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Abstract

Automatic Speech Recognition (ASR) is an essential component in many Human-Computer
Interaction systems. A variety of applications in the field of ASR have reached high per-
formance levels but only for condition-controlled environments. Further development is
necessary for better accuracy in real conditions, where environmental or other kind of
noises exist. Audio signal features need to be enhanced with additional sources of com-
plementary information to overcome problems due to large amounts of acoustic noise.
Visual Information extracted from speaker’s mouth region seems to be promising and ap-
propriate for giving audio-only recognition a boost. Lip/Mouth detection and tracking
combined with traditional Image Processing methods may offer a variety of solutions for
the construction of the visual front-end schema. Furthermore, Audio and Visual stream
fusion appears to be even more challenging and crucial for designing an efficient AV
Recognizer.

In this project, we investigate some problems in the field of Audio-Visual Automatic
Speech Recognition (AV-ASR) concerning visual feature extraction and audio-visual in-
tegration. Color-based detection and Template Matching strategies are used to detect
and track the mouth region, which is considered as the Region of Interest (ROI) through
sequential time frames. Subsequently, Discrete Cosine Transform (DCT) is used to trans-
form pixel values in “compact”, descriptive features. We prove that some factors related
with ROI detection, like the inclination of the speaker’s head as well as its size, affect
the performance of both visual and audio-visual recognizers. In order to counter these
effects, we investigate some methods for rotation correction and scaling normalization.
The improved visual front-end schema yielded a Word Recognition Error (WER) reduc-
tion of 95% over a baseline implementation. On the other hand, we investigate a new
approach for the unsupervised stream weight estimation which is based on K-means clus-
tering. Stream weight behaviour and adaptability is tested under a variety of noises, in a
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word or sentence level, for classification and recognition tasks. Finally, we compare the
results for static and adaptive weighting to evaluate our weight estimation approach and
moreover, we measure the improvements achieved by using an audio-visual recognizer
instead of the traditional audio-only recognizer. All experiments were based in CUAVE
AV database and furthermore, recognizers were built using HTK.
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Introduction

In recent years, the field of Audio Visual Speech Recognition (AVSR) has proved to be
of significant interest for many researches, as the traditional Audio Automatic Speech
recognition (ASR) systems seem to work only for relatively controlled environments. A
major problem of ASR is robustness under channel and environmental noise. Many tech-
niques have been investigated to improve the recognition under noisy conditions, includ-
ing mainly enhancement of the audio signal, applying noise resistant parameterization,
and identifying speech in those sub-bands of the spectrum that the speech signal is dom-
inant. However, for ASR to approach human levels of performance and for speech to
become a truly pervasive user interface, we need novel, nontraditional approaches that
have the potential of yielding dramatic ASR improvement. Lipreading, as an alternative
source of information, consists such a different approach which is not affected by the
acoustic environment and noise, and it possibly contains the greatest amount of comple-
mentary information to the acoustic signal. The additional information obtained from
lipreading aid audio to recover from corruptions due to noise.

AV-ASR systems can outperform audio-only recognizers, particularly in environments
where background noises and multiple speakers exist. Researchers have demonstrated
the relationship between lipreading and human understanding and have produced perfor-
mance increases with multi-modal systems. It is well known that humans have the ability
to lipread: We combine audio and visual information in deciding what has been spoken,
especially in noisy environments. One of the key properties of bimodal speech to emerge
from such analysis is that of complementarity: Features that are the hardest to distinguish
acoustically are the easiest to distinguish visually, and vice versa. The sensory integration
of auditory and visual information in speech perception and the complementarity between
these modalities shows clearly in experiments that independently vary auditory and visual
information [8].
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Various sets of visual features have been proposed over the last 20 years. In general,
they can be grouped into three categories: High level lip contour (Shape) based features,
low level appearance (pixel) based ones and finally a combination of both. These features
are extracted from a sub-region of the lower-half, of the speaker’s face or alternatively
from the lip contour. Effects like head rotations and differences in scaling must be coun-
tered, as speakers tend to move in front of the camera. Such normalizations yield high
discrimination among classes of interest.

Audio-visual fusion is an instance of the general classifier combination problem. In
our case, two observation streams are available (audio and visual modalities) and provide
information about hidden class labels, such as HMM states, or, at a higher level, word
sequences. Each observation stream can be used alone to train single-modality statistical
classifiers to recognize such classes. However, one hopes that combining the two streams
will give rise to a bimodal classifier with superior performance to either single-modality
ones. One of the main challenges in AV-ASR systems is the audio-visual information
integration problem. The main issues in information integration are, (a) the class con-
ditional dependence assumption made across streams, (b) the level (e.g. frame, phone,
word) of integration, and (c) the kind (e.g. feature, partial likelihood, partial decision)
of integration. Generally, speaking it is widely accepted that there are two kinds of inte-
gration: feature fusion and decision fusion. Feature fusion concatenates audio and visual
features in a common feature space and captures any possible dependency between them.
On the other hand, late integration, also known as decision fusion, takes into account the
decisions made partially from each stream to conclude in a final decision. In this way,
it is feasible to emphasize or deemphasize each stream’s contribution to the final deci-
sion, making use of stream weights. The question of how these weights are going to be
estimated is a strong motivation for many researches.

A brief description of how this thesis is organized follows:
Chapter 1 contains an introductory description about Audio-Visual Automatic Speech

Recognition (AV-ASR).
Chapter 2 represents the visual front-end method we used to extract the visual fea-

tures, including some improvements we made in a state-of-the-art visual front-end, such
as rotation correction and scaling normalization of the obtained Region of Interest (ROI)

Chapter 3 enumerates methods for computing stream confidence and estimating stream
weights including the K-means based method we applied in our weight estimation schema.
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Chapter 4 presents the Audio-Visual Database we used for our experiments and ana-
lyzes in detail how we implemented HMM-based recognizers using HTK. Also describes
how we apply K-means to compute stream weights for the tasks of recognition and clas-
sification.

Chapter 5 reports the project results, divided in two parts; These parts analyze the re-
sults obtained from Chapter 2 and Chapter 3 respectively, using figures and tables in order
to be understood in which way visual information contributes to the overall improvement
has been made.

Chapter 6 proposes some possible improvements can be made as well as some con-
clusions about this work.
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Chapter 1

Audio Visual Automatic Speech
Recognition

1.1 LipReading

It is well known that humans have the ability to lipread: We combine audio and visual
information in deciding what has been spoken, especially in noisy environments. An ex-
ample of “catastrophic fusion” is the so-called McGurk effect, where a spoken sound
/ga/ is superimposed on the video of a person uttering /ba/. Most people perceive the
speaker as uttering the sound /da/. In addition, the visual modality is well known to con-
tain some complementary information to the audio modality. For example, using visual
cues to decide whether a person said /ba/ rather than /ga/ can be easier than making the
decision based on audio cues, which can sometimes be confusing. On the other hand,
deciding between /ka/ and /ga/ is more reliably done from the audio than from the video
channel. The above facts have recently motivated significant interest in the area of Audio-
Visual Automatic Speech Recognition (AV-ASR), also known as automatic lipreading,
or speechreading. Work in this field aims at improving automatic speech recognition by
exploring the visual modality of the speaker’s mouth region, in addition to the traditional
audio modality. Not surprisingly, automatic speechreading has been shown to outperform
audio-only ASR over a wide range of conditions. Such performance gains are particu-
larly impressive in noisy environments, where traditional ASR performs poorly. Coupled
with the diminishing cost of quality video capturing systems, this fact makes automatic
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speechreading tractable for achieving robust ASR in certain scenarios

1.2 How do we percept Audio and Visual Information?

In the case of visual speech, it is well known that not all phones are visually distinct, but
rather they are clustered in so-called “visemes”. An example of such categorization is
depicted in Table (1.1), in which “viseme” classes can be categorized into 13 classes. The
main criterion considered for this clustering is the place of articulation. However, some
speech units are visually indistinguishable.

For example, /bi/ and /pi/ are percepted like being the same. Nevertheless, /pi/ and /bi/
are easily distinguished acoustically and that is because they have different voice-on-set
times (VOT), which is the delay between the initial burst sound and the onset of vibration
of the vocal folds. In this case, VOT for /pi/ is noticeably longer than in /bi/. Respectively,
giving identical information for /mi/ and /ni/, acoustic features need to be enhanced by
complementary visual information which play a catalytic role for taking the right decision
in this case. /Mi/ and /ni/ have the same voicing and nasality (extra resonances from the
nasal cavity), differing only in where the speaker closes the vocal tract with the lips, or
tongue, or teeth.

One of the key properties of bimodal speech to emerge from such analysis is that of
complementarity: Features that are the hardest to distinguish acoustically, are the easi-
est to distinguish visually, and vice versa. The sensory integration of auditory and vi-
sual information in speech perception and the complementarity between these modalities
shows clearly in experiments that independently vary auditory and visual information [8].
McGurk is famous for his realization that in the most of the cases, when people hear /ba/
and see /ga/, they are confused and decide /da/. McGurk effect as it is called, is the most
representative example of “catastrophic fusion”.

It has been shown that visible articulators, during an utterance, start and complete
their trajectories asynchronously, exhibiting both forward and backward co-articulation
with respect to the acoustic speech wave. Intuitively this makes a lot of sense, as visual
articulators (i.e. lips, tongue, jaw) have to position themselves correctly before and after
the start and end of an acoustic utterance. It has been also found in [9] that an audio
lead of less than 80ms or lag of less than 140ms could not be detected during speech.
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Silence /sil/ , /sp/

Lip-rounding

based vowels

/ao/ , /ah/ , /aa/ , /er/ , /oy/ , /aw/ ,
/hh/
/uw/ , /uh/ , /ow/
/ae/ , /eh/ , /ey/ , /ay/
/ih/ , /iy/ , /ax/

Alveolar-
Semivowels

/l/, /el/, /r/, /y

Alveolar-
Fricativies
Alveolar
Palato-Alveolar
Bilabial
Dental
Labio-Dental
Velar

/s/ , /z/
/t/, /d/, /n/, /en/
/sh/, /zh/, /ch/, /jh/
/p/, /b/, /m/
/th/, /dh/
/f/, /v/
/ng/, /k/, /g/, /w

Table 1.1: An example of “viseme” class categorization found in [7]

However, if the audio was delayed by more than 160ms it no longer contributed useful
information, signifying the importance of some degree of asynchrony and synchrony in
continuous audio-visual speech perception.

