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ABSTRACT

In the present work the goal was to create a fully automatic, but effective 

method to segment gray scale biomedical images. The literature offered several 

suggestions,  many  of  which  were  considered  and  further  investigated.  Two 

commonly used algorithms are the Watershed algorithm and the Seeded Region 

Growing  algorithm,  as  well  as  their  variations.  Although  they  are  based  on 

promising ideas,  they both lack in certain areas.  The Watershed algorithm is 

automatic, but it is too sensitive in gray value fluctuations, causing undesired 

oversegmention of the image. The ISRG performs quality segmentation, but it 

requires a manually selected seed set to determine the regions of interest.

We  propose  in  this  work  a  method  that  combines  the  two  algorithms, 

performing  fully  automated,  reliable  image  segmentation.  The  Watershed 

algorithm is first used to define roughly the regions of interest, and support the 

seed selection. Then the ISRG algorithm is inputed these seeds and performs the 

actual  segmentation of  the image.  A final  post  processing step to refine the 

segmentation is required.

The  proposed  method  was  applied  in  gray  scale  biomedical  images  and 

produced satisfactory results. It outperformed both algorithms and its output is 

comparable to manual segmentation.
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Chapter 1 - INTRODUCTION

The  term  digital  image  processing  refers  to  tasks,  such  as  analysis, 

interpretation  and  manipulation,  which  are  performed  using  computer 

algorithms,  and  for  which  the  input  is  a  digital  image.  The  output  of  the 

processing is either an image or a set of characteristics or parameters related to 

the image, and it consists the primary or one of the auxiliary functions of various 

applications,  from  photo  manipulation  and  computer  graphics  to  feature 

extraction and remote sensing.

In image processing a common goal is to partition a given image into regions 

with respect to various criteria. This procedure is known as image segmentation. 

The  desired  outcome  of  image  segmentation  is  to  create  a  content  based 

separation of the image, such that every region has a meaningful disassociation 

from its surroundings, as regards the purpose of each application.

The task considered in the present work is image segmentation, and more 

specifically an automatic, but effective method to segment gray scale biomedical 

images.

1.1. Image Segmentation

Although it may seem as an easy and straightforward procedure for human 
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perception to identify objects, recognize shape, spot mutation, track movement 

and decide contours, when it  comes to machine vision these are complicated 

tasks  that  demand a lot  of  effort  in  order  to  be  achieved to  the  minimum. 

Computer vision scientists are faced with the challenge to interpret the human 

vision function and reproduce it using algorithms. An important step towards this 

endeavor is to recognize  homogeneous regions within an image as distinct, and 

successively as belonging to different objects.  Image segmentation deals with 

these issues in a primary level.

To address the problem in a more practical manner let us consider a typical 

gray scale image that portrays a face in front of a homogeneous background, the 

face covering about half of the image. It would certainly be easy for a human to 

distinguish the face from the background. Then, given a medium quality of the 

image, we could easily detect the hair, the mouth and the eyes, and given a 

better quality almost every detail such us small wrinkles and eyelashes. When it 

comes to computer algorithms, especially the fully automated ones, the case is 

quite different. In terms of algorithmic input, all these meaningful features are 

just groups of different gray level pixels spread around the image arbitrarily.

The first step to give an image, a vague set of pixels, some meaning, when a 

computerized process is involved, is image segmentation. Image segmentation is 

the procedure of deciding which pixels are to be grouped together and which 

ought to be separated. The way in which this is done may vary, depending on 

either the approach followed or the application involving the segmentation step, 

or both. Nevertheless, regardless the approach or the application, when image 

segmentation is performed in an image the goal is to create partitions of it and 

to try to make each partition represent something that, in a non strict sense, 

consists an entity clearly separated from the other entities in the image.

Before we continue with a rough explanation of  how image segmentation 

algorithms work in general,  it  would be helpful to note that we refer to non 

intelligent systems; this applies for the algorithms using artificial neural networks 

as  well,  since they too require  a  training stage prior  to  performing the final 

segmentation. So the only useful information that the algorithms can actually 

exploit, with the exception of the ones that use an extra manually constructed 
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input, are the gray value of each pixel along with its position in the image, or, to 

put it differently, its distance from the other pixels. 

All  the  above having  been  mentioned,  the  main  principle  that  the  image 

segmentation algorithms follow is somewhat easy to imagine. As solid entities, in 

the sense that they are described above, do not usually demonstrate intense 

fluctuations  of  their  gray  value,  the  main  principle  image  segmentation 

algorithms are based on is to group neighboring pixels together as long as they 

have the same or similar gray values. They perform this grouping action, each 

based on its working principle and specific parameters that may relate to the 

image or be set by a user, until every pixel within an image has been grouped 

with  neighboring  ones.  The result  is  the  whole  image being  partitioned into 

regions and contours being set to separate them.

