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Abstract: Surface soil moisture (SSM) plays an essential role in the Earth’s water cycle and land surface
processes as well as in vegetative growth, ecological health, and ecosystem properties. Particularly,
information on this parameter’s spatiotemporal variability at the Tibetan Plateau is of key importance
to the study of climate and the impact of climate change due to it is distinctive characteristics in this
area. The present study assesses the operational SSM products provided by the SMAP (Soil Moisture
Active and Passive) satellite at the Tibetan Plateau, Naqu observational station, China. In particular,
the globally distributed Level 3 operational products, SPL3SMP_36km and the Enhanced Passive SSM
Product SPL3SMP_9km, are evaluated in two-phases. SSM and the surface temperature estimates by
SPL3SMP_36km and SPL3SMP_9km are compared against corresponding ground data available at
the Naqu observation network. All in all, the examined products captured the SSM dynamics in the
studied area. The results showed that precipitation is the key driving source of SSM variability. SSM
fluctuated significantly and was dependent on precipitation in the studied region. Statistical metrics,
such as the root mean square error (RMSE), varied for SPL3SMP_36km and SPL3SMP_9km in the
ranges of 0.036–0.083 m3/m3 and 0.074–0.097 m3/m3, respectively. The unbiased RMSE (ubRMSE)
was higher than the SMAP uncertainty limit (0.04 m3/m3) in most cases. This study establishes some
of the causes for the different performances of SMAP products, mainly, the ancillary input dataset
parameterizations, and, specifically, the surface temperature parameterization schemes of SMAP
retrieval algorithm is analyzed and discussed. Our research findings highlight, among others, the
usefulness of those SSM products from SMAP, particularly in mesoscale studies, providing additional
useful insights into the use of those products in practice in China and globally.

Keywords: soil moisture; earth observation; SMAP; surface temperature; validation; Tibetan Plateau

1. Introduction

Soil moisture is a very important parameter of the Earth’s water cycle, making a
significant contribution to the change of weather and the climate in both regional and
global geographical scales [1,2]. It also exerts major control upon heat and water exchange
between the atmosphere and the land components of the Earth’s system. In particular,
surface soil moisture (SSM) is a key variable on the Earth’s surface that influences the
interactions between the surface and the atmosphere [2,3]. It has been recognized as
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playing a substantial role in seasonal climate and in evaluating impacts of global climate
change [4], forecasting extreme events, such as drought, frost, or floods [5]. Furthermore,
it has been utilized as a key variable in various models, such as hydrological [6,7], land
surface evaporation [8,9], and surface runoff [10].

Traditionally, ground instrumentation is deployed in measuring SSM at point and
local scales [11,12]. Yet, it is a challenging task to characterize SSM variability in a large
scale using in situ data. This is due to the large variability of SSM in both the spatial and
temporal domains and its dependence on several parameters, such as rainfall, soil texture,
topography, and vegetation cover, some of which may vary significantly spatially [13].
At present, a global dense ground observation network of SSM does not exist. However,
SSM observation networks at regional levels are available, such as the International Soil
Moisture Network (ISMN). This is a continuous SSM database that provides open SSM
measurements obtained from smaller networks [14]. In addition, FLUXNET is currently
the largest global observation network, providing systematic ground measurements of a
series of micrometeorological and auxiliary parameters, including SSM [15].

During recent decades, Earth Observation (EO) technology has evolved dramatically,
and sensors operating in the microwave (MW) part of the electromagnetic radiation spec-
trum are now placed in orbit, offering a promising potential to map SSM spatiotemporal
variability. Specifically, sensors operating in the active MW region can deliver finer spatial
resolution than the passive sensors. Yet, retrievals of SSM by active sensors are influenced,
for example, by surface roughness, topography, and vegetation cover [16,17]. On the con-
trary, passive MW sensors offer higher temporal resolution than active sensors, resulting
often in higher accuracy in SSM retrievals. Nonetheless, the spatial resolution of the pas-
sive sensors is frequently too coarse. Such spaceborne systems include the WindSat [18],
the AMSR-E (Advanced Microwave Scanning Radiometer-Earth Observing System) [19],
Aquarius [20], Fengyun-3 (FY3) [21], SMOS (Soil Moisture and Ocean Salinity) [22,23], and
ASCAT (Advanced Scatterometer) [24]. In addition, SMAP (named for Soil Moisture Active
and Passive) has been recently launched, specifically for soil moisture retrieval with a
spatial resolution of ~36 km2 and a 2-day revisit period. A recent review of EO-based SSM
operational products is available in [25].

