.11, there is practically no difference

between results obtained with the two covariance kernels, despite the fact that

the Spartan kernel which includes 3 hyperparameters allows for wider flexibility

to data interpolation, except while coupled with simulations. Additionally, we

do not observe significant differences between the application of the Gaussian

anamorphosis with Hermite polynomials (S1 to S3, S5 to S6, S8 to S10) (a.k.a.

warping Gaussian Process Regression wGPR) and without (S4 and S7). Also,

the results based on the two optimization methods (MLE and WLS) are almost

identical.

126



5. Gaussian Anamorphosis of Precipitation Data

Figure 5.10: Violin plots of monthly precipitation cross-validation RMSE (CV)
for the wet time period (246 months).

The main validation measure differences are in the mean error (bias), where in

the S4 and S7 (only OK with the exponential or the Spartan model) the value is

significantly less than the rest of the case studies. This is expected since the OK

works by enforcing a zero-bias constrain, however, kriging variance is independent

of the data values, thus, making it unreliable in skewed data sets. Nonetheless,

the wGPR bias is still a small fraction of the average minimum of the data (cf.

Table 5.1). The comparison (S3 vs S10 and S8 vs S9) of the same scenarios with

higher Hermite polynomial order did not significantly improve the results (RMSE

increases), but considerably increased the computational cost both in terms of

memory and time. The simulation did not improve the validation measures com-

pared with the measures resulted from the scenarios where simulations were not

incorporated. Additionally, in terms of the mean value of the validation mea-

sures (MLE), the use of the three parametric Spartan model further improved

the results in terms with the MAE, RMSE and RS.
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Figure 5.11: Violin plots of monthly precipitation cross-validation RS (CV) for
the wet time period (246 months).
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Table 5.3: The average value of the LOO-CV measures of monthly precipitation based on 10 different scenarios.
The mean value of the following validation measures are shown: ME: mean error (bias); MAE: mean absolute error;
MARE: mean absolute relative error; RMSE: root mean square error; RMSRE: root mean square relative error; RS:
Pearson’s correlation coefficient. The optimal values are shown with bold lettering. The optimization is performed
using MLE.

Method ME (mm) MAE (mm) MARE RMSE RMSRE (mm) RS

GAH20SExpo
1.04 6.83 0.13 9.62 0.18 0.92

GAH20SSSRF
2.88 10.51 0.24 14.42 0.36 0.77

GAH20Expo 1.15 6.89 0.14 9.69 0.19 0.91

OKExpo −0.09 6.84 0.15 9.32 0.22 0.92

GAH35SExpo
1.05 6.78 0.13 9.63 0.18 0.92

GAH35SSSRF
2.86 10.34 0.24 14.38 0.35 0.77

OKSSRF −0.08 5.36 0.14 7.19 0.22 0.94

GAH20SSRF 0.50 6.52 0.13 9.39 0.18 0.93

GAH35SSRF 0.48 6.49 0.13 9.44 0.17 0.93

GAH35Expo 1.15 6.85 0.13 9.71 0.18 0.91



Table 5.4: The average value of the LOO-CV measures of monthly precipitation based on 10 different scenarios.
The mean value of the following validation measures are shown: ME: mean error (bias); MAE: mean absolute error;
MARE: mean absolute relative error; RMSE: root mean square error; RMSRE: root mean square relative error; RS:
Pearson’s correlation coefficient. The optimal values are shown with bold lettering. The optimization is performed
using WLS.

Method ME (mm) MAE (mm) MARE RMSE RMSRE (mm) RS

GAH20SExpo
1.29 7.00 0.14 9.87 0.19 0.91

GAH20SSSRF
1.71 8.59 0.18 11.90 0.24 0.88

GAH20Expo 1.26 6.96 0.14 9.83 0.19 0.91

OKExpo −0.09 6.98 0.16 9.49 0.23 0.92

GAH35SExpo
1.28 6.96 0.14 9.88 0.19 0.91

GAH35SSSRF
1.70 8.59 0.18 11.97 0.19 0.91

OKSSRF −0.14 5.58 0.14 7.52 0.21 0.93

GAH20SSRF 0.48 6.21 0.12 9.01 0.17 0.94

GAH35SSRF 0.46 6.17 0.12 9.05 0.17 0.94

GAH35Expo 1.26 6.92 0.13 9.85 0.19 0.91
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5.7 Discussion and Conclusions

Kriging methods or Gaussian processes (GP) are commonly used for the estima-

tion of spatial and spatiotemporal data but they rely on the Gaussian assump-

tion in order to give representative values for the prediction variance. In the

cases of Gaussian distributed data the methodology can be applied as is to the

observations. However, when the data exhibit non-Gaussianity nonlinear trans-

formations should be applied prior to the application of the GP. In the field of

geostatistics such techniques are known as Gaussian anamorphosis [Chilès and

Delfiner, 2012; Wackernagel, 2003], while in the machine learning field they are

known as Gaussian process warping [Agou et al., 2022; Peters et al., 2021; Snelson

et al., 2004]. Non-linear transforms such as normal scores, logarithm, Box-Cox,

hyperbolic tangent, or Hermite polynomials can be used to achieve the warping

transformation [Chilès and Delfiner, 2012; Hristopulos, 2020; Peters et al., 2021;

Snelson et al., 2004; Xu and Genton, 2017]. In this case study we use the Hermite

polynomials to estimate the transform from the data-based CDF to a Gaussian

CDF.

For non-parametric GP transformations the warping function adjusts to the

characteristics of the data set at hand, providing higher flexibility rather than

being determined by a closed-form expression. In our investigation we resulted in

comparable but not improved approximation accuracy with the use of the GAH

compared to the OK.

Our data correspond to monthly ERA5 precipitation products acquired for a

grid covering the island of Crete located in the southeastern Mediterranean Sea,

for a period of 492 consecutive months (from January 1979 to December 2019).

We focus our investigation to the wet period months which includes 246 months

(from October to March for all the years). Reanalysis data have been proven very

valuable in areas where environmental monitoring systems are sparse.

We combine GAH transformation, and bootstrap simulations with Kriging

prediction to estimate the prediction accuracy of monthly precipitation reanaly-

sis (ERA5) data for the island of Crete. The covariance model parameters are

estimated via variogram modeling and the optimization is carried out by two

different ways. The hyperparameters are estimated by minimizing the weighted
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least squared distances (WLS) of the empirical to the model variogram or by

maximizing the likelihood (MLE). In general, the WLS is less robust and less

computationally intensive than the MLE. The O(N3) computational cost of in-

verting the covariance for the MLE optimization especially for large data sets

may be prohibitive. In our case studies the results based on the WLS and the

MLE are very similar in terms of the LOOCV results.

The comparison of the cross-validation measures for all the implemented sce-

narios show that the OK method (S4, S7) has lower bias when applied solely than

in combination with any other methodology (S1-S3, S5-S6, S8-S10). Regarding

other measures, such as the MARE and the RMSRE, the use of GAH with up to

35 degrees combined with the Spartan variogram model gave the optimal results.

Interestingly, the bootstrap simulations did not improve drastically the results.

Comparing S1 to S3 (same configuration but S1 also includes simulations) with

the MLE optimization method, we see that with the incorporation of simulations

the validation measures improved imperceptibly, while with the WLS they dete-

riorated slightly. The same conclusion is drawn for S5 and S10. On the other

hand, with the Spartan covariance model, the comparison of S2 and S8 (or S6

and S9) shows that the simulations significantly worsen the validation measures.

The Spartan covariance kernel is found to be more appropriate for the cases with

the anamorphosis but without the simulations, while the exponential kernel is

found to be more suitable for the scenarios where we integrated the bootstrap

simulations.

Several directions can be pursued for future research of the proposed method-

ology. Initially, incorporating a trend function can filter out the effect of the

altitude on precipitation. Alternatively or in addition to the above, the omnidi-

rectional variogram can be substituted by the anisotropic variogram. Agou et al.

[2019] showed that the island of Crete is characterized by spatial precipitation

patterns that differentiate from West to East and from North to South. Those ex-

treme patterns are not that prominent in the reanalysis data. Another direction

is to treat the entire data set in the space-time continuum. In that case the dis-

tances have to be readjusted to take into account the non-constant time step, and

then the kernels have to be constructed in a way that they encapsulate the spa-

tiotemporal correlations. To avoid the high computational cost of the covariance
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matrix inversion, the stochastic local interaction model (SLI) [Hristopulos, 2020;

Hristopulos and Agou, 2020; Hristopulos et al., 2021] can be used instead of krig-

ing. SLI employs sparse precision matrices to represent space-time correlations

in such a way that results in highly sparse matrices, resulting to less computa-

tional stress. Another approach is to estimate the probability distribution of a

continuously-valued variable, such as precipitation amount, with a kernel-based

estimator (KCDE) like the one presented by Pavlides et al. [2022]. This tech-

nique avoids the disadvantages of a the step function (empirical CDF) by using

the kernel-based estimator which is a continuous function. The KCDE method

targets the CDF instead of the PDF [Harrold et al., 2003; Mosthaf and Bárdossy,

2017; Sharma and Lall, 1999] and is presented in their study by means of syn-

thetic data sets and reanalysis precipitation data from the Mediterranean island

of Crete (Greece). Lastly, GAH (with or without the KCDE) can be implemented

as the first step of the data transformation to the Gaussian distribution in terms

of the estimation of drought indices. As mentioned previously in Section 4, the

first step for the estimation of the SPI and SPEI is to fit the precipitation values

to a parametric distribution, usually the gamma or the lognormal distribution (in

our case study the gamma and the Pearson type III distribution) and afterwards

the transformation to index values is acquired. Oftentimes, the data do not follow

the parametric distribution well, resulting in inaccurate index values. Thus, by

fitting a model distribution that adapts to the data, and then transforming those

to standardized normal variates (index values), those discrepancies are avoided.

To conclude, we provided an extensive analysis of multiple scenarios for the

interpolation of monthly precipitation (based on Ordinary kriging) where some

were equipped with Gaussian anamorphosis functions with Hermite polynomials,

while others with Monte Carlo simulations. We showed that increasing the poly-

nomials order improve the validation results but slightly, while the incorporation

of the simulations gave improved results (compared to the cases without the sim-

ulations) only in some cases. The precipitation data sets used here do not follow

the Gaussian distribution and based on our investigation they do not follow a

specific parametric distribution across the months. We believe that GAH can

improve the interpolation results in non-Gaussian data especially in bigger data

sets, however further studies are needed for validation.
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Chapter 6

Space-time Modeling with

Machine Learning Methods

6.1 Summary

In this chapter we present the application of different machine learning classifi-

cation methodologies for the estimation of hourly precipitation based on 27 me-

teorological and hydrological auxiliary variables. We use and briefly describe the

following twelve classification methodologies: fine, medium, and coarse classifica-

tion trees, linear, quadratic, cubic, fine Gaussian, medium Gaussian, and coarse

Gaussian Support Vector Machines, Boosted Ensemble trees, Bagged Ensemble

trees, and Ensemble RUSBoosted trees. Ensemble trees (a.k.a. Random Forests)

are more extensively presented. The hourly precipitation data are imbalanced,

meaning that their classes are very disanalogous to each other, specifically, they

contain many low values and very few high values. Thus, we present ways by

which classification methodologies are equipped to accurately predict imbalanced

data, e.g., using different weights for each class, or applying undersampling and

oversampling techniques. Also, we present the metrics that are commonly used

to assess the model’s performance. In terms of the application, we study the

impact of auxiliary variables in a spatiotemporal predictive framework for hourly

precipitation. We create eight classes and we split the data set into two different

classification scenarios. The first one classifies the occurrence of precipitation
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while the other classifies the intensity of the precipitation events. We present

the results for all the models tested in tabular form in order to compare their

performance.

6.2 Introduction

Machine learning (ML) methods were developed in computer science to provide

automated algorithms for pattern recognition. ML methods can be classified into

three main categories: supervised learning, unsupervised learning, and reinforce-

ment learning.

In Supervised Learning methods the training set has predetermined input fea-

tures and assigned output labels. The objective of supervised learning involves

acquiring a mapping function that can effectively forecast the output label for

unobserved inputs. The model is generated through iteratively predicting and

correcting until it attains a specified level of accuracy on the training data set.

Subcategories of supervised learning include regression (e.g., temperature fore-

cast) and classification methods (e.g., will it rain tomorrow or not). Various

algorithms are available for employment, among which are the Linear and Lo-

gistic Regression, K-nearest neighbors, Decision trees, Support vector machines

(SVMs), Random Forests (RFs), and Artificial Neural Networks [Chase et al.,

2022; Rolnick et al., 2022].

On the contrary, the input data in Unsupervised Learning methods are un-

labeled and the model is generated by searching structures and patterns present

in the input data. Standard algorithms for unsupervised learning include the

K-Means clustering and the Principal component analysis [Chase et al., 2022].

Finally, in Reinforcement Learning the training data is a combination of la-

beled and unlabeled inputs. Reinforcement learning methods are commonly ap-

plied when the environment is complex and changes dynamically (e.g., gaming,

autonomous driving). Typical algorithms are the Deep Reinforcement learning

and the Actor-Critic methods. In this chapter we focus on supervised learning

methods.

The supervised ML methods used herein can be divided into three categories:

decision trees, support vector machines, and ensemble methods. We used fine,
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medium, and coarse classification trees, linear, quadratic, and cubic SVMs, fine,

medium, and coarse Gaussian SVMs, and Boosted, Bagged, and RUSBoosted

trees.

In decision tree classification, a tree-like model is created to classify inputs

into output classes based on feature values. The algorithm repeatedly divides a

set of input data into smaller groups, relying on the characteristics of the input

features to create the model. At every node of the tree structure, the algorithm

identifies the attribute that gives the optimal partitioning of the data into distinct

categories. The process stops when all the data in a subset are assigned under

the same class or the algorithm achieves a fixed stopping criterion (e.g., accuracy,

maximum tree depth). The root node symbolizes the original input data, the

branches signify the different feature values that can lead to distinct subsets of

the data, and the leaves are the output classes that the algorithm has been trained

to estimate [Rokach and Maimon, 2014; Wu et al., 2008].

Support vector machines (SVMs) can be used both for classification and re-

gression problems. The SVM maps a set of data into a high-dimension feature

space. The simplest SVM model is the linear SVM which involves a straight line.

In this case, a straight line is created in this feature space in a way that the width

of the gap between the two groups is maximized [Cortes and Vapnik, 1995]. Then

new data are mapped in the space between the groups and based on which side

of the space they fall in a decision is made. If a cubic curve or a kernel function

is used instead of a straight line (linear SVM) to create the hyperplane, then we

result in more complex SVM models.

Ensemble learning methods are essentially a combination of other machine

learning methods designed to increase the accuracy and decrease the bias of the

resulting estimates [Opitz and Maclin, 1999]. The most popular ensemble meth-

ods are bagging (or bootstrap aggregation) [Breiman, 1996] and boosting [Freund

and Schapire, 1996; Schapire, 1990]. Bagging creates subsamples of the training

data to train the model with random data configurations. More about bagging in

Section 6.3.2. Boosting creates a series of classifiers and tries to estimate and cor-

rect the predictions of the classifiers that resulted in incorrect predictions; thus,

repeatedly tries to train the model to create more accurate classifiers [Opitz and

Maclin, 1999]. RUSBoost combines data sampling and boosting, and is a good
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approach when the training data set is imbalanced [Seiffert et al., 2008].

ML methodologies have been applied to different meteorological data. For

instance, they have been used for air quality modeling [Keller et al., 2017], heavy

rainfall estimation [Moon et al., 2019], drought index estimation [Mokhtar et al.,

2021], surface air temperature [Zhu et al., 2019], and data merging [Papachar-

alampous et al., 2023a,b].

Random Forests is a supervised machine learning algorithm. Despite the

advantages of using RFs, the literature is limited in the water resources field.

Recently the method has began to gain in popularity. For an extensive list of

references refer to Tyralis et al. [2019]. In the following section we will introduce,

and provide a brief description of the Random Forests methodology. Additionally,

we will apply multiple classification methods to precipitation and we will discuss

our findings.

RFs have been applied in various scientific fields, such as in remote sens-

ing [Belgiu and Drăguţ, 2016; Maxwell et al., 2018], bioinformatics [Chen et al.,

2011], agriculture [Liakos et al., 2018], biology [Goldstein et al., 2011], and min-

ing [Rodriguez-Galiano et al., 2014]. Theoretical and practical aspects of RFs

can be found in the review papers of Biau and Scornet [2016]; Boulesteix et al.

[2012]; Criminisi et al. [2012] and Ziegler and König [2014]. The main advantages

of RFs are their ability to handle big data, they have the ability to incorporate

different types of information, and they require minimal parameter tuning since

they can automatically search for identifiable patterns in the data based on sim-

ple and intuitive heuristics, making the method suitable for use by non-experts.

Furthermore, the method is flexible enough to avoid assumptions that need to be

fulfilled when geostatistical methods are applied, such as field stationarity and

Gaussianity. In brief, RFs extend decision tree methods by introducing the idea

of ensembles of trees (i.e., forests). A classification and regression tree (CART)

is a predictive model that divides a target variable into homogeneous groups.

However, these models have several weaknesses that prevent their application

to real-world problems, mainly because of their lack of stability and tendency

to overfitting [Legasa et al., 2022]. To predict the variable Y (in this case study

hourly precipitation at a 65 node spatial grid) from the predictors X (in this study

a set of 27 reanalysis large-scale variables) ensemble averaging improves the ac-
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curacy and uncertainty estimation of simple decision tree methods by combining

an ensemble of N CARTs. In water resources, random forests are said to belong

to the class of data-driven models (see e.g., Solomatine and Ostfeld [2008]).

6.3 Methodology

Multiple implementations of RFs exist in the literature, however, we will focus on

the one introduced by Breiman [2001]. Essentially, what differentiates Breiman’s

RF-algorithm from other RF implementations is the use of classification and re-

gression trees (CARTs, [Breiman et al., 1984]) as base learners [Biau and Scornet,

2016]. The RFs implementation is sufficiently adaptable to handle both super-

vised classification and regression tasks. In regression algorithms, the dependent

variable is quantitative, whereas in classification algorithms the dependent vari-

able is qualitative. In the latter case, the dependent variable can also be ordered;

i.e., the values of the variable are ordered but no metric is defined/used to quan-

titatively assess the observed differences [Tyralis et al., 2019].

In the following, we briefly describe the way the algorithm works. Before

building each tree (N trees in total), k observations are sampled randomly from

the initial data. These k observations are considered for the construction of the

tree. Then, at each cell of each tree, a partition is performed by maximizing the

selected CART criterion. Finally, the construction of each tree stops when each

cell contains fewer points than the node size. The final estimate depends only on

pre-determined k data points [Biau and Scornet, 2016].

The Matlab platform provides several functions in the Statistics and Machine

Learning toolbox which allow for rapid development of ML approaches [MAT-

LAB, 2018].

6.3.1 Variable Importance Metrics & Selection

Random Forests can provide useful information about the importance of the vari-

ables. This means that the rank of the importance of each variable indicates the

relative significance of the predictor variables in modeling the response variable.

The measures of significance that can be used to assess the importance of the
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predictor variables are the Mean Decrease Impurity (MDI; see [Breiman, 2003])

and the Mean Decrease Accuracy (MDA; see [Breiman, 2001]). The former is

based on the total decrease in node impurity from splitting on the variable, aver-

aged over all trees, while the latter is on the idea that rearranging the values of

the variable does not influence the prediction accuracy [Biau and Scornet, 2016].

For a review on variable selection refer to the work of Heinze et al. [2018].

In RFs, MDI and MDA are used to conclude variable selection by excluding

the variables that resulted in approximately zero importance as non-significant.

Dı́az-Uriarte and Alvarez de Andrés [2006] offer a stepwise approach where a

combination of predictor variables is tested and progressively removed until the

lowest error is achieved.

6.3.2 Resampling or Bagging

As mentioned earlier, classification and regression trees (CARTs) are unstable and

tend to overfitting [Legasa et al., 2022]. To overcome this problem a technique

called bagging is utilized [Breiman, 2001]. Bagging is essentially a resampling

mechanism, also known as bootstrap in the statistical literature [Efron, 1982;

Politis et al., 1999]. Out-of-bag (OOB) errors are used to tune random forests’

parameters. Out-of-bag samples (about one-third of the training set, see Biau

and Scornet [2016]) are the samples that remain after bootstrapping the training

set. Each tree is formed for the specific sub-sample of the selected data which is

called “bagged”. The remaining data, which are called “out-of-bag”, can then be

used to evaluate the tree performance. The preceding approach is similar to the

well-known k-fold cross-validation [Hastie et al., 2009; Tyralis et al., 2019].

