
TECHNICAL UNIVERSITY OF CRETE

DIPLOMA THESIS

Bioinspired DNN Architectures
with Dendritic Structure

Author:
Lampros PANTZEKOS

Thesis Committee:
Prof. Apostolos DOLLAS

Prof. Michail ZERVAKIS

Dr. Panayiota POIRAZI

(IMBB/FORTH)

A thesis submitted in fulfillment of the requirements
for the diploma of Electrical and Computer Engineer

in the

School of Electrical and Computer Engineering

Microprocessor and Hardware Laboratory

September 13, 2023

https://www.tuc.gr/
http://example.com/
https://www.ece.tuc.gr/index.php?id=4531&tx_tuclabspersonnel_list%5Bperson%5D=289&tx_tuclabspersonnel_list%5Baction%5D=person&tx_tuclabspersonnel_list%5Bcontroller%5D=List
https://www.ece.tuc.gr/index.php?id=4109&tx_tuclabspersonnel_list%5Bperson%5D=294&tx_tuclabspersonnel_list%5Baction%5D=person&tx_tuclabspersonnel_list%5Bcontroller%5D=List
https://www.imbb.forth.gr/en/research-en/item/73-panayiota-poirazi
https://www.imbb.forth.gr/en/research-en/item/73-panayiota-poirazi
https://www.ece.tuc.gr/
https://www.mhl.tuc.gr/

iii

TECHNICAL UNIVERSITY OF CRETE

Abstract
School of Electrical and Computer Engineering

Electrical and Computer Engineer

Bioinspired DNN Architectures with Dendritic Structure

by Lampros PANTZEKOS

Artificial Neural Networks (ANNs) implemented in Deep Learning architec-
tures have been successfully used to solve a wide range of challenging ma-
chine learning tasks. However, in order to achieve top performance, they typ-
ically require a substantial amount of energy. In contrast, the brain operates
at a very low energy level. Drawing inspiration from biological dendrites and
the aforementioned limitations of ANNs, the Poirazi lab of IMBB-FORTH in-
troduced a bio-inspired ANN architecture with a dendritic structure and re-
ceptive field. Regarding the learning rule, backpropagation is fully applied.
Training parameters are updated using the Adam optimization algorithm in-
stead of the classical gradient descent algorithm. Based on their initial high-
level Keras implementation, a lower-level Numpy implementation was de-
veloped in this thesis to analyze and understand in depth this model and its
training process. Following this, an FPGA-based architecture for the training
process of this bio-inspired ANN was designed, implemented, and down-
loaded onto the Xilinx ZCU 102 board in this thesis. In this developed FPGA
implementation, training has been accelerated and power/energy consump-
tion has been greatly reduced as a result of leveraging the high parallelism
and power efficiency of the FPGA. In particular, our proposed FPGA im-
plementation executes an epoch of training (for the MNIST dataset) in only
2.3797 seconds rather than 37 seconds on the CPU (Keras) and 17 seconds on
the GPU (Keras). Furthermore, it achieves 106.15 times greater energy effi-
ciency than the CPU implementation (Keras) and 56.5 times greater energy
efficiency than the GPU implementation (Keras).

HTTPS://WWW.TUC.GR/
https://www.ece.tuc.gr/

v

TECHNICAL UNIVERSITY OF CRETE

Abstract
School of Electrical and Computer Engineering

Electrical and Computer Engineer

Bioinspired DNN Architectures with Dendritic Structure

by Lampros PANTZEKOS

Τα Artificial Neural Networks (ANNs), τα οποία είναι υλοποιημένα σε αρχιτεκ-
τονικές Deep Learning, έχουν επιτυχώς επιλύσει ένα μεγάλο έυρος απαιτητικών
προβλημάτων μηχανικής μάθησης. Ωστόσο, προκειμένου να επιτευχθεί μέγιστη
απόδοση, απαιτούν υψηλά επίπεδα ενέργειας. Σε αντίθεση, ο εγκέφαλος λειτουργεί
σε πολύ χαμηλά επίπεδα ενέργειας. Αντλώντας έμπνευση από τους δενδρίτες στην
βιολογία και τους παραπάνω περιορισμούς των ANNs, το Poirazi lab του ΙΜΒΒ-
ΙΤΕ, παρουσίασε μία βιοεμπνευσμένη ANN αρχιτεκτονική, η οποία περιλαμβάνει
δενδριτική δομή και receptive field. Αναφορικά με τον κανόνα εκμάθησης του μον-
τέλου, εφαρμόζεται πλήρως backpropagation. Οι παράμετροι εκμάθησης ενημερώνον-
ται μέσω του Adam optimization αλγόριθμου, αντί της κλασικής gradient de-
scent μεθόδου. Με βάση την αρχική τους, υψηλού επιπέδου υλοποίηση του μον-
τέλου σε Keras, υλοποίηθηκε αυτό σε αυτή τη διπλωματική σε χαμηλότερο επίπεδο
σε Numpy, ώστε να αναλυθεί διεξοδικά το μοντέλο και η διεργασία του train-
ing. ΄Επειτα στα πλαίσια αυτής της διπλωματικής, σχεδιάστηκε και υλοποιήθηκε η
αρχιτεκτονική της training διεργασίας αυτού του μοντέλου σε FPGA, καθώς και
μεταφορτώθηκε αυτή η σχεδίαση στην πλακέτα ZCU 102 της Xilinx. Μέσω αυτής
της υλοποίησης σε FPGA, το training επιταχύνθηκε και η κατανάλωση ενέργειας
μειώθηκε σημαντικά, εκμεταλλευόμενοι την υψηλή παραλληλοποίηση και την εν-
εργειακή αποδοτικότητα που παρέχει η FPGA. Συγκεκριμένα, η υλοποίηση μας σε
FPGA εκτελεί ένα epoch του training (για το MNIST dataset) σε μόνο 2.3797
δευτερόλεπτα αντί για τα 37 δευτερόλεπτα που απαιτεί η CPU (Keras) και τα 17
δευτερόλεπτα που απαιτεί ηGPU (Keras). Επιπλέον, είναι 106.15 φορές πιο αποδοτική
ενεργειακά συγκριτικά με την CPU και 56.5 φορές συγκριτικά με την GPU.

HTTPS://WWW.TUC.GR/
https://www.ece.tuc.gr/

vii

Acknowledgements
First of all, I would like to thank my supervisor, Prof. Apostolos Dollas, for
his continued support and his valuable guidance during the procedure of this
thesis. Moreover, I would like to express my gratitude for his knowledge and
experience, which have been a source of inspiration and have contributed to
my decision to work in the field of hardware.

Furthermore, I would like to thank the rest of my thesis committee, Prof.
Michail Zervakis and Prof. Panayiota Poirazi, for evaluating my work.

In addition, I would like to express my gratitude to the Research Director
Panayiota Poirazi and the Postdoctoral Researcher Spyros Chavlis from the
Poirazi lab of the IMBB-FORTH for providing me with this opportunity to
work on this thesis and expand my horizons beyond my current area of ex-
pertise. I would also like to specifically thank Spyros Chavlis for his time and
for the enlightening meetings that enabled me to understand better the basic
biological background for the bio-inspired features of my thesis model.

It is with great pleasure that I would like to express my gratitude to my friend
and colleague, Nikoletta Palatianna, for her constant support and encourage-
ment, as well as for her significant contribution to this thesis.

Furthermore, I would like to thank the ICS/FORTH CARV team for their
guidance throughout this thesis, especially Dr. Gregory Tsagatakis for his
valuable help. I would also like to thank Maria Argyriou, a graduate of TUC,
for her valuable insight into the Vivado tools and the ZCU 102 platform. A
special thanks to my colleague, Manolis Perakis, for his significant contribu-
tion regarding technical issues with the ZCU 102.

Last but not least, I would like to express my deepest gratitude to my family
and friends for their support throughout my studies.

ix

Contents

Abstract iii

Abstract v

Acknowledgements vii

Contents ix

List of Figures xiii

List of Tables xvii

List of Algorithms xix

List of Abbreviations xxi

1 Introduction 1
1.1 Motivation . 2
1.2 Scientific Contributions . 6
1.3 Thesis Outline . 7

2 Theoretical Background 9
2.1 Artificial Intelligence, Machine Learning & Deep Learning . . 9
2.2 Simple Neural Network (NN) 10

2.2.1 Classification Problem with linear boundary 11
2.2.2 Perceptron . 13

Perceptron Algorithm 13
2.2.3 Non-Linear Regions . 14
2.2.4 Error Function (Cross-Entropy) 15
2.2.5 Gradient Descent . 16

2.3 Deep Neural Network (DNN) 17
2.3.1 Feedforward (Full Forward) 18
2.3.2 Backpropagation . 18

x

Update of Parameters 21
Underfitting and Overfitting 21
Early Stopping . 22

2.4 Optimization algorithms for updating network parameters . . 22
2.4.1 Adam Optimization Algorithm 22

2.5 Activation Functions . 24
2.5.1 Sigmoid / Logistic . 24
2.5.2 Softmax . 25
2.5.3 Rectified Linear Unit (ReLU) 25
2.5.4 Leaky Rectified Linear Unit (Leaky ReLU) 26

3 Related Work 27
3.1 Brain-Inspired models . 27

3.1.1 Spiking Neural Networks 27
3.1.2 Architecture for a hybrid LIF SNN with dendrites and

plasticity rules . 28
3.1.3 Bridge between ANN and SNN with spiking neural unit 29
3.1.4 Speech recognition using bio-inspired Neural Networks 29
3.1.5 Novel online learning algorithmic framework for Deep

Neural Networks . 30
3.1.6 Novel biologically inspired optimizer for both ANN

and SNN training . 30
3.2 Thesis Approach . 31

4 System Modeling 33
4.1 Neuro-inspired ANN model . 33

4.1.1 Bio-inspired Features . 34
Dendritic-Structure . 34
Receptive Field (RF) . 35

4.1.2 Reference Model Architecture 35
4.1.3 Implementation of the Connectivity Structure 36

4.2 Software Implementations - Tools used (Keras - Numpy) . . . 38
4.2.1 Hyperparameter and Training Configuration 39

Data-set . 40
Data Type . 41

4.3 Numpy Implementation . 41
4.3.1 Definition of Numpy mathematical functions 41
4.3.2 Generation of parameters (Initialization phase) 42
4.3.3 Full-Forward propagation 43

xi

4.3.4 Backpropagation . 45
4.3.5 Update method - Adam Algorithm 47

4.4 Profiling . 51
4.4.1 Memory Profiling . 53

4.5 Discussion . 53

5 FPGA Design and Implementation 55
5.1 FPGA Design . 55

5.1.1 Sparse Connectivity and Weight Handling 56
5.1.2 Backpropagation Block 58

dZ Calculation . 61
dY_prev Calculation . 62
dW Calculation . 63
db Calculation and Update of biases 63

5.1.3 Adam Algorithm Block 64
mean_dw Calculation 66
uvar_dw Calculation . 67
mean_dw_corr and uvar_dw_corr Calculation 68
dW_Adam Calculation and Update of Weights 68

5.2 Tools Used . 69
5.2.1 Vivado High Level Synthesis (HLS) 69

Pipeline Directive . 70
Interface Directive . 70
Array Partition Directive 71
Unroll Directive . 71
Synthesis Report - Performance Metrics 71

5.2.2 Vivado IDE . 73
5.2.3 Vivado SDK . 74

5.3 FPGA Platform . 75
5.3.1 AXI4 Interface Protocol 76
5.3.2 PL-PS Communication Methods 77
5.3.3 AXI DMA . 78

5.4 FPGA Implementation . 79
5.4.1 PL-PS Communication and Memory Configuration . . 80
5.4.2 Bandwidth . 81

5.5 Overview of IP Block in Vivado HLS 82
5.6 Implementation of IP Block (HLS) - First Approach 84

5.6.1 Backpropagation in Vivado HLS 84

xii

Calculation of dY_prev 86
Calculation of dZ_curr and dZ_batch 88
Calculation of dW_curr 88
Calculation of db_curr and update of b_curr 91

5.6.2 Update - Adam Optimization Algorithm in Vivado HLS 92
5.6.3 Forward propagation in Vivado HLS 94
5.6.4 Design Space Exploration 94

5.7 Implementation of IP Block (HLS) - Second (Optimized) Ap-
proach . 95
5.7.1 Optimized Backpropagation in Vivado HLS 95

Calculation of dW_curr 95
Calculation of dY_prev, dΖ_curr and dZ_batch 96
Calculation of db_curr and update of b_curr 96

5.7.2 Optimized Update - Adam Optimization Algorithm in
Vivado HLS . 98

6 Results 101
6.1 Specification of Compared Platforms 101

6.1.1 Intel i5-6500 . 101
6.1.2 GPU . 102
6.1.3 Proposed Architectures 102

6.2 Performance Metrics . 103
6.2.1 Latency . 103
6.2.2 Throughput . 103
6.2.3 Power Consumption . 103
6.2.4 Energy Consumption 104

6.3 Performance Evaluation and Comparison 104
6.3.1 Comparison of two FPGA versions 106
6.3.2 Comparison of FPGA and CPU/GPU versions 107

7 Conclusions and Future Work 113
7.1 Conclusions . 113
7.2 Future Work . 115

7.2.1 Plasticity rules . 115
7.2.2 Rewiring . 115
7.2.3 Better implementation of the FPGA architecture 116
7.2.4 Larger scale implementation 116

References 117

xiii

List of Figures

1.1 Biological Neuron versus Artificial Neural Network 1
1.2 Schematic representation of dendritic features in biological neu-

rons . 3

2.1 Artificial Intelligence, Machine Learning & Deep Learning . . 10
2.2 A Simple Neural Network . 11
2.3 A Binary Classification problem 11
2.4 Perceptron . 13
2.5 Example of a dense Deep Neural Network (DNN) 17
2.6 An illustration of Backpropagation in a NN. 20
2.7 Underfitting and Overfitting . 21
2.8 Early Stopping . 22
2.9 Sigmoid . 24
2.10 ReLU . 25
2.11 ReLU vs Leaky ReLU . 26

3.1 Action Potential . 28

4.1 Dendritic-Structure Layer . 35
4.2 Model Architecture . 36
4.3 Receptive Field . 37
4.4 The basic steps of training procedure 38
4.5 Full-Forward propagation in the model 44
4.6 An overview of the backpropagation process of our bio-inspired

NN. The sketched frame in the figure represents only the last
(softmax) layer (the beginning of backpropagation). 47

4.7 An overview of the Adam Optimization Algorithm process for
each layer of our bio-inspired NN. 49

4.8 Analysis of how Numpy implementation consumes training
time. 51

4.9 An analysis of the impact of the Adam Optimization Algo-
rithm’s individual (inner) functions. 52

xiv

4.10 The time spent calculating each individual backpropagation
term is analyzed. 52

5.1 FPGA Design - Architecture . 55
5.2 Single-layer forward propagation block inputs and outputs. . 58
5.3 High-level Backpropagation Block Design 59
5.4 Single-layer backpropagation block inputs and outputs. 61
5.5 Block Design for dZ calculation of Backpropagation in layer 5

of our bio-inspired ANN. In the 5th (last) layer, softmax serves
as the activation function. Therefore, we use its backward ver-
sion to calculate dZ. 61

5.6 Block Design for dZ calculation of Backpropagation in layers
4 to 1 of our bio-inspired ANN. For these layers, the Leaky
ReLU serves as the activation function. Therefore, we use its
backward version to calculate dZ. 62

5.7 Block Design for dYprev calculation of Backpropagation in lay-
ers 5 to 2 of our bio-inspired ANN. This calculation is not in-
cluded in layer 1. 62

5.8 Block Design for dW calculation of Backpropagation. Rather
than dividing by 16 (batch_size), we multiply with 0.0625, which
is equal to 1/16. 63

5.9 Block Design for calculating db of Backpropagation and updat-
ing bias. Rather than dividing by 16 (batch_size), we multiply
with 0.0625, which is equal to 1/16. 64

5.10 High-level Adam Algorithm Block Design. 65
5.11 Single-layer Adam algorithm block inputs and outputs. 66
5.12 Block Design for mean_dw calculation of Adam Algorithm of

our bio-inspired ANN. 67
5.13 Block Design for uvar_dw calculation of Adam Algorithm of

our bio-inspired ANN. 67
5.14 Block Design for uvar_dw_corr calculation of Adam Algorithm

of our bio-inspired ANN. 68
5.15 Block Design for calculating dW_Adam and updating the Weights

of Adam Algorithm of our bio-inspired ANN. 69
5.16 Loop Pipelining example . 71
5.17 Zynq UltraScale+ MPSoC Top-Level Block Diagram 76
5.18 Bio-inspired ANN Block Design for FPGA. 79

xv

5.19 Detailed information concerning the content of the BRAMs
and the partitions of each data type. In essence, each block
represents a BRAM. 81

5.20 Block Diagram of Training IP in HLS 83
5.21 First Approach - Schedule of the main backpropagation calcu-

lations (without db calculation, bias update) in HLS. The num-
ber 73 represents the iteration latency (in cycles). 85

5.22 An illustration of how the second loop (of Synapses) in back-
propagation is pipelined with II = 1. 86

5.23 II Violation - Data dependency between the load and store op-
erations on the array dY_prev 87

5.24 First Approach - Detailed schedule of dZ, dZ_batch and dY_prev
backpropagation operations in HLS. 88

5.25 First Approach - Initial phase of scheduling dW backpropaga-
tion in HLS. 89

5.26 First Approach - Last phase of scheduling dW backpropaga-
tion in HLS. 90

5.27 First Approach - A detailed schedule of db (of backpropaga-
tion) and bias update operations in HLS. 92

5.28 Second Approach - Detailed schedule of dW and db backprop-
agation operations in HLS (Initial Clock Cycles). 97

5.29 Second Approach - Detailed schedule of dW and db backprop-
agation operations in HLS (Last Clock Cycles). 98

5.30 Second Approach - Schedule of the main backpropagation cal-
culations in HLS. The number 73 represents the iteration la-
tency (in cycles). 98

5.31 Second Approach - Schedule of the main Adam optimization
algorithm (Update) calculations in HLS. The number 53 repre-
sents the iteration latency (in cycles). 99

6.1 An analysis of the Latency of the compared platforms. 107
6.2 An analysis of the Throughput of the compared platforms. . . 108
6.3 An analysis of the training execution time for an epoch of the

compared platforms. 109
6.4 An analysis of the Power Consumption of the compared plat-

forms. 109
6.5 An analysis of the Energy Consumption per batch of the com-

pared platforms. 110

xvi

6.6 An analysis of the Images/Joule metric of the compared plat-
forms. 110

6.7 An analysis of the Accuracy in training and validation of the
compared platforms. 111

6.8 An analysis of the Error in training and validation of the com-
pared platforms. 111

xvii

List of Tables

4.1 Detailed description of each layer in the model. 37
4.2 Detailed description of each matrix dimensions in Full For-

ward propagation. In the first layer, Y_prev refers to the input
of the network. 43

4.3 Detailed description of each matrix dimensions in Backpropa-
gation. 46

4.4 Detailed description of each matrix dimensions in Adam Op-
timization Algorithm. 51

5.1 Dimensions of the initial weight matrix, the masked weight
matrix, and the masked weight location matrix for each layer
of our bio-inspired NN. 58

5.2 ZCU102 Specifications. 75
5.3 Basic Vivado HLS Operators . 84

6.1 Intel i5-6500 Specifications . 101
6.2 GPU Specifications . 102
6.3 Comparison of the first and second versions of the FPGA-based

architecture (ZCU 102) - Resources Utilization 103
6.4 Performance Evaluation and Comparison - Two versions of

the FPGA-based architecture (ZCU 102 board) compared to
Keras-Tensorflow running on both CPU and GPU. Numpy re-
sults are not included since the goal of Numpy implementa-
tion was to gain a better understanding of the bio-inspired
ANN model rather than to optimize it. 106

xix

List of Algorithms

1 Full Forward propagation . 44
2 Full Backpropagation . 48
3 Adam Optimization Algorithm - Update Algorithm 50
4 Second Approach - Single layer Backpropagation in Vivado HLS 60
5 Second Approach - Single layer Adam algorithm Update method

in Vivado HLS . 66
6 First Approach - Single layer Backpropagation in Vivado HLS 90
7 First Approach - Single layer Bias update in Vivado HLS . . . 91
8 First Approach - Single layer Adam algorithm Update method

in Vivado HLS . 93

xxi

List of Abbreviations

ALU Arithmetic Logic Unit
ASIC Application Specific Integrated Circuit
BRAM Block Random Access Memory
CPU Central Processor Unit
CS Computer Science
DDR4 Double Data Rate type texbf4 memory
DRAM Dynamic Random Access Memory
DSP Digital Signal Processor
FF Flip Flops
FPGA Field Programmable Gate Array
GDDR6 Graphics Double Data Rate type 6 memory
GPU Graphic Processor Unit
HBM High Bandwidth Memory
HDL Hardware Description Language
HLS High Level Synthesis
HPC Hight Performance Computing
LUT Look Up Table
MPSoC Multi Processor System on Chip
PL Programmable Logic
PS Processing System
RAM Random Access Memory
SDK Software Development Kit
SIMD Single Instruction Multiple Data
SSE Streaming SIMD Extensions
SSD Solid State Drive
TDP Thermal Design Power
URAM Ultra Random Access Memory
USD United States Dollar

xxiii

Dedicated to my family and friends. . .

1

Chapter 1

Introduction

Biological neurons [1] typically consist of a soma (cell body), dendrites, and
a single axon. There are billions of them in a human brain, and they are inter-
connected to each other. Their role is to receive and transmit signals from the
brain. A biological neuron receives nervous impulses (input-signals) through
its dendrites, processes this information in the soma, and then determines
whether or not to send a neural impulse through its axon (which acts like a
cable). Transmitting nervous impulses from one neuron to another is accom-
plished through synapses [2].

Artificial Neural Networks (ANNs) are layered organizations of intercon-
nected artificial neurons (nodes), which mimic the function of biological neu-
rons. They are mathematical models capable of learning and are used most
commonly for classification problems. ANNs are typically inspired by the
way neurons in the visual cortex function. The biological inspiration behind
ANNs (and Deep Learning) is thus evident.

FIGURE 1.1: Biological Neuron versus Artificial Neural Net-
work - https://www.datacamp.com/tutorial/deep-learning-

python.

https://www.datacamp.com/tutorial/deep-learning-python
https://www.datacamp.com/tutorial/deep-learning-python

2 Chapter 1. Introduction

Typical ANNs have been widely and successfully used in multiple machine
learning demanding tasks such as computer vision, speech recognition, au-
tonomous driving, etc. However, their considerable energy requirements to
achieve top performance raise serious concerns. In other words, millions of
trainable parameters are demanded. Moreover, state-of-the-art Deep Learn-
ing architectures are accompanied by some substantial issues related to prop-
erties known as “transfer learning” [3] and “catastrophic forgetting” [4]. As
far as the first one is concerned, they usually fail to generalize, which means
transferring their expertise to new tasks without extensive retraining. The
second property refers to their tendency to erase previously learned infor-
mation upon learning new problems. Therefore, current Deep Learning ar-
chitectures experience problems that would seem rudimentary to a human
brain. Energy consumption in the brain is also extremely low. As a result,
these facts strengthen our conviction that ANNs may be able to overcome
the limitations mentioned above by increasing their bio-inspiration. This be-
lief was expressed by S. Chavlis and P. Poirazi in their opinion article [5].

1.1 Motivation

Traditional ANNs assume that sensory input originating from the eyes is
transferred sequentially. In addition, neurons are assumed to receive a linear
summation of the incoming synaptic inputs, with dendritic influences be-
ing ignored. Besides serving as receptors, dendrites (in biological neurons)
also play a complex role in integrating and propagating incoming signals,
indicating that these assumptions are incorrect. In particular, passive den-
drites attenuate signals traveling to the soma based on the morphological
properties of dendritic trees (blue shaded area in the figure 1.2). A variety
of voltage-gated channels (’active’ mechanisms that are depicted in the red
shaded area of the figure 1.2) are also present in many dendrites, support-
ing the generation of regenerative events (dendritic spikes). Dendritic spikes
enable nonlinear signal processing in dendrites. Multiple nearby inputs inte-
grated into the same dendrite, for example, produce a greater response than
inputs integrated into separate dendrites. In this case, voltage-gated chan-
nels are activated, resulting in the generation of dendritic spikes. In com-
parison to the linear summation of the inputs, dendritic spikes have a much
larger amplitude, thus amplifying the signal.

https://www.imbb.forth.gr/en/personel-directory/item/1357-chavlis-spyridon
https://www.imbb.forth.gr/en/research-en/item/73-panayiota-poirazi

1.1. Motivation 3

FIGURE 1.2: Schematic representation of
dendritic features in biological neurons -
https://www.researchgate.net/figure/Schematic-
representation-of-dendritic-features-in-biological-neurons-

Bottom-Schematic_fig1_352395202.

Considering the aforementioned limitations of ANNs and the effect of den-
dritic features on a biological neuron, it can be argued that ANNs may ben-
efit from adopting dendritic structure and additional bio-inspired features.
A comprehensive analysis of specific dendritic features is provided in the
opinion article [5] mentioned above, along with their benefits and how they
can be incorporated into ANNs. From this opinion article, there are sev-
eral interesting points worth highlighting. Firstly, when incorporating den-
drites into ANNs, it is possible to approximate dendritic spikes mathemat-
ically through activation functions. The attenuation of signals by passive

https://www.researchgate.net/figure/Schematic-representation-of-dendritic-features-in-biological-neurons-Bottom-Schematic_fig1_352395202
https://www.researchgate.net/figure/Schematic-representation-of-dendritic-features-in-biological-neurons-Bottom-Schematic_fig1_352395202
https://www.researchgate.net/figure/Schematic-representation-of-dendritic-features-in-biological-neurons-Bottom-Schematic_fig1_352395202

4 Chapter 1. Introduction

dendrites can also be described using activation functions. In essence, (arti-
ficial) neurons with dendritic structure function as two-stage or multi-stage
ANNs, and dendrites serve as computing nodes. Secondly, the most sub-
stantial advancement of dendritic ANNs is that power consumption can be
reduced significantly. In traditional ANNs, artificial neurons are typically
represented as single nodes arranged in layers and interconnected in an all-
to-all manner. In this way, millions of trainable parameters are required. On
the other hand, dendritic structure provides sparsity to ANN, since each neu-
ron is converted into a two-stage ANN (dendrites-soma). Each soma is con-
nected to its dendrites only, and each dendrite is connected to its synapses
only. Consequentially, dendritic ANNs require fewer trainable parameters
than typical fully-connected ANNs, resulting in resource savings. There are
some common methods used in ANNs, such as Dropout layer [6], which
offers sparsity by removing certain connections randomly during training.
Therefore, sparsity is generally desired in Deep Learning. In terms of perfor-
mance accuracy, none of the current studies [7] [8] [9] employing dendritic
ANNs has exceeded the state-of-the-art models. However, dendritic ANNs
perform better than traditional ANNs when both have the same number of
trainable parameters [7]. Furthermore, the dendritic location of inputs has
been shown to determine the response of neurons. According to P.Poirazi et
al. [10] [11], this fact enhances neurons’ discrimination abilities. In addition
to saving resources, sparsity also improves the network’s ability to discrimi-
nate between similar input patterns [12].