Various sets of visual features have been proposed over the last 20 years. In general
,they can be grouped into three categories: High level lip contour (óhape) based features,
low level appearance (pixel) based ones and finally a combination of both.

1.3 Audio-Visual Automatic Speech Recognizer

The main difference between a traditional audio-only automatic speech recognition (ASR)
system and an audio-visual ASR system is the participation of the visual information.
However, it has been already researched a concept of an ASR system that uses information
from multiple streams which consist of different audio spectral sub-bands [3]. Audio-
visual approach is based in the same idea except that there are two streams, audio and
visual. Each stream manipulates different kind of information. Acoustic waves and visual
signals are combined after being transformed into “compact” and descriptive features.
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Figure 1.1: The main concept of an AV-ASR system

This process, so-called feature extraction is crucial for the efficiency of the recognizer.
The more discriminative feature vectors are generated, the better results are obtained.

The combination of the two streams, known as audio-visual integration (fusion), be-
longs to the general problem of classification using multiple classifiers. In our case,
HMM-based classifiers corresponding to the audio and visual streams respectively, are
trained separately or like a joint model, assuming various levels of synchronization be-
tween their states. The final set of audio-visual multi-stream HMMs consists of phone
(context-dependent or context-independent) models or alternatively word-level models.
Their class-conditional observation likelihood is the product of the observation likeli-
hoods of their single-stream components, raised to appropriate stream exponents that cap-
ture the reliability of each modality, or, equivalently, the confidence of each single-stream
classifier.

An alternative integration method is based on the feature fusion, in which audio and
visual feature vectors are concatenated on an early stage and then treated like belong-
ing in a single feature space. Class dependency is assumed in contrast with decision
fusion. The reduction of the feature space dimensions is feasible by applying Linear Dis-
criminal Analysis (LDA) or alternatively Principal Component Analysis (PCA). A more
sophisticated feature fusion schema is proposed in [13] for a Large Vocabulary Speech
Recognition (LVSR) system. The remainder of this thesis describes in detail the parts of
this system as well as the implementation we considered in order to perform experiments
over the visual feature extraction and stream weight estimation.
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Chapter 2

Feature Extraction

A main problem in the research field of audio as well as audio-visual ASR is feature
extraction. If the extracted features from the audio signal or the speaker’s images are
carefully chosen, it is expected that the feature set will extract the relevant information in
order to be performed an efficient recognition, classification. If classes of interest (such
as phones in audio, or visems in lipreading) are well-discriminated and also feature space
dimensions are reduced enough, then the feature set is considered to be appropriate for
pattern recognition.

In the case of audio, mel-frequency cepstrum coefficients (MFCC) are often used in
applications such as speech recognition, voice recognition, audio compression and music
information retrieval. They are derived from a mel-frequence cepstrum (specrtum-of-
spectrum ) where the frequency bands are equally spaced on the mel scale, which ap-
proximates the human auditory system’s response more closely than the linearly-spaced
frequency bands used in the normal cepstrum. MFCCs are not very robust in presence of
additive noise, and so researchers introduced visual information in speech recognition to
overcome this drawback.

Various sets of visual features have been proposed over the last 20 years for this pur-
pose. In general ,they can be grouped into three categories: High level lip contour (óhape)
based features, low level appearance (pixel) based ones and finally a combination of both.
In the first approach, the speaker’s inner (and/or outer) lip contours are extracted from the
image sequence. A parametric, or statistical lip contour model is then obtained and the
model parameters are used as visual features. Alternatively, lip contour geometric fea-
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tures are used, such as mouth height and width. Appearance based features are extracted
from a larger region around the mouth, including the jaws in some cases to exploit useful
information coming from the articulations. A region of interest (ROI) is selected from
speaker’s face and then a transformation like Discrete Cosine Transform is used to trans-
form pixel values into features. Alternatively, ROI projection into a reduced feature space
using principal component analysis (PCA) is also used.

2.1 Visual Front-End

This section describes how visual features are extracted from each video frame and
get processed to form a set of vectors, which exploit visual information and enhance au-
dio features. ROI is detected and tracked through the frame sequence. A face detection
module is used in the first place in order to estimate the face silhouette, using color based
classification and image processing techniques. After the face region is determined, an
other routine could be used to discriminate “lip pixels” from “non lip pixels” by apply-
ing the same kind of classification, and then, a larger region around the mouth could be
selected and passed to an image-transformation algorithm such as DCT. Instead, in or-
der to facilitate ROI tracking in every frame, a nose template is formed and used for nose
tracking. Section 2.1.2 describes how ROI is detected applying template matching. As de-
scribed in section 2.1.3, ROI’s rotation correction and scale normalization are performed
by employing eye detection to obtain useful information about the head inclination as
well as the relative head size referring to an average size.

The following steps describe the process of the visual feature extraction and figure
(2.1) depicts its schematic:

• Face Detection (every 10 frames) and nose template re-formation (every 10 frames).

• Template matching to track the nose (in every frame)

• Lip region estimation.

• Eye detection, estimation of the head inclination, scaling estimation.

• Image rotation and scaling correction

• ROI determination
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Figure 2.1: Visual Feature Extraction Schematic diagram

• DCT feature extraction

All the modules included in the schema above are analyzed in the next subsections.

2.1.1 Chroma-Based Face Detection

Face detection/localization and tracking consist one of the main components in many
machine vision applications. Methods like template matching, optical flow calculation,
chroma detection, shape-based techniques or a combination of the above are usually ap-
plied to localize and track a face. In this project, we use face detection in order to restrict
our searching for the rest of the facial features on a specific area. Furthermore, nose
tracking, as represented in section 2.1.2, may fail to track the nose in some cases due to
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(a) Hue component of HSV model (b) Saturation of of the same image

Figure 2.2: Illustration of the discrimination between “skin” and “non-skin” pixels us-
ing HSV color model. Values in both grayscale images are normalized in [0 (black) , 1
(white)], with zero value corresponding to red hue for (a), and saturated colors for (b)

rapid changes or image noise. Having the knowledge of where the face is located ap-
proximately, the nose tracking algorithm is able to confirm the validity of the obtained
result.

We chose to implement a chroma-based detection because of the problem nature.
CUAVE database [10], as described in section 4.1, was captured in a condition-controlled
environment, without the presence of difficult light variations since a simple green back-
ground was used to facilitate face detection. To remove luminance component which is
the same for every part of the image and consequently, it is meaningless to use it as an
informative feature, we transformed red-green-blue (RGB) components of each frame to
hue-saturation-value (hsv) space. In the next histograms, it is clear that skin’s hue and
saturation levels lie close to zero in contrast with the background. Skin segments contain
non-saturated, red-chroma pixels. For this reason, face detection is simplified using hue
and saturation to discriminate skin from “non-skin” pixels. This kind of discrimination
that HSV model offers is depicted in Fig.(2.2 ).

Every pixel pxi is given a probability PSKIN (pxi) = PHUE (pxi) · PSAT (pxi) of
being a part of skin. PHUE determines the Probability Density Function (pdf) of the
hue component, of skin pixels. PSAT determines the pdf of the saturation component
respectively. Skin tone variations make the creation of a speaker independent pdf for
hue and sat necessary. This is achieved by cropping all the skin segments within every
speaker’s face area and compute a pdf for each component. Fig.(2.3) depicts PHUE and
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Figure 2.3: Estimated speaker independent PDFs for hue and saturation components of
skin pixels

PSAT respectively.
PSKIN is considered as a grayscale image with pixel values I ∈ [0..1] referring to

probabilities. Pixels with small probabilities have to be rejected, so we apply a threshold
which results to a black and white (bw) image. Usually, a minimum between two peaks
in the histogram of a grayscale image is considered to be a good choice for a threshold.
In order to perform the binarization of PSKIN , we choose a threshold that satisfies T =

(I1 + I2) /2, where I1,I2 are two of the most frequent values of PSKIN and their difference
is bigger than 0.3 (I1 − I2 > 0.3).

Fig.(2.4) illustrates the process of refining the binarization result using opening and
closing morphological operations. Opening and closing are two operators from mathe-
matical morphology. They are both derived from the fundamental operations of erosion

and dilation. Like those operators, they are normally applied to binary images. Erosion,
in general, causes objects to shrink. The amount and the way that they shrink depend
upon the choice of the structuring element. The structuring element is to mathematical
morphology what the convolution kernel is to linear filter theory. In our case, a disk with
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Figure 2.4: After the binarization of the grayscale image PSKIN , a set of morphological
operations are applied to form the final mask

radius 5 pixels is shifted over all the possible positions in the image and if any of the pix-
els contained in the disk area is set to 0, the output pixel, which is the center of the disk, is
set to 0. On the other hand, dilation causes objects to dilate or grow in size by setting the
pixel in the center of the disk to 1 if a pixel contained in the disk area is set to 1. The defi-
nition of a morphological opening of an image is an erosion followed by a dilation, using
the same structuring element for both operations. The related operation, morphological
closing of an image is the reverse: it consists of dilation followed by an erosion with the
same structuring. We applied an opening operation in order to remove small objects from
the binary image which considered as noise rather than face candidates. Subsequently, a
closing operator is applied to fill the holes in the face region as Fig.(2.4) depicts.

Alternatively, region growing can be used to segment the grayscale image into regions
with similar values, and then select as face one of the formed regions which satisfies some
morphological criteria. For instance, knowing that the size of the face region is bigger than
a threshold, it restricts all the candidate face regions to satisfy CandidateRegionSize >
T1. Furthermore, restrictions deal with the orientation of each candidate region or its
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(a) Nose nos-
trils and bottom

(b) Grayscale
image

(c) Histogram
equalization

(d) Black and
white Template

Figure 2.5: A binary image of the nose region is created for template matching. Applying
a threshold to the grayscale image results in (d)

centroid position can be represented as T2 < CandidateRegionOrientation < T3 and
CandidateRegionCentroid ∈ [x1 . . . x2, y1 . . . y2], where T1, T2 respond to some thresh-
olds, and [x1 . . . x2, y1 . . . y2] defines a region within the image.

