
RULES OF SELECTING PHONETIC UNITS IN A
TEXT-TO-SPEECH SYNTHESIS SYSTEM

Christos Boubousis

A thesis submitted in partial fulfillment of the requirements for the degree of

Diploma in Electronics and Computer Engineering

Technical University of Crete

Committee

Professor Vassilios Digalakis (Supervisor)

Associate Professor Alexandros Potamianos

Assistant Professor Georgios Karystinos

Chania 2008

Μπουμπούσης Χρήστος Διπλωματική Εργασία

i

Abstract

Rules of Unit Selection in a Text-To-Speech Synthesis System

by Christos Boubousis

Chairperson of the Supervisory Committee:
Professor Vassilios Digalakis

Department of Electronics and Computer Engineering

Text-To-Speech technology refers to the ability of a machine/computer to convert
given text into speech. The machine should be able to carry out conversion of text of
any format into speech output that can be understood by the listener. There are various
techniques to accomplish Text-To-speech Synthesis. In this thesis we tried to
understand the rules of selecting the phonetic units of a Text-To-Speech Synthesis
System by creating a Weather Report Synthesizer, a Text-To-Speech Synthesis System
for weather forecasts in Greek. In order to develop the Weather Report Synthesizer, we
used the Festvox Tool of Festival Speech Synthesis System. It is a concatenative
synthesis system which uses the vocal tract model as well as unit-selection in order to
synthesize speech. Since there are in general multiple instances of each concatenative
unit, the system performs dynamic unit selection. We used two implementation
methods, the Residual-Excited LPC synthesis and the Cluster Unit Selection. The voice
database amounted approximately ten hours of speech recordings and was constructed
from read text taken from the weather forecasts of the National Meteorological Agency
of Greece (EMY). Ultimately, the voice consists of a diphone database (LPC Synthesis)
or a unit CART tree (Cluster Unit Selection Synthesis), a lexicon and a number of
skeleton files that offer the complete voice. Only that set of files is required when
people other than the developer of the voice wish to use our newly developed voice
and needs to be distributed. We have distributed for the LPC method diphone group
files, a single file holding the index diphone data itself and a set of Scheme files that
describe the voice, while for Cluster Unit Selection a set of utterances, the CART tree
with our units, a lexicon as well as a set of Scheme files which describe the voice.

Μπουμπούσης Χρήστος Διπλωματική Εργασία

ii

Acknowledgements

I would like to express my sincere appreciation to Professor Vassilis Digalakis for his

guidance during the design and implementation of this application and his assistance in

the preparation of this manuscript. In addition, special thanks to Associate Professor

Alexandros Potamianos and Assistant Professor George Karystinos for the evaluation of

this work and participation of the Supervisory Committee, as well as,Vassilis Diakoloukas

and Chris Vosnidis for their important help and guidance during the time of the

preparation of this thesis.

I would also like to thank my friends Ntousias Alexandros and Stylianakis George for

their valuable help in the subject of text processing. Furthermore, all my friends Michael,

Aggelos, Despoina, Tolis, Tasos, John etc (you know who you are!) for your assistance

and your mental support all these years of my studies in Chania.

Finally, I would lik e to thank my family that supported and continues to support me not

only in my studies, but in every aspect of my life.

Μπουμπούσης Χρήστος Διπλωματική Εργασία

iii

Μπουμπούσης Χρήστος Διπλωματική Εργασία

iv

Table of Contents

CHAPTER 1..10
INTRODUCTION...10

1.1. History of Speech Synthesis...10
1.2. Structure of the thesis ..11

CHAPTER 2..15
ΤEXT-TO-SPEECH SYNTHESIS ...15

2.1. What is Text-To-Speech Synthesis? ..15
 2.1.1 Types of input..16
 2.1.2 Basic Methods..16

2.2. Practical Applications.. 17
2.3. General Anatomy of a Synthesizer.. 20

2.3.1. The NLP Component..22
 2.3.1.1 Text Preprocessing............…...23
 2.3.1.2 Word Pronunciation...24
 2.3.1.3 Prosody Generation..26
 2.3.1.4 Accentuation...27
 2.3.1.5 Intonational Phrasing..28
 2.3.1.6 Segmental Duration...29
 2.3.1.7 Sentence Intonation..30

2.3.2. The DSP Component..31
 2.3.2.1 Rule-based Synthesis...31
 2.3.2.2 Synthesis by Concatenation...34

2.4. Speech Synthesis .. 37
2.5. Segmental Quality.. 37

CHAPTER 3 .. 40
RESIDUAL-EXCITED LPC DIPHONE SYNTHESIS 40

3.1. Introduction.. 40
3.2. Definition of the Greek Phoneset... 42
3.3. Definition of the Diphone List ... 46
3.4. Corpus Design.. 48

 3.4.1 Selection of Sentences.. 48
 3.4.2 Corpus Characteristics...49

Μπουμπούσης Χρήστος Διπλωματική Εργασία

v

 3.4.3 Word Selection...49
 3.4.4 Final Corpus...50

3.5. The Recording Phase... 50
3.6. Labeling ..51
3.7. Text Analysis.. 55
3.8. Segmentation.. 58
3.9. Energy Normalization.. 59
3.10. Pitchmark Extraction.. 59
3.11. Building LPC Parameters ... 63

 3.11.1 Digital Vocal Tract Model...63
 3.11.2 LPC Coefficients Calculation..69
 3.11.2.1 Recursive Levidson Durbin Algorithm..73
 3.11.2.2 Gain Calculation...75
 3.11.2.3 Some Practical Issues..76
 3.11.2.4 Voiced/Unvoiced Detection...76

3.12. Building Prosodic Models .. 78
 3.12.1 Phrasing...78
 3.12.2 Duration Models..79
 3.12.3 Intonation..81

CHAPTER 4... 83
LIMITED-DOMAIN CLUSTER UNIT-SELECTION SYNTHESIS............. 83

4.1. Introduction.. 83
4.2. Cluster Unit-Selection .. 85

 4.2.1 Building Utterance Structures..86
 4.2.2 Cepstrum Parameter Files Calculation...88
 4.2.3 Building the Clusters...89

4.3. Classification and Regression Trees (CART)... 97
 4.3.1 Advantages of CART Methods...99
 4.3.2 CARTS in Festival..100
 4.3.2.1 Impurity..101
 4.3.2.2 Question Forming..102
 4.3.2.3 Tree Building Criteria..102
 4.3.2.4 Tree Format...104

4.4. Wagon CART-Building Program..105
 4.4.1 Feature Vectors..105
 4.4.2 Data Descriptions..106

CHAPTER 5..109
EVALUATION OF THE GREEK WEATHER FORECAST SYNTHESIZER
...109

Μπουμπούσης Χρήστος Διπλωματική Εργασία

vi

5.1. Introduction...109
5.2. Taxonomy of the Evaluation Tasks & Techniques................................... 110

 5.2.1 Black Box vs Glass Box..111
 5.2.2 Laboratory vs Filed..112
 5.2.3 Acoustic vs Linguistic..112
 5.2.4 Subjective vs Objective...113
 5.2.5 Judgement vs Functional..114
 5.2.6 Global vs Analytic..114

5.3. Evaluation of the Greek Weather Forecast Synthesizer............................. 115
 5.3.1 Segments..115
 5.3.2 Prosody..115
 5.3.3 Voice Quality..116
 5.3.4 Overall Voice Quality..116

5.4. Test Method.. 117
5.5. Results... 118

CHAPTER 6..124
CONCLUSIONS & FUTURE WORK ..124

6.1. Conclusions ...124
6.2. Future Work ..125

BIBLIOGRAPHY...127

Μπουμπούσης Χρήστος Διπλωματική Εργασία

vii

List of Figures

Figure 1 : Block Diagram of a TTS Synthesizer...21
Figure 2 : Block Diagram of the NLP Component...23
Figure 3 : Different kind of information provided by intonation (lines indicate the pitch
movement while the solid lines indicate the stress) a. Focus or giving new information.
b. Relationship between words (I-early, wake-early). c. Finality or continuation. d.
Segmentation of the sentence into groups of syllables ..26
Figure 4 : Block Diagram of the DSP module of a Rule-Based Synthesizer33
Figure 5 : Block Diagram of the DSP module of a Concatenative Synthesizer................ 34
Figure 6 : The Markov Generation Model..54
Figure 7 : Pitchmarks in a waveform signal ..60
Figure 8 : Bad Pitchmarks in a waveform signal..60
Figure 9 : Close-up of pitchmarks in a waveform signal ..61
Figure 10 : Close-up of pitchmarks in a waveform signal (2) ..61
Figure 11 : Close-up of pitchmarks in a waveform signal (3) ..62
Figure 12 : Simplified view of the vocal tract ...64
Figure 13 : Two kinds of input to generate sound (0T : pitch period)65
Figure 13a : Glottal Pulse Excitation for voiced sounds ..64
Figure 13b : Hiss(White Noise) input for unvoiced sounds...65
Figure 14a : Simplified Model of speech production ..66
Figure 14b : Detailed LPC Speech Production Model..66
Figure 15 : Linear Prediction of a filter ...67
Figure 16 : Speech Analysis Filter ..68
Figure 17 : Speech Synthesis Filter...68
Figure 18 : Relationships among dimensions involved in Taxonomy of speech output
evaluation methods..111
Figure 19 : Evaluation Results (Voice Quality) ..119
Figure 20 : Evaluation Results (Voice Acceptance)...119
Figure 21 : Evaluation Results (Intonation)..120
Figure 22 : Evaluation Results (Phoneme Junctures)..120
Figure 23 : Evaluation Results (Context Apprehension) ..121
Figure 24 : Evaluation Results (Voice Quality) ..122
Figure 25 : Evaluation Results (Voice Acceptance)...122
Figure 26 : Evaluation Results (Intonation)..123
Figure 27 : Evaluation Results (Phoneme Junctures)..123
Figure 28 : Evaluation Results (Context Apprehension) ..124

Μπουμπούσης Χρήστος Διπλωματική Εργασία

viii

List of Tables

Table 1: Example of Homographs in English...25
Table 2: Word distinction according to accentuation..27
Table 3: Example of implementation of chink n’ chunk algorithm.......................................29
Table 4: Greek Phoneset in Festival...43
Table 5: Phone Feature Names and Values..44
Table 6: Greek Phoneset with SAMPA equivalent,examples and Hellenic and English
transcription..45
Table 7: Function generating the vowel-vowel diphones...46
Table 8: Statistical Analysis of the Original Data Set...49
Table 9: Statistical Analysis of the final Corpus..50
Table 10: Token-to-Word mapping function...57
Table 11: Diphone Index File Sample..58
Table 12: Levidson Durbin Recursive Algorithm..73
Table 13: Phrase-Breaking..79
Table 14: Duration Prediction Tree..80
Table 15: Greek Phones Average Durations...80
Table 16: Accent Prediction CART tree..81
Table 17: Pitch range of the speaker..81
Table 18: Initial Parameter set...90
Table19: Function calls for loading the acousting parameters and calculation of their
acoustic distance...91
Table 20 Acoustic parameters setting...92
Table 21: Function for dumping features..93
Table 22: Cluster Building function...94
Table 23: Cluster Building parameters...95
Table 24: Function for the creation of the unit catalogue..95
Table 25: Calculation of the entropy..101
Table 26: Syntax of a CART..104
Table 27: Example of a feature vector...106
Table 28: Example of a description file...107
Table 29: Example of our Evaluation form..118

Μπουμπούσης Χρήστος Διπλωματική Εργασία

ix

Chapter 1 – Introduction

10

Chapter 1

Introduction

1.1. History of Speech Synthesis

The idea that a machine could generate speech has been with us for some time, but the

realization of such machines has been practical within the last fifty years. Even more recently,

it’s in the last twenty years that we have seen practical examples of Text-to-Speech systems

that can say any text they are given. The creation of synthetic speech covers a whole range of

processes, and though often they are all lumped under the general term Text-to-Speech, a

good deal of work has gone into generating speech from sequences of speech sounds; this

would be a speech-sound(phoneme) to audio waveform synthesis, rather than going from text

to phonemes and then to sound.

Chapter 1 – Introduction

11

One of the first practical application of speech synthesis was in 1936 when the UK telephone

company introduced a speeking clock. It used optical storage for the phrases, words and parts

of speech (“noun” “verb” and so on) which were appropriately concatenated to form

complete sentences.

With the rise of digital representations of speech, digital signal processing and the proliferation

of cheap, general purpose computer hardware, more work has been done in concatenation of

natural recorded speech. Diphones appeared; that is two adjacent half- phones (context

dependent phoneme realizations), cut in the middle, joined into one unit. The justification was

that phone boundaries are much more dynamic than stable, interior parts of phones, and

therefore mid-phone is a better place to concatenate units, as the stable points, have by

definition, little rapid change, whereas there are rapid changes at the boundaries that depend

upon the previous and next unit.

The rise of concatenative synthesis began in the 70s, and has largely become practical as large

scale electronic storage has become cheap and robust. When a megabyte of memory was a

significant part of researcher’s salary, less resource-intensive techniques were worth their…

weight in saved cycles in gold, to use an odd metaphor. Of course, formant synthesis can still

require significant computational power, even if it requires less storage.

Techniques were developed to compress (code) speech in a way that it could be more easily

used in applications. The Texas Instruments Speak ‘n Spell toy, released in the late 70s, was

one of the early examples of mass production of speech synthesis. The quality was poor, by

modern standards, but for the time it was really impressive. Speech was basically encoded

using LPC (Linear Prediction Coding) and it mostly used isolated words, though there were

also a few phrases formed by concatenation. Simple Text-to-Speech (TTS) engines based on

specialized chips became popular on home computers such as the BBC Micro in the UK and

Apple II.

Before 1980, research in speech synthesis was limited in large laboratories that could afford to

invest the time and money for hardware. By the mid-80s, more labs and universities started to

join in as the cost of hardware dropped. By the late-80s, purely software synthesizers were

feasible. The speech quality was still decidedly inhuman (and largely still is), but it could be

Chapter 1 – Introduction

12

generated real-time. Of course, with faster machines and large disk space people started to

look to improving synthesis by using larger and more varied inventories for concatenative

speech. Yoshinory Sagisaka at Advanced Telecommunications Recearch (ATR) developed

nuu-talk in the late 80s and early 90s [11]. It introduced a much larger inventory of

concatenative units; thus, instead of one example of each diphone unit there could be many,

and an automatic acoustically based distance function was used to find the best selection of

sub-word units from a fairly broad database of general speech. This work was done in

Japanese, which has a much simpler phonetic structure than English, making it possible to get

high quality with relatively small databases.

With the demonstration of general unit-selection synthesis in English in Rob Donovan’s PhD

work and ATR’s CHATR system ([12] and [3]) by the end of 90s, unit selection had become a

hot topic in speech synthesis research. However, despite examples of it working excellently,

generalized unit selection is known for producing very bad synthesis from time to time.

Of course, the development of speech synthesis is not isolated from other developments in

speech technology. Speech recognition, which has also benefited from the reduction in cost of

computational power and increased availability of general computing into the populace,

informs the work on speech synthesis and vice versa. There are now many more people who

have the computational resources and interest in running speech applications, and this ability

to run speech applications puts the demand on the technology to deliver both working

recognition and acceptable quality speech synthesis. The availability of free and semi-free

synthesis systems, such as the Festival Speech Synthesis System [2] and MBROLA [14] Project,

makes the cost of entering the field of speech synthesis much lower, and many more groups

have now joined in the development.

However, although we are now at the stage where talking computers are with us, there is still

much work to be done. We can now build synthesizers of any language that can produce

recognisable speech, with a sufficient amount of work; but if we are to use speech to receive

information as easily when we are talking with computers as we do in everyday conversation,

synthesized speech must be natural, controllable and efficient both in the rendering and in the

building of a new voice.

Chapter 1 – Introduction

13

1.2. Structure of the thesis

Chapter 1 provides a historical retrospection of Speech Synthesis from the early years of last

century until nowadays.

Chapter 2 introduces us to the Text-To-Speech Synthesis, categorizing the types of inputs

to a speech synthesizer, as well as the basic methods used for a synthesis procedure, some

practical applications and the general anatomy of a synthesizer.

Chapter 3 describes the process of creating our Greek Weather Forecast Synthesizer with

the vocal tract model providing explanation on every step of the process. All the technical

issues that have arisen during the implementation are analyzed in every detail.

Chapter 4 describes step-by-step the implementation process of our Greek Weather

Forecast Synthesizer using this time the unit-selection model providing every technical detail

required.

Chapter 5 outlines our two approaches towards the definition of an evaluation procedure

for the results of our application and presents our findings.

Chapter 6 provides a conclusion of our work and some propositions for future work.

Chapter 1 – Introduction

14

Chapter 2 –Text-To-Speech Synthesis

15

Chapter 2

ΤEXT-TO-SPEECH SYNTHESIS

2.1. What is Text-to-Speech Synthesis?

Firstly, let’s try to understand what is meant by term Text-to-Speech Synthesis. Obviously, this

term refers to the creation by the computer of human-like speech. A Text-to-Speech

Synthesizer (TTS) should be able to read any text aloud. Synthesized speech output may come

from a wide range of processes that differ enormously in the nature of their inputs and the

nature of their internal structures and calculations.

Chapter 2 –Text-To-Speech Synthesis

16

2.1.1 Types of Input

The input to a speech synthesizer may be

• an uninterpreted reference to a previously recorded utterance

• a message drawn from a small finite class of texts, such as telephone numbers

• a message drawn from a larger, but still restricted, class of texts such as names and

addresses.