In Breiman’s algorithm, in the resampling step, the tree estimates are calcu-

lated by choosing n times from n points with replacement. Bagging is the process

of creating several bootstrap samples and averaging the predictions (bootstrap

aggregation). When performing classification, the prediction is estimated by the

majority class vote from each tree’s class vote, while in regression, the prediction

is obtained by the average of the predictions of each tree. The bagging of trees

and the added randomization is used to reduce the correlation between the trees

and, consequently, reduce the variance of the predictions [Tyralis et al., 2019].
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According to Breiman [2001] bagging can provide improved accuracy as well as

ongoing estimates of the generalized error of the combined ensemble of trees. This

is achieved by leaving out one-third of the training set in each bootstrap sample.

By leaving out one-third of the training set in each bootstrap sample, the

estimates are based on that subset of classifiers. Because the error decreases if the

number of combinations increases, the out-of-bag estimates tend to overestimate

the error rate. This means that in order to get unbiased estimates it is crucial to

run past the point where the test set error converges [Breiman, 2001]. Yet, unlike

cross-validation, where bias is present but the level of it is unclear, the out-of-bag

estimations are unbiased.

6.3.3 Imbalanced data

The terminology imbalanced data is unclear, because a data set with data splits

different than 100/(the number of classes) % for each class can be considered

imbalanced. However, if we have a data set with a 90-10% split, or as it is in our

case with a 70-11-6-7-4-2∼0∼0 split it seems obvious that this is an imbalanced

set (this split considers the classes presented in Table 6.3 and the respective pie

chart is presented in Fig. 6.1). Classification algorithms, which tend to be biased

to the majority class, return inferior results when an imbalanced set is considered.

In real life, many classification problems are imbalanced. Most commonly

the aim of those classification problems is to correctly classify the minority class.

Such examples include fraud detection [Fawcett and Provost, 1997], rare disease

diagnosing [Jabeen et al., 2022], and environmental disasters [Kubat et al., 1998].

A few techniques have been developed to deal with an imbalanced data set.

They include two main approaches: the sampling method and the cost effective

method. The cost effective approaches work by assigning a high cost to misclassi-

fication of the minority class, and trying to minimize the overall cost [Domingos,

1999; Pazzani et al., 1994]. The sampling methods include the undersampling

and the oversampling techniques. For example, SHRINK is a system for the

undersampling approach developed by Kubat et al. [1997] which labels a mixed

region as minority class (regardless if it is) and then it searches for the minor-

ity class [Chen et al., 2004]. Undersampling has one main advantage, it reduces
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the size of the problem. Both methods aim to create a more balanced data set.

In the oversampling approach, the sample is enriched with synthetic new data

for the minority class or classes, while in the former (provided that the data

set is big enough) values from the majority class are removed. Oversampling

must be applied very carefully to avoid the risk of overfitting or incorporating

noise in the data set, however, oversampling does not increase information but it

increases the weight of the minority class. A combination of both oversampling

and downsampling has also been used to improve classification performance. One

oversampling algorithm that exists in the bibliography is the Synthetic Minority

Oversampling Technique (SMOTE) [Chawla et al., 2002], which generates new

synthetic points for the minority class between existing ones based on local den-

sities and boundaries of other classes. The algorithm works as follows for each

minority sample:

1. Find the k-nearest neighbors for the sample in the minority class.

2. Randomly select j neighbors (this number can be adapted and depends on

the amount of oversampling required).

3. Randomly generate synthetic values along the line joining the original sam-

ple value and its j neighbors.

One main disadvantage of the SMOTE technique is overgeneralization because it

generalizes the minority domain irrespective to the majority class and can return

inconclusive and insufficient results. This is especially true when the distribution

of the data is extremely skewed, where the minority class is sparse enough that

presents high probability of mixing with the majority class. In our case the

SMOTE technique cannot work sufficiently because the minority class is so rare

that the probability that it is mixed into the majority class is extremely high.

Herein, we will apply the random Forest (RF) algorithm [Breiman, 2001]

without balancing the data set and afterwards we will apply several other methods

to improve and compare our results.
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6.3.4 Performance Measurement

The classification performance can be assessed by a variety of performance mea-

sures, however, the accuracy of the model is the most prevalent. In the cases of

imbalanced data classification, accuracy is frequently inappropriate measure for

the model’s success. For instance, even a trivial classifier can achieve very high

accuracy if it predicts every case as the majority class. To evaluate the efficacy of

the learning algorithms on imbalanced data, we utilize metrics such as precision,

true positive rate (Acc+ or recall), true negative rate (Acc-), F-measure, and G-

mean. These metrics have been widely used for comparison. All the metrics are

functions of the confusion matrix (Tables 6.1 and 6.2) as shown in the following

equations. The rows of the confusion matrix are actual classes, and the columns

are the predicted classes. Based on the confusion matrix, the performance metrics

are defined as follows:

True Negative Rate (Acc−) = TN

TN + FP = 1 − FPR,

True Positive Rate (Acc+) = TP

TP + FN = 1 − FNR = Recall,

G-mean = (Acc− ×Acc+)1/2 ,

Accuracy = TP +TN
TP + FN + FP +TN ,

Accuracy of Single = TP +TN
TP + FN ,

Precision = TP

TP + FP = 1 − FDR = Positive Predictive Value (PPV),

F-measure = 2 ×Precision ×Recall
Precision +Recall = F1-score,

False Negative Rate (FNR) = FN

FN +TP = 1 −TPR,

False Positive Rate (FPR) = FP

FP +TN = 1 −TNR,

False Discovery Rate (FDR) = FP

FP +TP = 1 −PPV.

143



Data Preparation and Pre-processing

Table 6.1: Confusion matrix for binary classification.

6.4 Data Preparation and Pre-processing

The initial data set includes the variables presented in Table 3.1 for the entire grid

shown in Fig. 3.1. According to multiple publications and organizations [Ameri-

can Meteorological society, 2022; Barthiban et al., 2012; United Kingdom Meteo-

rological Office, 2022], precipitation intensity varies across the globe. For example

in the US rainfall intensity between 2.6 and 7.6 mm/hr is classified as moderate

rain, however, in the UK moderate rain is considered rainfall intensity of 0.5 to 4

mm/hr. Furthermore, we have noticed that in many cases, intensity of 0.5 mm/hr

and lower is classified as no rain [Avanzato and Beritelli, 2020]. Another way to

classify precipitation is by the percentile ranges [Kant, 2018]. In our case, this

was not ideal since hourly precipitation data set for the area of interest contains

a very high percentage of zero values. However, the application of the percentiles

would have resulted in the following classification which is fairly similar to the

one that we used and is presented in Table 6.3:

1. Very light spell: 0–50 % Ô⇒ (0, 0.00095367) mm,
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Table 6.2: Confusion matrix for multi-class classification.
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2. Light spell: 50–75 % Ô⇒ (0.00095367, 0.063896) mm,

3. Moderate spell: 75–90 % Ô⇒ (0.063896, 0.21648) mm,

4. Intense spell: 90–95 % Ô⇒ (0.21648, 0.52834) mm,

5. Very intense spell: 95–97.5 % Ô⇒ (0.52834, 3.022) mm,

6. Extremely intense spell: 97.5–99.9% Ô⇒ (3.022, 18.836) mm.

We classify the hourly precipitation in eight different classes based on var-

ious bibliographies [Kittredge, 1948; Lull, 1959; Meteoclub, 2013], making sure

that the ranges are appropriate for the sample data. The classes are defined in

Table 6.3.

Table 6.3: Definition of the hourly precipitation classes used. The numbers within
parentheses in the first columns correspond to the class labels. LB and UB stand
for the lower bound and upper bound of the respective class.

Precipitation class LB (mm/hr) UB (mm/hr)

No Rain (1) 0 0
Fog (2) 0 0.0127
Mist (3) 0.0127 0.0508

Drizzle (4) 0.0508 0.254
Light Rain (5) 0.254 1.016

Moderate Rain (6) 1.016 3.81
Heavy Rain (7) 3.81 15.24

Excessive Rain (8) 15.24 40.64

6.4.1 Prediction and Response Variables

In particular, our response variable is hourly precipitation, which is a semi-

continuous variable with a probability distribution characterized by a spike at

zero (dry days) followed by a continuous distribution with positive support (wet
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days). In our case study, we treat precipitation as a categorical ordinal variable

according to Table 6.3. We opted for a categorical variable to cover for the big

range in our data and the very asymmetrical distribution that the hourly precip-

itation data exhibit. Initially, all the variables in Table 3.1 besides precipitation

are treated as the prediction variables.

We use the following twenty seven features as prediction variables: (i) Lat-

itude of the target point expressed in degrees in the World Geodetic System

(WGS 84), (ii) Longitude of the target point expressed in degrees in the World

Geodetic System (WGS 84), (iii) timestamp in Matlab time (hours), (iv) 10 me-

tre U wind component in m/s, (v) 10 metre V wind component in m/s, (vi) 2

metre dewpoint temperature in degrees Celsius, (vii) 2 metre temperature in de-

grees Celsius, (viii) evaporation in m of water equivalent, (ix) mean sea level

pressure in Pa, (x) runoff in meters, (xi) sea surface temperature in degrees Cel-

sius, (xii) snow density in kg/m3, (xiii) snow depth in m of water equivalent,

(xiv) snowfall in m of water equivalent, (xv) soil temperature level 1 in degrees

Celsius, (xvi) surface latent heat flux in W/m2, (xvii) surface sensible heat flux

in W/m2, (xviii) surface net solar radiation in W/m2, (xix) surface net thermal

radiation in W/m2, (xx) surface solar radiation downward clear-sky in W/m2,

(xxi) surface solar radiation downwards in W/m2, (xxii) surface thermal radia-

tion downward clear-sky in W/m2, (xxiii) surface thermal radiation downwards in

W/m2, (xxiv) top net solar radiation in W/m2, (xxv) top net thermal radiation

in W/m2, (xxvi) total cloud cover in (0-1), and (xxvii) months in (1-12). The

values of the latter variable are generated, they are not included in the initial

data sets and they are treated as categorical.

6.4.2 Exploratory Data Analysis

We classify the observed precipitation classes as shown in Table 6.3. The distri-

bution of the precipitation data per class is shown in the pie chart of Fig. 6.1.

The spatio-temporal distribution of the precipitation classes is shown in Fig. 6.3.

As mentioned previously and also shown in Fig. 6.1, the most common class

(No Rain: 0 mm) is measured for ≈ 70%, while the most extreme class (above

15.24 mm) is observed for only ≈ 0.0003% (two events) of the available data.
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Figure 6.1: Pie chart of precipitation classes according to the thresholds defined
in Table 6.3. The hourly values correspond to a time period of one year spanning
from 01-Jan-2019 00:00:00 to 31-Dec-2019 23:00:00. NR: No Rain; F: Fog; M:
Mist; D: Drizzle; LR: Light Rain; MR: Moderate Rain; HR: Heavy Rain; ER:
Excessive Rain.

The spatial distribution of the precipitation classes depending on the month

of the year is presented in Fig. 6.4. The percentages of each class in the entire

data set are illustrated in Fig. 6.1. In particular, No Rain corresponds to ≈ 69.9%
of the data, Fog to ≈ 11.3%, Mist to ≈ 6.1%, Drizzle to ≈ 6.8%, Light Rain to

≈ 3.9%, Moderate Rain to ≈ 1.9%, and Heavy Rain to ≈ 0.1% and Excessive

Rain to ≈ 0%. Specifically, across the months of the year, No Rain presents

a pick frequency in August, Fog in December, Mist, Drizzle, and Light Rain

in January, Moderate Rain in February and Heavy Rain, and Excessive Rain

in November. Excessive Rain has only two events and both are recorded in

November. The lowest frequency for No Rain is observed in January, for Fog,

Mist, Drizzle, Light Rain, and Moderate Rain in August, while Heavy rain does
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not have any events in the months between May to October. It follows that,

the majority of the data with rain above zero are distributed with the highest

frequencies in the winter months and the lowest during the summer months (see

Fig. 6.4). Provided the predominance of the majority class (69.9%), the algorithm

may default to predicting the majority class. The algorithm can maximize its

accuracy by randomly predicting which majority class will occur each time. This

is a trivial result and provides near-zero predictive power.

6.5 Data Analysis and Results

We build Random Forests using the predictor variables defined is Section 6.4.1.

We consider the hourly precipitation class as the response variable. We use

the Matlab fitensemble function to construct the Random Forest structure.

We apply Random Forests (RFs) with 100 trees. The prediction variables are

complete for the entire grid.

We randomly split the data into training and test sets of 70-30 percent size

respectively. The classification error is the percentage of sites whose precipitation

class is wrongly classified. Since we have eight classes, a completely random guess

has a probability of success equal to 12.5%, implying an 87.5% classification

error. We aim to improve on these odds using the Random Forest methodology.

Indeed, the classification error of the Random Forest (i.e., the percentage of

misclassified classes) is shown in Fig. 6.2 versus the number of trees in the forest.

The classification error for the test set (blue line) is almost 14% if 100 are used,

and it is very close to this figure even with as few as 50 trees. The classification

error can also be estimated based on the samples that are omitted from each

tree, averaged over all trees in the forest. This so-called out-of-bag error (red

line) also converges to the same value when we incorporate more than 100 trees,

albeit somewhat slower than the test-based error.

The classification error is global error measure that does not inform about

the classification performance for the different classes individually. The confu-

sion matrix Ci,j is a useful measure of prediction accuracy which resolves such

differences. The confusion matrix is formulated in terms of the values of the

precipitation classes in the test set. If there are G different precipitation classes
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Figure 6.2: Classification error of precipitation classes as function of the number
of Random Forest trees. The error is calculated using (i) the values in the test
set and (ii) the out-of-bag samples.

(in our case G = 8), [Ci,j] is a square G×G matrix, such that Ci,j is equal to the

number of times that precipitation with values belonging in class i is classified

by the Random Forest as belonging to the class j. Ideally, the confusion matrix

should be diagonal meaning that all the sites are correctly classified. This, how-

ever, does not happen in practice, leading to a leaking effect from the diagonal

to off-diagonal entries which indicates a “confused” classifier. In the case of our

data set, the confusion matrix is shown in Fig. 6.5.

The side sub-matrix, (columns) of Figs. 6.5, 6.8 and 6.10 display the number

of correctly and incorrectly classified observations for each predicted class as per-

centages of the number of observations of the corresponding predicted class. The

bottom sub-matrix (rows) represents the number of correctly and incorrectly clas-

sified observations for each true class as percentages of the number of observations
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(a) No Rain (b) Fog

(c) Mist (d) Drizzle

(e) Light Rain (f) Moderate Rain

(g) Heavy Rain (h) Excessive Rain

Figure 6.3: Spatio-temporal distribution of the eight different classes of precipi-
tation.
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Figure 6.4: Bar graph showing the distribution of the eight different classes of
precipitation classified by month.

of the corresponding true class [MATLAB, 2018].

The classifier accurately predicts the lower class (98.3% accuracy), which is

expected since the majority of the data falls under that class. Nevertheless,

identifying the locations of the class with no precipitation provides insight for

the dryness of the set. For the classes Fog and Mist the classification is poor

but improved if it was performed by chance (87.5%), resulting in 52.3% and

42.4% accuracy accordingly. The classification error for the next three classes

(Drizzle, Light Rain and Moderate Rain) are somewhat improved (≈ 70%) . For

the highest precipitation class (above 15.24 mm), the classification works poorly

misclassifying the values from the test set (only one event). For the Heavy Rain

and the Excessive Rain class, the classification accuracy deteriorates significantly,

with classification errors 65% and 100% respectively. This is not surprising, since

the Heavy Rain and Excessive Rain classes occur very rarely (see the pie plot
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Table 6.4: Classification performance comparison on the hourly precipitation
data for the year 2019. The measures are described in Section 6.3.4. The pre-
dictor variable “month” is treated as categorical variable, as well as the response
variable. Eight classification classes are used and their ranges are presented in
Table 6.3. NA: not applicable; the respective measures involve division by zero
or by a very small number.

Method Precision Acc+(Recall) Acc- F-measure G-mean Accuracy

Model performance

Bagged Ensemble of 100 Trees 62.2 55.0 96.5 58.5 72.9 86.0

Performance metrics per class

Class 1 - No Rain 92.5 98.3 81.4 95.3 89.4 98.3

Class 2 - Fog 66.7 52.3 96.7 58.6 71.1 52.3

Class 3 - Mist 60.5 42.4 98.2 49.9 64.5 42.4

Class 4 - Drizzle 66.2 68.1 97.5 67.1 81.5 68.1

Class 5 - Light Rain 70.9 68.8 98.8 69.8 82.5 68.8

Class 6 - Moderate Rain 81.5 75.4 99.7 78.3 86.7 75.4

Class 7 - Heavy Rain 83.6 35.0 100 49.3 59.2 35.0

Class 8 - Excessive Rain NA 0 100 NA 0 0

in Fig. 6.1), thus making it very difficult to accurately train the classifier. If

the percentage of the classes in the train set was higher, the classification would

have worked better. This is one of the reasons that there is a separate field of

studies that focuses on those percentages alone, and developing methods that

can estimate those outliers better. It is important to point out that our data

set is extremely imbalanced. Those data sets are very rarely modeled correctly

and in the next step we will split the data set to two different case studies and

we will further apply multiple classification methods to try recuperate this issue.

The performance metrics for the model are also presented in Table 6.4 where we

additionally present the metrics per class. The accuracy of the first (No Rain)

class is very high, however the rest of the classes are poorly classified.

Random forests also allow us to estimate the relative importance of the differ-

ent predictors. This is based on the idea of surrogate splits which is common in

CART. The relative predictor importance for our data is shown in Fig. 6.6. The

most important predictors are those associated with the mechanisms that water
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Figure 6.5: Confusion matrix for the Random Forest constructed from the ERA5
data over the island of Crete for the year 2019. The rows indicate reanalysis values
from the test set while the columns correspond to predictions. The row entries
show how the predictions of the respective class are distributed among different
classes. The upper left table corresponds to the confusion matrix values. In the
upper right sub-matrix, the first column corresponds to the sensitivity (Acc+)
and the specificity (Acc-) values, while the second column to the FNR and FPR
(the miss rate per class). In the lower sub-matrix, the first row corresponds to
the Precision per class, while the second row to the FDR and FOR (the false
discovery and omission rates).
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evaporates from the earth into different layers in the atmosphere (total cloud, net

thermal, temperature and runoff.) In addition to the relative importance, the use

of surrogate splits allows the estimation of the association between the different

predictor variables. Higher values of association between two predictors imply

that including both variables in the predictor set may be redundant.

Figure 6.6: Graph of relative predictor importance for precipitation regression
using the Random Forest method. The following abbreviations are used. X, Y:
space coordinates, T: time. The rest as shown in the labels.

We split the entire data set to two different sets. We will call the first one the

“Binary” data set and the second one the “Only Rain” data set. The “Binary”

set characterizes all the values that fall below the set threshold (0.0508 mm/hr)

as ’No Rain’, which corresponds to the values of the first 3 classes presented in

Table 6.3, while the rest of the values are characterized as ’Rain’. The second

data set includes only the values above the threshold, meaning that the “Only

Rain” set includes only the values from the classes 4-8.
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The distribution of the precipitation data per class for the two new sets is

shown in the pie charts in Figs. 6.7a and 6.9a, while the histogram of the tempo-

ral distribution of the precipitation classes is shown in Figs. 6.7b and 6.9b. The

“Binary” set includes 569 400 hourly values, while the “Only Rain” set includes

72 523 values. For both data sets we apply multiple classification methodologies

and we present their classification measures in the Tables 6.5 and 6.6. We ad-

ditionally present the confusion matrix for the model that resulted in the best

performance according to the accuracy classification metric.

(a) Pie chart “Binary” 2019 (b) Histogram per month, “Binary” 2019

Figure 6.7: Pie chart and histogram of the temporal distribution of the two
different classes of precipitation for the “Binary” data set. The hourly values
correspond to a time period of one year spanning from 01-Jan-2019 00:00:00 to
31-Dec-2019 23:00:00. NR: No Rain corresponds to the values below the threshold
(0.0508 mm/hr); R: Rain corresponds to the values above the threshold.