We have to mention that in some cases, when PSKIN did not indicate “skin pixels”
correctly, face detection did not work. We took that as a bad estimation of the speaker
independent pdfs, PHUE and PSAT . We solved this problem by estimating those pdfs
separately for a speaker whose skin tones could not be described well by global pdfs.

2.1.2 Template Matching for Nose Tracking

Once mouth region is detected and ROI is obtained, it is necessary to repeat the same
process for the next frames as well. This is called ROI tracking. The main difference
from ROI detection is that tracking uses temporal correlation to locate ROI in a video
sequence instead of detecting it in each frame independently. With temporal information,
we can narrow down the search range significally. We have to track the mouth region
in every possible change caused by speaker’s nodding the head during articulation, or
moving back and forth. There are several methods to achieve this. Face tracking employs
face localization in a frame sequence to update face location using temporal correlation.
In addition, lip tracking can be performed by using Active-Appearance-Models (AAM)

or lip contour estimation. We choose to implement a nose tracker for detecting nose
positions, and being able to extract the ROI using the nose tip as reference. It is important
for the visual frond-end to handle tracking errors that result in noisy visual data and as a
consequence in inaccurate recognizers.

The next properties of the nose region make nose tracking feasible by using template

matching:
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• There is a strong gradient change in the nose area because of the nostrils.

• Nose is located at the center of the face.

• No sudden changes occur while speaker’s head is moving.

• Nose area is not significally deformed during articulation.

Our aim is to measure nose tip locations through senquencial frames. As Fig.(2.5) de-
picts, a black and white (bw) template image is formed by cropping the nostrils and also
the bottom of the nose. Nostrils have a distinctive darkness from the facial skin and they
can be detected easily by thresholding the grayscale image, and keeping the darkest pix-
els. Thresholding is a main issue for image segmentation. Processing of the intensity his-
togram is essential for the successful selection of a proper threshold which distinguishes
nostrils from the rest parts of the nose. The same threshold will be used for thresholding
the search area.

Template matching is applied by computing the cross-correlation measure between
the template mask and all the possible template overlaps within the search area. The tem-
plate position which results to a maximum cross-correlation, is considered as the match
point. Algorithm 1 describes this concept.

C (i, j) values indicate the similarity between the template, placed with its upper-left
corner in mp = (i, j), and the corresponding overlapped region of the search image. We
apply a threshold to reject small values contained in C and after that, the centroid of the
largest region of the remained pixels is picked up as the best match. Fig.(2.6) depicts how
the template is shifted over the search image, and what kind of result is produced after
applying a threshold at the cross-correlation image C. The nose tip is considered to lie at
the center of the template image T. We are able to find ROI coordinates using this point
as reference. Section 2.1.3 describes the rest details for ROI extraction, with respect to
the nose tip tracking.

Some issues concerning the template matching initialization as well as the size selec-
tion of the search area, are under consideration. One way to initialize template matching
is by applying a supervised template selection in the first frame of the sequence. On the
other hand, we can use face detection to obtain the face silhouette, and then try to form
the nose template by searching in the center of this area. We choose the first option to
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Algorithm 1 Template matching using cross-correlation
• T [i, j] is the 30 x 60 template

• S[i, j] is a 60 x 120 search area (two times wider and taller than the template).

• C[δx, δy] =
∑i=X−1

i=0

∑j=Y−1
j=0 S[i, j] · T [i+ δx, j + δy],

where C[δx, δy] is the cross correlation, measured between a (δx, δy) shifting of the tem-
plate and the corresponding overlaped search region.

Alternatively:

C = IDFT {DFT (S) ·DFT (T )}, where DFT is the Discrete Fourier Transform of

the images.

• matchpoint = (k, l) if C (k, l) = max (C)

• nosetip = matchpoint+ (templatesize/2 , templatesize/2)

Note that

T [i, j] is zero-padded to match with S [i, j]

ensure that template matching will be performed correctly. In addition, we adjust the size
of the search area to be two times wider and taller than the template size. There are two
main reasons for this choice. First, we know a priori that no rapid movements will occur
during articulation, and afterwards, we tested template matching for various sizes and no-
ticed that when we increased the search area size, various shades and objects are included.
This is a kind of confusion for template matching which was not accurate for those cases.
Note that we use the match point as the center of the search area in the next frame.

Template matching is appropriate for tracking only for translations of the template.
When rotations and size changes occur, it is essential to apply a “greedy” searching to
achieve good results. In this project, we did not have to face such cases. We tested affine

transformations [16] for some speakers with the tendency to slightly rotate their heads,
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Figure 2.6: An illustration of the template matching process.

but the results were not satisfying. An other way to estimate the inclination of the head is
by measuring the angle between the vertical axis of the picture and a line which connects
the located eyes, as described in the next section. Finally, tracking result points were
smoothed in order to reduce a possible mismatch error.

2.1.3 Rotation and Scale Normalization using Eye Detection

Speakers are expected to slightly rotate their heads during articulation due to natural
movements. Also, scale changes occur when they move back-and-forth from the camera
or their head size differs from the average size we assumed. It is essential to normalize
these variations before extracting a region of interest which is placed under the nose tip we
detected. This is achieved by performing face alignment. It involves spatially rotating and
scaling the face image in order to extract representative DCT features. Given the location
of both eyes, we are able to estimate the rotation angle and also the distance between the
eyes, which consists a measure of the scale parameter.

As Fig.(2.7) depicts, we estimate the orientation of the face, which is defined as the
formed angle θ between the horizontal axis of the image and line γ. Line γ, so-called
eye-line, connects speaker’s eyes. Furthermore, the averageDistance/d ratio denotes
the scale factor we use to perform scaling normalization . But first, we have to perform
eye localization. Several approaches have been proposed for this task. To our knowledge,
eye localization is considered to be a simple task if light conditions are controlled, like in
our case. We restricted our search to the upper half of the detected face silhouette. The
proposed method in [6] for grayscale images, combines vertical and horizontal projections
of the gradient image in order to locate a rough region where the eyes could lie. Then,
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Figure 2.7: Rotation correction and Scale Normalization.

template matching is applied for the accurate detection of the iris centers.
Fig.(2.8) represents the process we follow to estimate the coordinates of two rectangu-

lar areas, where template matching will be applied. This method performs an hierarchical
search starting with the upper-half (a) of the face mask which is obtained from face de-
tection we described in section 2.1.1. Vertical and Horizontal projections in (d) and (c)
of the gradient image (b) are computed in order to measure intensity changes that occur
within the area. Each peak of the vertical projection indicates the vertical position of
each eye respectively. This is due to the increased gradient in the eye region. The same
effect appears for the horizontal projection. A peak is also formed that declares in which
horizontal stripe the eyes could be located. Furthermore, the horizontal projection of the
intensity image results in the histogram (e), which denotes a central vertical line (e’) of
the face lying between the eyes, where the intensity values are increased. Using the hori-
zontal projection (c), we are able to restrict our search area within a horizontal zone (c’),
and taking into account the vertical projection (d) we further reduce the search area in
(d’) by rejecting two vertical zones on the edges of the image. The final reduced area is
a combination of all the above operations. The two rectangular regions formed in (f) are
going to be scanned for template matching. It is worth mentioning that gradient image (b)
was obtained after applying Sobel Operators for edge detection.

The same cross-correlation metric, as described in section 2.1.2, is used to find the
best match. The first step for template matching is obviously considered to be template
creation. However, the selected template, which consists of one usual eye image in this
case, cannot be directly used for matching, because template size is not the same with that
in the real image which is going to be examined. At this point, a simple solution for this
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Figure 2.8: The main method we use in order to reject a significant part of the search area
before applying template matching for iris detection.

problem is to perform the process of matching several times, and each time we will use
the template with different size. But this method is very ineffective.

We have to decide which template size we should use for an efficient matching. Infor-
mation about the geometric features of the face, concerning height and width parameters,
is feasible to be extracted if we look at the vertical and horizontal projections of the image
gradient. For example, gradient values of both sides at the vertical edges of face region
near the cheeks, reach a local maxima in vertical projection histogram (d), which indi-
cates the vertical borders of the face. Subsequently, we can measure the width of the face
which is next used to normalize template images. This method achieved good results with
limited success for speakers wearing glasses. In these cases, we used MachinePerception-

Toolbox [2] to detect the eyes accurately.
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Chapter 3

Audio-Visual Integration For Speech
Recognition

3.1 Integration Methods

One of the main challenges in AV-ASR systems is the audio-visual information integra-
tion problem. The main issues in information integration are, (a) the class conditional
dependence assumption made across streams, (b) the level (e.g. frame, phone, word) of
integration, and (c) the kind (e.g. feature, partial likelihood, partial decision) of integra-
tion. Generally speaking, the following facts add complexity in combining audio with
video for speech recognition.

• Audio and Video features have different dynamic ranges.

• Audio and Video features have different number of distinguishable classes. In other
words, there are different number of phonemes than the number of visemes.

• Due to complexities involved in articulatory phenomena there is a time offset be-
tween audio and video signals.

• Video signal is usually sampled at a slower rate than the audio, and therefore, needs
to be interpolated.

32



Figure 3.1: Early and Late Integration are widely acceptable in AV-ASR literature in
contrast with Mid Integration which has unclear bounds with respect to LI. In some cases,
LI and MI are considered to be same.

There is some confusion over terminology in AVSR concerning the different levels of
possible integration . It is widely acceptable however, that the acoustic and visual speech
modalities can be combined either at the feature (i.e. Early Integration ) or the score
level (i.e. Late Integration). However, strict definitions for EI and LI still remain unclear
in AV-ASR literature. For example, in continuous audio-visual speech applications, LI
is considered as combining scores at the sentence level in contrast with isolated word
recognition where score combination for the same kind of integration takes place at the
word unit level. On the other hand, EI schemes make use of a single feature space which
represents both visual and audio information sources.