• a message drawn from unrestricted digital text, including anything from electronic

mail to online newspapers to patent or larger texts, novels or cookbooks

• a message drawn from non-textual computer data structures

• a specification of the phonological content of a message, which for most applications

must be produced from one of these types of input given previously

Most commercial applications so far have been of the first or the second type. Classical

Text-to-Speech systems are of the fourth and sixth type, while ultimate human computer

interaction is likely to be of the fifth type. A large number of people involved in applying

speech synthesis technology think that the most promising current opportunity is the third

type. Note that limited domain applications have been crucial to the success of computer

speech recognition. Most practical speech synthesis implementations, including our

application, belong to this category.

2.1.2 Basic Methods

The system internal structures and processes of speech synthesis involve

• reproduction of digital stored human voice, perhaps with compression or expansion

• construction of messages by concatenation of digitally stored voice segments

• construction of messages by concatenation of digitally stored voice segments,

probably with modifications of the original time and pitch.

Chapter 2 –Text-To-Speech Synthesis

17

• construction of messages by concatenation of digitally stored voice segments, with

rule-generated synthetic speech contours and rule generated segmented timing values

• construction of messages using rule-generated synthetic time-functions of acoustic

parameters.

• construction of messages using rule-generated controls for the kinematics of the

simplified analogs of the vocal tract.

• construction of messages by realistic modeling of the physiological and physical

processes of human speech production including dynamic control of articulation and

models of the airflow dynamics of the vocal tract.

The largest scale of commercial activity has been of the first and second type which are

called stored voice. Much classical speech synthesis research has been of the fifth and sixth

type the so-called formant synthesis, although the best current systems and the most active

areas of research are of the third and fourth type techniques that are called concatenative

synthesis.

2.2 Practical Applications

Every synthesizer is actually the imitation of the human reading capability, submitted to

certain technological constraints that are characteristic of the time of its creation. High

Quality TTS synthesis can have numerous practical applications such as:

• Telecommunication services

TTS systems enable you to access textual information over the telephone. Knowing

that about 70% of the telephone calls actually require very little interactivity, such a

prospect is worth to be considered. Text might range from simple messages to huge

databases which can hardly be stored as digitised speech. Queries to suchinformation

retrieval systems could be put through the user’s voice with the help of a speech

recognition system, or through the telephone keypad with DTMF systems.

Chapter 2 –Text-To-Speech Synthesis

18

VoiceXML is a programming language designed for creating applications that enable

access over the phone to information, already available through a classical web

browser. Using a server resident Voice browser, the telephone keypad as the method

of the data input and server side speech synthesis as the method of data output,

information services already offered on the Web could easily be modified to support

mobile users. Given the continuously expanding number of mobile phones, and the

Personal Digital Assistants, it seems that voice could be the means to address the

needs of this new type of information services’ users.

• Aid to handicapped persons

Voice handicaps originate from mental or sensation disorders. Machines can be an

invaluable help especially to the latter case. With the help of an especially designed

keyboard and a fast sentence assembling, synthetic speech can be produced very

rapidly to overcome these impediments. A characteristic example of this situation, is

the Astrophysicist Stephen Hawking. He suffers from a very rare disease called

amyotrophic lateral sclerosis. Due to his illness, he cannot speak. However, thanks to

a TTS system not only he can speak, but he gives lectures constantly. Blind people

can also benefit from the TTS Systems when coupled with Optical Recognition

Systems (ORS) which give them access to written information.

• Language education.

High Quality TTS Systems combined with a Computer Aided Learning tool, can be

used as a method of learning a new language. This has not been done yet, however

due to the constantly improving quality of commercial systems it is only a matter of

time.

• Talking books and toys.

The toy market has been affected by the boost of speech synthesis. Many speaking

toys have appeared in the market under the impulse of the innovative “Magic Spell”

Chapter 2 –Text-To-Speech Synthesis

19

from Texas Instruments. High Quality Synthesis at affordable price, can also assist

the corporations of the toy market to expand the capabilities of these products to the

educational area.

• Vocal monitoring.

In some cases, oral information is more efficient than written messages. The appeal

is stronger, while the attention may still focus on other visual sources of information.

As a result, many corporations orientated to develop speech synthesizers for

measurement or control systems.

• Fundamental and applied research.

TTS synthesizers have a rather bizarre feature which make them an excellent

laboratory tool for linguists: they are completely under control. So, the repeated

experiences provide identical results, allowing the investigation of the efficiency of

intonative and rythmic models. A particular type of TTS systems, which are based on

a description of the vocal tract through its reasonant frequencies (formants) and

known as formant synthesizers, have been extensively used by phoneticians to study

speech in terms of acoustical rules. In this manner, for example, articulatory

constraints have been enlightened and formally described.

2.3 General anatomy of a Synthesizer

Anyone could think that the problem of converting the written text into speech could be

“the problem of speech recognition in reverse”. Nevertheless, it’s a little more complicated.

Speech recognition systems convert the speech input into a sequence of words recorded by

the speaker. As a result, anyone would think that a Text-To-Speech Synthesizer just takes a

sequence of words, converts every word into speech and concatenates the result.

Chapter 2 –Text-To-Speech Synthesis

20

However, this is a very simplistic approach of the problem. When you read a text in order to

sound natural and as if you understand what you are reading, you must emphasize (accent)

some words and de-emphasize others, you must chunk the sentence into meaningful

(intonational) phrases; you must pick an appropriate F0 contour (fundamental frequency); you

must control certain aspects of your voice quality; you must

know that if a word appears in specific spots in a sentence you must pronounce it longer

while in other spots shorter, since segmental durations by various factors one of them being

phrasal positions.

Hence, the task of a TTS system is very complex, as it has to mimick what human readers

do. In addition, TTS systems have another significant flaw. They cannot understand what

they are reading as they have very little grammatical knowledge of a language. As a result,

TTS algorithms have to do their “best”, using whatever grammatical information in order to

decide on such things as accent, intonation, phrasing so they can produce the ideal result.

We can identify two basic parts in a Text-To-Speech Synthesizer. The first one is the Natural

Languge Processing Component (NLP) and the second is the Digital Signal Proseccing

Component. The former can be divided into two sub-parts. The first one includes the

conversion of raw text to identified words and basic utterances and the second one does the

linguistic analysis finding pronunciation of words and assigning prosodic structure to them

including phonemes to be produced and their duration, the duration and location of the

pauses and an F0 contour to be used. The latter, is the actual speech synthesis part which

takes the information and from a fully specified form (pronunciation and prosody) generates the

waveform.

The block diagram of a very general Text-To-Speech synthesizer is the following

Chapter 2 –Text-To-Speech Synthesis

21

Text
Analysis

Linguistic
Analysis

Identify
words and
utterances

Pronunciation
Prosody

The NLP Component The DSP Component

Mathematical Models
Algorithms

Computations

Mathematical
Models

Algorithms
Computations

Prosody

Phonemes

Text-to-Speech Synthesizer

Text Speech

Figure 1. Block Diagram of a TTS Synthesizer

These partitions are not absolute but it is a very good way to chunk the problem. Of course

different waveform generation techniques may need different types of information.

Pronunciation may not always use standard phones and intonation may not necessarily mean

an F0 contour. However the main path of the above diagram is absolutely right.

2.3.1 The NLP Component

Although text analysis is often considered as a trivial problem, anyone who has listened to

general Text-To-Speech systems quickly realises it is not as easy to pronounce text as it first

appears. Numbers, symbols, acronyms, abbreviations, appear to various degrees and in

different types of text like news, novels and do not have a simple pronunciation that can be

found merely by looking up the token in a lexicon or using letter-to-sound rules. In any

language and in any limited domain (time, weather etc) that you wish to convert text to

speech building an appropriate text analysis module is necessary. The Natural Language

Processing Component of the TTS synthesizer is used to perform text and linguistic analysis

on the input text and can be chunked to the following sub-parts:

Chapter 2 –Text-To-Speech Synthesis

22

• Text preprocessing : including end of sentence detection, “text normalization”

(expansion of numerals and abbreviations) and little grammatical analysis, such as

grammatical part of speech assignment.

• Word Pronunciation : including the pronunciation of every word and disambiguation of

homographs.

• Accent Assignment : the assignment of levels of prominence to various words in the

sentence.

• Intonational Phrasing : the chunking of long stretches of text into one or more

intonational units.

• Segmental Durations : the determination of appropriate durations for the phonemes in

the input on the basis of linguistic information computed as far.

• F0 contour computation : computation of the fundamental frequency.

The block diagram of the NLP module is shown in the following figure:

Figure 2. Block Diagram of the NLP Component

Chapter 2 –Text-To-Speech Synthesis

23

2.3.1.1 Text Preprocessing

The Text Preprocessing Module performs the following steps:

• It splits the input sentence into a manageable list of words. It identifies numbers,

idioms, abbreviations, acronyms and transforms into full text.

It performs a morphological analysis on the input text in order to propose all

possible part of speech categories for each word taken individually on the basis of

their spelling. Inflected, derived and compound words are decomposed into their

elementary graphemic units (their morphs) using basic grammar rules exploiting

lexicon of stems and affixes.

• Words are considered in their context, which allows for the reduction of the list of

their possible part of speech categories to a very restricted number of highly

probable hypotheses, given the corresponding possible parts of speech of

neighboring words. This can be achieved either by n-grams, which local syntactic

dependences in the form of probabilistic finite state automata such as Markov

Models to a lesser extent with multi-layer percetrons, such as neural networks trained to

uncover contextual rewrite rules, or with local, non stochastic grammars by expert

linguists or automatically inferred from a training data set with classification and

regression trees (CART trees see Chapter 4 section 3 for further analysis).

• Finally a syntactic-prosodic parser, which examines the remaining search space and

finds the text structure (i.e its organization into clause and phrase-like constituents)

which more closely relates to its expected prosodic realization.

2.3.1.2 Word pronunciation

The Word Pronunciation Module is responsible for the automatic determination of the

phonetic transcription of the incoming text. Hence, anyone would think that this process is

equivalent of a dictionary look-up! However, if we take a deeper examination, we quickly

realize that most words appear in genuine speech with several phonetic transcriptions, many

of which are not even mentioned in pronunciation dictionaries. Specifically:

Chapter 2 –Text-To-Speech Synthesis

24

• Pronunciation dictionaries refer to word roots only. They do not explicitly account

for morphological variations (i.e plural, feminine, conjugations especially for highly

inflected languages) which therefore have to be dealt with by a specific component

of phonology, called morphophonology.

• Some words actually correspond to several entries in the dictionary, or more

generally to several morphological analysis with different pronunciation. This is the

case of the homographs, words that are pronounced differently although they have

the same spelling. Their correct pronunciation generally depends on their part-of-

speech and most frequently verbs and non-verbs. The following table shows some

examples of homograph words in English language.

dove /dʌv/ (noun) /doʊv/ (verb)

live /lɪv/ (verb) /laɪv/ (noun)

number /ˈnʌm.bɚ/ (noun) /ˈnʌ.mɚ/ (adjective)

read /ɹid/ (verb) /ɹɛd/ (verb) past tense

wind /waɪnd/ (verb) /wɪnd/ (noun)

Table 1. Examples of homographs in English

• Pronunciation dictionaries merely provide something that is closer to a phonemic

transcription than from a phonetic one as they refer more to phonemes than to

phones. Consonants, for example, may reduce or delete in clusters, a phenomenon

called consonant cluster “simplification”, e.g ‘softness’ /s fnIs/ where /t/ fuses in a

single gesture with the following /n/.

• Words embedded into sentences are not pronounced as if they were isolated. This

does not only originate in variations in the word boundaries, but also on alternations

based on the organization of the sentence into non-lexical units,

that is whether into groups of words (as for phonetic lengthening) or into non-lexical

parts thereof.

Chapter 2 –Text-To-Speech Synthesis

25

• Finally, not all words can be found in a phonetic dictionary: the pronunciation of new

words and of many proper names has to be deduced from the one of already known

words.

The first two bullets rely on preliminary morphosyntactic analysis of the sentences to read. To

a lesser extent it also happens to be the case for the third bullet as well, since reduction

processes are not only a matter of context-sensitive phonation, but they also rely on

morphological structure and on word grouping, that is on morphosyntax. Fourth bullet puts

a strong demand on sentence analysis, whether syntactic or metrical, and fifth bullet can be

partially solved by addressing morphology and/or by finding graphemic analogies between

words.

2.3.1.3 Prosody Generation

The term prosody refers to certain properties of the speech signal, which are related to

audible changes in pitch, loudness and syllable length. Prosodic features have specific

functions in speech communications. The most apparent effect of prosody is that of focus.

For instance, there are certain pitch events which make a syllable stand out within the

utterance, and indirectly the word or syntactic group it belongs to will be highlighted as an

important or a new component in the meaning of that utterance. The presence of a focus

marking may have various effects, such as contrast, depending on the place where it occurs,

or the semantic context of the utterance.

Chapter 2 –Text-To-Speech Synthesis

26

 Figure 3. Different kind of information provided by intonation
 (lines indicate the pitch movement while the solid lines indicate the stress)

a Focus or giving new information.
b Relationship between words (I-early, wake-early).
c. Finality or continuation.

 d.Segmentation of the sentence into groups of syllables.

Prosodic features create a segmentation of the speech chain into groups of syllables, or, put

the other way round, they give rise to the grouping of syllables and words into larger chunks.

Moreover, there are prosodic features, which indicate relationships between such groups,

indicating that two or more groups of syllables are linked in some way. This grouping effect

is hierarchical, although not necessary identical to the syntactic structure of the utterance.

2.3.1.4 Accentuation

Various words in a sentence are accosiated with accents, which are usually manifested as

upward or downward movements of fundamental frequency. Accentuation, along with

intonational phrasing, and F0 contour are the main part of the biggest problem of prosody

generation. Words are typically distinguished into three groups, with regard to their

prominence. The two are accented and unaccented an the third is cliticised. Cliticised words are those

which are unaccented but they have also lost their word stress, so that they tend to be short in

duration: in effect they behave like unstresses affixes, even though they are seperated words.

Accents are assigned primarily on the basis of broad lexical categories or parts of speech.

Chapter 2 –Text-To-Speech Synthesis

27

 In the following table we can see the distinction of the words in the three categories:

Content words such as nouns, verbs, adjectives in general tend to be accented; on the other

hand, function words including auxiliary words and propositions tend to be unaccented

Accented Unaccented Cliticised
nouns auxiliary verbs short function words

verbs propositions

adjectives adverbs

Table 2. Word distinction according to accentuation.

However, more complex accentuation schemes based on syntactic and semantic analysis

have been used providing better results.

2.3.1.5 Intonational Phrasing

Most commercially developed TTS systems have emphasized coverage rather than linguistic

sophistication by concatenating their efforts on text analysis strategies aimed to segment the

surface structure of incoming sentences as oposed to their syntactically, semantically and

pragmatically related deep structure. The resulting syntactic-prosodic descriptions organize

sentences in terms of prosodic groups strongly related to phrases (also termed as minor or

intermediate phrases), but with a very limited amount of embedding, typically a single level of

these minor phrases as parts of higher-order prosodic phrases (also termed as major or

intonational phrases, which can be seen as the prosodic-syntactic equivalent for clauses) and a

second one for these major phrases as parts of sentences, to the extent that the related major

phrase boundaries can be safely obtained from relatively simple text analysis methods. In

other words, they focus on obtaining an acceptable segmentation and translate it into the

continuation or finality marks of Figure 3.c but ignore the relationships or contrastive

meaning of Figure 3.a and b.

Chapter 2 –Text-To-Speech Synthesis

28

Liberman and Church [13], for instance, have reported on such a very crude algorithm,

termed as chinks n’ chunks algorithm, in which prosodic phrases (which they call f-group) are

accounted by a simple regular rule:

a (minor) prosodic phrase = a sequence of chinks followed by a sequence of chunks.

in which chinks and chunks belong to sets of words which basically correspond to function

and content words, with the difference that objective pronouns (like “him” or “them”) are

seen as chunks and tensed verb forms are considered as chinks. They show that this approach

produces efficient grouping in most cases, slightly better than the simple decomposition into

sequences of function and content words as shown in the example below:

function words/content words
I asked

them when was
the match

on television
and they said

at nine

chinks n chunks
I asked them

when was the match on television
and they said

at nine

Table 3. Example of implementation of chink n’ chunk algorithm.

Other, more sophisticated approaches include syntax-based expert systems and automatic

corpus based methods as with the classification and regression tree (CART) techniques [9].

2.3.1.6 Segmental Durations

Once the phonemes to be produced by the synthesizer have been computed, it is necessary

to decide how long to make each one. What duration to assign to a phonemic segment

depends on many factors, including:

Chapter 2 –Text-To-Speech Synthesis

29

• The identity of the segment in the question.

• The stress of the syllable of which the segment is a member.

• Whether the specific syllable bears an accent.

• The quality of the surrounding segments.

• The position of the segment in the phrase.

Some methods involve the use of duration rules, which are rules of the form “if the segment is X

and it is in the phrase-final position, then legthen X by n msec”. These rules can be formalized in

terms of duration models, which are mathematical expressions prescribing how the various

condition factors are to be used in computing the durations of segments. We would use

exploratory data analysis, to arrive to models whose predictions show a good fit to durations

from a corpus of labeled speech.

2.3.1.7 Sentence Intonation

Infromation such as:

• The syllables in the utterance to be stressed, as computed by the accentuation and

the pronunciation module.

• The type of accents to be used, as well as the types of initial and final boundary tones

and phrase accents.

