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Abstract: This review discusses the links between the newly introduced concepts of digital twins and
more classical finite element modeling, reduced order models, parametric modeling, inverse analysis,
machine learning, and parameter identification. The purpose of this article is to demonstrate that
development, as almost always is the case, is based on previously developed tools that are currently
exploited since the technological tools for their implementation are available and the needs of their
usage appear. This fact has rarely been declared clearly in the available literature. The need for digital
twins in infrastructures arises due to the extreme loadings applied on energy-related infrastructure
and to the higher importance that fatigue effects have. Digital twins promise to provide reliable and
affordable models that accompany the structure throughout its whole lifetime, make fatigue and
degradation prediction more reliable, and support effective predictive maintenance schemes.

Keywords: digital twins; parametric modeling; analysis; industrial internet of things; big data; data
analytics; artificial intelligence; predictive maintenance; damage prediction

1. Introduction

The digital twin (DT) is the indistinguishable digital replica of an object, a physical
system, or a procedure for the simulation, prediction, and optimization of its performance.
DT fits, without a doubt, into modern technological and scientific developments. One
of the main characteristics of digital twin technology is its connectivity. Distributed,
online, low-cost sensors are being developed to support the internet of things (IoT); big
data are generated and transmitted through modern wireless networks (e.g., 5G); and
artificial intelligence (AI) and deep learning (DL) promise to accomplish complicated data-
processing tasks. On the other side, multi-physics computational mechanics modeling
reproduces physical reality with confidence. The resulting integrated system is a cyber-
physical entity. All these elements pave the way to the so-called Industry 4.0 revolution,
following stream power, electricity, and microchips.

‘Industry 4.0’ is the term currently used to describe the trend of digitalization and
data exchange in production lines. The emphasis is placed on the ‘digital factory’, where
the production is constantly supervised so that an updated and reliable model is available
at all times that allows for the study of possible scenarios, including predictions of the
remaining life for the predictive maintenance of equipment. Data collection and exchange
between physical and digital systems is facilitated through the ‘Internet of Things’ and the
availability of quick networks such as 5G.

Multi-physics simulation and data analytics support digital twins. The creation of
digital twins and their continuous updating based on the usage of big data of measurements
during the life of a system constitutes a natural continuation of scientific disciplines such
as modeling, parametric technical modeling, model and parameter identification, and
process or structural health monitoring. It is feasible due to the continuous development of
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computational techniques, large-scale optimization through classical or nature-inspired
methods, cheap sensors, and wireless data transfer (IoT and 5G). Looking at the techniques
used, one may recognize that digital twins are a balanced mixture of multi-physics models,
statistics, and artificial intelligence for the reconstruction of the natural reality through field
measurements on possibly simplified or reduced-order digital models. The existence of
data and a mechanism for model update and parameter identification are considered to
differentiate a DT from a classical engineering model [1].

The evaluation of the DT concept can be traced in several sources, among them the
references [2–6], which will be discussed later in this paper. Parametric computational
models and classical parameter identification problems were developed earlier, as described
in references [7–15].

The application of digital twin methodology on civil infrastructures is a current
research topic. Wind turbines or floating structures are exposed to unpredictable and
extreme loads. Therefore, their fatigue response and life prediction are challenging tasks
that can be resolved by digital twin technology. When used as a part of a hybrid energy
storage system, even more classical structures, such as hydropower facilities, are loaded
unpredictably and require more detailed study.

Applications on infrastructures are described in recent publications such as [16–25],
with an emphasis on extremely loaded structures such as lightweight steel structures and
wind turbines that are prone to fatigue [26,27].

The purpose of this paper is to facilitate an introduction to these new fields for people
with a classical computational mechanics background, through the review of recent digital
twin applications on infrastructure. The ways of connecting the introduced concepts of
digital twins with conventional parametric modeling, reverse engineering, and parameter
identification will be discussed. The paper focuses on the links between DT and classical
computational mechanics and does not aim to be a thorough review of the vast DT literature
and its applications in other areas.