3.1.1 Early Integration

Early Integration (EI) or Feature Fusion, assumes class-conditional dependence be-
tween streams and frame synchronous information integration. Audio and visual features
are computed from the acoustic and visual speech respectively and they are combined
before the recognition experiment. Since the two set of features correspond to different
feature spaces, they may differ in their characteristics . EI techniques for audio-visual
speech are of benefit as they model the dependencies between acoustic and visual speech
modalities directly. However, EI approaches suffer in two respects. First, if the acous-
tic or visual speech modalities are corrupted then the entire speech modality is corrupted
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due to classification occurring at such a low level. Second, there is an assumption that
the acoustic and visual speech modalities are synchronized at the state level when HMM
classifiers are being employed.

Figure 3.2: Early Integration Scheme for AV-ASR

It has been proved that acoustic and visual speech stimuli are not synchronous, at least
at a feature based level because visible articulators, during an utterance, start and complete
their trajectories asynchronously, exhibiting both forward and backward coarticulation
with respect to the acoustic speech wave. Intuitively this makes a lot of sense, as visual
articulators (i.e. lips, tongue, jaw) have to position themselves correctly before and after
the start and end of an acoustic utterance. This time delay is known as the voice-onset-
time (VOT), which is defined as the time delay between the burst sound, coming from the
plosive part of a consonant, and the movement of the vocal folds for the voiced part of
a voiced consonant or subsequent vowel. McGrath also found an audio lead of less than
80ms or lag of less than 140ms could not be detected during speech [9]. This kind of
asynchrony cannot be modeled applying EI which assumes class-conditional dependence
between streams.

Figure 3.2 demonstrates how EI can be applied. Suppose that o(t) =
[
o
(t)
A , o

(t)
V

]
∈

RDis the concatenated observation vector obtained in time (t), whereD = DA+DV . The
class/state conditional observation probabilities of a sequence of such features is given by
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(a) A multi-stream HMM (b) A multi-stream HMM

Figure 3.3: A Multi-Stream HMM and its product. Lattice paths, starting from the down-
left corner and ending at the up-right one, represent different levels of asynchrony may be
captured. Diagonal path is for the state-synchronous HMM

P
[
o(t) | c

]
=

Jc∑
j=1

wcj ·ND
(
o(t); mcj; vcj

)
,

where c ∈ C is the class indicator, Jc is the number of Gaussian components of the
mixture for class/state c, wcj is the weight for jth Gaussian component and finallymcj , vcj

represent the mean value and the variance of the Gaussian component.

3.1.2 Late Integration

Late Integration (LI) or Decision Fusion, incorporates separate recognizers for audio
and video channels and then combines the outputs of the two recognizers to get the final
result. The final step of combining the two outputs is the most important step in this
approach, as it has to deal with the issues of orthogonality between the two channels and
the reliability of the channels. The level in which decisions can be fused, is a variable
parameter that offers potential solutions. Many different levels have been proposed such
as state level, phone level or word level. For automated isolated word applications LI
strategies have reported superior results to EI for speech recognition tasks.

LI allows for the asynchronous classification of speech and can emphasize or deem-
phasize the importance of a modality in classification depending on the corruption present.
The latter option is feasible by making use of stream weights in the state (class) condi-
tional observation likelihood of the multi-stream HMM which is a weighted product of
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the partial stream observation likelihoods. Given the bimodal observation vector o(t), the
state emision probability of the multi-stream HMM is ,

P
[
o(t) | c

]
=

∏
s∈{A,V }

[
Jc∑
j=1

wcj ∗ND
(
os

(t); mscj; vscj
)]λsct

(3.1)

,where λsctare the non-negative stream weights with λAct + λV ct = 1, which are also
dependent to the modality s, the HMM state (class) c, and the time t. Instantaneous

Stream weight estimation [4] makes use of stream reliability estimators for computing
frame-level stream weights. In this work, we consider word or utterance level, modal-
ity dependent weights. The formula above is known as the weighted product rule which
offers great facilities on emphasizing or deemphasizing the importance of a modality de-
pending on the stream reliability. So far, it was assumed that audio and visual recognizers
were state-synchronous. Let consider a multi-stream HMM which allows some degree of
asynchrony between the two streams.

Figure 3.3 illustrates a multistream HMM and its product HMM in which different
levels of synchronization between the two streams are possible.

A state synchronous decision fusion was considered for this project by combining
each stream’s likelihoods at a state level using the weighted product rule described above.
HTK capabilities for multi-stream HMM were applied to train and evaluate our models.
This process is described in section 4.4.1. The next section deals with stream weight
estimation which is crucial for modeling stream reliability using the weighted product
rule.

3.2 Stream Reliability Estimation

3.2.1 Entropy of A Posteriori Probabilities

This approach estimates stream confidence by computing the mean entropy over all
the class-conditional a posteriori probabilities that occur in stream, for a specific frame in
time. The computed entropy values are inversely proportional to the stream confidence.
When all classes have almost the same probabilities then, entropy reaches its max value
and subsequently the stream is considered to be totally unreliable. The same process
is applied for both audio and visual streams and then, a function which combines their
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confidence measures is searched for the estimation of the final weights, which emphasize
or deemphasize each stream contribution to the final decision. It has been shown that
entropy measures should be avoided for time frames in which silence model states are
among the 4 most probable states. The average entropy over N time frames and K number
of speech recognition classes is

H = − 1

N

N∑
t=1

K∑
i=1

P (ci,t | os,t) logP (ci,t | os,t) , (3.2)

where P (ci,t | os,t) determines the a posteriori probability of the observed vector os,t,
for class i, in time frame t. Various mappings have been proposed for relating entropy
measures with stream weights. An efficient way to find a non linear mapping is proposed
in [5]. A histogram of the last N entropy metrics is built to find which values occur
more often. Then, a linear function which maps large entropy values to small weights and
vice versa is adapted to the histogram in such way that its slope increases for frequent
entropy values. An obvious drawback to using this kind of mapping is the loss of weight
adaptiveness in each frame, due to computation of histogram, which needs a reasonable
amount of entropy metrics before altering the mapping function.

3.2.2 N-best Log-Likelihood Difference/Dispersion

The distribution of the N-best log likelihoods in time t, consists a measure for the class
discrimination in stream s, based on the observation. A reasonable choice for capturing
such discrimination is either to compute the log likelihood difference average between
the biggest log likelihood and the rest N-1 best values (see Eq. 3.3), or alternatively
to find the differences between each possible likelihood couple of the N-best and then
take an average (see Eq. 3.4). Suppose that Rs,t,n = logP (os,t | cs,t,n) is the nth best
class-conditional log likelihood in stream s, in time frame t. Subsequently, Rs,t,1 =

logP (os,t | cs,t,1) corresponds to the best log likelihood. The next two equations describe
the reliability measures of N-best Log-Likelihood Difference and Dispersion respectively,
for stream s, in time frame t.

Diffs,t =
1

N − 1

N∑
n=2

(Rs,t,1 −Rs,t,n) (3.3)
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Disps,t =
2

N (N − 1)

N∑
n=1

N∑
n′=n+1

(Rs,t,n −Rs,t,n′) (3.4)

where N ≥ 2. For both (3.3), (3.4), “large” values indicate high stream confidence.
A comparison of the three metrics above was made in [12], in which proved that eq.(3.4)
gave the best results for a Large Vocabulary Speech Recognition (LVSR) task. Finally,
eq.(3.3) was applied in [4] for the instantaneous stream weight estimation in AV-ASR,
over the CUAVE database.

3.2.3 K-means Clustering Method

In the presence of modeling or estimation error in a multi-stream classification prob-
lem, stream weights can decrease total classification error. For a two-stream, two-class
problem, the optimal weights have been shown to be inversely proportional to the single-
stream pdf estimation error [11].

s1

s2

=
σ2
s2

σ2
s1

, (3.5)

where σ2
s defines the variance of the pdf estimation error for stream s. Subsequently,

the optimal stream weights are inversely proportional to the variance of the pdf estimation
error.

In the same work, it has been also proved that assuming equal pdf estimation error
variances for the two streams, the next relation stands,

s1

s2

≈ p (x2 | c1)
p (x1 | c1)

for 0.5 ≤ p (x2 | c1)
p (x1 | c1)

≤ 1.5, (3.6)

which means that, optimal stream weights are not a function of the estimation error
if σs1 = σs2 but, in a region of interest, as defined in (3.6), stream weights should be
inversely proportional to the single-stream a posteriori probabilities p (xs | c1), where xs
is a feature vector of stream s and c1 stands for class 1. Moreover, the ration in eq.3.6 can
be approximated by the single-stream classification error ration.

p (x2 | c1)
p (x1 | c1)

≈ 100−WACC (λ2, Dtest)

100−WACC (λ1, Dtest)
, (3.7)

where 100−WACC (λs, Dtest) represents the stream s classification error for the testing

38



set Dtest using models λand WACC stands for “word accuracy”.
A combination of equations (3.6) and (3.5) was tested for the stream weight estimation

in the AV-ASR problem with various levels of audio stream corruption. The comparison
between the optimal weights and the estimated ones showed that they were strongly corre-
lated for Signal-to-Noise (SNR) values where the stream classification errors were almost
the same, as defines the condition in Eq.(3.6). The correlation coefficient reached the
value of 0.96. The following experimental formula was used for this test,

s1

s2

≈ σ2
V

σ2
A

100−WACC (λv, Dtest)

100−WACC (λsnrA , Dtest)
. (3.8)

There are two major issues we need to overcome if we want to apply the formula
above for the unsupervised stream weight estimation in AVSR.

1. Only the two-class classification problem has been examined so far, while we need
a knowledge base for the multi-class problem

2. Knowledge of stream classification error for the test data is necessary but this con-
sists a causality violence.

A solution for the both issues is given in [15], where the multi-class problem is reposed
as many two-class problems which are defined as model vs “anti-model” problems and
also, stream classification error is considered to be a non-linear function of the inter-to-
intra class distance ratio. “Anti-models” are described as the background of real models.
Training data are separated into two groups; one containing the training samples of the
class of interest, and the other containing the rest of the training samples. Models and
“anti-models” are built from the two training sets. A detailed description about how the
concept of models and “anti-models” is used for the AV-ASR, is illustrated in Chapter 4.