An additional feature to increase bio-inspiration in ANNs is Receptive field
(RF) [13], which offers structured connectivity. The RF is inspired by the
human visual system, where each neuron captures a different piece of infor-
mation from the field of view (the eyes’ whole visible area). In Deep learning,
the RF associates an output feature with an input region and it can be defined
as the size of the region in the input that produces the feature. Essentially,
each neuron is associated with a neighborhood of the inputs.

Backpropagation (BP) has proven to be an effective technique for training
multi-layer neural networks. In this method, the parameters (weights and
biases) are updated according to the network’s error. It has not been proven
that this method is bio-inspired and it’s highly unlikely that the brain has a
sub-area that calculates errors. Thus, this method cannot be regarded as bio-
inspired. Even though backpropagation provides fast convergence and high
performance, it consumes a considerable amount of power. This problem can

1.1. Motivation 5

be addressed with more bio-inspired learning rules.

In ANNs and neuromorphic implementations, the aforementioned bio-inspired
features are still largely unexplored. The most interesting aspect of a bio-
inspired ANN is the potential power efficiency, which can be exploited by
systems with limited resources (such as portable devices, mobile phones, mi-
crochips, etc.). By implementing a bio-inspired ANN architecture on a field-
programmable gate array (FPGA), a more power efficient solution could be
achieved. This is possible because this architecture requires significantly
fewer trainable parameters than a traditional fully connected NN architec-
ture. In hardware, parameters are associated with memory resources, which
are commonly limited. Although CPU-based applications are easier to im-
plement, they are not time or energy efficient due to their low parallelism
and high power consumption. As far as Graphics Processing Units (GPUs)
are concerned, they excel at parallel processing, delivering incredible accel-
eration when the same workload must be executed many times in rapid suc-
cession. However, GPUs tend to be highly power consuming. Compared to
GPUs, FPGAs are considered to be more power efficient since only hardware
functions are involved, whereas GPUs need a lot of power to facilitate soft-
ware programmability and therefore they contain many gates. FPGAs are
integrated circuits consisting of programmable logic blocks that can be con-
figured to perform different logic functions. They offer a high level of paral-
lelism too. In contrast to GPUs and Application Specific Integrated Circuits
(ASICs), FPGA chips do not have hard-etched circuitry and can be repro-
grammed as needed. This capability makes FPGAs an excellent alternative
to ASICs, which require a long development time and a significant invest-
ment to design and fabricate. Due to their reconfigurability, FPGAs are ideal
for applications where standards are constantly evolving. Moreover, FPGAs
come in a variety of sizes, so designers can choose the one that is best suited
to their application.

A further problem with state-of-the-art models is that they act as black boxes
despite being highly efficient in many ML applications. In other words,
among the set of actions taken, it is impossible to identify which one was
responsible for the outcome. Therefore, increasing the bio-inspiration in the
models is an attempt to resolve the credit assignment problem. The credit as-
signment problem, first discussed by Minsky in 1963, concerns determining
which actions lead to a given result.

6 Chapter 1. Introduction

1.2 Scientific Contributions

The thesis model was introduced by the Postdoctoral Researcher S. Chavlis
and the Research Director P. Poirazi, both from the Poirazi lab of Institute
of Molecular Biology and Biotechnology of the Foundation for Research and
Technology Hellas (IMBB-FORTH). A neuro-inspired ANN architecture was
proposed that incorporates dendritic-structure and receptive field. Regard-
ing the learning rule, classic backpropagation is fully applied. The proposed
model also included a second approach regarding learning, in which the ‘Co-
variance rule’ (plasticity rule) is applied to the first layer of the network,
while backpropagation is used only at the remaining layers. The approach
with the ’Covariance rule’ is implemented in the thesis of Nikoletta Palatiana.
For updating the parameters of the network, Adam optimization algorithm is
used instead of classical gradient descent. A high-level software implemen-
tation in Keras was developed by S. Chavlis as a first implementation for
the training process of this bio-inspired model. This implementation serves
as a reference for this thesis. In this thesis, a lower-level implementation in
Numpy is developed as a first step, in order to understand and analyze this
model and its training process in depth. The main algorithms used in the
training process are presented, along with an analysis (profiling) of their us-
age in terms of execution time and memory. This thesis goal is to build an
FPGA-based architecture for the aforementioned bio-inspired ANN in order
to accelerate its training process and further reduce power/energy consump-
tion. Through their high parallelism and power efficiency, FPGAs are capable
of achieving this. In this thesis, the FPGA-based architecture is designed, im-
plemented and downloaded onto the Xilinx ZCU 102 evaluation board. By
comparing our proposed FPGA implementation to CPU/GPU (the reference
implementation in Keras), we were able to achieve a significant improvement
in latency, throughput, and energy efficiency. The contribution of this thesis
can be summarized as follows:

• Lower-level software implementation for the training process of the
bio-inspired ANN in Numpy.

• System modeling - Profiling.

• Design of the FPGA-based architecture for the training process of the
bio-inspired ANN.

• Implementation of the FPGA-based architecture using Vivado tools.

https://www.imbb.forth.gr/en/personel-directory/item/1357-chavlis-spyridon
https://www.imbb.forth.gr/en/research-en/item/73-panayiota-poirazi
http://dendrites.gr/
https://www.imbb.forth.gr/en/
https://www.linkedin.com/in/palatiana-nikoletta/
https://www.imbb.forth.gr/en/personel-directory/item/1357-chavlis-spyridon

1.3. Thesis Outline 7

• Downloading of the FPGA implementation onto Xilinx ZCU 102 board.

• Our proposed FPGA implementation provides a latency speedup of
14.38x over CPUs (Keras) and 6.637x over GPUs (Keras).

• Our proposed FPGA implementation provides a throughput speedup
of 15.548x over CPUs (Keras) and 7.143x over GPUs (Keras).

• Our proposed FPGA implementation achieves 106.15 times greater en-
ergy efficiency than the CPU (Keras) and 56.5 times greater energy effi-
ciency than the GPU (Keras).

1.3 Thesis Outline

• Chapter 2 - Theoretical Background: An introduction to ANNs and
DNNs is provided, as well as an analysis of forward propagation, back-
propagation, and Adam optimization algorithm processes.

• Chapter 3 - Related Work: The related work of certain bio-inspired
models and techniques is described along with our thesis approach.

• Chapter 4 - System Modeling: In this chapter, there is a detailed ex-
planation of the thesis bio-inspired DNN model, including its features,
connectivity structure, and functionality. An extensive description of
the software (Numpy) implementation, algorithms, tools, and data-set
is also provided.

• Chapter 5 - FPGA Implementation: In this chapter, the FPGA-based ar-
chitecture for the training process of the bio-inspired ANN is designed,
implemented using Vivado tools and downloaded onto the Xilinx ZCU
102 evaluation board. This chapter also provides information about the
Vivado tools, the FPGA platform, the AXI4 Interface Protocol, the PL-
PS communication methods, and the memory configuration.

• Chapter 6 - Results: In this chapter, performance metrics are analyzed,
including throughput, latency, power consumption, and energy con-
sumption, alongside a comparison of our FPGA-based architecture with
CPU and GPU implementations. Additionally, we compare the results
of our two FPGA-based architecture approaches.

• Chapter 7 - Conclusions and Future Work: There is a discussion of
future directions and ideas for possible extensions in this chapter.

9

Chapter 2

Theoretical Background

In this chapter, we provide an introduction to Artificial Neural Networks,
including an analysis of their training phase. The analysis is focused pri-
marily on forward propagation, back propagation, and Adam optimization
algorithm. In addition, a description of the activation functions is provided.

2.1 Artificial Intelligence, Machine Learning & Deep

Learning

Artificial Intelligence (AI) can be defined as the ability of a machine to imitate
intelligent human behavior. This intelligence is explicitly programmed with
a set of if-else rules.

Machine Learning (ML) is a subset of AI that allows a system to automat-
ically learn and improve from experience, without explicit programming.
Here, the system is not rule-based, instead, it learns on its own by using
multiple algorithms and techniques. In this way, the system is able to make
predictions, recognizing patterns and features on the subject. In particular,
the system is trained on related data-set of samples, which is provided as
input. By comparing the expected outcome with its prediction (output), the
system must then update the relevant sections of its structure that have con-
tributed to output errors.

There are three main categories of ML algorithms. Supervised learning is
defined by its use of labeled data-sets, which are designed to train or “su-
pervise” algorithms into classifying data or predicting outcomes accurately.
Using labeled inputs and outputs, the model can measure its accuracy and
learn over time. Unsupervised learning uses ML algorithms to analyze and
cluster unlabeled data-sets. These algorithms discover hidden patterns in

10 Chapter 2. Theoretical Background

data without requiring human intervention, with the exception of validating
the output variables. Reinforcement Learning refers to a method of reward-
ing desired behaviors and punishing undesired ones. In this scenario, an
intelligent agent interacts with the environment and learns to act within it by
trial and error.

Deep Learning (DL) is a field within ML and AI that concerns algorithms in-
spired by the biological structure and function of the human brain to aid ma-
chines with intelligence. This idea was prompted by the poor performance
of ML in some specific cases, such as images, audio, and other unstructured
data types that seem rudimentary to real brains.

FIGURE 2.1: Artificial Intelligence, Machine Learning & Deep
Learning - https://www.researchgate.net/figure/Artificial-
intelligence-vs-Machine-leaning-vs-Deep-learning-

Classification-and-regression_fig1_334429726.

2.2 Simple Neural Network (NN)

The basis of DL is Neural Network (NN), which is a process that mimics the
way the human brain operates, with neurons that fire bits of information.
ΝΝ is represented as a layered organization of interconnected artificial neu-
rons (nodes). An artificial neuron is a mathematical function that attempts to
solve a classification problem according to a specific architecture and incom-
ing information.

https://www.researchgate.net/figure/Artificial-intelligence-vs-Machine-leaning-vs-Deep-learning-Classification-and-regression_fig1_334429726
https://www.researchgate.net/figure/Artificial-intelligence-vs-Machine-leaning-vs-Deep-learning-Classification-and-regression_fig1_334429726
https://www.researchgate.net/figure/Artificial-intelligence-vs-Machine-leaning-vs-Deep-learning-Classification-and-regression_fig1_334429726

2.2. Simple Neural Network (NN) 11

FIGURE 2.2: A Simple Neural Network -
https://towardsdatascience.com/machine-learning-for-
beginners-an-introduction-to-neural-networks-d49f22d238f9.

NNs are used in a variety of applications today, including image processing
(e.g. cancer detection, facial recognition), character recognition (e.g. fraud
detection) and forecasting (e.g. stock market prediction, weather forecast-
ing).

2.2.1 Classification Problem with linear boundary

For example, given a simple classification problem with a dataset of two
classes on a 2D space, a NN is capable of effectively determining where to
draw the boundary line to divide the data into two groups, one for each
class.

FIGURE 2.3: A Binary Classification problem -
https://scipython.com/blog/plotting-the-decision-boundary-

of-a-logistic-regression-model/.

https://towardsdatascience.com/machine-learning-for-beginners-an-introduction-to-neural-networks-d49f22d238f9
https://towardsdatascience.com/machine-learning-for-beginners-an-introduction-to-neural-networks-d49f22d238f9
https://scipython.com/blog/plotting-the-decision-boundary-of-a-logistic-regression-model/
https://scipython.com/blog/plotting-the-decision-boundary-of-a-logistic-regression-model/

12 Chapter 2. Theoretical Background

This boundary line can be expressed as a linear equation:

w1 · x1 + w2 · x2 + b = 0 (2.1)

Vector notation can be used to abbreviate the linear equation described above
as follows:

Wx + b = 0, where W = (w1, w2) ∈ R, x = (x1, x2) ∈ R and b ∈ R. (2.2)

The input is referred to as x, the weights as W, and the bias as b.

Each input of coordinates (x1, x2) corresponds to a label, Y, which is what
the NN tries to predict.

Y = label : 0 or 1 (0->blue points, 1->orange points) (2.3)

The prediction is called Ŷ, and it is what the algorithm predicts the label will
be.

Ŷ =

1 if Wx+b≥ 0

0 if Wx+b<0
(2.4)

The points above the line have Ŷ=1 and the points below the line have Ŷ=0.
Moreover, the orange points have Y=1 and the blue points have Y=0. There-
fore, the algorithm aims for Ŷ to closely resemble Y. This means finding an
optimal linear boundary line where the majority of the orange points lie
above it and the majority of the blue points lie below it.

In the case of n columns of data, the space extends to n-dimensions. Here,
the boundary is an n-1 dimensional hyperplane, which is a high dimensional
equivalent of a line in 2D. This n-1 dimensional hyperplane can be expressed
as an equation:

w1 · x1 + w2 · x2 + ... + wn · xn + b = 0 (2.5)

This equation can be abbreviated as:

Wx + b = 0, where W = (w1, w2, ..., wn) and x = (x1, x2, ..., xn). (2.6)

Concerning the prediction, it remains the same as before.

2.2. Simple Neural Network (NN) 13

2.2.2 Perceptron

Artificial neurons are known as perceptrons, which are the building blocks
of NNs. Essentially, a perceptron is just a small graph that encodes the afore-
mentioned equation (2.5, 2.6).

FIGURE 2.4: Perceptron - https://blog.camelot-
group.com/2022/01/neural-networks-perceptron/.

In a perceptron, inputs are weighed separately, summed up, and the sum is
then passed through an activation function to produce an output. Activation
function decides whether a neuron can be activated or not. An in-depth anal-
ysis of the activation functions is provided in section 2.5. The prediction is
obtained as a result of this process.

Ŷ = φ

(
n

∑
i=1

wi · xi + b

)
= φ (Wx + b) , (2.7)

where Ŷ represents the prediction, φ represents the activation function, W
represents a vector of weights, b represents the bias and x represents a vector
of inputs. Prediction values are either 0 or 1, while inputs, weights, and bias
are all real numbers.

Perceptron Algorithm

The perceptron algorithm attempts to correctly classify positive and nega-
tive points, by updating the weights of input signals. In the first step, the
algorithm starts with random weights: w1,. . . ,wn and b, providing an initial
boundary (2.5, 2.6) that separates the data. Then, for each point with coordi-
nates (x1,. . . ,xn), label Y, and prediction Ŷ (2.7):

https://blog.camelot-group.com/2022/01/neural-networks-perceptron/
https://blog.camelot-group.com/2022/01/neural-networks-perceptron/

14 Chapter 2. Theoretical Background

• If the point is correctly classified, do nothing

• If the point is classified negative (Ŷ=0), but it has a positive label (Y=1):

ŵi = wi + α · xi, b̂ = b + α (2.8)

• If the point is classified positive (Ŷ=1), but it has a negative label (Y=0):

ŵi = wi − α · xi, b̂ = b− α (2.9)

where α is the learning rate.

In this way, the boundary moves closer to the misclassified point. This pro-
cedure is repeated until the error (of misclassification) has been minimized
or until a defined number of epochs have passed. The learning rate α is a
tiny number that is used to carefully classify a misclassified point, without
misclassifying any other points.

2.2.3 Non-Linear Regions

In a more realistic model, the data cannot be separated by a linear function.
When describing nonlinear regions, a curve should be used as a boundary.
So, the perceptron algorithm needs to be redefined in a way that it can be
generalized to other types of curves.

As a step in this direction, the Error function is introduced. This function
simply describes the distance between the predicted outcomes and their tar-
get. The next step will be to find the direction in which the model must move
in order to minimize this error (distance). By constantly taking steps to de-
crease the error, the problem can be solved. This method is called Gradient
Descent, and it will be analyzed later. As this method involves tiny steps, the
Error function cannot be discrete, it should be continuous. In this way, the
model is able to detect even very small variations in error and determine in
which direction it can most effectively decrease it.

In order to construct a continuous Error function, a penalty must be assigned
to each point. When a point is misclassified, the penalty is approximately
equal to the distance from the boundary, whereas when a point is correctly
classified, the penalty is almost zero. The total error is obtained by adding
the errors from all the points. So, making very small changes to the line

2.2. Simple Neural Network (NN) 15

parameters causes very small changes in the error function, which results in
a smaller total error.

Additionally, discrete predictions must be replaced by continuous predic-
tions. Hence, the prediction will be regarded as a probability that depends
on the distance from the line. Previously, the model consisted of a positive
and a negative region, but now it encompasses the entire probability space.
This probability space is obtained by combining the linear function (2.5, 2.6)
with a nonlinear activation function (such as sigmoid).

2.2.4 Error Function (Cross-Entropy)

The Maximum Likelihood method picks the model that gives the existing
labels the highest probability. Since the labels are considered independent
events, the probability for a whole arrangement is the product of the proba-
bilities of all the points based on the label they actually are. Thus, the goal is
to maximize the probability.

In order to avoid product, the above concept is converted to summation
by taking the negatives of the logarithms of these probabilities. The nega-
tive logarithm of the probability based on the point’s actual label is a mea-
sure of error at that point. Correctly classified points will have small errors,
whereas those classified incorrectly will have large errors. This concept is
called Cross-Entropy. The total Cross-Entropy can be calculated by summa-
rizing each point’s Cross-Entropy, and it is expressed by the following for-
mula:

Cross_Entropy = −
m

∑
i=1

(yi · ln(pi) + (1− yi) · ln(1− pi)) (2.10)

For more than two classes, the formula of Multi-Class Cross-Entropy is as
follows:

Multi− Class Cross_Entropy = −
n

∑
i=1

m

∑
j=1

(
yi j · ln(pi j)

)
, (2.11)

where m is the number of classes.

As Yi j can be either 0 or 1, this formula ensures that only the negative log-
arithms of the probabilities of the events that have actually occurred are
added.

16 Chapter 2. Theoretical Background

By convention, the Error function is defined as the average of the error func-
tions (Cross-Entropy) from all points rather than as a sum. Additionally, in
NN, the probability of a point being on a given label is actually the prediction.
As a result, Error function for binary classification problems is expressed as
follows:

Error_Function = − 1
m

m

∑
i=1

((1− yi) · ln(1− ŷi) + yi · ln(ŷi)) (2.12)

Due to the prediction’s equation Ŷ (2.7), the formula can be expressed as
follows:

E(W, b) = − 1
m

m

∑
i=1

(
(1− yi) · ln(1− φ(Wxi + b)) + yi · ln(φ(Wxi + b))

)
,

(2.13)
where Yi is the label of the point xi.

In a multi-class classification problem, the Error function is given by the
multi-class Cross-Entropy.

Error_Function = − 1
m

m

∑
i=1

n

∑
j=1

(
yi j · ln(Ŷi j)

)
(2.14)

Therefore, the objective is to minimize Error function.

2.2.5 Gradient Descent

As mentioned previously, this algorithm aims to minimize the error by con-
stantly taking tiny steps in the right direction. By considering the Error Func-
tion as E, the objective is to calculate the gradient of E at a point x=(x1,. . . ,xn).
The gradient of E is, in fact, the vector formed by the partial derivatives of E
with respect to the weights and bias.

∇E = (
∂

∂w1
E, ...,

∂

∂wn
E,

∂

∂b
E) (2.15)

The negative of the gradient actually indicates the direction in which the E
can be decreased the most.

The Gradient Descent algorithm is similar to the perceptron one (2.2.2). It be-
gins with a random weight set: w1,. . . ,wn and b, which produces a boundary
line (2.5, 2.6) and a probability function (2.7). For each point with coordinates

2.3. Deep Neural Network (DNN) 17

(x1,...,xn), the error is calculated and then the weights and bias are updated
as follows:

ŵi = wi − α · ∂

∂wi
E, b̂ = b− α · ∂

∂b
E, (2.16)

where
∂

∂wi
E and

∂

∂b
E are the partial derivatives of E with respect to wi and b

correspondingly and α is the learning rate.

This procedure is repeated until the error is small or until a defined number
of epochs (iterations) have passed. In contrast to the Perceptron algorithm
(2.2.2), Gradient Descent accepts any value between 0 and 1 for Ŷ. Aside from
moving closer to misclassified points, the boundary here also moves further
away from correctly classified points.

2.3 Deep Neural Network (DNN)

Neural Networks combine linear models (perceptrons) into nonlinear mod-
els. Mathematically, each linear model provides a probability for each point.
Each point’s probabilities are weighed and added up, along with a bias. This
result is then converted into a probability by applying an activation function
(such as sigmoid). This approach can be used to solve nonlinear problems.
A NN generally consists of the following layers. The input layer contains
the data that is fed into the model. One or more hidden layers then perform
the necessary computations using inputs from the input layer to produce re-
sults. In the output layer, the results from the previous hidden layer lead to
a final prediction. Layers consist of nodes (perceptrons), and each node is
connected to all the nodes in the next layer by a weight. The complexity of
NN can be increased by adding more (hidden) layers and more nodes to each

FIGURE 2.5: Example of a dense Deep Neural Network (DNN)
- https://tikz.net/neural_networks/.

https://tikz.net/neural_networks/

18 Chapter 2. Theoretical Background

layer. Technically, an improvised NN with multiple hidden layers is a Deep
Neural Network (DNN).

A NN model undergoes a training phase, during which it learns to accom-
plish a particular task and an inference (testing) phase, during which it per-
forms the task it was trained for. The goal of training is to determine which
parameters (Weights, Bias) should be applied among the nodes to accurately
model the input data. This phase consists of two important stages: FeedFor-
ward and Backpropagation.

2.3.1 Feedforward (Full Forward)

The Feedforward process is how NNs produce output from input. This pro-
cess is used to calculate the prediction of a perceptron (2.7). In more compli-
cated NNs with more perceptrons (nodes) and layers, the output (prediction)
is obtained by following the same principle.

Assuming that Xi=[X1,X2,. . . ,Xn] represents the inputs (of the input layer),
wi

1
j represents the weight of node j (j=1,2,. . . ,q) associated with an input i,

and b1
j represents the bias. A nonlinear activation function φ converts values

into probabilities. The output, Y1
j , of a node j in the first hidden layer (h=1) is

given by equation:

Y1
j = φ(

n

∑
i=1

(wi
1
j · Xi + b1

j)) (2.17)

In the subsequent hidden layers and the output layer (h=2,3,. . .), the output
of a node j is expressed by equation:

Yh
j = φ(

m

∑
k=1

(wk
h
j ·Yh−1

k + bh
j)), (2.18)

where k corresponds to a node of the previous layer (h-1), Yh−1
k is the output

of a node k, m indicates the number of nodes in the previous layer and Wk
h
j

represents the weight associated between nodes k and j.

2.3.2 Backpropagation

The feedforward process is followed by calculating the error. Afterward, the
error signal is propagated backwards to all weights and biases, and based on
that, these parameters are updated to get a better model. The Backpropaga-
tion process is based on the Gradient Descent algorithm (2.2.5), in which the

2.3. Deep Neural Network (DNN) 19

gradient of the error function (E) is calculated and a step is taken (by adjust-
ing the network’s weights and biases) towards the negative direction of the
gradient to gradually decrease the error. The process is the same for multi-
layer perceptrons with the exception that the error function is more complex.

Gradients are computed using a technique known as chain rule. For a single
weight Wk

h
j associated with nodes k (of the previous layer h-1) and j (of the

current layer h), the gradient is as follows:

∂E
∂wk

h
j
=

∂E
∂Zh

j
·

∂Zh
j

∂wk
h
j

, (2.19)

where Zh
j refers to the output of a node j (of the current layer h) before apply-

ing an activation function. Zh
j is given by equation:

Zh
j =

m

∑
k=1

(wk
h
j ·Yh−1

k + bh
j) , (2.20)

where m indicates the number of nodes in the previous layer and Yh−1
k is the

output of a node k (of the previous layer h-1) after applying an activation
function.

According to the equation 2.20,
∂Zh

j

∂wk
h
j

is computed as follows:

∂Zh
j

∂wk
h
j
= Yh−1

k (2.21)

Using equations 2.19 and 2.21, ∂E
∂wk

h
j

can be calculated as follows:

(2.19)⇒ ∂E
∂wk

h
j
=

∂E
∂Zh

j
·Yh−1

k (2.22)

Using chain rule method, ∂E
∂Zh

j
can be expressed as follows:

∂E
∂Zh

j
=

∂E
∂Yh

j
·

∂Yh
j

∂Zh
j
=

∂E
∂Yh

j
· φ̂(Zh

j), (2.23)

where φ̂ is the backward activation function and Yh
j is the output of a node j

after applying an activation function.

20 Chapter 2. Theoretical Background

Based on equations 2.22 and 2.23, ∂E
∂wk

h
j

can be expressed in the following way:

(2.22)⇒ ∂E
∂wk

h
j
=

∂E
∂Yh

j
· φ̂(Zh

j) ·Yh−1
k (2.24)

FIGURE 2.6: An illustration of Backpropagation in a NN.

The gradient is computed similarly for a single bias bh
j , except that

∂Zh
j

∂bh
j
= 1.

This results in the following calculation of ∂E
∂bh

j
:

∂E
∂bh

j
=

∂E
∂Zh

j
·

∂Zh
j

∂bh
j
=

∂E
∂Zh

j
· 1 (2.25)

According to the equations 2.23 and 2.25:

(2.25)⇒ ∂E
∂bh

j
=

∂E
∂Yh

j
· φ̂(Zh

j) · 1 (2.26)

In order to continue (backwards) the Backpropagation process to the previ-
ous layer, ∂E

∂Yh−1
j

is calculated as follows:

∂E
∂Yh−1

j

=
∂E

∂Zh
j
·

∂Zh
j

∂Yh−1
j

=
∂E

∂Zh
j
· wk

h
j (2.27)

Backpropagation starts by taking the derivative of the Error function, so the
derivative will vary depending on which error function and activation func-
tion are used. By using sigmoid as the activation function and Binary Cross

2.3. Deep Neural Network (DNN) 21

Entropy as the Error function, ∂E
∂Yh

j
can be calculated as follows:

∂E
∂Yh

j
= − Yi

Ŷh
j

+
1−Yi

ˆ1−Yh
j

(2.28)

When using softmax activation function and Multi-Class Cross Entropy, ∂E
∂Zh

j

is computed as follows:
∂E

∂Zh
j
= Ŷh

j −Yi (2.29)

Update of Parameters

As a result of backpropagation, weights and biases are updated as follows:

ŵk
h
j = wk

h
j − α · ∂E

∂wk
h
j

, b̂h
j = bh

j − α · ∂E
∂bh

j
, (2.30)

where α is the learning rate. As a general rule, learning rate should be a tiny
number in order to make safer steps towards minimizing the error.