Although  the  main  principle  behind  image  segmentation  algorithms  has 

become clear, one last point should be made. What defines the separation of a 

given image – the image segmentation- is the actual application it is intended 

for.  There  are  two  important  implications  to  this:  i)  one  single  image 

segmentation algorithm cannot be used in all cases that image segmentation is 

required,  at  least  not  without  alterations  or  variations,  despite  its  good 

performance, and ii) human intervention cannot be totally omitted, even in the 

case of fully automated image segmentation algorithms, as the choice of the 

appropriate  tool,  according  to   the  task  that  must  be  performed,  is  very 

important. 

Disjoining every small particle in an image could be the desired outcome for a 

certain application, while it  could be a thorn for another. Thus, the first step 

when performing image segmentation is to define what it will be used for, or in 

other words, how much detail is useful. However we must keep in mind that all 

these issues need to be predefined only roughly,  as it  is  common for image 

segmentation algorithms to include a post processing step that resolves various 

problems,  handling  specific  occurrences  as  exceptions  subject  to  particular 

conditions. 
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1.2. Image Segmentation in biomedical applications

Image processing has greatly advanced over the last years partly due to its 

wide  use  in  biomedical  applications.  Imaging  is  a  powerful  tool  for  both 

diagnostic  and  researching  purposes  in  a  variety  of  medically  relevant 

procedures.  The  strong  relation  between  biomedical  applications  and  image 

processing  is  manifested  by  the  fact  that  there  exist  several  digital  image 

protocols dedicated to biomedical use exclusively. To offer a simple and everyday 

example  of  how closely  biology  and  medicine  are  connected to  the  imaging 

science let us remind the irreplaceable contribution of CT scans, MRI s, digital 

microscopes and ultrasounds to modern medicine.

Medical imaging is often perceived as the means to non invasively produce 

images  of  the  internal  aspect  of  the  body,  that  is  as  a  purely  visualization 

instrumentality.  However,  there is  a lot  of  work done recently  to engage the 

advancements  of  image  processing  in  biomedical  applications.  Image 

segmentation  has  already  made  its  breakthrough  in  the  medical   science, 

providing numerous benefits to the doctors, patients and researchers.

As pointed out  by Vannier and Haller in [1], biomedical image segmentation 

is  the  parcellation  of  scenes  into  its  component  regions,  a  prerequisite  for 

labeling  of  organs,  organelles,  and  anatomic  substructures  found  in  images. 

Segmentation  is  the  signal  and  image  processing  equivalent  of  anatomic  or 

surgical  dissection  that  results  in  separate  components. The  purpose  of 

biomedical  image  segmentation  is  to  define  subregions  that  correspond  to 

biological  entities,  typically  by  delineation  of  substructure  boundaries,  and 

assignment of class membership to each of the original image pixels or voxels. 

Class assignment may be dichotomous or probabilistic. The number of classes 

present  in a scene is  typically  orders of  magnitude less than the number of 

image elements.

 The  most  significant  biomedical  applications  of  image  segmentation  are 

morphometry and change detection. The segmented regions of medical  images 

are  used  for  comparison  within  or  between  individuals.  Reference  data  that 

facilitates  interpretation of  geometric  and mass  property  measurements  from 
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segmented  image  regions  are  assembled  into  anatomic  atlases,  including 

recently  developed  electronic  versions.  Many  disciplines,  including 

anthropometry,  physical  anthropology,  neuroscience,  oncology,  orthotics  and 

prosthetics use these data compilations in atlases.

Furthermore, image guided treatment planning and delivery in surgery and 

radiotherapy use segmentation to define the target lesion and critical  normal 

structures. Surgical  navigation uses segmented results to guide instruments to a 

target  while  minimizing  the  trauma to  normal  structures.  Radiotherapy plans 

treatments and delivers therapy with the goal of maximizing the tumour and its 

penumbra  dose  while  avoiding  complications  due  to  exposure  of  adjacent 

structures,  some  of  which  may  be  especially  radiosensitive,  by  a  variety  of 

strategies.  Recent  advancements  in  radiotherapy  including  inverse  treatment, 

stereotactic  methods,  and 3D  conformal  dynamic  therapy  require  image 

segmentation, usually of CT or MRI scans or both. In fact, the segmentation step 

is  usually  considered the most  time consuming and costly  step in  the entire 

process of planning and administering modern therapies.

The importance of image segmentation in biomedical applications as well as 

the  the  need  for  application  related  segmentation  provide  us  with  a  strong 

motivation to examine the performance of established segmentation methods, to 

attempt an upgrade by alligation and post processing and try to improve their 

effectiveness for biomedical image segmentation by parameter manipulation.
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Chapter 2 - COMMON APPROACHES

Various techniques have been employed for image segmentation, most of 

which  follow  one  or  a  combination  of  approaches  based  on  :  i)  histogram 

thresholding,  ii)  edge  detection,iii)  tree/graph  analysis,  iv)  clustering,  v) 

probabilistic/Bayesian models,  vi) neural networks and vii) region growing [2].