To resolve the second issue, the single-stream classification error for the two-class
problem, was treated as a function of D =| µ1 − µ2 | /σ 1 supposing that p (x | ci)
follow Gaussian distributions N (µi;σ

2). An approximation of D was made by applying
K-means clustering and then using the inter- and intra-class distances to estimate the

1Actually, Bayes error is estimated as a function of D =| µ1 − µ2 | /σ in a two-class classification
problem
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Figure 3.4: An illustration of inter-, intra-class distances. They seem to be inversely
proportional and proportional respectively to the Bayes error.

quantities in the nominator and the denominator respectively. The inter-class distance

dinter (i, j | s) is defined as the distance between the means (centroids) of classes i, j in
stream s 2, while the intra-class distance dintra (i | s) is defined as the variability within
a class i in stream s 3. Figure (3.4) illustrates the meaning of inter-, intra-class distances.
The relationship between the Bayes error and the inter- , intra-class distances are inversely
proportional and proportional respectively. Overall, the next formula estimates the stream
weight ratio for a two-class, two-stream classification problem.

s1

s2

≈ a · f
(
dinter (1, 2 | 1) / [dintra (1 | 1) + dintra (2 | 1)]

dinter (1, 2 | 2) / [dintra (1 | 2) + dintra (2 | 2)]

)
(3.9)

We test the estimation accuracy which K-means approach can provide for a two-
stream, two-class classification problem, with artificial data. Particularly, we assume a
one-dimension feature space, where data are generated using N (µs,c;σ

2) normal distri-
butions, for each class c, in stream s. Our aim is to investigate if K-means approach can
correctly estimate the second part of Eq.(3.7). Firstly, data are generated in order to fulfil
µ1,1−µ1,2 = µ2,1−µ2,2 which indicates an equal bayes error for the two streams. Note that

2dinter (i, j | s) =| µ−→s,i − µ−→s,j |

3dintra (i | s) = 1
N

N∑
o=1

(
x−→s,i,o − µ−→s,i

)2
,where x−→s,i,o is a feature vector of class i, stream s.
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both classes for both streams have the same variance σ2, which subsequently means that
all single-stream classes have equal intra-class distances. So, according to (3.7), stream
weights are expected to be equal ( s1

s2
≈ 1). After K-means is applied, it is expected to see

that the formed clusters will have

dinter (1, 2 | 1) = dinter (1, 2 | 2)

and

dintra (1 | 1) + dintra (2 | 1) = dintra (1 | 2) + dintra (2 | 2) .

If this happens, Eq.(3.9) successfully estimates the ratio of stream weights. If we
assume that µ1,1 − µ1,2 > µ2,1 − µ2,2 , classification error in stream 1 is expected to be
reduced and subsequently, its weight will be increased. Finally, we increase the class
separation in stream 1 for various amounts, in order to measure the accuracy of the stream
weight estimations. In Fig.(3.5), it is clear that the more stream classification errors differ,
the less accurate estimations K-means provide. Moreover, when classification errors are
close, with respect to the condition of Eq.(3.6) , it seems that K-means estimations reach a
good level of similarity with the realistic classification error ratio. Finally, when applying
a mapping to the estimates, of a type c · (estratio)b, the estimation curve (the dashed line
in fig. 3.5.b) gets even more closer.

3.3 Weighting Schemes for Audio-Visual Fusion

In the previous sections, it was described in what ways it is possible to fuse audio
with visual stream using HMM. It is widely accepted that employing weighted product
rule (see Eq. 3.1) for combining partial decisions made from seperate audio and visual
recognizers, is a good choice. Multi-stream HMM allow different levels of asynchrony
between audio and visual streams. Phone-level or word-level boundaries are generally
considered for fusing partial decisions. Stream Weight Estimation seems to be crucial
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(a) (b)

Figure 3.5: Simulation results using artificial data. Obviously, the estimations of p(x2|w1)
p(x1|w1)

are less accurate as the classification error difference between the two streams increases.

for emphasizing or deemphasizing a stream’s membership in the final decision. More-
over, weight adaptation to time-varying noise conditions outperforms any static weight-
ing schema. Stream Confidence indicators, as described in section 3.2, are based on data
observations of audio-only or both streams. We chose a K-means based, unsupervised
method to estimate stream weights for the classification and recognition task, which are
described in sections 3.3.2 and 3.3.2 respectively. Most of the methods that make use
of stream reliability indicators, need a mapping function to transform indicators into real
weights. Section 3.3.3 represents a mapping schema for our method.

3.3.1 Unsupervised Stream Weight Computation for Digit Classifica-
tion

Since audio-visual HMM recognizer has been set up and trained, as described in Chap-
ter 4, CUAVE database isolated-digits of “task 1” are used to verify classifier’s perfor-
mance with respect to weight estimation. We repeat the same test for all training/testing
set combinations of table (4.2). The Results obtained form these experiments are pre-
sented in Chapter 5. The remainder of this section describes the process we follow to
estimate stream weights for a classification task.

The theoretical results in subsection 3.2.3 are not directly applicable to classification

42



problems for two main reasons: (i) only results for the two-class classification problem
are available, while in general the multi-class classification problem is of interest, and
(ii) knowledge of class membership for each observation vector and/or the single-stream
modeling/estimation error is required to compute the weights

To solve the first problem, we used the principle of anti-models in [15]. By creating
models and anti-models, the multi-class classification problem is transformed to multi-
ple two-class classification problems. To solve the second problem, we approximated in
[15] the ratio in Eq.(3.6) by measurable quantities that can be computed in an unsuper-
vised manner. Indeed, it is well known that, if p (x | ci) follow a Gaussian distributions
N (µi;σ

2), the Bayes error is a function of D =| µ1 − µ2 | /σ, which can be computed
in an unsupervised manner using the inter- and intra-class distances (see Fig.3.4). The
intra-class distance is an estimate of the average class variance and the inter-class dis-
tance is the average distance between the means of each class. These distances are used
to measure the separation and the overlapping between the class distributions, and they
are directly dependent of the centroids of each class. The Gaussian-means of the (HMMs)
model and anti-model are used to initialize the K-means algorithm (K=2) for each class
to obtain the centroids and then compute the inter- and intra-distances (see Fig.3.4).

We consider ten different digit classes to construct HMMs with 8 states and a single
Gaussian continuous density distribution per state. An important part of the training pro-
cess is the generation of “anti-models”. The class and anti-class models are both built in
the training process using “clean” data. Class models for each stream are built following
the traditional process. On the other hand, anti-class models are trained using all the data
that do not belong in the corresponding class. For example, the model for digit one is
created using all training data labeled as “one”, while the anti-digit one is created using
all the data not labeled as “one”. At the end of this process, 20 models are obtained for
each stream, ten models for the digits (0-9) and ten anti-digits all with the same number
of parameters.

During the test phase, these class and anti-class models are used to initialize K-means
classification. Specifically, the means of the Gaussian distribution in the class and anti-
class models, are used as the initial K-means centroids. Given that a-priori it is not known
to which class each utterance (digit) belongs, the features in each utterance are split into
two classes (k=2) in ten different ways one for each digit and anti-digit model. In conse-
quence, one k-means algorithm have to be performed for each couple model-antimodel in
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order to obtain dinter, dintra quantities. Stream weights can be obtained as the solution of
the next linear system.

Waud

Wvis

≈ a · f

(∑
K

dinter (mk, amk | s) / [dintra (mk | s) + dintra (amk | s)] | s = Audio

dinter (mk, amk | s) / [dintra (mk | s) + dintra (amk | s)] | s = V isual

)
,

(3.10)

Waud +Wvis = 1

wheremk, amk are the mean vectors (centroids) of classK and dinter, dintra are the inter-,
intra-class distances respectively, as they have been defined in section 3.2.3. The inter-,
intra-class distances dinter, dintra are computed for each of the ten splits and the resulting
inter- to intra-class ratio is averaged over the ten spilts. Note that stream weights are
estimated in an utterance (digit) base. To take into account the difference between pdf
estimation error in two streams, a constant a can be estimated on a held-out data set and
used to improve the results. Additionally, f(.) is a non-linear function that relates the
metric obtained from k-means with the real bayes error. Further details can be found in
section 3.3.3 about how a and f(.) are efficiently computed .

3.3.2 Unsupervised Stream Weight Computation for a small Vocab-
ulary Continuous Speech Recognition problem

In this Section, we extend the multi-class classification approach presented in the pre-
vious section to the recognition problem for a small Vocabulary AV database. Generally
speaking, recognition is considered to be more difficult than classification but in this case,
practically, weight estimation is actually easier, without the need of anti-models. That is
due to the observation that larger separation between class distributions in a given stream
increases its confidence computed by stream reliability estimation algorithms described
in previous sections.

The same K-means approach is applied, as described in section 3.2.3. Intra-, inter-
class distances are computed, as before, in order to measure class separation. The only
difference is that K-means is performed only once, over all k classes, initialized with the
precomputed means (centroids) of k classes obtained form “clean data”. The total inter-
class distance dinter (s) , in stream s, is computed by adding the inter-class distances over
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all the possible combinations of two classes,

dinter (s) =
K∑
k=1

K∑
l=k+1

dinter (k, l | s) , (3.11)

where K is the total number of classes.
Overall, the stream weights are computed like Eq.(3.10) but using the total inter-class

distance dinter (s) normalized by the sum of intra-class distances dintra (s) =
∑K

k=1 dintra (k | s)
in stream s.

Waud

Wvis

≈ a ∗ f
(
dinter (s) /dintra (s) | s = Audio

dinter (s) /dintra (s) | s = V isual

)
, (3.12)

Waud +Wvis = 1

Experiments are performed over the CUAVE AV database by separating speakers into
training and testing sets which include 30 and 6 speakers respectively, each uttering 50
connected digits. Audio signal was corrupted by various additive noises (see Sec. 4.2)
at various SNR levels. Feature extraction is performed as described in section 4.3 and
finally, HMM are trained and tested using HTK capabilities (see Sec. 4.5). Recognition
results for the round-robin the testing sets (see table 4.2) are represented in section 5.2. It
has to be mentioned that the conceptual base for this experiment has produced in [14].