6.5.1 “Binary” data set

In the case of the “Binary” data set (≈ 570 000 values per variable), the methods

used and their classification measures are presented in Table 6.5. Since we have

two classes, a completely random guess has a probability of success equal to 50%,

implying an 50% classification error. In order to decide which of the models is the

best we will list the models that resulted in the best and the second best value for

each metric. According to the precision metric, the best model is the Fine SVM

Cross-Validation 5 folds (99.0%), followed by the Bagged Ensemble Trees Cross-
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Validation 5 folds (98.9%). For the recall, the best model is the Bagged Ensemble

Trees Cross-Validation Holdout 30% (98.8%), followed by the Linear SVM Hold-

out 30% (98.4%). For the specificity (Acc-), the best model is the My Ensemble

RUSBoosted 500 Trees Holdout 50% (92.6%), followed by the same model with

1000 trees (92.5%). For this metric we see bigger differences between the models

starting from 34.7% with the Cubic SVM Cross-Validation 5 folds. According to

the F-measure, the best model is the Bagged Ensemble Trees Cross-Validation 5

folds and Holdout 30% (both at 98.0%), followed by the Bagged Ensemble Trees

Cross-Validation Holdout 30% (98.0%). For the G-mean values, the best model is

the Bagged Ensemble Trees Cross-Validation 5 folds (94.1%), followed by the My

Ensemble RUSBoosted 500 Trees Holdout 50% (93.6%). Similarly to the Acc-,

we observe big differences for the G-mean values between the models (minimum

56.3% for the Cubic SVM Cross-Validation 5 folds). Lastly, based on the ac-

curacy metric, the best model is the Bagged Ensemble Trees Cross-Validation 5

folds (96.5%), followed by the Bagged Ensemble Trees Holdout 30% (96.4%).

We will consider the Bagged Ensemble Trees Cross-Validation 5 folds as the

best model because it has the best classification measures according to 3 metrics

(F-measure, G-mean and accuracy) and the second best according to another

metric (Precision). As the second best model we will consider the model Bagged

Ensemble Trees Holdout 30% because it has the best metrics for Acc- and the

second best for F-measure and accuracy. From all the models tested, the best

models are those that utilize the random forests methodology.

The confusion matrix of the best model (Bagged Ensemble Trees Cross-Validation

5 folds) according to the accuracy measure (see Table 6.5) is shown in Fig. 6.8.

The accuracy of the model is 96.5%, which is definitely an improvement of the

50-50% classification accuracy by chance. In terms of the accuracy, all of the

models performed well. To evaluate the overall performance of the model, accu-

racy is a good starting point but the rest of the metrics have to be considered.

The sensitivity (TPR or Acc+ or Recall or sensitivity of single) value of 97.2%

means that out of all of the values that were actually NR (No Rain) tested as

NR. If we look at the specificity (TNR or Acc-) value of 91.1% we know that out

of all the samples that were R (Rain) actually tested as R. In general, when it

comes to sensitivity and specificity it is important to have a balance between the
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two values. In our model, we consider that the values are balanced. F-measure is

commonly used to evaluate how balanced is precision and recall because it takes

into account both in the calculation, however, in some cases if there is a need to

prioritize one over the other, the F-measure should also be weighted. G-mean also

provides insight into the classification performance. It is a measure that shows

how balanced is the classification performance regarding both the majority and

the minority class. Additionally, it is a indicator of the possibility of overfitting,

meaning that low G-mean indicates that the model “prefers” one class over the

other.

Figure 6.8: Confusion matrix for the Bagged Ensemble Trees Cross-Validation
5 folds model (Random Forest) constructed from the “Binary” data set for the
year of 2019 from the ERA5 data over the island of Crete. For a description of
the tables see caption in Fig. 6.5.
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(a) Pie chart “Only Rain” 2019 (b) Histogram per month, “Only Rain” 2019

Figure 6.9: Pie chart and histogram of the temporal distribution of the five
different classes of precipitation for the “Only Rain” data set. The hourly values
correspond to a time period of one year spanning from 01-Jan-2019 00:00:00 to
31-Dec-2019 23:00:00. All of the values are above threshold (0.0508 mm/hr); D:
Drizzle; LR: Light Rain; MR: Moderate Rain; HR: Heavy Rain; ER: Excessive
Rain.

6.5.2 “Only Rain” data set

In the case of the “Only Rain” data set (≈ 72 500 values per variable), the

methods used and their classification measures are presented in the Table 6.6.

Since we have five classes, a completely random guess has a probability of success

equal to 20%, implying an 80% classification error. In order to decide which of the

models is the best we will list the models that resulted in the best and the second

best value for each metric. The following metrics characterize the entire model

and not each class specifically. According to the precision, the recall and the

specificity metrics, the best model is the Bagged Ensemble Trees Cross-Validation

5 folds (62.7%, 52.2%, 93.1%), followed by the Fine SVM Cross-Validation 5 folds

(60.3%, 44.8%, 90.2%). For the F-measure and the G-mean values, the best model

is the Bagged Ensemble Trees Cross-Validation 5 folds (55.5%, 69.7%), followed

by the Cubic SVM Cross-Validation 5 folds (50.1%, 64.6%). Lastly, based on the

accuracy metric, the best model is the Bagged Ensemble Trees Cross-Validation

5 folds (80.0%), followed by the Fine SVM Cross-Validation 5 folds (73.8%).

Based on the total model classification measures, the best model is the Bagged
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Ensemble Trees Cross-Validation 5 folds because it has the best classification

measures according to all of the metrics. As the second best model we will

consider the model Fine SVM Cross-Validation 5 folds because it has the second

best metrics for four out of the six measures (precision, recall, specificity and

accuracy).

Specifically for the best model (Bagged Ensemble Trees Cross-Validation 5

folds), the performance metrics per class are shown in Table 6.6. We see that the

metrics for the class Drizzle are excellent, for Light Rain poor, for Moderate Rain

mediocre, while for Heavy and Excessive Rain the model greatly under-performs.

However, it should be emphasized that the percentages of the classes in the data

set are: Drizzle 53.2%, LR 30.8%, MR 15.3%, HR 0.7% and HR ≈ 0%. This means

that from the 53.2% of the Drizzle data, the model correctly classified the 91.7%

of that subset. Also for the 15.3% of the MR data, the model correctly classified

the 72.7% of that subset. This is not trivial considering that the percentage in

the entire data set is small enough that the model has difficulty to train. This is

more apparent in the cases of the HR and ER classes where the percentages in

the set are 0.7% and ≈0.

The confusion matrix of the best model (Bagged Ensemble Trees Cross-Validation

5 folds) according to the accuracy measure (see Table 6.6) is shown in Fig. 6.10.

The accuracy of the model is 80.0%, which is definitely an improvement of the

20% by chance. In terms of the accuracy, most of the models performed above

average.

What is interesting about the results in Table 6.6 is that while the performance

of the RUSBoosted is poor, it is the only model that accurately predicted the

Excessive Rain class (class 5). This is surprising since the rest of the classes

were highly misclassified, yet, the fact that it could predict precisely the only

two excessive rain occurrences is quite impressive and might imply that in co-

operation with another method (e.g., the bagged trees ensemble) the classification

metrics could improve even more.
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Figure 6.10: Confusion matrix for the Bagged Ensemble Trees Cross-Validation
5 folds model (Random Forest) constructed from the “Only Rain” data set for
the year of 2019 from the ERA5 data over the island of Crete. For a description
of the tables see caption in Fig. 6.5.

6.6 Conclusions

We analyzed the ERA5 hourly precipitation data using supervised machine learn-

ing methods. We investigated the correlation of the precipitation data with the

auxiliary variables (Table 3.1) and then we constructed various classification mod-

els for the estimation of missing precipitation values by utilizing the information

from the precipitation data as well as the predictor variables (auxiliary variables).

Random Forests performed best in both the data sets analyzed here. RFs extends

decision trees by introducing the idea of ensembles of trees (i.e., forests). This

ML method improves the accuracy and uncertainty of other simple decision tree

methods. RFs allow to incorporate auxiliary information into the spatial model

without excessive tuning, which makes the method suitable for even inexperienced
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users.

We explored the importance of the auxiliary variables over the response vari-

able. We show that some of the auxiliary variables can be eliminated due to low

(almost zero) importance and a subset of the auxiliary variables can be further

used as the predictor variables. This will result in a more compact, easier to in-

terpret model, while also reducing the training and estimation time. We defined

eight different precipitation classes. Our Random Forest model includes infor-

mation from both numerical and categorical variables. In order to improve the

classification results, we split the data into two different sets, the one containing

two classes divided by a specified threshold (the “Binary” data set) and the sec-

ond set containing the values above the threshold to the corresponding classes

(the “Only Rain” data set). In essence, in the “Binary” data set we classify the

occurrence of precipitation, while in the “Only Rain” data set we classify the

intensity of the precipitation events.

For the “Binary” data set, the Bagged Ensemble Trees Cross-Validation 5 folds

was evaluated as the best model. The accuracy of the model is 96.5%, which is

definitely an improvement of the 50-50% classification accuracy by chance. In

terms of the accuracy, all of the models performed well. The best RF model was

trained with five folds or with a training set containing 50%, or with a training set

containing 70% of the precipitation data and was validated with the remaining

50% and 30% of the data values for the “Binary” data set. Our findings are

promising, with classification error less than 2.8% for the first class and 9% for

the second class.

For the “Only Rain” data set, the Bagged Ensemble Trees Cross-Validation

5 folds was also evaluated as the best model. The accuracy of the model is

80.0%, which is definitely an improvement of the 20% by chance. Regarding

the “Only Rain” data set the model presented a subpar performance, resulting

to error for the first class less than 9%, however for the LR and MR classes

the errors are approximately 35% and 27% respectively. The last two classes

that represent a small portion of the entire data set return high classification

errors, demonstrating unsatisfactory model performance. Nevertheless, our belief

is that with more tuning or by combining multiple methodologies the results

can be further improved. The results drawn herein can prove useful, especially
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as a first step into removing and refining the variables needed for resulting in a

more accurate representation while modeling precipitation data. While combining

several classes together would have resulted in a more balanced data set and

probably in better classification metrics, this is not always applicable, especially

in cases when the classes’ effects are distinctive.

Lastly, it should be pointed out that despite the advantages and the ease of

use of machine learning methods such as Random Forests, insight from specialists

cannot be replaced. RFs can become a very powerful tool in the hands of experts.
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Table 6.5: Classification performance comparison on the hourly precipitation data
for the year of 2019 with the “Binary” data set. The measures are described in
Section 6.3.4. The predictor variable “month” is treated as categorical variable,
as well as the response variable. All of the models that do not specify the trees
used, use 30 learners. The optimal values are shown with bold lettering and italics,
while the second optimal values are shown with bold lettering. “failed:memory”
means that the specific method was tested but failed to finish due to memory
shortage.

Method Precision Acc+(Recall) Acc- F-measure G-mean Accuracy

Cross-Validation: 5 folds

Fine Tree 97.6 94.3 78.1 95.9 85.8 92.7

Medium Tree 96.8 93.9 72.4 95.3 82.4 91.7

Coarse Tree 93.9 94.8 60.9 94.4 76.0 90.2

Logistic Regression 97.9 92.6 76.7 95.2 84.3 91.4

Linear SVM 98.4 92.7 81.1 95.5 86.7 91.8

Quadratic SVM 98.7 93.6 85.6 96.1 89.5 92.9

Cubic SVM 88.4 91.3 34.7 89.8 56.3 82.5

Fine Gaussian SVM 99.0 94.9 90.1 96.9 92.4 94.4

Medium Gaussian SVM 98.8 93.9 87.7 96.3 90.8 93.4

Coarse Gaussian SVM 98.8 92.8 85.2 95.7 88.9 92.2

Boosted Ensemble Trees 97.9 94.7 81.5 96.3 87.9 93.4

Bagged Ensemble Trees 98.9 97.2 91.1 98.0 94.1 96.5

Ensemble RUSBoosted Trees 86.4 98.1 48.8 91.9 69.2 86.7

Holdout Validation set: 50%

My Ensemble RUSBoosted 1000 Trees 98.4 94.6 92.5 96.5 93.6 94.3

My Ensemble RUSBoosted 500 Trees 98.5 94.6 92.6 96.5 93.6 94.2

Holdout Validation set: 30%

Fine Tree failed:memory

Medium Tree failed:memory

Coarse Tree 94.7 94.3 64.1 94.5 77.7 90.4

Logistic Regression failed:memory

Linear SVM 92.7 98.4 47.2 95.5 68.1 91.9

Quadratic SVM failed:memory

Cubic SVM failed:memory

Fine Gaussian SVM failed:memory

Medium Gaussian SVM failed:memory

Coarse Gaussian SVM failed:memory

Boosted Ensemble Trees 94.7 98.0 62.2 96.3 78.1 93.4

Bagged Ensemble Trees 97.1 98.8 80.0 98.0 88.9 96.4

Ensemble RUSBoosted Trees 98.1 86.7 88.7 92.0 87.6 86.9

164



6. Space-time Modeling with Machine Learning Methods

Table 6.6: Classification performance comparison on the hourly precipitation
data that are higher than 0.05 mm/hr for the year of 2019. The measures are
described in Section 6.3.4. The predictor variable “month” is treated as categor-
ical variable, as well as the response variable. Five classification classes are used
and their ranges are presented in table 6.3 (Drizzle (4) to Excessive Rain (8)).
All of the models use 30 learners. The optimal values are shown with bold let-
tering and italics, while the second optimal values are shown with bold lettering.
“failed:memory” means that the specific method was tested but failed to finish
due to memory shortage. NA: not applicable; the respective measures involve
division by zero or by a very small number.

Method Precision Acc+(Recall) Acc- F-measure G-mean Accuracy

Cross-Validation: 5 folds

Fine Tree 45.6 35.7 87.9 37.6 56.0 64.7

Medium Tree 35.0 32.3 87.2 33.0 53.1 62.2

Coarse Tree 30.8 27.1 85.5 26.4 48.2 56.9

Linear SVM 36.4 32.3 86.7 33.2 52.9 63.8

Quadratic SVM 55.4 41.0 88.3 44.6 60.1 68.4

Cubic SVM 57.5 46.5 89.7 50.1 64.6 72.3

Fine Gaussian SVM 60.3 44.8 90.2 48.8 63.5 73.8

Medium Gaussian SVM 55.9 37.9 88.7 40.2 58.0 69.5

Coarse Gaussian SVM 38.2 31.7 86.6 32.8 52.4 64.1

Boosted Ensemble Trees 36.9 32.7 87.3 33.6 53.4 64.6

Bagged Ensemble Trees 62.7 52.2 93.1 55.5 69.7 80.0

Ensemble RUSBoosted Trees 22.8 40.0 81.0 20.0 56.9 37.3

Best model: Bagged Ensemble Trees

Class 1 - Drizzle 83.8 91.7 79.8 87.6 85.6 91.7

Class 2 - Light Rain 71.4 64.5 88.5 68.8 75.6 64.5

Class 3 - Moderate Rain 81.4 72.7 97.0 76.8 83.9 72.7

Class 4 - Heavy Rain 76.8 32.3 99.9 45.5 56.84 32.3

Class 5 - Excessive Rain 0 0 100 NA 0 0
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Chapter 7

Stochastic Local Interaction

Models

7.1 Summary

In this chapter, we discuss why more flexible and less demanding computational

approaches than standard geostatistical methods are needed (e.g., remote sens-

ing data availability). Then, we present a theoretical framework for the analysis

of space-time data based on stochastic local interaction (SLI) models. We ap-

ply the SLI method to three temporal data sets which involve hourly reanalysis

temperature, solar radiation on the horizontal plane, and precipitation data. Fur-

thermore, we apply the SLI method to two spatiotemporal data sets which involve

hourly reanalysis temperature and precipitation data. The nearest neighbor in-

terpolation is also applied to these data. Finally, we compare the methodologies

and we present our conclusions.

7.2 Introduction

In the current era, the availability of data is becoming more and more staggering.

The ways that the data are collected are numerous, including remote sensing,

extensions of the ground-based networks, sensors of unmanned aerial vehicles as

well as crowd-sourcing [Council et al., 2013]. This explosion in data availabil-
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ity has affected science and engineering, providing more information in many

cases than what is possible right now to be processed. Many theoretical and

technical challenges arise in the processing and modeling of such immense data

sets. Due to that, flexible and computationally powerful solutions are in need.

Most of the past developed methodologies are not functional for extremely big

and hyper-dimensional data. For instance, classical geostatistical and machine

learning methods [Chilès and Delfiner, 2012; Rasmussen and Williams, 2006] are

limited by the cubic dependence of the computational time on data size, which

is prohibitive even for large purely spatial data [Hristopulos and Agou, 2020].

State-of-the-art methods and better computational resources are integral for

processing and modeling, especially but not limited to space-time (ST) data. For

instance, correlations in the ST domain are often overlooked by methods that

extend the spatial statistics by merely adding a separable time dimension [Chris-

takos, 1992; Cressie andWikle, 2011]. Non-separable covariance models have been

developed for that reason [De Iaco et al., 2002; Kolovos et al., 2004; Varouchakis

and Hristopulos, 2019]. Additionally, many methods suffer from scalability is-

sues, regardless if they are derived from geostatistics [Chilès and Delfiner, 2012;

Cressie and Wikle, 2011; Gneiting et al., 2006] or machine learning [Rasmussen

and Williams, 2006]. The main origin of the problem is the computational cost

of the inversion of large covariance (Gram) matrices [Rasmussen and Williams,

2006; Sun et al., 2012]. Therefore, classical methods executed on standard desk-

top computers are limited to data sets with size N ∼ O(103) − O(104).
Gaussian field theories and Gaussian Markov random fields (GMRFs) are

both characterized by local structures which are derived from the derivatives of

the field [Mussardo, 2010] or the interactions created by local neighborhoods [Rue

and Held, 2005] accordingly. Similarly, the SLI models, which are inspired by the

aforementioned methods, are based on the creation of correlations generated by

interactions between neighboring sites and times.

In the following Sections 7.3-7.6 we present a theoretical framework for the

analysis of space-time (ST) data that is based on stochastic local interaction

(SLI) models [Hristopulos, 2015a; Hristopulos and Tsantili, 2017]. This formula-

tion can assist in filling missing values by interpolation in environmental ST data

sets. For example, gaps in records of meteorological variables need to be recon-
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structed to evaluate renewable energy potential at candidate sites [Koutroulis and

Kolokotsa, 2010], while ground-based rainfall gauge networks often have missing

data [Bárdossy and Pegram, 2014]. The main idea in SLI is that the ST cor-

relations are determined employing sparse precision matrices that only involve

couplings between near neighbors (in the ST domain). The advantage of SLI

against GMRF models is that it is suitable for direct application to scattered

data and stochastic graph processes, versus the need for regular lattice data de-

fined on continuum spaces [Hristopulos, 2015b; Hristopulos et al., 2021]. However,

it is also applicable to data on regular space-time lattices [Hristopulos and Agou,

2020].

The SLI models configuration captures the local spatial dependence thought

ideas from kernel regression [Nadaraya, 1964; Watson, 1964]. The correlations

between neighboring points are expressed in terms of suitably selected weighting

functions, supplied by kernel functions. In Section 7.3.2, additional information

about kernel functions can be found, as well as their corresponding equations

(Table 7.1).

Herein, we apply the SLI method to three temporal data sets and two ST data

sets. The temporal data sets involve reanalysis temperature, solar radiation on

horizontal plane, and precipitation data, while the ST data sets involve reanalysis

temperature data, and reanalysis precipitation data. Finally, we present our

conclusions and a brief discussion in Section 7.9.

7.3 ST Model based on Stochastic Local Inter-

actions

A space-time scalar random field (STRF) X(s, t;ω) ∈ R where s, t ∈ Rd×R and ω ∈
Ω is defined as a mapping from the probability space (Ω,A,P ) into the space of

real numbers R. For each ST coordinate (s, t), X(s, t;ω) is a measurable function

of ω, where ω is the state index [Christakos, 1992]. The states (realizations) of

the random field X(s, t;ω) are real-valued functions x(s, t) obtained for a specific

ω. In the following, the state index ω is dropped to simplify notation.

We focus on partially sampled realizations x = (x1, . . . , xN)⊺ of the random
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field, where N ∈ N is the sample size. The vector x comprises the field values

at the ST point set S = {(s1, t1), . . . , (sN , tN)}. The point set is assumed to be

general; it may represent a time sequence of lattice sites, randomly scattered

points in space and time, or a collection of time series at random locations in

space.

7.3.1 Energy of the exponential joint density

In the following we will present a simplified version of the initial proposed SLI

model in [Hristopulos, 2015b] that involved squared fluctuation and gradient

terms.

The SLI model is defined in terms of a Boltzmann-Gibbs exponential joint

PDF and the energy function H(⋅; ⋅) that represents the “cost” of a specific con-

figuration

fx(x;θ) =
e−H(x;θ)

Z(θ) , (7.1)

where θ is a vector of model parameters, and the denominator Z(θ) –known in

physics as the partition function– represents a normalization constant [Mussardo,

2010].

The energy-based approach is commonly used in statistical physics [Kardar,

2007; Mussardo, 2010]. Its main advantage is that it expresses statistical depen-

dence in terms of interactions between space locations and time instants which

can be local, without recourse to the concept of the covariance matrix. Depend-

ing on the form of the interactions involved in the energy, both Gaussian and

non-Gaussian probability density functions can be obtained. The most famous

example of non-Gaussian dependence is the magnetic Ising model [Ising, 1925]

which was introduced in spatial statistics by Besag [1974]. While non-Gaussian

models are definitely interesting, their Gaussian counterparts lead to explicit pre-

dictive expressions and uncertainty estimates based on the conditional variance.