Underfitting and Overfitting

FIGURE 2.7: Underfitting and Overfitting -
https://www.educative.io/edpresso/overfitting-and-

underfitting.

Underfitting occurs when the model performs poorly on the training data.
On the other hand, overfitting occurs when the model performs too well on
the training data but fails to generalize to other data. This is a result of the
model fitting too closely to the training data and learning from the noise.

https://www.educative.io/edpresso/overfitting-and-underfitting
https://www.educative.io/edpresso/overfitting-and-underfitting

22 Chapter 2. Theoretical Background

Early Stopping

FIGURE 2.8: Early Stopping -
https://www.analyticsvidhya.com/blog/2020/02/underfitting-

overfitting-best-fitting-machine-learning/.

Early stopping is one of the most widely used methods for preventing over-
fitting. During the training phase, a small part of the training dataset is used
for validation (testing during training). In this method, the training process
continues until the validation error stops decreasing and starts increasing.

2.4 Optimization algorithms for updating network

parameters

Although the classical Gradient Descent update rule (described in 2.30) is a
powerful algorithm, it suffers from severe limitations in real-world scenarios
with growing datasets. Since this method is applied to every data point in
the dataset, it will become slower as the dataset grows, so the time to conver-
gence will increase. Furthermore, as dataset grows, memory requirements
increase. As a way to overcome Gradient Descent’s limitations and speed
up convergence in large datasets, Stochastic Gradient Descent (SGD) [14]
was developed. SGD is a probabilistic approximation of Gradient Descent.
Rather than calculating the gradient for the entire dataset, SGD calculates the
gradient for a randomly selected subset of data.

2.4.1 Adam Optimization Algorithm

In SGD update method, a single learning rate is maintained for all param-
eter updates, and this learning rate remains constant during training. On

https://www.analyticsvidhya.com/blog/2020/02/underfitting-overfitting-best-fitting-machine-learning/
https://www.analyticsvidhya.com/blog/2020/02/underfitting-overfitting-best-fitting-machine-learning/

2.4. Optimization algorithms for updating network parameters 23

the other hand, the Adam optimization algorithm [15] computes individ-
ual adaptive learning rates for each parameter from estimates of first and
second moments of the gradients. Adam combines the advantages of two
popular methods: Adaptive Gradient Algorithm (AdaGrad) and Root Mean
Square Propagation (RMSProp). AdaGrad [16] works well with sparse gra-
dients. RMSProp (introduced by Geoffrey Hinton et al. [17]) is an optimiza-
tion method closely related to Adam that works well in on-line and non-
stationary settings. While RMSProp adapts parameter learning rates based
on the average of first moment of the gradient (the mean), Adam uses the
average of first and second moment of the gradient (the mean and the un-
centered variance).

After backpropagation is completed, Adam optimization algorithm begins
by getting the gradients of parameters (gt). To accelerate the Gradient De-
scent algorithm, Adam calculates exponential moving averages of the gradi-
ent (mt) and the squared gradient (vt). The moving averages themselves are
estimates of the first moment (the mean) and the second raw moment (the
uncentered variance) of the gradient. By using averages, the algorithm con-
verges towards minimum more rapidly. On a given training iteration t, the
moving averages are calculated in equations 2.31 and 2.32, based on hyper
parameters β1, β2 and gradient gt. The β1, β2 ∈ [0, 1) control the exponential
decay rates of these moving averages.

mt = β1 ·mt−1 + (1− β1) · gt (mean of the gradient) (2.31)

vt = β2 · vt−1 + (1− β2) · g2
t (uncentered variance of the gradient) (2.32)

Since these moving averages are initialized as vectors of 0’s, they tend to
be biased towards zeros, especially during the initial timesteps, and espe-
cially when the decay rates are small (i.e. β1, β2 ≈ 1). This problem is easily
counteracted by computing bias-corrected mt (in equation 2.33) and vt (in
equation 2.34). Contrary to Adam optimization algorithm, RMSProp lacks a
bias-correction term, which may lead to very large stepsizes and often diver-
gence. This is another one difference between these two methods.

m̂t =
mt

1− βt
1

(bias-corrected mean of the gradient) (2.33)

v̂t =
vt

1− βt
2

(bias-corrected uncentered variance of the gradient) (2.34)

24 Chapter 2. Theoretical Background

The final step (2.35) concerns the update of parameters, based on the calcu-
lated bias-corrected moving averages with a step size α.

wt = wt−1 − α · m̂t√
v̂t + ϵ

(2.35)

For the tested machine learning problems, good default settings are α =

0.001, β1 = 0.9, β2 = 0.999 and ϵ = 10−8.

2.5 Activation Functions

Nonlinear functions are the most commonly applied activation functions. A
key purpose of an activation function is to introduce non-linearity, making
the NN model capable of learning and performing more complex tasks.

2.5.1 Sigmoid / Logistic

As an input, the sigmoid activation function takes a real value, and as an
output it returns a value between 0 and 1. So, it is commonly used to predict
probabilities in models for binary classification problems.

φ(x) =
1

1 + e−x , range:(0,1) (2.36)

FIGURE 2.9: Sigmoid Activation Function -
https://towardsdatascience.com/activation-functions-neural-

networks-1cbd9f8d91d6.

https://towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6
https://towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6

2.5. Activation Functions 25

2.5.2 Softmax

The softmax activation function [18] is a generalization of the logistic acti-
vation function and it is appropriate for multi-class classification problems,
being commonly used in the output layer.

φ(x)i =
exi

∑K
j=1 exj

, for i = 1, ..., K and x = (x1, ..., xK) ∈ RK. (2.37)

2.5.3 Rectified Linear Unit (ReLU)

In DNN, ReLU is the most common activation function. It turns any neg-
ative input into zero, while it outputs any positive input as it is. ReLU’s
operation is similar to that of a biological neuron. It provides the NN with
computational efficiency due to its simple calculation (without an exponen-
tial function) and enhanced sparsity because approximately half of the units
are deactivated (having a non-positive input). Furthermore, it is less likely
to suffer from vanishing gradient problem [19], since it only saturates in one
direction, compared to the sigmoid activation function. This problem occurs
when training an ANN using backpropagation based on gradient descent
method, in cases where the gradient is too small, preventing the weight from
updating its value.

φ(x) =

0 for x<0

x for x≥ 0
, range : [0, ∞) (2.38)

FIGURE 2.10: Rectified Linear Unit (ReLU) -
https://www.researchgate.net/figure/ReLU-activation-

function_fig7_333411007.

https://www.researchgate.net/figure/ReLU-activation-function_fig7_333411007
https://www.researchgate.net/figure/ReLU-activation-function_fig7_333411007

26 Chapter 2. Theoretical Background

An important drawback of ReLU is when many neurons receive only neg-
ative inputs, resulting in output values of 0. Gradients will not flow in this
case (will be 0), and therefore weights will not be updated. As a result, a large
part of the model becomes inactive, causing the model to be less effective in
training. This problem is known as “Dying ReLU problem“.

2.5.4 Leaky Rectified Linear Unit (Leaky ReLU)

Leaky ReLU, an improved version of ReLU that involves a small slope for
negative values, can be used to solve "Dying ReLU problem". When the input
is negative, this activation function returns a small negative number (0.01
times the input) instead of 0. In this way, it overcomes the problem of dead
neurons.

φ(x) =

0.01 · x for x<0

x for x≥ 0
, range : [−∞, ∞) (2.39)

FIGURE 2.11: ReLU vs Leaky ReLU -
https://towardsdatascience.com/activation-functions-neural-

networks-1cbd9f8d91d6.

https://towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6
https://towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6

27

Chapter 3

Related Work

The purpose of this chapter is to discuss the related work of certain bio-
inspired models and techniques, as well as our thesis methodology.

3.1 Brain-Inspired models

The growth of ANNs has allowed us to make tremendous advances in many
fields. ANNs are generally derived from biology. However, they are biologi-
cally inaccurate and fail to replicate the actual mechanisms of neurons in our
brain. Considering this fact along with the saturation of ANN research, it has
become imperative to gain a deeper understanding of biological NNs.

3.1.1 Spiking Neural Networks

In theory, the transmission of signals from neurons to their target tissues is
mediated by electrical impulses. When a neuron is electrically stimulated by
others, it generates a voltage pulse at the soma which is called nerve impulse
or action potential or spike. In NN, information is mainly transferred by
spikes. Signals are propagated along neurons when spikes occur. As a result,
spiking neural networks (SNN) [20] were developed to mimic biological NN
more closely by using neurons that are more biologically realistic. In con-
trast to ANNs, which operate with continuous values, SNNs operate with
discrete events (spikes) that occur at specific points in time. At any given
time, each neuron has a value that corresponds to the electrical potential of
biological neurons. A neuron’s value can increase or decrease according to
differential equations that represent various biological processes, including
the membrane potential [21] of the neuron. When the value of a neuron ex-
ceeds a certain threshold, it spikes (fires), sending a signal to neighbouring
neurons, which respond by changing their values. Then, that neuron’s value

28 Chapter 3. Related Work

will immediately fall below its average, mimicking the refractory period of
a biological neuron. According to theory, the refractory period determine
the maximum frequency at which a single neuron can send action potentials.
After some time, the neuron’s value will gradually return to its average.

FIGURE 3.1: Plot of a typical action potential
(nerve impulse) shows its various phases as the ac-
tion potential passes a point on a cell membrane -

https://en.wikipedia.org/wiki/Action_potential.

Several computational models have been developed using SNN, such as the
Hodgkin and Huxley(HH) and the Izhikevich model. Leaky Integrate-and-
Fire (LIF) is the most commonly used model due to its simplicity, and ability
to model several hundreds of neurons.

3.1.2 Architecture for a hybrid LIF SNN with dendrites and

plasticity rules

Emmanouil Kousanakis, Apostolos Dollas et al. [22] presented a highly effi-
cient FPGA-based architecture for a hybrid LIF model, which is implemented
as a two-layer NN with dendrites and two learning rules (BCM and home-
ostatic plasticity). Their model analyses in detail the level of synapses and
dendrites and can model generic neuron characteristics (mechanisms) from
different areas of the cerebral cortex. Furthermore, they map sparse intercon-
nections into a well defined memory structure which can be used to stream

https://en.wikipedia.org/wiki/Action_potential

3.1. Brain-Inspired models 29

data from an external memory. Using external memory to feed the FPGA
enables different interconnection schemes to be initialized without requiring
system synthesis.

3.1.3 Bridge between ANN and SNN with spiking neural unit

Despite their success in a few specific applications, SNNs lack a general uni-
versal approach to quickly designing and training architectures that can be
applied to many other situations. Thus, it is unclear how to effectively scale
them up to achieve high accuracy for common machine learning tasks and
to materialize the benefits of the low-power neuromorphic hardware. The
work of Stanisław Woźniak, Angeliki Pantazi et al. [23] bridges ANN and
SNN architectures by proposing a spiking neural unit (SNU) that incorpo-
rates the biologically inspired dynamics of a spiking neuron of the LIF type
in the form of a novel ANN unit. The SNU may operate in the discrete time
domain as SNN, using a step function activation, or in the non-spiking ANN
regime (soft variant of SNU), using continuous activations. In this way, SNU
combines ANN acceleration approaches (that can be scaled to deep archi-
tectures) with energy-efficient neuromorphic SNN. In comparison to state-
of-the-art ANNs, SNU-based networks perform competitively or better re-
garding training. Additionally, they propose an in-memory hardware im-
plementation with in-the-loop training methodology using the SNU concept
and backpropagation through time (BPTT) [24]. This implementation enables
a highly efficient in-memory acceleration of the synaptic operations.

3.1.4 Speech recognition using bio-inspired Neural Networks

The work of Thomas Bohnstingl, Ayush Garg et al. [25] focuses on a biological-
inspired automatic speech recognition system (ASR). Their architecture is
based on a deep learning recurrent neural network (RNN) [26] approach
called RNN transducer (RNN-T), which employs long short-term memory
(LSTM) units [27]. They introduce novel neural connectivity concepts emu-
lating the axo-somatic and the axo-axonic synapses. In their work, the LSTM
units have been replaced with aforementioned SNU variants, which are sim-
pler and can significantly reduce computational costs and latency by 50%
and 40%, respectively. Moreover, this architecture provides competitive per-
formance compared to its LSTM-based counterpart.

30 Chapter 3. Related Work

3.1.5 Novel online learning algorithmic framework for Deep

Neural Networks

Typically, most of the bio-inspired models are trained with the error BPTT
algorithm. Although BPTT-trained networks have shown significant suc-
cess, this algorithm has severe limitations. In particular, it involves offline
computation of the gradients due to the need to unroll the network through
time. A biological NN, on the other hand, is capable of continuously adapt-
ing through online learning (in other words, processing and learning simul-
taneously from a continuous input stream). In order to approach conceptu-
ally the way the brain adapts to changing environmental conditions, online
learning algorithms were developed for calculating the parameters’ updates
in real time as the input data arrives. The first online learning algorithms [28]
had higher time complexity than BPTT, which explains why they remained
rarely used in practice. The work of Thomas Bohnstingl, Stanisław Woźniak
et al. [29] proposes a novel online learning algorithmic framework for deep
RNNs and SNNs, called online spatio-temporal learning (OSTL). In general,
there are two types of gradient flows in gradient-based training of RNNs.
Gradients flowing between units within the same time step, and gradients
flowing between units across different time steps. Their learning methodol-
ogy proposes the biologically inspired separation of these gradients into two
components: spatial and temporal. OSTL enables efficient online training
of deep feed-forward SNN architectures with low complexity and compara-
ble performance to BPTT. For shallow SNNs, OSTL is gradient equivalent to
BPTT. Furthermore, OSTL has been further generalized to deep RNNs com-
prising spiking neurons or more complex units, such as LSTMs, demonstrat-
ing competitive accuracy in comparison with BPTT.

3.1.6 Novel biologically inspired optimizer for both ANN and

SNN training

As compared to mammals’ neural circuits, ANNs have a significantly sim-
plified structure and dynamics, which largely explains their limitations. In
backpropagation-based ANN training, several key mechanisms are not mod-
eled, including synaptic integration and local regulation of weight strength.
Inspired by these mechanisms, Giorgia Dellaferrera, Stanisław Woźniak et al.
[30] proposed GRAPES (Group Responsibility for Adjusting the Propagation
of Error Signals), a novel biologically inspired optimizer for both ANN and

3.2. Thesis Approach 31

SNN training. GRAPES quantifies the responsibility of each node in the net-
work, as a function of the local weight distribution within a layer. When ap-
plied to gradient-based optimization algorithms, GRAPES provides a simple
and efficient way to dynamically adjust the error signal at each node and to
enhance the updates of the most relevant parameters. Their approach avoids
additional memory penalties and is more biologically plausible than other
optimizers because they do not store parameters from previous steps. They
show that this biologically inspired mechanism improves the training of fully
connected neural networks (FCNNs) by systematically accelerating conver-
gence, increasing inference accuracy, and mitigating catastrophic forgetting.
In addition, convolutional neural networks (CNNs) and SNNs perform bet-
ter on temporal data as a result of their approach. These results validate the
hypothesis that biologically inspired ANN and SNN models demonstrate su-
perior performance in software simulations. Moreover, this mechanism is
optimally suited for dedicated hardware implementations.

3.2 Thesis Approach

The bio-inspired models are typically implemented using SNNs. Alterna-
tively, they can be built upon the SNUs, which allows us to leverage the bi-
ologically inspired neural dynamics of the spiking neuron in deep learning.
The thesis model, however, is based on a simple ANN. We aim to increase
the bio-inspiration of a typical ANN by adopting dendritic-structure and
receptive field. Using a dendritic-structure, the artificial neuron is divided
into its soma and its dendrites. Since dendritic-structure provides sparsity to
ANNs, fewer parameters are required to train them, thereby reducing power
consumption. Concerning the receptive field, it is inspired by the human
visual system and offers structured connectivity, indicating that each neu-
ron is associated with a neighborhood of inputs. One of the most interest-
ing aspects of this bio-inspired model is its power efficiency and potential
application to systems with limited resources (such as portable devices, mo-
bile phones, etc.). As a further improvement, Adam optimization algorithm
(2.4.1) is used for updating training parameters instead of classical gradient
descent (2.30). Adam accelerates convergence in large datasets. Moreover, by
computing individual adaptive learning rates for each parameter, this algo-
rithm tends to be more bio-inspired, as dendrites in biological neurons sup-
port the generation of their own regenerative events (dendritic spikes). This
thesis goal is to design and implement an FPGA-based architecture for this

32 Chapter 3. Related Work

bio-inspired ANN that speeds up training and reduces power/energy con-
sumption further by exploiting the FPGAs’ ability of high parallelism and
power efficiency.

33

Chapter 4

System Modeling

In this chapter, thesis neuro-inspired ANN model will be explained exten-
sively, providing a description of its architecture, its functionality and its con-
nectivity structure. This model was introduced and implemented in Keras by
the Poirazi lab of IMBB-FORTH. The focus of this implementation is the train-
ing process for this bio-inspired ANN model. The dataset used was MNIST.
There were, however, some ambiguities in the high-level Keras’ implementa-
tion due to its abstract nature. Therefore, a lower-level implementation was
required in order to analyze and understand this model in greater detail. For
this purpose, a Numpy implementation of this model was developed in this
thesis. In this chapter, we will describe in detail the Numpy implementation
as well as the basic procedures involved in training this model. Finally, pro-
filing Numpy’s implementation will allow us to examine, in terms of execu-
tion time and memory, the functions of the training process in order to iden-
tify those routines that consume disproportionately large amounts of time or
memory.

4.1 Neuro-inspired ANN model

A neuro-inspired ANN model was introduced by the Postdoctoral Researcher
S. Chavlis and the Research Director P. Poirazi, both from the Poirazi lab of
IMBB-FORTH. Certain bio-inspired features are incorporated into the pro-
posed architecture, such as the dendritic-structure and the receptive field
(RF). By increasing the bio-inspiration in a typical ANN, we aim to achieve
significant resource savings. Regarding the learning rule, it includes two dif-
ferent approaches. As far as the first strategy is concerned, classic backprop-
agation (2.3.2) is fully applied. In the second approach, a ‘Covariance rule’

https://www.imbb.forth.gr/en/personel-directory/item/1357-chavlis-spyridon
https://www.imbb.forth.gr/en/research-en/item/73-panayiota-poirazi
http://dendrites.gr/
https://www.imbb.forth.gr/en/

34 Chapter 4. System Modeling

(plasticity rule) is applied to the first layer of the network, while backpropa-
gation is used only at the remaining layers. Specifically, the presented thesis
addresses the first strategy of learning rules, with the emphasis on how to
integrate the bio-inspired features into a typical ANN so that the training
process can be accelerated and the power consumption reduced. The ap-
proach with the ‘Covariance rule’ is implemented in the thesis of Nikoletta
Palatiana, providing an in-depth report on it with interesting results. Fur-
thermore, Adam optimization algorithm is selected as the method for up-
dating the network’s parameters (Weights and biases) rather than classical
gradient descent. This update method computes individual adaptive learn-
ing rates for each parameter. So, it tends to be more bio-inspired since the
information is encoded separately from its dendrites and not entirely from
the neuron.

4.1.1 Bio-inspired Features

Dendritic-Structure

Dendrites are thin processes that extend from the cell body of neurons and
are responsible for receiving signals from neighboring neurons. Additionally,
dendrites possess passive properties that attenuate incoming signals and ac-
tive mechanisms capable of generating dendritic spikes. Dendritic spikes
enable nonlinear signal processing. Activation functions can be used to ap-
proximate these dendritic features mathematically. Thus, dendrites act as
computing nodes. An artificial neuron in a typical ANN is represented as a
single node, whose output (prediction 2.7) is computed as a weighted sum
of all inputs (all-to-all manner) from the previous layer, followed by an ac-
tivation function. In this way, millions of trainable parameters are required.
As far as the presented model is concerned, it is equipped with dendritic-
structure, whereby the artificial neuron is divided into the soma and its den-
drites. In particular, each artificial neuron is converted to a 2-layer node
structure (soma - dendrites) and produces its output only through its den-
drites. Each soma is connected only to its dendrites, and each dendrite is only
connected to its synapses. This feature provides sparsity to our model. As
a result, fewer trainable parameters are required compared to typical fully-
connected ANNs, allowing significant resource savings.

https://www.linkedin.com/in/palatiana-nikoletta/
https://www.linkedin.com/in/palatiana-nikoletta/

4.1. Neuro-inspired ANN model 35

FIGURE 4.1: Dendritic-Structure Layer

Receptive Field (RF)

In the human visual system, each neuron captures a different piece of infor-
mation from the field of view. A second bio-inspired feature, the so-called
receptive field (RF), is derived from this fact. This feature offers structured
connectivity. In particular, each soma corresponds to a neighborhood of the
entire input and its dendrites receive inputs from smaller neighborhoods
around the soma’s one. Regarding the sampling of the input, samples are
selected mostly from the center of the image, since it is most likely to contain
some useful information there. In section 4.1.3, receptive field is elaborated
and implemented.

4.1.2 Reference Model Architecture

The model consists of 2 dendritic-structure layers. However, a dendritic-
structure layer is equivalent to 2 layers of a typical ANN, because the neuron
is divided into the soma and its dendrites, as previously mentioned.

• 1st dendritic-structure layer: 128 somas with 16 dendrites per soma
(2048 dendrites in total) and 9 synapses per dendrite.

• 2st dendritic-structure layer: 16 somas with 8 dendrites per soma (128
dendrites in total) and 9 synapses per dendrite.

Among activation functions, ReLU is preferred over sigmoid (2.5.1) and oth-
ers due to the computational and other factors discussed in section 2.5.3.

36 Chapter 4. System Modeling

FIGURE 4.2: Model Architecture

Nevertheless, it suffers from "Dying ReLU problem" that can be solved by an
improved version of it, called Leaky ReLU (2.5.4). As a result, Leaky ReLU
will serve as the activation function in these layers. In addition, there is an
output layer, at which the scores are converted into probabilities through the
application of the softmax function (2.5.2). The softmax layer is commonly
used as the final layer of an ANN model, since it is appropriate for multi-
class classification tasks. Therefore, the model contains 5 layers. As input,
this model uses images from the MNIST dataset [31]. In MNIST, each input
image has a size of 28x28 pixels, which is converted to a one-dimensional ar-
ray of 784 pixels. Detailed information about each layer can be found in table
4.1, which includes the number of input and output nodes within parenthe-
ses. Moreover, the thesis model architecture is illustrated in figure 4.2.

4.1.3 Implementation of the Connectivity Structure

The aforementioned bio-inspired features provide the presented model with
a sparse connectivity structure, which is implemented by utilizing masks on

4.1. Neuro-inspired ANN model 37

TABLE 4.1: Detailed description of each layer in the model.

Input nodes Output nodes(Units) Activation Function

1 Inputs (784) Dendrites (2048) Leaky ReLU
2 Dendrites (2048) Somas (128) Leaky ReLU
3 Somas (128) Dendrites (128) Leaky ReLU
4 Dendrites (128) Somas (16) Leaky ReLU
5 Somas (16) Output Classes (10) Softmax

the weights. In particular, each weight matrix is multiplied by a mask ma-
trix. Masks are created as part of the initialization process and are assumed
to remain stable throughout the entire process, while connectivity-structure
changes in neuroscience.

The mask of the first layer represents the receptive field (4.1.1) and deter-
mines the connectivity between inputs and dendrites. It is constructed in
three steps (nested loops). As a first step, each soma is assigned to a specific
input-pixel using a semi-random allocation, in which samples from the cen-
ter of the image are selected more frequently (70%) than from other areas.
Each selected input-pixel serves as the center pixel of a neighborhood that
refers to its corresponding soma. Then, the neighbors’ values of each soma
are obtained around its center pixel, seeking as many neighbors as the num-
ber of dendrites per soma (16 neighbors). Each soma’s neighbor corresponds
to one of its 16 dendrites and serves as the center pixel of a distinct neighbor-
hood that refers to the synapses of that dendrite. In the following step, the
neighbors’ values of each dendrite are also obtained around its center pixel,
in this case seeking 9 neighbors, as the number of synapses.

FIGURE 4.3: Receptive Field

38 Chapter 4. System Modeling

This process is depicted in figure 4.3, showing an example taken from a sec-
tion of the image (which normally has 28x28 pixels). The red pixels indicate
the neighborhood of a soma. Each one of the 16 red pixels (C1,C2,...,C16) cor-
responds to a dendrite. For each red pixel, a blue neighborhood of 9 pixels
is formed, representing the synapses of the corresponding dendrite. In the
figure, the 9 blue pixels indicate synapses on dendrite C1. The same proce-
dure is followed for all dendrites of each soma. By using this method, each
dendrite is connected to 9 input-pixels.

In the second layer, the mask forms dendritic to somatic connections by con-
necting each soma with 16 consecutive dendrites. The following mask (of the
third layer) indicates the transition from the first dendritic-structure layer to
the second one, connecting each dendrite randomly with 9 somas of the pre-
vious layer. The mask for the fourth layer works similarly to the mask for
the second layer, except that each soma is connected to 8 dendrites. Finally, a
mask is not required at the fifth layer.

4.2 Software Implementations - Tools used (Keras

- Numpy)

The software implementations include both the training and inference (or
testing) procedures, along with the necessary initialization. The training pro-
cedure (figure 4.4) is divided into three main stages: Full-Forward propaga-
tion (Feed-Forward - 2.3.1), Backpropagation (2.3.2), and parameter updat-
ing (Adam Algorithm 2.4.1). The inference procedure consists only of Full-
Forward propagation.

FIGURE 4.4: The basic steps of training procedure

4.2. Software Implementations - Tools used (Keras - Numpy) 39

The model was first implemented by S. Chavlis in Keras. Keras [32] is a
high-level neural network Application Programming Interface (API) writ-
ten in Python. It runs on top of TensorFlow, an open-source machine learn-
ing platform that offers multiple abstraction levels for building and training
models. Keras supports fast experimentation with DNNs by providing nu-
merous implementations of commonly used NN building blocks. Based on
Keras implementation, Numpy was used to implement the model at a lower
level. Numpy [33] is a Python library for handling large, multidimensional
arrays and matrices rapidly and easily. In addition, it provides many com-
puting tools (such as mathematical functions, random number generators,
linear algebra routines, and more) that can be applied to these matrices and
arrays.

Initially, a validity check was conducted on the given Keras code, since it
was in the testing stage. The simplicity of Keras allowed us to experiment
quickly with the bio-inspired model and gain a basic understanding of its
features. There were, however, some ambiguities in the Keras’ implementa-
tion due to its abstract nature. Therefore, a lower-level implementation was
necessary. The Numpy implementation is able to provide deeper insight into
the model’s features and function.

4.2.1 Hyperparameter and Training Configuration

A hyperparameter is a parameter that controls the learning process in ma-
chine learning. Our bio-inspired ANN model is trained with the following
settings that were used in Poirazi lab’s Keras implementation as the most
appropriate ones:

• Batch Size (16): The number of training samples that will be processed
in one training iteration.