3.3.3 Stream Reliability to Stream Weight Mapping

A Non-linear function f (.) is used in order to map estimated stream classification
error ratio of equation (3.9) and (3.12) into stream weight ratio. A constant value a is also
used for taking into account the class-conditional pdf estimation error difference between
the two streams, as described in Eq.(3.7). Note that constant a is included in the mapping
function as a parameter. Overall, four types of mapping are tested in order to find which
one gives better results for different types of noise and SNR levels,

Note that in (Type II) and (Type IV), it is assumed that visual stream reliability remains
constant for changing noise and SNR levels. Subsequently, this constant is considered as
a mapping parameter embedded in a. To compute the parameters a , b or only a for each
type of mapping, we perform a fitting between the estimated and optimal weight ratios
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a ·
√

AudReliabilty
V isReliability

(Type I)
a ·
√
AudReliability (Type II)

a ·
(
AudReliabilty
V isReliability

)b
(Type III)

a · Audreliabilityb (Type IV)

Table 3.1: The Mapping Types we tested

Adapted Mapping
NOISE / TYPE OF

MAPPING
a ·
(
AudRel
V isRel

)b
a ·
√

AudRel
V isRel

a · Audrelb a ·√
AudRel

babble 45.82 22.68 31.73 23.72
white 33.66 14.24 10.41 12.26

jet 34.56 14.14 13.07 13.56
volvo 21.56 7.11 5.88 5.31

factory 46.90 18.87 25.83 18.5
mean 36.50 15.41 17.38 14.6

Table 3.2: Weight Estimation Error % for various mappings. Bold Values correspond to
the minimum estimation error and indicate the best type of mapping for each noise.

for the training data using those parametric mapping functions. After training each type
of function, we test their performance over the testing data by comparing the recognition
results. Weights are estimated for every sentence of ten digits but only a mean value is
selected and applied to the synchronous multi-stream HMMs, in order to compare the
results for different mapping functions.

Two different approaches are considered in order to compute the mapping parameters.
In the first, we assume that each mapping is trained separately for a specific type of noise
and data set in order to get adapted to it. This approach achieved better weight estima-
tions but only if we have the knowledge for the type of noise. Table (3.2) represents the
weight estimation error for each kind of mapping over five different noisy data. Mapping
parameters were trained on a training set of 30 speakers and tested for six speakers, as
mentioned before. The same process repeated for different partitions of the available data
into training and test sets. The best average performance achieved by a ·

√
AudRel. In
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Global Mapping
NOISE / TYPE OF

MAPPING
a ·
(
AudRel
V isRel

)b
a ·
√

AudRel
V isRel

a · Audrelb a ·√
AudRel

babble 38.83 25.90 33.42 27.44
white 38.51 12.2 14.09 11.32

jet 45.00 14.38 18.35 13.82
volvo 23.46 11.45 9.14 8.19

factory 42.85 19.44 25.22 20.20
mean 37.73 16.67 20.04 16.19

Table 3.3: Weight Estimation Error % for global mapping. The same types of mapping
were trained to perform well for all noises.

the second approach, all the mapping parameters are trained using a global training set in
order to perform the fitting between the reliability estimators and the stream weights. In
this case, 7500 numerical data (30 speakers x 50 digits x 5 noises) are available in order to
estimate the parameters which give the “best fit” for each kind of mapping function. The
best fit is evaluated by using the least squares method and subsequently, the performance
of each type of mapping is tested over a test set of six speakers. The weight estimation
error for the “global mapping” is represented in table (3.3).
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Chapter 4

Experiment Setup

In the following sections, it is described the process of creating, training and testing
Audio-Visual HMM recognizers using HTK [1], in order to perform experiments for the
unsupervised stream weight estimation in different noisy environments. Furthermore, a
Visual recognizer is built for testing how informative features were extracted from the
video frames using the feature optimization process which described in Chapter 2 . Fi-
nally, an audio recognizer is set up to be compared with the AV recognizer for the classi-
fication and recognition tasks.

4.1 CUAVE Database description

Clemson University Audio Visual Experiments (CUAVE) corpus is an audio-visual database
that has been designed to meet some criteria. It is a speaker independent database of con-
nected (or isolated) and continuous digit strings of high quality audio and video of a
representative group of speakers. Recordings have been made in realistic conditions for
testing robust audio-visual schemes. For example , speaker’s movement is a physical pa-
rameter that exists in every real application and cannot be avoided. As table 4.1 depicts,
the database is grouped in tasks. Every task is offered for a different kind of experiment.

There are 36 speakers with different kind of facial characteristics and skin tones (see
fig.4.1 ). The fact that there is a variation in skin colours, makes our face detection method
more robust. Task 1 includes stationary speakers that form a set of 36 × 50 connected
digits. We will use Task 1 for our experiments in visual feature extraction as there is
always a small movement or rotation of the speaker’s head, which is desirable if we want
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Figure 4.1: CUAVE includes speakers with different facial characteristics

to investigate rotation correction and scaling normalization.
Video was recorded at 720x480 resolution with 29.97 fps (NTSC) in full colour. It

means that feature vectors for the visual stream are extracted in a rate of 30 vectors per
second in contrast with audio features which are extracted in a rate of 100 vectors per
second. So, visual feature vectors need to be interpolated in order to match with audio
features. The sound was recorded in 16-bit stereo at 44 Khz. Also 16-bit mono wav files
at 16 KHz are available to use in our experiments. A detailed description of the database
can be found in [10].

4.2 Noise types

In order to test Audio-only and Audio-Visual recognizers in different noisy environ-
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Part Task Movement Numberof Digits Mod
1.Individual 1 Still 50x36 speakers Connected

2 Moving 30x36 speakers Connected
3 Profile 20x36 speakers Connected
4 Still 30x36 speakers Continuous
5 Moving 30x36 speakers Continuous

2.Pairs 6 Still (30x2)x20 pairs Continuous

Table 4.1: CUAVE Task Description

Speakers
Testing set 1 s01m, s02m, s04f, s20f, s33m, s34f
Testing set 2 s03m, s05f, s06f, s19f, s21f, s32m
Testing set 3 s09m, s10m, s17m, s27m, s35m, s36f
Testing set 4 s07m, s12m, s14m, s23f, s28f, s29m
Testing set 5 s08m, s11f, s16f, s22m, s27m, s31m
Testing set 6 s03m, s15f, s18f, s24m, s25f, s30f

Table 4.2: Separation of the initial data set to testing sets for different independent expire-
ments. For each testing set, models are trained with the rest of the data.

ments, we simulate this audio degradation by injecting different kinds of noise in the
”clean” audio. The noise audio files were acquired from the Signal Processing Informa-
tion Base (SPIB) repository (http://spib.rice.edu/spib.html) and were downsampled from
20KHz to 16KHz which is the sampling rate of ”clean” audio. We used five types of
noise:

Speech Babble is the source of 100 people speaking in a canteen. The room radius is
over two meters, therefore, individual voices are slightly audible. The sound level
during the recording was 88 db.

White Noise was acquired by sampling high-quality analog noise generator (Wandel &
Goltermann). Exhibits equal energy per Hz bandwidth.

Jet Cockpit Noise 1 was acquired from the interior of a Buccaneer Jet moving in a speed
of 190 Knots, and an altitude of 10000 feets, with airbrakes out. The sound level
during the recording process was 109 dB.
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Car Interior Noise was recorded while driving a Volvo 340 at the speed of 120 Km/h,
in 4thgear, on an asphalt road, in rainy conditions.

Factory Floor Noise 1 was recorded near a plate-cutting and electrical-welding equip-
ment.

These types of noise constitute different scenarios were AV-ASR could be applied. It
is worth mentioning that SNR was considered as the speech to noise ratio taking into
account their global energies. Different values of SNR were obtained by adjusting noise
global energy before it was added to the audio signal. Alternatively, signal to noise ratio
can be adjusted locally, in segments.

4.3 Features

A subset of the CUAVE audio-visual database [10] was employed for these experi-
ments as described in section 4.1. The process of feature extraction for audio and vi-
sual data, has been already analyzed in Chapter 2. We use the standard Mel-Frequency
Cepstrum Coefficients (MFCCs) as audio features, computed for frames with duration
25ms, extracted every 10ms. The acoustic vectors of dimension dA = 39 consist of
12-dimensional MFCCs, energy, and their first and second order derivatives. Respec-
tively, visual features were extracted from the scale, rotation normalized mouth region
after down-sampling and performing 2-D Discrete Cosine Transform (DCT). The first 35
most ”energetic” DCT coefficients were kept resulting in a feature vector of dimension
dV = 105 including the first and second order derivatives. Both audio and visual features
are mean normalized by subtracting their mean value.

4.4 HMM recognizers

Speech recognition systems generally assume that the speech signal is a realisation of
some message encoded as a sequence of one or more symbols. To perform the reverse
operation of recognising the underlying symbol sequence given a spoken utterance, the
continuous speech waveform is first converted to a sequence of feature vectors. The role
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of the recogniser is to apply a mapping between sequences of speech vectors and the
wanted underlying symbol sequences.

Two problems make this very difficult. Firstly, the mapping from symbols to speech
is not clear since different underlying symbols can give rise to similar speech sounds.
Furthermore, there are large variations in the realised speech waveform due to speaker
variability, mood, environment, etc. Secondly, the boundaries between symbols cannot
be identified explicitly from the speech waveform. Hence, it is not possible to treat the
speech waveform as a sequence of concatenated static patterns.

4.4.1 HMM creation and training

Three types of recognizers are built (Audio-only, Visual-only, Audio-Visual) as men-
tioned before depending on which kind of modality we use in order to perform classifica-
tion/recognition. Context-independent whole-digit models with 11 states per digit and a
single Gaussian continuous density distribution per state are defined using HTK [1] capa-
bilities. The first and last state of each model is used for HTK purposes. Ten models are
created and trained knowing that data are separated into ten classes (digits). In addition,
a model for silence is built with 3 only states. The training procedure begins after data
preparation (data conversion into HTK format) and prototype HMM definition (topology
description of the models are going to be trained). HMM definitions are stored as sim-
ple text files. Note that all training and testing data labels are provided. In addition, a
dictionary and a task-grammar are necessary for HTK in order to have knowledge for the
utterance structure during recognition. In our case, the dictionary consists of the ten digits
and the word lattice describing the task-grammar is built with HParse. We provide HTK
with the knowledge that sentences which are going to be recognized include a sequence
of digits interleaved by silence segments. Note that audio and audio-visual recognizers
are trained with ”clean” audio data. On the other hand, visual features stay unaffected by
noise.