Hence, herein we focus on a Gaussian SLI model [Hristopulos, 2020].

We assume thatH(x;θ) satisfies the following properties for any vector x ∈ RN

and N ∈ N:

1. Gaussianity: H(x;θ) is a quadratic function of the data vector x that can
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be expressed as

H(x;θ) = 1

2
(x −mx)⊺J(θ′)(x −mx), (7.2)

where mx = (mx;1, . . . ,mx;N)
⊺
is a vector of mean (trend) values such that

mx;,i = E [X(si, ti) ], where E [ ⋅ ] is the expectation operator. On the other

hand, J(θ′) is the N × N precision matrix1. The latter depends on the

parameter vector θ′ = θ∖{b1, . . . , bK} which excludes the trend coefficients.

The vector mx incorporates both periodic and aperiodic trend components.

2. Positive-definiteness: H(x;θ) > 0 for all x that are not identically equal

to zero. This is equivalent to the precision matrix J(θ) being a positive-

definite matrix.

3. Sparseness: J(θ′) is a sparse matrix 2 that incorporates the local interac-

tions.

More specifically, we focus on the following SLI energy function for a ST

field with N data points which satisfies the properties of Gaussianity, positive-

definiteness and sparseness:

H(x;θ) = 1

2λ
[

N

∑
n=1

1

N
(xn −mx;n)2 + c1⟨ (x′n − x′k)2 ⟩] . (7.3)

We assume that the mean is modeled by means of a trend function which can

be expressed as mx(s, t) = ∑K
k=1 bkfk(s, t) in terms of a suitable ST function basis

{fk(s, t)}Kk=1, where {bk}Kk=1 is a set of real-valued trend coefficients and fk ∶ Rd ×
R→ R, for k = 1, . . . ,K.

The variables xn, xk stand for x(sn, tn) and x(sk, tk) respectively, where n, k =
1, . . .N while x′n, x′k represent the residuals after the trend values are removed.

The term ⟨ (x′n − x′k)2 ⟩ represents a kernel weighted average of the squared in-

crements. However, instead of focusing on all O(N2) pairs, the average defined

1The precision matrix J(θ′) is the inverse covariance.
2A sparse matrix is a specific type of matrix in which the proportion of zero entries to

non-zero entries is significantly larger.
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below selects only pairs within a local neighborhood around each point sn (sN , tN

in the ST domain).

The SLI parameter vector θ includes the trend coefficients {bk}Kk=1, the overall
scale parameter λ (which is proportional to the variance), and the increment coef-

ficient c1 (a dimensionless factor that multiplies the contribution from the squares

of the increments). The vector θ includes additional parameters that determine

the local ST neighborhoods used in the average of the squared increments ⟨⋅⟩.
The average is defined in Eq. (7.4) below.

7.3.2 Kernel-based averaging

The weights in the average of the squared increments are defined by means of the

Nadaraya-Watson equation [Nadaraya, 1964; Watson, 1964], i.e.,

⟨(x′n − x′k)2⟩ =
∑N

n=1∑N
k=1wn,k (x′n − x′k)2

∑N
n=1∑N

k=1wn,k

. (7.4)

The coefficients wn,k are defined in terms of compactly supported ST kernel

functions K(⋅, ⋅) ∶ Rq × Rq → R, where q = d + 1 for an ST kernel, q = d for a

spatial kernel, and q = 1 for a temporal kernel. Kernel functions are symmetric,

real-valued functions; herein they are assumed to take values in the interval [0,1]
without loss of generality. Moreover, we will assume spatially homogeneous and

temporally stationary kernel functions, i.e., K(s1, s2) = K(s1 − s2), K(t1, t2) =
K(t1−t2), andK(s1, t1; s2, t2) =K(s1−s2, t1−t2). Furthermore, it will be assumed

for simplicity that the kernel function depends only on the magnitude of the ST

distance [Hristopulos and Agou, 2020].

In the case of the spatial model we omit the terms that corresponds to the

time dimension, while in the one dimensional case the variables xn, xk stand for

x(tn) and x(tk) respectively, where n, k = 1, . . .N correspond only to different

time steps for a specific location. Application of the method in two dimensional

data can be found in the work of Hristopulos et al. [2021].
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Kernel Functions

A kernel (weighting) function K (x,x∗n) is a non-negative function that assigns a

real value to any pair of points x and x∗n, where {x∗n}Nn=1 are the sample values.

For x,x∗n ∈ Rd let u = ∥x − x∗n∥/h represent the normalized distance, and h > 0. A
kernel function is (i) non-negative, i.e., K(u) ≥ 0 for all u; (ii) symmetric, i.e.,

K(−u) = K(u) for all u ∈ R0,+; (iii) maximized at u = 0; and (iv) a continuous

function of u [Hristopulos, 2020]. In addition, kernel functions can be normalized

so that their integral over the entire space equals one [Pavlides et al., 2022], this

property is relevant to our study, since we want to use it to replace the empirical

cumulative distribution function.

A list of common kernel functions is given in Table 7.1. The first seven func-

tions of the table (uniform, triangular, Epanechnikov, quartic, tricube, spheri-

cal, Cauchy) are compactly supported, while the last two functions (exponential,

Gaussian) are infinitely extended but integrable. The use of compactly supported

kernel functions leads to local predictors, while infinitely extended kernels allow

averaging over a larger part of the domain at the expense of increased computa-

tional cost [Hristopulos et al., 2021].

The standard Parzen–Rosenblatt kernel density estimator of the marginal

PDF of X (s;ω) based on the sample {x∗n}Nn=1 is given by

f̂
X
(x) =

N

∑
n=1

1

N h
K (x − x

∗
n

h
) , (7.5)

where K(⋅) is a kernel function (Table 7.1) and h is the bandwidth parameter

[Ghosh, 2017]. The range of the kernel, i.e., the bandwidth parameter, can be

estimated employing several techniques, such as the minimization of the mean

integrated square error (MISE) of the estimator (minimizing Eq. (7.5)), which

additionally provides an explicit equation for the PDF at every x ∈ R [Hristopulos,

2020]. An estimate of the empirical CDF is then obtained as follows

F̂
X
(x) =

N

∑
n=1

1

N h
K̃ (x − x

∗
n

h
) , (7.6)
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Table 7.1: List of common kernel functions. The normalized distance u is given
by u = ∥r∥/h where ∥r∥ = ∥x − x∗n∥ ≥ 0 denotes the Euclidean norm. ϑ(x) = 1 if
x ≥ 0 and ϑ(x) = 0 if x < 0 is the unit step function.

Name Equation (u ≥ 0)

Uniform K(u) = ϑ(1 − u)

Triangular K(u) = (1 − u)ϑ(1 − u)

Epanechnikov K(u) = (1 − u)2 ϑ(1 − u)

Quartic (biweight) K(u) = (1 − u2)2 ϑ(1 − u)

Tricube K(u) = (1 − u3)3 ϑ(1 − u)

Spherical K(u) = (1 − 1.5u + 0.5u3)ϑ(1 − u)

Truncated Cauchy K(u) = 1/(1 + u2)ϑ(1 − u)

Exponential K(u) = exp(−u)

Gaussian K(u) = exp(−u2)

where K̃(⋅) represents the kernel’s integral, i.e.,

K̃ (x − x
∗
n

h
) = ∫

x

−∞
dx′K (x

′ − x∗n
h
) . (7.7)

7.4 Definition of space-time distance

The space-time distance used in the kernel weights determines the structure of

correlations that we impose in the space-time domain. Both separable and non-

separable space-time metric distances are possible as discussed below [Hristopulos

and Agou, 2020].

Composite space-time distance: In this case the spatial and temporal coordi-

nates are intertwined in the distance metric. For example, the differential of the

space-time distance between two points using the Riemannian metric is

dq =
¿
ÁÁÀd+1
∑
i=1

d+1
∑
j=1

gi,jdz(i)dz(j), (7.8)
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where {gi,j}d+1i,j=1 are the elements of the metric tensor g, {dz(i)}di=1, are the differ-
entials of the spatial distance in the d orthogonal directions, and dz(d+1) is the

time differential [Christakos, 2017; Christakos et al., 2000].

In the Euclidean case the metric tensor g, is given by

gi,j = δi,j [1 + (α − 1) δi,d+1] , i, j = 1, . . . , d + 1, (7.9)

where α is a parameter that controls the contribution of the time lag in the

composite distance. The kernel coefficient based on the composite Euclidean

metric can be expressed as

wn,k =K
⎛
⎜
⎝

√
r2n,k + α2τ 2n,k

hs,n

⎞
⎟
⎠
. (7.10)

In Eq. (7.10), rn,k = (sn − sk) is the spatial lag between the initial point sn and

the target point sk, and hs,n is the local spatial bandwidth at sn. In addition,

τn,k = tn − tk is the temporal lag between the initial and target times. The

space-time distance for the composite metric leads to ellipsoidal neighborhoods

as shown in the schematic of Fig. 7.1a. The temporal bandwidth in this case is

ht,n = hs,n/α [Hristopulos and Agou, 2020].

Separable space-time distance: The coefficients wn,k for a separable space-time

neighborhood are defined as

wn,k =K (
∥rn,k∥
hs,n

) K (∣τn,k∣
ht,n

) , n, k = 1, . . . ,N. (7.11)

In the weight equation (Eq. (7.11)), hs,n is the local spatial bandwidth at sn and

ht,n is the temporal bandwidth. The space-time distance for the separable space-

time metric leads to cylindrical neighborhoods as shown in Fig. 7.1b.

7.4.1 Definition of bandwidths

For each ST point {(sn, tn)}Nn=1, the spatial bandwidth hs,n is determined from the

geometry of the sampling network around the spatial point sn, while the temporal

bandwidth ht,n is based on the time neighborhood around tn. In general, this
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means that the number of bandwidth parameters scales linearly with the sampling

size, leading to an under-determined estimation problem when the additional

parameters are accounted for.

To simplify the bandwidth estimation we use a trick that reduces the dimen-

sionality of the problem. We assign to each point a bandwidth which is propor-

tional to the spatial distance Dn,[Ks](S) between this point and its Ks-nearest

neighbor in the point set S. Thus, it holds that hs,n = µsDn,[Ks](S), where typ-

ically Ks = 2,3,4, and µs > 0 is a dimensionless spatial bandwidth parameter to

be estimated from the data.

In the case of the composite space-time distance the temporal bandwidths ht,n

are determined from the hs,n and the additional parameter α. For a separable

ST distance metric, the temporal bandwidths are determined by means of ht,n =
µt D̃n,[Kt](S), where Kt is the order of the temporal neighbor and µt > 0 is a

dimensionless temporal bandwidth parameter. This definition of the temporal

bandwidth in the case of uniform time step implies uniform bandwidths for all

except the initial and final times, where the bandwidth is automatically increased

to account for the missing left and right neighbors respectively.

7.4.2 Properties of kernel weights

The kernel-average of the squared increments (Eq. (7.4)) can be expressed in

terms of normalized weights un,k as follows

⟨(x′n − x′k)2 ⟩ =
N

∑
n=1

N

∑
k=1

un,k (x′n − x′k)2 , (7.12a)

un,k =
wn,k

∑N
n=1∑N

k=1wn,k

. (7.12b)

Normalization: The Eq. (7.12b) of the kernel weights implies that

N

∑
n=1

N

∑
k=1

un,k = 1. (7.13)

Asymmetry: The Eq. (7.12b) of the bandwidths is based on the local ST

neighborhood. This implies that the spatial weights are in general asymmetric,
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Space 

(a) Composite

Space 

(b) Separable

Figure 7.1: Schematics of kernel-based neighborhoods for composite (left) and
separable (right) space-time structures. Figure taken from Hristopulos and Agou
[2020].

i.e., wn,k ≠ wk,n if sn ≠ sk, since the sampling density around the point sn can be

quite different than around the point sk.

Non-separability: The kernel weights un,k are non-separable for both the com-

posite and the separable ST distance metrics. In the first case this is obvious

from the Eq. (7.10). In the second case, even though the wn,k are separable, the

normalized weights un,k are non-separable functions of space and time due to the

kernel summation in the denominator of Eq. (7.4).

Robustness with respect to general distance metrics: Regardless of the distance

metric used, the kernel-based weights un,k are non-negative. This implies that the

SLI energy function (Eq. (7.3)) is positive, and consequently the precision matrix

is positive definite. Hence, general distance metrics, e.g., Manhattan (also known

as city block and taxicab) distance, can be used in the SLI model.

In the following we develop the SLI formalism for a separable space-time

metric structure.
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7.4.3 Squared increments for separable space-time metric

In this section we formulate the average squared increments for separable space-

time kernel functions using matrix operations.

First, we define the square kernel matrices Ks of dimension Ns ×Ns and Kt

of dimension Nt ×Nt as follows

Ks =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

K ( ∥r1,1∥hs,1
) . . . K ( ∥r1,Ns∥

hs,1
)

⋮ ⋮ ⋮
K ( ∥rNs,1∥

hs,Ns
) . . . K ( ∥rNs,Ns∥

hs,Ns
)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, (7.14a)

Kt =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

K ( ∥τ1,1∥ht,1
) . . . K ( ∥τ1,Nt

∥
ht,1
)

⋮ ⋮ ⋮
K ( ∥τNt,1

∥
ht,Nt

) . . . K ( ∥τNt,Nt
∥

ht,Nt
)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

. (7.14b)

Then, the N × N matrix W of ST kernel weights is given by the following

Kronecker product (denoted by ⊗):

W =Ks ⊗Kt. (7.14c)

For compactly supported kernel functions the matrix W given by Eq. (7.14c) is

sparse (for data size bigger than the neighborhood size).

The matrix U of the normalized kernel weights is then defined by means of

U = W

∥W∥1
, (7.15a)

where the denominator ∥W∥1 represents the entry-wise L1 norm of the matrix

W and is given by

∥W∥1 =
N

∑
k=1

N

∑
l=1
∣Wk,l∣. (7.15b)

In terms of the above matrices, the average squared increment of Eq. (7.12)

is expressed as follows

⟨(x′n − x′k)2⟩ = ∥[(x′ ⊗ 1) − (x′ ⊗ 1)⊺] ○U ○ [(x′ ⊗ 1) − (x′ ⊗ 1)⊺]∥
1

(7.16)
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where 1 = (1, . . . ,1)⊺ is the N × 1 vector of ones, and ○ denotes the Hadamard

product, i.e., [A ○B]i,j = Ai,jBi,j.

The computational complexity of the operations in Eq. (7.16) is O(N2), if the
sparsity of the matrix W is not taken into account. However, the numerical com-

plexity can be improved using sparse-matrix operations [Hristopulos and Agou,

2020]. We have implemented all the calculations which involve the precision

matrix using sparse matrix functionality.

7.4.4 Precision matrix formulation

In light of the above definitions, the SLI energy function (Eq. (7.3)) involves the

following parameter vector

θ = (b1, . . . , bK , λ, c1, µs, µt,Ks,Kt)⊺ , (7.17)

where {bk}Kk=1 are the coefficients of the trend model, λ is the SLI scaling factor,

c1 is the square increment coefficient, µs, µt the dimensionless scaling factors used

to determine the bandwidths, and Ks,Kt are the orders of spatial and temporal

near neighbors respectively.

The SLI energy function (Eq. (7.3)) can be transformed into a quadratic

energy functional, i.e., of the form of Eq. (7.2), by defining the precision matrix

J(θ′) as follows

J(θ′) = 1

λ
{IN
N
+ c1 J1(h;θ′′)} , (7.18)

where IN is the N ×N identity matrix: [IN]i,j = 1 if i = j and [IN]i,j = 0 otherwise.
The precision matrix J(θ′) involves the parameter vector θ′ = (λ, c1, µs, µt,Ks,Kt)⊺.
The matrix J1(h;θ′′) is derived from the average squared increments (Eq. (7.12)),

and θ′′ = (µs, µt,Ks,Kt)⊺ is the parameter vector which determines the kernel

bandwidths. The matrix J1(h;θ′′) is expressed in terms of the normalized weights

un,k according to
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[J1(h;θ′′)]n,k = −un,k − uk,n + [IN]n,k
N

∑
l=1
(un,l + ul,n) , (7.19)

where the normalized weights un,k are given by Eq. (7.12b). Hence, the precision

matrix (Eq. (7.18)) is determined by the sampling pattern, the kernel functions,

and the bandwidths.

7.5 ST Prediction

In this section we consider ST prediction by means of the SLI model at the set

of space time points G = {s̃p}Pp=1, where s̃p = (s̃p, t̃p), assuming that the model

parameters are known. It is further assumed that the sets S and G are disjoint.

For example, the set G could comprise all the nodes of a regular map grid at a

time instant tp for which measurements are not available. Alternatively, G could

comprise all the nodes of an irregular spatial sampling network at a time instant

with no measurements.

7.5.1 SLI energy function including prediction set

The SLI energy function that incorporates the prediction sites is given by straight-

forward extension of Eq. (7.3). Thus, the following expression that involves block

vectors of sampling and prediction sites and respective precision block matrices

is obtained

H(x,xG;θ
∗) = 1

2
[ x′⊺ x′G ]

⎡⎢⎢⎢⎢⎣

JS,S JS,G

JG,S JG,G

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

x′

x′G

⎤⎥⎥⎥⎥⎦
, (7.20)

where x′ = x −mx is the detrended data vector, x′G = xG −mx is the fluctuation

vector at the prediction points, and θ∗ is the estimate of the parameter vector

based on the data. Let the sets A,B denote either of the disjoint sets S or G.

Then, the block precision matrices JA,B are expressed as

JA,B(θ′∗) =
1

λ
[c0I + c1J(1)A,B(θ

′′∗)] . (7.21)
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The block sub-matrices J
(1)
A,B are defined as follows:

[J(1)S,S]n,k = − un,k − uk,n, n, k = 1, . . . ,N, n ≠ k (7.22a)

[J(1)S,S]n,n =
N

∑
l=1≠n
(un,l + ul,n) +

P

∑
p=1
(un,p + up,n) , n = 1, . . . ,N, (7.22b)

[J(1)S,G]n,p = − un,p − up,n, n = 1, . . . ,N, p = 1, . . . P, (7.22c)

[J(1)G,S] =J(1)⊺S,G , (7.22d)

[J(1)G,G]p,q = − up,q − uq,p, p ≠ q = 1, . . . , P, (7.22e)

[J(1)G,G]p,p =
N

∑
l=1
(up,l + ul,p) +

P

∑
q≠p=1
(up,q + uq,p) , p = 1, . . . , P. (7.22f)

7.5.2 Prediction based on stationary point of the energy

The Boltzmann-Gibbs PDF of the field at the prediction sites conditional on the

data is given by exp [−H(x,xG;θ
∗)] /Z(θ∗). The prediction x̂G maximizes the

PDF, which is equivalent to minimizing the energy, i.e.,

x̂G = argmin
xG
H(x,xG;θ

∗). (7.23)

The SLI energy (Eq. (7.20)) can be further expressed in terms of the precision

matrix as follows

H(x,xG;θ
∗) = Hs(x;θ∗) +

1

2
(x′⊺GJG,Sx

′ + x′⊺JS,Gx
′
G + x′

⊺
GJG,Gx

′
G) ,

where Hs(x;θ∗) = x′⊺JS,S x′/2 depends only on the data and is thus irrelevant for

the prediction. The condition for a stationary point of the energy function is

∂H(x,xG;θ
∗)

∂x′p
= 0, for all s̃p ∈ G. (7.24)

The Hessian of the energy is ∇′∇′H(x,xG;θ
∗), where the prime denotes dif-

ferentiation with respect to x′. For the stationary point to represent a minimum of

the energy (and thus a maximum of the Boltzmann-Gibbs PDF),∇′∇′H(x,xG;θ
∗)

must be positive definite. From Eq. (7.24) it follows that ∇′∇′H(x,xG;θ
∗) = JG,G.
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Since the SLI precision matrix is positive definite by construction, so is the Hes-

sian as well.

Finally, the SLI prediction is given by the following equation

x̂G(θ∗∣x) =mx − J−1G,G(θ′
∗)JG,S(θ′∗)x′, (7.25)

where mx is the P × P diagonal trend matrix, i.e., [mx]p,q = δp,qmx(sp, tp) and
the precision matrices JG,G and JG,S are defined by means of Eq. (7.21) and

Eqs. (7.22c)–(7.22f).

Note that due to the matrix product J−1G,G JG,S and in light of Eq. (7.21) the SLI

prediction is independent of the scale parameter λ. This property is analogous

to the independence of the kriging prediction from the variance, since the latter

is proportional to λ.

7.5.3 Prediction intervals

Since the precision matrix of the SLI model is known, it is straightforward to

obtain the conditional variance at the prediction sites using the result known in

Markov random field theory [Rue and Held, 2005]. Hence,

σ2
SLI(s̃p) =

1

Jp,p(θ∗)
, s̃p ∈ G, (7.26)

where Jp,p(θ∗) is the p-th diagonal entry of the precision matrix JG,G which is

determined from Eqs. (7.21) and (7.22f).