• Number of Epochs (30): The number of times a neural network is trained
on a whole dataset.

• Number of Classes (10): Number of output nodes in the last layer

• Learning Rate (0.001): It controls how fast the neural network can learn.
Using a small number as learning rate allows us to minimize network
error by taking safer steps.

• Validation Split (0.2): It is the percentage of total training data that will
be used for validation.

https://www.imbb.forth.gr/en/personel-directory/item/1357-chavlis-spyridon

40 Chapter 4. System Modeling

• Leaky ReLU alpha (0.1): Leaky ReLU (2.5.4) allows a small slope for
negative values (f(x) = alpha * x if x < 0, f(x) = x if x >= 0).

• Shuffle (True) : Whether to shuffle the training data before each epoch.

• ReduceLROnPlateau Callback (applied - patience=5 epochs): To reduce
learning rate when a metric (validation error) has stopped improving.

• Early Stopping Callback (applied - patience=10 epochs): To stop train-
ing when a monitored metric (validation error) has stopped improving.
It is explained in 2.3.2.

• Adam Optimizer (enabled): Adam optimization algorithm is explained
in section 2.4.1.

• Error function (Multi-class Cross entropy 2.14): It measures the differ-
ence between two probability distributions for a given random vari-
able/set of events.

• Accuracy: It measures the number of correct predictions made by our
model in relation to the total number of predictions made.

Data-set

The MNIST database of handwritten digits [31] is used for training and test-
ing. It includes:

• Training set of 60000 examples. According to validation split hyper-
parameter (20%), 48000 examples are used for training and 12000 for
validation.

• Test set of 10000 examples.

• Images (Inputs) of 28x28 pixels. Each input image of (28,28) shape is
converted to a one-dimensional input array of 784 input pixels.

Training is conducted in batches of 16 (Batch_size) images. Rather than pass-
ing one image of 784 pixels as an input per training iteration, we pass 16 im-
ages of 784 pixels. In addition, at the end of every epoch, a validation process
is carried out using a separate set of images, in order to evaluate the progress
of the training. After validation is complete, we use some callbacks, such as
ReduceLROnPlateau and Early Stopping, to prevent underfitting and over-
fitting (see section 2.3.2). These specific callbacks are triggered when valida-
tion error stops improving for a certain number of epochs, thereby reducing

4.3. Numpy Implementation 41

the learning rate or stopping the training earlier. Callbacks in Numpy, along
with the validation process, have been implemented by Nikoletta Palatiana.

Data Type

In the Keras implementation developed by the Poirazi lab, the data type
used is float. Our Numpy implementation maintains this choice of data type,
since the goal of implementing the bio-inspired model in Numpy is to gain
a deeper understanding of its features and its training process rather than to
achieve optimizations. In the next chapter of FPGA design and implementa-
tion (in section 5.6.4), we will discuss in detail our exploration to determine
the most appropriate data type to trade off precision of results with resource
utilization.

4.3 Numpy Implementation

Our approach is to use the high-level Keras implementation of Poirazi lab
as a reference for developing a lower-level Numpy implementation in order
to gain a more comprehensive understanding of its features and its training
process rather than to optimize it. In the first part of the code, the MNIST
dataset is downloaded and converted from ubyte files to numpy arrays. This
conversion facilitates the processing of data. A float32 data type is used for
these numpy arrays, and their values are normalized to [0,1]. As far as the
data labels (targets) are concerned, they are converted from target vectors to
categorical targets (binary class matrices). Following that, the masks are con-
structed as described previously (4.1.3). Model architecture (4.1) is defined as
a list that contains information about each layer. In particular, this list (called
architecture) specifies each layer’s output nodes (units), activation function,
mask, and initialization method for its parameters.

4.3.1 Definition of Numpy mathematical functions

The calculations in numpy implementation were performed using a few func-
tions, which are explained below.

• numpy.dot(A,B) [34]: It is important to note that in our case, both A
and B are 2D arrays, so this function performs matrix multiplication on
the matrices A and B.

https://www.linkedin.com/in/palatiana-nikoletta/

42 Chapter 4. System Modeling

• numpy.multiply(A,B) [35]: It is used to compute the element-wise mul-
tiplication of the arrays A and B.

• numpy.sum(A, axis=0, keepdims=True) [36]: It returns the sum of ar-
ray elements over a given axis. The axis=0 in our case refers to the the
rows (first dimension). So, this function will sum all numbers along the
rows. When keepdims is selected (True), the axis 0 (in this specific case),
which would normally be ’lost’, is kept as a dimension of size one.

• numpy.ndarray.T [37]: T attribute is used to return the transpose of a
given array. By transposing a matrix, the row becomes the column and
vice versa.

4.3.2 Generation of parameters (Initialization phase)

In the initialization process, weight matrices and bias vectors are created for
each layer, depending on its input and output shapes. In the first four layers,
the weights are generated using the ’He normal’ initialization method [38],
where samples are drawn from a truncated normal distribution centered at
zero with standard deviation given by stddev =

√
2

f an_in . For the final layer,
the ’Glorot uniform’ initializer (or Xavier uniform initializer) [39] is applied,
which generates weights based on samples drawn from a uniform distribu-
tion within [-limit, limit], where limit =

√
6

(f an_in+ f an_out) . Bias vectors are
initialized with zeros at each layer. Selecting an initializer closely relates to
selecting an activation function. "Glorot" (or "Xavier") initialization is appro-
priate for NN layers with sigmoid activations. This initializer is also suitable
for the final layer of our model since softmax is a generalization of sigmoid.
The "he" initialization is a modified version of "Glorot", which was specifi-
cally designed for layers using ReLU activation functions. So, it is used in the
first four layers, where leaky ReLU is used (an improved version of ReLU).
Afterwards, each weight matrix is filtered (by element-wise multiplication)
with its corresponding mask. The weights of non-desired connections will
therefore be zero. During the initialization process, all masked weight ma-
trices and bias vectors are stored in a list called parameters. Using numpy
(4.1), each weight matrix is filtered (with its corresponding mask) and stored
as follows:

parameters[”W”+ str(layer_id)] = np.multiply(parameters[”W”+ str(layer_id)], Mask)
(4.1)

4.3. Numpy Implementation 43

4.3.3 Full-Forward propagation

As described in Section 2.3.1, Full Forward Propagation is used to infer the
outcome in NN models. Each layer’s output is calculated sequentially to de-
termine the network’s outcome. A layer’s output is derived from equations
2.17 and 2.18. Specifically, it is calculated by multiplying its input matrix
(Y_prev) by its weight matrix (W_curr) and adding its bias vector (b_curr).
This result (Z_curr) is then passed through an activation function. The di-
mensions of these matrices are given in table 4.2. The above calculation is
carried out as follows in Numpy:

Z_curr = numpy.dot(Y_prev, W_curr) + b_curr (4.2)

Y_curr = activation_ f unction(Z_curr), (4.3)

where numpy.dot (explained in 4.3.1) performs matrix multiplication on ma-
trices W_curr and Y_prev. Y_prev corresponds to the input of the network in
the first layer.

The Full Forward propagation algorithm (17) executes the equations 4.2 and
4.3 for each single layer. These equations provide the layer’s output before
and after the activation function (Z_curr and Y_curr respectively). With the
exception of the first layer, which is fed by the network’s input from dataset,
each layer is fed by the output Y_prev (’activated’ output) of its preceding
layer. Before these equations can be performed in each layer of Full Forward,
the corresponding activation function, weight matrix and bias vector must be
loaded. The architecture list and the parameters list are used to retrieve these,
respectively. Full Forward returns a list called forward_outputs containing
each layer’s outputs. Figure 4.5 illustrates this algorithm.

TABLE 4.2: Detailed description of each matrix dimensions in
Full Forward propagation. In the first layer, Y_prev refers to

the input of the network.

Forward Matrices Dimensions

1 Y_prev (Layer’s Input) [Batch_Size, Input_nodes]
2 W_curr [Input_nodes, Output_nodes]
3 b_curr [1, Output_nodes]
4 Z_curr [Batch_Size, Output_nodes]
5 Y_curr [Batch_Size, Output_nodes]

44 Chapter 4. System Modeling

FIGURE 4.5: Full-Forward propagation in the model

Algorithm 1 Full Forward propagation

1: procedure FULL_FORWARD(Input_Value, init_parameters, architecture)
2: Y_curr ← Input_Value
3: for layer_id← 1 to 5 do ▷ for each single layer
4: Y_prev← Y_curr
5: activation← architecture[”activation” + str(layer_id)]
6: W_curr ← parameters[”W” + str(layer_id)]
7: b_curr ← parameters[”b” + str(layer_id)]
8: Z_curr ← np.dot(Y_prev, W_curr) + b_curr
9: if activation == ”leaky_relu” then

10: Y_curr ← leaky_relu(Z_curr)
11: else if activation == ”so f tmax” then
12: Y_curr ← so f tmax(Z_curr)
13: end if
14: f orward_outputs[”Z” + str(layer_id)]← Z_curr
15: f orward_outputs[”Y” + str(layer_id)]← Y_curr
16: end for
17: return f orward_outputs
18: end procedure

4.3. Numpy Implementation 45

4.3.4 Backpropagation

The goal of backpropagation is to minimize the network’s error by adjust-
ing its weights and biases. Gradients in the error function relating to these
parameters determine the level of adjustment. The backpropagation process
is described in detail in section 2.3.2. The first step of backpropagation is to
calculate the derivative of the error function. In our model, softmax is used
as the activation function of the last layer and multi-class Cross-Entropy is
used as the error function. In this case, ∂E

∂Z can be directly calculated based
on equation 2.29, skipping the calculation of ∂E

∂Y . Using Numpy, it can be cal-
culated as shown in equation 4.7. Using the calculated ∂E

∂Z , the last layer’s
∂E
∂W and ∂E

∂b , as well as the ∂E
∂Y_prev , are calculated. The gradient for W, ∂E

∂W , is
calculated using the equation 2.22, which is based on the chain rule method.
The chain rule method is illustrated in Figure 2.6 for a better understanding
of backpropagation. In Numpy, this equation is expressed as follows (4.4):

dW_curr = numpy.dot(Y_prev.T, dZ_curr)/Batch_Size , (4.4)

where numpy.dot function and attribute T are described in section 4.3.1. Y_prev
refers to the output of the previous layer, or, in other words, the input of the
current layer.

Similarly, the gradient for bias, ∂E
∂b , is computed as shown in equation 2.25.

Numpy implements this equation as follows (4.5):

db_curr = numpy.sum(dZ_curr, axis = 0, keepdims = True)/Batch_Size ,
(4.5)

where numpy.sum function is explained in section 4.3.1.

During backpropagation, the error signal is propagated (backwards) from
each layer to the previous one. This can be accomplished by calculating

∂E
∂Y_prev according to equation 2.27. This equation is implemented as follows
in Numpy (4.6):

dY_prev = numpy.dot(dZ_curr, W_curr.T) , (4.6)

where numpy.dot function and attribute T are described in section 4.3.1.

The calculated ∂E
∂Y_prev will be used to calculate the ∂E

∂Z of the previous layer.

As for the remaining layers, ∂E
∂W , ∂E

∂b and ∂E
∂Y_prev are calculated using the same

46 Chapter 4. System Modeling

TABLE 4.3: Detailed description of each matrix dimensions in
Backpropagation.

Backpropagation Matrices Dimensions

1 dZ_curr [Batch_Size, Output_nodes]
2 dY_curr [Batch_Size, Output_nodes]
3 dW_curr [Input_nodes, Output_nodes]
4 db_curr [1, Output_nodes]
5 dY_prev [Batch_Size, Input_nodes]

methods as in the last layer. However, ∂E
∂Z is determined differently. In par-

ticular, the chain rule technique is used to calculate it based on equation 2.23.
Since Leaky ReLU serves as the activation function for the rest of the layers,
its backward version is used here. In Numpy, ∂E

∂Z is calculated in the follow-
ing manner (4.7):

dZ_curr =

Y_curr− Input_Label for last (softmax) layer

backward_Leaky_ReLU(dY_curr, Z_curr) for the other layers
(4.7)

The dimensions of the necessary matrices are given in table 4.3. Each layer of
the Full Backpropagation algorithm (28) begins by loading the weight matrix
of the current layer (W_curr) from the parameters list. Furthermore, the ’ac-
tivated’ output of the previous layer (Y_prev) as well as the ’non-activated’
output of the current layer (Z_curr) are loaded from the forward_outputs list.
In the next step of the algorithm, dZ_curr (∂E

∂Z), dW_curr (∂E
∂W), db_curr (∂E

∂b)
and dY_prev (∂E

∂Y_prev) are calculated for the last (softmax) layer. The terms
mentioned above are then calculated for each remaining layer. Separating
the last layer from the others is due to the different calculation method for
dZ_curr (shown in equation 4.7). After each layer’s calculations, the gradi-
ents for weights (dW_curr) and bias (db_curr) are stored in gradients list. To
maintain the sparse connection structure, dW_curr is filtered with the corre-
sponding mask (from the architecture list) before being stored. In Figure 4.6,
we present an overview of the backpropagation process for each layer of our
bio-inspired NN.

4.3. Numpy Implementation 47

FIGURE 4.6: An overview of the backpropagation process of
our bio-inspired NN.

4.3.5 Update method - Adam Algorithm

As discussed in section 2.4, the classical Gradient Descent is inefficient when
dealing with large datasets since it is applied to every single data point. As
far as the Stochastic Gradient Descent is concerned, instead of using the en-
tire dataset for each iteration, only a random small batch is selected to calcu-
late the gradient and update the parameters. In this way, it accelerates con-
vergence in large datasets. However, this update method maintains a single
and constant learning rate for all parameter updates throughout training. In
biological neurons, dendrites support the generation of their own regenera-
tive events (dendritic spikes). Considering this fact, the Adam optimization
algorithm (2.4.1) is chosen as the method for updating network parameters
(weights and biases) iterative based in training data. In this method, individ-
ual adaptive learning rates are computed for each parameter from estimates
of first and second moments of the gradients. Rather than encoding informa-
tion entirely from the neuron, it is encoded separately from its dendrites. As

48 Chapter 4. System Modeling

Algorithm 2 Full Backpropagation

1: procedure FULL_BACKPROPAGATION(Input_Value, Input_Label, f orward_outputs,
init_parameters, architecture)

2: for layer_id← 5 to 1 do ▷ starting from the last layer
3: Z_curr ← f orward_outputs[”Z” + str(layer_id)]
4: Y_prev← f orward_outputs[”Y” + str(layer_id− 1)]
5: W_curr ← parameters[”W” + str(layer_id)]
6: if layer_id == 5 then ▷ for the last layer
7: Y_5← f orward_outputs[”Y” + str(layer_id)]
8: dZ_curr ← Y_curr− Input_Label
9: dW_curr ← np.dot(Y_prev.T, dZ_curr)/Batch_size

10: db_curr ← np.sum(dZ_curr, axis=0, keepdims=True)/Batch_size
11: dY_prev← np.dot(dZ_curr, W_curr.T)
12: else ▷ for the layers 4 to 1
13: dY_curr ← dY_prev
14: if Z_curr ≤0 then ▷ backward Leaky ReLU
15: dZ_curr ← dY_curr∗0.1
16: else
17: dZ_curr ← Z_curr
18: end if
19: dW_curr ← np.dot(Y_prev.T, dZ_curr)/Batch_size
20: db_curr ← np.sum(dZ_curr, axis=0, keepdims=True)/Batch_size
21: dY_prev← np.dot(dZ_curr, W_curr.T)
22: end if
23: mask← architecture[”mask” + str(layer_id)] ▷ masking dw
24: dW_curr ← np.multiply(dW_curr, mask)
25: gradients[”dW” + str(layer_id)]← dW_curr
26: gradients[”db” + str(layer_id)]← db_curr
27: end for
28: return gradients
29: end procedure

a result, the Adam algorithm tends to be more bio-inspired than the methods
noted above.

A detailed explanation of Adam Optimization algorithm’s methodology is
provided in section 2.4.1. Figure 4.7 illustrates the overview of Adam Opti-
mization Algorithm process for a layer of our bio-inspired NN. Initially, the
Numpy implementation of Adam (37) specifies the exponential decay rates
(β1, β2) and the ϵ (to prevent division by zero) based on tested machine learn-
ing problems. For each layer of the network, the gradients for weights (dW)
and biases (db) are retrieved from the ’gradients’ list. The backpropagation
algorithm produces this list. On the basis of equation 2.31, the algorithm up-
dates the first moment estimates (the mean) of the gradient of the weights

4.3. Numpy Implementation 49

(mean_dw) and biases (mean_db). The second raw moment estimates (the
uncentered variance) of the gradient of the weights (uvar_dw) and biases
(uvar_db) are then updated based on equation 2.32. In order to keep track
of the previous training iteration’s values for mean_dw, mean_db, uvar_dw,
and uvar_db, a list called ’adam_values’ is used. Due to the fact that these
moment estimates are initialized as vectors of 0’s, they are biased towards
zeros. To address this issue, the algorithm computes bias-corrected moment
estimates based on equations 2.33 and 2.34. These equations are calculated
based on the current training iteration, which is represented by the input
variable t. Finally, the parameters are updated using these bias-corrected mo-
ment estimates (as shown in equation 2.35). The dimensions of the necessary
matrices are given in table 4.4.

FIGURE 4.7: An overview of the Adam Optimization Algo-
rithm process for each layer of our bio-inspired NN.

50 Chapter 4. System Modeling

Algorithm 3 Adam Optimization Algorithm - Update Algorithm

1: procedure ADAM_UPDATE(Input_Value, parameters, architecture, gradients,
adam_values, learning_rate, t)

2: beta_1← 0.9, beta_2← 0.999, epsilon← 1e− 8
3: for layer_id← 1 to 5 do
4: ▷ load dw and db of current layer
5: dw← gradients[”dW” + str(layer_id)]
6: db← gradients[”db” + str(layer_id)]
7:
8: ▷ update mean of the gradient of weights
9: mean_dw_prev← adam_values[”mean_dw”+str(layer_id)]

10: adam_values[”mean_dw”+str(layer_id)]←
beta_1*mean_dw_prev+(1-beta_1)*dw

11: ▷ update mean of the gradient of biases
12: mean_db_prev← adam_values[”mean_db”+str(layer_id)]
13: adam_values[”mean_db”+str(layer_id)]←

beta_1*mean_db_prev+(1-beta_1)*db
14:
15: ▷ update uncentered variance of the gradient of weights
16: uvar_dw_prev← adam_values[”uvar_dw”+str(layer_id)]
17: uvar_dw_curr ← beta_2*uvar_dw_prev+(1− beta_2)*(dw ∗ ∗2)
18: adam_values[”uvar_dw”+str(layer_id)]←

np.maximum(uvar_dw_prev, uvar_dw_curr)
19: ▷ update uncentered variance of the gradient of biases
20: uvar_db_prev← adam_values[”uvar_db”+str(layer_id)]
21: uvar_db_curr ← beta_2*uvar_db_prev+(1− beta_2)*(db ∗ ∗2)
22: adam_values[”uvar_db”+str(layer_id)]←

np.maximum(uvar_db_prev, uvar_db_curr)
23:
24: ▷ compute bias-corrections
25: mean_dw_c← adam_values[”mean_dw”+str(layer_id)]/

(1-beta_1**t)
26: mean_db_c← adam_values[”mean_db”+str(layer_id)]/

(1-beta_1**t)
27: uvar_dw_c← adam_values[”uvar_dw”+str(layer_id)]/

(1-beta_2**t)
28: uvar_db_c← adam_values[”uvar_db”+str(layer_id)]/

(1-beta_2**t)
29:
30: ▷ update weights and biases
31: mask← architecture[”mask” + str(layer_id)]
32: dw_ f ← np.multiply(learning_rate*(mean_dw_c/(np.sqrt(uvar_dw_c)+epsilon)),

mask)
33: db_ f ← learning_rate*(mean_dw_c/(np.sqrt(uvar_dw_c)+epsilon))
34: parameters[”W”+str(layer_id)]←

parameters[”W”+str(layer_id)]-dw_ f
35: parameters[”b”+str(layer_id)]←

parameters[”b”+str(layer_id)]-db_ f
36: end for
37: return parameters ▷ return updated parameters
38: end procedure

4.4. Profiling 51

TABLE 4.4: Detailed description of each matrix dimensions in
Adam Optimization Algorithm.

Adam Algorithm Matrices Dimensions

1 dW (from backpropagation) [Input_nodes, Output_nodes]
2 db (from backpropagation) [1, Output_nodes]
3 mean_dw (mean_dw_c) [Input_nodes, Output_nodes]
4 mean_db (mean_db_c) [1, Output_nodes]
5 uvar_dw (uvar_dw_c) [Input_nodes, Output_nodes]
6 uvar_db (uvar_db_c) [1, Output_nodes]
7 dw_f [Input_nodes, Output_nodes]
8 db_f [1, Output_nodes]

4.4 Profiling

The process of profiling involves analyzing the function calls, the execution
duration of functions, the usage of particular instructions and the memory.
These program parameters are measured while it is running. Profiling as-
sists engineers in identifying the routines that consume a disproportionate
amount of time or memory and optimizing them. As shown in figure 4.8,
most of the training time (approximately 72%) is consumed by the Adam
Optimization Algorithm.

7.7%

18.8%

72.27%
1.23%

Forward propagation
Backpropagation
Update (Adam Optimization Algorithm)
Other

FIGURE 4.8: Analysis of how Numpy implementation con-
sumes training time.

Figure 4.9 illustrates the analysis of the time spent calling each individual
process of Adam. Numpy’s Adam algorithm is presented in 37.

52 Chapter 4. System Modeling

16.84%
29.17%

11.18%

42.49%

0.32%

mean of the gradient
uncentered variance of the gradient
bias-correction
final update
Other

FIGURE 4.9: An analysis of the impact of the Adam Optimiza-
tion Algorithm’s individual (inner) functions.

It is estimated that 42.5% of Adam’s time is spent on the final update of pa-
rameters. This can be explained by the fact that the final update step involves
divisions, square roots and element-wise multiplications of matrices. The
next most time-consuming step in the Adam process is the computation of
the uncentered variance of the gradient, which takes 29% of the time. This
occurs due to the exponentiation calculations of the dW and db matrices. It
is therefore the complexity of Adam’s calculations which makes it the most
time-consuming part of the training process.

The analysis of the backpropagation can be found in figure 4.10. Algorithm
28 presents the Numpy implementation of backpropagation.

3.2%

38.8%
1.4%
6.4%

49.5%

0.7%

dZ ()
dW ()
db ()
dY_prev ()
Masking dW ()
Other

FIGURE 4.10: The time spent calculating each individual back-
propagation term is analyzed.

4.5. Discussion 53

Approximately half of the time during backpropagation is spent masking
dW. In this step, the matrices (dW and Mask) are multiplied element-wise
per layer. As the second most time-consuming part, dW calculation involves
matrix multiplication per layer. Thus, most of the backpropagation time is
consumed by the multiplication of matrices (element-wise or not).

4.4.1 Memory Profiling

Considering all the matrices required for one training iteration in our bio-
inspired ANN implemented in Numpy, we calculated that approximately
36.6 MB of memory will be required. Approximately 98% of the memory
required is determined by the size of the weight matrices. We mean by this
that the sizes of the dw, mean_dw, and uvar_dw matrices are equal to the
sizes of their respective weight matrices. Our ideal scenario will be to limit
our data size (for each training iteration) to less than 4 MB, so that we can
store all the data in BRAMs of FPGA. BRAMs are located in the PL (pro-
grammable logic) part of the FPGA and provide huge bandwidth. We will
discuss in depth the BRAMs and our FPGA design in the following chapter.
The bio-inspired ANN we developed is sparse due to its dendritic-structure.
It is important to emphasize that masks remain stable throughout the train-
ing process. As a result, once the weight matrices have been masked, they
contain a large number of zero values that remain zero throughout the train-
ing process. However, we use them in their original dimensions in Numpy,
which consumes a considerable amount of memory. By considering only the
non-zero (masked) values of the weight matrices (after masking), which are
actually used for the calculations, the weight matrices are drastically reduced
in size. By using this method, approximately 1.07 MB of memory will be re-
quired, which is less than 4 MB. The next chapter will provide a detailed
explanation of how this method can be applied to weight matrices.

4.5 Discussion

The Amdahl’s Law [40] is a formula used to determine the maximum theoret-
ical speedup that can be obtained by improving a particular part of a system.
This formula is expressed as follows:

S =
1

1− P
, (4.8)

54 Chapter 4. System Modeling

where S represents the maximum theoretical speed-up and P is the fraction
that represents the benefits from the improvement of the system resources.

As a result of this formula and the analysis of the main processes in figure 4.8,
the maximum theoretical speed-up of the forward propagation, backpropa-
gation and Adam algorithm processes together is calculated as follows:

S = 1
1−(72.27%+18.8%+7.7%)

= 1
0.0123 = 81.3x

Therefore, the optimization of only these three processes can result in a max-
imum theoretical speed-up of 81.3 times for our model’s training process. In
reality, this speed-up is unrealistic since it ignores the overhead associated
with communication and other real-world factors. Nonetheless, this large
theoretical speed-up serves to demonstrate that our model’s training process
can be parallelized to a great extent. By utilizing the high parallelism capabil-
ities of FPGAs, an implementation of this model based on FPGA technology
can significantly accelerate training.

55

Chapter 5

FPGA Design and Implementation

In this chapter, the FPGA-based architecture for the training process of the
bio-inspired ANN will be designed, implemented using Vivado tools and
downloaded onto the Xilinx ZCU 102 evaluation board. It is described how
each training process is designed and implemented and how parallelization
is achieved at the level of computation. Furthermore, this chapter provides
information about the Vivado tools used for implementing our design, the
ZCU 102 platform, the AXI4 Interface Protocol, the PL-PS communication
methods, and the memory configuration.

5.1 FPGA Design

FIGURE 5.1: FPGA Design - Architecture. The Forward Propa-
gation block was designed and implemented by Nikoletta Pala-

tianna in her thesis.

56 Chapter 5. FPGA Design and Implementation

The design of the FPGA-based architecture for the training process of the
bio-inspired ANN is shown in figure 5.1. The Forward Propagation block
is designed and implemented by Nikoletta Palatianna in her thesis. In this
thesis, the backpropagation and Adam Optimization algorithm blocks are
designed and implemented. The overall FPGA-based architecture of the bio-
inspired ANN (fig. 5.1) is also part of this thesis.