To address the necessity of retrieving SSM at both high resolution and accuracy utiliz-
ing EO sensors, NASA launched the SMAP satellite mission. SMAP was placed in orbit in
January 2015 and started collecting data in April 2015 with a 6 am descending and 6 pm
ascending orbit. SMAP has two onboard instruments: an L-band radar (1.26 GHz) and an
L-band radiometer (1.41 GHz). SMAP allows one to obtain estimates of brightness tem-
perature at 36 km resolution and backscatter at 3 km spatial resolution. L-band (1–2 GHz)
was chosen since this is generally regarded as the optimal choice for monitoring topsoil
moisture, as it can easily penetrate low to moderate vegetation cover and is also affected by
atmospheric rather than weather conditions [26,27]. The SMAP products of SSM include
active, passive, and active–passive products [28]. In 2015, an enhanced SSM product also
became publicly available from SMAP [29]. Three months after the SMAP launch, its radar
instrument stopped collecting data due to instrument error. Nevertheless, several studies
have demonstrated that to obtain SSM globally and on a long-term basis utilizing EO data,
one of the most promising avenues is that of combining passive and active MW sensing. For
example, Ref. [30] proposed a method to retrieve SSM on the basis of SMAP L-band bright-
ness temperatures and Copernicus Sentinel-1 C-band backscatter. An assessment of SSM
operational products accuracy is necessary, as it provides a quality check of the product of
crucial importance, so that prospective users can better facilitate their applications [31]. It
also provides valuable feedback to enhance operational retrieval algorithms.

Climate change has influenced the water cycle over the globe. The response of surface
soil moisture to precipitation is a major element of the water cycle in the context of global
temperature increase, which manifests in progressively unpredictable rainfall events. The
response of SSM to precipitation in arid and semi-arid areas is an interesting focus of
studies worldwide [32]. Understanding the connection between SSM and precipitation,
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especially in regions such as the Tibetan Plateau, is critical to the effective use of the limited
water resources available for the region. The Tibetan Plateau is located in the southeast
part of China. The plateau covers approximately 2.6 million km2 at elevations more than
4000 m above sea level. It is also called “the Third Pole” and the “Roof of the World”. It is
of key significance to Asia and the global climate, due to it is exceptional characteristics
and because it contains the drainage basins of the three longest rivers in Asia (Yellow,
Mekong, and Yangtze rivers), which are crucial for agriculture and urban development.
Thus, information on SSM variability over the Tibetan Plateau is of very high importance
for studies linked to climate change and its impacts [33,34]. In addition, the high SSM
dynamic range due to the low biomass covering the region, the low air, and its typical
freeze–thaw cycle further support the selection of this area as an ideal place for validating
satellite-based SSM products.

Previous studies revealed that SMAP has the lowest uncertainty amongst other soil
moisture products, particularly in the Tibetan Plateau area [35,36]. Thus, the present study
aims to offer an in-depth insight into the series of the SMAP’s SSM operational product’s
accuracy, as such information may significantly assist in additional improvement of the
product’s algorithm accuracy, especially in polar and alpine climates where there is ice
reflection. The assessment of the SMAP-derived SSM retrievals values is an attempt to
build an improved soil moisture estimation and a consistent soil moisture dataset at the
regional level. In this research, the operational SSM products provided by SMAP (Soil
Moisture Active and Passive) are assessed through a two-phase approach. SSM and the
surface temperature (ST) estimates by SPL3SMP_36km and SPL3SMP_9km are compared
against corresponding ground data available at the Naqu observation network.

2. Experimental Set-Up
2.1. Validation Sites

Naqu is situated in the central Tibetan Plateau around Naqu city. The Naqu network,
(Figure 1) is a dense network at a high altitude (average elevation of about 4650 m asl) [37].
The terrain is hilly and annual precipitation is approximately 500 mm, approximately 75%
of which is received in the period between May and October. The land cover is dominated
by alpine grasslands (Figure 1).