Histogram thresholding is based on constructing color and hue histograms 

[2].  Ohlander  [3] proposed  a  thresholding  technique  that  is  very  useful  on 

segmenting outdoor color images. The picture is thresholded at its most clearly 

separated peak. The process iterates for each segmented part of the image until 

no separate peaks are found in any of the histograms. The criteria to separate 

peaks was based on the ratio of peak maximum to peak minimum to be greater 

than or equal to two. Textured areas were separated from uniform regions by 

using a Sobel operator marking regions that contain large edge activity. 

Another thresholding approach has been implemented  by Cheriet et al.  [4] 

in the area of document images, specifically for segmenting bank cheques. This 

approach segments the brightest homogeneous object from a given image at 

each  recursion,  leaving  the  darkest  homogeneous  object.  This  method  is 

developed without any constraints on the number of objects in the digital image. 

The method is  based on discriminant  analysis.  The thresholding  operation is 

regarded as the partitioning of pixels of an image into two classes: object and 

background. For each iteration, the histogram of the image is drawn and the 

largest peak is separated from the rest of the image. The process is continued till 

there are no more peaks left in the histogram.
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In a number of applications, histogram thresholding is not possible simply 

because the histogram may be unimodal [2]. In some cases the images may be 

of such quality that any preprocessing may not improve the contrast between 

objects sufficiently and hence one may not achieve two or more peaks in the 

histogram for selecting thresholds for segmentation. Unimodal distributions are 

typically obtained when the image consists of mostly of a large background area 

with  small,  but  significant  regions.  This  often  happens  in  medical  imaging 

applications, a fact that makes histogram thresholding unsuitable for biomedical 

image segmentation, at least not without resolving these issues first.

Edge detection methods attempt to  perform image segmentation through 

boundary analysis. Prager [5] proposed a set of algorithms the goal of which is 

to locate the boundaries of an object correctly in a scene. First, pre-processing of 

the images is done to clean up the raw data by smoothing and noise-removal. 

Second, the edge representation is generated. Differentiation is done to find the 

edge-strength at each point in the image. Suppression is then done to remove 

multiple edges formed by spatial differentiation of boundaries. Third, the edges 

are joined into line segments and features are computed. The features include: 

length, contrast, frequency, mean, variance and location of each line segment. 

Fourth, post-processing is done to remove unwanted line segments and to build 

confidence for each of the remaining segments. The output of the system is a 

set of line segments with a list of attributes, such as length and confidence.

It  is  acknowledged  [2] that edge based segmentation has not been very 

successful because of small  gaps that allow merging of dissimilar  regions. In 

order to avoid these problems Perkins  [6] proposes an expansion-contraction 

technique in which edge regions are expanded to close gaps and then contracted 

after the separate regions have been labeled. The size of expansion is controlled 

such that small regions are not engulfed by this process. The process involves 

the use of Sobel filter for producing edge strengths and directions at every point. 

The edges are thinned and the result is automatically thresholded leaving only 

ridges. The ridges separate regions of different intensity but there may be small 

gaps. Segmentation is performed by expanding active edge regions, labeling the 

segmented uniform intensity regions, and then contracting edge regions.
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Tree/graph analysis was proposed by Cho and Meer [7] as a new approach 

for  segmentation,  which is  derived from the consensus  of  a  set  of  different 

segmentation outputs on one input image. Instead of statistics characterizing the 

spatial structure of the local neighborhood of a pixel, for every pair of adjacent 

pixels  their  collected  statistics  are  used  for  determining  local  homogeneity. 

Several initial segmentations are derived from the same input image by changing 

the probabilistic component of the hierarchical Region Adjacency Graph (RAG) 

pyramid based technique. From the ensemble of these initial segmentations, for 

every adjacent pixel pair a co-occurrence probability is derived, which captures 

global information (about the image) at the local level (pixel level). The final 

segmentation of the input image is obtained by processing the co-occurrence 

probability field with the same RAG pyramid technique. The pixel pairs with high 

co-occurrence probability  are then grouped together based on the consensus 

about local homogeneity. This technique can also be used to extract the high 

confidence  homogeneous  regions  from  the  co-occurrence  probability  field. 

Bayesian networks were then used to extract features from images. The features 

extracted were variance of the width of the region, ratio of average width to 

length  and  the  average  grey  level.  Then  post-processing  of  over-segmented 

images is done based upon a priori information about the sought features. The 

RAG of the final segmentation provides the spatial relationship between regions 

and can used for further interactive analysis of the image. This segmentation 

method is completely unsupervised.

Clustering of pixels has been used to perform image segmentation effectively 

[2].  Cluster analysis allows the partitioning of data into meaningful subgroups 

and  it  can  be  applied  for  image  segmentation  or  classification  purposes. 