We use the high-speed streaming protocol (explained in sections 5.3.1, 5.3.2)
for inputs, labels, weights, and biases, which are data that must be continu-
ously (in each training iteration) transferred between DDR and PL. However,
we do not use these data in the order in which they are passed in the PL. As
a result, they must be stored in BRAMs. According to figure 5.1, BRAM ap-
pears to be a single large block, but in reality, each type of data is stored in its
own BRAM. In addition, these BRAMs are partitioned into smaller BRAMs
so that they can provide more memory accesses per clock cycle and take ad-
vantage of parallelism. Figure 5.19 illustrates in detail the contents and par-
titions of BRAMs. As forward propagation, backpropagation, and Adam al-
gorithm processes are executed sequentially, these (multiple) BRAMs can be
shared between them without causing problems. In our approach, we exploit
parallelism within each process block and specifically within each process
block’s layer. Section 5.4.1 provides more information about PL-PS commu-
nication and memory configuration. The implementation of this architecture
using Vivado will be discussed in detail in section 5.4. Sections 5.5, 5.6 and
5.7 will analyze the implementation of Training IP, which includes forward
propagation, backpropagation, and the Adam Algorithm (update). As the
data type, single-precision floating point is used. In section 5.6.4, we will
analyze this decision.

5.1.1 Sparse Connectivity and Weight Handling

As discussed in section 4.1.1, the dendritic structure and receptive field fea-
tures provide sparsity to our model. In the aforementioned software imple-
mentations (4.3), sparse connectivity was achieved by masking the weight
matrices of the network appropriately (explained in 4.1.3). As far as our
FPGA design is concerned, the weight matrices that are passed in have al-
ready been masked. Section 4.4.1 of the memory profiling indicated that if
we use only the non-zero masked values of the weight matrices, approxi-
mately 1.07 MB of memory will be needed for all the data of a training itera-
tion (compared to initially 36.6 MB). BRAMs (5.3.2) are capable of storing up

5.1. FPGA Design 57

to 4 MB, as shown in table 5.2, and therefore we are able to take advantage of
them. Masks are generated for each layer and applied to weights at the level
of software. As opposed to passing each masked weight matrix at its original
dimensions (with zeros included as in the software), here (in FPGA) we pass
only the non-zero masked weight values. In essence, each weight matrix of
size [Input_nodes, Output_nodes] is converted into a masked weight matrix
of size [Synapses, Output_nodes]. To ensure proper training calculations, a
second matrix of size [Synapses, Output_nodes] is constructed for each layer
to track the initial location of masked weight values. Here is an example of
the proper use of masked weight matrices in the calculation of Z1 in the first
layer of forward propagation:

for j← 0 to 2048 do ▷ Output_nodes

for k← 0 to 9 do ▷ Synapses

for i← 0 to 16 do ▷ Batch_size

Z1[i][j] = Input[i][W_loc1[k][j]] * W_masked1[k][j] + b1[j];

▷ W_masked corresponds to the masked weight value matrix

Essentially, W_loc1 serves as a column index of the Input matrix for select-
ing the appropriate input value that corresponds to the masked weight value
in each iteration. As a result, the calculations are performed appropriately.
Here is the same example using the original dimensions of the weight matrix
(as in the software implementation):

for j← 0 to 2048 do ▷ Output_nodes

for k← 0 to 784 do ▷ Input_nodes

for i← 0 to 16 do ▷ Batch_size

Z1[i][j] = Input[i][k] * W1[k][j] + b1[j];

By using these two masked weight matrices (value and location) instead of
the initial larger weight matrix, we reduce the memory footprint of training
weights. The above example illustrates this clearly, where the for-loop of 784
iterations (Input_nodes in layer 1) has been replaced by a for-loop of 9 itera-
tions (Synapses in layer 1). Table 5.1 provides the dimensions of these matri-
ces, as well as the initial dimensions, for each layer of our bio-inspired NN.
Bias matrices remain unchanged. It is important to note that the conversion

58 Chapter 5. FPGA Design and Implementation

of weight matrices is feasible due to the stability of masks (and W_loc matri-
ces as a result) throughout the training process in our bio-inspired ANN.

TABLE 5.1: Dimensions of the initial weight matrix, the masked
weight matrix, and the masked weight location matrix for each

layer of our bio-inspired NN.

Layer Initial Weight Masked Weight Masked Weight
Value Matrices Value Matrices Location Matrices
[input_nodes, units] [synapses, units] [synapses, units]

1 [784, 2048] [9, 2048] [9, 2048]
2 [2048, 128] [16, 128] [16, 128]
3 [128, 128] [9, 128] [9, 128]
4 [128, 16] [8, 16] [8, 16]
5 [16, 10] [16, 10] [16, 10]

5.1.2 Backpropagation Block

As previously discussed, the forward propagation block was designed and
implemented in the thesis of Nikoletta Palatianna. For the purpose of ex-
plaining our architecture, we present only the inputs and outputs of each
layer of forward propagation block (fig. 5.2).

FIGURE 5.2: Single-layer forward propagation block inputs and
outputs.

In section 4.3.4, we described how backpropagation was implemented in
software (Numpy). The process proceeds backwards from the last (fifth)
layer to the first layer. Figure 5.3 illustrates the high-level design of the back-
propagation block. The outputs and inputs of a single layer backpropagation
block are shown in figure 5.4. For each backpropagation calculation, we try
to exploit parallelization along the batch. Moreover, we attempt to run all

5.1. FPGA Design 59

calculations per layer at the highest level possible simultaneously. The lim-
itation is that the calculation of dZ must be completed prior to the others,
since the result of dZ is necessary to perform other calculations.

FIGURE 5.3: High-level Backpropagation Block Design.

The algorithm for the backpropagation process for a single layer in Vivado
HLS is presented in 33. Layers 4 to 2 are covered by this algorithm. It should
be noted that dZ is calculated differently in the fifth layer (which will be
discussed later) and that the first layer does not include the calculation of
dYprev. This is the final version (second approach) of the HLS algorithm that
has been optimized. The implementation of backpropagation using Vivado
HLS will be discussed in detail in sections 5.6.1 (the first approach) and 5.7.1
(the second optimized approach). In these sections, we will discuss the prob-
lems encountered during implementation, how we resolved them, and why
we opted for this second approach. Furthermore, these sections analyze the
parallelization and scheduling of backpropagation computations. Detailed
block designs for each backpropagation calculation are presented below.

60 Chapter 5. FPGA Design and Implementation

Algorithm 4 Second Approach - Single layer Backpropagation in Vivado HLS

1: procedure OPTIMIZED_SINGLE_LAYER_BACKPROPAGATION_HLS
2: for j← 0 to Output_nodes do ▷ Units
3: for k← 0 to Synapses do
4: Wloc=W_curr_loc[k][j]
5: Wcurr=W_curr_value[k][j]
6: # pragma HLS PIPELINE II=1
7: for i← 0 to Batch_size do
8: if Z_curr[i][j] ≤0 then ▷ backward Leaky ReLU
9: dZ_curr[i][j]=dY_curr[i][j]∗0.1

10: else
11: dZ_curr[i][j]=dY_curr[i][j]
12: end if
13:

14: ▷ (div_batch=1/Batch_Size)
15: dZ_curr_batch[i][j] = dZ_cur[i][j] ∗ div_batch
16: dW_curr_tmp[i] = Y_prev[i][Wloc]*dZ_curr_batch[i][j]
17: dY_prev_tmp[i][k]+ = dZ_curr[i][j] ∗Wcurr
18: end for
19:

20: tmpdw_curr = 0
21: tmpdb_curr = 0
22: for i← 0 to Batch_size do
23: dY_prev[i][Wloc]=dY_prev_tmp[i][k]
24: dY_prev_tmp[i][k]=0
25: tmpdw_curr+=dW_curr_tmp[i]
26: tmpdb_curr+=dZ_curr_batch[i][j]
27: end for
28:

29: dW_curr[k][j]=tmpdw_curr
30: db_curr[j]=tmpdb_curr
31: end for
32: b_curr[j] = b_curr[j]-db_curr[j]*learning_rate
33: end for
34: end procedure

=0

5.1. FPGA Design 61

FIGURE 5.4: Single-layer backpropagation block inputs and
outputs.

dZ Calculation

Softmax serves as the activation function in the 5th (last) layer, therefore, dZ5

is calculated using its backward version. In particular, instead of lines 8 to 12
in algorithm 33, it is calculated as follows:

dZ5[i][j] = Y5[i][j]− Υ_Label[i][j], (5.1)

where Y5 is the output of forward propagation and Υ_Label represents the
input training labels from MNIST dataset.

The block diagram of this calculation is shown in figure 5.5.

FIGURE 5.5: Block Design for dZ calculation of Backpropaga-
tion in layer 5 of our bio-inspired ANN. In the 5th (last) layer,
softmax serves as the activation function. Therefore, we use its

backward version to calculate dZ.

Layers 4 to 1 use leaky ReLU as their activation function, so dZ is calculated
using its backward version in these cases. Figure 5.6 illustrates the block

62 Chapter 5. FPGA Design and Implementation

diagram of this calculation for a single layer. The FCMP block concerns a
Vivado HLS operator that compares single precision floating point values.
Essentially, we design an if-else structure using the FCMP and MUX blocks.

FIGURE 5.6: Block Design for dZ calculation of Backpropaga-
tion in layers 4 to 1 of our bio-inspired ANN. For these layers,
the Leaky ReLU serves as the activation function. Therefore,

we use its backward version to calculate dZ.

Since each term associated with this calculation has batch_size as a row in-
dex, 16 dZ calculations can be performed simultaneously (in both cases).

dY_prev Calculation

FIGURE 5.7: Block Design for dYprev calculation of Backpropa-
gation in layers 5 to 2 of our bio-inspired ANN. This calculation

is not included in layer 1.

5.1. FPGA Design 63

Figure 5.7 illustrates the block design for the dYprev calculation. As with the
dZ calculation, parallelization can be achieved along the batch, executing 16
dYprev calculations simultaneously.

dW Calculation

Due to the fact that dW is not parallelized along the batch, we cannot execute
multiple dW calculations in parallel. In order to compute a single value of
dW, we must perform 16 (batch_size) iterations of calculations. Following
is a figure (5.8) showing how we parallelize these calculations. In order to
avoid dividing by 16, we multiply with 0.0625, which is equal to 1/16.

FIGURE 5.8: Block Design for dW calculation of Backpropaga-
tion. Rather than dividing by 16 (batch_size), we multiply with

0.0625, which is equal to 1/16.

db Calculation and Update of biases

As with the dW calculation, db is also not parallelized within a batch, and 16
iterations of calculations are required to calculate a single db value. Figure

64 Chapter 5. FPGA Design and Implementation

5.9 illustrates the block diagram for computing db.

It is important to note that the biases are updated using the classical gradient
descent method. In the implementation of our model, we were not able to
obtain the desired results when biases were updated with Adam. We will
discuss this in more detail later (in 5.5). This is the reason why the update
of bias is included in the backpropagation process. Consequently, the Adam
algorithm is used only to update the weights.

FIGURE 5.9: Block Design for calculating db of Backpropaga-
tion and updating bias. Rather than dividing by 16 (batch_size),

we multiply with 0.0625, which is equal to 1/16.

5.1.3 Adam Algorithm Block

Section 4.3.5 analyzes Numpy’s implementation of Adam Optimization Al-
gorithm. A high-level diagram of the Adam Algorithm block for FPGA
is illustrated in figure 5.10. Figure 5.11 shows the inputs and outputs of
a single layer Adam algorithm block. Parallelization along the synapses

5.1. FPGA Design 65

is exploited in this case. In Adam Algorithm computations, all the matri-
ces have row indexes associated with Synapses and column indexes associ-
ated with Output_nodes. In most layers, the Output_nodes value is quite
large, which is the reason for choosing Synapses for parallelization. Choos-
ing Output_nodes would require a considerable amount of resources, which
we could not afford. Furthermore, we attempt to run all calculations per
layer simultaneously at the highest level possible.

FIGURE 5.10: High-level Adam Algorithm Block Design.

In algorithm 16, the Adam algorithm for a single layer in Vivado HLS is pre-
sented. This is the final version (second approach) of the HLS algorithm.
A detailed discussion of the Adam algorithm implementation using Vivado
HLS will be provided in sections 5.6.2 (the first approach) and 5.7.2 (the sec-
ond optimized approach). Throughout these sections, we analyze the par-
allelization and scheduling of Adam algorithm computations, as well as the
challenges encountered during their implementation. Detailed block designs
for each Adam Algorithm calculation are presented below.

66 Chapter 5. FPGA Design and Implementation

FIGURE 5.11: Single-layer Adam algorithm block inputs and
outputs.

Algorithm 5 Second Approach - Single layer Adam algorithm Update
method in Vivado HLS

1: procedure SINGLE_LAYER_ADAM_ALGORITH_UPDATE_HLS
2: for j← 0 to Output_nodes do ▷ Units
3: # pragma HLS PIPELINE II=1
4: for k← 0 to Synapses do
5: mean_dw_curr[k][j]=0.9*mean_dw_curr[k][j]+0.1*dW_curr[k][j]
6: uvar_dw_tmp[k][j]=0.999∗uvar_dw_curr[k][j]+0.001*dW_curr[k][j]*dW_curr[k][j]
7: if (uvar_dw_tmp[k][j] > uvar_dw_curr[k][j]) then
8: uvar_dw_curr[k][j]=uvar_dw_tmp[k][j]
9: end if

10: ▷ t represents the current number of training iterations
11: mean_dw_corr[k][j]=mean_dw_curr[k][j]/(1-pow f (0.9, t))
12: uvar_dw_corr[k][j]=uvar_dw_curr[k][j]/(1-pow f (0.999, t))
13: dW_adam_curr[k][j]=learning_rate*(mean_dw_corr[k][j]/(hls ::

sqrt f (uvar_dw_corr[k][j])+0.00000001)]
14: W_curr[k][j]=W_curr[k][j]-dW_adam_curr[k][j]
15: end for
16: end for
17: end procedure

mean_dw Calculation

Figure 5.12 illustrates the block design for the mean_dw computation. It is
possible to carry out all steps (blocks) for the mean_dw calculation in parallel
along the Synapses.

5.1. FPGA Design 67

FIGURE 5.12: Block Design for mean_dw calculation of Adam
Algorithm of our bio-inspired ANN.

uvar_dw Calculation

The figure 5.13 illustrates the block design for the computation of uvar_dw.
As with mean_dw, all calculations (blocks) can be parallelized along the Synapses.

FIGURE 5.13: Block Design for uvar_dw calculation of Adam
Algorithm of our bio-inspired ANN.

68 Chapter 5. FPGA Design and Implementation

mean_dw_corr and uvar_dw_corr Calculation

A diagram of the block design for calculating uvar_dw_corr is shown in fig-
ure 5.14. The POW and SUB blocks are executed only once. For divisions,
parallelism along synapses can be exploited. The Pow function used here is
provided by the Vivado HLS math library for computing the power of a num-
ber and supports single-precision (float) computations. The term t represents
the number of training iterations currently being conducted. The design of
mean_dw_corr is similar to that of uvar_dw_corr, with the only difference be-
ing the use of the value 0.9 in Pow function instead of 0.999.

FIGURE 5.14: Block Design for uvar_dw_corr calculation of
Adam Algorithm of our bio-inspired ANN.

dW_Adam Calculation and Update of Weights

Figure 5.15 illustrates the block design for computing dW_Adam and updat-
ing W. It is possible to parallelize all calculations (blocks) along the Synapses.
The Sqrt function (SQRT block) provided by the Vivado HLS math library is
used here to calculate single-precision floating point square roots.

5.2. Tools Used 69

FIGURE 5.15: Block Design for calculating dW_Adam and up-
dating the Weights of Adam Algorithm of our bio-inspired

ANN.

5.2 Tools Used

In this thesis, the hardware implementation was developed using Vivado
Design Suite HLx Editions tool package (2019.1.3 version) [41] provided by
Xilinx. This package is fully supported and licensed by the Microprocessors
Hardware Lab (MHL) at Technical University of Crete. There are three tools
included in the package: Vivado IDE, Vivado HLS, and Vivado SDK. It is
important to note that each of these tools complements the other.

5.2.1 Vivado High Level Synthesis (HLS)

In Vivado High-Level Synthesis (HLS) tool [42], an algorithm (function) writ-
ten in C, C++, or System C is transformed into a low-level register trans-
fer level (RTL) implementation in hardware description language (HDL) for-
mat. This format can be synthesized into a Xilinx field programmable gate
array (FPGA). In this tool, algorithms are developed and verified at the C-
level, allowing for a high level of abstraction while designing in hardware.

70 Chapter 5. FPGA Design and Implementation

As a result, both the development and validation times are significantly re-
duced compared with traditional hardware description languages. A further
advantage of Vivado HLS is that it provides hardware designers with the
ability to control how the synthesis process is performed using optimization
directives. The optimization directives are used to modify and control the
behavior of the internal logic and I/O ports. They are optional, but highly
recommended since they have a significant impact on the hardware imple-
mentation’s performance.

As part of the High-Level Synthesis process, the scheduling phase deter-
mines which operations are performed during each clock cycle. Scheduling
depends on optimization directives in addition to the clock cycle length and
the duration of operations. Besides the scheduling phase, there are two more
phases in the High-Level Synthesis process, binding and control logic extrac-
tion. In the binding phase, information about the target device is used to
determine which hardware resource implements each scheduled operation.

Pipeline Directive

For example, pipeline directive enables concurrent execution of operations
within a function or loop. In each execution step, not all operations must be
completed before the next one begins. This directive can specify the num-
ber of clock cycles required from the pipelined function or loop to process
new inputs. This number refers to the initiation interval (II). The goal is to
improve throughput or reduce the initiation interval. The figure (5.16) il-
lustrates an example of loop pipelining, which improves both the initiation
interval (1 clock cycle instead of 3) and latency (4 clock cycles instead of 8),
without requiring additional hardware resources.

Interface Directive

During the synthesis of the C code, top-level function arguments are con-
verted into RTL I/O ports. Therefore, specifying the I/O protocol is essential
in order to ensure the final design is compatible with other hardware blocks
that support the same I/O protocol. This specification can be achieved by
applying the interface directive, another important optimization directive.

5.2. Tools Used 71

FIGURE 5.16: Loop Pipelining -
https://docs.xilinx.com/v/u/2019.1-English/ug902-vivado-

high-level-synthesis.

Array Partition Directive

Furthermore, arrays in the C code are synthesized into block RAM or Ul-
traRAM in the final design. By default, an array is implemented as a single
block RAM with a maximum of two data ports. As a result, read/write in-
tensive algorithms can have limited throughput. By using the array parti-
tion optimization directive, arrays can be partitioned into multiple smaller
ones or individual registers. This directive effectively increases the num-
ber of read/write ports and improves the throughput of the design. On the
downside, it requires more memory instances.

Unroll Directive

Concerning loops, they are rolled by default, executing the logic of each iter-
ation in sequence. Loops can be unrolled by applying the optimization direc-
tive unroll. This will create multiple loop instances to run them in parallel.
However, it requires a lot of hardware to achieve maximum computational
overlapping. It is also possible to pipeline loops, as mentioned previously. In
nested loops, if the outer is pipelined, then the inner is unrolled.

Synthesis Report - Performance Metrics

High-level synthesis generates a synthesis report that includes performance
metrics. These performance metrics are described below:

https://docs.xilinx.com/v/u/2019.1-English/ug902-vivado-high-level-synthesis
https://docs.xilinx.com/v/u/2019.1-English/ug902-vivado-high-level-synthesis

72 Chapter 5. FPGA Design and Implementation

• Area: The amount of hardware resources needed to implement the
design. Look-up tables (LUT), Flip-Flops (FF), registers, Block RAMs
(BRAMs), and DSP elements are among the available hardware resources
in the FPGA.

• Latency: The number of clock cycles required for the function or loop
to compute all output values.

• Initiation interval (II): The number of clock cycles required for the
function or loop to process new input data.

• Loop iteration latency: The number of clock cycles required by a loop
to complete one iteration.

• Loop initiation interval: The number of clock cycles before the next
iteration of the loop starts to process data.

• Loop latency: The number of clock cycles to execute all iterations of the
loop.

The implementation can be improved by experimenting with different opti-
mization directives and reviewing the synthesis report each time. In addition
to the report, an analysis perspective is available at the end of the synthesis
process. Analysis perspective can assist hardware designers in detecting and
resolving possible violations and timing and data dependencies. Moreover,
it can be helpful in reducing latency and parallelizing the design. Hence,
this analysis can help designers improve their designs further by providing
a deeper understanding.

Following the analysis, the generated RTL implementation is compared to
the original C code to verify it is functionally identical. Finally, Vivado HLS
produces the IP block that can be imported into the Vivado IP catalog for use
in the Vivado Design Suite.

As reported in [42], Vivado HLS desing flow includes:

1. Compile, execute (simulate), and debug the C algorithm.

2. Synthesize the C algorithm into an RTL implementation

3. Generate comprehensive reports and analyze the design.

4. Verify the RTL implementation.

5. Package the RTL implementation as an IP block.

5.2. Tools Used 73

5.2.2 Vivado IDE

Vivado Design Suite includes Vivado Integrated Design Environment (IDE)
[43], which provides a graphical user interface (GUI) to design, validate, syn-
thesize, implement, place and route any FPGA design. FPGA designs are
written in HDL languages such as Verilog or VHDL, and IP blocks created
using Vivado HLS (C/C++) can also be included. Vivado IDE is equipped
with a powerful feature called Vivado IP (Intellectual Property) integrator
[44], which enables designers to instantiate, connect and configure various
IPs. This can be done interactively through its GUI interface or programmat-
ically through the Tool Command Language (Tcl) programming interface. In
this way, this tool facilitates the design of complex systems. IP cores, along
with those generated from the Vivado HLS, can be accessed easily through
the Vivado IP catalog.

The Vivado IP integrator utilizes the AMBA AXI4 interconnect protocol (de-
scribed in 5.3.1) to connect various IPs together. According to this protocol,
communication between IP cores is achieved via AXI master and AXI slave
interfaces. When compared with traditional RTL-based IP connectivity, stan-
dard interfaces save time. The term interface refers to a grouping of signals
with a common function. It would be more complex to connect IPs if each sig-
nal was connected separately on Vivado’s GUI. Grouping these signals into
an interface allows the connection to be represented graphically as a single
one. The connection of IPs is also accelerated by the tool’s connection au-
tomation feature. Furthermore, IP integrator provides Design Rule Checks
(DRCs) to verify IP configuration and connectivity.

First, a block design is created, in which all the necessary IPs are added and
connected appropriately according to the above protocol. Typically, each de-
sign contains the central processing unit (Zynq, MicroBlaze), custom IPs, and
modules related to memory, communication, and interconnection. A clock
signal and reset signal are present on every module, and a base address is
automatically assigned to most modules. Base addresses can be viewed and
edited using the address editor. The design is then validated to ensure that
no errors or violations have occurred. Following that, the RTL design can be
converted into a logic gate schematic through the synthesis process. Once the
synthesis is successful, implementation (place and route) can begin. During
implementation [45], the logical netlist is mapped into the physical array of
the target Xilinx device. In particular, it involves logic optimization, place-
ment of logic cells, and routing of connections between cells. After synthesis

74 Chapter 5. FPGA Design and Implementation

and implementation, Vivado IDE generates many types of reports [46], in-
cluding the most critical ones about timing, utilization and power. In a syn-
thesized design, the tool’s timing engine estimates the net delays based on
connectivity and fanout, and in an implemented design, the net delays are
based on the actual routing information. The utilization report breaks down
the design utilization based on resource type. When the implementation is
successful, the bitstream file can be generated for programming the FPGA.

5.2.3 Vivado SDK

The Xilinx Software Development Kit (SDK) [47] provides an IDE that helps
developers create embedded software applications for Xilinx ARM proces-
sors, such as Zynq UltraScale+ MPSoC, Zynq-7000 SoCs, and the Microblaze
microprocessor. It is based on the Eclipse open source standard. Among the
features of the SDK are a C/C++ code editor, a compiler, build tools, flash
memory management, automatic Makefile generation, as well as debugging
and profiling capabilities. Vivado Design Suite versions 2019.2 and later in-
tegrate SDK, SDSoC, and SDAccel development environments into Vitis uni-
fied software platform.

Vivado IDE can launch SDK once the generated hardware is exported along
with the generated bitstream file. SDK automatically imports the project
hardware wrapper (from Vivado IDE), which includes system.hdf and other
necessary files. The system.hdf file provides the address map for the pro-
cessors of the target FPGA (for instance, ZCU102 board has 4 cortexa53 pro-
cessors). By creating an application project, the project files are generated
along with the Board Support Package (BSP), which includes the appropri-
ate device drivers for all the peripherals in the hardware design and libraries
to configure the FPGA. Users can control various settings of BSP and view
information about it through the system.mss file. In project files, there is an
important file called lscript.ld (Linker Script), which describes the memory
layout of the target FPGA, and specifies where each section of the program
should be placed in memory. This file allows users to define new memory
regions, change the assignment of sections to memory regions, and modify
stack and heap sizes.

The C/C++ programming procedure handles the PL part of the FPGA. It
begins by writing data to BRAMs, initializing modules such as custom IPs
and DMAs, and then executing them. To be able to program the FPGA, it

5.3. FPGA Platform 75

must be connected via the JTAG port to a PC. Furthermore, the UART port
can be used to send and receive data as well as monitor and debug the FPGA.

5.3 FPGA Platform

The architecture of our thesis targets the Xilinx ZCU102 evaluation board
[48]. The ZCU102 is a general purpose evaluation board for rapid-prototyping
based on the Zynq® UltraScale+™ XCZU9EG-2FFVB1156E MPSoC (multi-
processor system-on-chip), which combines a powerful processing system
(PS) and user-programmable logic (PL) into the same device. High speed
DDR4 SODIMM and component memory interfaces, FMC expansion ports,
multi-gigabit per second serial transceivers, a variety of peripheral interfaces,
and FPGA logic for user customized designs provides a flexible prototyping
platform. There are three major processing units on the PS block of the board:
a quad-core 64bit ARMv8-A Cortex-A53 (application processing unit - APU),
a dual-core 32bit ARM v7-R Cortex-R5 (real-time processing unit - RPU) and
an ARM Mali-400 MP2 graphics processing unit (GPU).

TABLE 5.2: ZCU102 Specifications.

Feature Resource Count

Logic Cells 599550
Flip-Flops 548160
DSP Slices 2520
LUTs 274080
BRAMs 912
Block RAM 4MB
PS DDR 4GB
PL DDR 512MB

76 Chapter 5. FPGA Design and Implementation

FIGURE 5.17: Zynq UltraScale+ MPSoC Top-Level Block Di-
agram - https://docs.xilinx.com/v/u/en-US/ug1182-zcu102-

eval-bd.