Because of its topography, low biomass, and large, dynamic seasonal range as well as
the freeze–thaw cycle, the Naqu network is considered an ideal place for the evaluation
of satellite SSM retrievals and simulated SSM product validation. A total of 56 stations
(SMTMN) are installed in the Naqu network, measuring SSM and temperature. These
stations are deployed at three spatial scales (1.0◦, 0.3◦, and 0.1◦ ), namely large-scale
networks (38 stations), medium-scale networks (22 stations), and small-scale networks
(9 stations). At each station, one soil moisture and soil temperature sensor have been
obliquely inserted into 0–5 cm depth, comparable to the 134 penetration by the SMAP
L-band passive microwave sensor. In addition, three other sensors are inserted horizontally
at depths of 10 cm, 20 cm, and 40 cm. The sample intervals are 30 min and daily time
resolution. At this multi-scale station, more in situ measurement points within the 36 km/or
9 km SMAP radiometer footprint can be found. Due to its remote location, it is also less
affected by radio frequency interference (RFI). In addition, it has low air density and
biomass and low SSM, which exert less impact in attenuating L-band passive microwave
signals in retrieving SSM. This network data has been widely used in numerous validation
and scaling studies of microwave soil moisture [38–43]. This suggests that data from the
Naqu network in the Central Tibetan Plateau are of high consistency
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Figure 1. Naqu network location in CTP-SMTMN, the station geographical distribution. Figure
adapted from [41].

In addition, in the present study, rainfall data from the Tropical Rainfall Measuring
Mission is used as complementary data to assess the product’s verification since the study
area being characterized by the long rainy season may give valuable insight into further
algorithm improvement. In the present study, sixteen months of SMAP SM operational
data were used, compared with shorter periods in previous studies [44,45].

2.2. Satellite Data
2.2.1. SMAP SSM Product (SPL3SMP)

NSIDC provides SMAP radiometer and SSM products publicly at no cost (available
from https://nsidc.org/data/smap/smap-data.html (accessed on 22 March 2019). The
SMAP radiometer Level-3 SSM product has a spatial resolution of ~40 km. It is displayed
at 36 km Equal-Area Scalable Earth-Grid (EASE2) [46]. Herein, the SMAP Level-3 (L3)
radiometer SSM product (SPL3SMP)(version 5) and SMAP-Enhanced L3 SSM product
(SPL3SMP_E) (version 2) from 1 April 2015, to 18 September 2016, has been used, available
at 36 km spatial resolution [47]. A newer version, SSM version 6, which was distributed in
August 2019 was not available for use at the time of the study [29]. The term SPL3SMP_36
km will be used to refer to this product at this scale.

2.2.2. SMAP-Enhanced Level-3 SSM Product

This enhanced L3 is a daily composite of SMAP Level-2 (L2) SSM half-orbit products.
Enhanced radiometer SSM product (SPL3SMP_E_9km) distinguishes itself in that the SSM
retrievals are evaluated on a 9 km grid. This process was performed by application of the
Backus–Gilbert interpolation technique. In the present study, the SMAP-enhanced L3 SSM
passive product (SPL3SMP_E_9, version 3), displayed on 9 km on global cylindrical Equal-
Area Scalable Earth (EASE-Grid) version 2.0, was used. For more details, the reader can
refer to [29]. SMAP-Enhanced L3 Radiometer SSM product (SPL3SMP_E) (version 3) used
herein is the latest version (available via https://nsidc.org/data/SPL3SMP_E/versions/2
(accessed on 22 March 2019). A total of 56 sites from the Naqu network were used to
evaluate both SMAP L3 Radiometer SSM products from 1 April 2015, to 18 September 2016.

https://nsidc.org/data/smap/smap-data.html
https://nsidc.org/data/SPL3SMP_E/versions/2
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3. Methods
3.1. Data Pre-Processing

SMAP radiometer has a 9 km/36 km spatial resolution footprint. In general, the
characterization of SSM spatiotemporal variability using point-based in situ measurements
is challenging, as they do not align perfectly with the SMAP footprints [48]. The spatial
resolution differences may introduce uncertainties since it is impossible to represent the
satellite observation’s exact scale by ground observation. Herein, to address this spatial
representation issue, ground-based observations have been aggregated at the 9 km and
36 km grid scale. This is an effective approach also widely used in analogous validation
experiments [34,48,49]. Subsequently, station data within the same pixel were averaged.
Spatial averaging has been shown to be a simple and effective way to minimize spatial
noise; hence, it produces more reliable comparisons. In our study, to perform the compar-
isons of SSM retrieved from EO instruments versus in situ observations, only the ground
measurements matching the next overpass of the SMAP satellite were selected. The exact
ground measurement values collocated to the satellite-based SSM were extracted from
SMAP for each site on the basis of each site’s coordinates.