Clustering analysis either requires the user to provide the seeds for the regions 

to be segmented or uses non-parametric methods for finding the salient regions 

without the need for seed points. Clustering is commonly used in a range of 

applications  such  as  image  segmentation  and  unsupervised  learning  [8].  A 

number of issues related to clustering are worth studying including how many 

clusters are the best and how to determine the validity of clusters. In a number 

of segmentation techniques, such as fuzzy c-means clustering, the number of 
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clusters present in the image have to be specified in advance. Several techniques 

that do not require such initialization have been proposed in literature .

The validity of clusters is also important to study. Yarman-Vural and Ataman 

[9] critique several areas of clustering methodology including the definition of 

clusters, determination of the number of clusters, heuristic partitional clustering 

algorithms  and  the  effect  of  noise  on  determining  accurate  clusters.  Cluster 

validity  criteria  including  maximum likelihood information  criteria  and  sum of 

squared errors is  discussed. The first  criteria is  found to be better when the 

number of clusters changes.

Probabilistic algorithms  use  co-occurrence  based  approaches  for  image 

segmentation  making use  of  region  and boundary  information  in  parallel  for 

improved  performance  on  a  sequence  of  images.  Haddon  and  Boyce  [10] 

examined  image  segmentation  by  unifying  region  and  boundary  information 

using co-occurrence matrices. The co-occurrence matrices were used to generate 

the feature space. The analysis was performed in the context of an ensemble of 

images. Based on the location of the intensities of each pixel and its neighbours 

in  the  co-occurrence  matrix,  initial  segmentation  is  done.  Each  pixel  is  then 

associated with a tuple which specifies whether it belongs to a given region or if 

it is a boundary pixel. This tentative segmentation was then refined by relaxation 

labelling that ensures local consistency of pixel labelling during segmentation by 

minimising the entropy of local neighbourhoods. If a pixel does not belong to the 

boundary, then it is assigned to one of the regions. This classification is entirely 

uni-dimensional  in  the  co-occurrence  direction  and  contains  no  explicit  local 

consistency. The consistency for regions and boundary was obtained assuming 

that boundaries are not wider than one pixel.

Neural networks have also been proposed as an automatic segmentation and 

classification  method.  Campbell  et  al.  [11] and  Papamarkos  et  al.[12] have 

developed the procedure of image segmentation using Self-Organising Feature 

Maps  (SOFM).  The  use  of  these  neural  network  paradigms  is  considered 

equivalent  to  multithresholding  where  the  output  of  the  network  defines  a 

number of homogeneous clusters [2].

Region growing algorithms take one or more pixels, called seeds, and grow 
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the  regions  around  them based  upon  a  certain  homogeneity  criteria.  If  the 

adjoining pixels are similar to the seed, they are merged with them within a 

single region. The process continues until all the pixels in the image are assigned 

to  one  or  more  regions.  For  region  growing,  seeds  can  be  automatically  or 

manually selected. Their automated selection can be based on finding pixels that 

are of interest, e.g. the brightest pixel in an infra-red image can serve as a seed 

pixel. They can also be determined from the peaks found in an image histogram. 

On the other hand, seeds can also be selected manually for every object present 

in the image.

Two of the most representative algorithms of this approach are the Seeded 

Region Growing (SRG) [2] and the Watershed Transformation based algorithms 

[13],  along  with  their  variations.  As  these  algorithms  were  utilized  for  the 

present work, they will be presented in detail next.

2.1. The Watershed Algorithm

In gray scale mathematical morphology the watershed transform, originally 

proposed by Digabel  and Lantuejoul  [14] and later improved by Beucher and 

Lantuejoul  [15],  is  the  method  of  choice  for  image  segmentation  [16].The 

intuitive  idea  underlying  this  method comes  from geography:  it  is  that  of  a 

landscape or topographic relief which is flooded by water, watersheds being the 

divide lines of the domains of attraction of rain falling over the region [16]. An 

alternative approach is to imagine the landscape being immersed in a lake, with 

holes pierced in local minima. Basins (also called 'catchment basins') will fill up 

with water starting at these local minima, and, at points where water coming 

from different basins would meet,  dams are built.  When the water level  has 

reached the highest peak in the landscape, the process is stopped. As a result, 

the landscape is partitioned into regions or basins separated by dams, called 

watershed lines or simply watersheds [13].

One of the difficulties with this intuitive concept is that it leaves room for 

various  formalizations.  Many  sequential  algorithms  have  been  developed  to 

compute watershed transforms. Here, for reasons of simpicity and consistency, 
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we follow the presentation in [17], which is based on distance functions.