2. Digital Twins as the Extension of the Parametric Simulation, Parameter
Identification, and Structural Health Monitoring

A digital twin can be defined as a representation of a physical model in a digital form
that can be adapted to provide reliable predictions of the response of the physical model in
a changing environment. A physical model can be a building, electromechanical equipment,
infrastructures, etc. The data collected concerning a structure’s design and operation are
significant for creating a DT. According to the Gemini Principles, the digital twin is the
digital representation of an element, process, or system in its physical environment [2].

The digital twin (DT) has been advertised as a standard model that incorporates
high-accuracy simulations of a structure, operational parameters (structural and SHM), and
maintenance data as well as historical operational data to capture the current state of the
physical twin, to conduct lifecycle management, and to estimate the safety, reliability, and
maintenance of the structure. It can be considered an extension of classical 3D CAD models
into models of higher dimensions, for example, a 5D model if time and measurements
were added.

DT was first introduced in the aerospace industry and currently appears in several
industries. A digital twin can be created, regardless of size, from individual elements
(components, pipelines, etc.) to complex processes and environments (plants, production
lines, wind farms, hydroelectric parks, etc.). The complexity depends on the information
capability of the infrastructure.

DT is part of modern technological and scientific developments. Low-cost sensors are
being developed to support IoT, big data are being generated and transferred via modern
wireless networks (5G), artificial intelligence and deep learning promise to perform complex
data processing tasks even on-site (edge computing), and multi-physics computational
techniques can reproduce the behavior of the physical model with high accuracy. This
integrated system with physical and digital properties is called Industry 4.0.
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The creation of a digital twin requires several elements, such as:

1. Sensors that record and collect data for the operational behaviors of the components
and processes (vibrations, temperature, pressure, etc.), along with their operating
environments (air temperature, humidity, etc.).

2. Communication networks providing secure, wireless, and reliable data transfer from
devices to the digital world.

3. Local preprocessing, in the case of the limited capacity of communication networks.
4. A digital platform that works as a modern database. It can collect and store enormous

data from a plant, and by combining these data, information can be generated for
data-driven decision-making techniques using, among others, advanced artificial
intelligence/machine-learning algorithms.

The most common applications of a digital twin are carried out for the following
two reasons:

1. Maintenance prediction: By gaining a holistic view of the operation and the perfor-
mance of the physical model, the user can detect the deviation in its operations. The
maintenance and the replacement of spare parts can be pre-scheduled to minimize
time and reduce failures. For manufacturers, predictive maintenance using digital
twins can provide new service-based revenue while helping to improve product
reliability. Examples are discussed in [17,23,27,28].

2. Process design and optimization: A digital footprint that collects sensor data from a
production line, as well as data from enterprise resource planning (ERP) systems, can
thoroughly analyze key performance indicators (KPIs), such as production rates and
data quantities that are practically “useless.” This helps diagnose the cause of any
inefficiencies and performance losses, thereby optimizing performance and reducing
wasteful information. Going a step further, historical data on equipment (operation
time and wear), processes, and the environment (e.g., temperatures and pressures) of
the production line can enable the prediction of a shutdown to improve production
scheduling. A review of DT in this direction, although relevant to construction
industry, lies out of the focus of this paper.

For structures and infrastructures, the prediction of fatigue and other degradation
effects is highly connected with the need for DTs. A prediction can be based exclusively
on statistic evaluation or data analytics of the big data collected through sensors during
the life of the structure or, preferably, by using parallel solid mechanical models, such
as the concepts of fracture or damage mechanics. Details and references are given
in Section 4.

3. Description of Methods and Tools

A digital twin can be based on a two-dimensional (2D) or three-dimensional (3D)
geometric entity for mechanical equipment or a building, up to a more sophisticated multi-
physics model that will represent an entire structure interacting with the environment and
its users throughout its lifecycle. It could even be a network of digital twins that would
supervise the operation of a whole system.

According to analyses, there are 5 ways to categorize a digital twin, as shown in
Figure 1.
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Figure 1. DT classification, based on information given in [3].

The first category concerns the collection of all the system information that is required
to create the digital twin, such as engineering drawings, the operation instruction of the
plant, etc. The second category contains the collection of historical data from a device to
create a digital path. This includes various sensor data from the device as well as recording
periods of maintenance or the occurrence of a fault. The third category collects the data
from all possible devices, which provides the possibility of collecting information that
would help in a statistical analysis of the data, such as the average failure time, the standard
deviation, which part fails more easily, etc.