In addition, quality control was implemented on the ground data to minimize any
errors in ground observations. As such, data with uncertainties, such as SSM values higher
than 1 m3/m3 or less than 0 m3/m3 and positive or negative anomalies in SSM, were
excluded. In addition, from any further analysis were excluded stations with missing data,
i.e., 30% of a full year of data. Upon completion of this step, all sites and SMAP SSM in the
Naqu network in the Central Tibetan Plateau area were averaged at each satellite overpass
time. In any further analysis, only topsoil moisture measurements (at 5 cm) were used
because the SMAP SSM product-sensing depth is ~5 cm of the topsoil [13,27].

3.2. Statistical Assessment

Ground measurements were compared with the satellite retrievals. The averaging
technique described previously was performed to investigate the statistical agreement for
each threshold. The analysis was performed independently for each scenario. Comparisons
of the in situ SSM (0–5 cm) and the collocated satellite retrievals were performed in all
cases. A series of statistical performance scores were adopted herein to evaluate the agree-
ment among the datasets. These included the root mean square error (RMSE), Pearson’s
correlation coefficient (RP), Spearman’s rank correlation coefficient (RS), the mean error or
bias, and the standard deviation (unbiased RMSE), expressed as follows:

R =
∑n

i=1(SSMesti − SSMest)
(

SSMref(i) − SSMref

)
√

∑n
i=1(SSMesti − SSMest)2 ∑n

i=1

(
SSMref(i) − SSMref

)2
(1)

Bias = (SSMest − SSMref) (2)

RMSE =

√
(SSMest − SSMref)

2 (3)

ubRMSE =

√
RMSE2 − Bias2 (4)

Subscripts i = 1 . . . N denotes the individual observations, “est” denotes the predicted
values, and ref denotes the reference values of the observations. The horizontal bar denotes
the mean value. Notably, these statistical parameters have been used in similar verification
studies implemented in SSM operational products [7,27,48,50].

4. Results

This section presents the key research findings from the statistical comparisons per-
formed between the SMAP-derived SSM products (namely the SPL3SMP_36km and
SPL3SMP_9km products) versus the collocated ground measurements. A total of 56 stations
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from the Naqu network were used for this purpose. First, the temporal behavior of the SSM
in situ and SSM satellite measurements for each grid of the two datasets were analyzed.
TRMM satellite-derived precipitation data [51] are included in each time series to assist in
evaluating the ability of SMAP SSM products to capture the SSM dynamics. In addition,
error metrics used for quantifying the accuracy of both SPL3SMP were computed for each
grid, and the results are presented in Tables 1–3. To better illustrate the SCA-V satellite
algorithm’s abilities, the scatterplots of the observed and predicted SSM are also included
herein (shown in Figures 3 and 6).

4.1. SMAP Level-3 Radiometer SSM Product (SPL3SM_36km)

Seasonal trends illustrated in Figure 2 show satisfactory agreement with SSM products
and capture the SSM trends. The temporal variations over the investigated period as well
as the rapid reaction of the SSM to weather changes are captured by in situ SSM and the
SPL3SM_36km product (Figure 2).

 

2 

Figure 2. Cont.
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3 

 
Figure 2. Temporal evaluation of station-averaged soil moisture (purple) and SPL3SMP_36km soil
moisture (green): (a) Grid_2139, (b) Grid_2140, (c) Grid_2141, and (d) Grid_2142. The grey vertical
lines represent precipitation.

These variations indicate that the satellite SSM estimates are highly responsive to
precipitation events [48]. In situ SSM shows recognizable seasonal variations ranging
between the values of 0.05 and 0.5. Frozen soil at the surface (depth 0~5 cm) from early
November to May, leads to a sharp decrease in the SSM from more than 0.2 to less than
0.1. At the beginning of May, when the frost starts to melt, the SSM rapidly increases. The
SPL3SM_36km product performance generally underestimates the ground measurements
during frozen periods and slightly overestimates during unfrozen periods, as can be ob-
served in Figure 2 and Table 1. A possible reason for this is the frozen surface, where the
satellite performance is relatively low. In general, the grids show a satisfactory agreement
with the seasonal trends. However, the SPL3SM_36km product and the in situ measure-
ments possess similar temporal evaluations. The shape coefficients (slope and intercept)
for SPL3SM_36km exhibited perfect confidence intervals (at 95% confidence), as shown in
Figure 3.
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Figure 3. Scatterplots of stations-averaged soil moisture and SPL3SMP_36km soil moisture:
(a) Grid_2139, (b) Grid_2140, (c) Grid_2141, and (d) Grid_2142. The green dashed lines represent the
95% confidence level.