2.1.1. Method description

A formal definition of a catchment basin is given by Meyer [17] and [18] in 

the following way: Let f  p be a function of gray values representing a digital 

image with the domain Ω⊂ℤ .Each pixel p∈Ω  has a gray value f  p  

and  a  set  of  neighboring  pixels  p'∈N  p  with  a  distance  function 

dist  p , p '   to  each  neighbor.  In  most  cases  a  4-  or  8-  connectivity 

neighborhood is used with a constant distance of 1 to all 4 or 8 neighboring 

pixels. From functions on continuous space, Meyer derived a formal definition of 

catchment basins for the digital space through the definitions below :

Definition 1 (Cost function based on Lower slope):  The cost for walking on 

the topographical surface from position pi−1 to pi∈ℕ pi−1 is:

cost  pi−1 , pi ={LS  pi−1⋅dist  pi−1 , pi : f  pi−1f  pi 
LS  pi ⋅dist  pi−1 , pi : f  pi−1f  pi
1
2 LS  pi−1LS  pi ⋅dist  pi−1 , pi : f  pi−1=f  pi }

The lower slope LS  p=max∀ p '∈N  p{f  p−f  p ' 
dist  p , p '  ∣ f  p ' f  p} and 

is not defined if no such p'  exists.

Definition 2 (Topographical  Distance):  The topographical  distance between 

the pixels p and q of the image is the minimal π− topographical distance 

among all paths between p and q inside Ω :

TD f  p , q= inf
∀ π∈Ω

TD f
π  p , q

where TD f
π  p ,q=∑

i=2

n

cost  pi−1 , pi  is the π− topographical distance of 

a path π= p1 , p 2 , ... , pi with pi∈Ω , pi= p and pn=q .

Definition 3 (Catchment Basin based on topographical distance): A catchment 

basin CBTDmi  of a regional minimum mi is the set of pixels pi∈Ω where 
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the topographical distance is closer to mi than to any other regional minimum

m j  into account :

CBTDmi ={p ∣ f miTD f  p , mif m j TD f  p ,m j ∀ j≠i }
With these definitions Meyer proposed the following theorem:

Theorem 1: The topographical distance between a pixel p and the regional 

minimum  mi in  the  depth  of  its  catchment  basin  is  minimal  and equal  to

f  p− f mi  and  the  geodesic  line  between  them is  a  line  of  steepest 

descent.

The reversal of  Theorem  1  states that a path of steepest descent causes 

minimal costs. The construction of the catchment basins is reduced to a problem 

of finding one of the shortest paths between each pixel and a local minimum.

Segmentation  based  on  local  condition: A local  condition  for  a  correct 

watershed segmentation is presented and the relation to the above formalism 

based on  the  cost  function  is  shown.The formalism is  developed for  images 

without plateaus. The extension to include images with plateaus is presented 

later. We define the watershed segmentation and catchment basins based on the 

sets of those neighboring pixels that can be part of the path of steepest descent.

Definition 4 (Neighbors on a path of steepest descent): NLS  p is the set 

of pixels p'∈ℕ p , p , p '∈Ω such that:

NLS p={p ' ∣ f  p −f  p ' 
dist  p , p ' 

=LS p , f  p ' f  p}
For  the  special  case  of  neighborhoods  with dist  p' , p=1 for  all 

p'∈ℕ p we can simplify the set to:

NLS  p={p' ∣ f  p' = min
∀ p ' '∈N p

f  p ' '  , f  p ' f  p}
The path of steepest descent from a pixel p down to the local minimum mi

will  pass  only  pixels  of  the  set ∪p∈Ω NLS p  Sp NLSp This  leads  to  a 

definition  of  a  watershed  segmentation  and  catchment  basins  based  on

NLS  p :

Definition 5 (Watershed segmentation for images without plateaus): For any 
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image  without  plateaus  a  segmentation  is  called  watershed  segmentation  if 

every  local  minimum mi has  a  unique  label Lmi  and  for  every  pixel

p , p '∈Ω and NLS p ≠∅ the following condition holds:

∃ p '∈NLS p  with L p=L p' 
Definition 6  (Catchment Basin):  For a watershed segmentation as defined 

above, a catchment basin CBLC mi  of the local minimum mi is the set of 

pixels with the label Lmi  :

CBLC mi ={p ∣ L p=Lmi }

CBLC  pmi  denotes the catchment basin of  mi containing pixel p . It 

is  clear  that  an  image  may  have  many  valid  watershed  segmentations  The 

following theorem shows the relationship between the denition of a catchment 

basin based on the topographic distance and the local condition:

Theorem 2: A catcment basin  based on the topographical  distance, as in 

Definition 3, is a subset of the catchment basin based on the local condition of 

Definition 5.

The formal construction of the catchment basin, according to  Definition  5, 

can be described with a recursion. The recursion starts with the set of pixels 

belonging to the local minima mi . All these pixels are labeled with Lmi  . In 

each step pixels are added to the previous set. The recursion ends if no pixels 

can be added.