Based on the above, prediction intervals at the site s̃p ∈ G can be constructed

as follows

[x̂p − zqσSLI(s̃p), x̂p + zqσSLI(s̃p)],

where 0 ≤ q ≤ 1 is a specified level (e.g., q = 0.95), and zq is the respective quantile

of the standard normal distribution.
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7.6 Parameter Estimation

We use Leave-one-out cross validation to estimate the SLI model parameter vector

Eq. (7.17). The orders of the spatial and temporal neighbors Ks and Kt are set

in advance to low integer values larger than one. This does not have a significant

impact on the results, since the bandwidth parameters µs, µt compensate for the

choice of the neighbor order [Hristopulos and Agou, 2020; Hristopulos et al., 2021].

The cost function optimized with respect to the parameters is the root mean

square error (RMSE) of the predictions. The latter are based on the SLI pre-

diction equation (7.25); for each sampling point the prediction is based on the

remaining N − 1 points. Hence, the RMSE is given by

RMSE(θ̃) =

¿
ÁÁÀ 1

N

N

∑
n=1
[x̂n(θ̃ ∣ x−n) − xn ]

2
, (7.27)

where x−n denotes the data vector x from which the point xn is removed. Note

that the dependence of the cost function on the bandwidth controlling parameters

µs and µt is highly nonlinear, due to the presence of the latter in kernel func-

tion sums both in the numerator and the denominator of the normalized kernel

weights (7.15a).

The optimal parameter vector θ̃
∗
is then determined by means of

θ̃
∗ = argmin

θ̃
RMSE(θ̃).

Finally, the value of the scale parameter is selected to set equal to the value

that maximizes the likelihood of the SLI model given the other parameters,

i.e., [Hristopulos, 2015a]

λ∗ = 2H(x;θ∗−λ)
N

, (7.28)

where

θ∗−λ = (mx
∗,1,Ks,Kt, µ

∗
s , µ

∗
t , c
∗
1)
⊺
.
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7.7 Application to Timeseries

The following section presents results based on the SLI algorithm to three tem-

poral data sets which involve temperature, solar radiation on horizontal plane,

and precipitation data from the ERA5 data set. We investigate SLI interpolation

and nearest neighbor (NN) interpolation for the reanalysis data (temperature in

degrees Celsius, solar irradiance in Watt per square meter, and precipitation in

mm) for every location of the grid on the island of Crete. For brevity we focus

on results from a representative node (see Fig. 3.1) located near the Messara

valley, which is the major agricultural area of Crete [Varouchakis and Hristopu-

los, 2013]. The coordinates (LAT, LON) of the test node in the World Geodetic

System (WGS 84) are 35○0’0.00”N and 25○0’0.00”E. Additionally, we present the

cross validation results of all the timeseries together in violin plots in order to

capture the variability for the entire investigation. Each one of the timeseries

corresponds to the hourly values across a year for one location.

In order to evaluate the models, we use partial timeseries from the ERA5 data

on the island of Crete. The scenario corresponds to a timeseries set where we

randomly remove 10% of the data with the restriction that after the removal the

missing values do not correspond to more than six continuous time steps. We use

2 535 timeseries for the wet season hourly values for the precipitation data (39

years (1980–2018) for 65 locations), with each of the series containing 3 931 for

the training set and 437 values for the validation set. We use 2 600 timeseries for

the entire season hourly values for the temperature data (40 years (1980–2019)

for 65 locations), with each of the series containing 7 884 for the training set and

876 values for the validation set. And lastly, we use 2 600 timeseries for the entire

season hourly values for the solar irradiance data (40 years (1980–2019) for 65

locations), with each of the series containing 7 884 for the training set and 876

values for the validation set.

7.7.1 Scenario analysis for the Test location

The entire data set used for the Scenario includes 4 368 hourly precipitation values

distributed through the wet period of the year 2008 (01-10-2008 00:00:00 to 31-

03-2009 23:00:00) at the test location, with missing values that add up to 437
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values. Respectively, for the temperature and the solar radiation data, the data

set includes 8 760 hourly values for the year 2008 (01-01-2008 00:00:00 to 31-12-

2008 23:00:00), with 876 missing values for each variable.

The scatter plot of the SLI predictions for the Scenario is shown in Fig. 7.2

and exhibits good agreement between the predictions and the data, especially

for the temperature and solar radiation variables. The histogram plots of the

predicted versus the sample values appear to be quite similar for both the SLI

and the NN, for all the variables. The cross validation measures are shown in

Table 7.2 and confirm that the interpolation performance for the SLI model is

better in most cases.

According to the validation results, SLI is a better method for filling the gaps

particularly for the temperature and the solar radiation data sets. Nevertheless,

for the nearest neighbor interpolation cases, the mean error for all the variables

is lower versus those calculated with the SLI, while for the precipitation data

Spearman’s coefficient is also higher for the nearest neighbor interpolation case.

It should be noted that the ME in all cases is a very small fraction of the variable’s

mean value, meaning that both predictors seem to be unbiased. Additionally, the

SLI method is superior to the NN interpolation because it gives an estimation of

the error variance and it allows variability on the kernel distances, overcoming

the problem of estimating consecutive missing values. This problem was encoun-

tered during the application of the NN interpolation, leading to estimation of

some and not all of the missing values. Thus, to avoid the estimation of NaN

correlation coefficients, their estimation is carried out from the values that had

finite estimations, resulting in potentially biased and higher values.

7.7.2 Results for the temporal data

In the following section we present the results for the entire investigation of

the SLI methodology for the precipitation, temperature and solar radiation data

for the complete grid. As mentioned previously, the collection of the results

corresponds to 2 535 timeseries for the precipitation data, and to 2 600 timeseries

for the temperature as well as the solar radiation data. The investigation was

performed with a training set that includes 90% of the data and the remaining

185



Application to Timeseries

(a) SLI method,
precipitation scatterplot

(b) SLI method,
temperature scatterplot

(c) SLI method,
solar scatterplot

(d) NN method,
precipitation scatterplot

(e) NN method,
temperature scatterplot

(f) NN method,
solar scatterplot

(g) CV precipitation
histograms

(h) CV temperature
histograms

(i) CV solar
histograms

Figure 7.2: Top: scatterplots for the SLI predictions versus the real values for pre-
cipitation (left), temperature (middle) and solar (right) data for the test location
in Crete. Middle: scatterplots for the nearest neighbor interpolation predictions
versus the real values for precipitation (left), temperature (middle) and solar
(right) data for the same location. Bottom: histograms for the real precipitation
(left), temperature (middle) and solar (right) values and both the SLI and nearest
neighbor interpolation predictions. All the data correspond to the test location
for the year 2008. For more information on the data see Section 7.7.1.
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LAT, LONG: 35○0’0.00”N, 25○0’0.00”E

SLI interpolation Nearest neighbor interpolation

Measure Precipitation Temperature Solar Radiation Precipitation Temperature Solar Radiation

ME 0.0031 0.0408 −0.9098 −0.0019 0.0222 −0.4323
MAE 0.0411 0.3975 27.2329 0.0469 0.6653 55.6723

MARE NA 0.0239 NA NA 0.0389 NA

RMSE 0.1468 0.5470 42.5869 0.1801 0.9174 86.5416

RMSRE NA 0.0352 NA NA 0.0569 NA

RP 0.8663 0.9967 0.9899 0.8029 0.9905 0.9497

RS 0.8899 0.9965 0.9482 0.9276 0.9903 0.9419

ErrMin −1.1892 −2.7662 −176.1218 −1.1654 −3.6342 −214.0267
ErrMax 0.8728 2.7159 212.1669 2.1720 3.0869 377.0311

Table 7.2: Cross validation (CV) interpolation performance for the ERA5 time-
series (precipitation, temperature and solar radiation data). The CV measures
are calculated by comparing the true variable values of each missing hour and
either the SLI predictions (2nd, 3rd and 4th column), or the nearest neighbor inter-
polation predictions (5th, 6th and 7th column). NA: not applicable; the respective
measures involve division by zero or by a very small number. Note: For the NN
interpolation, the RP and RS coefficients are calculated after the removal of a set
of NaN values obtained at locations with insufficient number of neighbors.

10% is used as the validation set as described in the previous section.

The results are presented in the form of violin plots per variable for the two

methods. The ME for the wet-season hourly precipitation (Figs. 7.3, and 7.4)

is comparable between the methods with smaller dispersion for the SLI method.

Additionally, MAE, RMSE and RS coefficient indicate better performance for the

SLI methodology both in terms of the mean value and their dispersion. Similar

results were obtained for the hourly temperature (Figs. 7.5 and 7.6). For the

hourly solar radiation (Figs. 7.7, and 7.8) the ME has greater dispersion with

higher median value in the case of NN method, while the rest of the measures

(MAE, RMSE, RP) have significant differences between the methodologies, indi-

cating superior performance with the SLI approach.
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(a) ME (b) MAE

Figure 7.3: SLI-1D vs NN LOO-CV mean error (ME) and mean absolute error
(MAE) for the wet-season ERA5 hourly precipitation data (1 October 00:00:00
to 31 March 23:00:00) for all the timeseries.

(a) RMSE (b) RP

Figure 7.4: SLI-1D vs NN LOO-CV root mean error error (RMSE) and the
Pearson correlation coefficient (RP) between the true and predicted values for
the wet-season ERA5 hourly precipitation data (1 October 00:00:00 to 31 March
23:00:00) for all the timeseries.
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(a) ME (b) MAE

Figure 7.5: SLI-1D vs NN LOO-CV mean error (ME) and mean absolute error
(MAE) for the entire-season ERA5 hourly temperature data (1 January 00:00:00
to 31 December 23:00:00) for all the timeseries.

(a) RMSE (b) RP

Figure 7.6: SLI-1D vs NN LOO-CV root mean error error (RMSE) and the
Pearson correlation coefficient (RP) between the true and predicted values for the
entire-season ERA5 hourly temperature data (1 January 00:00:00 to 31 December
23:00:00) for all the timeseries.
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(a) ME (b) MAE

Figure 7.7: SLI-1D vs Nearest Neighbor LOO-CV mean error (ME) and mean
absolute error (MAE) for the entire-season ERA5 hourly solar radiation on hori-
zontal plane data (1 January 00:00:00 to 31 December 23:00:00) for all the time-
series.

(a) RMSE (b) RP

Figure 7.8: SLI-1D vs NN LOO-CV root mean error error (RMSE) and the
Pearson correlation coefficient (RP) between the true and predicted values for the
entire-season ERA5 hourly solar radiation on horizontal plane data (1 January
00:00:00 to 31 December 23:00:00) for all the timeseries.
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7.8 Application to ST Data

7.8.1 Hourly precipitation reanalysis data

We investigate SLI-based interpolation for reanalysis ST hourly precipitation data

(mm) in Crete. The data set includes 10 920 points that correspond to hourly

values for seven consecutive days (December 25-31, 2008) at the 65 nodes of the

spatial grid around the island of Crete (Greece) as shown in Fig. 3.1. The data

are displayed as time series in Fig. 7.9. Hristopulos and Agou [2020] offer a more

extensive analysis of the ST-SLI methodology with its application to synthetic

(simulated) data, reanalysis ST temperature data, and ozone measurements over

France.

Figure 7.9: Time series of precipitation (in mm) at the ERA5 grid sites shown in
Fig. 3.1. The hourly values correspond to a time period of seven days spanning
from 25 to 31 December of 2008.
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SLI parameter estimation using LOOCV

The optimal model parameters are estimated with LOOCV by minimizing the

RMSE between the estimations and the real values. The orders of the spatial

and temporal neighbors are set to Ks = Kt = 3. The initial guesses for the

SLI parameters and the parameter bounds are given in Table 7.3. The value of

the cost function for the optimal SLI parameters is ≈ 8.0793 × 10−2. The values

of the optimal SLI parameters are listed in Table 7.3. The precision matrix

has a sparsity index ≈ 0.027%, corresponding to 32 890 non-zero entries out of

119 246 400 entries.

mx λ µt µs

Initial values 0.1029 300 3 2.5

Lower bounds 0 1 2.2e−16 2.2e−16
Upper bounds 0.6134 1000 10 10

Based on LOOCV 0.1013 300.0007 0.9533 0.0806

Table 7.3: SLI parameters for the precipitation ST data (25–31 Dec, 2008) based
on LOOCV. The lower and upper bounds on the mean are based on x ∓ 2σx,
where x is the sample mean and σx is the sample standard deviation. We restrict
the LB value to zero since the is not possible to have negative precipitation.

SLI model performance

To test the performance of the estimated SLI model we use one-slice-out cross

validation: we remove and subsequently predict all the values for one time slice

using the sample values at the Nt − 1 remaining time slices. We repeat this

experiment by removing sequentially all the time slices, one at a time. The scatter

plot of the predictions (for all N points) versus the sample values (Fig. 7.10a)

as well as the histogram of the predictions versus the sample values (Fig. 7.10b)

demonstrate overall very good agreement between the two sets.

The validation measures presented in Table 7.4 indicate overall very good

performance of the SLI model with small bias ≈ −1.9579 × 10−5 and very good

correlation ≈ 0.95. The RMSE is ≈ 0.08.
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(a) Scatter plot (b) Histogram

Figure 7.10: (a): Scatter plot of the predictions versus the sample values for the
precipitation space-time data (25–31 Dec, 2008). (b): Histograms of the sample
(yellow) and SLI-predicted (purple) values.

ME MAE MARE RMSE RMSRE RP RS

−0.00002 0.0286 NA 0.0808 NA 0.9486 0.9412

Table 7.4: One-slice-out cross validation (CV) test of the SLI interpolation per-
formance for the ERA5 precipitation data (25–31 Dec, 2008). The CV measures
are calculated by comparing the true precipitation values of each hourly time slice
(from 1 to 168) and the SLI predictions that are based on the SLI model with the
LOOCV parameters reported in Table 7.3. The predictions are based on Nt − 1
time slices excluding the predicted slice.

7.8.2 Hourly temperature reanalysis data

The ST temperature data set includes 10 920 points that correspond to hourly

values for seven consecutive days (December 25–31, 2008) at the 65 nodes of the

spatial grid around the island of Crete (Greece) as shown in Fig. 3.1. The data

are displayed as time series in Fig. 7.11. The temperature data does not exhibit

temporal or spatial trend for the studied time period.

The SLI parameter estimation and the performance assessment are carried

out as in the precipitation data case study (Section 7.8.1). The parameter es-

timates for the temperature data are shown in Table 7.5. The precision matrix

has a sparsity index ≈ 0.034%, corresponding to 40 662 non-zero entries out of
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Figure 7.11: Time series of temperature (in degrees Celsius) at the ERA5 grid
sites shown in Fig. 3.1. Time period between the 25th and 31st of December of
2008.

119 246 400 entries.

The scatter plot of the predictions (for all N points) is shown in Fig. 7.12a and

exhibits good agreement between the predictions and the data. The histogram

plots of the predicted versus the sample values (Fig. 7.12b) also show very good

performance of the ST-SLI method. The cross validation measures (obtained by

sequentially removing each of the 168 hourly time slices) are shown in Table 7.6

and confirm the interpolation performance for the SLI model. The correlation

coefficients for the temperature data (≈ 100% correlation) are even higher than

the already high values for the precipitation case study (≈ 95% correlation).

Note that µs = 0.7099, which implies that the spatial bandwidth is small but

it is higher than the µs = 0.0806 for the precipitation data. Similar results we

see for the temporal correlation for the temperature data, with µt ≈ 0.7. On the
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mx λ µt µs

Initial values 12.016 300 3 2.5

Lower bounds 7.6647 1 2.2e−16 2.2e−16
Upper bounds 16.3670 1000 10 10

Based on LOOCV 12.0300 300.2732 0.6665 0.7099

Table 7.5: SLI model parameters for the ERA5 ST temperature data (25–31 Dec,
2008) based on LOOCV. The lower and upper bounds on the mean are based on
x ∓ 2σx, where x is the sample mean and σx is the sample standard deviation.

ME MAE MARE RMSE RMSRE RP RS

−0.0015 0.0984 0.0092 0.1647 0.0171 0.9972 0.9976

Table 7.6: One-slice-out cross validation (CV) test of the SLI interpolation per-
formance for the ERA5 temperature data (25–31 Dec, 2008). The CV measures
are calculated by comparing the true temperature values of each hourly time slice
(from 1 to 168) and the SLI predictions that are based on the SLI model with the
LOOCV parameters reported in Table 7.5. The predictions are based on Nt − 1
time slices excluding the predicted slice.
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(a) Scatter plot (b) Histogram

Figure 7.12: (a): Scatter plot of the predictions versus the sample values for the
temperature space-time data (25–31 Dec, 2008). (b): Histograms of the sample
(yellow) and SLI-predicted (purple) values.

other hand, µt ≈ 1 for the precipitation data set. This implies that the precip-

itation data for the case study display equal correlation in space and time, and

higher correlation in time than the temperature data. In essence, µt ≈ 0.7 and

Kt = 3 indicate that the temporal bandwidth is µt(Kt − 1)δt ≈ 1.4 hr (δt = 1

hour). This result implies that the SLI predictions are at most locations based

on the two temporal nearest neighbors (one forward and one backward). Re-

spectively, for µs ≈ 0.7 and Ks = 3 indicate that the temporal bandwidth is

µs(Ks − 1)δs ≈ 11.66(dimensionless) (δs = 8.33 normalized distance which corre-

sponds to 0.25°WGS). This result indicates that the SLI predictions are at most

locations based on the 11 nearest neighbors in space. We see this behavior because

for the specific area the differences in temperature are not happening extremely

fast resulting to values that oscillate smoothly during the day.

7.8.3 ST-SLI results for all the years

In the following section we present in violin plots the LOOCV measures for all the

years for the precipitation (Figs. 7.13, 7.14) and temperature (Figs. 7.15, 7.16)

data. The results were produced by performing the ST-SLI methodology for each

variable forty times (40 years in total: 1980–2019) for the time period between

the 25th and 31st of December of 2008.
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(a) ME (b) MAE

Figure 7.13: LOO-CV mean error (ME) and mean absolute error (MAE) for the
ERA5 hourly precipitation data (25–31 Dec) for all the years (1980–2019).

(a) RMSE (b) RP

Figure 7.14: LOO-CV root mean error error (RMSE) and the Pearson’s correla-
tion coefficient (RP) between the true and predicted values for the ERA5 hourly
precipitation data (25–31 Dec) for all the years (1980–2019).

The resulted validation measures from the ST-SLI are better in absolute values

than the SLI application in 1D. However, direct comparison between the 1-D and

the ST cases is not possible since the range of the values from the 1D cases

are greater than in the spatiotemporal cases (values from December only). This

applies for both the precipitation and the temperature data. It is impossible to

run in the testing computational environment (see configuration in Section 3.5)

a data set greater than 15 600 values, which would correspond to hourly values

for 10 days for the 65 node grid of Crete.
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(a) ME (b) MAE

Figure 7.15: LOO-CV mean error (ME) and mean absolute error (MAE) for the
ERA5 hourly temperature data (25–31 Dec) for all the years (1980–2019).

(a) RMSE (b) RP

Figure 7.16: LOO-CV root mean error error (RMSE) and the Pearson’s correla-
tion coefficient (RP) between the true and predicted values for the ERA5 hourly
temperature data (25–31 Dec) for all the years (1980–2019).

7.9 Discussion and Conclusions

Herein, we provide the application of the theoretical framework presented in [Hristop-

ulos and Agou, 2020], which describes ST model construction based on the expo-

nential Boltzmann-Gibbs joint probability density functions. The ST-SLI model

takes advantage of an energy function with local interactions, resulting in a sparse

structure on the precision matrix. Local interactions are implemented via com-

pactly supported kernel functions, which compensate for the lack of a structured
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lattice. However, the concept is also applicable to normal lattice data. In this

scenario, the SLI model is equivalent to a Gauss Markov random field with a

specified precision matrix structure. ST-SLI model extends the purely spatial SLI

model [Hristopulos, 2015a] into the spatio-temporal domain. To our knowledge,

this structure has never been used before in precipitation ST data. For environ-

mental ST data, the graph topology is determined from the data by LOOCV and

is not given a priori.

The sparse precision matrix enables the computationally efficient implemen-

tation of parameter estimation and prediction techniques. This is especially true

when the domain is irregular and the goal is to create a finer regular estima-

tion map. The computational savings arises from the fact that big and dense

covariance matrices are not required to be stored and inverted in SLI.

The optimization of the cost function was based on an interior point algorithm

that stops at local minima. The optimization algorithm for the cost function

is also capable of searching for the global minimum. From numerous previous

experiments [Hristopulos, 2015a; Hristopulos and Agou, 2020; Hristopulos et al.,

2021], the estimated parameters from the local minima of the cost function are

sufficient for interpolation purposes and many times identical to those derived if

the algorithm was run for global minimization.