5.3.1 AXI4 Interface Protocol

Advanced eXtensible Interface (AXI) [49] is part of ARM AMBA, a family of
micro controller buses first introduced in 1996. In 2010, AXI4, the second ma-
jor version of AXI, was released as part of AMBA 4.0. AXI is the primary in-
terface standard used within the PL, for transferring data between IP blocks.
As mentioned above, communication between IP cores is achieved through
the use of AXI master and AXI slave interfaces. Multiple memory-mapped
AXI masters and slaves can be connected together using AXI infrastructure IP
blocks, such as the AXI Interconnect IP and the AXI SmartConnect IP. There
are three types of AXI4 interfaces:

• AXI4-Lite (slave interface): For simple, low-throughput memory-mapped
communication that has a small logic footprint. For example, it is used

https://docs.xilinx.com/v/u/en-US/ug1182-zcu102-eval-bd
https://docs.xilinx.com/v/u/en-US/ug1182-zcu102-eval-bd

5.3. FPGA Platform 77

for the control signals (Start, IsDone, IsReady, return values) of an IP
core, so the PS (Zynq/Microblaze) can control it.

• AXI4-Stream: For high-speed streaming data. This protocol is particu-
larly useful for signal processing in video, communications and net-
working applications. AXI4-Stream removes the requirement for an
address phase completely and allows unlimited data burst size. There-
fore, AXI4-Stream interfaces and transfers are not considered to be memory-
mapped.

• AXI4 (Full or Master): For high-performance memory-mapped require-
ments, allowing high throughput bursts of up to 256 data transfer cy-
cles with just a single address phase.

5.3.2 PL-PS Communication Methods

It is crucial to understand how PS-PL communication is accomplished. Data
is first passed to the DDR of the processor. Then, in order to pass this data to
the FPGA, the following three methods can be used:

• Memory Mapped I/O: This method performs input/output (I/O) be-
tween a processor (PS) and the peripheral devices (PL). The same ad-
dress space is used to address both memory and I/O devices. Each
component is mapped to an address value. The disadvantage of this
method is that when we access the DDR randomly, we have to pay
30-50 clock cycles per request for the DDR initiation interval (initial-
ization cost). Therefore, this method cannot handle multiple requests
efficiently. However, sequential access seems to be more efficient.

• AXI4-Stream: This protocol supports point-to-point data streaming with-
out requiring an address channel, providing a direct flow of data be-
tween DDR and PL. This technique eliminates the delay of requests and
hides the DDR interval. In order to implement this technique, DMA IP
(described in 5.3.3) can be used.

• BRAM: Using this method, data from the DDR is transferred to BRAM
modules using a memory mapped or streaming (DMA) technique. BRAMs
provide us with huge bandwidth. However, they are relatively small,
only a few MBs in size. As a result, only small data sets can be used in
this case.

78 Chapter 5. FPGA Design and Implementation

5.3.3 AXI DMA

The AXI Direct Memory Access (AXI DMA) [50] core is a soft Xilinx IP core
that provides high-bandwidth direct memory access between memory and
AXI4-Stream target peripherals. Primary high-speed DMA data movement is
through the AXI4 Read Master to AXI4 memory-mapped to stream (MM2S)
Master, and AXI stream to memory-mapped (S2MM) Slave to AXI4 Write
Master. The MM2S channel and S2MM channel operate independently. This
IP core provides automatic burst mapping, the ability to queue multiple trans-
fer requests, as well as byte-level data realignment allowing memory reads
and writes starting at any byte offset location. Moreover, AXI DMA can be
configured to work in any of the three modes: polling, interrupt, and Scatter-
Gather (SG). Direct Register Mode (Scatter Gather Engine is disabled) pro-
vides a configuration for doing simple DMA transfers on MM2S and S2MM
channels that requires less FPGA resource utilization. Source and destination
address, as well as the access pattern, are accepted. The transaction starts by
writing data to the DMA’s registers. In interrupt mode, when the transaction
is complete, it sends an interrupt to the processor. Scatter Gather operation
allows a packet to be described by more than one descriptor. A typical use
for this feature is to allow storing or fetching of headers from a memory loca-
tion and payload data from another memory location. Software applications
that take advantage of this can improve throughput. There is a maximum of
1024 bits per cycle that can be transferred using DMA on a memory bus.

5.4. FPGA Implementation 79

5.4 FPGA Implementation

FIGURE 5.18: Bio-inspired ANN Block Design for FPGA.

The overall FPGA design of our bio-inspired ANN is shown in figure 5.18.
Several modules are involved in the design, which will be explained be-
low. First, the central processing unit (Zynq Ultrascale+) is responsible for
handling all instructions, initializations, and data transfers. After that, the
Bio_DNN Training IP (5.5) implemented in Vivado HLS manages the entire
training process, including forward propagation, backpropagation, and pa-
rameter updating using the Adam algorithm. As far as DMAs (5.3.3) are con-
cerned, they are used for high-speed data streaming between DDR and PL.
Additionally, AXI Block RAM (BRAM) Controller IPs [51] and Block Mem-
ory Generator (BMG) IPs [52] are included in the design. The AXI BRAM
Controller is designed as an AXI Endpoint slave IP for integration with the
AXI interconnect and system master devices to communicate to local BRAM.
Basically, this IP provides low-latency control of BRAM resources through
an AXI4 (memory mapped) slave interface. As regards BMG IP, it is an ad-
vanced memory constructor that generates area and performance-optimized
memories using embedded BRAM resources in Xilinx FPGAs. There are
two independent read/write ports in this IP that have access to a shared
memory space. As the last modules in this design, we have AXI Intercon-
nect and two AXI SmartConnect IPs. These IPs are used to connect one or

80 Chapter 5. FPGA Design and Implementation

more AXI memory-mapped master devices to one or more memory-mapped
slave devices. Specifically, the AXI Interconnect is used to connect all the
DMAs, BRAM controllers, and our Bio_DNN Training IP to one of the High-
Performance (HP) Master AXI interfaces of the Zynq (PS) so that the Zynq
can control them. The Zynq’s HP slave AXI ports are utilized by the DMAs
for data movement between the PS-DDR and PL. These connections are ac-
complished through AXI SmartConnect IPs.

5.4.1 PL-PS Communication and Memory Configuration

In each iteration of training, an input batch of images (16 images) and their
labels must be passed from DDR to the Training IP (in PL of FPGA). It is also
necessary to input and output the aforementioned masked weight value ma-
trices (5.1.1) to the IP so that the training procedure can run with updated
weight values at each training iteration. Similarly, the bias matrices of each
layer must also be inputs and outputs of this IP. Thus, these data must be con-
tinuously transferred between DDR and PL. In these situations, AXI4-Stream
(5.3.2) is the most suitable interface, as it eliminates the delay associated with
requests and hides the DDR initialization cost. Connecting DDR and PL is
accomplished using DMA IP.

It is important to note that the training calculations do not use these data
in the order in which they are passed in the Training IP. In addition, these
data must be used within the IP more than once. As a result, it is necessary
to store them in the IP’s internal BRAMs. By doing so, we are able to reuse
these data multiple times and take full advantage of the huge bandwidth pro-
vided by BRAM (5.3.2). Using HLS, we are able to partition (5.2.1) a BRAM
(array/matrix) into multiple smaller BRAMs, allowing us to have more than
two memory accesses per clock cycle. The parallelization of the processes is
enhanced as a result. In general, the BRAM is located in the PL part, which
explains its flexibility and configurability. In the case of weight location ma-
trices (5.1.1), they were stored in BRAMs (outside of the IP) since they remain
stable throughout the entire process. BRAM Controllers are used to control
the outside of IP BRAMs. All of the data described above is stored in sepa-
rate BRAMs that are partitioned. The figure 5.19 illustrates the total content
of the BRAM as well as the partitions for each data. In essence, the blocks
represent different BRAMs.

5.4. FPGA Implementation 81

FIGURE 5.19: Detailed information concerning the content of
the BRAMs and the partitions of each data type. In essence,

each block represents a BRAM.

5.4.2 Bandwidth

The memory bandwidth is expressed as follows:

Bandwidth = Data_width · Clock_ f requency_PL (5.2)

In order to improve theoretical bandwidth, it is necessary to increase the
clock frequency of the PL and the data width as much as possible. Zynq’s
HP port limits the maximum memory bus size to 128-bit. Initially, we used a

82 Chapter 5. FPGA Design and Implementation

32-bit datawidth. By upgrading to 64-bit, we observed significant improve-
ments in both throughput and latency. The 128-bit approach (the maximum
data width possible) did not result in any optimization. In spite of our ef-
forts, we may not have implemented our architecture optimally to maximize
bandwidth exploitation. We therefore decided to keep the 64-bit data width
in our design.

It is theoretically possible to increase the bandwidth further by using mul-
tiple DMAs that stream data from different HP ports (of the Zynq). Due to
this, we use four DMAs, each connected to a different HP slave port. There is
one DMA for the training input (only input), one DMA for the training label
(only input), one DMA for the network’s weights (input and output), and
one DMA for the network’s biases (input and output). It is important to note
that we did not measure the achieved bandwidth in our design or optimize
our architecture to the limit. Our objective was to implement a functional
and power-efficient architecture in order to speed up the training process of
our bio-inspired ANN.

5.5 Overview of IP Block in Vivado HLS

The entire training procedure is implemented into one IP in Vivado HLS.
Figure 5.20 shows the block diagram of Training IP. The training’s forward
process is implemented and analyzed extensively in the thesis of Nikoletta
Palatiana. As part of this thesis, the backpropagation and the Adam Opti-
mization algorithm are implemented.

It is important to note that the Adam algorithm is only applied to the weights
of our network. The biases are updated using the classical gradient descent
method (2.30). We were unable to obtain the desired results when biases were
updated with Adam. This may be due to a miscalculation on our part. Our
limited time constraints prevented us from resolving this issue. As a result,
the network’s biases are updated as part of the backpropagation process. Our
design is simplified due to the use of classical gradient descent rather than
Adam algorithm in bias update. There is a possibility that this simplification
could negatively impact our design in terms of training error and accuracy.
However, the classical update method saves hardware resources since Adam
has a higher level of operational complexity. Our belief is that the impact of
the bias update method in the final accuracy/error results is insignificant.

https://www.linkedin.com/in/palatiana-nikoletta/
https://www.linkedin.com/in/palatiana-nikoletta/

5.5. Overview of IP Block in Vivado HLS 83

FIGURE 5.20: Block Diagram of Training IP in HLS.

It was previously noted (5.2.1) that Vivado HLS allows hardware designers
to modify and control the default behavior of the synthesis process in terms
of internal logic and I/O ports through the use of optimization directives.
Consequently, we are able to develop specific high-performance hardware
implementations. Additionally, by using optimization directives, it is pos-
sible to generate variations of the hardware implementation from the same
C source code. This allows us to explore the design space, increasing our
chances of finding an optimal solution. The HLS synthesis report (5.2.1) can
be used to determine if the design meets our requirements.

The purpose of the two following sections is to analyze the scheduling of the
backpropagation process, as well as the scheduling of the Adam Optimiza-
tion algorithm. In HLS, the scheduling phase determines which operations
will be performed during each clock cycle. A list of the basic Vivado HLS
operators can be found in table 5.3. Besides the clock cycle length and the
duration of operations, scheduling also depends on optimization directives.

84 Chapter 5. FPGA Design and Implementation

TABLE 5.3: Basic Vivado HLS Operators

Operator Description

FADD Single-precision floating point addition
DADD Double-precision floating point addition
FMUL Single-precision floating point multiplication
DMUL Double-precision floating point multiplication
FSUB Single-precision floating point subtraction
DSUB Double-precision floating point subtraction
FDIV Single-precision floating point division
DDIV Double -precision floating point division
FCMP Single-precision floating point comparison
FSQRT Single-precision floating point square root

5.6 Implementation of IP Block (HLS) - First Ap-

proach

5.6.1 Backpropagation in Vivado HLS

In this section, we analyze the scheduling of the backpropagation process
of training IP. As a starting point, we will explain the case of layers 4 to 2,
where Leaky ReLU was used as a backward activation function. Fifth (last)
layer is distinguished by the use of softmax backward activation function. In
the case of the first layer, dY_prev calculation is not required. There will be a
discussion later on the differences in implementation of layers 1 and 5.

The backpropagation algorithm for a single layer of our network, which is
written in C code in HLS, is presented here (25). This algorithm consists of
three nested for-loops, which are illustrated separately below.

for j← 0 to Output_nodes do

for k← 0 to Synapses do

pragma HLS PIPELINE II=1

for i← 0 to Batch_size do

<do calculations>

Without any optimization, each layer would require Output_nodes * Synapses
* Batch_size iterations. With the pipeline directive (5.2.1) applied to the sec-
ond inner for-loop, we are able to perform concurrent operations within this
loop. The ’II’ specifies the desired initiation interval (5.2.1) for the pipeline.

5.6. Implementation of IP Block (HLS) - First Approach 85

As II=1, new input data can be processed in each clock cycle. By pipelin-
ing the second inner for-loop, the third inner for-loop will be automatically
unrolled (5.2.1). Thus, 16 (Batch_size) loop instances are created for parallel
execution. In essence, each layer requires Output_nodes * Synapses itera-
tions that can be parallelized along the batch and started one at a time in
each clock cycle. Furthermore, we apply array partitioning directives (5.2.1)
to the majority of the matrices used in order to enhance the design’s through-
put. As mentioned above, arrays and matrices are typically synthesized into
block RAMs with no more than two data ports in the final design. Due to
partitioning, we are able to avoid memory dependency issues by increasing
the number of ports for reading and writing per matrix (BRAM). In general,
memory dependencies arise when the loop is pipelined with II=1 and the
user performs more than two accesses per loop iteration without partition-
ing the array. When this occurs, the tool will not be able to schedule the
operations in one cycle. Consequently, partitioning allows us to have more
than two memory accesses per clock cycle and exploit the unrolling (paral-
lelization) of the third inner loop. As a drawback, partitioning requires more
memory instances.

Figure 5.21 shows the schedule of the total backpropagation calculations, ex-
cept for the db calculation and the bias updating (explanation in 5.6.1). As
can be seen, the iteration latency (5.2.1) is 73 clock cycles.

FIGURE 5.21: First Approach - Schedule of the main backprop-
agation calculations (without db calculation, bias update) in
HLS. The number 73 represents the iteration latency (in cycles).

Below (in figure 5.22) is an explanation of how the second for-loop (of Synapses)
is pipelined with II=1. In each iteration, the calculations are carried out ac-
cording to the schedule mentioned above (5.21).

86 Chapter 5. FPGA Design and Implementation

FIGURE 5.22: An illustration of how the second loop (of
Synapses) in backpropagation is pipelined with II = 1. The iter-

ation latency is 73 clock cycles.

A detailed explanation of each calculation is provided below.

Calculation of dY_prev

Initially, the calculation of dY_prev, with the software point of view, it was
expressed as follows:

dY_prev[i][Wloc]+ = dZ_curr[i][j] ∗W_curr_value[k][j], (5.3)

where wloc=W_curr_loc[k][j] and j,k,i are the indexes of the above-mentioned
three nested for-loops. Despite the fact that the dY_prev matrix (of each
layer) was partitioned, we were unable to exploit the parallelization of 16
loop instances. This problem was caused by the presence of Wloc as an in-
dex for dY_prev, which resulted in a violation of II. Essentially, II violation
occurs when the loop is pipelined with II=1 and memory (as described previ-
ously) or data dependencies are present. This particular situation involved a
data dependency. Data dependency refers to a situation in which the current
loop iteration uses the value generated by an earlier loop iteration and that
value takes N cycles to be generated. This prevents the current iteration from
starting on the next cycle. In this case, there is a data dependency between
the load and store operations on the array dY_prev. This is due to the fact
that the add operation of the float data requires four clock cycles. Figure 5.23
illustrates this II violation.

5.6. Implementation of IP Block (HLS) - First Approach 87

FIGURE 5.23: II Violation - Data dependency between the load
and store operations on the array dY_prev

As a result of the II violation, the achieved initiation interval was increased to
5 instead of 1, which resulted in the design’s total latency being significantly
increased. To resolve this issue, we split the calculation of dY_prev into two
individual (inner) loops of Batch_size (as shown in lines 17 and 21 of the al-
gorithm 25). First, the calculations are performed and the results are stored
in a temporary matrix (BRAM) independent of Wloc. The results of the tem-
porary matrix are then appropriately stored in the regular dY_prev matrix
through the use of Wloc. Figure 5.24 shows how HLS schedules dY_prev
backpropagation operations (in green boxes). As shown in this figure, we
exploit the unrolling of the third inner loop by running 16 (Batch_size) in-
stances of each operation in parallel. To accomplish this, array partitioning
was applied to the matrices dY_prev and dY_prev_tmp.

In layer 5, we can calculate dY_prev using the initial approach that we dis-
cussed (5.3), since this layer does not utilize mask, so there is no II violation.
There is a peculiarity regarding the third layer. The third layer’s mask allows
the same input node to be assigned to more than one output node since its
connections are random. The same is true (without the random nature of its
connections) for layer 1, however, dY_prev does not need to be calculated in
layer 1, as discussed earlier. As for the third layer, this means that Wloc_3
matrix does not take a unique value every time. Therefore, in this particu-
lar layer, line 23 (of algorithm 25) must be changed (5.4) to include the add
operation that we attempted to avoid previously.

dY_prev[i][Wloc]+ = dY_prev_tmp[i][k] (5.4)

As a result, the II violation (5.23) we discussed above has been reinstated
for this layer only. Layer 3 achieves II=5, meaning that new input data can

88 Chapter 5. FPGA Design and Implementation

be processed every five clock cycles. Our efforts to resolve this issue were
unsuccessful. Once this issue is resolved and the initiation interval is reduced
in future work, the latency is expected to be significantly reduced.

Calculation of dZ_curr and dZ_batch

For layers 4 to 1, the dZ_curr and dZ_batch calculations are implemented in
the same manner as shown in the HLS code (25). dZ_batch is calculated by
dividing dZ_curr by Batch_size (16). In order to avoid the cost of division,
we multiply by a value that has already been calculated (1/16). The purpose
of using dZ_batch is to avoid performing the same multiplication more than
once within each loop instance. Both dW_curr and db_curr require the same
calculation. Figure 5.24 depicts the scheduling of dZ_curr (in orange boxes)
and dZ_batch (in blue boxes) calculations. Similar to the dY_prev calcula-
tion, we can observe that 16 instances of each operation are executed in par-
allel along the batch, utilizing the unrolling of the third loop. As previously
mentioned, softmax activation function is applied to the fifth layer. Hence,
for the last layer only, the calculation of dZ_curr is performed as previously
shown in equation 5.1 instead of lines 8 to 12 in the algorithm 25.

FIGURE 5.24: First Approach - Detailed schedule of dZ,
dZ_batch and dY_prev backpropagation operations in HLS.
The green boxes correspond to the dY_prev calculation, orange
boxes to the dZ_curr calculation, blue boxes to the dZ_batch

calculation, and gray boxes will be discussed in detail next.

Calculation of dW_curr

Since the unrolling of the third inner for-loop involves batches, we are not
able to run 16 instances of each operation of dW in parallel, as with dZ and

5.6. Implementation of IP Block (HLS) - First Approach 89

dY. This occurs because we need to perform Batch_size iterations in order to
calculate an individual value for dW. Due to this, we parallelize the opera-
tions in each step, including Load, FMUL, and FADD. The dW calculation
is described in the HLS code (in line 16 of algorithm 25). In figure 5.25, the
initial phase of the dW calculation scheduling is illustrated. Continuing the
scheduling process, the operations shown in this figure are repeated in the
same manner. The last part of dw scheduling is shown in figure 5.26. Due
to the way this calculation is implemented, it requires a high number of iter-
ation latency cycles to complete. Attempts were made to reduce latency by
implementing it in a separate structure of nested loops. Despite our efforts,
we were not able to improve the latency of the backpropagation process in
total.

FIGURE 5.25: First Approach - Initial phase of scheduling dW
backpropagation in HLS. The red boxes correspond to the dW
calculation and gray boxes refer to previously discussed calcu-

lations.

90 Chapter 5. FPGA Design and Implementation

FIGURE 5.26: First Approach - Last phase of scheduling dW
backpropagation in HLS.

Algorithm 6 First Approach - Single layer Backpropagation in Vivado HLS

1: procedure SINGLE_LAYER_BACKPROPAGATION_HLS
2: for j← 0 to Output_nodes do ▷ Units
3: for k← 0 to Synapses do
4: Wloc=W_curr_loc[k][j]
5: Wcurr=W_curr_value[k][j]
6: # pragma HLS PIPELINE II=1
7: for i← 0 to Batch_size do
8: if Z_curr[i][j] ≤0 then ▷ backward Leaky ReLU
9: dZ_curr[i][j]=dY_curr[i][j]∗0.1

10: else
11: dZ_curr[i][j]=dY_curr[i][j]
12: end if
13:

14: ▷ (div_batch=1/Batch_Size)
15: dZ_curr_batch[i][j] = dZ_cur[i][j] ∗ div_batch
16: dW_curr[k][j]+ = Y_prev[i][Wloc]*dZ_curr_batch[i][j]
17: dY_prev_tmp[i][k]+ = dZ_curr[i][j] ∗Wcurr
18: end for
19:

20: for i← 0 to Batch_size do
21: dY_prev[i][Wloc]=dY_prev_tmp[i][k]
22: dY_prev_tmp[i][k]=0
23: end for
24: end for
25: end for
26: end procedure

=0

5.6. Implementation of IP Block (HLS) - First Approach 91

Calculation of db_curr and update of b_curr

Despite our efforts, we were unable to efficiently integrate the db_curr cal-
culation with the other backpropagation calculations within the three nested
for-loops described above. This resulted in our decision to carry out this cal-
culation separately. The db calculation is performed along with the update of
b_curr. As discussed in the previous section (5.5), biases are updated using
the classical method (not Adam). Since we do not require the dimension of
synapses for these calculations, two nested for-loops are used, as shown in
the HLS code (8).

Algorithm 7 First Approach - Single layer Bias update in Vivado HLS

1: procedure SINGLE_LAYER_BIAS_UPDATE_HLS
2: for j← 0 to Output_nodes do ▷ Units
3: # pragma HLS PIPELINE II=1
4: for i← 0 to Batch_size do
5: db_curr[j]+ = dZ_curr_batch[i][j]
6: end for
7: b_curr[j] = b_curr[j]− db_curr[j] ∗ learning_rate
8: end for
9: end procedure

The pipeline directive (5.2.1) is applied to the first for-loop to enable the con-
current execution of operations within this loop with II=1. So, the second
inner for-loop is unrolled. However, we are not able to exploit parallelism
along the batches. It is because we need Batch_size iterations in order to cal-
culate an individual value (db), instead of calculating a different value (for
example, db_1, db_2, etc.) for each Batch_size iteration (or loop instance). It
is a similar case to that of dW. Below (5.27) is the schedule of db of backprop-
agation and bias update operations in HLS.

Due to the fact that the second inner for-loop is unrolled, the number of it-
erations required for the db and b calculation from each layer is equal to the
number of Output_nodes (units). Theoretically, this is a small number, par-
ticularly when considering the pipelined nature of the first loop, with II=1,
which allows new input data to be processed every clock cycle. Neverthe-
less, the iteration latency for each layer is 71 cycles, which is a high number
given that it is implemented separately from the rest of the backpropagation
process (dZ, dZ_batch, dW calculations).

92 Chapter 5. FPGA Design and Implementation

FIGURE 5.27: First Approach - A detailed schedule of db (of
backpropagation) and bias update operations in HLS.

5.6.2 Update - Adam Optimization Algorithm in Vivado HLS

Initially, we decided to use the gradient descent update method (2.30) in-
stead of the Adam algorithm for updating weights. The purpose of this
was to check the currently implemented design more quickly. Our results
indicated that the classical update method produced disappointing results in
terms of training error and accuracy. The Adam algorithm, as described in
section 4.3.5, is computationally complex, thus requiring considerable hard-
ware resources. In spite of the complexity of the Adam, it has proven to be
an effective and reliable method of updating parameters. Consequently, we
had to ensure that the parallelization level of its HLS implementation does
not exceed the resources of ZCU102.

In this first approach, we focused on creating a functional Adam implemen-
tation in HLS. Each Adam single layer consists of two nested for-loops for
Output_nodes and Synapses, as shown in algorithm 16. The pipeline direc-
tive (5.2.1) is applied to the second inner for-loop with II=1. So, each iteration
of this loop can begin within a clock cycle at a time. The total number of iter-
ations is equal to Output_nodes * Synapses. This is a high number consider-
ing backpropagation with three nested for-loops (instead of two) requires the
same number of iterations. In regards to the iteration latency for each layer,
it is equal to 101 clock cycles. As a result, Adam has a high total latency for
each layer.

In order to minimize the number of iterations, we need to apply pipeline di-
rective to the first for-loop (instead of the second), resulting in the unrolling
of the second inner for-loop. By doing so, the first problem that arises is

5.6. Implementation of IP Block (HLS) - First Approach 93

a memory dependency (5.6.1). As mentioned earlier, this issue can be re-
solved by applying the array partitioning directive. However, partitioning
the dW_curr and W_curr matrices affects backpropagation implementation,
by causing data dependency in the dW calculation (line 16 in algorithm 25).
Figure 5.23 illustrates a similar case (dY_prev) of data dependency that was
discussed in detail in section 5.6.1. In addition, a timing violation occurred
(in backpropagation) which refers to a path of operations requiring more
time than the available clock cycle. Thus, we kept the Adam implementa-
tion as presented in 16 (the pipeline applied to the first for-loop).

As part of Adam, square roots, divisions, and powers of numbers are calcu-
lated. Since the Adam algorithm calculations are complex, we have elected to
use double precision operations (for this algorithm only). Double precision
operations provide us with more accurate results. The resource usage would
have been significantly increased with them if higher levels of parallelization
had been achieved. Nevertheless, we are not experiencing this issue in this
case since we have low parallelization and no loop unrolling.

Algorithm 8 First Approach - Single layer Adam algorithm Update method
in Vivado HLS

1: procedure SINGLE_LAYER_ADAM_ALGORITH_UPDATE_HLS
2: for j← 0 to Output_nodes do ▷ Units
3: for k← 0 to Synapses do
4: # pragma HLS PIPELINE II=1
5: mean_dw_curr[k][j]=0.9*mean_dw_curr[k][j]+0.1*dW_curr[k][j]
6: uvar_dw_tmp[k][j]=0.999∗uvar_dw_curr[k][j]+0.001*dW_curr[k][j]*dW_curr[k][j]
7: if (uvar_dw_tmp[k][j] > uvar_dw_curr[k][j]) then
8: uvar_dw_curr[k][j]=uvar_dw_tmp[k][j]
9: end if

10: ▷ t represents the current number of training iterations
11: mean_dw_corr[k][j]=mean_dw_curr[k][j]/(1-pow(0.9, t))
12: uvar_dw_corr[k][j]=uvar_dw_curr[k][j]/(1-pow(0.999, t))
13: dW_adam_curr[k][j]=learning_rate*(mean_dw_corr[k][j]/(hls ::

sqrt(uvar_dw_corr[k][j])+0.00000001)]
14: W_curr[k][j]=W_curr[k][j]-dW_adam_curr[k][j]
15: end for
16: end for
17: end procedure

94 Chapter 5. FPGA Design and Implementation

5.6.3 Forward propagation in Vivado HLS

The forward process is implemented in the thesis of Nikoletta Palatiana,
as mentioned previously. Each forward’s layer requires Synapses * Out-
put_nodes pipelined iterations, which are started one at a time in each clock
cycle (since II=1). A similar example of pipelining can be seen in figure 5.22.
These iterations are parallelizable along the Batches due to loop unrolling.
Iteration latency is 17 clock cycles. Therefore, the forward process is highly
parallelized.