Each of the required HMMs is generated individually.

• HInit is used to provide an initial set of single-model parameter estimates. It reads
in all of the labeled training data and cuts out all of the examples of the required
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digit. It then iteratively computes an initial set of parameter values using a segmen-
tal k-means procedure. On the first cycle, the training data is uniformly segmented,
each model state is matched with the corresponding data segments and then means
and variances are estimated. On the second and successive cycles, the uniform
segmentation is replaced by Viterbi alignment.

• The initial parameter values computed by HInit are then further re-estimated by
HRest. Again, the fully labelled training data is used but this time the segmental
k-means procedure is replaced by the Baum-Welch re-estimation procedure.

HTK provides some capabilities for multi-stream HMMs but unfortunately those are lim-
ited. Only state-synchronous models with joinly estimated transition probabilities can be
built. It is important to be mentioned that HRest does not take into account stream weights
during training and so, the training result is suboptimal. Furthermore, state-level weight
changeability is not supported. Each model uses a single set of stream weights for all the
included states. We decided to train AV recognizer models using equal stream weights
(WA = WV = 0.5). Finally, HTK implementation for multi-stream models manipulates
a single vector for both streams.

4.5 Evaluation of Weight Estimation

After AV recognizer is set up and trained, its performance is compared with respect to the
audio-only recognizer, for five different noisy environments we simulated by injecting
noise in the audio data (as described in sec. 4.2). Audio is degraded for eight differ-
ent levels of SNR (-10,-3,0,3,6,9,12,20). We split features into digits and sentences in
order to perform weight estimation using K-means and then evaluate the results for clas-
sification and recognition respectively. Note that both results may be biased due to the
implementation of K-means we use. It is well known that K-means is sensitive to the
initial centroids which is provided and it is possible to give different results depending on
the initialization. However, we use MATLAB’s (6.5 edition) K-means impementation to
estimate stream weights, following different processes for classification and recognition
as described in sections 3.3.2, 3.3.2 respectively.
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A mean value of the metric inside the parenthesis of Eq.(3.10) is computed for all the
digits in the training set and then an optimal mapping function f (.) is searched among
the 4 types as depicted in table (3.1). This is achieved by selecting a function type which
best estimates the optimal weights for the testing set. Note that the parameters of each
function type are trained by fitting using the training data. Optimal weights for each type
of noise and SNR value have been computed by hand. Only a pair of stream weights
is estimated for each combination of noise and SNR. In other words, it is assumed that
weights remain constant for every model during recognition/classification.
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Chapter 5

Experimental Results

The result set contained in this chapter is divided in two parts. Firstly, we investigate
what kind of improvements have been made after each stage of the visual front-end opti-
mization process and then, we compare the performance of audio-only and audio-visual
recognizer focusing on the efficiency of unsupervised weight estimation. Figures and ta-
bles are included for better understanding the behaviour of each recognizer (Audio-only,
Visual, Audio-Visual) in various environments. Moreover, it is interesting to see the word
error rate (WER) reduction achieved by the AV recognizer implementation with estimated
stream weights in contrast with the baseline implementation (equal stream weights).

5.1 Visual feature extraction optimization

To avoid confusion, different notations are used for each visual front-end implementation.
In “Baseline-DCT” visual feature extraction, it is applied a simple method for ROI track-
ing in which, a manually selected mouth region from the first frame is shifted in multiple
directions within the second frame, in order to be matched using cross-correlation as a
similarity measure. When searching stops, the best matched region is used as a template
for the next frame and so on. 2D-DCT features are then extracted from the decimated
ROI and the (0,0) coefficient is ignored to obtain, at the end, a feature dimension equal to
35 over the first 6× 6 first DCT coefficients. These feature vectors are re-sampled to 100
FPS in such a way that they can be combined with the audio stream.
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File %Cor %Acc Cor Del Sub Ins N
s01m.rec 32.00 ( 32.00) 16 26 8 0 50
s02m.rec 40.00 ( 24.00) 20 10 20 8 50
s04f.rec 12.00 ( 12.00) 6 40 4 0 50
s20f.rec 18.00 ( 18.00) 9 36 5 0 50
s33m.rec 44.00 ( 42.00) 22 20 8 1 50
s34f.rec 26.00 ( 26.00) 13 32 5 0 50

———————–Overall Results———————-
WORD: 28.27 (25.67) 86 164 50 9 300

Table 5.1: Baseline-DCT recognition results for testing set 1

File %Cor %Acc Cor Del Sub Ins N
s01m.rec 70.00 ( 58.00) 35 22 14 6 50
s02m.rec 78.00 ( -8.00) 39 3 11 43 50
s04f.rec 44.00 ( 32.00) 22 30 12 6 50
s20f.rec 30.00 ( 22.00) 16 42 24 4 50
s33m.rec 80.00 ( 42.00) 40 33 10 19 50
s34f.rec 76.00 ( 64.00) 38 33 10 6 50

———————–Overall Results———————-
WORD: 63.33 (35.33) 190 29 81 84 300

Table 5.2: Nt-DCT recognition results for testing set 1, insertion penalty = -150

An alternative ROI tracking approach, also based on template matching, is applied
in our front-end schema, as described in Chapter 2. Knowing that the mouth region is
sensitive to intensity changes through time frames due to mouth-motion and thus template
matching is expected to be inefficient, we avoided using the mouth region as a template
and therefore, we applied nose tracking in order to track the ROI (see section 2.1.2). This
nose-tracking-based implementation of the visual front-end is tested here, denoted as “Nt-

DCT” , as well as its versions with rotation correction and scaling normalization, referred
as “Rc-DCT” and “Sn-DCT” respectively.

HMM-based visual recognizers were trained and then tested for every combination
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File %Cor %Acc Cor Del Sub Ins N
s01m.rec 62.00 ( 58.00) 31 8 11 2 50
s02m.rec 66.00 ( 20.00) 33 1 16 23 50
s04f.rec 36.00 ( 34.00) 18 22 10 1 50
s20f.rec 26.00 ( 22.00) 13 26 11 2 50
s33m.rec 62.00 ( 58.00) 31 3 16 2 50
s34f.rec 66.00 ( 64.00) 33 7 10 1 50

———————–Overall Results———————-
WORD: 53.00 (42.67) 159 67 74 31 300

Table 5.3: Nt-DCT recognition results for testing set 1, insertion penalty = -250

File %Cor %Acc Cor Del Sub Ins N
s20f.rec 44.00 ( 42.00) 21 20 9 1 50

Table 5.4: Rc-DCT recognition results for speaker s20f, insertion penalty = -250

of training, testing sets as depicted in table (4.2). Table (5.1) reports the recognition
accuracies obtained for the ”Baseline-DCT” front-end, for testing set 1, using HVite of
HTK for decoding and HResults to format the results. An HTK parameter called “word
insertion penalty” is a fixed value added to each token when it transits from the end of
one word to the start of the next, during decoding. Recognition accuracy depends on
this value as it is obvious in tables (5.2) and (5.2), where the same data are tested with
different insertion penalties. To measure the best performance, we rerun the experiments
changing this parameter. Results can be improved about 20%. For instance, speaker s02,
who tends to speak clearly, giving emphasis to his articulation, achieves the best score
in audio, but for lipreading, there is a problem with insertions which can be reduced by
increasing insertion penalty.

“Rc-DCT” smoothing window = 3 frames smoothing window = 5 frames
53.33% 54.67% 54.33%

Table 5.5: Rotation angles smoothing with mean filter
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When using the “Nt-DCT” front-end, we observed a significant WER reduction over
the “Baseline-DCT” which was measured about 70%. Additionally, “Rc-DCT” yield a
48% WER (52% accuracy), compared to the “Nt-DCT” 58% WER. This amounts to a
further WER reduction of 25 %. On the average, “Rc-DCT” front-end gave a “boost” to
performance of about 95%. Such a sample of improvement can be seen in table (5.4),
in which the recognition accuracy for speaker s20 reached 42% in contrast with the 18%
accuracy of the “Baseline-DCT” implementation. This means a 130% accuracy improve-
ment. Actually, speaker s20 exhibited large head inclination angles. Finally, we applied a
smoothing to the estimated angles of each frame in order to minimize improper estimates
as well as erratic changes. As table (5.5) indicates, we achieved an improvement of 1%
on average when applying a mean filter smoothing over the estimated rotation angles.

5.2 Stream Weight Estimation

The main purpose of this section is to report the results obtained from our research in
stream weight estimation. The advantages, as well as the drawbacks of our method, are
clearly understood through figures and tables, which summarize the raw results we got,
using a variety of statistics. In first place, we have chosen to include some representative
plots created according to different testing sets and types of noise, in order to compare the
classification performance of the audio-only and visual-only recognizers in contrast with
three different audio-visual recognizers which use equal, optimal and estimated stream
weights, denoted as “baseline-AV”, “est-AV” and “opt-AV” respectively. Classification
accuracy of each recognizer, for various SNR levels, is considered to be the performance
measure. The next set of figures illustrate this kind of comparison, as well as the estima-
tion of audio stream weights, for five different noisy environments; babble speech noise,
white noise, jet noise, interior car noise and factory noise respectively. Note that optimal
weights have computed by hand. Also, in the title of each figure, it is attached the type
of the mapping function which was used to estimate the stream weights. Note that all
the results for recognition as well as classification, for all the types of noise, and all the
testing sets, are included in the Appendix.

Our aim is to find a global mapping, with a satisfactory behaviour for all the types
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of noise, having preference to the a ·
√
AudReliability 1 as it proved that this function

gives on the average the best results according to Chapter 4. Thus, in order to measure
the overall performance when using just one mapping type, we also include the results
obtained using this function when an other function gave better results. For example,
Fig.(5.4) demonstrates this kind of comparison. Note that in every situation, audio and
visual stream confidence measures were mapped into weights using the mapping function
which gave the best results. In most of the cases, when using a ·

√
AudReliability,

weight estimation worked in good levels, comparing with the best mapping could be
chosen, with respect to the noise or the testing set. This is not surprising due to the
small difference in estimation error, for every situation, between the best mapping and
that of a ·

√
AudReliability as table (3.2) depicts. It is definitely preferable to search for

a mechanism that will be able to adjust the mapping parameters for every situation, but
it is more feasible to use just one function for every posible data set. The only issue we
need to overcome, is the estimation of the parameter a. Preliminary only, non-conclusive
experiments were carried out in order to achieve this.