In the second category, the hierarchy of digital twins is concerned as shown in Figure 2.
Firstly, the digital twin of a part is created for better capture of the physical, mechanical,
and electrical properties of a component depending on the operational conditions, e.g., a
structure under a thermal loading or an electronic circuit. Next, there is the digital twin
of the whole product, which consists of many pieces created in the previous stage and
studying how they interact with each other. The system twin is the highest and most
complex level of analysis, in which an integrated system of products that interact with each
other is modeled and can be studied and maintained in parallel by monitoring the operating
process through platforms to optimize efficiency and effectiveness. The last category, not
necessarily involved with the above or necessary in every application, concerns the digital
twin of a process and not a physical one [3].

In the third category, we have the digital twin depending on the use that is required
and how each implementation group’s categorization is formed. For example, Siemens
considers that, for applications in digital twin, there are 3 categories. The product category
focuses on individual products. The production category is about the representation of a
production process and is used to design processes that are robust and flexible, and finally,
the digital twin performance category brings together the operational data of a production
process to optimize performance [4].

Another case is that of XMPRO, where the digital twin reflects the current state of a
device. In this case, it is simply a dashboard, similar to the one used for supervisory control
and data acquisition (SCADA), and the digital twin is used to simulate possible scenarios,
utilize the data in it, and adjust the system accordingly [5].
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Figure 2. DT classification for parts and systems, based on information given in [3].

The application and the idea behind the digital twin are common but differ in im-
plementation, as shown in various application examples. The case of a machine and its
operation in a system differs from a production process or an economic digital twin.

The last categorization of a digital twin concerns its complexity. This complexity is
expressed in terms of autonomy, intelligence, learning, and fidelity. A scale of 1 to 5 is used,
where 5 refers to a digital twin that replaces a human being for certain mundane tasks. This
classification system is not easy to use as the digital twin is likely to be competent in one
category and not in others. However, these classifications will be improved in the future,
and this is due to the use of artificial intelligence that has the ability to be integrated on top
of the digital twin [6].

3.1. Digital Twin Definition and Relations to BIM, BLM, and PLM

A digital twin is a digital representation of a physical asset. It is used to help engineers
understand what is happening to a physical building or piece of infrastructure. In contrast
to the classical way of designing, the data and information accumulated through the design,
construction, and usage of a structure constitute its digital twin. The Gemini Principles
define a digital twin as “a realistic digital representation of assets, processes or systems in
the built or natural environment” [2].

Digital twins are adaptive and therefore provide reliable predictions within a changing
environment. They are in accordance with the current trend toward digitalization and have
a remarkable effect on business and markets. A schematic representation of the elements
that are used for a DT application on infrastructures is shown in Figure 3.
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Figure 3. Schematic representation of DT for infrastructures. Sensors collect data, possible EDGE
on-Site processing reduces the data that are transmitted to a central database, and finally users
evaluate the data and extract information from them.

Historically, DT is the evolution of building information modelling (BIM), building
lifecycle management (BLM), and product lifecycle management (PLM). Depending on the
maturity of DT, it may be restricted to a simple capture of reality, such as a photogrammetry
measurement of an existing building, to a fully autonomous system, such as the control
mechanism of a drone. The main tools required to create and operate a digital twin are
the following:

Computer-aided design (CAD) provides the tools to create a structured geometric
model of an entity, which is usually available for a new or well-documented structure. For
an existing structure with possible modifications, usage of terrestrial or even aerial laser or
photogrammetric scanners can be used [7]. The automatic creation of a CAD model is not
yet an easy task.

Computational mechanics offers tools for parametric simulation. In this way, it is
possible to generate a large amount of data from ideal experiments that can be used for
solving optimal design and inverse problems and for evaluating scenarios. The accuracy of
the model may be different in regions of particular interest, e.g., a 3D non-linear model in the
region where stress concentrates, failures, and other phenomena are expected, and whole
regions may be linked to the sub-structure technique and describe the mechanical behavior
macroscopically (see Figure 4). The existence of model(s) that support DT facilitates the
cognitive properties of the digital system. The result is characterized by some authors as a
cognitive digital twin (CDT) [29].
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Figure 4. Schematic representation of reduced order modelling for a concrete structure. (a) A reduced
model in which areas of interest near joints are modelled by detailed finite elements, and (b) a
full-scale model.