In our investigation, for the temporal case studies which involve 2 535 time-

series for the precipitation and 2 600 timeseries for the temperature data, the

cross validation results (Table 7.2) for the SLI and the NN (Figs. 7.3-7.6) meth-

ods are comparable in terms of the ME. However, the rest of the measures (MAE,

RMSE, RS) demonstrate better performance for the SLI model. While for the

hourly solar radiation in 1D for the test location (Table 7.2) the ME is smaller

with the NN than with the SLI method, according to Figs. 7.7-7.8 that represent

the entire investigation period, the ME has greater dispersion in the case of NN

method. The rest of the measures (MAE, RMSE, RP) have significant differ-

ences between the methodologies, indicating superior performance with the SLI

approach.

In terms of prediction performance for the ST precipitation data, we have

shown (see Table 7.4) that the cross validation statistics indicate overall very

good performance of the SLI model with small bias ≈ −1.9579e−5 and very good
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correlation ≈ 0.95. The cross-validation measures for the ST temperature data

(obtained by sequentially removing each of the 168 hourly time slices) are shown

in Table 7.6 and confirm the high interpolation performance for the SLI model.

The correlation coefficients for the temperature data (≈ 100% correlation) are

even higher than the already high values for the precipitation case study (≈ 95%
correlation).

The performance comparisons of different methods concerning prediction per-

formance may change depending on the particular data set. In our opinion, the

results presented here indicate that SLI is a competitive method for interpolat-

ing temporal and spatiotemporal data. Further research can elaborate on the

performance of SLI relative to other methods.

The formulation presented here can be extended to multivariate random fields

by choosing the energy function appropriately. Additionally, there is a possibil-

ity of incorporating different spatial distance metrics in the kernel functions,

anisotropy, and periodicity (in space and in time). Furthermore, incorporation

of a trend model into the estimation with auxiliary correlated data may provide

important information. Extensions such as these may improve the performance

of the model but they will additionally increase the computational cost.
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Chapter 8

Conclusions

The main objective of this thesis is to provide various methodologies for space-

time modeling of potentially large and non-Gaussian space-time data sets. Cutting-

edge geostatistical and machine-learning techniques were employed to examine

meteorological data that do not follow commonly used parametric distributions.

The investigated approaches involve utilizing probabilistic techniques and algo-

rithms based on machine learning to examine non-Gaussian variables in terms of

their spatial, temporal, and spatiotemporal characteristics. To demonstrate the

validity of our methods, we have conducted experiments at various time scales

using 26 surface variables from the ERA5 reanalysis data sets for the island of

Crete, Greece.

The ERA5 data reanalysis data set is used for the first time for an extensive,

localized analysis of precipitation, temperature, and solar radiation for the island

of Crete, Greece in multiple time scales. Two drought indices are used for the

estimation of the drought characteristics for the study area. Specifically, we use

the ERA5 data for the estimation of the SPI and SPEI drought indices, at six

different time scales, and we compare the results in order to assess the effect

of warming trends on drought events. We additionally apply classical geosta-

tistical methodologies such as kriging and Nearest Neighbor interpolation, and

we compare their results with more novel approaches such as Gaussian Anamor-

phosis with Hermite polynomials coupled with Monte Carlo simulations and the

Stochastic Local Interaction models. In addition, we implement multiple classi-

fication problems using a set of 26 meteorological variables for the classification



of precipitation occurrence and intensity. In the following paragraphs we briefly

summarize the conclusions from each methodological approach.

The dry climate of Crete is verified by the estimation of the Standardized Pre-

cipitation Index (SPI) and the Standardized Potential Evapotranspiration Index

(SPEI) for various timescales. We analyze the indices for 1-, 3-, 6-, 9-, 12-, and

24-months, but we focus on the 3-months and 12-months timescales that indicate

short-term and long-term drought conditions respectively. We opted to use both

indices, because the SPI is recommended by the World Meteorological Organiza-

tion (WMO), it is widely used in Greece, and it does not need any other input

variable besides precipitation; on the other hand, the SPEI includes the potential

evapotranspiration (which is estimated based on the temperature data), and thus

it accounts for the effects of temperature changes.

Initially, we demonstrate that the eastern part of the island is more prone

to desertification than the north-western part. Based on the discrepancies be-

tween the indices, it is concluded that Heraklion is severely affected by the rising

temperature and the consequently increased evapotranspiration due to climate

change. This results approximately in 5% increase of drought events when the

temperature (SPEI) is considered. We identify multiple drought events in the en-

tire record (1979-2019) with the most severe events during the years 1990–1992,

2000–2002, and 2016–2019, however, the events both wet and dry tend to become

more severe and the indices start to differentiate in recent years for the whole is-

land. Additionally, we observe a noticeable increase in the frequency of drought

occurrences for all the locations after 2000. The good correlation between SPI

and SPEI for the early years of the study at different time scales imply that both

indices are well adjusted to the study area. However, the deviations present in the

recent decade suggest that a drought index which considers temperature is more

appropriate. Both indices provide valuable tools for monitoring and assessment

of the drought risks in the study area, they are easy to implement and interpret.

Combined with a basic understanding of the underlying climate of the region

under inspection they can enable the responsible agencies to formulate suitable

management plans.

Additionally, we model precipitation with geostatistical methodologies. We

propose the transformation of non-Gaussian variables, in our case monthly pre-
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cipitation, into Gaussian-distributed values by applying Gaussian Anamorphosis

with Hermite polynomials (GAH), to overcome the common problem of Gaus-

sian methods (e.g., kriging) to accurately represent the prediction variance. We

provide an extensive analysis of ten scenarios for the spatial interpolation (based

on Ordinary kriging) of monthly precipitation that use different methodological

configurations. The scenarios include the application or exclusion of GAH with

varying polynomial degrees, the utilization of either the exponential or Spartan

variogram models, and the incorporation or omission of Monte Carlo simulations.

We show that increasing the polynomial order improves the validation results

only slightly, while the incorporation of simulations leads to improved results

(compared to the cases without the simulations) only in some cases. The precip-

itation data sets used here do not follow the Gaussian distribution, and based on

our investigation they do not follow consistently any of the commonly used para-

metric distributions across different months. For non-parametric Gaussian Pro-

cesses transformations the anamorphosis function adjusts to the characteristics

of the data set at hand, providing higher flexibility than closed-form expressions.

In our investigations, we obtain comparable—but not improved–approximation

accuracy with GAH compared to Ordinary Kriging. The Spartan covariance

kernels are found to be more appropriate for the anamorphosis (without using

simulations), while the exponential kernel is found to be more suitable for the

scenarios that integrate the bootstrap simulations. We believe that GAH can

improve the interpolation results in non-Gaussian data, but further investigation

to other non-Gaussian data is needed.

We use several machine learning (ML) methods (fine, medium, and coarse

classification trees, linear, quadratic, cubic, fine Gaussian, medium Gaussian,

and coarse Gaussian Support Vector Machines, Boosted Ensemble trees, Bagged

Ensemble trees, and Ensemble RUSBoosted trees) to classify imbalanced precip-

itation ERA5 data. We use 26 variables (predictor variables) to help us classify

hourly precipitation data. We investigate the correlation of the precipitation data

with the auxiliary variables, and then we construct various classification models

for the estimation of missing precipitation values by utilizing the information

from the precipitation data as well as the predictor variables. We show that

some of the auxiliary variables can be eliminated due to low (almost zero) im-
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portance, and that a subset of the auxiliary variables is adequate for prediction.

This results in a more compact, easier to interpret model while also reducing the

training and estimation times.

We define eight different precipitation classes. However, because of their im-

balanced nature, we split the data into two different sets: one containing two

classes divided by a specified threshold (“Binary” data set), and another one

containing values above the threshold to the corresponding classes (“Only Rain”

data set). The models include information from both numerical and categorical

variables. Random Forests (RFs) perform best for both the data sets analyzed

here (“Binary” and “Only Rain”). RFs extend decision trees by introducing the

idea of ensembles of trees and improves the accuracy and uncertainty of other

simple decision tree methods. For the “Binary” data set, the Bagged Ensemble

Trees Cross-Validation 5 folds was evaluated as the best model. The accuracy

of the model is 96.5%, which is definitely an improvement over the 50-50% clas-

sification accuracy of random classification. In terms of the accuracy, all of the

models performed well. For the “Only Rain” data set, the Bagged Ensemble Trees

Cross-Validation 5 folds was also evaluated as the best model. The accuracy of

the model is 80.0%, which is definitely an improvement over the 20% expected if

the data were classified by chance. Our findings are promising especially for the

“Binary” data set. For the “Only Rain” data set a hybrid model might prove

more appropriate, since it is characterized by classes that occupy a very small

fraction of the entire set. The results drawn herein can prove useful, especially as

a first step towards removing and refining the variables needed for a more accu-

rate representation for modeling precipitation data while simultaneously reducing

the computational cost of the estimation.

Finally, we apply another ML method, i.e., the Stochastic Local Interaction

(SLI) model for the estimation of missing values in precipitation, temperature and

solar radiation data. The application of the SLI models avoid the inversion of the

covariance matrix needed in kriging methods, because they use local interactions

between neighboring sites (and times) to capture the correlations in the data

with the help of kernel functions. Additionally, the current implementation takes

advantage of sparse precision matrices that only involve couplings between near

neighbors, thus allowing computationally efficient parameter estimation and pre-
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diction procedures. In our investigations, the temporal case studies involve 2 535

time series for the precipitation and 2 600 time series for the temperature data.

The cross validation results for the SLI and the Nearest Neighbors (NN) methods

are comparable in terms of the ME. However, the rest of the validation measures

(MAE, RMSE, RS) show better performance for the SLI model. For the hourly

solar radiation data (2 600 timeseries) in one dimension, the ME shows more dis-

persion in the case of NN method, while the rest of the measures (MAE, RMSE,

RP) exhibit significant differences between the methodologies, indicating supe-

rior performance of the SLI approach overall. In terms of prediction performance

for the spatiotemporal precipitation and temperature data, the cross validation

statistics indicate overall very good performance of the SLI model with small bias

and excellent correlation (≈ 95% for precipitation and ≈ 100% for temperature).

In our opinion, the results indicate that SLI is a competitive method for interpo-

lating temporal and spatiotemporal data. Further research can elaborate on the

performance of SLI relative to other methods.

8.1 Future work

1. A future extension of the indices study, might include the estimation of

the PET values from other formulations such as the Penman-Monteith

equation [Allen et al., 1998], and the Hargreaves equation [Hargreaves and

Samani, 1982]. Furthermore, the use of the log-logistic distribution for the

SPEI calculation can be implemented, which is the recommended distribu-

tion by the creators of the SPEI [Begueŕıa et al., 2014]. Lastly, GAH (with

or without the KCDE [Pavlides et al., 2022]) can be implemented as the

first step of the data transformation to the Gaussian distribution in terms

of the estimation of drought indices. That way, the fitting to the gamma

or the Pearson distribution – which sometimes is inappropriate – can be

avoided.

2. For further research of the proposed methodology (GAH combined with

simulations and kriging methods) different directions can be followed. Ini-

tially, incorporating a trend function can filter out the effect of the altitude
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on precipitation. Alternatively or supplementary to that the omnidirec-

tional variogram can be substituted by the anisotropic variogram. Agou

et al. [2019] showed that the island of Crete is characterized by spatial pre-

cipitation patterns that differentiate from West to East and from North to

South. Those extreme patterns are not that prominent in the reanalysis

data. Another direction is to treat the entire data set in the space-time

continuum. In that case the distances have to be readjusted to take into

account the non-constant time step, and then the kernels have to be con-

structed in a way that they embody the spatiotemporal correlations. To

avoid the high computational cost of the covariance matrix inversion, the

stochastic local interaction model (SLI) [Hristopulos, 2020; Hristopulos and

Agou, 2020; Hristopulos et al., 2021] can be used instead of kriging. SLI em-

ploys sparse precision matrices to represent space-time correlations in such

a way that results in highly sparse matrices, resulting to less computational

stress. Another approach is to estimate the probability distribution of a

continuously-valued variable, such as precipitation amount, with a kernel-

based estimator (KCDE) like the one presented by Pavlides et al. [2021].

This technique avoids the disadvantages of a the step function (empirical

CDF) by using the kernel-based estimator which is a continuous function.

The KCDE method targets the CDF instead of the PDF [Harrold et al.,

2003; Mosthaf and Bárdossy, 2017; Sharma and Lall, 1999] and is presented

in their study by means of synthetic data sets and reanalysis precipitation

data from the Mediterranean island of Crete (Greece).

3. The construction of a hybrid model for the classification of the precipitation

data is a natural extension of the machine learning methods investigation.

4. The formulation presented here for the SLI models can be extended to

multivariate random fields by choosing the energy function appropriately.

Additionally, there is a possibility of incorporating different spacial distance

metrics in the kernel functions, anisotropy, and periodicity (in space and

in time), as well as trend model for the incorporation of information from

auxiliary variables. Extensions such as these may improve the performance

of the model but they will additionally increase the computational cost.
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Appendix A

A1 Probability distribution models

The theoretical PDFs of commonly used probability distributions for precipitation

data modeling are given by the following Eq. (A.1), and they include the Gaussian

(for comparison), the gamma (GAM), the Generalized Extreme Value (GEV),

the lognormal (LGN), the Weibull (WBL), the Pearson Type-III (P-III), and the

Pareto Type-II (P-II) models.

Gaussian: f(x;µ,σ2) = 1

σ
√
2π

e−
1
2
(x−µ

σ
)2 , (A.1a)

gamma: f(x; ξ, σ) = xξ−1e−
x
σ

σξΓ(ξ) , x > 0 and ξ, σ > 0, (A.1b)

GEV: f(x;µ,σ, ξ) = 1

σ
y(x)ξ+1 exp [−y(x)] , x ∈ S(ξ),

where y(x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

[1 + ξ (x − µ
σ
)]
−1/ξ

ξ ≠ 0,

exp(−x − µ
σ
) ξ = 0,

(A.1c)

lognormal: f(x;µ,σ) = 1

xσ
√
2π

exp{−(log x − µ)2
2σ2

} , x > 0, σ > 0 , (A.1d)
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Weibull: f(x;σ, ξ) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ξ

σ
(x
σ
)
ξ−1

e−(x/σ)
ξ

, x ≥ 0,

0, x < 0,
(A.1e)

Pearson Type-III: f(x;µ,σ, ξ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(x − c)α−1 e−(x−c)/β
βα Γ(α) , ξ > 0, c ≤ x < ∞,

1

σ
√
2π

e−
1
2
(x−µ

σ
)2 , ξ = 0, −∞ < x < ∞,

(c − x)α−1 e−(c−x)/β
βα Γ(α) , ξ < 0, −∞ < x ≤ c,

(A.1f)

Pareto Type-II: f(x;µ,σ, ξ) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ξ

σ
[1 + x − µ

σ
]
−(ξ+1)

, x ≥ µ,

0, x < µ .
(A.1g)

In the above expressions, µ ∈ R is the location parameter, σ > 0 is the scale param-

eter that controls the dispersion of the distribution, and ξ is a shape parameter.

Γ(⋅) is the gamma function, while the Pareto Type-II becomes the Lomax dis-

tribution for µ = 0 [Lomax, 1954]. Note that for ξ = 1, the gamma distribution

defaults to the exponential model.

For the GEV model, ξ determines the type (I, II, or III) of the distribution.

The Gumbel distribution (Type-I) is obtained for ξ = 0, the Fréchet distribu-

tion (Type-II) for ξ < 0, and the Reverse-Weibull distribution (Type-III) for

ξ > 0 [de Haan and Ferreira, 2010]. The support S(ξ) of the GEV distribution is

S(ξ) = [µ − σ/ξ,∞) for ξ > 0, S(ξ) = (−∞,∞) for ξ = 0, and S(ξ) = (−∞, µ − σ/ξ]
for ξ < 0. For ξ ∈ (−0.278,1) the GEV distribution is positively skewed; it has a

finite mean given by m = µ+ σ Γ(1−ξ)−1
ξ for ξ ≠ 0, and m = µ+ σγE for ξ = 0, where

γE ≈ 0.5772 is the Euler-Mascheroni constant [Scheuerer, 2014].

For the Pearson Type III distribution, α = 4/ξ2, β = 1
2σ∣ξ∣, and c = µ − 2σ/ξ.

Note that the P-III becomes the normal distribution for ξ = 0, the exponential
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when ξ = 2, and the reverse exponential when ξ = −2. Usually the case of ξ > 0 is

considered as the Pearson type III distribution [Hosking and Wallis, 1997].

The respective CDFs of the Gaussian, gamma, GEV, lognormal, Weibull,

Pearson type-III, and Pareto type-II models are given below:

Gaussian:F (x;µ,σ2) = 1

2
[1 + erf (x − µ

σ
√
2
)] (A.2a)

gamma:F (x; ξ, σ) =
x

∫
0

f(u; ξ, σ) du =
γ(ξ, xσ)
Γ(ξ) , (A.2b)

GEV: F (x;µ,σ, ξ) = exp [−y(x)] , x ∈ S(ξ), (A.2c)

lognormal:F (x;µ,σ) = 1

2
{1 + erf ( log x − µ

σ
√
2
)} , for x > 0, (A.2d)

Weibull:F (x;σ, ξ) = 1 − e−(x/σ)ξ , for x > 0 , (A.2e)

Pearson Type-III: F (x;µ,σ, ξ) =
x

∫
0

f(u;µ,σ, ξ) du =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

γ(α, x−cβ )
Γ(α) , ξ > 0, c ≤ x < ∞,

1

2
[1 + erf (x − µ

σ
√
2
)] , ξ = 0, −∞ < x < ∞,

1 −
γ(α, c−xβ )
Γ(α) , ξ < 0, −∞ < x ≤ c,

(A.2f)

Pareto Type-II: F (x;µ,σ, ξ) = 1 − [1 + (x − µ
σ
)]
−ξ
, for x ≥ µ. (A.2g)
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The function y(x) used in Eq. (A.2c), is defined in Eq. (A.1c), γ (ξ, ⋅) represents
the lower incomplete gamma function, and erf(⋅) is the error function [Abramowitz

et al., 1988]. For the gamma and lognormal distributions F (0; ⋅, ⋅) = 0, while for

the GEV finite CDF values are possible for x < 0. Since such values are not ac-

ceptable for precipitation amounts, one sets F (x < 0) = 0 [Scheuerer, 2014]. The

respective PDFs and CDFs are shown in Figs. A1 and A2 respectively.

Figure A1: PDF plots for the seven probability models [see Eq. (A.1)]. The
horizontal axis represents synthetic monthly precipitation amount (mm). The
parameters ξ, σ, µ for each model are defined with reference to Eq. (A.1).

A2 Normality tests

In order to define how different the under investigation data are from Gaussian

distributed data, various tests can be used. They are sorted into two main cat-
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Figure A2: CDF plots for the seven probability models [see Eq. (A.2)]. The
horizontal axis represents synthetic monthly precipitation amount (mm). The
parameters ξ, σ, µ for each model are defined with reference to Eq. (A.2).

egories: the visualization techniques, and the statistical inference (Hypothesis

Testing).

A2.1 Visualization techniques

Visualization techniques that are used to interpret the normality of a data set

include the histogram, the BoxPlot and the QQ plot.

• The histogram shows the frequency of a specific value to occur in the data

set. In a histogram the center (i.e., location) of the data, the spread (i.e.,

scale), the skewness, possible extreme values, and the mode values are

shown. In the case of a gaussian distribution, the mean, the median and the

mode values are the same. A supplementary line with the fitted Gaussian
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distribution with the sample’s mean and standard deviation values can be

overlaid on the same plot.

• The BoxPlot is more difficult to interpretation than the histogram, but in-

cludes 5 different values in one graph and can be used for multiple variables.

The values that a BoxPlot carries are the median (the central mark), the

25th and 75th percentiles (bottom and top edges of the box), the most ex-

treme values (where the horizontal lines (whiskers) extend), and the outliers

that fall outside the whiskers (the furthest marks ‘+’).

• Finally, the QQ plot is a graphical technique that carries information about

the quantiles of the sample data versus the theoretical quantile values from

a distribution (for normality tests, the Gaussian distribution). It also marks

with a different line type the first through the third quantiles of the data,

and the ends of the data. This visualization technique is more difficult to

understand totally, but the main idea is that the closer the quantiles of the

sample are to the straight line, the more confident we can be that the data

follows the Gaussian distribution. If the quantile values deviate in the tails,

a hypothesis test must be carried out.

Visualization techniques are easy and quick ways to detect if there is a need for

more complicated tests to be implemented, since in some cases the deviation of

a data set from the Normal distribution is so obvious to be detected.