Table 1 lists the error metrics results of the SPL3SM_36km product over the entire Naqu
network in the Central Tibetan Plateau, summarizing the performances of SPL3SM_36km
at different grids. As can be observed, the passive SPL3SM products reproduce satisfactory
SSM temporal patterns and their dynamic range is also comparable to the ground mea-
surements. However, the SPL3SM_36km product shows signs of bias in its performance.
Despite the bias present, the SPL3SM_36km product shows good RMSE over most of the re-
gion (ranging between 0.036 and below 0.083 m3/m3). This is within the acceptable margin
for RMSE for SSM estimations (i.e., below 0.1 m3/m3). Grid 2142 exhibits the best perfor-
mance. The bias of this grid is 0.024 m3/m3, RMSE is 0.036 m3/m3, and the ubRMSE is
0.028 m3/m3, smaller than the SMAP mission accuracy target (0.04 m3/m3) [27]. Grid_2230
and Grid_2232 have the highest RMSE 0.083 and 0.113 m3/m3 due to the high negative
bias of −0.067 and −0.106 m3/m3, respectively. However, notably, the SPL3SM_36km
SSM product sufficiently captures the various dynamics of SSM with time, as shown by
Spearman’s correlation coefficient RS in the range of (0.88–0.93) and Pearson Correlation
coefficient RP in the range of (0.86–0.93). Since both correlation coefficients are high,
the linear and monotonic agreement between the products and in situ measurements is
high. This suggests strongly that the bias contributes heavily to the errors pointing to a
systematic error.
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Table 1. Satellite (SPL3SMP_36km) and ground-measured SSM comparisons at the validation sites
on the Tibetan Plateau, including all the datasets from 1 April 2015 to September 2016. Units are
in m3/m3.

Grid Stations Longitude Latitude Bias RMSE ubRMSE MAE RP RS ErrMin ErrMax Sat.Obser

2139 7 91.6805 31.9559 −0.021 0.075 0.072 0.062 0.86 0.88 −0.156 0.166 259

2140 20 91.6805 31.62478 −0.020 0.065 0.062 0.055 0.89 0.90 −0.146 0.180 218

2230 3 92.42738 31.62478 −0.064 0.083 0.053 0.072 0.91 0.93 −0.205 0.066 166

2141 4 91.6805 31.29487 0.047 0.069 0.051 0.055 0.90 0.91 −0.076 0.226 231

2142 3 91.6805 30.96609 0.024 0.036 0.028 0.029 0.93 0.93 −0.068 0.106 238

2232 3 92.42738 30.96609 −0.106 0.113 0.041 0.106 0.90 0.90 −0.180 0.009 168

Figure 4 shows the comparison between the SMAP SPL3SMP_36km SSM products
against the ground observations for each grid. It is evident from Figure 4 that surface
temperature (ST) auxiliary data shows a nearly perfect consistency with the ground mea-
surements in terms of temporal variability. The validation measures of the ST auxiliary data
are displayed in Table 2 and Figure 4. The overall RMSE of the satellite ST measurements
have a range of 2.8 to 4.6 K. This range is higher than 2 K, which is still within the acceptable
error range for SMAP ST products [52].

Table 2. Comparison between Satellite (SPL3SMP_36km) and observed surface temperature at the
validation sites in Naqu based on the Tibetan Plateau, including all the datasets from 1 April 2015 to
September 2016. Error metrics of different grids are listed below; units are in (K).