A dense large-scale model, which guarantees adequate accuracy and reliability of
results, may under certain conditions decrease drastically while maintaining reliability in
results. The concept of static and dynamic condensation is well-known in the linear analysis
of structures and has been extended to nonlinear systems. A schematic representation of
a reduced-order model applied on a reinforced frame is shown in Figure 4, where areas
of interest near joints can be modeled by using nonlinear detailed finite element models,
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while areas of less importance or less vulnerable to damages are modeled by simpler
beam elements.

Optimization is a necessary tool for achieving the best possible results in a problem
to be solved by optimizing the parameters of the problem. In addition to the classical
optimization methods, there are those inspired by nature that are very efficient (genetic
algorithms, particle swarm algorithms, etc.) as well as so-called loose soft computing tools
(neural networks and neuro-fuzzy inference).

The processing of data generated from experiments or numerical models by means
of neural networks has a long history in structural mechanics [28]. For example, moment-
rotation diagrams of semi-rigid bolted steel structure joints can be simplified and post-
processed by using artificial neural networks, which in turn create the desired DT of the
joint. See Figure 5 and [30].
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Finally, it underscores the rapid development of free available tools, such as the Python
programming language and its accompanying packages, for solving engineering, artificial
intelligence, and combinatorial optimization problems with the capabilities of parametric
simulation, parameter identification, use of neural networks, and deep learning.

3.2. Computational Mechanics Tools

Within the classical finite element analysis of large-scale models, the need for reduced
order models (ROM) has been studied. The classical tools are focused on linear static and dy-
namic problems, known as static condensation or Gyan reduction [8]. Modern approaches
deal with nonlinear problems. Provided that an accurate model exists, for example, a finite
element model of a high order, the reduction can be based on engineering arguments and
techniques, such as hierarchical modeling, macro-modeling, and domain decomposition, or
on mathematical tools, such as singular value decomposition (SVD) [9]. Conversely, data-
driven methods produce a reduced order model based on the input/output data that may
be collected from an experiment or measurements on a real structure. Data-driven methods
using data analytics or artificial intelligence are very popular within the DT community. In
both cases, the goal of model reduction is to provide a reliable substitute for the full-scale
model, by making the difference between the full-order model and reduced-order model
small under some appropriate norm.

Within the context of DT, the existence of ROM allows for quick, possibly real-time
implementation. The additional step of extracting local information at areas of interest
from the predictions of the reduced model is also of interest. Provided that a warning has
been sent by the DT model, one wants to examine a component in more detail, for example
by calculating stresses and stresses, to use results from a fracture and fatigue analysis
and proceed with the estimation of appeared damages. A schematic representation of the
concept is shown in Figure 6.
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Figure 6. Schematic representation of a DT that can be used for structural health monitoring and
fatigue prediction within the hydraulic network of a hydraulic energy storage facility (inspired by
information found in [31]).

3.3. Optimization and Data-Based Tools

Classical parameter identification is based on optimization or soft computing
tools [10–12]. In fact, the parametrized model provides predictions of the response
for every choice of the parameters. Provided that the parametrization is able to model
the expected damages, the parametrized results are compared with the measurements,
and the values of the parameters are updated. Responses of more than one loading can
be used together, fused, in order to enhance effectiveness. Moreover, the parameter
identification problem is generally ill-posed, in the sense that a multiplicity of solutions
and inefficient scaling arises [13]. Therefore, quite complicated regularization techniques
are needed in order to facilitate the usage of numerical optimization. For this reason,
the usage of machine learning and data-based techniques that address the identification
question on a reduced-order model or surrogate model is beneficial [14,32]. Another
promising approach is the usage of filtering, such as Kalman-type filters, for the solution
of parameter identification problems [10,15].