• The duration of the segments in the utterance.

Sentence intonation is implemented by the F0 contour of the phrase. However its generation

is not straightforward either. It requires formalizing a lot of phonetic or phonological

knowledge, either obtained from experts or automatically acquired from data with statistical

models.

Chapter 2 –Text-To-Speech Synthesis

30

2.3.2 The DSP Component

Once the text has been transformed into phonemes, and the associated durations and a

fundamental frequency contour have been calculated, the system is ready to compute the

speech parameters for synthesis.

The operations involved into the DSP module are the computer analogue of dynamically

controlling the articulatory muscles and vibratoral frequency of the vocal folds so that the

input signal matches the input requirements. As we can understand, the DSP module in

order to do this properly, should take into account the articulatory constraints since it has

been known for a long time that phonetic trancriptions are more important than stable states

for the understanding of speech. There are two possible ways to do this:

• by storing examples of phonetic transitions and co-articulations into a speech

segment database, and using them as they are, as ultimate acoustic units in place of

phonemes.

• in the form of a series of rules which formally describe the influence of phonemes

on one another.

As a result, two main types of TTS synthesizers have been developed from these two

strategies correspondigly: synthesis-by-concatenation and synthesis-by-rule.

2.3.2.1 Rule-based Synthesis

Rule-based synthesizers are mostly in favor with phoneticians and phonologists as they

constitute a cognitive and generative approach of the phonation mechanism. Rule-based

synthesizers are space efficient, since they eliminate the need to store speech segments and

Chapter 2 –Text-To-Speech Synthesis

31

they also make it easier to implement new speaker characteristics for different voices, as well

as different phone inventories for new dialects and languages.

These systems are also restrictive regarding the choice of the parametric representation of

the speech, since such schemes rely both on our understanding of the relation between the

parameters and the acoustic signals they represent and on our ability to compute the

dynamics of the parameters as they move from one sound to another. As a result, only

articulation parameters and formants have been used in rule-based systems.

Most such systems describe the speech as the dynamic evolution of up to 60 parameters

mostly related to formant and anti-formant frequencies and bandwidths together with glottal

waveforms. In order to understand the term formant frequencies let us imagine how our vocal

tract works when we speak. The vocal tract (the throat from the vocal chords to the lips) has

certain major reasonant frequencies. These frequencies change as the configuration of the

vocal tract changes, like when we produce different vowel sounds. These reasonant peaks in

the vocal tract transfer function (or frequency response) are known as formants.

Clearly, the large number of parameters complicate the analysis stage and tends to produce

analysis errors. Furthermore, formant frequencies and bandwidths are indeherently difficult

to estimate from speech data. The need for intensive trials and errors, in order to cope with

the analysis errors make them time-consuming systems to develop. Nevertheless, the

synthesis quality achieved up to now reveals typical buzzyness problems, which originate

from the rules themselves: introducing a a high degree of naturalness is theoretically

possible, but the rules to do so are still to be discovered. Rule-based synthesizers remain

however, a potentially powerful approach to speech synthesis.

They allow for instance, to study speaker-dependent voice features so that switching from

one synthetic voice to another can be achieved with the help of specialised rules in the rule

database. Following the same idea, synthesis-by-rule seems to be a natural way of handling

Chapter 2 –Text-To-Speech Synthesis

32

the articulatory aspects of changes in speaking styles (as opposed to their prosodic

counterpart which can be accounted for by the concatenation-based synthesizers)

A schematic depiction of the DSP module of a rule-based synthesizer is shown in the next

figure:

Figure 4. Block diagam of the DSP Module of a Rule-based Synthesizer.

Chapter 2 –Text-To-Speech Synthesis

33

2.3.2.2 Synthesis by Concatenation

As opposed to rule-based ones, concatenative synthesizers possess a very limited knowledge of

the data they handle: most of it, is embedded to the segments to be chained up. If we study

the block diagram of a concatenative synthesizer, we can realize that all the operations which

could be used indifferently in the context of a music synthesizer, have been grouped into a

sound processing block, contrary to the upper speech processing block whose design requires at least

some understanding of phonetics. In order to clarify that, the following figure shows the

block diagram of a concatenative synthesizer:

Figure 5. Block Diagram of the DSP Module of a Concatenative Synthesizer.

Chapter 2 –Text-To-Speech Synthesis

34

Database preparation

The stages that have to be fulfilled before the synthesizer produces its first utterance is the

following:

1. Segments are chosen so as to minimize future concatenation problems. A

combination of diphones, half-syllables or triphones are frequently chosen as speech

units since they involve most of the transitions and coarticulations while requiring an

affordable amount of memory.

2. When a complete list of segments has emerged, a corresponding list of words is

carefully completed, in such a way that each segment appears at least once.

Unfavorable positions like unstressed syllables or in strongly reduced contexts, are

excluded.

3. A corpus is digitally recorded and stored and the elected segments are spotted, either

manually with the help of signal visualization tools, or automatically thanks to

segmentation algorithms the decisions of which are checked and corrected

interactively.

4. A segment database centralizes the results in the form of the segment names,

waveforms, durations and internal sub-splittings. In the case of diphones for

example, the position of the border between phones should be stored, so as to be

able to modify the duration of the one-half phone without affecting the length of the

other one.

5. Segments are given a parametric form, in the form of a temporal sequence of vectors

of parameters collected at the output of a speech analyzer and stored in a parametric

segment database. The advantages of using a speech model originates in the fact that

• Well chosen speech models allow data size reduction, an advantage which is

hardly negligible in the context of concatenation based synthesis given the

 amount of data to be stored. Consequently, a parametric speech coder often

 follows the analyzer.

Chapter 2 –Text-To-Speech Synthesis

35

• A number of models explicitly separate the contributions of the source and

the vocal tract, an operation that remains helpful for pre-synthesis operations

such as prosody matching and segment concatenation.

Indeed, the actual task of the synthesizer is to produce, in real-time, an adequate

sequence of concatenated segments, extracted from its parametric segment database.

The prosody of these segments has been adjusted from their stored value, i.e the

intonation and the duration they appeared within the original speech corpus, to the

modification of the pitch, duration and spectral envelope. As a result, the respective

parts played by the prosody matching and segments concatenation modules are

considerably alleviated when input segments are presented in a form that allows easy

Since segments to be chained up have generally been extracted from different words

they often present amplitude and timbre mismatches. Even in the case of stationary

vocalic sounds, for instance, a rough sequencing of parameters typically leads to

audible discontinuities. These can be coped with during the constitution of the

synthesis segment database, thanks to an equalization in which related endings of

segments are imposed similar amplitude spectra, the difference being distributed on

their neighborhood. However, this operation is restricted to amplitude parameters:

the equalization stage smoothly modifies the energy levels at the beginning and at the

end of the segments, in such a way as to eliminate amplitudee mismatches. In

contrast, timbre conflicts are coped during the run-time, by smoothing individual

couples of segments when necessary rather than equalizing them once and for all, so

that some of the phonetic variability naturally introduced by co-articulation is still

maintained. In practice, amplitude equalization can be done either in the beginning

or in the end of the speech analysis.

6. Once the parametric segment database is completed, the synthesis itself can begin.

Chapter 2 –Text-To-Speech Synthesis

36

2.4 Speech Synthesis

A sequence of segments is first deduced from the phonemic input of the synthesizer in a

block termed as segment list generation which interfaces the NLP and DSP modules. Once

prosodic events have been correctly assigned to individual segments, the prosody matching

module queries the synthesis segment database for the actual parameters, adequately encoded,

of the elementary sounds to be used and adapts them one by one to the required prosody.

The segment concatenation block is then in charge of dynamically matching segments to one

another, by smoothing discontinuities. Here again, an adequate modeling of speech is highly

profitable, provided simple interpolation schemes performed on its parameters

approximately correspond to smooth acoustical transitions between sounds. The resulting

steam of parameters is finally presented at the input of a synthesis block, the exact

counterpart of the analysis one. Its task is to produce speech.

2.5 Segmental quality

The factors that determine the efficiency of high quality speech synthesizers are the

following:

1. The types of the segments chosen. Segments should obviously exhibit some basic

properties:

• They should account for as many co-articulatory effects as possible.

• Given the restricted smoothing capabilities of the concatenation block, they

should be easily connectable.

• Their number and length should be kept as small as possible.

• On the other hand, longer units decrease the density of concatenation points,

therefore providing better speech quality. Similarly, an obvious way of

Chapter 2 –Text-To-Speech Synthesis

37

accounting for articulatory phenomena is to provide many variants for each

phoneme. This is clearly in contradiction with the limited memory constraint.

Some trade-off is necessary. Diphones are often chosen. They are not too

numerous and they incorporate most of phonetic transitions. For example,

there are about 1050 diphones in Greek including lots of phoneme sequences

that are only encountered at word boundaries. No wonder then why they

have been extensively used. They imply however, a high density of

concatenation points, which reinforces the importance of an efficient

concatenation algorithm. Besides, they can only partially account for the

many co-articulatory effects of a spoken language, since they often affect a

whole phone rather than just its right or left halves independently. Such

effects are specially patent when somewhat transient phones, such as liquids

or semi-vowels have to be connected to each other. Hence, the use of larger

units as well, such as triphones.

2. The model of speech signal to which the analysis and synthesis algorithms refer.

The models used in the context of concatenative synthesis can be roughly classified into two

groups, depending on their relationship with the actual phonation process. Production models,

provide mathematical substitutes for the part respectively played by vocal folds, nasal and

vocal tracts and by the lips radiation. Their most represantive members are the Linear

Prediction Coding (LPC) synthesizers and the formant synthesizers. On the contrary,

phenomenological models intetionally discard any reference to the human production mechanism.

Among these pure digital signal processing tools, spectral and time-domain approaches are

increasingly encountered in TTS systems. Three such leading models exist: the hybrid

Harmonic/Stochastic of [Abrantes] and the Time-Domain Pitch-Synchronous-OverLap-

Add [TD-PSOLA] of [Moulines and Capentier] and the MBROLA algorithm [Dutoit]. The

latter is a time-domain algorithm: it virtually uses no speech explicit speech model. It exhibits

very interesting practical features: a very high speech quality combined with a very low

computational cost (7 operations per sample on the average). The hybrid

Chapter 2 –Text-To-Speech Synthesis

38

Harmonic/Stochastic model is more powerful than the TD-PSOLA one, but it is also about

ten times more computationally intensive. PSOLA synthesizers are widely used in the speech

synthesis community. Nevertheless, the MBROLA algorithm is the best because provides a

time-domain algorithm which exhibits the very efficient smoothing capabilities of the H/S

model as well as its very high compression ratios while keeping the computational

complexity of PSOLA.

Chapter 3 – Residual-Excited LPC Diphone Synthesis

39

Chapter 3

RESIDUAL-EXCITED LINEAR PREDICTION CODING (LPC)
 DIPHONE SYNTHESIS

3.1 Introduction

The basic idea behind diphone synthesis is to list all possible phone-to-phone transitions in a

language. This makes the incorrect but practical and simplifying assumption that co-

articulatory never go over more than two phones. The exact definition of phone is generally

nontrivial, and what a standard phoneset should be is not uncontroversial (various

allophonic variations must also be included). Unlike generalised unit-selection, where

multiple occurences of phones may exist with various distinguishing features, in a diphone

database only one occurrence of each diphone is recorded. This makes selection much

easier.

Chapter 3 – Residual-Excited LPC Diphone Synthesis

40

In general, the number of diphones in a language is the square of the number of phones.

However, in natural human languages, there are phonotactic constraints, some phone-phone

pairs, even whole classes of phone-phone combinations, may not occur at all. These gaps are

common in the world’s languages. The exact definition of never exists is also problematic.

Humans can often generate those so-called non-existant diphones if they try and one must

always think about phone pairs that cross over word boundaries as well, but even then

certain combinations cannot exist; for example the diphone λ-ρ in the Greek language is

impossible.

Diphone synthesis, and generally any concatenative synthesis method, makes an absolutely

fixed choice about which units exist, and in circumstances when something else is required a

mapping is necessary. When humans are given a context where an unusual phone is desired,

for example in a foreign language, they will try to pronounce it although does not belong to

their phonetic vocabulary. The articulatory system is flexible enough to produce (or try to

produce) unfamiliar phones, as we all share the same underlynig physical phonetic structure.

Concatenative synthesizers however, have a fixed inventory, and cannot reasonably be made

to produce anything above their pre-defined vocabulary. That is the advantage of formant

and articulatory synthesizers. This a basic trade-off, concatenative synthesizers typically

produce much more natural synthesis than the formant synthesizers but at the cost of being

only able to produce those phones defined within their inventory.

Since we wish to build a new voice, we must include any premisible or not phone

combination in the Greek language by doing some mapping typically at the lexical level. As a

result, we ensure that all the required diphones lie within the recorded inventory. In addition

to the base phones, various allophonic variations may be considered. For example, the

pronunciation of /κ/ is different in the word καιρός and in the word καταιγίδα. Ideally, all

possible variations must be included in the diphone list, but the more variations you include,

the larger the diphone set will be. This will affect recording time, labeling time and ultimately

the database size.

Chapter 3 – Residual-Excited LPC Diphone Synthesis

41

Although generalised unit-selection synthesis can produce much better synthesis than

diphone synthesis techniques, using bigger units makes selecting the appropriate ones much

more difficult. With a harder selection task, it is more likely that mistakes will be made,

which in unit-selection can give some selections which are much, much worse than

diphones even though other examples are better.

3.2 Definition of the Greek Phoneset.

The first and most basic task for creating our Greek voice is the definition of its phoneset. A

phoneset is a set of phones which may be further defined in terms of features, such as

vowels/consonants, place of articulation for consonants, type of vowel etc. The set of

features and their values must be defined with the phoneset. The notion of phoneset is

important to a number of different subsystems in Festival [2]. Festival also supports multiple

phonesets simultaneously and allows mapping between sets when necessary. The lexicons,

letter-to-sound rules, waveform synthesizer etc, all require the definition of a phoneset

before they will operate. A phoneset definition has the following form:

(defPhoneSet

 NAME

 FEATUREDEFS

 PHONEDEFS)

The NAME is any unique symbol for example our phoneset is named tuc_gr, the

FEAUREDEFS is a list of phone features with their values and the PHONEDEFS is the list

of phones with their feature values. Our phoneset is a variation of the SAMPA Greek

Phoneset. The following table shows our phoneset

Chapter 3 – Residual-Excited LPC Diphone Synthesis

42

(defPhoneSet
 tuc_gr

 (
 (vc + -)
 (vlng s l b d 0)
 (vheight 1 2 3 0)
 (vfront 1 2 3 0)
 (vrnd + - 0)
 (ctype s f a n l 0)
 (cplace l a p b d v 0)
 (cvox + - 0)
)

 (
 (pau - 0 0 0 - 0 0 -) ;; silence ...
 (A + b 1 1 - 0 0 0)
 (E + s 2 2 + 0 0 0)
 (i + b 3 1 + 0 0 0)
 (o + s 2 2 + 0 0 0)
 (u + d 3 3 + 0 0 0)
 (j + l 3 1 + 0 0 0)
 (J + l 3 1 + 0 0 0)
 (ly + l 3 1 + 0 0 0)
 (N + l 3 1 + 0 0 0)
 (D - 0 0 0 0 f d +)
 (G - 0 0 0 0 f v +)
 (T - 0 0 0 0 f d -)
 (C - 0 0 0 0 f p -)
 (K - 0 0 0 0 f p -)
 (R - 0 0 0 0 l 0 0)
 (b - 0 0 0 0 s l +)
 (d - 0 0 0 0 s a +)
 (f - 0 0 0 0 f b -)
 (g - 0 0 0 0 s v +)
 (q - 0 0 0 0 s 0 0)
 (k - 0 0 0 0 s v -)
 (l - 0 0 0 0 l a +)
 (m - 0 0 0 0 n l +)
 (n - 0 0 0 0 n a +)
 (p - 0 0 0 0 s l -)
 (r - 0 0 0 0 l 0 +)
 (s - 0 0 0 0 a d -)
 (t - 0 0 0 0 s a -)
 (v - 0 0 0 0 f b +)
 (x - 0 0 0 0 f v -)
 (z - 0 0 0 0 f a +)
 (S - 0 0 0 0 s 0 +)
 (Z - 0 0 0 0 s 0 +)
 (X - 0 0 0 0 s 0 +)
 (Y - 0 0 0 0 s 0 +)

Table 4. Greek Phoneset in Festival.

As we can see, the features of phones supported with their variable names and values are

Chapter 3 – Residual-Excited LPC Diphone Synthesis

43

Feature Name Variable Name Variable Value
Vowel/Consonant vc +/-

Vowel Length vlng short/long/bi/dipthong
Vowel Height vheight high/mid/low

Vowel Frontness vfront front/mid/back
Lip Rounding vrnd +/-/0

Consonant Type ctype stop/fricative/affricative/nasal/liquid
Consonant Articulation cplace labial/alveolar/palatal/labio-

dental/dental/velar
Consonant Voicing cvox +/-/0

Table 5. Phone Feature Names and Values.

The phoneset also includes a definition for the silence phones. In addition to the definition

of the set the silence phone (pau) must be identified to the system. There may be many

silence phones (e.g breathe, start silence etc) in any phoneset definition. However the first

phone in this set is treated special and is canonical silence. Among other things, it is the

phone that is inserted by the pause prediction module. In the next table we will show the

phones we used in our voice, the SAMPA equivalent, an example per phone and their

phonetic transcription.