Index Point Stations Line Column Longitude Latitude Bias RMSE ubRMSE RP

2139 7 24 48 91.6805 31.95584 1.9 3.4 2.8 93

2140 20 25 48 91.6805 31.62478 2.7 4.1 3.1 92

2230 3 25 50 92.42738 31.62478 1.7 3.8 3.4 91

2141 3 26 48 91.6805 31.29487 3.0 4.6 3.5 89

2142 3 27 48 91.6805 30.96609 0.2 2.8 2.8 94

2232 2 27 50 92.42738 30.96609 1.8 3.2 2.7 92
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4.2. SMAP-Enhanced Level-3 Radiometer SSM Product (SPL3SM_9km)

Table 3 and Figures 5 and 6 illustrate the temporal trends and correlations between in
situ and SPL3SMP_9km for the entire period of the study. It can be seen in Figure 5 that the
temporal evaluation of the in situ observations and the SPL3SMP_9km also show significant
variations. The temporal evaluation of the ground measurements and SPL3SMP_9km
product show a satisfactory seasonal agreement and similar trends in variability over time.
Regarding the precipitation data, both ground observations and SPL3SMP_9km respond
to the precipitation events and SSM variation trends (Figure 4). It should be noted that
station observations at different grids show only small differences. Still, the SPL3SMP_9km
product shows more significant differences, indicating a high sensitivity to rainfall events.
In most cases, it also shows overestimation against the ground measurements (refer to
Figures 5 and 6). This may be associated with the fact that SSM rises rapidly between
precipitation events.

As can be observed, the SPL3SMP_9km product underestimates the in situ observa-
tions from November to May, and it is relatively very consistent with the trends shown by
the in situ from May to September. The SPL3SM_9km product showed high sensitivity to
rainfall events, and it overestimates SSM in situ from May to September with precipitation
events. It underestimates SSM generally during the frozen period from November to April
(Figure 5). In contrast, different trends were observed in 2015 in comparison with 2016.
The observed trends show various fluctuations in the May–September period due to the
variation of the precipitation events between the two years, as shown in Figure 5a–d.

Table 3 and Figure 6 illustrate the comparison between the SPL3SMP_9km SSM
estimates and the different grids’ corresponding ground measurements. As shown in
Table 3, the performance of SPL3SMP_9km over different grids of the RMSE (ranging
between 0.078 and 0.089 m3/m3) suggests satisfactory accuracy. The correlation coefficient
is generally very high (above 80%) in most cases. Notably, the Pearson Correlation (RP) at a
95% confidence level is also high (above 80%) (Figure 5). The SPL3SMP_9km product and
the in situ measurements are essentially correlated for all the grids. Compared with the
entire range of the observations, the bias of the SPL3SM_9km measurements is generally
negative except for Grid 34104 (the bias is 0.006). On the basis of the low ubRMSE and the
high correlation coefficients, the results strongly indicate that the SCA-V algorithm returns
a high correlation between the product and the ground observations.

Table 3. Comparisons and validation measures for Satellite (SPL3SMP_9km) and observed SSM in the
Naqu network, including all the datasets from 1 April 2015 to September 2016. Units are in m3/m3.

Index Point Stations Line Column Longitude Latitude Bias RMSE ubRMSE RP RS Sat.Obser

34104 2 94 191 91.72718 31.9144 0.006 0.081 0.081 0.82 0.82 276

34105 2 95 191 91.72718 31.83156 −0.048 0.078 0.062 0.90 0.91 280

34284 2 95 192 91.82054 31.83156 −0.032 0.082 0.076 0.83 0.85 273

34106 3 96 191 91.72718 31.74879 −0.037 0.089 0.081 0.84 0.88 285

34285 4 96 192 91.82054 31.74879 −0.068 0.097 0.069 0.86 0.89 277

34107 2 97 191 91.72718 31.6661 −0.021 0.078 0.075 0.84 0.85 289

34286 6 97 192 91.82054 31.6661 −0.023 0.074 0.070 0.87 0.90 281
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5. Discussion

The use of remotely-sensed SSM data is crucial for assimilation, assessment forecast,
and for improving the simulation skills of models to better understand land–atmosphere
exchanges in regions where observation data are sparse. Comparisons of newly released
SMAP SM operational data with available in situ observations are fundamental to esti-
mating the strengths and limitations of operational products in such regions. The current
study used collocated in situ records to evaluate the accuracy of two SMAP microwave
SSM operational products available globally at different scales (9 km and 36 km) across a
diverse terrain in a range of seasons.

The in situ measurements may be subject to differences in the spatial resolution scale
between in situ points and satellite pixels. An effort was made to diminish their effects.
Averaging of a few point-based in situ measurements (in most cases two–four) may fully
represent the true SSM values at a scale of 36 km. As such, the differences in spatial
resolution could be reduced. However, in this study, the ground station measurements
were assumed to be the true values of the 9 km and 36 km footprints [48,53].