CBLC
0 mi  = mi

CBLC
k 1mi = CBLC

k mi ∪ Δ CBLC
k mi 

Δ CBLC
k mi= {p ∣∃ p ' ∈ NLS  p  and p∉CBLC

k m j ∀ j and p' ∈ CBLC
k mi}

Each  added  pixel p has  a  neighboring  pixel p' being  part  of  the 

catchment basin CBLC
k mi   . Thus the local condition of  Definition 5 is valid 

for each p . It is concluded that:
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p ' ∈ NLS p

LS p= f  p−f  p ' 
dist  p , p ' 

LS  p ⋅dist  p , p' =f  p −f  p ' 
cost  p , p ' =f  p −f  p' 

According to  Theorem  1  ,  one recursion step adds only  those pixels p

building paths of steepest descent down to CBLC
k mi  with the minimal costs

f  p− f '  p , p ∈ CBLC
k mi .  After  the  recursion  is  finished,  all  paths 

between  the  pixels  of  the  catchment  basin  and  its  minimum  are  paths  of 

steepest descent. Therefore it is not possible to construct a steeper path to a 

different minimum m j . However, there might exist another steepest path to a

different  local  minimum m j .  In  this  case  the  pixel  is  a  watershed  pixel 

according  to  Definition  3 .This  proves that  CBTD mi  is  a  subset  of

CBLC mi  . 

The difference between Definition 3 and Definition 6 is the treatment of the 

pixels  that  have  steepest  paths  to  more  than  one  minimum  According  to 

Definition 3  these pixels are watershed pixels. Following Definition 6 based on 

the local condition, such a pixel is assigned to one of the minima mi , which is 

connected  by  a  steepest  path  and  where  the  condition  p' ∈ NLS  p ,

L p ' =Lmi holds.

Treatment of plateaus: The topographic distance has the same value for all 

pixels on a plateau. Therefore we have to use the geodesic distance in addition 

to ensure that a pixel on a plateau gets labeled from the nearest border pixel 

with a lower neighbor. The geodesic distance between two pixels p and p'
on a plateau is equal to the length of the shortestpath between p and p'  

within  the  considered  area.  We  will  show  how  to  extend  the  set  of  lower 

neighbors on a path of steepest descent NLS (Definition 4) to include images 

with plateaus.

A plateau PL is a connected set of pixels that have the same altitude. For 

minima  plateaus,  which  are  distended  over  more  than  one  subdomain,  no 
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reflooding is necessary. They are linked by selecting a globally unique identifier 

for each minimum plateau.

Let ∂PL = { p ' ∣NLS  p ' ≠∅ , p ' ∈ PL } denote the set of pixels on the 

border  of  plateau  PL  which  have  a  lower  neighbor,  and  let  further

dist PL  p ' , p be  the  geodesic  distance  between  p and p'  within  the 

plateau.  The minimal geodesic distance between a pixel p on the plateau PL 

and all border pixels p'∈∂PL is distmin  p ,∂PL =min∀ p '∈∂PL
dist PL  p , p'   . 

Extending Definition 4 we can define a watershed segmentation for images with 

plateaus:

Definition 7  (Extended neighbors on a path of steepest descent): The set

NLS' p contains  the  pixels  of  the  set NLS  p '  of  all  border  pixels

p'∈∂PL that have the minimal geodesic distance to p .

NLS '  p ={ U
p '∈∂PL

NLS '  p  : distPL  p , p ' =distmin p ,∂PL}
Definition 8  (Watershed segmentation for images with plateaus):  For any 

image with plateaus a segmentation is called watershed segmentation if every 

local minimum mi  has an unique label Lmi  and for every pixel p∈Ω and

NLS  p ' ≠∅  the following condition holds:

∃ p '∈NLS p with L p=L p' 
The watershed algorithm is implemented following Definitions 3, 6 and 8 and 

Theorem 2  , in a recursive manner. The first step to this implementation is to 

define  all  local  minima.  That  is,  for  every  pixel  in  the image to  examine its 

neighbors' gray values, and if all have greater (or equal in the case of a plateau) 

gray value, to label  it  as  a local  minimum. After all  local  minima have been 

detected  and  labeled,  the  recursive  construction  of  each  catchment  basin 

follows. In each recursion of the algorithm the neighboring pixels that build a 

path of steepest descent down to the catchment basin with the minimum cost 

are  accumulated  (appended  the  respective  label).  At  the  beginning  of  each 

iteration the pixels of the previous step are added to the set of pixels with the 

same label (the ones that belong to the same catchment basin). The recursion 

17



stops when no more pixels can be added.

2.1.2. Overview

The watershed transform, being a completely unsupervised method, exhibits 

extreme sensitivity to gray value fluctuations. A catchment basin is created every 

time a local  minimum is detected. Often these minima do not represent any 

meaningful transition of the image content  and are mainly due to noise. This 

causes  the  watershed  method  in  its  initial  form  to  produce  severe 

oversegmentation of the image, disqualifying it from being used autonomously.

2.2. The Seeded Region Growing Algorithm

Adams  and  Bischof  [19] studied  the  effectiveness  of  the  seeded  region 

growing approach for image segmentation of greyscale images, for which the 

seeds are manually selected. The method is employed to segment an image into 

different  regions  using  a  set  of  seeds.  Each  seeded  region  is  a  connected 

component comprising of one or more points and is represented by a set Ai . 