TUC_GR
Phones

SAMPA
Phones

Example Hellenic
Transcription

English
Transcription

A a AnEmi άνεμοι wind

E e EGEo Αιγαίο Egeo

i i ElpiDa ελπίδα hope

o o oros όρος clause

u u urAnos ουρανός sky

J - trJAdA τριάντα thirty

ly L CillyaDes χιλιάδες thousand

D D DoDEkAnisA δωδεκάνησα dodekanese

G G GenikA γενικά generally

th T thErmokRAsiA θερμοκρασία temperature

C C CJonJA χιόνια snow

b b bοfor μποφόρ bofor

d d dinomE ντύνομαι dress

Chapter 3 – Residual-Excited LPC Diphone Synthesis

44

TUC_GR
Phones

SAMPA Phones Example Hellenic
Transcription

English
Transcription

g g gREmizo γκρεμίζω destruct

f f fos φως light

q gj AgEliA αγγελία announcement

k k kirios κυρίως mostly

l l liGEs λίγες few

m m mikRi μικρή small

n n nοtJA νότια south

p p ptosi πτώση fall

r r ropi ροπή inclination

s s stadiAkA σταδιακά gradually

t t stREfo στρέφω turn

v v vorJA βόρεια north

x x xArtis χάρτης map

z z zodAnos ζωντανός alive

ts ts tsalakono τσαλακώνω crumple

tz dz tzAmAriA τζαμαρία glass

ks ks ksAnA ξανά again

Y ps YAxno ψάχνω look for

pau _ (παύση)

Τable 6. Greek Phoneset with SAMPA equivalent,
examples and Hellenic and English transcription.

In the Greek language, as in any language there are some certain phonotactic constraints

which do not allow any combination of phones and also create the Greek allophones. These

are the following:

1. /C/ must be followed by /E/ or /i/.

2. /x/ must be followed by /A/, /o/, or /u/ or consonant.

3. /q/ must not follow silence.

Chapter 3 – Residual-Excited LPC Diphone Synthesis

45

3.3 Definition of the diphone-list

The second step for the creation of our voice is to define the Greek diphone-list. The basic

programming language in Festival is C++ but beyond C++ Festival also supports a Scheme

Interpreter (SIOD) which offers a basic small LISP interpreter suitable for embedding in

applications such as Festival, as scripting language. So, every part of code we will show will

be in Scheme. The basic idea in creating the diphone-list is to define classes of diphones, e.g

vowel-vowel, consonant-vowel, vowel-consonant and consonant, then define a carrier

sentence for these and list the cases. For example, to generate all vowel-vowel diphones we

define the carrier

(set! vv-carrier ‘((pau pau)))

and then the function that generates all the vowel-vowel transitions

(define (list-vvs)
 (apply
 append
 (mapcar
 (lambda (v1)
 (mapcar
 (lambda (v2)
 (list
 (string-append v1 "-" v2)
 (append (car vv-carrier) (list v1 v2) (car (cdr vv-
carrier)))))
 vowels))
 vowels)))

Table 7. Function generating the vowel-vowel diphones.

Chapter 3 – Residual-Excited LPC Diphone Synthesis

46

For those who are not used to read Lisp the above function lists all vowel-vowel

combinations. The algorithm is really simple:

for v1 in vowels

 for v2 in vowels

 print pau $v1 $v2 pau

Although it is very easy to just list all contexts and pairs, there are some constraints listed in

the previous paragraph which should take into consideration. Those seven limitations

diminish the number of diphones. Theoretically the number of diphones is

2

23 5
1 2 25 .

T h eo re ticN u m berO fD ip h o n es N u m b erO fP h o n es
T h eo re ticN u m berO fD ip h o n es
T h eo re ticN u m berO fD ip h o n es

= ⇒

= ⇒
=

Nevertheless, the real number of Greek diphones due to those limitations is

9 7 2 .A c t u a l N u m b e r O f D i p h o n e s =

The generated diphone-list has a particular format. Each line contains a file_id, a carrier

sentence and a diphone name (or list of names if more than one diphone is extracted). A

part of the Greek diphone-list is shown below:

 (gr_0001 "pau A A pau" ("A-A"))

 (gr_0055 "pau s E pau" ("s-E"))

 (gr_0287 "pau l ly pau" ("l-ly"))

 (gr_0343 "pau s - T pau" ("s-T"))

 (gr_0763 "pau f - R pau" ("f-R"))

Chapter 3 – Residual-Excited LPC Diphone Synthesis

47

3.4 Corpus Design

After the creation of the Greek diphone-list the next task is to construct the corpus of our

synthesizer. The success of our speech synthesis shema, crucially depends on an effective

corpus design, such that instances of all necessary diphones can be found in matching

prosodic context.

The domain that the application is built to cover is limited, but still quite large when

compared with other closed-vocabulary tasks, such as the synthesis of telephone numbers.

Its difficulty lies in the fact, that it involves the synthesis of whole sentences, rather than

certain words within a sentence.

3.4.1 Selection of sentences

The creation of the corpus, the set of sentences to be recorded and later segmented into the

diphones they contain, is crucial to the performance of our application. After all, the

fragments extracted from this process are the basic units used to synthesize the output of

our TTS system. It is the efficiency and the quality of the Corpus Creation procedure that

largely defines the success of our application.

The sentences that were finally selected were chosen from a set of trancribed weather

forecast reports, covering a week of each month during the period October 1999-September

2000 and January 2007- October 2007. These reports were provided by the National

Meteorological Agency (EMY). For these data, these following information is given:

Total Number of sentences 4,310

 Total Number of word instances 64,005
 Total Number of Diphone instances 256,089

 Total Number of Diphones 972

Table 8. Statistical analysis of the Original data set.

Chapter 3 – Residual-Excited LPC Diphone Synthesis

48

3.4.2 Corpus Characteristics

The following characteristics were to be met by the corpus:

1. The corpus should contain an adequate number of sentences. Totally, we had to

make ten hours of recordings which was translated to 4310 sentences.

2. The corpus should contain all the words we want for our application. We need at

least one instance of every word that be found in our application.

3. The corpus should contain these words in as many contexts as possible. Multiple

recorded instances of commonly used words should be available to the application,

in order to incorporate into the corpus as many prosodic features as possible.

3.4.3. Word Selection

In the original data set many words appeared a lot of times. For example, the conjuction ‘και’

appeared 286 times. Of course, in the final corpus should appear only once. On the other

hand, the words ‘άνεμος’ and ‘άνεμοι’ may have the same context but different orthographic

representation and as a result, are considered different words. In order to cope with this

problem, we wrote a small program which took as input each sentence. Firstly, we created a

hash table. Then, we took each word in the sentence and compared it with the entries in the

hash table. If there wasn’t in the hash table we put the word in the hash table and also stored

it in a separate file which we would use as the lexicon of our application. On the other hand,

if there was in the hash table, that meant that already existed in the lexicon so we continued

to the next word in the sentence.

3.4.4 The final corpus

As we have already stated, the original data set contained almost 4,300 sentences with 64,000

words and approximately 256,000 diphones. The selection procedure we described produced

a corpus of words that we used in our application. The statistical analysis is shown in the

next table:

Chapter 3 – Residual-Excited LPC Diphone Synthesis

49

Total Words
Distinct Words
Diphone Instances

Original Data Set
 64,005
 1,165
 256,089

Final Corpus
 2,439
 1,165
 972

Table 9. Statistical analysis of the final Corpus.

3.5 The Recording Phase

Since our corpus was ready, we started the recording of our sentences. The recordings were

made by myself. Of course, I am not a voice talent but since we needed the recordings only

for my thesis, I did them. I read the sentences well articulated but as naturally as possible.

The sentences were recorded in home enviroment during night hours with low levels of

external noise and then were digitally stored using PCM coding at 16,000 Hz with

16bit/sample. The corpus had a size of 134,637,589 bytes equal to 35,571 sec of speech.

Considering that, the data file would be used also by other modules in Festival had to be in

specific format. Each line contains a file id, the sentence that was recorded and the list of

diphones in the sentence. The file id is used in the filename for the waveform, label file and

any others parameters file associated with the recording. For example:

(utt_001 “ i AnEmi TA pnEun vorJi AsTEnis” (“i-A” “A-n” “n-E” “E-m” “m-i” “i-T” “T-

A” “A-p” “p-n” “E-u” “u-n” “n-v” “v-o” “o-r” “r-J” “J-i” “A-s” “s-T” “T-E” “E-n” “n-i”

“i-s”)

As you will notice, normally there are two instances of the diphones “i-A” and “n-E” in the

sentence. Nevertheless, in the same sentence there must be only one instance of the same

diphone so we include only one of them.

Chapter 3 – Residual-Excited LPC Diphone Synthesis

50

3.6 Labeling

The next step was to label the recorded speech. In the early years of concatenative speech

synthesis, every recorded prompt had to be hand labeled. Although a significant task, very

skilled and mind bogglingly tedious it was a feasible task to attempt when databases were

relative and the time to build voice was measured in years. With the increase in size of

database and the demand for much faster turnaround we have moved away from hand

labeling to automatic labeling.

In labeling recorded prompts we rely much on the work that has been done in the field of

Speech Recognition. For synthesis however, we have different goals. In ASR (Automatic
Speech Recognition), we are trying to find the most likely set of phones that are in given

acoustic observation. In synthesis labeling, we know the sequence of phones spoken and

wish to find out where these phones are in the signal. We care very deeply about the

boundaries of segments, while ASR can achieve adequate performance by only consider

itself with the centers. There are also some other distinctions from the ASR task, since in

synthesis labeling we only have one speaker, which simplifies the recognition a lot, and we

are very concerned about the prosody and the spectral variation of speech. There are two

basic techniques which are used for labeling recorded prompts easch one with its own

advantages and limitations.

The first technique uses dynamic time warping (DTW) alignment techniques to find the phone

boundaries in a recorded prompt by align it against a synthesized utterance where the phone

boundaries are known. This is computationally easier than the other technique and is

recommended for small databases which do not have full phonetic coverage.

The second technique uses Baum-Welch training to build complete ASR acoustic models from

the database. This takes sometime, but if the database is phonetically balanced, as should be

the case in databases designed for speech synthesis voices, can work very well. Also this

technique can work really well in languages that do not yet have a synthesizer, hence making

the dynamic warping technique hard without cross-language phone mapping techniques.

Chapter 3 – Residual-Excited LPC Diphone Synthesis

51

Firstly, we tried the DTW technique. However, as there is no Greek diphone LPC voice in

Festival we had to map the Greek phones with the English phones of the English voice

installed in Festival. The result was really bad. So, we used the second technique. For this

purpose we used the Hidden Markov Toolkit (HTK) . HTK is a toolkit for building Hidden

Markov Models (HMMS). HMMS can be used to model any time series and the core of HTK

is similarly general-purpose.

Speech recognition systems generally assume that the speech signal is a realisation of some

message encoded as a sequence of one or more symbols. To affect the reverse operation of

recognising the underlying symbol sequence given a spoken utterance, the continuous

speech waveform is first converted to a squence of equally spaced discrete parameter

vectors. This sequence of parameter vectors is assumed to form an exact representation of

the speech waveform on the basis that for the duration covered by a single vector, the

speech waveform can be considered as being stationary. Although this is not strictly true, it

is a reasonable approximation. Typical parametric representations are smoothed spectra or

Linear Pediction Coefficients plus various other representations derived from them.

The role of the recogniser is to extract from the speech vectors the underlying symbol

sequences. Two problems make this very difficult. Firstly, the mapping from symbols to

speech is not one-to-one since different underlying symbols can give rise to similar speech

sounds. Furthermore, there are large variations in the realised speech waveform due to

speaker variability, mood, enviroment etc. Secondly the boundaries between symbols cannot

be identified explicitly from the speech waveform.

In HMM-based speech recognition, it is assumed that the sequence of observed speech

vectors corresponding to each word is generated by a Markov model as shown in the next

figure. A Markov Model is a finite state machine which changes state once every time unit

and each time t that a state j is entered, a speech vector tO is generated from the probability

density ()j tb O . Furthermore, the transition from state i to state j is also probabilistic and is

governed by the discrete probability ija . Figure 6 shows an example of this process where

the six state model moves through the stage sequence X=1,2,3,4,5,6 in order to generate the

Chapter 3 – Residual-Excited LPC Diphone Synthesis

52

sequence 1O to 6O . The joint probability that O is generated by the model M moving

through the state sequences X is calculated simply as the product of the transition

probabilities and the output probabilities.

So for the state sequence X in Figure 6 we have

12 2 1 22 2 2 23 3 3(, |) () () ()...P O X M a b O a b O a b O=

However, in practice only the oservation sequence O is known and the underlying state

sequence X is hidden. This is why it is called Hidden Markov Model.

Figure 6. The Markov Generation Model.

Given that X is unknown, the required likelihood is computed by summing over all possible

state sequences X = x(1),x(2), x(3),…x(T), that is

(0) (1) () () (1)
1

(|) ()
T

x x x t t x t x t
X t

P O M a b O a +
=

= ∑ ∏

where x(0) is constrained to be the model entry state and x(T+1) is constrained to be the

model exit state.

Chapter 3 – Residual-Excited LPC Diphone Synthesis

53

In order to do our labeling, we used a single speech recognition tool of HTK called HVite.

HVite uses the token passing algorithm to perform Viterbi-based speech recognition. HVite

takes as input a network describing the allowable word sequences, a dictionary defining how

each word is pronounced and a set of HMM models. We created a dictionary with all the

words that used in our recordings with their pronunciation and used an existing set of full

acoustic HMM models for the Greek language built in the Techical University of Crete

Telecom Laboratory. HVite operates by converting the word network to a phone network

and then attaching the appropriate HMM definition to each phone instance. Recognition can

then be performed on either a list of stored speech files or on direct audio input. The two

commands that we used to do the labeling are:

1. HVite -D -H models -S wav.list -y lab -C config -i result.mlf vocab-60k1-w2p1pass

tri.list_clustered

2. HVite -l '*' -T 0040 -C config -a -m -H models -i align.mlf -I result.mlf vocab-60k1-

w2p1pass tri.list_clustered -S wav.list

where

wav.list: The list with the full paths in the hard drive of our recordings.

models: Set of Greek full acoustic HMM models.

config: configuration file that set particular values in some command parameters.

vocab-60k1-w2p1pass: dictionary with the pronunciation of all the recorded words.

tri.list_clustered: the list of all triphones in the Greek language based on our phoneset.

result.mlf: the output file that contains the aligned words in every recording.

align.mlf: the output file that contains the aligned phones in every recording.

Chapter 3 – Residual-Excited LPC Diphone Synthesis

54

3.7 Text Analysis

In this section, we discuss some of the basic problems in analyzing text when trying to

convert it to speech. A crucial stage in text processing is the initial tokenization of text. A

token in Festival is an atom separated with whitespace from a text file (or string). After we

defined punctuation for

the Greek language, characters matching that punctuation are removed from the beginning

and end of a token and held as features of the token. The default list of characters to be

treated as white space is defined as

(defvar token.whitespace " \t\n\r")

while the default set of punctuation characters is

(defvar token.punctuation "\"'`.,:;!?(){}[]")

(defvar token.prepunctuation "\"'`({[")

Tokens are further analysed into lists of words. A word is an atom that can be given a

pronunciation by the lexicon (or letter to sound rules). A token may give rise to a number of

words or none at all.

For example the basic tokens in the sentence

“Οι άνεμοι θα πνέουν ασθενείς”

would give a word relation of

οι άνεμοι θα πνέουν ασθενείς

Due to the fact that, the relationships between tokens and word in some cases are complex,

a separate function should be specified for translating tokens to words. This is designed to

deal with things like numbers, dates, addresses and other non-obvious pronunciations of

tokens such as zero or others.

Chapter 3 – Residual-Excited LPC Diphone Synthesis

55

This function is set in our voice selection function as the function for token analysis

 (set! token_to_words_tuc_gr_chris_token_to_words)

This function is added to to deal with all tokens that are not in our lexicon, cannot be treated

by letter-to-sound rules, or are ambiguous in some way and require context to resolve.

For example suppose we wish to simply treat all tokens consisting of strings of digits to be

pronounced as a string of digits (rather than numbers). We would add something like in the

following table

(set! tuc_gr_chris_digit_names
 '((0 "μηδέν")
 (1 "ένα")
 (2 "δύο")
 (3 "τρία")
 (4 "τέσσερα")
 (5 "πέντε")
 (6 "έξι")
 (7 "εφτά")
 (8 "οχτώ")
 (9 "εννιά")))

(define (tuc_gr_chris_token_to_words token name)

 (cond
 ((string-matches name "[0-9]+") ;; any string of digits
 (mapcar
 (lambda (d)
 (car (cdr (assoc_string d MTLANG_digit_names))))
 (symbolexplode name)))
 (t
 (list name))))

Table 10. Token-to-Word Mapping function.

Chapter 3 – Residual-Excited LPC Diphone Synthesis

56

3.8 Segmentation

Once our recordings were labeled, we continued with the segmentation of our recordings.

The result of the segmentation was a diphone index. The index identifies which diphone

comes from which files and from where. This was automatically built from the label files.