5.6.4 Design Space Exploration

In this section, we examine different approaches to designing based on the
type of data. Comparisons are conducted in terms of the resources required,
the execution time, and the precision of the results (error and accuracy in
training and validation). Actually, we had to choose between floating point
and fixed point calculations. Fixed point refers to the representation of num-
bers with a fixed number of digits after and before the decimal point. On
the other hand, a floating-point representation allows the decimal point to be
positioned relative to the significant digits of the number.

The initial decision was to select fixed-point over floating-point as the data
type. It should be noted that the Adam algorithm was implemented us-
ing floating-point calculations as the only exception. This is due to the fact
that Adam involves complex calculations, such as divisions and square roots,
which must be performed with a sufficient level of precision. However, with
this initial fixed point approach, the values in the design exceeded the lim-
its defined by the fixed point declarations after numerous training iterations,
resulting in incorrect training. As the range of numbers accepted in the fixed-
point declaration increases, the precision of the calculations decreases. De-
spite our efforts, we were unable to properly declare fixed-points in order
to ensure that the training would produce the desired results (in terms of er-
ror/accuracy). In addition, we observed an overflow in LUT usage, requiring
more than was available (in ZCU 102).

As a second approach, fixed-point data types were primarily used for for-
ward propagation, more specifically for weights, biases and inputs. For the
rest of the data, we chose the floating-point data type. By doing so, we were
able to achieve adequate training results (in terms of error/accuracy). More-
over, this prevents the overflow of LUTs. By choosing floating-point as the

https://www.linkedin.com/in/palatiana-nikoletta/

5.7. Implementation of IP Block (HLS) - Second (Optimized) Approach 95

data type for all the data, we were able to perform the training appropri-
ately, achieving better training/validation results compared to the second
approach. A further advantage of this float approach is that it uses approxi-
mately 37% fewer LUTs, 3% fewer DSPs, and 3% fewer FFs than the second
fixed-point approach. One insignificant disadvantage to this approach is that
the previous second fixed point approach executed 1,0003 times faster than
this one. As a consequence, we decided to select the fully floating-point ap-
proach since it is more efficient in terms of training/validation results and
requires fewer resources. As far as the double data type approach is con-
cerned, the resources of the ZCU 102 were insufficient to support it.

5.7 Implementation of IP Block (HLS) - Second (Op-

timized) Approach

The second approach of implementing the training IP in HLS was aimed at
optimizing the latency of the design. Upon analyzing the utilization of FPGA
resources in our first approach, it became evident that there was room for
improvement. In particular, we focused on optimizing the Adam algorithm
and the db calculation along with bias update, as we identified these cases as
an opportunity to optimize the design.

As discussed previously in section 5.6.2, we encountered several problems
when applying array partitioning to W_curr and dW_curr matrices (BRAMs).
The partitioning of these matrices would reduce the latency in Adam’s im-
plementation efficiently. Despite this, the problems that prevented us from
achieving it occurred in the implementation of backpropagation rather than
in Adam.

5.7.1 Optimized Backpropagation in Vivado HLS

Calculation of dW_curr

In the first backpropagation approach (5.6.1), dW was not partitioned. The
current dW value was loaded once at the beginning of each iteration and
stored at the end after the calculations were performed. In order to optimize
the Adam algorithm, it was necessary to partition this matrix (BRAM) and
resolve the aforementioned issues (5.6.2). The partitioning of dW results in
multiple memory instances of it. This means that rather than loading, cal-
culating, and storing the current iteration’s dW value in each iteration, all

96 Chapter 5. FPGA Design and Implementation

partitions of dW are loaded to calculate the corresponding value, and then
all partitions are appropriately stored. As a consequence, there was a data de-
pendency between the load and store operations on the matrix dW (as seen
in a similar case in figure 5.23). In essence, the current iteration utilizes the
dW value generated by an earlier iteration, which requires N cycles instead
of one to generate that value. Thus, we were unable to exploit the II=1 of
pipelining (5.2.1) and run the iteration instances in succession within a clock
cycle.

With this optimized backpropagation implementation, we have resolved these
problems. In order to achieve this, it is necessary to avoid dW loads. By us-
ing a temporary array and a temporary variable, we perform the required
addition and multiplication operations of dW (lines 16 and 25 in algorithm
33). At the end of each iteration, the calculated value is stored in the dW
matrix. We must, however, store all partitions of dW in each iteration due
to the partitioning mentioned previously. Unfortunately, we were unable to
avoid that issue, but it does not cause any dependencies. The updated HLS
backpropagation algorithm is presented in 33. The detailed schedule of dW
backpropagation operations is illustrated in Figures 5.28 (in initial cycles)
and 5.29 (in last cycles).

Calculation of dY_prev, dΖ_curr and dZ_batch

As in the first approach, the implementation of dY_prev (5.6.1) and dΖ_curr
(5.6.1) calculations is the same (as illustrated previously in figure 5.24. Re-
garding dZ_batch, in this approach it is calculated gradually as shown in
figures 5.28 and 5.29 (blue boxes).

Calculation of db_curr and update of b_curr

In the first approach (5.6.1), the calculation of db_curr and the updating of
b_curr were implemented in a separate structure of two nested for-loops for
each layer. We were unable to integrate them into the structure of other back-
propagation operations (dW_curr, dZ_curr, dZ_batch, dY_prev). As a result,
our design was affected by additional latency.

According to the second approach, the db_curr calculation is combined with
the other backpropagation calculations within the three nested for-loops (as
shown in updated algorithm 33). In order to accomplish this, a temporary

5.7. Implementation of IP Block (HLS) - Second (Optimized) Approach 97

FIGURE 5.28: Second Approach - Detailed schedule of dW and
db backpropagation operations in HLS. This figure illustrates
how these operations are analyzed in initial clock cycles. The
scheduling continues in the same manner as shown here. The
red boxes correspond to the dW_curr calculation, yellow boxes
to the db_curr calculation, blue boxes to the dZ_batch calcula-
tion and gray boxes refer to previously discussed calculations.

variable is used for the multiple addition operations (of db) during the itera-
tion, similarly to how dW is implemented. Upon completion of these calcu-
lations, the result is stored appropriately in the db_curr matrix (BRAM) and
the b_curr value is updated. The schedule of the above calculations is shown
in figures 5.28 (for the initial cycles) and 5.29 (for the last cycles).

These changes increase the iteration latency of the total backpropagation im-
plementation from 73 to 77. Nevertheless, this increase is insignificant since
all backpropagation calculations are carried out within one structure of three
nested for-loops (for each layer of our NN). This structure was described in
section 5.6.1. In this way, Output_nodes pipelined iterations per layer of 71
iteration latency (from first approach) are eliminated, leading to a reduction
in latency for our design. Consequently, the total optimized backpropagation
schedule is formed as shown in figure 5.30.

98 Chapter 5. FPGA Design and Implementation

FIGURE 5.29: Second Approach - Detailed schedule of dW and
db backpropagation operations in HLS. This figure illustrates
how these operations are analyzed in last clock cycles. The red
boxes correspond to the dW_curr calculation, yellow boxes to
the db_curr calculation and blue boxes to the dZ_batch calcula-

tion.

FIGURE 5.30: Second Approach - Schedule of the main back-
propagation calculations in HLS. The number 77 represents the

iteration latency (in cycles).

5.7.2 Optimized Update - Adam Optimization Algorithm in

Vivado HLS

Since we have resolved the problems encountered when applying array par-
titioning to W_curr and dW_curr, we are able to significantly reduce the la-
tency of Adam’s implementation. This is achieved by applying the pipeline
directive with II=1 to the first for-loop of Output_nodes rather than the sec-
ond inner for-loop of Synapses (as in the first approach). For-loops are struc-
tured as follows:

for j← 0 to Output_nodes do

5.7. Implementation of IP Block (HLS) - Second (Optimized) Approach 99

pragma HLS PIPELINE II=1

for k← 0 to Synapses do

<do calculations>

In this way, each iteration of the first for-loop is started one at a time in each
clock cycle (since II=1). A similar case of pipelining was illustrated in figure
5.22 earlier. When the first for-loop is pipelined, the second (inner) for-loop
is automatically unrolled, creating Synapses loop instances that can be ex-
ecuted in parallel. As a result, each layer requires Output_nodes pipelined
iterations that are parallelizable along the Synapses. In order to exploit par-
allelization, we must partition W_curr and dW_curr matrices (BRAMs) on
their first dimension, which corresponds to Synapses. By doing so, we are
able to perform more than two memory accesses per clock cycle and exe-
cute all (Synapses) loop instances of each operation simultaneously along
the Synapses. Based on the first approach, the total number of iterations
needed for each layer was equal to Output_node * Synapses. In the second
approach, only Output_node iterations are required (for each layer), result-
ing in a significant reduction in latency. Figure 5.31 illustrates the optimized
Adam algorithm schedule for its main calculations. This is essentially how
each pipelined iteration executes these calculations.The iteration latency is 53
clock cycles, a significant improvement over the first approach, which was
101 clock cycles. The figure shows only the parallelization among the main
calculations, without illustrating the parallelization along the Synapses for
each individual calculation.

FIGURE 5.31: Second Approach - Schedule of the main Adam
optimization algorithm (Update) calculations in HLS. The num-

ber 53 represents the iteration latency (in cycles).

Adam algorithm calculations were presented in the HLS code of the first ap-
proach (in 5.6.2). Besides the manner in which the pipeline directive is ap-
plied, another important difference between the first and second approaches

100 Chapter 5. FPGA Design and Implementation

relates to the preference for float operations over double operations. The de-
sign is generally implemented using float data types. Due to the complexity
of the calculations in the Adam algorithm, including computations of square
roots, divisions, and powers of numbers, we chose double precision opera-
tions in the Adam’s first approach in order to obtain more accurate results.
However, since this approach increases parallelization, power consumption
and resource usage have increased significantly. As a result, it is necessary to
select float operations. In making Adam’s calculations with float precision,
we observe that there is no significant difference between the two approaches
in terms of accuracy and error. Furthermore, we are able to save a substantial
amount of resources and power in this way.

101

Chapter 6

Results

In this chapter, we present the results of our work. The first step will be to
provide specifications of the CPU and GPU that will be used for the compar-
isons. As a next step, we present the resource utilization of our first and sec-
ond architecture approaches implemented on the ZCU 102 FPGA. Following
this, we analyze the performance metrics used for the comparisons. Lastly,
we compare the results of our two FPGA-based architecture approaches, as
well as the results of the preferred FPGA-based architecture with CPU and
GPU implementations of our bio-inspired ANN (in Keras).

6.1 Specification of Compared Platforms

6.1.1 Intel i5-6500

Despite the fact that CPU-based applications are easier to implement, their
low parallelism and high power consumption make them inefficient in terms
of both time and energy. The following table 6.1 presents CPU platform spec-
ifications.

TABLE 6.1: Intel i5-6500 Specifications

Intel i5-6500

Total Cores 4
Total Threads 4
Processor Base Frequency 3.20 GHz
Max Turbo Frequency 3.60 GHz
TDP 65 W
Max Memory Bandwidth 34.1 GB/s
Lithography 14 nm

102 Chapter 6. Results

Thermal Design Power (TDP) represents the average power, in watts, the
processor dissipates when operating at Base Frequency with all cores active
under an Intel-defined, high-complexity workload.

6.1.2 GPU

GPUs are capable of parallel processing, delivering incredible acceleration
when the same workload must be executed many times in rapid succes-
sion. Their disadvantage is that they tend to consume a large amount of
energy/power. Below is a table 6.2 with GPU platform specifications.

TABLE 6.2: GPU Specifications

NVIDIA GeForce GTX 1050 Ti

CUDA Cores 768
GPU Memory 4 GB GDDR5
Boost Clock 1392 MHz
Memory Interface 128-bit
Memory Bandwidth 112 GB/s
Power Consumption 75 W

6.1.3 Proposed Architectures

FPGAs are integrated circuits consisting of programmable logic blocks that
can be configured to perform different logic functions. In comparison to
GPUs, FPGAs are considered to be more energy/power efficient. In addi-
tion, they provide a high level of parallelism. It is important to note that
FPGA chips do not have hard-etched circuitry and can be reprogrammed as
required. As a result of their reconfigurability, FPGAs are ideal for appli-
cations in which standards are continually evolving. Moreover, FPGAs are
available in a variety of sizes, so designers can choose the one that is most
suitable for their application.

The purpose of this section is to present the final resource utilization of our
two versions of FPGA-based architecture that have been ported to ZCU-102
FPGA (in table 6.3).

6.2. Performance Metrics 103

TABLE 6.3: Comparison of the first and second versions of the
FPGA-based architecture (ZCU 102) - Resources Utilization

Version 1 Version 2

Clock Frequency 125 MHz 125 MHz
BRAM Usage (%) 59% 62%
DSPs Usage (%) 22% 19%
FF Usage (%) 14% 21%
LUTs Usage (%) 37% 55%

6.2 Performance Metrics

6.2.1 Latency

Latency refers to the time required to accomplish a single task. As defined
in this thesis, latency is the time it takes for a specific platform to perform
training on a batch of images (16 images).

6.2.2 Throughput

In general, throughput is a measure of how many units of information a sys-
tem can process in a given amount of time. In other words, it refers to the
maximum rate of processing. According to this thesis, throughput is defined
as the number of batches trained per second.

Throughput =
Batches

Time(sec)
, (6.1)

where a batch consists of 16 images.

6.2.3 Power Consumption

Power consumption is defined as the amount of energy consumed per unit
time to perform a specific task. It is usually measured in Watts (W) or kilo-
Watts (kW). The power consumption of a system is extremely important and
should be kept as low as possible. The battery life of portable electronic de-
vices such as cell phones and laptops is limited by power consumption. Low
power consumption leads to higher energy efficiency and lower building
costs. Using a simplified and smaller architecture for a design can increase
energy efficiency.

104 Chapter 6. Results

6.2.4 Energy Consumption

Energy consumption (6.2) refers to the energy required for accomplishing a
particular task in a specific amount of time. It is commonly measured using
Joule (J) or kiloJoule (kJ). This metric value should also remain at the lowest
level possible.

E = P · T, (6.2)

where E represents the energy in Joules, P indicates the required power for
the device to function and T is the time needed to execute the task.

The Images/Joule metric can be calculated as follows:

Images
Joule

= max(
Throughput

Power
,

1
Power · Latency

) (6.3)

6.3 Performance Evaluation and Comparison

This section compares the performance of our FPGA-based implementation
to CPU/GPU implementations in the performance metrics discussed above.
We have implemented two versions of the training procedure for the FPGA-
based bio-inspired ANN in ZCU 102. As the software implementation for the
comparison between FPGA and CPU/GPU, we choose the high-level Keras
implementation developed by S. Chavlis. This decision was made due to
the fact that our software bio-inspired ANN implementation in Numpy un-
derperforms when compared with the Keras implementation.For training,
we utilize the MNIST database of handwritten digits, as described in section
4.2.1.

In section 4.2.1, we discussed the training settings associated with the soft-
ware implementation. It is important to note that in the FPGA implementa-
tion, callbacks and shuffling of training data are not included. In addition,
the validation procedure has not been implemented. As a part of the thesis
of Nikoletta Palatiana, the validation procedure as well as callbacks will be
implemented. Due to the absence of these features, we are not able to con-
duct the training procedure in an optimal manner. By incorporating these
features, we will be able to prevent overfitting and reduce the learning rate
when the validation error has stopped improving. This will enable us to
reduce the validation error that has been achieved. As far as the remaining
settings of software training are concerned, they are applied in a similar man-
ner to software implementation. Note that we process a batch of 16 images

https://www.imbb.forth.gr/en/personel-directory/item/1357-chavlis-spyridon
https://www.linkedin.com/in/palatiana-nikoletta/

6.3. Performance Evaluation and Comparison 105

in each training iteration. Moreover, we perform 30 epochs of training on the
entire MNIST dataset.

There is a problem encountered when running our design on the ZCU 102
evaluation board. This problem is related to the reading of the MNIST dataset
files from the SD card of the board. There is an extremely slow reading of
data from the SD card. Our design runs on the ZCU 102 board through a
server and the MNIST files are too large. These may be the causes of this
problem. As a result of this issue, we are unable to actually train the en-
tire MNIST dataset on the ZCU 102 board, but are only able to measure the
training time. For the purpose of calculating the epoch time, we processed
the same batch of 16 images 3000 times, which is equal to the total number
of batches used in MNIST training. Each training iteration involved passing
data into memory and passing data out of memory in order to measure time
appropriately. To determine the latency of our design, we measured the time
it takes to perform training on a single batch. Training results in terms of
accuracy/error are derived from the simulation level (Vivado HLS). As part
of the simulation level, we also implemented the validation process (with-
out callbacks) to provide us with the results of validation error/accuracy. To
verify the functionality of our design, we ran the training procedure using a
few hundreds of MNIST batches (rather than the entire MNIST dataset) on
the ZCU 102 board and at the simulation level (Vivado HLS). Both cases pro-
duced the same results. Therefore, we believe that if the issue with reading
the dataset were resolved, we would be able to perform training without any
problems on ZCU 102 board. We could resolve this issue by executing our
design directly on the board rather than through the server. Alternately, we
may be able to resolve this issue by using a more efficient method of reading
the dataset. Unfortunately, due to a limited time frame, we were unable to
resolve this issue.

Table 6.4 summarizes the performance analysis of our bio-inspired ANN by
comparing two versions of its FPGA-based architecture running on ZCU 102
and its Keras implementation running on both CPU and GPU.

106 Chapter 6. Results

TABLE 6.4: Performance Evaluation and Comparison - Two
versions of the FPGA-based architecture (ZCU 102 board) com-
pared to Keras-Tensorflow running on both CPU and GPU.
Numpy results are not included since the goal of Numpy im-
plementation was to gain a better understanding of the bio-

inspired ANN model rather than to optimize it.

CPU (Keras) GPU (Keras) FPGA V.1 FPGA V.2

Clock Frequency (MHz) 3600 1392 125 125
Throughput (Batches/s) 81.08 176.47 1029.16 1260.66
Throughput Speedup 1x 2.176x 12.693x 15.548x
Latency (ms) 13 6 1.08 0.904
Latency Speedup 1x 2.16x 12.04x 14.38x
Epoch execution time (s) 37 17 2.915 2.3797
Total On-Chip Power (Watt) 65 75 7.407 8.815
Power Efficiency 1x 0.866x 8.775 7.3738x
Energy Consumption (Joule)
per Batch

0.845 0.45 0.008 0.00796

Energy Efficiency 1x 1.877x 105.62x 106.15x
Images/Joule 1.247 2.353 138.94 143.01

6.3.1 Comparison of two FPGA versions

Comparing the two approaches of our FPGA-based architecture, we observe
(from table 6.4) that the second approach achieves lower latency (fig. 6.1) and
higher throughput (fig. 6.2) than the first one, resulting in a faster design.
This is also evident in the training execution time for an epoch (fig. 6.3),
which takes only 2.3797 seconds as opposed to 2.915 seconds for the first
approach. A downside of the second approach is that it consumes more ZCU
102 resources, with the exception of DSP resources, as shown in table 6.3.
This leads to the second approach being less power-efficient than the first
(fig. 6.4), requiring 8.815 Watts versus 7.407 Watts. However, by comparing
the energy consumption per batch, we observe that the second approach is
slightly more energy efficient (0.00796 Joule against 0.008 Joule as shown in
fig. 6.5). In terms of training and validation error(fig. 6.8)/accuracy(fig. 6.7),
these two approaches yield the same results. Therefore, we prefer the second
approach over the first because it is more time and energy efficient.

6.3. Performance Evaluation and Comparison 107

6.3.2 Comparison of FPGA and CPU/GPU versions

A comparison is made here between our FPGA-based architecture and Keras
implementations running on CPU and GPU. Table 6.4 presents a summary of
their performance analysis. In the comparisons below, we refer to our (pre-
ferred) second FPGA approach as the proposed architecture and we use the
CPU implementation in Keras as the reference implementation. There is a
significant improvement in latency (fig. 6.1) and throughput (fig. 6.2) with
our proposed architecture, with speedups of 14.38x and 15.548x respectively.
The GPU implementation also performs better on both these metrics when
compared to the CPU implementation, but with only a 2x speedup (approxi-
mately).

Latency
0

5

10

13

6

1.08 0.9

m
ill

is
ec

on
d

(m
s)

CPU(Keras) GPU(Keras) FPGA V.1 FPGA V.2

FIGURE 6.1: An analysis of the Latency of the compared plat-
forms.

As for training time for an epoch (fig.6.3) for the entire MNIST dataset, our
proposed design completes the task in 2.3797 seconds, compared to 37 sec-
onds for the CPU and 17 seconds for the GPU.

The proposed architecture is also more efficient in terms of power consump-
tion (fig. 6.4), requiring only 8.815 Watts as opposed to 65 Watts for the CPU
implementation and 75 Watts for the GPU implementation. However, the
most noteworthy aspect of our FPGA design is its energy efficiency (6.5),
which is 106.15 times greater than that of CPUs and 56.5 times greater than
that of GPUs.

108 Chapter 6. Results

Throughput
0

200

400

600

800

1,000

1,200

81.08
176.47

1,029.16

1,260.66

Ba
tc

he
s/

se
c

CPU(Keras) GPU(Keras) FPGA V.1 FPGA V.2

FIGURE 6.2: An analysis of the Throughput of the compared
platforms.

As far as training and validation error/accuracy (fig. 6.8, 6.7) are concerned,
our proposed architecture failed to match the performance of the CPU/GPU
implementation. In spite of the closeness in training error/accuracy results
between our FPGA implementation and Keras implementation, validation
results are more accurate in order to establish the actual gap between them.
According to these results, we achieve 95.5% validation accuracy compared
to 97.5% for CPU/GPU implementations and 15.5% validation error com-
pared to 9% and 10% for CPU and GPU, respectively. Nevertheless, given
the high level of acceleration and energy efficiency provided by the FPGA
implementation, the difference between these implementations in validation
results is considered insignificant.

6.3. Performance Evaluation and Comparison 109

Epoch execution time
0

10

20

30

40 37

17

2.92 2.38

se
co

nd

CPU(Keras) GPU(Keras) FPGA V.1 FPGA V.2

FIGURE 6.3: An analysis of the training execution time for an
epoch of the compared platforms.

Power Consumption
0

20

40

60

80

65

75

7.41 8.82

W
at

t

CPU(Keras) GPU(Keras) FPGA V.1 FPGA V.2

FIGURE 6.4: An analysis of the Power Consumption of the com-
pared platforms.

110 Chapter 6. Results

Energy Consumption per Batch
0

0.2

0.4

0.6

0.8
0.85

0.45

8 · 10−3 7.96 · 10−3

Jo
ul

e

CPU(Keras) GPU(Keras) FPGA V.1 FPGA V.2

FIGURE 6.5: An analysis of the Energy Consumption per batch
of the compared platforms.

Images/Joule
0

50

100

150

1.25 2.35

138.94 143.01

CPU(Keras) GPU(Keras) FPGA V.1 FPGA V.2

FIGURE 6.6: An analysis of the Images/Joule metric of the com-
pared platforms.

6.3. Performance Evaluation and Comparison 111

Training Accuracy Validation Accuracy
0

20

40

60

80

100 99 97.599 97.598.5 95.5
#A

cc
ur

ac
y

Pe
rc

en
ta

ge

CPU(Keras) GPU(Keras) Proposed Architecture

FIGURE 6.7: An analysis of the Accuracy in training and vali-
dation of the compared platforms.

Training Error Validation Error
0

5

10

15

3

9

3.4

10.4

5.6

15.5

#E
rr

or
Pe

rc
en

ta
ge

CPU(Keras) GPU(Keras) Proposed Architecture

FIGURE 6.8: An analysis of the Error in training and validation
of the compared platforms.

113

Chapter 7

Conclusions and Future Work

7.1 Conclusions

ANNs have been successfully used to solve a wide range of challenging ma-
chine learning tasks. However, ANNs require a substantial amount of en-
ergy to achieve top performance. In addition, they suffer from problems that
seem rudimentary to a human brain, including "transfer learning" and "catas-
trophic forgetting". In contrast, the brain consumes a very low amount of
energy (< 20 watts), generalizes extremely well, and can learn continuously
without erasing previously learned information upon learning new informa-
tion. Although ANNs are generally derived from biology, they are biolog-
ically inaccurate. As a result of these facts, there is a growing interest in
understanding biological NNs in greater depth and developing bio-inspired
NNs such as SNNs.

Drawing inspiration from biological dendrites and the previously mentioned
facts, the Postdoctoral Researcher S. Chavlis and the Research Director P.
Poirazi, both from the Poirazi lab of the IMBB-FORTH, introduced a bio-
inspired ANN architecture. This model enhances the bio-inspiration of a
typical ANN by adopting dendritic-structure, receptive field, and the Adam
optimization algorithm. This thesis aimed to build a FPGA-based implemen-
tation of this bio-inspired ANN training process to enhance its energy/power
efficiency and speed up the training process. FPGAs are able to achieve this
due to their high parallelism and power efficiency. Based on their initial high-
level implementation in Keras, we first developed a lower-level implemen-
tation in Numpy. As a result of Numpy’s implementation, we were able
to analyze and understand this bio-inspired ANN model more deeply. The
training procedure was then implemented using Vivado HLS within one IP.
The training procedure includes forward propagation, backpropagation and

https://www.imbb.forth.gr/en/personel-directory/item/1357-chavlis-spyridon
https://www.imbb.forth.gr/en/research-en/item/73-panayiota-poirazi
https://www.imbb.forth.gr/en/research-en/item/73-panayiota-poirazi
https://www.imbb.forth.gr/en/

114 Chapter 7. Conclusions and Future Work

updating of the network’s parameters (using Adam optimization algorithm).
The forward propagation was implemented by Nikoletta Palatianna. Back-
propagation and the Adam algorithm were implemented as part of this the-
sis. We exploited the tool’s parallelization capabilities by using pipelining,
loop unrolling, array partitioning and other directives. In the next step, we
implemented our FPGA architecture in the GUI of the Vivado IDE. Specif-
ically, we instantiated our custom Training IP along with other necessary
modules and coordinated the communication between them as well as be-
tween DDR and PL in order to make the system work effectively.