Processing big data and extracting knowledge or simple predictions is a challenging
task. Cooperation with experts and the usage of appropriate tools is a must. Google realized
savings of 40% on its own data centers using DeepMind. In mechanics, solid models can
assist the user in evaluating and understanding the data. For example, the blind evaluation
of data using neural networks (see, e.g., [33,34]) can be assisted with the knowledge of
the mechanical or mathematical model that governs the underlying relation, such as the
physics-informed neural networks (PINNs) developed for the solution of partial differential
equations arising in mechanics [35,36]. Similarly, a blind attempt to extract knowledge
within a digital twin system is facilitated by the usage of computational mechanics models
that create data for several possible scenarios, leading to model-assisted, cognitive digital
twins [29].

4. Overview of Recent Applications

The first recent digital twin application appeared in the field of mechanical engineer-
ing by General Electric and concerned the entire lifecycle of aircraft and engines. The
engineering sector in construction will present great challenges and needs in the future.
This company has paid a lot of attention to the field of digital twins with its applications in
remote process monitoring, which yields savings [28], in the transmission of electricity and
their units, and in many others that will be analyzed as applications in the work.
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Another ambitious project is Britain’s National Digital Twin in collaboration with the
University of Cambridge [2]. The project aims to digitize national infrastructure to enable
operations to be carried out that will save time and money and minimize problems in order
to provide better services for all. This process is the evolution of building information
modelling (BIM), building lifecycle management (BLM), and product lifecycle management
(PLM) systems.

Amongst the multitude of approaches to SHM, the digital twin model is gaining
increasing attention. This model is a digital reconstruction (the digital twin) of a real-
life asset (the physical twin) that, in contrast to other digital models, is frequently and
automatically updated using data sampled by a sensor network deployed on the latter [16].

Ye et al. [17] presented an exploratory study toward creating a digital twin of bridges
for structural health monitoring purposes. The research involved an interdisciplinary col-
laboration between the Cambridge Centre for Smart Infrastructure and Construction (CSIC)
and the Alan Turing Institute (ATI), using two monitored railway bridges in Staffordshire
UK as a case study. A synthesis of physics-based and data-driven analytical approaches
has been explored and investigated for extracting greater value of information from the
bridge SHM data.

Shim et al. [18] designed a new bridge maintenance system using a digital twin
model concept. According to different maintenance tasks, the inventory and information
requirements were investigated. The recorded responses from the sensors were used to
update the digital twin model. Based on the design of the maintenance system, a pilot
application at an existing cable-stayed bridge in Korea was conducted.

Jiang et al. [19] proposed a DT-driven framework for the fatigue lifecycle man-
agement of steel bridges. The primary contribution presented in this work is the in-
tegration of the three main components of fatigue prediction, maintenance, and in-
spection/monitoring, which clarify the flow and dependency among data and form a
dynamic closed-loop data stream between the virtual and physical spaces. The advan-
tage of this DT-driven framework is that it returns more accurate management strategy
results than existing frameworks do, indicating a further reduction in failure risks and
lifecycle costs.

Benzo et al. [20] presented a novel methodology for creating an operational digital twin
for large-scale structures based on drone inspection images. The digital twin was primarily
used as a virtualized representation of the structure, which was updated according to the
physical changes during the lifecycle of the structure. The methodology was demonstrated
on a wind turbine transition piece. A three-dimensional geometry reconstruction of a
transition piece as manufactured was created using a large number (>500) of RGB images
collected from a drone and/or several LiDAR scans. Comparing the reconstruction to the
original design identified and quantified geometric deviations and production tolerances.
An artificial intelligence algorithm was used to detect and classify paint defects/damages
from images. The detected and classified paint defects/damages were subsequently dig-
italized and mapped to the three-dimensional geometric reconstruction of the structure.
These developed functionalities allowed the digital twin of the structure to be updated with
manufacturing-induced geometric deviations and paint defects/damages using inspection
images at regular time intervals.

Rojas-Mercedes et al. [21] presented the development of seismic fragility curves for
a precast reinforced concrete bridge in the Dominican Republic, instrumented with a
structural health monitoring (SHM) system. In this research, the digital twin is used as a
response prediction tool that minimizes modeling uncertainty, significantly improving the
predicting capability of the model and the accuracy of the fragility curves. The digital twin
was used to perform a nonlinear incremental dynamic analysis (IDA) with selected ground
motions that were consistent with the seismic fault and site characteristics.