The Festival script make_diph_index.scm will take the diphone-list, finds the occurrence of

each diphone in the label files and builds an index. The index consists of a simple header,

followed by a single line for each diphone: the diphone name, the file_id, start time, mid-

point(phone boundary) and end time. The times are given in seconds. An example of the start

of our diphone index file is given below:

EST_File index
DataType ascii
NumEntries 7611
EST_Header_End
A-p utt_4311 0.0025 0.005 0.0134
p-o utt_4311 0.0133333 0.03 0.045
o-t utt_4311 0.045 0.06 0.11
t-o utt_4311 0.11 0.21 0.235
o-A utt_4311 0.235 0.26 0.31
o-G utt_4311 0.455 0.5 0.56
G-E utt_4311 0.56 0.62 0.685
E-v utt_4311 0.685 0.75 0.82
v-m utt_4311 0.82 0.89 0.925
m-A utt_4311 0.925 0.96 0.99

Table 11. Diphone Index File sample.

3.9 Energy Normalization

Although we tried to read the sentences during the recording phase without alterations in the

volume of the voice, quality checks showed that the volume among certain sentences had

some fluctuation. In order to overcome this problem, all sentences were subjected to mean

energy normalization using the energy normalization tool of Cool Edit Pro v.2.

Chapter 3 – Residual-Excited LPC Diphone Synthesis

57

3.10 Pitchmark Extraction

The current method we use to create our Greek Weather Forecast synthesizer is residual

excited LPC synthesis. This technique is pitch synchronous, that is it requires about where

pitch periods occur in the acoustic signal. The basic program that we use to extract the

pitchmarks is the make_pm_wave.file that uses the function pitchmark which is part of the

Edinburgh Speech Tools distribution. The Edinburgh Speech Tools Library is library of

general speech software, written at the Centre for Speech Technology Research at the

University of Edinburgh. It is written in C++ and provides a range of common tasks found

in speech processing. One of them is the script for pitchmark extraction. The key line in the

script is the:

$ESTDIR/bin/pitchmark tmp$$.wav -o pm/$fname.pm -otype est -min 0.005 -max 0.012 -

fill -def 0.01 -wave_end -lx_lf 200 -lx_lo 51 -lx_hf 80 -lx_ho 51 -med_o 0

This program filters the incoming waveform with a low and high band filter and then uses

autocorrelation to find the pitchmark peaks with the min and max specified. Finally, it fills in

the unvoiced section with the default pitchmarks. For example, we take the word “τάματα” .

The above script properly finds pitchmarks in the tree vowel sections.

Figure 7. Pitchmarks in waveform signal.

Chapter 3 – Residual-Excited LPC Diphone Synthesis

58

If the high and low pass filter values –lx_hf and –lx_lf are not appropriate for the speaker’s

pitch range you will get either more or less pitchmark peaks. For example, if we change the

high frequency value 200Hz to 60Hz we will get only two pitchmarks in the third vowel.

Figure 8. Bad pitchmarks in a waveform signal.

If we zoom in our first example we get the following

Figure 9. Close-up of pitchmarks in a waveform signal.

The pitch marks should be aligned to the largest (above zero) peak in each pitch period.

Chapter 3 – Residual-Excited LPC Diphone Synthesis

59

Here we can see there are too many pitchmarks (effectively twice as many). The pitchmarks

at 0.617, 0.628, 0.639 and 0.650 are extraneous. This means our pitch range is too wide. If

we rerun changing the min size, and the low frequency filter

$ESTDIR/bin/pitchmark tmp$$.wav -o pm/$fname.pm -otype est -min 0.007 -max 0.012 -

fill -def 0.01 -wave_end -lx_lf 150 -lx_lo 51 -lx_hf 80 -lx_ho 51 -med_o 0

We get the following

Figure 10. Close-up of pitchmarks in waveform signal (2)

Which is better but it is now missing pitchmarks towards the end of the vowel, at 0.634, .644

and 0.656. Giving more range for the min (0.005) gives slight better results, but still we get

bad pitchmarks. The double pitch mark problem can be lessened by not only changing the

range but also the amount order of the high and low pass filters (effectively allowing more

smoothing). Thus when secondary pitchmarks appear increasing the -lx_lo parameter often

helps

$ESTDIR/bin/pitchmark tmp$$.wav -o pm/$fname.pm -otype est -min 0.005 -max 0.012 -

fill -def 0.01 -wave_end -lx_lf 150 -lx_lo 91 -lx_hf 80 -lx_ho 51 -med_o 0

We get the following:

Chapter 3 – Residual-Excited LPC Diphone Synthesis

60

Figure 11. Close-up of pitchmarks in waveform signal (3)

This is satisfactory for this file and generally for the whole speech database of the speaker.

As we can understand, correct extraction of the pitchmarks is crucial in order to have very

good quality for our synthetic voice.

3.11 Building LPC Parameters

In general, the voice signal can be given by the following two equations:

() () () ()S z E z V z R z= ∗ ∗ (Unvoiced Sounds)

() () () () ()S z E z G z V z R z= ∗ ∗ ∗ (Voiced Sounds)

where:

E(z) : Excitation

G(z) : Glottal Pulse Filter

V(z) : Transfer Function – Vocal Tract

R(z) : Radiation

The voice signal can be modeled with three different ways:

Chapter 3 – Residual-Excited LPC Diphone Synthesis

61

1. The Digital Vocal Tract model.

2. Lips Radiation.

3. Excitation.

The Residual-Excited Linear Prediction Coding (LPC) method for speech synthesis is based

on the Digital Vocal Tract model.

3.11.1 Digital Vocal Tract model

When a person speaks, his or her lungs work like a power supply of the speech production

system. The glottis supplies the input with the certain pitch frequency (0F). The vocal tract,

which consists of the pharynx and the mouth and nose cavities, works like a musical

instrument to produce sound. To form different vocal tarct shape, the mouth cavity plays

the major role. To produce nasal sounds, nasal cavity is often included in the vocal tract. The

nasal cavitis connected in parallel with the mouth cavity. The simplified vocal tract is shown

in Figure 12.

Figure 12. Simplified view of the vocal tract.

Chapter 3 – Residual-Excited LPC Diphone Synthesis

62

The glottal pulse generated by the glottis is used to produce vowels(voiced) sounds, while

the noise-like signal is used to produce consonants (unvoiced) sounds. These are shown in

Figure 13.

a) glottal pulse excitation for a voiced sound.

b) hiss(white noise) input for an unvoiced input.

Figure 13. Two kinds of input to generate sound (0T : pitch period).

Pitch frequency 0F (1/ 0T) varies in different people. A little child’s pitch frequency can go

as high as 400 Hz. Adult male’s pitch frequency is as low as 100 Hz. Adult female’s pitch

frequency is between 200 HZ and 300 Hz range. This glottal pulse excites a vocal tract cavity

and produces a vowel (voiced sound).

In Linear Prediction Analysis the voice signal can be given by the following equation:

Chapter 3 – Residual-Excited LPC Diphone Synthesis

63

() () () ()S z G z V z R z= ∗ ∗

where:

G(z) : Glottal Pulse Response = 1 2

1 , 1
(1)

c
cz− ≈

−
.

V(z) : Transfer Function – Vocal Tract =
1

1

1
(1)

p
kk

c z−
=

−∏
.

R(z) : Radiation = 1(1)z−− .

G : Gain.

The transfer function H(z) of the system can be given by the equation:

1

()()
() 1

p
k

k
k

S z GH z
U z a z−

=

= =
−∑

and the voice signal by the equation:

1
() () ()

p

k
k

s n a s n k Gu n
=

= − +∑
:

The LPC speech synthesis model we used, resembles the vocal tract with a linear, time-

variant digital filter which is excited by glottal pulse or hiss in order to generate voiced or

unvoiced sounds. This filter is shown in the next figure:

Chapter 3 – Residual-Excited LPC Diphone Synthesis

64

Figure 14 a). Simplified Model of speech production.

b) Detailed LPC Speech Production Model.

3.11.2 LPC Coefficients Calculation.

3.11.2.1 Recursive Levidson Durbin Algorithm.

There are several algorithms in order to calculate the Linear Prediction Model Coefficients.

The Levidson Durbin Algorithm is the most efficient solution. It is recursive to the order of

the Linear Prediction Model and has complexity linear to the order of the model. It is

described in the next table

Chapter 3 – Residual-Excited LPC Diphone Synthesis

65

Step 1 – Model Order i=0: We set the initial Total Prediction Error equal to

(0) (0)nE R=

Recursion: Increase the order of the model from i=1,2,…p and calculate the
following amounts

1.

1
(1)

1
(1)

() ()
i

i
n j n

j
i i

R i a R i j
k

E

−
−

=

−

 
− ∗ − 

 =
∑

2.
()

() (1) (1) ,1 1

i
i i

i i i
j j i i j

a k
a a k a j− −

−

=

= − ∗ ≤ ≤

3. () 2 (1)(1)i i
iE k E −= − ∗

Table 12. Levidson-Durbin Recursive Algorithm.

Observations

1. The () ()
1 ,...,i i

pa a coefficients are the Linear Prediction coefficients for the model with order

i.

2. During our calculations for the model with order p we have calculated the coefficients for

every model with order i=1,2,…,p-1.

3. The coefficients , 1, 2,...ik i p= are called reflection coefficients of the vocal tract model.

4. The Levidson-Durbin Algorithm ensures the stability of the model with the

ia coefficients.

Complextiy

1. Reversion of a p p× matrix: Complexity 3()O p .

2. Levidson-Durbin Algorithm, Calculation of the coefficients with order p: Complexity

()O p .

Chapter 3 – Residual-Excited LPC Diphone Synthesis

66

3.11.2.2 Gain Calculation

Gain G is selected so as to the voice signal s(m) has the same energy with that of the impulse

response h(n),

1
() () ()

p

k
k

h n a h n k G nδ
=

= − +∑ g

namely,

2 2() ()

n n
s n h n=∑ ∑

and as a result gain G is given by

2

1
(0) ()

p

k
k

G R a R k
=

= − ∑ g

3.11.2.3 Some Practical Issues

1. Pre-emphasis filter: We used this kind of filter in order to boost the high frequencies of

the voice signal, because the poles related to the low frequencies have more energy. The

filter we used has the following transfer function

1() 1 0.96h z z −= −

2. Smooth Window Usage: When we multiply the voice signal with square windows, we

insert some distortion in the frequency domain. So we use windows with smooth

characteristic such as Hamming Window.

Chapter 3 – Residual-Excited LPC Diphone Synthesis

67

The Hamming window we used is given by

2() 0.54 0.46 cos ,0 1
1

nw n n N
N

π = − ≤ ≤ − − 
g

3.11.2.4 Voiced/Unvoiced Detection

As we described earlier, a very important task in LPC synthesis is segmentation and labeling

each segment as voiced or unvoiced. To identify whether the speech segment is voiced or

unvoiced speech there are two methods widely used spectral flatness measure, energy and

zero-crossing rate. In our implementation, we used the first one but both of them are

analyzed below.

a) Spectral Flatness Measure

The Spectral Flatness makes use of the property that the spectrum of pure noise is

completely flat. In other words, the spectrum of the unvoiced sounds is expected to be flat

and the spectrum of the voiced sounds is not flat. The Spectral Flatness Measure (SFM) is
given by

m

m

GSFM
A

=

where mG is the geometric mean of the magnitude spectrum and is determined by

multiplying all the spectral lines and raising the final product to one over the total number of

spectral lines. mA is the arithmetic mean of the magnitude spectrum and is obtained by taking

the sum of the spectral lines divided by the number of the spectral lines.

Chapter 3 – Residual-Excited LPC Diphone Synthesis

68

1
1

0
1

0

()

1 ()

N N

j
k

N

j
k

X k
SFM

X k
N

−

=
−

=

 
 
 =
∏

∑

where ()jX k is the magnitude of the N-point DTFT of the j-th frame of the speech signal.

The spectral flatness measure ranges from 0.9 for white noise to 0.1 for a voiced signal. The

threshold was chosen to be 0.39. In general, the threshold is chosen to be 0.35 0.48.:

b) Energy and zero-crossing rate

Energy of the j-th frame of the speech signal is calculated by

1

2

0
()

N

j
n

E x n
−

=

= ∑

where ()jx n is the n-th sample of the j-th frame of speech. Usually the energy of the voiced

part of speech is bigger than the unvoiced part of speech.

Zero-crossing rate is obtained by counting the sign changes (either from positive to negative

or negative to positive) in successive speech samples. Generally the ZCR of the voiced

sound is lower than the ZCR of the unvoiced sound.

Chapter 3 – Residual-Excited LPC Diphone Synthesis

69

3.12 Building Prosodic Models

3.12.1 Phrasing

Prosodic phrasing in speech synthesis makes the whole speech more understandable. Due to

the size of peoples lungs there is a finite length of time people can talk before they can take a

breath, which defines an upper bound on prosodic phrases. However we rarely make our

phrases this maximum length and use phrasing to mark groups within the speech. For the

most case very simple prosodic phrasing is sufficient. For Greek, as in most languages

simple rules based on punctuation is a very good predictor of prosodic phrase boundaries. It

is rare that punctuation exists where there is no boundary, but there will be a substantial

number of prosodic boundaries which are not explicitly marked with punctuation. Thus a

prosodic phrasing algorithm solely based on punctuation will typically under predict but

rarely make a false insertion. In Festival, there are two methods for predicting prosodic

phrases. The first and the one we used, is by CART tree (see Chapter 4 Section 4.1for further

analysis). The following tree is very simple and simply adds a break after the last word of a

token that has following punctuation. The first condition is done by a lisp function as we

want to ensure that only the last word in a token gets the break.

(set! tuc_gr_chris_phrase_cart_tree
'
((lisp_token_end_punc in ("?" "." ":"))
 ((BB))
 ((lisp_token_end_punc in ("'" "\"" "," ";"))
 ((B))
 ((n.name is 0) ;; end of utterance
 ((BB))
 ((NB))))))

Table 13. Phrase breaking.

The second method is more complex but more accurate. We did not use it because we

created a Limited Domain system, with constrained dictionary and it was not necessary to

use this phrasing model. In addition to this, we could not find another Greek LPC Diphone

Chapter 3 – Residual-Excited LPC Diphone Synthesis

70

voice in order to use it to train the data. For this model, we need three basic functions: one

to determine if the current word is a function (verb, pronoun, intention etc) or content

(noun, adjective) word , one to determine number of words since previous punctuation and

one to determine words until next punctuation or end of utterance.

3.12.2 Duration Models

The method we used to create duration models is to use average durations for the phones.

In Greek, as in most languages, phones are longer at the phrase final and to a lesser extent

phrase initial positions. A simple multiplicative factor was defined for these positions. In

order to achieve this we use a simple CART tree which predicts longer durations in stressed

syllables and in clause initial and clause final syllables. This is shown in the next table:

(set! tuc_gr_chris_dur_tree
 '
 ((R:SylStructure.parent.R:Syllable.p.syl_break > 1) ;; clause
initial
 ((R:SylStructure.parent.stress is 1)
 ((1.5))
 ((1.2)))
 ((R:SylStructure.parent.syl_break > 1) ;; clause final
 ((R:SylStructure.parent.stress is 1)
 ((2.0))
 ((1.5)))
 ((R:SylStructure.parent.stress is 1)
 ((1.2))
 ((1.0))))))

Table 14. Duration Prediction Tree.

In addition to the tree we had to define an average duration for each phone in our phoneset.

The format of this information is (SegName 0.0 Aver_Dur). The values of Aver_Dur are in

seconds. This is shown in the next table

Chapter 3 – Residual-Excited LPC Diphone Synthesis

71

(set! tuc_gr_chris_phone_data
'(
 (pau 0.0 0.250)
 (A 0.0 0.090)
 (E 0.0 0.090)
 (i 0.0 0.080)
 (o 0.0 0.090)
 …

Table 15. Average Durations of Greek phones.

3.12.3 Intonation

Accent and boundary tones are what we will use to refer to the two main types of intonation.

For Greek, and for many other languages the prediction of position of the accents and

boundaries can be done as an independent process from F0 contour generation itself. As

with phrase break prediction there are some simple rules that will go a surprisingly long way

and as with most of the other statistical learning techniques simple rules cover most of the

work. The placement of accents on stressed syllables in all content words is a quite

reasonable approximation achieving about 80% accuracy on typical databases. The simplest

rule for Greek is to put a hat accent on lexically stressed syllables in all content words and on

all single syllable content words using an accent prediction CART tree. This is shown in the

next table:

(set! tuc_gr_chris_accent_cart_tree
 '
 ((R:SylStructure.parent.gpos is content)
 ((stress is 1)
 ((Accented))
 ((position_type is single)
 ((Accented))
 ((NONE))))
 ((NONE))))

Table 16. Accent prediction CART tree.

We also need to specify the pitch range of the speaker.

Chapter 3 – Residual-Excited LPC Diphone Synthesis

72

(set! tuc_gr_chris_int_simple_params
 '((f0_mean 120) (f0_std 30)))

Table 17. Pitch range of the speaker.

Chapter 4 – Cluster Unit-Selection Synthesis

73

Chapter 4

LIMITED DOMAIN
CLUSTER UNIT-SELECTION SYNTHESIS

4.1 Introduction

This chapter discusses the building of the Greek Weather Forecast Synthesizer using the

Unit-Selection technique in Festival. By “unit selection” we actually mean the selection of

some unit of speech. The units range from whole phrases down to diphones. Diphone

selection is a special case of this method. However, contrary to diphone synthesis, in unit

selection synthesis there is more than one instance of the same unit and some mechanisms

are used to select between them during run-time. With diphones, a fixed view of the possible

space of speech units has been made which we all know is not ideal. There are articulatory

effects

Chapter 4 – Cluster Unit-Selection Synthesis

74

which go over more than one phone. Nevertheless, it is not obvious which segmental effects

cause variation in pronunciation. Syllable position, word/phrase initial and final position

have typically a different level of articulation from segments taken from word internal

position. Stressing and accents also cause differences. Rather than trying to explicitly list the

desired inventory of all these phenomena and then recording all of them, a potential

alternative is to take a natural corpus of speech and (semi-)automatically find the distinctions

that actually exist.