A2.2 Statistical Testing

Several hypothesis testing approaches have been developed for testing whether

a sample comes from a specified distribution function. Some commonly used

tests include the Kolmogorov-Smirnov, Jarque-Bera, Lilliefors, Anderson-Darling,

Cramer Von-Mises, and Shapiro–Wilk goodness-of-fit tests.

• The Kolmogorov-Smirnov test (K-S) measures the difference between the

empirical cdf of the sample data and a specified theoretical distribution

function. The test statistic is defined as the least upper bound of the set

of those distances. One significant limitation of the K-S test is that the
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distribution must be properly defined; alternatively, if the location, scale,

and shape parameters are estimated from the data, the critical region of

the K-S test should be assessed by Monte Carlo simulation. [Clauset et al.,

2009].

• The Jarque-Bera test is a function of the measures of skewness and kurtosis

computed from the sample. It is very popular among econometricians and

performs well in comparison with some other tests for normality discussed in

the literature if the alternatives to normal distribution belong to the Pearson

family [Jarque and Bera, 1980, 1987; Thadewald and Büning, 2007].

• The Lilliefors test is closely related to the K-S test with the difference that

the mean and the variance of the distribution can be estimated from the

population and does not need to be pre-specified by the user [Lilliefors,

1967, 1969].

• The Anderson-Darling test and the Cramer Von-Mises test are also closely

related to the K-S test with a few refinements, and this is one of the reasons

that many practitioners opt for those over the original K-S test [Anderson

and Darling, 1952].

• When testing against the normal distribution, the Shapiro-Wilk test is the

most powerful test, however it is not appropriate for samples with many

identical values. It was originally designed for testing against the normal

distribution and cannot be used to test against other distributions, unlike

the KS test [Shapiro and Wilk, 1965].

The best hypothesis test depends on the specific case study. For example, for

a quick visual identification of the proximity of a sample or multiple samples to

the normal distribution, the use of a QQ plot or a BoxPlot respectively are more

applicable. For a deeper investigation the Shapiro-Wilk test is the more powerful

but can be used only against the normal distribution. For other distributions the

Anderson-Darling or the K-S test are more appropriate.
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B1 Summary Statistics of Precipitation

Table B1: Mean, median, minimum and maximum values (shown across rows)
of daily ERA5 precipitation statistics (shown across the columns) based on 7 472
daily values. Each daily statistic is based on the data at the 65 ERA5 grid nodes.
The values for CoV (coefficient of variation), Skew (skewness) and Kurt (kurtosis)
are dimensionless. All other values are measured in mm.

Mean Median Min Max Std CoV Skew Kurt

Mean 2.02 1.54 0.23 6.84 1.63 1.47 2.08 9.26

Median 0.40 0.15 5.93 0 2.26 0.50 1.24 1.75 5.76

Minimum 0 0 0 0 0 0.10 −0.80 1.53

Maximum 41.94 38.65 23.42 90.99 26.06 8.06 7.87 63.01



Summary Statistics of Precipitation

(a) Statistics measured in mm (b) Dimensionless statistics

Figure B1: Violin plots for the mean, median, minimum and maximum values
of daily ERA5 precipitation statistics based on 7 472 daily values. Each daily
statistic is based on the data at the 65 ERA5 grid nodes. The values for CoV
(coefficient of variation), Skew (skewness) and Kurt (kurtosis) are dimensionless.
All other values are measured in mm.

Table B2: Mean, median, minimum and maximum values (shown across rows) of
weekly ERA5 precipitation statistics (shown across the columns) based on 1 068
weekly values. Each weekly statistic is based on the data at the 65 ERA5 grid
nodes. The values for CoV (coefficient of variation), Skew (skewness) and Kurt
(kurtosis) are dimensionless. All other values are measured in mm.

Mean Median Min Max Std CoV Skew Kurt

Mean 14.19 12.41 3.88 35.66 7.90 0.78 1.09 4.32

Median 10.13 8.36 1.40 26.93 6.06 0.67 0.95 3.25

Minimum 8.51 10−4 0 0 0.01 2.23 10−3 0.17 −0.60 1.51

Maximum 76.71 68.76 45.49 241.82 65.77 4.35 6.77 50.67
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(a) Statistics measured in mm (b) Dimensionless statistics

Figure B2: Violin plots for the mean, median, minimum and maximum values of
weekly ERA5 precipitation statistics based on 1 068 weekly values. Each weekly
statistic is based on the data at the 65 ERA5 grid nodes. The values for CoV
(coefficient of variation), Skew (skewness) and Kurt (kurtosis) are dimensionless.
All other values are measured in mm.

Table B3: Mean, median, minimum and maximum values (shown across rows)
of annual ERA5 precipitation statistics (shown across the columns) based on 41
annual values. Each annual statistic is based on the data at the 65 ERA5 grid
nodes. The values for CoV (coefficient of variation), Skew (skewness) and Kurt
(kurtosis) are dimensionless. All other values are measured in mm.

Mean Median Min Max Std CoV Skew Kurt

Mean 367.49 338.83 205.53 758.60 125.42 0.34 0.97 3.48

Median 373.64 339.20 205.89 745.01 123.62 0.34 0.95 3.44

Minimum 219.38 203.23 100.81 422.57 61.24 0.23 0.57 2.41

Maximum 546.20 499.00 312.60 1192.15 197.37 0.51 1.54 5.15
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(a) Statistics measured in mm (b) Dimensionless statistics

Figure B3: Violin plots for the mean, median, minimum and maximum values
of annual ERA5 precipitation statistics based on 41 annual values. Each annual
statistic is based on the data at the 65 ERA5 grid nodes. The values for CoV
(coefficient of variation), Skew (skewness) and Kurt (kurtosis) are dimensionless.
All other values are measured in mm.
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Table B4: Number of times ∈ {0,1,2 . . . ,65} each parametric model is selected as
the optimal distribution for the daily, weekly, monthly and annual precipitation
amounts for the wet period (October to March) for the 65 ERA5 nodes around
Crete. Measures of fit: Akaike’s Information Criterion (AIC), the Bayesian In-
formation Criterion (BIC), AIC/BIC. Measures of fit for the optimal models are
boldfaced.

Model

Timescale
Daily Weekly Monthly Annual

beta 0/0 0/0 0/0 0/0

Nakagami 0/0 0/0 45/40 17/17

Weibull 0/0 0/0 14/12 4/4

gamma 0/0 1/1 4/4 16/16

GEV 0/0 0/0 0/0 0/0

Rayleigh 0/0 0/0 2/9 0/0

Rician 0/0 0/0 0/0 8/8

GP 65/65 58/50 0/0 0/0

logistic 0/0 0/0 0/0 4/4

t-scale 0/0 0/0 0/0 0/0

normal 0/0 0/0 0/0 0/0

log-logistic 0/0 0/0 0/0 2/2

lognornal 0/0 0/0 0/0 1/1

exponential 0/0 6/14 0/0 0/0

Birnbaum-Saunders 0/0 0/0 0/0 5/5

EV 0/0 0/0 0/0 0/0

inverse normal 0/0 0/0 0/0 8/8
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Table B5: Number of times each parametric model is selected as the optimal dis-
tribution for the daily (∈ {0,1,2 . . . ,7472} time steps), weekly (∈ {0,1,2 . . . ,1068}
time steps), monthly (∈ {0,1,2 . . . ,246} time steps) and annual (∈ {0,1,2 . . . ,41}
time steps) precipitation amounts for the wet period (October to March) for the
65 ERA5 nodes around Crete depending on the timestamp of each timescale.
Measures of fit: Akaike’s Information Criterion (AIC), the Bayesian Information
Criterion (BIC), AIC/BIC. Measures of fit for the optimal models are boldfaced.

Model

Timescale
Daily Weekly Monthly Annual

beta 18/12 1/0 0/0 0/0

Nakagami 645/637 63/59 8/8 0/0

Weibull 187/191 25/25 3/5 0/0

gamma 183/164 44/44 13/12 0/0

GEV 440/422 31/23 25/15 20/11

Rayleigh 45/135 20/64 1/5 0/0

Rician 7/6 4/5 0/0 0/0

GP 4602/3924 673/517 126/106 0/0

logistic 3/3 1/1 0/0 0/0

t-scale 202/202 1/0 0/0 0/0

normal 1/0 0/0 0/0 0/0

log-logistic 63/70 22/22 2/2 0/0

lognornal 69/79 12/14 3/3 0/0

exponential 593/1108 29/96 0/1 0/0

Birnbaum-Saunders 365/434 93/124 25/30 2/2

EV 0/2 1/2 0/0 0/0

inverse normal 59/83 48/72 40/59 19/28
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B2 Summary Statistics of Temperature

Table B6: Mean, median, minimum and maximum values (shown across rows) of
daily ERA5 temperature statistics (shown across the columns) based on 14 975
daily values. Each daily statistic is based on the data at the 65 ERA5 grid nodes.
The values for CoV (coefficient of variation), Skew (skewness) and Kurt (kurtosis)
are dimensionless. All other values are measured in °C.

Mean Median Min Max Std CoV Skew Kurt

Mean 18.62 18.79 15.93 20.40 1.01 0.06 −0.53 3.92

Median 18.22 18.37 15.56 19.96 0.99 0.05 −0.92 3.68

Minimum 4.09 4.24 −1.95 6.66 0.27 0.01 −2.49 1.57

Maximum 29.32 29.14 27.51 36.10 2.56 0.48 2.41 11.36

(a) Statistics measured in ° C (b) Dimensionless statistics

Figure B4: Violin plots for the mean, median, minimum and maximum values
of daily ERA5 temperature statistics based on 14 975 daily values. Each daily
statistic is based on the data at the 65 ERA5 grid nodes. The values for CoV
(coefficient of variation), Skew (skewness) and Kurt (kurtosis) are dimensionless.
All other values are measured in °C.
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Summary Statistics of Temperature

Table B7: Mean, median, minimum and maximum values (shown across rows) of
weekly ERA5 temperature statistics (shown across the columns) based on 2 140
weekly values. Each weekly statistic is based on the data at the 65 ERA5 grid
nodes. The values for CoV (coefficient of variation), Skew (skewness) and Kurt
(kurtosis) are dimensionless. All other values are measured in °C.

Mean Median Min Max Std CoV Skew Kurt

Mean 18.62 18.81 16.11 20.22 0.93 0.06 −0.56 4.23

Median 18.11 18.32 15.53 19.68 0.89 0.05 −1.05 3.81

Minimum 7.97 8.35 3.37 9.83 0.26 0.01 −2.11 1.57

Maximum 27.81 27.76 26.70 31.62 1.68 0.20 2.27 10.19

(a) Statistics measured in ° C (b) Dimensionless statistics

Figure B5: Violin plots for the mean, median, minimum and maximum values of
weekly ERA5 temperature statistics based on 2 140 weekly values. Each weekly
statistic is based on the data at the 65 ERA5 grid nodes. The values for CoV
(coefficient of variation), Skew (skewness) and Kurt (kurtosis) are dimensionless.
All other values are measured in °C.
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Table B8: Mean, median, minimum and maximum values (shown across rows)
of annual ERA5 temperature statistics (shown across the columns) based on 41
annual values. Each annual statistic is based on the data at the 65 ERA5 grid
nodes. The values for CoV (coefficient of variation), Skew (skewness) and Kurt
(kurtosis) are dimensionless. All other values are measured in °C.

Mean Median Min Max Std CoV Skew Kurt

Mean 18.62 18.81 16.28 19.52 0.71 0.04 −1.42 4.75

Median 18.1 18.76 16.23 19.48 0.71 0.04 −1.43 4.77

Minimum 17.77 19.98 15.42 18.60 0.61 0.03 −1.58 4.27

Maximum 19.69 19.93 17.54 20.52 0.86 0.05 −1.17 5.14

(a) Statistics measured in ° C (b) Dimensionless statistics

Figure B6: Violin plots for the mean, median, minimum and maximum values
of annual ERA5 temperature statistics based on 41 annual values. Each annual
statistic is based on the data at the 65 ERA5 grid nodes. The values for CoV
(coefficient of variation), Skew (skewness) and Kurt (kurtosis) are dimensionless.
All other values are measured in °C.
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Table B9: Number of times ∈ {0,1,2 . . . ,65} each parametric model is selected as
the optimal distribution for the daily, weekly, monthly and annual temperature
amounts for the full period (October to March) for the 65 ERA5 nodes around
Crete. Measures of fit: Akaike’s Information Criterion (AIC), the Bayesian In-
formation Criterion (BIC), AIC/BIC. Measures of fit for the optimal models are
boldfaced.

Model

Timescale
Daily Weekly Monthly Annual

beta 0/0 0/0 0/0 0/0

Nakagami 0/0 0/0 0/0 0/0

Weibull 0/0 0/0 0/0 0/0

gamma 0/0 0/0 0/0 0/0

GEV 65/65 62/62 0/0 0/0

Rayleigh 0/0 0/0 0/0 0/0

Rician 0/0 0/0 0/0 0/0

GP 0/0 3/3 65/65 49/44

logistic 0/0 0/0 0/0 0/0

t-scale 0/0 0/0 0/0 0/0

normal 0/0 0/0 0/0 0/0

log-logistic 0/0 0/0 0/0 0/0

lognornal 0/0 0/0 0/0 0/0

exponential 0/0 0/0 0/0 0/0

Birnbaum-Saunders 0/0 0/0 0/0 0/0

EV 0/0 0/0 0/0 0/0

inverse Gaussian 0/0 0/0 0/0 16/21
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Table B10: Number of times each parametric model is selected as the op-
timal distribution for the daily (∈ {0,1,2 . . . ,14975} time steps), weekly (∈
{0,1,2 . . . ,2140} time steps), monthly (∈ {0,1,2 . . . ,492} time steps) and annual
(∈ {0,1,2 . . . ,41} time steps) temperature amounts for the full period (January
to December) for the 65 ERA5 nodes around Crete depending on the timestamp
of each timescale. Measures of fit: Akaike’s Information Criterion (AIC), the
Bayesian Information Criterion (BIC), AIC/BIC. Measures of fit for the optimal
models are boldfaced.

Model

Timescale
Daily Weekly Monthly Annual

beta 0/0 0/0 0/0 0/0

Nakagami 35/36 2/3 1/1 0/0

Weibull 800/1086 68/106 13/17 0/0

gamma 20/21 4/4 1/1 0/0

GEV 3950/2717 543/396 114/88 34/26

Rayleigh 0/0 0/0 0/0 0/0

Rician 220/334 31/40 6/7 0/0

GP 6219/5958 957/917 229/226 2/2

logistic 505/635 60/86 11/15 0/0

t-scale 912/607 220/165 74/63 0/0

normal 2/2 0/0 0/0 0/0

log-logistic 486/809 62/107 11/22 0/0

lognornal 0/0 0/0 0/0 0/0

exponential 0/0 0/0 0/0 0/0

Birnbaum-Saunders 21/22 4/4 0/0 0/0

EV 1519/2282 149/251 22/38 5/13

inverse Gaussian 286/466 40/61 10/14 0/0
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Appendix C

Table C1: Mean, median, minimum and maximum values (shown across different
rows) of monthly ERA5 precipitation statistics (shown across the columns) based
on 246 monthly values for the dry months. Each monthly statistic is obtained
from the 65 values in the respective spatial layer. The values for CoV (coefficient
of variation), Skew (skewness) and Kurt (kurtosis) are dimensionless. All other
values are measured in mm.

Mean Median Min Max Std CoV Skew Kurt

Mean 8.59 6.92 1.89 26.61 5.84 1.10 1.62 6.18

Median 3.51 2.16 0.08 15.48 3.35 1.05 1.55 5.19

Minimum 0.02 0.00 0.00 0.14 0.03 0.22 −0.21 1.57

Maximum 78.23 73.49 35.65 179.92 31.33 2.74 5.15 33.80

Table C2: Optimal probability distribution fits for the monthly ERA5 precipita-
tion data. The models studied include the following: “GP”: Generalized Pareto,
“t-scale”: t-Scale location, and “GEV” refers to the Generalized Extreme Value
distribution.

April May June July August September

t-scale GP GP GEV GP GP



(a) Varios Dry GA false SSRF

(b) Varios Dry GA false Exponential

Figure C1: Spartan (top) and exponential (bottom) variogram fits of the monthly
ERA5 precipitation obtained from different spatial layers for the dry period (from
April till September). Each of the variograms is calculated based on 65 spatial
locations for 246 months (corresponding to 246 spatial layers for the dry period).
The precipitation values are used without the application of a normalizing trans-
form.
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(a) January (b) February (c) March

(d) April (e) May (f) June

(g) July (h) August (i) September

(j) October (k) November (l) December

Figure C2: Spartan variogram fit for the monthly ERA5 precipitation data set,
without any transformation imposed, presented separately for every month in a
variogram cloud plot. Detailed view of Fig. 5.6a and C1a.
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(a) January (b) February (c) March

(d) April (e) May (f) June

(g) July (h) August (i) September

(j) October (k) November (l) December

Figure C3: Exponential variogram fit for the monthly ERA5 precipitation data
set, without any transformation imposed, presented separately for every month
in a variogram cloud plot. Detailed view of Figs. 5.6b and C1b.

230



Appendix C

(a) Varios Dry GA true SSRF

(b) Vario Dry GA true Exponential

Figure C4: Spartan (top) and exponential (bottom) variogram cloud fits of the
monthly ERA5 precipitation obtained from different spatial layers for the dry
period (from April till September). Each of the variograms is calculated based on
65 spatial locations for 246 months (corresponding to 246 spatial layers for the
dry period). The normalized precipitation values are generated with the GAH
normalizing transform up to degree 20.
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(a) January (b) February (c) March

(d) April (e) May (f) June

(g) July (h) August (i) September

(j) October (k) November (l) December

Figure C5: Spartan variogram fit for the monthly ERA5 precipitation data set,
with GAH transformation with 20 hermite polynomials imposed, presented sep-
arately for every month in a variogram cloud plot. Detailed view of Fig. 5.7a
and C4a.
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(a) January (b) February (c) March

(d) April (e) May (f) June

(g) July (h) August (i) September

(j) October (k) November (l) December

Figure C6: Exponential variogram fit for the monthly ERA5 precipitation data
set, with GAH transformation with 20 hermite polynomials imposed, presented
separately for every month in a variogram cloud plot. Detailed view of Fig. 5.7b
and C4b.
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Table C3: This table presents the mean, median, minimum, maximum, and stan-
dard deviation values (shown across different rows) of the LOO-CV measures of
the OK with the exponential model on the monthly ERA5 precipitation (shown
across the columns) based on 246 wet monthly values coupled with 100 bootstrap
simulations. The precipitation values used are the monthly ERA5 precipitation
values and their summary measures are presented in Figs. 5.8-5.11 and correspond
to S1 to S4 with the WLS optimization method. All values, except Pearson’s (RP)
and Spearman’s (RS) correlation coefficients are in mm. Correlation coefficients
are dimensionless. Analytically the scenarios can be found in Table 5.1.

ME MAE RMSE RP RS ErrMin ErrMax

S1
Mean 1.04 6.82 9.62 0.91 0.92 −25.56 33.34

Median 0.89 6.41 8.90 0.93 0.93 −23.22 28.94

Minimum −0.37 0.41 0.58 0.71 0.65 −80.22 2.24

Maximum 4.60 19.15 27.20 0.98 0.98 −1.55 103.60

Std 0.77 3.33 4.57 0.05 0.05 13.30 17.36

S2
Mean 2.88 10.51 14.42 0.76 0.77 −24.17 45.17

Median 1.80 8.79 12.13 0.88 0.90 −25.06 36.48

Minimum −1.94 0.48 0.66 −0.63 −0.68 −95.30 2.07

Maximum 21.23 46.60 62.93 0.98 0.99 −1.89 231.59

Std 3.21 7.40 9.63 0.34 0.35 16.40 30.96

S3
Mean 1.15 6.89 9.70 0.91 0.91 −25.03 32.69

Median 0.93 6.45 8.93 0.93 0.93 −22.67 29.20

Minimum −0.50 0.41 0.59 0.66 0.58 −76.83 2.43

Maximum 5.41 18.81 27.05 0.98 0.98 −1.35 106.50

Std 0.90 3.37 4.62 0.05 0.06 12.86 17.72

S4
Mean −0.09 6.84 9.32 0.92 0.92 −21.78 30.52

Median −0.07 6.25 8.65 0.93 0.93 −20.07 26.86

Minimum −0.50 0.41 0.55 0.68 0.61 −62.70 2.12

Maximum 0.24 18.60 25.56 0.99 0.99 −1.10 95.72

Std 0.14 3.34 4.438 0.05 0.05 10.35 16.32
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V. Isham, editors, Statistical Methods for Spatio-Temporal Systems, volume

107, pages 151–175. Chapman & Hall, 2006.