Rageh et al. [6] presented and examined the efficacy of a framework for automated
model calibration using a measured operational and ambient structural response for the
development of a precise digital twin of a physical structure. The guidelines provided in
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this research aim to assist in choosing the right model class for accurate response prediction.
The study used an in-service, double-track, riveted steel plate girder railway bridge as a
testbed for the proposed framework.

In the research of Fahim et al. [27], a 5G Next Generation Radio Access Network
(5G-NG-RAN) assisted the cloud-based digital twins’ framework to virtually monitor
wind turbines and form a predictive model for forecasting wind speed and predicting the
generated power of wind turbines.

Further recent applications on infrastructures, mainly bridges, can be found
in [22–25,37,38].

A schematic representation of a DT that can help predict fatigue in a hydropower plant
is shown in Figure 6. The whole hydraulic network that connects two reservoirs at different
levels and is used for storage of energy can be modelled by using classical one-dimensional
reduced models. If pressure deviations at a given point are considered to be high, a detailed
finite element model can be used to assist damage and fatigue prediction.

5. Technology Required for the Implementation of Digital Twins

The technology proposed is the creation of a simplified model for the whole in-
frastructure, which contains detailed data and 3D modeling for its critical elements.
Subsequently, its parameters are continuously updated using optimization techniques
or neural networks. The updated model will be used to support the fuller utilization of
the plant, the reduction of inactive time (shutdown), and the reduction of overall oper-
ating costs through the support of preventive maintenance. The system is close to the
proposals and applications described by Akselos, e.g., for power generation projects [31]
and industrial installations in general [39]. The digital twins offered by Akselos perform
impressive structural simulations in near real-time for the offshore industry but seem
less suitable as digital twins for factory production lines. Another solution for structures,
which includes hardware for sensing and software for digital twinning, is offered by
ASDEA Engineering [40].

The tools for creating digital twins vary on the market; however, each company
tries to orient its platform toward its applications. For example, General Electric, Ansys,
Siemens, Altair, and Dassault each offer their platform oriented toward either product and
manufacturing simulations, process simulations, or both. Microsoft also has a digital twin,
but for the time being it seems to focus mainly on data collection for further analysis. The
same applies to PTC’s offering. Thus, everyone in the field projects their interpretation of
the concept.

In summary, one could say that a classical computational mechanics specialist inter-
ested in using or developing DT applications should refresh his/her knowledge in the
areas of:

• Parametric modeling using computer-aided design and finite elements.
• Parameter identification and inverse problems.
• Artificial intelligence for the creation of metamodels.

Furthermore, the link of DT with virtual and augmented reality (VR/AR) deserves
more attention. The concepts of VR/AR are older than that of VT. While VR/AR augments
the virtual world with reality, DT is based entirely on the digital world. The usage of
VR/AR concepts for producing user-friendly interfaces of DTs, which inherit the real
behavior of the physical object and bidirectional interaction with the users, that could
facilitate training and experimentation with if-then scenarios is a concept that seems to
be worthy of investigation [41,42]. For the time being, a bidirectional link seems to be
very demanding, but this could change in the near future. These steps could lead to the
enhancement of enterprise or industrial metaverse with objects recreated and fed with live
data in order to behave exactly as they would in the real world. For infrastructures, this
could have important civil or defence applications.
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6. Conclusions

The field of DT is a topic of rapid development in the last few years. The number
of publications is exploding. Nevertheless, at least for applications on structures and
infrastructures, this development is based on and supported by solid knowledge of com-
putational mechanics, parameter identification, and machine learning, as well as software
and hardware developments. This paper attempts to bridge the gap between more classical
communities and the need arising from current DT discussion.

Numerous digital twin applications in infrastructure and industry are presented in
this paper. The use of the technology of DT is interpreted in the forms of optimization,
data integrity, maintenance, etc. Research and development needs within the areas of
computational mechanics, applied optimization, and artificial intelligence can be evaluated
in view of current needs of DT. Conversely, engineers with a classical background will
hopefully find their orientation in the vast amount of DT material, which in several cases
does not provide a clear picture of the goals and techniques used.

DT for structures, possibly with interfaces based on AR/VR, will enhance the exper-
imentation and predictive analysis of existing critical infrastructure, with the potential
of reducing downtime and incurred costs and increase the security level and confidence
of operators.
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