We implemented two approaches of Training IP using Vivado HLS, which
resulted in two FPGA-based implementations of our bio-inspired ΑΝΝ. The
second approach we propose optimizes latency and throughput. Due to this,
it performs an epoch of training (for the entire MNIST dataset) faster than
the first approach, requiring 2.3797 seconds as opposed to 2.915 seconds. A
disadvantage of the second approach is that it requires more FPGA resources
and more on-chip power (watt). However, it is slightly more energy efficient,
consuming 0.00796 Joules per batch in comparison to 0.008 Joules per batch
in the first approach. The second FPGA-based implementation approach is
therefore preferred, since it is both faster and more energy efficient. Compar-
ing our proposed FPGA design with the CPU implementation (in Keras) on
the MNIST dataset reveals significant improvements in latency and through-
put with speedups of 14.38x and 15.548x, respectively. As a result of these
speedups, an epoch of training is completed significantly faster than before,
taking only 2.3797 seconds (as mentioned earlier) as opposed to 37 seconds
on a CPU. GPU implementation achieves only a 2x speedup in latency and
throughput over CPU implementation, executing an epoch of training in 17
seconds. The most notable feature of our FPGA design is its high energy effi-
ciency, which is 106.15 times greater than that of CPUs and 56.5 times greater
than that of GPUs. In terms of accuracy/error results in training and vali-
dation, our proposed FPGA implementation did not achieve the same level
of performance as the CPU/GPU implementation. The small gap in accu-
racy/error results between these implementations, however, is considered
insignificant, given the high level of acceleration and energy efficiency pro-
vided by the FPGA implementation.

7.2. Future Work 115

7.2 Future Work

In our FPGA design, we have not implemented the validation procedure and
callbacks. The validation procedure has only been implemented at the simu-
lation level of Vivado HLS. These features will be implemented in the thesis
of Nikoletta Palatiana. It would be interesting to investigate the possibility
of incorporating these features into the PL of FPGA. With these features in-
corporated, we will be able to conduct the training procedure in an optimal
manner, resulting in a lower validation error.

7.2.1 Plasticity rules

In their bio-inspired ANN model (mentioned above), Postdoctoral Researcher
S. Chavlis and Research Director P. Poirazi have proposed two different strate-
gies regarding learning rules. This thesis presents the implementation of the
first strategy, which uses classical backpropagation. According to the sec-
ond strategy, the Covariance rule (plasticity rule) is applied to the first layer
and backpropagation is applied to the remaining layers. The second strat-
egy will be applied in the thesis of Nikoletta Palatiana. Covariance rule is an
unsupervised rule, which does not consider the model’s output (loss) while
updating its parameters. In other words, the updating of the parameters (for
the first layer) is a completely independent process based on the covariance
of the inputs. By incorporating a covariance rule or another plasticity rule
into our presented design, we are able to enhance the bio-inspiration of the
model and may be able to further improve its time and energy efficiency.

7.2.2 Rewiring

The bio-inspired ANN model we developed is equipped with dendritic-structure
and receptive field. As a result of these features, the presented model is char-
acterized by a sparse connectivity structure, which is achieved by applying
masks to the weights. According to the presented model, masks remain fixed
throughout the entire process, while connectivity-structure typically changes
in neuroscience. The development of a corresponding bio-inspired ANN in
which the masks (connectivity-structure) are modified at regular intervals
during training will be interesting. This feature, known as rewiring, further
enhances bio-inspiration.

https://www.linkedin.com/in/palatiana-nikoletta/
https://www.imbb.forth.gr/en/personel-directory/item/1357-chavlis-spyridon
https://www.imbb.forth.gr/en/research-en/item/73-panayiota-poirazi
https://www.linkedin.com/in/palatiana-nikoletta/

116 Chapter 7. Conclusions and Future Work

7.2.3 Better implementation of the FPGA architecture

As discussed in the section on FPGA implementation (5.4), we did not mea-
sure the achieved bandwidth in our design or optimize our architecture to its
maximum performance. We tried to improve the theoretical bandwidth by
increasing the data width from 32-bit to 64-bit and by using multiple DMAs
that stream data from different HP ports of the Zynq(PS). Our goal was to
implement a functional and power-efficient architecture that could speed up
the training process of our bio-inspired ANN. This goal was achieved by op-
timizing training time (approximately 15,5 times faster than the CPU) and
energy efficiency (approximately 106 times more energy efficient than the
CPU). Nevertheless, our architecture is probably not as optimized as it could
be in order to fully exploit theoretical bandwidth. Thus, our FPGA design
may be able to be optimized.

7.2.4 Larger scale implementation

The bio-inspired ANN model we developed consists of five layers and is
considered a small ANN. As a next step, this model should be implemented
on a larger scale in order to compare it with current state-of-the-art models
and draw interesting conclusions. This can be accomplished by adding more
layers to our model. Alternatively, our small bio-inspired ANN can also be
incorporated into a large CNN by replacing the last layer (dense layer) of
CNN with it.

117

References

[5] Spyridon Chavlis and Panayiota Poirazi. “Drawing Inspiration from
Biological Dendrites to Empower Artificial Neural Networks”. In: Cur-
rent Opinion in Neurobiology 70 (June 2021), pp. 1–10. URL: https://
arxiv.org/abs/2106.07490v1.

[7] Xundong Wu et al. “Improved Expressivity Through Dendritic Neural
Networks”. In: 32nd Conference on Neural Information Processing Systems
(2018), pp. 8068–8079. URL: https://proceedings.neurips.cc/paper_
files/paper/2018/file/e32c51ad39723ee92b285b362c916ca7-Paper.

pdf.
[8] Blake Camp, Jaya Krishna Mandivarapu, and Rolando Estrada. “Con-

tinual Learning with Deep Artificial Neurons”. In: arXiv preprint arXiv:2011.07035
1 (Nov. 2020). URL: https://arxiv.org/abs/2011.07035.

[9] Ilenna Simone Jones and Konrad Paul Kording. “Can Single Neurons
Solve MNIST? The Computational Power of Biological Dendritic Trees”.
In: arXiv preprint arXiv:2009.01269 (2020). URL: https://arxiv.org/
abs/2009.01269.

[10] Panayiota Poirazi, Terrence Brannon, and Bartlett W. Mel. “Pyramidal
Neuron as Two-Layer Neural Network”. In: Neuron 37.6 (Jan. 2003),
pp. 989–999. ISSN: 0896-6273. DOI: https://doi.org/10.1016/S0896-
6273(03)00149-1. URL: https://www.sciencedirect.com/science/
article/pii/S0896627303001491.

[11] Panayiota Poirazi and Bartlett W. Mel. “Impact of Active Dendrites
and Structural Plasticity on the Memory Capacity of Neural Tissue”.
In: Neuron 29.3 (2001), pp. 779–796. ISSN: 0896-6273. DOI: https : / /
doi.org/10.1016/S0896- 6273(01)00252- 5. URL: https://www.
sciencedirect.com/science/article/pii/S0896627301002525.

[12] Spyridon Chavlis, Panagiotis C. Petrantonakis, and Panayiota Poirazi.
“Dendrites of dentate gyrus granule cells contribute to pattern separa-
tion by controlling sparsity”. In: Hippocampus 27.1 (Jan. 2017), pp. 89–
110. DOI: https://doi.org/10.1002/hipo.22675.

https://arxiv.org/abs/2106.07490v1
https://arxiv.org/abs/2106.07490v1
https://proceedings.neurips.cc/paper_files/paper/2018/file/e32c51ad39723ee92b285b362c916ca7-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/e32c51ad39723ee92b285b362c916ca7-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/e32c51ad39723ee92b285b362c916ca7-Paper.pdf
https://arxiv.org/abs/2011.07035
https://arxiv.org/abs/2009.01269
https://arxiv.org/abs/2009.01269
https://doi.org/https://doi.org/10.1016/S0896-6273(03)00149-1
https://doi.org/https://doi.org/10.1016/S0896-6273(03)00149-1
https://www.sciencedirect.com/science/article/pii/S0896627303001491
https://www.sciencedirect.com/science/article/pii/S0896627303001491
https://doi.org/https://doi.org/10.1016/S0896-6273(01)00252-5
https://doi.org/https://doi.org/10.1016/S0896-6273(01)00252-5
https://www.sciencedirect.com/science/article/pii/S0896627301002525
https://www.sciencedirect.com/science/article/pii/S0896627301002525
https://doi.org/https://doi.org/10.1002/hipo.22675

118 References

[15] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic
Optimization”. In: 3rd International Conference for Learning Representa-
tions (ICRL 2015) 9 (Jan. 2017). URL: https://arxiv.org/abs/1412.
6980v9.

[16] John Duchi, Elad Hazan, and Yoram Singer. “Adaptive subgradient
methods for online learning and stochastic optimization”. In: The Jour-
nal of Machine Learning Research 12 (July 2011), pp. 2121–2159. URL:
https://dl.acm.org/doi/10.5555/1953048.2021068.

[22] Emmanouil Kousanakis et al. “An Architecture for the Acceleration of
a Hybrid Leaky Integrate and Fire SNN on the Convey HC-2ex FPGA-
Based Processor”. In: 2017 IEEE 25th Annual International Symposium on
Field-Programmable Custom Computing Machines (FCCM) (2017), pp. 56–
63. DOI: 10.1109/FCCM.2017.51.

[23] Stanisław Woźniak et al. “Deep learning incorporating biologically in-
spired neural dynamics and in-memory computing”. In: Nature Ma-
chine Intelligence 2.6 (June 2020), pp. 325–336. DOI: 10.1038/s42256-
020-0187-0. URL: https://doi.org/10.1038/s42256-020-0187-0.

[24] P.J. Werbos. “Backpropagation through time: What it does and how to
do it”. In: Proceedings of the IEEE 78.10 (Oct. 1990), pp. 1550–1560. ISSN:
1558-2256. DOI: 10.1109/5.58337.

[25] Thomas Bohnstingl et al. “Speech Recognition Using Biologically-Inspired
Neural Networks”. In: ICASSP 2022 - 2022 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP) (May 2022),
pp. 6992–6996. ISSN: 2379-190X. DOI: 10 . 1109 / ICASSP43922 . 2022 .
9747499.

[27] Alex Graves. “Sequence Transduction with Recurrent Neural Networks”.
In: International Conference of Machine Learning (ICML) 2012 Workshop on
Representation Learning (Nov. 2012). URL: https://doi.org/10.48550/
arXiv.1211.3711.

[28] Ronald J. Williams and David Zipser. “A Learning Algorithm for Con-
tinually Running Fully Recurrent Neural Networks”. In: Neural Compu-
tation 1.2 (June 1989), pp. 270–280. ISSN: 0899-7667. DOI: 10.1162/neco.
1989.1.2.270. URL: https://doi.org/10.1162/neco.1989.1.2.270.

[29] Thomas Bohnstingl et al. “Online Spatio-Temporal Learning in Deep
Neural Networks”. In: IEEE Transactions on Neural Networks and Learn-
ing Systems (2022), pp. 1–15. ISSN: 2162-2388. DOI: 10.1109/TNNLS.
2022.3153985.

https://arxiv.org/abs/1412.6980v9
https://arxiv.org/abs/1412.6980v9
https://dl.acm.org/doi/10.5555/1953048.2021068
https://doi.org/10.1109/FCCM.2017.51
https://doi.org/10.1038/s42256-020-0187-0
https://doi.org/10.1038/s42256-020-0187-0
https://doi.org/10.1038/s42256-020-0187-0
https://doi.org/10.1109/5.58337
https://doi.org/10.1109/ICASSP43922.2022.9747499
https://doi.org/10.1109/ICASSP43922.2022.9747499
https://doi.org/10.48550/arXiv.1211.3711
https://doi.org/10.48550/arXiv.1211.3711
https://doi.org/10.1162/neco.1989.1.2.270
https://doi.org/10.1162/neco.1989.1.2.270
https://doi.org/10.1162/neco.1989.1.2.270
https://doi.org/10.1109/TNNLS.2022.3153985
https://doi.org/10.1109/TNNLS.2022.3153985

References 119

[30] Giorgia Dellaferrera et al. “Introducing principles of synaptic integra-
tion in the optimization of deep neural networks”. In: Nature Commu-
nications 13.1 (Apr. 2022), pp. 1885–1898. DOI: 10.1038/s41467-022-
29491-2. URL: https://doi.org/10.1038/s41467-022-29491-2.

https://doi.org/10.1038/s41467-022-29491-2
https://doi.org/10.1038/s41467-022-29491-2
https://doi.org/10.1038/s41467-022-29491-2

121

External Links

[1] “Neuron - Wikipedia.” In: (). URL: https://en.wikipedia.org/wiki/
Neuron.

[2] “Synapse - Wikipedia.” In: (). URL: https://en.wikipedia.org/wiki/
Synapse.

[3] “Transfer Learning - Wikipedia.” In: (). URL: https://en.wikipedia.
org/wiki/Transfer_learning.

[4] “Catastrophic Forgetting - Wikipedia.” In: (). URL: https://en.wikipedia.
org/wiki/Catastrophic_interference.

[6] “Dropout Layer - Keras API reference.” In: (). URL: https://keras.io/
api/layers/regularization_layers/dropout/.

[13] “Receptive field - Wikipedia.” In: (). URL: https://en.wikipedia.org/
wiki/Receptive_field.

[14] “Stochastic Gradient Descent (SGD) - Wikipedia.” In: (). URL: https:
//en.wikipedia.org/wiki/Stochastic_gradient_descent.

[17] “Introduction Lectures to RMSprop Gradient Descent Algorithm (Ge-
offrey Hinton).” In: (). URL: https://www.cs.toronto.edu/~tijmen/
csc321/slides/lecture_slides_lec6.pdf.

[18] “Softmax Activation Function - Wikipedia.” In: (). URL: https://en.
wikipedia.org/wiki/Softmax_function.

[19] “Vanishing gradient problem - Wikipedia.” In: (). URL: https://en.
wikipedia.org/wiki/Vanishing_gradient_problem.

[20] “Spiking Neural Network (SNN) - Wikipedia.” In: (). URL: https://
en.wikipedia.org/wiki/Biological_neuron_model.

[21] “The membrane potential - khanacademy.org.” In: (). URL: https://
www.khanacademy.org/science/biology/human-biology/neuron-

nervous-system/a/the-membrane-potential.
[26] “Recurrent neural network (RNN) - Wikipedia.” In: (). URL: https :

//en.wikipedia.org/wiki/Recurrent_neural_network.
[31] “MNIST database of handwritten digits.” In: (). URL: http://yann.

lecun.com/exdb/mnist/.
[32] “About Keras - keras.io”. In: (). URL: https://keras.io/about/.

https://en.wikipedia.org/wiki/Neuron
https://en.wikipedia.org/wiki/Neuron
https://en.wikipedia.org/wiki/Synapse
https://en.wikipedia.org/wiki/Synapse
https://en.wikipedia.org/wiki/Transfer_learning
https://en.wikipedia.org/wiki/Transfer_learning
https://en.wikipedia.org/wiki/Catastrophic_interference
https://en.wikipedia.org/wiki/Catastrophic_interference
https://keras.io/api/layers/regularization_layers/dropout/
https://keras.io/api/layers/regularization_layers/dropout/
https://en.wikipedia.org/wiki/Receptive_field
https://en.wikipedia.org/wiki/Receptive_field
https://en.wikipedia.org/wiki/Stochastic_gradient_descent
https://en.wikipedia.org/wiki/Stochastic_gradient_descent
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://en.wikipedia.org/wiki/Softmax_function
https://en.wikipedia.org/wiki/Softmax_function
https://en.wikipedia.org/wiki/Vanishing_gradient_problem
https://en.wikipedia.org/wiki/Vanishing_gradient_problem
https://en.wikipedia.org/wiki/Biological_neuron_model
https://en.wikipedia.org/wiki/Biological_neuron_model
https://www.khanacademy.org/science/biology/human-biology/neuron-nervous-system/a/the-membrane-potential
https://www.khanacademy.org/science/biology/human-biology/neuron-nervous-system/a/the-membrane-potential
https://www.khanacademy.org/science/biology/human-biology/neuron-nervous-system/a/the-membrane-potential
https://en.wikipedia.org/wiki/Recurrent_neural_network
https://en.wikipedia.org/wiki/Recurrent_neural_network
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://keras.io/about/

122 External Links

[33] “Numpy - numpy.org”. In: (). URL: https://numpy.org/.
[34] “numpy.dot - numpy.org.” In: (). URL: https : / / numpy . org / doc /

stable/reference/generated/numpy.dot.html.
[35] “numpy.multiply - numpy.org.” In: (). URL: https://numpy.org/doc/

stable/reference/generated/numpy.multiply.html.
[36] “numpy.sum - numpy.org.” In: (). URL: https : / / numpy . org / doc /

stable/reference/generated/numpy.sum.htmll.
[37] “numpy.ndarray.T - numpy.org.” In: (). URL: https://numpy.org/doc/

stable/reference/generated/numpy.ndarray.T.html.
[38] “He normal initializer - tensorflow.org”. In: (). URL: https : / / www .

tensorflow.org/api_docs/python/tf/compat/v1/initializers/he_

normal.
[39] “GlorotUniform initializer - tensorflow.org”. In: (). URL: https://www.

tensorflow.org/api_docs/python/tf/keras/initializers/GlorotUniform.
[40] “Amdahl’s law - Wikipedia.” In: (). URL: https://en.wikipedia.org/

wiki/Amdahl%27s_law.
[41] “Vivado Design Suite HLx Editions - Xilinx”. In: (). URL: https://www.

xilinx.com/products/design-tools/vivado.html.
[42] “Vivado Design Suite User Guide: High-Level Synthesis - UG902.” In:

(). URL: https://docs.xilinx.com/v/u/2019.1-English/ug902-
vivado-high-level-synthesis.

[43] “Vivado Design Suite User Guide: Using the Vivado IDE - UG893.” In:
(). URL: https://docs.xilinx.com/v/u/2019.1-English/ug893-
vivado-ide.

[44] “Vivado Design Suite User Guide: Designing IP Subsystems Using IP
Integrator - UG994.” In: (). URL: https://docs.xilinx.com/v/u/2019.
1-English/ug994-vivado-ip-subsystems.

[45] “Vivado Design Suite User Guide: Implementation - UG904.” In: ().
URL: https : / / docs . xilinx . com / v / u / 2019 . 1 - English / ug904 -
vivado-implementation.

[46] “Vivado Design Suite User Guide: Design Analysis and Closure Tech-
niques - UG906.” In: (). URL: https://docs.xilinx.com/v/u/2019.1-
English/ug906-vivado-design-analysis.

[47] “Xilinx Software Development Kit (SDK).” In: (). URL: https://www.
xilinx.com/htmldocs/xilinx2019_1/SDK_Doc/sdk_getting_started/

sdk_getting_started.html#sdk_getting_started.
[48] “ZCU102 Evaluation Board.” In: (). URL: https://www.xilinx.com/

products/boards-and-kits/ek-u1-zcu102-g.html.

https://numpy.org/
https://numpy.org/doc/stable/reference/generated/numpy.dot.html
https://numpy.org/doc/stable/reference/generated/numpy.dot.html
https://numpy.org/doc/stable/reference/generated/numpy.multiply.html
https://numpy.org/doc/stable/reference/generated/numpy.multiply.html
https://numpy.org/doc/stable/reference/generated/numpy.sum.htmll
https://numpy.org/doc/stable/reference/generated/numpy.sum.htmll
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.T.html
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.T.html
https://www.tensorflow.org/api_docs/python/tf/compat/v1/initializers/he_normal
https://www.tensorflow.org/api_docs/python/tf/compat/v1/initializers/he_normal
https://www.tensorflow.org/api_docs/python/tf/compat/v1/initializers/he_normal
https://www.tensorflow.org/api_docs/python/tf/keras/initializers/GlorotUniform
https://www.tensorflow.org/api_docs/python/tf/keras/initializers/GlorotUniform
https://en.wikipedia.org/wiki/Amdahl%27s_law
https://en.wikipedia.org/wiki/Amdahl%27s_law
https://www.xilinx.com/products/design-tools/vivado.html
https://www.xilinx.com/products/design-tools/vivado.html
https://docs.xilinx.com/v/u/2019.1-English/ug902-vivado-high-level-synthesis
https://docs.xilinx.com/v/u/2019.1-English/ug902-vivado-high-level-synthesis
https://docs.xilinx.com/v/u/2019.1-English/ug893-vivado-ide
https://docs.xilinx.com/v/u/2019.1-English/ug893-vivado-ide
https://docs.xilinx.com/v/u/2019.1-English/ug994-vivado-ip-subsystems
https://docs.xilinx.com/v/u/2019.1-English/ug994-vivado-ip-subsystems
https://docs.xilinx.com/v/u/2019.1-English/ug904-vivado-implementation
https://docs.xilinx.com/v/u/2019.1-English/ug904-vivado-implementation
https://docs.xilinx.com/v/u/2019.1-English/ug906-vivado-design-analysis
https://docs.xilinx.com/v/u/2019.1-English/ug906-vivado-design-analysis
https://www.xilinx.com/htmldocs/xilinx2019_1/SDK_Doc/sdk_getting_started/sdk_getting_started.html#sdk_getting_started
https://www.xilinx.com/htmldocs/xilinx2019_1/SDK_Doc/sdk_getting_started/sdk_getting_started.html#sdk_getting_started
https://www.xilinx.com/htmldocs/xilinx2019_1/SDK_Doc/sdk_getting_started/sdk_getting_started.html#sdk_getting_started
https://www.xilinx.com/products/boards-and-kits/ek-u1-zcu102-g.html
https://www.xilinx.com/products/boards-and-kits/ek-u1-zcu102-g.html

External Links 123

[49] “Vivado Design Suite AXI Reference Guide - UG1037.” In: (). URL: https:
//docs.xilinx.com/v/u/en-US/ug1037-vivado-axi-reference-

guide.
[50] “AXI DMA v7.1 LogiCORE IP Product Guide (PG021).” In: (). URL:

https://docs.xilinx.com/r/en- US/pg021_axi_dma/AXI- DMA-

v7.1-LogiCORE-IP-Product-Guide.
[51] “AXI Block RAM (BRAM) Controller v4.1 - PG078.” In: (). URL: https:

//docs.xilinx.com/v/u/en-US/pg078-axi-bram-ctrl.
[52] “Block Memory Generator v8.4 - PG058.” In: (). URL: https://docs.

xilinx.com/v/u/en-US/pg058-blk-mem-gen.

https://docs.xilinx.com/v/u/en-US/ug1037-vivado-axi-reference-guide
https://docs.xilinx.com/v/u/en-US/ug1037-vivado-axi-reference-guide
https://docs.xilinx.com/v/u/en-US/ug1037-vivado-axi-reference-guide
https://docs.xilinx.com/r/en-US/pg021_axi_dma/AXI-DMA-v7.1-LogiCORE-IP-Product-Guide
https://docs.xilinx.com/r/en-US/pg021_axi_dma/AXI-DMA-v7.1-LogiCORE-IP-Product-Guide
https://docs.xilinx.com/v/u/en-US/pg078-axi-bram-ctrl
https://docs.xilinx.com/v/u/en-US/pg078-axi-bram-ctrl
https://docs.xilinx.com/v/u/en-US/pg058-blk-mem-gen
https://docs.xilinx.com/v/u/en-US/pg058-blk-mem-gen

	Abstract
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	List of Abbreviations
	Introduction
	Motivation
	Scientific Contributions
	Thesis Outline

	Theoretical Background
	Artificial Intelligence, Machine Learning & Deep Learning
	Simple Neural Network (NN)
	Classification Problem with linear boundary
	Perceptron
	Perceptron Algorithm

	Non-Linear Regions
	Error Function (Cross-Entropy)
	Gradient Descent

	Deep Neural Network (DNN)
	Feedforward (Full Forward)
	Backpropagation
	Update of Parameters
	Underfitting and Overfitting
	Early Stopping

	Optimization algorithms for updating network parameters
	Adam Optimization Algorithm

	Activation Functions
	Sigmoid / Logistic
	Softmax
	Rectified Linear Unit (ReLU)
	Leaky Rectified Linear Unit (Leaky ReLU)

	Related Work
	Brain-Inspired models
	Spiking Neural Networks
	Architecture for a hybrid LIF SNN with dendrites and plasticity rules
	Bridge between ANN and SNN with spiking neural unit
	Speech recognition using bio-inspired Neural Networks
	Novel online learning algorithmic framework for Deep Neural Networks
	Novel biologically inspired optimizer for both ANN and SNN training

	Thesis Approach

	System Modeling
	Neuro-inspired ANN model
	Bio-inspired Features
	Dendritic-Structure
	Receptive Field (RF)

	Reference Model Architecture
	Implementation of the Connectivity Structure

	Software Implementations - Tools used (Keras - Numpy)
	Hyperparameter and Training Configuration
	Data-set
	Data Type

	Numpy Implementation
	Definition of Numpy mathematical functions
	Generation of parameters (Initialization phase)
	Full-Forward propagation
	Backpropagation
	Update method - Adam Algorithm

	Profiling
	Memory Profiling

	Discussion

	FPGA Design and Implementation
	FPGA Design
	Sparse Connectivity and Weight Handling
	Backpropagation Block
	dZ Calculation
	dY_prev Calculation
	dW Calculation
	db Calculation and Update of biases

	Adam Algorithm Block
	mean_dw Calculation
	uvar_dw Calculation
	mean_dw_corr and uvar_dw_corr Calculation
	dW_Adam Calculation and Update of Weights

	Tools Used
	Vivado High Level Synthesis (HLS)
	Pipeline Directive
	Interface Directive
	Array Partition Directive
	Unroll Directive
	Synthesis Report - Performance Metrics

	Vivado IDE
	Vivado SDK

	FPGA Platform
	AXI4 Interface Protocol
	PL-PS Communication Methods
	AXI DMA

	FPGA Implementation
	PL-PS Communication and Memory Configuration
	Bandwidth

	Overview of IP Block in Vivado HLS
	Implementation of IP Block (HLS) - First Approach
	Backpropagation in Vivado HLS
	Calculation of dY_prev
	Calculation of dZ_curr and dZ_batch
	Calculation of dW_curr
	Calculation of db_curr and update of b_curr

	Update - Adam Optimization Algorithm in Vivado HLS
	Forward propagation in Vivado HLS
	Design Space Exploration

	Implementation of IP Block (HLS) - Second (Optimized) Approach
	Optimized Backpropagation in Vivado HLS
	Calculation of dW_curr
	Calculation of dY_prev, dΖ_curr and dZ_batch
	Calculation of db_curr and update of b_curr

	Optimized Update - Adam Optimization Algorithm in Vivado HLS

	Results
	Specification of Compared Platforms
	Intel i5-6500
	GPU
	Proposed Architectures

	Performance Metrics
	Latency
	Throughput
	Power Consumption
	Energy Consumption

	Performance Evaluation and Comparison
	Comparison of two FPGA versions
	Comparison of FPGA and CPU/GPU versions

	Conclusions and Future Work
	Conclusions
	Future Work
	Plasticity rules
	Rewiring
	Better implementation of the FPGA architecture
	Larger scale implementation

	References