The  set  of  immediate  neighbours  bordering  the  pixel  is  calculated.  The 

neighbours are then examined and if they intersect any region from set Ai , 

then a measure δ  (difference between a pixel and the intersected region) is 

computed. If  the neighbours intersect  more than one region, then the set is 

taken as that  region for  which difference measure δ is  maximum. The new 

state of  regions for the set  then constitutes input to the next iteration. This 

process continues until all of the image pixels have been assimilated into regions. 

Hence, for each iteration the pixel that is most similar to a region that it borders 

is appended to that region.

2.2.1. Method description

Seeded region growing, as presented by Adams and Bischof [19] performs a 

segmentation of  an image with  respect  to  a  set  of  points,  known as seeds, 

starting  with  a  number  of  seeds  which  have  been  grouped  into  n sets, 

A1 , A2 , , An . Sometimes, individual sets may consist of single points. It is 

in the choice of seeds that the decision of what is a feature of interest and what 

18



is irrelevant or noise is embedded. Given the seeds, SRG then finds a tessellation 

of the image into regions with the property that each connected component of a 

region meets (nonempty intersection with) exactly one of the Ai , and, subject 

to this constraint, the regions are chosen to be as homogeneous as possible. We 

present here a description of the method as applied to gray scale images. The 

method can be implemented on any shape grid (or graph) in any number of 

dimensions.

The process  evolves inductively from the seeds, namely, the initial  state of 

the sets A1 , A2 , , An . Each step of the algorithm involves the addition of 

one pixel to one of the above sets. We now consider the state of the sets Ai , 

after m steps.Let T  be the set of all as-yet unallocated pixels which border at 

least one of the regions

T={x∉U
i=1

n

Ai | N  x ∩U
i=1

n

Ai≠0}
where N x   is the set of immediate neighbors of the pixel x . In this work 

we will use a rectangular grid with immediate neighbors being those which are 8 

connected to the pixel x .  If, for  x∈T  we have that  N x   meets just 

one  of the Ai then we define i  x∈{1,2 , , n} to be that index such that 

N x ∩Ai  x ≠∅ and define δ  x   to be a measure of how different x  

is  from  the  region  it  adjoins.  The  simplest  definition  for  δ  x  is

δ  x=∣g x−mean [g  y]∣ , y∈Ai  x ,  where  g  x is  the gray value 

of  the  image  point x .If N x meets  two  or  more  of  the Ai ,we  take

i  x   to  be  a  value  of i such  that N x meets Ai and δ  x  is 

minimized. Alternatively, in this circumstance, we may wish to classify x as a 

boundary pixel and append it to  the set B of already-found boundary pixels. 

Flagging such boundary pixels is useful for display purposes or for use with a 

semiinteractive  corrective  procedure.  We  then  take  a z∈T such  that

δ  z=min{ δ x} , x∈T and  append z to Ai  z  .  This  completes  step 

m1 .  The  process  is  repeated  until  all  pixels  have  been  allocated.  The 
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process commences with each A , being just one of the seed sets. 

In programming SRG, we make use of  a data structure which is  called a 

sequentially sorted list (SSL). This is nothing new, although it has not often been 

used in image processing applications. A SSL is just a linked list of objects, in this 

case  pixel  addresses,  which  are  ordered  according  to  some attribute.  When 

considering a new pixel, for example, at the beginning of each step of SRG, we 

take that one at the beginning of the list. When adding a pixel  to the list, we 

must place it according to its value of the ordering attribute. In our case, the SSL 

stores the data of A which is ordered according to δ .

The algorithm for implementing SRG (boundary flagging case) is as follows:

Note  that  previous  entries  in  the  SSL  are  not  updated  to  reflect  their 

differences from the new region mean. This leads to negligible difference in the 

results, but greatly enhanced speed. This stepwise description shows that, in 

executing the algorithm, each pixel is visited just once, although at each visit we 

also view each of the neighbors. Hence, it makes for a very rapid program.

2.2.2 Overview

The SRG algorithm has  the advantage of  being  fairly  robust,  quick,  and 

parameter free. However there are issues to be resolved. As the starting point is 

a  set  of  manually  selected  seeds,  the  algorithm  cannot  be  categorized  as 

automatic.  The areas  of  interest  need to  be  specified,  a  fact  that  limits  the 

algorithm's usability in a number of applications. Moreover, as pointed out by 
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Label seed points according their initial grouping.
Put neighbors of seed points (the initial T) in the SSL.
While  the SSL is not empty:

Remove first point y from SSL.
Test the neighbors of this point:
If all neighbors of y which are already labeled (other than with the 
boundary label) have the same label:

Set y  to this label.
Update running mean of corresponding region.
Add neighbors of y  which are neither already set nor 
already in the SSL to the SSL according to their value of δ.

Otherwise:
Flag y  with the boundary label.