The theory is obvious but the design of such systems is a non-trivial problem. Although

techniques like this often produce very high quality, natural sounding synthesis, they also can

produce some very bad synthesis too, when the database has unexpected holes and/or the

selection costs fail.

As we want to create a Weather Forecast Synthesizer, we actually want to create a Limited

Domain Unit Selection Synthesizer. By limited domain, we mean applications where the

speech output is constrained as (weather). Such domains may still be large but they have

specific vocabulary and phrases. In fact, with today's current speech systems such limited

domain applications are in fact the most common. The limited domain unit-selection offers

the high quality of unit selection and avoids much of the bad selections.

Chapter 4 – Cluster Unit-Selection Synthesis

75

4.2 Cluster Unit Selection

The idea behind Cluster Unit Selection is to take a database of speech and try to cluster each

phone type into groups of acoustically similar units based on the (non-acoustic) information

available at synthesis time, such as phonetic context, prosodic features (F0 and duration) and

higher level features such as stressing, word position, and accents. The actual features used,

may easily be changed and experimented with as the definition of acoustic distance between

the units in a cluster.

The basic processes involved in building a waveform synthesizer for the clustering algorithm

are the following:

• Collecting of the database of speech.

• Building utterance structures for our database.

• Building coefficients for acoustic distances, typically some form of cepstrum plus F0,

or some pitch synchronous analysis (e.g. LPC).

• Building distance tables, pre-calculating the acoustic distance between each unit of

the same phone type.

• Creating selection features (phone context, prosodic, positional and whatever) for

each unit type.

• Building cluster trees using wagon with the features and acoustic distances dumped by

the previous two stages.

• Building the voice description itself

First of all, we had to decide about what unit type we were going to use. Note there are two

dimensions here. First is size, such as phone, diphone, demi-syllable. The second is type itself

which may be simple phone, phone plus stress, phone plus word etc. The code here and the

related files basically assume unit size is phone. However, because we include a percentage of

the previous unit in the acoustic distance measure this unit size is more diphone-like. The

Chapter 4 – Cluster Unit-Selection Synthesis

76

cluster method has actual restrictions on the unit size, it simply clusters the given acoustic

units with the given feature, but the basic synthesis code is currently assuming phone sized-

units.

The second dimension, type, is very open. The simplest conceptual example is the one we

used in the limited domain synthesis. There, we distinguished each phone with the word it

comes from, thus a ‘κ’ from the word ‘καιρός’ is distinct from the ‘κ’ in the word ‘δυτικός’.

Like diphone databases the more cleanly and carefully the speech is recorded, the better the

synthesized voice will be. As we are going to select units from different parts of the database

the more similar the recordings are, the less likely bad joins will occur. However, unlike

diphones database, prosodic variation is probably a good thing, as it is those variations that

can make synthesis from unit selection sound more natural. Good phonetic coverage is also

useful, at least phone coverage if not complete diphone coverage. Also synthesis using these

techniques seems to retain aspects of the original database. Since our database is weather

forecast news, the synthesis from it will typically sound like read weather forecast (or more

importantly will sound best when it is reading weather forecast).

The database we used, was the 4310 sentences recorded by myself (for further analysis see

Chapter 3 Section 3.3 Corpus Design).

4.2.1 Building Utterance Structures

The first step for limited domain unit-selection synthesis method is to construct Festival

utterance structures for each of the utterances in our database. In its basic form, it requires

labels for: segments, syllables, words, phrases, F0 Targets, and intonation events. These were

carefully labeled using the Hidden Markov Toolkit (HTK) (for further analysis see

Chapter 3 Section 5 Labeling).

Chapter 4 – Cluster Unit-Selection Synthesis

77

 Obviously real speech isn't always clean, so it is not always easy to build (reasonably)

accurate structures for the real utterances. However, here we will itemize a number of

functions that will make the building of utterance from real speech easier. Building utterance

structures is probably worth the effort considering how easy it is to build various models

from them.

In order to build an utterance structure of the type used for our Greek voice we will need

label files for the following relations:

• Segment: segment labels with correct boundaries, in the phone set of our language.

• Word: words with boundaries aligned (close) to the syllables and segments.

• Syllable: Syllables, with stress marking (if appropriate) whose boundaries are closely

aligned with the segment boundaries.

• IntEvent: intonation labels aligned to a syllable (either within the syllable boundary

or explicitly naming the syllable they should be aligned too.

• Phrase: A name and marking for the end of each prosodic phrase.

• Target: The mean F0 value in Hertz at the mid-point of each segment in the

utterance.

Segment labels and word labels were taken by training full acoustic models with HTK.

Syllable labeling was also done automatically given segment (and word) labeling. The actual

algorithm for syllabification may change but the choice is important because syllabification is

consistently used throughout the rest of the system (e.g. in duration modeling).

The Target labeling required here is a single average F0 value for each segment. This

currently is done fully automatically from the signal with a standard script of Festival. This is

naive and a better representation of F0 could be appropriate. Phrases could potentially be

determined by a combination of F0 power and silence detection but the relationship is not

obvious. In general, we hand label phrases as part of the intonation labeling process.

Realistically only two levels of phrasing can reliably be labeled, even though there are

probably more. That is, roughly, sentence internal and sentence final. Phrase labeling is also

Chapter 4 – Cluster Unit-Selection Synthesis

78

done fully automatically with a Festival script as well as Intonation labeling. The function

build_utts of the build_clunits.scm script is used to build the utterances.

4.2.2 Cepstrum Parameter Files Calculation

In order to cluster similar units, we build an acoustic representation of them. This is done by

calculating Mel-Frequency Cepstral Coefficients. This is done pitch-sychronously. As a result,

firstly we have to extract the pitchmarks of the recorded waveforms (see Chapter 3 section 9

Extracting Pitchmarks).

Mel-Frequency Cepstrum (MFC) is a representation of the short-term power spectrum of a

sound, based on a linear cosine transform of a log power spectrum on a non-linear mel scale

of frequency.

Mel-Frequency Cepstral Coefficients (MFCC’s) are coefficients that collectively create an MFC.

They are derived from a type of cepstral representation of the waveform (a “spectrum of a

spectrum”). The cepstral representation of a signal is the Fourier Transform of the log of the

Fourier Transform of the signal. The difference between the cepstral and the MFC is that, in

MFC the frequency bands are equally spaced on the mel-scale, which approximates the

human auditory system’s response, more closely than the linearly spaced frequency bands in

the normal spectrum.

In order to derive the MFCC’s we must do successively the following steps:

1. Take the Fourier Transform of (a windowed excerpt of) the signal.

2. Map the powers of the spectrum on the mel-scale, using triangular overlapping

windows.

3. Take the logs of the powers at each of the mel frequencies.

4. Take the discrete cosine transform of the list of mel log powers, as if were signal.

5. The MFCC’s are the amplitude of the resulting spectrum.

Chapter 4 – Cluster Unit-Selection Synthesis

79

The mel scale is a perpetual scale of pitches judged by listeners to be equal in distance from

one another. To convert f hertz into m mel we use the type

1127.01048ln(1)
700

fm = +

and the inverse

1127.01048700(1)
m

f e= −

4.2.3 Building the clusters

The script build_clunits.scm contains the basic parameters to build a cluster model for

databases that has utterance structures and acoustic parameters. The function build_clunits

will build the distance tables, dump the features and build the cluster trees. There are many

parameters that are set for the particular database through the Lisp variable clunits_params.

The function build_clunits runs through all the steps but in order to better explain what is

going on, we will go through each step and at that time explain which parameters affect the

substep.

The first stage is to load in all utterances in the database, sort them into segment type and

name them with individual names using the function build_clunits_init. This uses the following

parameters:

• name (STRING): A name for our database.

• db_dir (FILENAME): The path of the database, typically, as in the current

directory.

• utts_dir (FILENAME): The directory containing the utterances

• utts_ext (FILENAME): The extension type of the utterances.

• files : The list of file_ids in the database.

Chapter 4 – Cluster Unit-Selection Synthesis

80

The next table shows the set of the parameters in our voice.

 (name 'tuc_gr_chris)
 (db_dir "boubousis/festvox/festvox/data15")
 (utts_dir "festival/utts/")
 (utts_ext ".utt")
 (files ("utt_001" "utt_002" "utt_003" ...))

Table 18. Initial Parameter set .

The next stage is to load the acoustic parameters and build the distance table. The acoustic

distance between each segment of the same unit type is calculated and saved in the distance

table. Pre-calculating this saves a lot of time as the cluster will require this numbers many

times.

This is done by the next two function calls:

 (format t "Loading coefficients\n")
 (acost:utts_load_coeffs utterances)
 (format t "Building distance tables\n")
 (acost:build_disttabs unittypes clunits_params)

Table 19. Function calls for loading the acousting parameters
and calculation of their acoustic distance.

The following parameters influence the behavior:

• coeffs_dir (FILENAME): The directory that contains the acoustic coefficients

(MFCC’s)

• coeffs_ext (FILENAME): The file extension for the coefficient files.

Chapter 4 – Cluster Unit-Selection Synthesis

81

• get_std_per_unit : It takes the value t or nil. If t, the parameters for the type

of segments are normalized by finding the means and standard deviations for the

class are used. Thus a mean Mahalanobis distance is found between units rather than

simply Euclidean distance. The Mahalanobis distance from a group of values with

mean 1 2(, ,...)T
pµ µ µ µ= and covariance matrix Σ for a multivariate factor

1 2(, ,...)T
pχ χ χ χ= is defined as:

1() () ()MD χ χ µ χ µΤ −= − Σ −

 The unit for which the distance is minimal, is the unit with the highest probability.

• ac_left_context (FLOAT): The amount of the previous unit to be included in

the the distance. 1.0 means all, 0.0 means none. This parameter may be used to make

the acoustic distance sensitive to the previous acoustic context. The recommended

value, which we used, is 0.8.

• dur_pen_weight (FLOAT):The penalty factor for duration mismatch between

units.

• ac_weights (FLOAT, FLOAT…): The weights for each parameter in the

coefficient files used while finding the acoustic distance between segments. There

must be the same number of weights as there are parameters in the coefficient files.

The first parameter is F0. It is common to give proportionally more weight to F0

than to each individual other parameter. The remaining parameters are typically

MFCCs (and possibly delta MFCCs). Finding the right parameters and weightings is

one the key goals in unit selection synthesis.

The values of these parameters in our voice are shown in the next page:

Chapter 4 – Cluster Unit-Selection Synthesis

82

(coeffs_dir "mcep/")
(coeffs_ext ".mcep")
(dur_pen_weight 0.1)
(get_stds_per_unit t)
(ac_left_context 0.8)
(ac_weights
 (0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5))

Table 20. Acousting parameters setting.

The next stage is to dump the features that will be used to index the clusters. We must

remember that the clusters are defined with respect to the acoustic distance between each

unit in the cluster, but they are indexed by these features. These features will be available at

text-to-speech time when no acoustic information is available. Thus they include things like

phonetic and prosodic context rather than spectral information. The name features may in

general allow the decision tree building program wagon (see Chapter 4 section 4 for further

analysis) to decide which of these feature actual does have an acoustic distinction in the units.

The function to dump the features is

(format t "Dumping features for clustering\n")
 (acost:dump_features unittypes utterances clunits_params)

Table 21. Function for dumping features.

The parameters which affect the function are:

• fests_dir (FILENAME): The directory where the features will be saved by

segment type.

Chapter 4 – Cluster Unit-Selection Synthesis

83

• feats (LIST): The list of features to be dumped. These are standard Festival

feature names with respect to the Segment relations.

Now that we have the acoustic distances and the feature descriptions of each unit, the next

stage is to find a relationship between those features and the acoustic distances. This we do

using the CART tree builder wagon. It will find out questions about which features best

minimize the acoustic distance between the units in that class. That is we are trying to

classify all the units in the database, there is no test set as such. However in synthesis there

will be desired units whose feature vector didn't exist in the training set.

The clusters are built by the following function:

(format t "Building cluster trees\n")
 (acost:find_clusters (mapcar car unittypes) clunits_params)

Table 22. Cluster building function.

The parameters that affect the tree building process are:

• tree_dir (FILENAME): The directory where the decision tree for each segment

type will be saved.

• wagon_field_desc (LIST): A filename of a wagon field descriptor file. This

is a standard field description (field name plus field type) that is required for wagon.

• wagon_progname (FILENAME): The pathname for the wagon CART building

program.

• wagon_cluster_size (INT): The minimum cluster size.

• prune_reduce (INT): The number of elements in each cluster to remove in

pruning. This removes the units that are furthest from the center. This is done with

the wagon training.

Chapter 4 – Cluster Unit-Selection Synthesis

84

• cluster_prune_limit (INT): This is a post wagon build operation on the

generated trees (and perhaps a more reliably method of pruning). This defines the

maximum number of units that will be in a cluster at a tree leaf. The wagon cluster

size the minimum size. This is useful when there are some large numbers of some

particular unit types which cannot be differentiated. Format example silence

segments without context of nothing other silence. Another usage of this is to cause

only the center example units to be used.

• unittype_prune_threshold (INT): This defines the minimal number of

units of that type required before building a tree.

In our voice, the above parameters have the following values:

(trees_dir "festival/trees/")
(wagon_field_desc "festival/clunits/all.desc")
(wagon_progname "/boubousis/speech_tools/bin/wagon")
(wagon_cluster_size 10)
(prune_reduce 0)

Table 23. Cluster building parameters.

The final stage in building a cluster model is collecting the generated trees into a single file

and dumping the unit catalogue, i.e. the list of unit names and their files and position in

them. This is done by the following lisp function

(acost:collect_trees (mapcar car unittypes) clunits_params)
(format t "Saving unit catalogue\n")
(acost:save_catalogue utterances clunits_params)

Table 24. Function for the creation of the unit catalogue.

Chapter 4 – Cluster Unit-Selection Synthesis

85

The only parameter that affect this is

• catalogue_dir (FILENAME): The directory where the catalogue will be saved.

By default this is
 (catalogue_dir "festival/clunits/")

Moreover, there is a number of parameters that are specified within our cluster voice. These

are related to the run-time aspects of the cluster model. These are

• join_weights (FLOATLIST): These are a set of weights, in the same format as

ac_weights that are used in optimal coupling to find the best join point between

two candidate units.

• continuity_weight (FLOAT): The factor to multiply the join cost over the

target cost. This is probably not very relevant given the the target cost is merely the

position from the cluster center.

• log_scores : If specified the join scores are converted to logs. For databases that

have a tendency to contain non-optimal joins (non-limited domain databases), this

may be useful to stop failed synthesis of longer sentences. The problem is that the

sum of very large number can lead to overflow. This helps reduce this. For our

voice, as it is for limited-domain, we did not need to use it.

• optimal_coupling (INT): It takes two values 1 and 2. If 1, this uses optimal

coupling and searches the cepstrum vectors at each join point to find the best

possible join point. This is computationally expensive (as well as having to load in

lots of cepstrum files), but does give better results. If the value is 2 this only checks

the coupling distance at the given boundary (and doesn't move it). This is often

adequate in good databases (e.g. limited domain), and is certainly faster

• extend_selections (INT): If 1 then the selected cluster will be extended to

include any unit from the cluster of the previous segments candidate units that has

correct phone type (and isn't already included in the current cluster). This means that

instead of selecting just units selection is effectively selecting the beginnings of

multiple segment units. This option encourages far longer units.

Chapter 4 – Cluster Unit-Selection Synthesis

86

• pm_coeffs_dir (FILENAME): The directory where the pitch marks are.

• pm_coeffs_ext (FILENAME): The file extension for the pitchmark files.

• sig_dir (FILENAME): The directory containing waveforms of the units.

• sig_ext (FILENAME): File extension for waveforms.

• join_method (METHOD): It specifies the method used for joining the selected

units. Currently it supports simple, a very naive joining mechanism, and

windowed, where the ends of the units are windowed using a hamming window

then overlapped (no prosodic modification takes place though). The other two

possible values for this feature are none which does nothing, and modified_lpc

which uses the standard UniSyn module to modify the selected units to match the

targets.

• clunits_debug (1 or 2): With a value of 1 some debugging information is

printed during synthesis, particularly how many candidate phones are available at

each stage (and any extended ones). Also where each phone is coming from is

printed. With a value of 2 more debugging information is given include the above

plus joining costs (which are very readable by humans).

4.3 Classification and Regression Trees (CART)

The CART algorithm builds classification and regression trees for predicting continuous

dependent variables (regression) and categorical predictor variables (classification). The classic

CART algorithm was popularized by Breiman at 1984.

Regression-type problems. Regression-type problems are generally those where one

attempts to predict the values of a continuous variable from one or more continuous and/or

categorical predictor variables. For example, you may want to predict the selling prices of

single family homes (a continuous dependent variable) from various other continuous

predictors (e.g square footage) as well as categorical predictors (e.g., style of home, such as

ranch, two-story, etc.; zip code or telephone area code where the property is located, etc.;

note that this latter variable would be categorical in nature, even though it would contain

Chapter 4 – Cluster Unit-Selection Synthesis

87

numeric values or codes). If you used simple multiple regression, or some general linear

model (GLM) to predict the selling prices of single family homes, you would determine a

linear equation for these variables that can be used to compute predicted selling prices.