In Fig.(5.4), it is obvious that for the most SNR levels, the audio-visual recognizer
performs better than the recognizers which use single-modalities. That was our first goal
when we started designing the audio-visual recognizer. Indeed, the same thing happens
for the rest of the noisy environments as the following figures demonstrate. Another fact
is that although the estimated weights are not close to the optimal (as fig. 5.4 depicts),
especially for low levels of SNR, the overall distance from the optimal performance is
considered to be reduced in contrast with the baseline implementation in which stream
weights assumed to be equal. Finally, there is a difference in performance between recog-
nition and classification tasks as it was expected. Actually, it depends on how we handle
insertions during recognition as we show in the previous section. The next figures, repre-
sent the results for the rest of the noisy environments.

In reference with white noise, weight estimation for the classification task performed
above the expectations as the two curves representing the optimal and the estimated audio
weights came very close (see fig. 5.1.a). Consequently, the“est-AV” recognizer achievied
almost identical results with the “opt-AV” implementation. Furthermore, the same rec-
ognizer outperformed the audio-only recognizer for about 16% on average, reaching an

1”AudRel” and ”VisRel” in the included text of the figures, are for Audio Reliability and Visual Reli-
abiity respectively.
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WHITE NOISE

(a)

(b)

Figure 5.1: White noise classification results for testing set 2
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improvement of 66% locally, for low levels of SNR. If we use the square-root mapping
function (see fig. 5.1.b), weight estimation is degraded; however, the impact on the overall
performance seems to be insignificant.

Figure (5.2) represents the results for the case of jet cockpit noise. It is worth men-
tioning that although the optimal audio weights indicate a reduced performance for the the
“baseline-AV” recognizer, unexpectedly, the results obtained using this recognizer are not
far from the optimal. We have noticed that in many cases. However, using the estimated
weights, the AV recognizer gets even more closer to the optimal performance. An other
conclusion can be made, looking at fig.(5.2), is that there is not a big difference when we
use a ·

√
AudReliability in the place of a ·

√
AudReliability/V isReliability. It makes

sense since the Reliability of the visual stream can be considered constant and unaffected
by noise.

Interior car noise does not seem to degrade audio in the same manner as the rest types
of noise do and hence, we expect to see different results. Indeed, Fig.(5.3.a) confirms
that. Audio performance is very high and even the optimal AV recognizer cannot reach
that levels, a fact that constitutes a reasonable doubt about how HTK manipulates stream
weights. We purposely chose to include this figure as the only case in which the audio-
only recognizer outperforms the AV recognizer for about 5 % on average. Actually, we
noticed that HTK, for audio weights close to one and consequently, visual stream weights
close to zero, does not use only the audio stream as it was expected to do.

Finally, figures (5.5) and (5.6) represent the average audio stream estimated weights
for classification and recognition respectively, computed for each kind of noise and for
all levels of SNR, using data of every testing set (the round-robin as depicted in table
4.2). A first observation about these figures is that recognition curves have almost the
same gradients with the classification ones. Thus, they change similarly over SNR, a
fact that may possibly indicates a good function of weight estimation, as it seems able to
adapt to different noises. Knowing that recognition accuracy is biased, due to the inser-
tion penalty selection, we expect a degraded performance in contrast with classification,
which is clearly confirmed by observing the figures of the recognition results. All the
recognition accuracy curves seem to be biased in the same way and transfered in lower
levels, compared with the classification ones. However, we assume that the visual stream
is more affected than the audio, observing that the audio weights increase in recognition.
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JET COCKPIT NOISE

(a)

(b)

Figure 5.2: Jet noise classification results for testing set 5
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CAR INTERIOR NOISE

(a)

FACTORY NOISE

(b)

Figure 5.3: (a) Car interior noise classification results for testing set 5. (b) Factory noise
classification results for testing set 1
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BABBLE SPEECH NOISE

(a)

Figure 5.4: Babble speech noise classification results for testing set 1

An other fact is that the weights vary reasonably with respect to the SNR changes, be-
ing flexible and adaptable as well as representative of the environmental conditions. For
instance, audio weights for the car interior noisy environment (fig. 5.5.d), have been esti-
mated over the 0.9 level for all the SNR values, indicating a high-confidence audio stream,
which is realistic due to the increased classification accuracies that audio achieved.

Figure (5.7) reports a summary of the mean WER reduction has been achieved over
all SNR levels, by using “est-AV” instead of “audio-only” recognizer, for each type of
noise. The same figure reports the gains have been obtained by using “est-AV” instead of
“baseline-AV” and also, the mean performance distance between “est-AV” and “opt-AV”.
We observed a significant improvement in performance when using AV recognizers, com-
pared with the degraded audio performance, specially in low levels of SNR. For the Jet
noise case, it is worth mentioning that the “est-AV” recognizer exhibited an improvement
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of 83% over the “audio-only” recognizer, for classification, and respectively, a significant
improvement of 476% for recognition, where audio performance seems to be diminished.
Moreover, in the case of car interior noise, the improvement over the “audio-only” rec-
ognizer seems to be of no importance but in fact, there was not room for improvement, as
the audio achieved high levels of performance. To conclude, “est-AV” outperformed both
“audio-only” and “visual-only” recognizers as well as the “baseline-AV” in the most of
the cases.

65



MEAN ESTIMATED AUDIO WEIGHTS FOR CLASSIFICATION

(a) (b)

(c) (d)

(e)

Figure 5.5: Mean audio stream estimated weights for classification (a) Babble speech ,
(b) White , (c) Jet cockpit noise, (d) Car interior, (e) Factory
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MEAN ESTIMATED AUDIO WEIGHTS FOR RECOGNITION

(a) (b)

(c) (d)

(e)

Figure 5.6: Mean audio stream estimated weights for recognition (a) Babble speech , (b)
White , (c) Jet cockpit noise, (d) Car interior, (e) Factory
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(a)

(b)

Figure 5.7: (a) Classification mean WER reduction achieved by “est-AV”.
(b) Recognition mean WER reduction achieved by “est-AV”.
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Chapter 6

Discussion and Future Work

When this project started as an idea, our first goal was to optimize a baseline visual front-
end in order to extract visually relevant features. At first, our main focus was a more
sophisticated ROI tracking, which was achieved by applying template matching in every
frame to detect the nose tip, and use it as reference for the ROI determination. This yielded
a significant WER reduction over the baseline front-end which was measured about 70%.
Further improvement of 25% was obtained when we corrected the head rotation, as well as
the scaling differences which occurred due to slight back-and-forth speaker movements.
To perform these experiments, a visual HMM-based recognizer was built.

Once visual features were improved, we investigated the unsupervised stream weight
estimation for a state-synchronous audio-visual recognizer, in order to emphasize or deem-
phasize the contribution of each stream in the final decision. A k-means based method
was applied to estimate the confidence of each stream and subsequently to compute the
appropriate stream weights. To compare the audio-visual implementation with an audio-
only recognizer, a multi-stream HMM recognizer was trained using “clean” data and then
tested in various noisy environments which was simulated by degrading the audio with
different types of noise. Definitely, the audio-visual recognizer outperformed significally
both the audio-only and the visual-only recognizers. Also, using the estimated weights,
yielded an improvement over the baseline implementation which assumed equal stream
weights.

Generally, when observing the figures, it is obvious that the obtained results seem
to be very promising. We believe that there is space for further improvements in order
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to make the visual front-end as well as the stream weight estimation more robust under
a variety of visually variable conditions. Given the nature of the CUAVE database, we
only used template matching to track the face. Actually, a possible degraded performance
of our ROI tracking implementation for moving speakers, is definitely reasonable due to
rapid changes. A more sophisticated approach need to be considered in order to over-
come this drawback. Moreover, profile view lipreading was out of the project’s scope but
it is even more challenging. A useful source of information that influences the decision
is the experimentally observed asynchrony of the two streams. Being the easiest from the
implementation point of view, synchronous feature level fusion was the baseline in our
experiments. Although this framework does not allow for modeling this kind of asyn-
chrony, it does allow for weighting the decisions independently. It is important to come
up with techniques that exploit our knowledge for the delay levels between the streams.
We did not focus in this aspect of the problem during this project.
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APPENDIX

This appendix contains all the available results obtained from our experiments in stream
weight estimation. Our aim is to compare the classification performance of the audio-
only and visual-only recognizers in contrast with three different audio-visual recognizers
which use equal, optimal and estimated stream weights, denoted as “baseline-AV”, “est-

AV” and “opt-AV” respectively. The next set of figures illustrate this kind of comparison,
as well as the estimation of audio stream weights, for five different noisy environments;
babble speech noise, white noise, jet noise, interior car noise and factory noise respec-
tively. Also, in the title of each figure, it is attached the type of the mapping function which
was used to estimate the stream weights. Our aim is to find a global mapping, with a satis-
factory behaviour for all the types of noise, having preference to the a ·

√
AudReliability

as it proved that this function gives on the average the best results according to Chapter
4. Thus, in order to measure the overall performance when using just one mapping type,
we also include the results obtained using this function when an other function gave bet-
ter results. All the experiments performed for classification as well as recognition, for
six different test sets. Finally, a table represents the overall WER reduction achieved for
classification and recognition respectively.
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Babble Speech Noise

(a)

(b)
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(c)

(d)
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White Noise

(k)

(l)
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Jet Cockpit Noise
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Car Interior Noise
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Factory Noise

(u)
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noise /
implementation

babble white jet car factory

Classification
vs Audio-only 35.20 47.76 82.87 0.54 46.61
vs Baseline-AV 2.51 8.69 6.73 10.69 3.34
Distance from

opt-AV
3.63 1.45 2.50 0.41 3.78

Recognition
vs Audio-only 264.95 283.97 475.82 2.46 276.86
vs Baseline-AV 5.09 31.43 20.37 33.32 14.10
Distance from

opt-AV
17.53 8.26 14.44 0.83 11.23

Table 1: Mean WER reduction % achived by “est-AV”
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