A mismatch between the satellite sensor and the measuring depth of the in situ instru-
ment and the discrepancy between the in situ SSM measuring depth and the satellite depth
of microwave penetration could explain, in part, the bias displayed in some of the grids.
The sensing depth of the L-band is shallow compared with the in situ instruments [7,54].
The ground-based measurements used to validate the products are placed at a depth of
approximately 5 cm and usually observe SSM at a depth of 3 to 7 cm. The effective sampling
depth for SMAP’s L-band is 0–3 cm [55], and it varies with the SSM [56]. Recent studies
indicate that the quality of satellite-based SSM products can be improved using upscaling
and triple collocation methods [36].

Other reasons for the dry bias could be errors caused by the sensor’s measurement
accuracy at the point-based in situ observations. It is expected that the soil surface will
often be slightly drier than the measured layer [57]. However, this bias underestimation is
often reduced by inserting the sensor at a depth of 0 to 5 cm. The bias between the SMAP
SSM values and the in situ measurements is expected to be negative, while the statistical
results are positive [58]. It is suggested that the negative bias is attributed mainly to the
error of estimating the true SSM value across a 36 km grid.

A possible cause for the positive bias reported by this study’s results could be uncer-
tainties resulting from ancillary data parameterizations [7,59]. In the SCA-V, brightness
temperature (TB) is converted to emissivity by correcting for the effective soil temperature
effect, vegetation, and surface roughness. To determine the soil dielectric constant from the
emissivity of the soil, the Fresnel equation is used [60]. Subsequently, a dielectric mixing
model is used to estimate SSM, given that the soil texture is known. In this process, the
ancillary data, such as vegetation parameters, surface roughness, effective soil temperature,
and texture, must be known beforehand to effectively apply the retrieval algorithms. Re-
gardless of the limitations introduced by simplifying the retrieval algorithms, uncertainties
in ancillary parameters introduce significant errors.

In the SMAP radiometer SSM algorithm, the GEOS-5 model [29] is used to retrieve the
required ST. The validation measures of the ST auxiliary data are displayed in Table 3. The
overall RMSE of the satellite ST measurements have a range of 2.8 to 4.6 K. This range is
higher than the acceptable error range of 2 K for SMAP ST products [52], demonstrating
that the ST auxiliary data overestimates the effective surface temperature data. Therefore,
the ST inputs could be included as a source of errors for the SSM retrieval in the Naqu
SMTM networks, which may also be associated with the error of estimating the true SSM
value across a 36 km grid.

In this study, the products’ data version that was used consists of newly released
effective ST data. It consists of an improved depth correction scheme, which is a crucial
parameter in passive SSM retrieval. Accordingly, the resulting inconsistency can give a dry
bias (satellite product lower than in situ SSM) of the retrieved SSM if the modeled effective
ST is lower than the soil temperature detected by the radiometer. Similarly, a wet bias of
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the SMAP-derived SSM will occur if the model-based effective soil ST is higher than the ST
measured by the radiometer.

Therefore, the case can be made that the divergence of the SMAP SSM from the in situ
measurements may be affected by the underestimation or overestimation of effective soil
temperature over the Tibetan Plateau. This may be caused by overlaying vegetation mis-
match, soil texture, as well as high soil organic carbon contents (SOC) due to the slow decay
rate in this cold, arid zone of the Tibetan Plateau. This may influence thermal/hydraulic as
well as soil dielectric properties [34]. Thus, they exert less impact on effective soil surface
temperature retrieval.

In terms of correlation coefficients, both SMAP products correlated well with the in
situ measurements, with the coefficients varying between (0.86 and 0.93) and (0.82 and
0.90) for SPL3SMP_36km and SPL3SMP_9km, respectively. In validation studies, both
RMSE and correlation are important, and both should be studied to provide an adequate
assessment of the accuracy. The correlation in this study signifies the good ability of
the SMAP SSM product to reliably capture and reflect the dynamics of the soil moisture,
which may be very useful in mesoscale studies to assess SSM dynamics, providing a
guideline concerning these products’ practical application to hydro-meteorological and
hydro-climatological applications.