B. A. Goldstein, E. C. Polley, and F. B. S. Briggs. Random forests for genetic

association studies. Statistical Applications in Genetics and Molecular Biology,

10(1), 2011. doi: 10.2202/1544-6115.1691.
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change scenarios for sweden based on statistical and dynamical downscaling of

monthly precipitation. Climate Research, 19(1):45–55, 2001.

Y. Hong and J. Gourley. Radar Hydrology: Principles, Models, and Applications.

CRC Press, 2015. doi: 10.1201/b17921.

J. R. M. Hosking and J. R. Wallis. Regional frequency analysis: an ap-

proach based on L-moments. Cambridge University Press, 1997. doi:

10.1017/CBO9780511529443. Appendix A.9.

A. Y. Hou, R. K. Kakar, S. Neeck, A. A. Azarbarzin, C. D. Kummerow, M. Ko-

jima, R. Oki, K. Nakamura, and T. Iguchi. The global precipitation measure-

ment mission. Bulletin of the American Meteorological Society, 95(5):701–722,

2014. doi: 10.1175/BAMS-D-13-00164.1.

D. T. Hristopulos. Spartan Gibbs random field models for geostatistical applica-

tions. SIAM Journal on Scientific Computing, 24(6):2125–2162, 2003.

D. T. Hristopulos. Covariance functions motivated by spatial random field models

with local interactions. Stochastic Environmental Research and Risk Assess-

ment, 29(3):739––754, 2015a.

D. T. Hristopulos. Stochastic local interaction (SLI) model: Bridging machine

learning and geostatistics. Computers and Geosciences, 85(Part B):26–37,

2015b.

D. T. Hristopulos. Random Fields for Spatial Data Modeling: A Primer for

Scientists and Engineers. Springer Netherlands, 2020. doi: 10.1007/978-94-

024-1918-4.

D. T. Hristopulos and V. D. Agou. Stochastic local interaction model with sparse

precision matrix for space-time interpolation. Spatial Statistics, 40:100403,

2020. doi: 10.1016/j.spasta.2019.100403.

252

http://dx.doi.org/10.1201/b17921
http://dx.doi.org/10.1017/CBO9780511529443
http://dx.doi.org/10.1017/CBO9780511529443
http://dx.doi.org/10.1175/BAMS-D-13-00164.1
http://dx.doi.org/10.1007/978-94-024-1918-4
http://dx.doi.org/10.1007/978-94-024-1918-4
http://dx.doi.org/10.1016/j.spasta.2019.100403


References

D. T. Hristopulos and S. N. Elogne. Analytical properties and covariance func-

tions for a new class of generalized gibbs random fields. IEEE Transactions on

Information Theory, 53(12):4667–4679, 2007.

D. T. Hristopulos and I. C. Tsantili. Space–time covariance functions based on

linear response theory and the turning bands method. Spatial Statistics, 22,

Part 2:321–337, 2017.

D. T. Hristopulos, A. Pavlides, V. D. Agou, and P. Gkafa. Stochastic local

interaction model: An alternative to kriging for massive datasets. Mathematical

Geosciences, 53:1907–1949, 2021. doi: 10.1007/s11004-021-09957-7.

Q. Hu, Z. Li, L. Wang, Y. Huang, Y. Wang, and L. Li. Rainfall spatial estimations:

A review from spatial interpolation to multi-source data merging. Water, 11

(579), 2019. ISSN 2073-4441. doi: 10.3390/w11030579.

C. Huntingford, E. S. Jeffers, M. B. Bonsall, H. M. Christensen, T. Lees, and

H. Yang. Machine learning and artificial intelligence to aid climate change

research and preparedness. Environmental Research Letters, 14(12):124007,

nov 2019. doi: 10.1088/1748-9326/ab4e55.

K. Imaoka, M. Kachi, H. Fujii, H. Murakami, M. Hori, A. Ono, T. Igarashi,

K. Nakagawa, T. Oki, Y. Honda, and H. Shimoda. Global change observation

mission (gcom) for monitoring carbon, water cycles, and climate change. Pro-

ceedings of the IEEE, 98(5):717–734, 2010. doi: 10.1109/JPROC.2009.2036869.

A. C. Imeson. Desertification Indicator System for Mediterranean Eu-

rope, 2023. URL https://esdac.jrc.ec.europa.eu/public_path/

shared_folder/projects/DIS4ME/indicator_descriptions/potential_

evapotranspiration.htm. Foundation for Sustainable Development (3D-EC).

A. V. Ines and J. W. Hansen. Bias correction of daily GCM rainfall for crop

simulation studies. Agricultural and Forest Meteorology, 138(1):44–53, 2006.

ISSN 0168-1923. doi: 10.1016/j.agrformet.2006.03.009.

Climate Change 2013: The Physical Science Basis. Contribution of Working

Group I to the Fifth Assessment Report of the Intergovernmental Panel on

253

http://dx.doi.org/10.1007/s11004-021-09957-7
http://dx.doi.org/10.3390/w11030579
http://dx.doi.org/10.1088/1748-9326/ab4e55
http://dx.doi.org/10.1109/JPROC.2009.2036869
https://esdac.jrc.ec.europa.eu/public_path/shared_folder/projects/DIS4ME/indicator_descriptions/potential_evapotranspiration.htm
https://esdac.jrc.ec.europa.eu/public_path/shared_folder/projects/DIS4ME/indicator_descriptions/potential_evapotranspiration.htm
https://esdac.jrc.ec.europa.eu/public_path/shared_folder/projects/DIS4ME/indicator_descriptions/potential_evapotranspiration.htm
http://dx.doi.org/10.1016/j.agrformet.2006.03.009


References

Climate Change, Cambridge, United Kingdom and New York, NY, USA,

2013. IPCC, Cambridge University Press. doi: 10.1017/CBO9781107415324.

[Stocker, T. F. and Qin, D. and Plattner, G.-K. and Tignor, M. and Allen,

S. K. and Boschung, J. and Nauels, A. and Xia, Y. and Bex, V. and Midgley,

P. M. (eds.)].

IPCC. Guidance on the use of data: What is a GCM?, 2015. URL http:

//www.ipcc-data.org.

IPCC. Global Warming of 1.5°C.An IPCC Special Report on the impacts of

global warming of 1.5°C above pre-industrial levels and related global green-

house gas emission pathways, in the context of strengthening the global response

to the threat of climate change, sustainable development, and efforts to erad-

icate poverty. Cambridge University Press, Cambridge, United Kingdom and

New York, NY, USA, 2018. doi: 10.1017/9781009157940. [Masson-Delmotte,
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Mickus, and R. Damaševičius. Breast cancer classification from ultrasound

images using probability-based optimal deep learning feature fusion. Sensors,

22(3), 2022. doi: 10.3390/s22030807.

C. M. Jarque and A. K. Bera. Efficient tests for normality, homoscedasticity and

serial independence of regression residuals. Economics Letters, 6(3):255–259,

1980. ISSN 0165-1765. doi: 10.1016/0165-1765(80)90024-5.

C. M. Jarque and A. K. Bera. A test for normality of observations and re-

gression residuals. International Statistical Review / Revue Internationale

de Statistique, 55(2):163–172, 1987. ISSN 03067734, 17515823. URL http:

//www.jstor.org/stable/1403192.

A. G. Journel. Fundamentals of geostatistics in five lessons. American Geophysical

Union, page 45, 1989.

A. G. Journel and C. J. Huijbregts. Mining Geostatistics. Blackburn Press, 2003.

ISBN 9781930665910.

S. Justin and W. Eric F. Projected changes in drought occurrence under fu-

ture global warming from multi-model, multi-scenario, IPCC AR4 simulations.

Climate Dynamics, 31:79–105, 2008.

S. Kant. Trend and variability of hourly intensity of rainfall over eastern and

northern part of uttar pradesh during 1969-2014. MAUSAM, 69(4):577––588,

2018. doi: 10.54302/mausam.v69i4.422.

M. Karamouz, K. Rasouli, and S. Nazif. Development of a hybrid index for

drought prediction: Case study. Journal of Hydrologic Engineering, 14(6):

617–627, 2009. doi: 10.1061/(ASCE)HE.1943-5584.0000022.

M. Kardar. Statistical Physics of Fields. Cambridge University Press, 2007.

D. Kavetski, G. Kuczera, and S. W. Franks. Bayesian analysis of input uncertainty

in hydrological modeling: 1. theory. Water Resources Research, 42(3), 2006.

doi: 10.1029/2005WR004368.

255

http://dx.doi.org/10.3390/s22030807
http://dx.doi.org/10.1016/0165-1765(80)90024-5
http://www.jstor.org/stable/1403192
http://www.jstor.org/stable/1403192
http://dx.doi.org/10.54302/mausam.v69i4.422
http://dx.doi.org/10.1061/(ASCE)HE.1943-5584.0000022
http://dx.doi.org/10.1029/2005WR004368


References

B. Kedem and L. S. Chiu. On the lognormality of rain rate. Proceedings of

the National Academy of Sciences, 84(4):901–905, 1987. ISSN 0027-8424. doi:

10.1073/pnas.84.4.901.

B. Kedem, L. S. Chiu, and G. R. North. Estimation of mean rain rate: Application

to satellite observations. Journal of Geophysical Research: Atmospheres, 95

(D2):1965–1972, 1990. doi: 10.1029/JD095iD02p01965.

C. A. Keller, M. J. Evans, J. N. Kutz, and S. Pawson. Machine learning and air

quality modeling. In 2017 IEEE International Conference on Big Data (Big

Data), pages 4570–4576, 2017. doi: 10.1109/BigData.2017.8258500.

J. A. Keyantash and J. A. Dracup. An Aggregate Drought Index: Assessing

drought severity based on fluctuations in the hydrologic cycle and surface water

storage. Water Resources, 40, 2004. W09304.

M. Kirkham. Chapter 28 - potential evapotranspiration. In M. Kirkham, editor,

Principles of Soil and Plant Water Relations (Second Edition), pages 501–514.

Academic Press, Boston, second edition edition, 2014. ISBN 978-0-12-420022-7.

doi: 10.1016/B978-0-12-420022-7.00028-8.

P. K. Kitanidis and R. W. Lane. Maximum likelihood parameter estimation of hy-

drologic spatial processes by the Gauss-Newton method. Journal of Hydrology,

79(1):53–71, 1985. ISSN 0022-1694. doi: 10.1016/0022-1694(85)90181-7.

J. Kittredge. Forest Influences: The Effects of Woody Vegetation on Climate, Wa-

ter, and Soil, with Applications to the Conservation of Water and the Control

of Floods and Erosion. American forestry series. McGraw-Hill Book Company,

1948. ISBN 9780486209425.

E. Kjellström, L. Bärring, D. Jacob, R. Jones, G. Lenderink, and C. Schär. Mod-

elling daily temperature extremes: recent climate and future changes over eu-

rope. Climatic Change, 81(Suppl 1):249–265, 2007.

F. N. Kogan. Droughts of the late 1980s in the united states as derived from noaa

polar-orbiting satellite data. Bulletin of the American Meteorology Society,

256

http://dx.doi.org/10.1073/pnas.84.4.901
http://dx.doi.org/10.1073/pnas.84.4.901
http://dx.doi.org/10.1029/JD095iD02p01965
http://dx.doi.org/10.1109/BigData.2017.8258500
http://dx.doi.org/10.1016/B978-0-12-420022-7.00028-8
http://dx.doi.org/10.1016/0022-1694(85)90181-7


References

76:655–668, 1995. URL https://journals.ametsoc.org/view/journals/

bams/76/5/1520-0477_1995_076_0655_dotlit_2_0_co_2.xml.

R. Kohavi. A study of cross-validation and bootstrap for accuracy estimation

and model selection. In Proceedings of the Fourteenth International Joint Con-

ference on Artificial Intelligence, volume 2, pages 1137–43, San Mateo, CA,

1995.

A. Kolovos, G. Christakos, D. Hristopulos, and M. L. Serre. Methods for gener-

ating non-separable spatiotemporal covariance models with potential environ-

mental applications. Advances in Water Resources, 27(8):815–830, 2004.

A. G. Koutroulis, A.-E. K. Vrohidou, and I. K. Tsanis. Spatiotemporal charac-

teristics of meteorological drought for the island of crete. Journal of Hydrom-

eteorology, 12(2):206–226, 2011. doi: 10.1175/2010JHM1252.1.

E. Koutroulis and D. Kolokotsa. Design optimization of desalination systems

power-supplied by PV and W/G energy sources. Desalination, 258(1-3):171–

181, 2010.

E. Koutroulis, G. Petrakis, V. Agou, A. Malisovas, D. Hristopulos, P. Partsineve-

los, A. Tripolitsiotis, N. Halouani, P. Ailliot, M. Boutigny, V. Monbet, D. Al-

lard, A. Cuzol, D. Kolokotsa, E. Varouchakis, K. Kokolakis, and S. Mertikas.

Site selection and system sizing of desalination plants powered with renewable

energy sources based on a web-gis platform. International Journal of Energy

Sector Management, 2021. doi: 10.1108/IJESM-04-2021-0018.

D. Koutsoyiannis. Statistics of extremes and estimation of extreme rainfall: II.

empirical investigation of long rainfall records. Hydrological Sciences Journal,

49(4):591–610, 2004. doi: 10.1623/hysj.49.4.591.54424.

R. S. Kovats, R. Valentini, L. M. Bouwer, E. Georgopoulou, D. Jacob, E. Martin,

M. Rounsevell, and J.-F. Soussana. Europe. In Climate Change 2014: Im-

pacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution

of Working Group II to the Fifth Assessment Report of the Intergovernmental

Panel on Climate Change, chapter 23, pages 1267–1326. Cambridge University

257

https://journals.ametsoc.org/view/journals/bams/76/5/1520-0477_1995_076_0655_dotlit_2_0_co_2.xml
https://journals.ametsoc.org/view/journals/bams/76/5/1520-0477_1995_076_0655_dotlit_2_0_co_2.xml
http://dx.doi.org/10.1175/2010JHM1252.1
http://dx.doi.org/10.1108/IJESM-04-2021-0018
http://dx.doi.org/10.1623/hysj.49.4.591.54424


References

Press, Cambridge, United Kingdom and New York, NY, USA, 2014. [Barros,

V. R., Field, C. B. and Dokken, D. J. and Mastrandrea, M. D. and Mach, K. J.

and Bilir, T. E. and Chatterjee, M. and Ebi, K. L. and Estrada, Y. O. and Gen-

ova, R. C. and Girma, B. and Kissel, E. S. and Levy, A. N. and MacCracken,

S. and Mastrandrea, P. R. and White, L. L. (eds.)].

D. G. Krige. A statistical approach to some basic mine valuation problems on

the Witwatersrand. Journal of the Chemical, Metallurgical and Mining Society

of South Africa, 52(6):119–139, 1951. doi: 10.2307/3006914.

M. Kubat, R. Holte, and S. Matwin. Learning when negative examples abound.

In M. van Someren and G. Widmer, editors, Machine Learning: ECML-97,

pages 146–153, Berlin, Heidelberg, 1997. Springer Berlin Heidelberg. ISBN

978-3-540-68708-5.

M. Kubat, R. C. Holte, and S. Matwin. Machine learning for the detection of oil

spills in satellite Radar images. Machine Learning, 30(2):195–215, 1998. doi:

10.1023/A:1007452223027.

C. Kummerow, W. Barnes, T. Kozu, J. Shiue, and J. Simpson. The

tropical rainfall measuring mission (trmm) sensor package. Journal

of Atmospheric and Oceanic Technology, 15(3):809–817, 1998. URL

https://journals.ametsoc.org/view/journals/atot/15/3/1520-0426_

1998_015_0809_ttrmmt_2_0_co_2.xml.

P. C. Kyriakidis and A. G. Journel. Geostatistical space–time models: a review.

Mathematical geology, 31:651–684, 1999.

M. N. Legasa, R. Manzanas, A. Calviño, and J. M. Gutiérrez. A posteriori random

forests for stochastic downscaling of precipitation by predicting probability

distributions. Water Resources Research, 58(4):e2021WR030272, 2022. doi:

10.1029/2021WR030272.

C. Li, V. P. Singh, and A. K. Mishra. Simulation of the entire range of daily

precipitation using a hybrid probability distribution. Water resources research,

48(3), 2012.

258

http://dx.doi.org/10.2307/3006914
http://dx.doi.org/10.1023/A:1007452223027
http://dx.doi.org/10.1023/A:1007452223027
https://journals.ametsoc.org/view/journals/atot/15/3/1520-0426_1998_015_0809_ttrmmt_2_0_co_2.xml
https://journals.ametsoc.org/view/journals/atot/15/3/1520-0426_1998_015_0809_ttrmmt_2_0_co_2.xml
http://dx.doi.org/10.1029/2021WR030272
http://dx.doi.org/10.1029/2021WR030272


References

H. Li, J. Sheffield, and E. F. Wood. Bias correction of monthly precipitation

and temperature fields from intergovernmental panel on climate change ar4

models using equidistant quantile matching. Journal of Geophysical Research:

Atmospheres, 115(D10), 2010. doi: 10.1029/2009JD012882.

M. Li and Q. Shao. An improved statistical approach to merge satellite rainfall

estimates and raingauge data. Journal of Hydrology, 385(1):51–64, 2010. ISSN

0022–1694. doi: 10.1016/j.jhydrol.2010.01.023.

Z. Li, F. Brissette, and J. Chen. Finding the most appropriate precipitation prob-

ability distribution for stochastic weather generation and hydrological mod-

elling in nordic watersheds. Hydrological Processes, 27(25):3718–3729, 2013.

doi: 10.1002/hyp.9499.

K. G. Liakos, P. Busato, D. Moshou, S. Pearson, and D. Bochtis. Machine

learning in agriculture: A review. Sensors, 18(8), 2018. ISSN 1424-8220. doi:

10.3390/s18082674.

G.-Y. Lien, E. Kalnay, T. Miyoshi, and G. J. Huffman. Statistical Properties

of Global Precipitation in the NCEP GFS Model and TMPA Observations

for Data Assimilation. Monthly Weather Review, 144(2):663–679, 2016. doi:

10.1175/MWR-D-15-0150.1.

H. W. Lilliefors. On the Kolmogorov-Smirnov test for normality with mean and

variance unknown. Journal of the American Statistical Association, 62(318):

399–402, 1967. doi: 10.1080/01621459.1967.10482916.

H. W. Lilliefors. On the Kolmogorov-Smirnov test for the exponential distribution

with mean unknown. Journal of the American Statistical Association, 64(325):

387–389, 1969. doi: 10.1080/01621459.1969.10500983.

K. S. Lomax. Business failures: Another example of the analysis of failure data.

Journal of the American Statistical Association, 49(268):847–852, 1954. doi:

10.1080/01621459.1954.10501239.
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T. Mosthaf and A. Bárdossy. Regionalizing nonparametric models of precipitation

amounts on different temporal scales. Hydrology and Earth System Sciences,

21(5):2463–2481, 2017. doi: 10.5194/hess-21-2463-2017.

K. P. Moustris, I. K. Larissi, P. T. Nastos, and A. G. Paliatsos. Precipitation

forecast using artificial neural networks in specific regions of Greece. Water

resources management, 25:1979–1993, 2011.

G. Mussardo. Statistical Field Theory. Oxford University Press, 2010.

E. A. Nadaraya. On estimating regression. Theory of Probability and its Appli-

cations, 9(1):141–142, 1964.

P. T. Nastos and C. S. Zerefos. Spatial and temporal variability of consecutive

dry and wet days in Greece. Atmospheric Research, 94(4):616–628, 2009. doi:

10.1016/j.atmosres.2009.03.009.

262

http://www.geos.ed.ac.uk/~gisteac/gis_book_abridged/
http://www.geos.ed.ac.uk/~gisteac/gis_book_abridged/
http://www.geos.ed.ac.uk/~gisteac/gis_book_abridged/
http://dx.doi.org/10.1109/ACCESS.2021.3074305
http://dx.doi.org/10.1029/2008WR007352
http://dx.doi.org/10.1016/j.jhydrol.2018.11.060
http://dx.doi.org/10.1016/j.jhydrol.2018.11.060
http://dx.doi.org/10.1002/joc.1913
http://dx.doi.org/10.1002/joc.1913
http://dx.doi.org/10.5194/hess-21-2463-2017
http://dx.doi.org/10.1016/j.atmosres.2009.03.009
http://dx.doi.org/10.1016/j.atmosres.2009.03.009


References

S. D. Nerantzaki and S. M. Papalexiou. Tails of extremes: Advancing a

graphical method and harnessing big data to assess precipitation extremes.

Advances in Water Resources, 134:103448, 2019. ISSN 0309-1708. doi:

10.1016/j.advwatres.2019.103448.

G. M. Nielson. A method for interpolating scattered data based upon a minimum

norm network. Mathematics of Computation, 40(161):253–271, 1983.

S. Niemeyer. New drought indices. Options Méditerranéennes. Série A:
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