There are many different analytic procedures for fitting linear models (GLM, GRM,

Regression), various types of nonlinear models (e.g., Generalized Linear/Nonlinear Models (GLZ),

Generalized Additive Models (GAM), etc.), or completely custom-defined nonlinear models (see

Nonlinear Estimation), where you can type in an arbitrary equation containing parameters to be

estimated. CHAID also analyzes regression-type problems, and produces results that are

similar (in nature) to those computed by CART. Note that various neural network

architectures are also applicable to solve regression-type problems.

Classification-type problems. Classification-type problems are generally those where one

attempts to predict values of a categorical dependent variable (class, group membership, etc.)

from one or more continuous and/or categorical predictor. For example, you may be

interested in predicting who will or will not graduate from college, or who will or will not

renew a subscription. These would be examples of simple binary classification problems,

where the categorical dependent variable can only assume two distinct and mutually

exclusive values. In other cases one might be interested in predicting which one of multiple

different alternative consumer products (e.g., makes of cars) a person decides to purchase, or

which type of failure occurs with different types of engines. In those cases there are multiple

categories or classes for the categorical dependent variable. There are a number of methods

for analyzing classification-type problems and to compute predicted classifications, either

from simple continuous predictors (e.g., binomial or multinomial logit regression in GLZ),

from categorical predictors (e.g., Log-Linear Analysis of multi-way frequency tables), or both

(e.g., via ANCOVA-like designs in GLZ or GDA).

4.3.1 Advantages of CART Methods

As mentioned earlier, there are a large number of methods that an analyst can choose from

when analyzing classification or regression problems. Tree classification techniques, when

they "work" and produce accurate predictions or predicted classifications based on few

Chapter 4 – Cluster Unit-Selection Synthesis

88

logical if-then conditions, have a number of advantages over many of those alternative

techniques.

Simplicity of results: In most cases, the interpretation of results summarized in a tree is

very simple. This simplicity is useful not only for purposes of rapid classification of new

observations (it is much easier to evaluate just one or two logical conditions, than to

compute classification scores for each possible group, or predicted values, based on all

predictors and using possibly some complex nonlinear model equations), but can also often

yield a much simpler "model" for explaining why observations are classified or predicted in a

particular manner (e.g., when analyzing business problems, it is much easier to present a few

simple if-then statements to management, than some elaborate equations).

Tree methods are nonparametric and nonlinear. The final results of using tree methods

for classification or regression can be summarized in a series of (usually few) logical if-then

conditions (tree nodes). Therefore, there is no implicit assumption that the underlying

relationships between the predictor variables and the dependent variable are linear, follow

some specific non-linear link function [e.g., see Generalized Linear/Nonlinear Models (GLZ)], or

that they are even monotonic in nature. For example, some continuous outcome variable of

interest could be positively related to a variable Income if the income is less than some

certain amount, but negatively related if it is more than that amount (i.e., the tree could

reveal multiple splits based on the same variable Income, revealing such a non-monotonic

relationship between the variables). Thus, tree methods are particularly well suited for data

mining tasks, where there is often little a priori knowledge nor any coherent set of theories or

predictions regarding which variables are related and how. In those types of data analyses,

tree methods can often reveal simple relationships between just a few variables that could

have easily gone unnoticed using other analytic techniques.

Chapter 4 – Cluster Unit-Selection Synthesis

89

4.3.2 CARTs in Festival

The construction of CARTs is the basic method in Festival for building statistical models

from simple feature data. CART is powerful because it can deal with incomplete data,

multiple types of features (floats, unumerated sets) both in input features and predicted

features, and the trees it produces often contain rules which are humanly readable.

Decision trees contain a binary question (yes/no answer) about some feature at each node in

the tree. The leaves of the tree contain the best prediction based on the training data.

Decision lists are a reduced form of this where one answer to each question leads directly to

a leaf node. A tree's leaf node may be a single member of some class, a probability density

function (over some discrete class), a predicted mean value for a continuous feature or a

gaussian (mean and standard deviation for a continuous value). Theoretically, the predicted

value may be anything for which a function can defined that can give a measure of impurity

for a set of samples, and a distance measure between impurities.

The basic algorithm is given a set of samples (a feature vector), finds the question about

some feature which splits the data minimizing the mean impurity of the two partitions and

recursively applies this splitting on each partition until some stop criteria is reached (e.g a

minimum number of samples in the partition). The basic CART building algorithm is a greedy

algorithm that chooses the locally best discriminatory feature at each stage in the process. This

is suboptimal but a full search for a fully optimized set of questions would be

computationally very expensive. Although there are pathological cases in most data sets this

greediness is not a problem. The basic building algorithm starts with a set of feature vectors

representing samples. At each stage, all possible questions for all possible features are asked

about the data finding out how the question splits the data. A measurement of impurity of

each partitioning is made and the question that generates the least partitions is selected. This

process is applied recursively on each sub-partition until some stop criteria is met.

Chapter 4 – Cluster Unit-Selection Synthesis

90

4.3.2.1 Impurity

The impurity of a set of samples is designed to capture how similar the samples are to each

other. The smaller the number, the less impure the set is.

For sample sets with continuous predictees Wagon uses the variance time number of sample

points. The variance alone could be used by this overly favor very small sample sets. As the

test that uses the impurity is trying to minimize it over a partitioning of the data, multiple

each part with the number of samples will encourage larger partitions, which we have found

lead to better decision trees in general.

For sample sets with discrete predictees Wagon uses the entropy time number of sample

points. Again the number of sample points is used in so that small sample set are not

unfairly favored. The entropy for a sample set is calculated as

sumof (for each x in class)
 prob(x)*log(prob(x))

Table 25. Calculation of the Entropy.

Other impurity measure could be used if required. For example an experimental cluster

technique used for unit selection actually used impurity calculated as the mean Euclidean

distance between all vectors of parameters in the sample set. However the above two are

more standard measures.

Chapter 4 – Cluster Unit-Selection Synthesis

91

4.3.2.2 Question Forming

Wagon has to automatically form questions about each feature in the data set.

For discrete features, questions are built for each member of the set, e.g. if feature n has

value x. Our implementation does not currently support more complex questions which

could achieve better results (though at the expense of training time). Questions about

features being some subset of the class members may give smaller trees. If the data requires

distinction of values a, b and c, from d e and f, our method would require three separate

questions, while if subset questions could be formed this could be done in one step which

would not only give a smaller tree but also split the samples for a, b and c. In general subset

forming is exponential on the number items in the class though there are techniques that can

reduce this with heuristics. However these are currently not supported.

For continuous features, Wagon tries to find a partition of the range of the values that best

optimizes the average impurity of the partitions. This is currently done by linearly splitting

the range into a predefined subpart (10 by default) and testing each split. This again isn't

optimal but does offer reasonably accuracy without requiring vast amounts of computation.

4.3.2.3 Tree Building Criteria

There are many ways to constrain the tree building algorithm to help build the "best" tree.

Wagon supports many of these (though there are almost certainly others that is does not).

In the most basic forms of the tree building algorithm a fully exhaustive classification of all

samples would be achieved. This, of course is unlikely to be good when given samples that

are not contained within the training data. Thus the object is to build a classification or

regression tree that will be most suitable for new unseen samples. The most basic method to

achieve this is not to build a full tree but require that there are at least n samples in a

partition before a question split is considered. We refer to that as the stop value. A number

like 50 as a stop value will often be good, but depending of the amount of data you have, the

distribution of it, etc various stop value may produce more general trees.

Chapter 4 – Cluster Unit-Selection Synthesis

92

A second method for building "good" trees is to hold out some of the training data and build

a (probably over-trained) tree with a small stop value. Then prune the tree back to where it

best matches the held out data. This can often produce better results than a fixed stop value

as this effectively allows the stop value to vary through different parts of the tree depending

on how general the prediction is when compared against held out data. It is often better to

try to build more balanced trees. A small stop value may cause the tree building algorithm to

find small coherent sets of samples with very specific questions. The result tree becomes

heavily lop-sided and (perhaps) not optimal. Rather than having the same literal stop value

more balanced trees can built if the stop value is defined to be some percentage of the

number of samples under consideration. This percentage we call a balance factor. Thus the

stop value is then the largest of the defined fixed stop value or the balance factor times the

number of samples. To some extent the multiplication of the entropy (or variance) by the

number of samples in the impurity measure is also way to combat imbalance in tree building.

A good technique is to build trees in a stepwise fashion. In this case, instead of considering all

features in building the best tree, we incrementally build trees looking for which individual

feature best increases the accuracy of the tree on the provided test data. Unlike within the

tree building process where we are looking for the best question over all features, this

technique limits which features are available for consideration. It first builds a tree using only

the features provided, looking for which individual feature provides the best tree. The

selection feature builds n-1 trees with the best feature from the first round with each of the

remaining features. This process continues until no more features add to the accuracy or

some stopping criteria (percentage improved) is not reached. This technique is also a greedy

technique but we've found that when many features are presented, especially when some are

highly correlated with each other, stepwise building produces a significantly more robust tree

on external test data. It also typically builds smaller trees, but of course

there is a cost in computation time. Stepwise tests each success tree against the specified test

set. As this is using the test set which optimizes the tree, it is not valid to view the specified

test set as a genuine test set. Another externally held test set should be used to test the

accuracy of generated tree.

Chapter 4 – Cluster Unit-Selection Synthesis

93

4.3.2.4 Tree Format

The generated tree files are written as Lisp s-expressions as this is by far the easiest external

method to represent trees. Even if the trees are read by something other than Lisp it is easy

to write a reader for such a format. Note that not all of the question types are generated by

Wagon but they are supported by the interpreters. The leaf nodes differ depending on the

type of the predictee. For continuous predictees (regression trees) the leaves consist of a pair

of floats, the stddev and mean. For discrete predictees (classification trees) the leaves are a

probability density function for the members of the class. Also the last member of the list is

the most probable value. Note that in both cases the last value of the leaf list is the answer

desired in many cases. The syntax of the CART tree is shown in the next table:

TREE ::= LEAF | QUESTION-NODE

QUESTION-NODE ::= "(" QUESTION YES-NODE NO-NODE ")"

YES-NODE ::= TREE

NO-NODE ::= TREE

QUESTION ::= "(" FEATURENAME "is" VALUE ")" |
 "(" FEATURENAME "=" FLOAT ")" |
 "(" FEATURENAME "<" FLOAT ")" |
 "(" FEATURENAME ">" FLOAT ")" |
 "(" FEATURENAME "matches" REGEX ")" |
 "(" FEATURENAME "in" "(" VALUE0 VALUE1 ... ")" ")"

LEAF ::= "(" STDDEV MEAN ")" |
 "(" "(" VALUE0 PROB0 ")" "(" VALUE1 PROB1 ")" ... MOSTPROBVAL
")" |
 any other lisp s-expression

Table 26. Syntax of a CART.

Chapter 4 – Cluster Unit-Selection Synthesis

94

4.4 Wagon CART-building Program

Wagon is a program that is included in the Edinburgh Speech Tools, the speech processing

library which is distributed with Festival. Wagon is used to build decision CART trees from

feature data. Its basic features include:

• Both decision trees and decision lists are supported.

• Predictees can be discrete or continuous.

• Input features can be discrete or continuous.

• Many options for controlling tree building

o fixed stop value

o balancing

o held-out data and pruning

o stepwise use of input features

o choice of optimization criteria (correct/entropy for classification

rmse/covariance for regression)

The input data for wagon (and some other model building tools in the Edinburgh Speech

Tools library), should consist of feature vectors, and a description of the fields in these

vectors.

4.4.1 Feature Vectors

A feature vector is a file with one sample per line, with feature value as white space separated

tokens. The Festival program dumpfeats is specifically designed to generate such files

from databases of utterances but these files may be generated from any data source. Each

vector must have the same number of features and in the same order. Features may be

specified as "ignored" in the description (or in actual use) so it is common that data files

contain more features than are always used in model building. By default the first feature in a

Chapter 4 – Cluster Unit-Selection Synthesis

95

data file is the predictee, though at least in wagon the predictee field can be named at tree

building time to be other than the first field. Features can be discrete or continuous but at

present must be single valued, "multi-valued" or "list-valued" features are not currently

supported. Note this means that a feature in different samples may have different values but

in a particular sample a particular feature can only have one value. You must also note that it

is common to have thousands, even hundreds of thousands of samples in a data file, and the

number of features can often be in the hundreds, though can also be less than ten depending

on the what it describes. A typical example is shown in the next table:

0.399 pau i 0 0 1 1 0 0 0 0 0 0
0.082 i A pau 0 1 0 0 1 1 0 1 1
0.074 A n i 1 0 1 0 1 1 1 1 0
0.048 n E A 0 1 0 1 1 1 1 0 0
0.062 E m n 2 0 0 1 1 1 0 0 0
0.020 m i E 0 0 1 1 1 1 0 0 0
0.082 i th m 3 1 0 1 1 1 0 0 0
0.082 th A i 1 0 0 1 1 1 0 0 0

Table 27. Example of feature vector.

4.4.2 Data Descriptions

A data file also requires a description file which names and classifies the features in a datafile.

Features must have names so they can be referred to in the decision tree (or other model

output) and also be classified into their type. The basic types available for features are:

• continuous: for features that range over reals (e.g duration of phones)

• categorial: for features with a pre-defined list of possible values (e.g phone names)

• string: for features with an open class of discrete values (e.g words)

Chapter 4 – Cluster Unit-Selection Synthesis

96

The data description consists of a parenthesized list of feature descriptions. Each feature

description consists of the feature name and its type (and/or possible values). Feature

names, by convention, should be features names in the sense for features (and pathnames)

used throughout the utterance structures in the Edinburgh Speech Tools. The expected

method to use models generated from features sets in the Edinburgh Speech Tools is to

apply them to items. In that sense having a feature name be a feature of an item (or relatve)

pathname will avoid having the extra step of extracting features into a separated table before

applying the model. However, it should also be stated that to wagon these names are

arbitrary tokens and their semantic irrelevant at training time. A typical description file is

shown in the next table, and it is suitable for the data file given above

((segment_duration float)
 (name A E i o u J ly D G C b p d th g q t k f v s z l m n r x ts tz
Y ks pau)
 (n.name 0 A E i o u J ly D G C b p d th g q t k f v s z l m n r x ts
tz Y ks pau)
 (p.name 0 A E i o u J ly D G C b p d th g q t k f v s z l m n r x ts
tz Y ks pau)
 (pos_in_syl float)
 (syl_initial 0 1)
 (syl_final 0 1)
 (R:Sylstructure.parent.R:Syllable.p.syl_break float)
 (R:Sylstructure.parent.syl_break float)
 (R:Sylstructure.parent.R:Syllable.n.syl_break float)
 (R:Sylstructure.parent.R:Syllable.p.stress 0 1)
 (R:Sylstructure.parent.stress 0 1)
 (R:Sylstructure.parent.R:Syllable.n.stress 0 1)
)

Table 28. Example of a description file.

There is also a number of special symbols that may be used in a description file. If the type

(first token after the name) is ignore the feature will be ignored in the model building

process. We may also specify features to ignore at tree building time but it is often

convenient to explicitly ignore feature(s) in the description file.

Chapter 4 – Cluster Unit-Selection Synthesis

97

A description file can't be generated automatically from a data set though an approximation

is possible. Particularly it is not possible to automatically decide if a feature value is

continuous of which its example values happen to look like numbers. The script

make_wagon_desc takes a datafile, a file containing only the names of the features, and

the name of the description file it will create. However, it should be checked manually.

Chapter 5 – Evaluation of the Greek Weather Synthesizer

98

Chapter 5

EVALUATION OF THE GREEK
WEATHER FORECAST SYNTHESIZER

5.1 Introduction

In spite of the rapid progress that is being made in the speech technology, any speech

synthesis available today can still be spotted for what it is: nonhuman, machine. Although

there have been major improvements in the quality of the output of TTS systems, as long as

synthetic speech is inferior to human speech, synthesis evaluation will be useful.

Chapter 5 – Evaluation of the Greek Weather Synthesizer

99

Speech synthesis assessment is important to two parties: system designers on one hand and

prospective buyers on the other hand. Designers always try to improve their TTS systems.

However, designers who have “grown up” with their systems are used to all its habits; they

are likely to understand its output better than first-time users, and will often overrate its

performance level. More meaningful quality assessment techniques are needed in order to

determine how well a system performs relative to a benchmark test or how favorably it

compares it with a previous edition of the system or with another’s designer product. To the

extent that a system performs less than perfect (something of which the author is aware), the

designer can learn which aspects of the problem are flawed.

On the other hand, the needs of buyers and end user are different than those of the

designers but they too heavily rely on assessment techniques. Prospective buyers will always

have a specific ose of their TTS system in mind. Understandably, they will want the simplest

and therefore cheapest system that satisfies their needs. The buyer therefore needs an

absolute yardstick in order to determine beforehand if the TTS system is good enough to get

a message across in the given application.

5.2 Taxonomy of Evaluation Tasks & Techniques

To justify our selections for the evaluation strategy used for the quality assessment of our

TTS system, we will first discuss a number of distinguished parameters and explain the

relationships between them.

The next figure shows the various dichotomies in the hierarchical order in which they have

been listed in the diagram. Any path from the root to a terminal that does not cross an

horizontal gap constitutes a meaningful combination of test attributes

Chapter 5 – Evaluation of the Greek Weather Synthesizer

100

Figure 18. Relationships among dimensions involved in Taxonomy of speech
 output evaluation methods

5.2.1 Black Box vs Glass Box

TTS systems generally comprise of a range of modules that take care of specific tasks (e.g

concatenation, signal processing). End users will be interested in the performance of a

system as a whole. They will consider the system as a black box that accepts text and outputs

speech, without any internal structure, since the quality of the output speech is the only thing

that matters.