A new finding was observed in Figures 2a–c and 5a–d. It can be seen that satellite
products exhibit higher temporal variability than in situ observations. This could be due to
the Naqu network station receiving rainfall mostly through the period of May to October.
This rainfall accounts for 91.0% of the precipitation. Rainfall during the summer months
(June to August) accounts for 60.1% of the annual precipitation, while precipitation during
the winter season (November to April) accounts for just 9.0% of the annual precipitation [61].
Rainfall has a major impact on SSM. It is expected that while the surface is slightly wet,
the water may stay on the topmost 0–5 cm of the soil. However, in this cold and arid zone,
this increase in SM may last for long periods, as SM takes longer to evaporate or percolate.
Thus, it may influence the satellite signals, as seen in Figures 2a–c and 5a–d. According
to [62], satellite retrievals are more sensitive to atmospheric and climate parameters (e.g.,
precipitation, radiation, and wind).

In summary, it is apparent that both SMAP products show a very sensitive response
to precipitation events, and there is a satisfactory agreement of both the satellite-derived
SSM with in situ measurements, with reported correlation coefficients greater than 80%.
In contrast, the products, at times, underestimate SSM with negative bias. However, to
a greater extent, the spatial averaging technique used in the study generally implies a
more controlled dynamic range for SSM. This might be because the soil moisture’s actual
dynamic range is largely dependent on the spatial scale under consideration. For exam-
ple, [63–66] showed that SSM temporal standard deviations (e.g., 0.02 m3/m3, 0.04 m3/m3,
and 0.06 m3/m3) are expected for spatial resolutions with a satellite footprint at a scale of
10–30 km.

6. Conclusions

In the present study, a thorough evaluation of two SMAP radiometer SSM higher-level
products (i.e., SPL3SMP_9km and SPL3SMP_36km) in the Tibetan Plateau region was
conducted. The study’s findings help to better understand the errors associated with the
L-band SMAP satellite SSM product. Such verification studies assist in refining the retrieval
algorithm and guiding the product user community toward better use of these data in a
wide range of applications and research purposes, such as studying climate change and
improving water resource management and food security. These results provide a crucial
quality check of those products so that potential users can better facilitate their applications.
It is, therefore, indispensable to assess the highly foreseen SMAP mission, which has been
devoted to observing global SSM with unique accuracy and coverage, using the newest
L-band satellite in space. To investigate the SMAP radiometer SSM product accuracy, the
EO data were compared with ground observations from the Naqu-validated observational
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network in the central Tibetan Plateau to analyze the effect of cold, arid climatic zones
on SSM retrievals. This evaluation offers valuable input to a better understanding of the
product’s added value, particularly with regard to studies contributing to climate change
from regional to global scales. The evaluation and inter-comparison were performed on
the basis of a series of statistical metrics, including Pearson’s correlation coefficient (RP),
RMSE, bias, unbiased RMSE (ubRMSE) as well as Spearman’s rank correlation coefficient
(RS). The key findings from this study can be summarized as follows:

1. The average ubRMSE value over the different grids ranged from 0.028 to 0.072 m3/m3

and from 0.069 to 0.081 for 9 km and 36 km, respectively, which is higher than
0.04 m3/m3 (the accuracy target of the SMAP mission). Grid_2142 of the 36 km,
exhibits the best performance. The bias of this grid is 0.024 m3/m3, RMSE is 0.36, and
the ubRMSE is 0.028, smaller than 0.04 m3/m3.

2. SMAP radiometer SSM retrievals perform relatively well. They effectively capture
the absolute SSM and accurately reflect the short-term variability in soil moisture.
The values of the SMAP-derived SSM retrievals presented an overestimation on wet
days, especially during precipitation events. This phenomenon often causes satellite
products to exhibit higher temporal variability than ground observations.

3. It has been found that the ST ranges from 2.8 to 4.6 K, which is higher than the
maximum error of 2 K of the SMAP requirements. It is considered the key factor con-
tributing to the errors of the satellite product. The ST error is considered responsible
for the low accuracy of the SSM retrievals on the 9 km scale.

In future studies, to address the mismatch of the spatial scale between satellite footprint
and station location as well as the vertical depth, the SMAP SSM product will be evaluated
with a combination of the triple collocation method, model-based products, and dense
ground validation measurements. Detailed systematic variances will be investigated.
Future work can be directed towards improving the SMAP soil moisture products, soil
type, and soil roughness, which will help increase their use globally in future studies.
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