However, if the output is less than optimal, it is impossible to pinpoint a specific cause of

Chapter 5 – Evaluation of the Greek Weather Synthesizer

101

the specific malfunction. Hence, the designers set the evaluations in a more experimental

way (glass box). This is achieved by keeping all modules but one constant, while

systematically varying the characteristics of the latter, allows for any difference in the

assessment of the system to be attributed to the variations of the target module.

5.2.2 Laboratory vs Field

TTS systems are often part of a human-machine user interface in a specific application.

Typically, the vocabulary and types of information exchanges are restricted and domain

specific, so that situational redundancy can often make up for bad intelligibility. On the other

hand, TTS systems will often be used in complex information processing tasks, so that the

listener has only limited resources available for attending to the speech input.

It is generally impossible to predict beforehand, on the basis of laboratory tests, exactly how

successful a TTS-system will be in the practical application. The system needs to be tested in

the field, i.e. in the real application, with real users. However, the use of field tests is limited to

one system in one specific application; results of the test cannot, as a rule, be generalized to

other systems and/or other applications.

5.2.3 Linguistic vs Acoustic

Complex TTS systems can roughly be divided into a linguistic interface that transforms

spelling into an abstract phonological code and an acoustical interface that transduces this

symbolic representation to an audible waveform.

The quality of the intermediary representation can be tested directly at the symbolic-linguistic

level or indirectly at the level of the acoustic output. Testing the audio has the advantage that

Chapter 5 – Evaluation of the Greek Weather Synthesizer

102

only errors in the symbolic representation that affect the audio output will affect the

evaluation. However, it concerns human listeners and is therefore costly and time

consuming. Moreover the designer is not informed on the origin of any problems (linguistic

or acoustic).

As an alternative, the intermediate representations in the linguistic interface are often

evaluated in the symbolic level. It involves the comparison of the symbolic output of the

linguistic model to a pre-stored model representation. The non-trivial problem is to obtain

this model representation, which will have to be compiled manually, and will often involve

multiple correct solutions

5.2.4 Subjective vs Objective

When an assessment technique involves the responses of human subjects, the measurement

is called subjective. It is most common that human subjects are called upon in order to

evaluate the quality of a TTS system. This is to be expected, since the end user of a TTS

system is a human listener. However there are certain drawbacks inherent to the use of

human subjects. Firstly, humans are often somewhat noisy in their judgments, i.e. the results

of tests are never perfectly reproducible. It often makes sense to use an expert listener as a

shortcut to a preliminary evaluation, since he will be able to determine in great accuracy

problems related to coarticulation, temporal organization and intonation. However he will

not be able to predict in numerical terms how well the TTS system would perform as a

communication tool with naïve listeners. Since this is what we need to assess, expert listeners

should be used during the initial stages of development, as a design tool, while non-expert

users should be used for the final evaluation of the system. In this case, a group of users may

be used, and the average of their responses could somewhat compensate for the noisiness of

their measurements. This is what is called inter-subjective measurement.

In addition to yielding noisy measurements, quality tests involving human listeners are also

time consuming and therefore expensive to run. Automatic quality assessment for TTS

systems that automatically measure the discrepancy in acoustical terms between a system’s

Chapter 5 – Evaluation of the Greek Weather Synthesizer

103

output and its human model is still a field under investigation. This is the type of objective

evaluation technique that one would ultimately want to come up with, since it avoids the use

of human listeners, providing perfectly reproducible results in as little time as needed to run

that particular test program. Unfortunately, these types of services are not yet available for

usage.

5.2.5 Judgement vs Functional

By judgment testing we mean a procedure whereby a group of listeners is asked to judge the

performance of a TTS system, along a number of rating scales. The scales are typically bi-

polar adjectives that allow the listeners to express the quality of the system.

A TTS system may also be assessed in terms of how well it actually performs its

communicative purpose. This is called functional testing. For instance, if we want to know to

what extent the output speech is intelligible, we may measure its intelligibility not by asking

the listener how intelligible he things it is, but by determining, for instance, whether the

listener correctly identifies the sounds.

5.2.6 Global vs Analytic

Judgment test usually include one or more rating scales covering such global aspects as

“overall quality”, “naturalness” and “acceptability”. On the other hand, one may be

interested in determining the quality of specific aspects of a TTS system, in an analytic

listening mode, where listeners are requested to pay particular attention to selected aspects of

the speech output.

Chapter 5 – Evaluation of the Greek Weather Synthesizer

104

5.3 Evaluation of the Greek Weather Synthesizer

The quality assessment of our synthesizer was based on the evaluation of its acoustic aspects.

There are three layers that are distinguished in speech: a segmental layer, a prosodic layer and

the voice quality layer. We will make the same distinction in the evaluation of acoustic

aspects.

5.3.1 Segments

The primary function of segments is to enable the listener to identify words. In the LPC

synthesis the units are diphones, while in the Cluster Unit Selection Method are phones. The

evaluation done in this level, is to what extent the listener understands the synthesized words

with the two synthesis methods.

5.3.2 Prosody

By prosody we mean the ensemble of properties of speech utterances that cannot be derived

in a straightforward fashion from the identity of the phonemes constituting the words of the

speech utterance. Prosody comprises the melody of the speech, word and phrase boundaries,

word stress, sentence accent, tempo and changes in speaking rate.

The more important functions of prosody are located at the linguistic levels above the word:

• prosody tells the listener which words go together and should be interpreted as

making up a coherent chunk of information; it also allows the user to determine

whether he has come to the end of a word group, clause, sentence, etc.

• prosody provides an indication for the listener which words are presented by the

speaker as expressing important information.

Chapter 5 – Evaluation of the Greek Weather Synthesizer

105

• prosody, especially melody, carries its own intonational meaning, allowing for

instance the speaker to present a sentence as a statement or a question.

These observations suggest that prosody affects comprehension, which is what most

functional tests of prosody try to evaluate.

5.3.3 Voice Quality

Voice quality can be viewed as the background against which segmental and prosodic

variation is produced and perceived. It is used by the listener to form a (sometimes

incorrect) idea of the speaker‟s mood and personality, physical size, sex, and also to identify

the speaker. This information may have practical consequences for the continuation of the

communication procedure, since it may influence the listener‟s attitude towards the speaker

in a positive or negative sense, and may affect the listener‟s interpretation of the message.

5.3.4 Overall Output Quality

In most situations good intelligibility of specific words is not enough for TTS output to be

called functionally adequate. One would want to have at one’s disposal a functional test to

evaluate the adequacy if the complete TTS output in all respects. In practice, the functional

quality of overall TTS output has been equated with comprehension, based upon the

integration of “bottom-up” speech signal information at different levels (segments, prosody,

voice quality) and “top-down” knowledge and expectations based on previous experience,

specific properties of the extra-linguistic context, and word internal and word combinatory

redundancy.

Chapter 5 – Evaluation of the Greek Weather Synthesizer

106

5.4 Test Method

The importance of application specific test materials has been stressed by ITU-T's

standardization sector. They developed a test specifically aimed at evaluating the quality of

telephone speech, and which has been modified to fit our purposes. It is a judgment test

comprising rating on eight scales, namely one 2-point scale acceptance and seven 5-point scales

overall impression, listening effort, comprehension problems, articulation, pronunciation, speaking rate, and

voice pleasantness.

Strictly speaking, only the first four scales can be captured under the heading overall quality;

the other four scales are directed at more specific aspects of the output and require analytic

listening. The content of the speech samples are synthesized in accordance with the

application.

For our purposes, we modified the ITU-T test. We maintained the 2-point scale acceptance,

replaced the first four scales with a 5-point overall quality scale, the next two articulation and

pronunciation with a 5-point phoneme juncture and the final two with a 5-point intonation scale.

Then, we synthesized with both synthesis methods fifty sentences forty of which were

relevant to weather and ten irrelevant. We did this, in order to check what would be the

response of our synthesizer to text, in which it was not trained. We then passed an

evaluation form to ten people who had to listen to all sentences and then evaluate the speech

using the four scales mentioned above. For the first scale (acceptance), the evaluation should

determine whether the synthesized speech is accepted or not. For the rest three scales, the

evaluation was done by assigning a grade in the range of [0, 5], with 5 denoting the best

performance. The evaluations for each method among all people were averaged, providing a

measure for the performance of the method in each of these four scales.

One example of the evaluation form is the following:

Chapter 5 – Evaluation of the Greek Weather Synthesizer

107

TTS Aποδοχή Ποιότητα

Φωνής
Προσωδία Σύνδεση

Φωνημάτων
Κατανόηση
Περιεχομένου

Greek
Weather
Forecast

Synthesizer

2.Ναι
1. Όχι

5. Τέλεια
4. Πολύ
Καλή
3. Καλή
2. Ok
1. Κακή

5. Απόλυτα
Φυσική
4. Κανονική
3. Αποδεκτή
2. Αστεία σε
κάποια σημεία
1. Παράξενη

5. Τέλεια
4. Καλή
3. Αστεία σε
κάποια σημεία
2. Αφύσικη
1. Παράξενη

2. Ναι
1. Όχι

tts_199.wav

Table 29. Example of our Evaluation form.

The tts_001.wav is the original recording, tts_1001.wav is the synthesized utterance with the

Diphone LPC Synthesis method and tts_2001.wav is the synthesized utterance with the

Limited-Domain Cluster Unit-Selection Synthesis method.

5.5 Results

As we discussed in the previou section, we splitted the evaluation process into two sections.

The first section included synthesizing sentences related exclusively to weather, while the

second section general sentences irrelative to weather. We did that, in order to check the

performance of our Weather Synthesizer to an input that was not related to weather. We

wanted to evaluate the performance of any combination of the selection criteria comparing

the two synthesis methods, LPC and Cluster Unit-Selection for each synthesized sentence.

The evaluations for each method were averaged, providing a measure for the performance of

the method in each of the four scales. The extracted charts from this process are the

following:

Chapter 5 – Evaluation of the Greek Weather Synthesizer

108

Weather Input

Figure 19. Evaluation Results (Voice Quality)

Figure 20. Evaluation Results (Voice Acceptance).

Chapter 5 – Evaluation of the Greek Weather Synthesizer

109

Figure 21. Evaluation Results (Prosody).

Figure 22. Evaluation Results (Phoneme Junctures).

Chapter 5 – Evaluation of the Greek Weather Synthesizer

110

Figure 23. Evaluation Results (Context Apprehension).

As we can understand from the above figures the performance of the Cluster Unit-Selection

Voice is much greater than the LPC voice. Figure 20 shows us that the majority of the

subjects did not accept the LPC synthesis method as an adequate method of Speech

synthesis while the Unit-Selection method was accepted by every subject. The rest three

figures indicate us that the scores of the Unit-Selection Method for each scale (Voice Quality,

Intonation, Phoneme Junctures) are close to perfect (5) while the scores of the LPC Method

flunctuate between 1 and 2. Then, we set as input in our synthesizer non-weather sentences

and the results are shown in the following figures:

Chapter 5 – Evaluation of the Greek Weather Synthesizer

111

Generic Input

Figure 24. Evaluation Results (Voice Quality).

Figure 25. Evaluation Results (Voice Acceptance).

Chapter 5 – Evaluation of the Greek Weather Synthesizer

112

Figure 26. Evaluation Results (Prosody).

Figure 27. Evaluation Results (Phoneme Junctures).

Chapter 5 – Evaluation of the Greek Weather Synthesizer

113

Figure 28. Evaluation Results (Context Apprehension).

The above figures show us that the performance of the LPC synthesis method is the same

for a non-weather input as a weather input. The scores of LPC method still flunctuate

between 1 and 2. Contrary to LPC method which performance is stable, Cluster Unit

Selection presents a decrease in performance when the input is non-weather. This is due to

the Cluster Algorithm itself. As we described in Chapter 4 Section 2 each unit has two

dimensions: its name and its type. The second dimension refers to the word that this unit

comes from. As a result, if the word we want to synthesize does not exist in the training data

of our synthesizer, the concatenation process becomes problematic. However, the

synthesized sentence is totally comprehensible and the final result is decent.

Chapter 6 – Conclusions & Future Work

114

Chapter 6

CONCLUSIONS & FUTURE WORK

6.1 Conclusions

Speech, or verbal communication, is one of the most important features which distinguish

humans from other animals. Researchers in speech technology are still working on getting

machines to interact with humans the same way human-to-human communication occurs.

Human-computer interaction is a discipline concerned with the design, evaluation and

implementation of interactive computing systems for human use.

The main goal for speech technology research is to achieve communication between people

and machines. By communication it is meant ability for machines to communicate with

Chapter 6 – Conclusions & Future Work

115

humans the way humans do with other people. Machines should be able to read and show

facial expressions, body language and any other gestures used by humans. When humans are

communicating with machines, they should have the same interest, concentration and

emotion as they would have when talking to other people.

In this thesis, we tried to understand the rules of selecting phonetic units in a Text-To-

Speech synthesis System. In order to accomplish that, we created a Greek Weather Forecast

Synthesizer using two different methods of implementation: the Residual-Excited Linear

Prediction Coding Synthesis and the Cluster Unit-Selection Synthesis.

From Chapter 5 Section 5, it can be concluded that in limited-domain synthesis (Weather) the

Cluster Unit Selection Method produces a voice with high degree of understandability,

naturalness and pleasantness that is required, while the LPC Diphone method produces a

voice with unacceptable degree of understandability, naturalness and pleasantness. On the

occasion of non-weather input, the LPC Diphone Method produces similar results. On the

other hand, the Cluster Unit Selection Method, contrary to its previous results, produces a

voice with worse degree of understandability and naturalness, but still better than the LPC

Method’s voice.

6.2 Future Work

The major task in speech synthesis technology is to produce a voice in unrestricted domains

with the same quality of limited-domain synthesis. In order to accomplish that, the most

significant task is the design of the proper corpus of training data. The selection of the

utterances to be recorded, must be very assiduous in order to include the maximum range of

words and as a result have the maximum language coverage.

The difference between a person and a talking computer is that the person understands the

ideas and emotions conveyed through speech, while the computer doesn’t. The ultimate

Chapter 6 – Conclusions & Future Work

116

goal for speech synthesis, as with all Artificial Intelligence applications, is to pass the Turing

test - a blindfolded user should not be able to tell whether he is talking to a human or a

machine. Of course, that is a long way away, but we believe that modifying speech

recognition techniques could lead to better synthesis results. Ultimately, the right model

might be the same both for recognition and synthesis.

Bibliography

117

Bibliography

[1] Black A. & Lazlo K. : “Building Voices in the Festival Speech Synthesis System”

unpublished document, Language Technology Institute, Carnegie Mellon 2007 available at

http://www.cstr.ed.ac.uk/projects/festival/docs/festvox/

[2] Black A., Taylor P. & Caley R.: “The Festival Speech Synthesis System Documentation”,

The Centre for Speech Technology, Research University of Edinburgh 2002 available at

http://festvox.org/docs/manual-1.4.3/festival_toc.html

[3] Hunt A., Black A., “Unit Selection in a Concatenative Speech Synthesis System Using a

Large Speech Database” Proceedings of ICASSP-96, Atlanta, GA, Vol. 1: 373-376, 1996.

[4] Dutoit, Th. An Itroduction to Text-to-Speech Synthesis, Dordrecht, Kluwer Academic

Publishers, 1997.

[5] Taylor P., Black A., Caley R., “The Architecture of the Festival Speech Synthesis

System” 3rd ESCA Workshop in Speech Synthesis, 1998.

[6] Vosnidis C. “Speech Synthesis by Word Concatenation” Thesis Submitted for Diploma

in Electronics and Computer Engineering, Technical University of Crete, Chania, Greece,

2001.

[7] Digalakis V. Introduction to Speech Processing, Chania: Technical University of Crete,

Department of Electronics and Computer Engineering, 2006.

[8] Black, A, and Taylor, P. "Automatically clustering similar units for unit selection in

speech synthesis", Eurospeech97, Rhodes, Greece, 1997.

[9] Breiman, L., Friedman, J. Olshen, R. and Stone, C. Classification and regression trees,

Wadsworth and Brooks, Pacific Grove, CA. 1984.

[10] Mohasi L., Mashao D., “Text-To-Speech Technology in Human-Computer”

Interaction”, 5th Conference of Human-Computer Interaction, Cape Town, South Africa, 2006.

http://www.cstr.ed.ac.uk/projects/festival/docs/festvox/
http://festvox.org/docs/manual-1.4.3/festival_toc.html

Bibliography

118

[11] Y. Sagisaka, N. Kaiki, N. Iwahashi, and K. Mimura. “ATR -- nuu-TALK speech

synthesis system”. In Proceedings of ICSLP 92, volume 1, pages 483--486, 1992.

[12] N. Campbell and A. Black. “Prosody and the selection of source units for

concatenative synthesis”. In J. van Santen, R. Sproat, J. Olive, and J. Hirschberg, editors,

Progress in speech synthesis, pages 279--282. Springer Verlag, 1996.

[13] M. Lieberman “Computer Speech Synthesis: Its Status and Prospects”, Voice

Communications between humans and machines, Washington D.C., National Academy

Press, 1994.

[14] T. Dutoit and H. Leich. MBR-PSOLA : Text-to-speech synthesis based on an MBE

re-synthesis of the segments database. Speech Communication, 13:435--440, 1993.