Mehnert  and  Jackway  [20] the  SRG  has  has  both  inherent  pixel  order 

dependencies and implementation order dependencies. The first manifests itself 

whenever,  during  an  iteration,  several x∈T determine  the  same,  minimum,

δ value. Several possible choices for z are then offered.  The particular z
chosen influences the running mean of the region that it is assigned to. This in 

turn influences the δ values calculated for the x∈T in the next iteration, and 

ultimately affects the final segmentation.The second order dependency manifests 

itself whenever the chosen z has the same δ value for several regions that it 

borders.  Once again resolution of  the deadlock ultimately influences the final 

segmentationIn implementing the SRG algorithm. Adams and Bischof utilise the 

sequentially  sorted list (SSL). In their implementation the SSL is a linked list of 

pixel addresses, ordered with respect to δ . A pixel can be arbitrarily inserted 

into the list in the position prescribed by its δ value. However, only the pixel 

with the smallest δ value can be removed from the SSL. Effectively, the SSL 

stores  the  points  of  the  set T ordered  according  to δ . Also,  the 

implementation  does  not  update  previous  entries  in  the  SSL  to  reflect  new 

differences from a region whose mean has been updated. As a consequence, in 

addition to the pixel  order dependencies induced by the SRG algorithm, two 

other implementation pixel order dependencies exist. The first order dependency 

manifests itself during the initial process of adding the neighbours of the seed 

regions to the SSL. In particular, if a pixel borders two or more seed regions it is 

given a δ value based on its similarity to that seed region which happens to be 

first in terms of the order of processing of the image pixels. Once inserted into 

the  SSL  the  pixel  position  is  never  updated.  The  second  order  dependency 

manifests itself whenever the neighbours of a newly labelled pixel are added to 

the SSL. The order in which the neighbours are scanned can affect the δ value 

assigned to each and hence their ordering within the SSL.

2.2.3. The Improved Region Growing Algorithm

Mehnert and Jackway  [20] improved the Seeded Region Growing algorithm 

by making it independent of the pixel order of processing and making it more 

parallel.  Their  study presents a novel  technique for Improved Seeded Region 
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Growing (ISRG).  ISRG algorithm retains the advantages of  SRG such as fast 

execution, robust segmentation and no parameters to tune. The algorithm is also 

pixel order independent. If more than one pixel in the neighbourhood have same 

minimum similarity measure value, then all of them are processed in parallel. No 

pixel can be labelled and no region can be updated until all other pixels with the 

same priority have been examined. If a pixel cannot be labelled, because it is 

equally likely to belong to two or more adjacent regions, then it is labelled as 

‘tied’ and takes no part in the region growing process. After all of the pixels in 

the image have been labelled,  the pixels  labelled 'tied'  are independently  re-

examined to see whether or not the ties can be resolved. To resolve the ties an 

additional assignment criterion is imposed, such as assigning a tied pixel to the 

largest neighbouring region or to the neighbouring region with the largest mean. 

This is a post-processing step. The algorithm in this study was tested on the 

image of man made objects such as a car, an aeroplane, and buildings. The 

authors concluded that the ISRG algorithm produces consistent segmentation 

because it is not dependent on the order of pixel processing. Parallel processing 

ensures that the pixels with the same priority are processed in the same manner 

simultaneously.

2.3. Necessity- Motivation

The  watershed  algorithm,  though  fully  automatic,  exhibits  absolutely  no 

robustness since it is designed to detect all local gray level fluctuations. Image 

oversegmentation is a standard problem when the watershed transformation is 

implemented  independently  in  its  original  form.  While  accuracy  can  be 

guarantied,  its  actual  practicability  in  existing  applications  is  far  from  being 

achieved. The oversegmented output image can provide some information about 

the critical  points  or areas of  an image,  but  the decision criteria  should be 

relaxed, before reliable results can be obtained.

The SRG algorithm's drawbacks relating to pixel  order dependencies have 

been effectively compensated by the ISRG algorithm, generating a powerful tool 

for image segmentation. If the choice of seeds is pertinent, we can expect an 
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output  image  in  which  the  separation  of  the  regions  can  be  described  as 

borderline intelligent. However, the major disadvantage of the two seeded region 

growing algorithms is that they demand initialization by a user. They cannot work 

independently, since they are designed to expect more than the image as input; 

they  need  the  initial  seeds  to  be  selected  manually  or  another  generating 

process to provide them.

Nevertheless,  despite  their  apparent  disadvantages,  both  algorithms  have 

potential of contributing to the advancement of image segmentation techniques, 

were their  weaknesses overcome.  The SRG algorithm provides quite  efficient 

image  segmentation.  It  has  been  successfully  tested  for  natural  (outdoors, 

portrays etc) and artificial (usually biomedical) images. To make it fully functional 

the obvious extension is simply to automate the method of seed selection. The 

watershed  algorithm  on  the  other  hand  is  fully  automated.  Various  filtering 

methods could resolve the oversegmentation problem and a lot of solutions have 

been proposed about it in the literature [13], [21], [22]. But an alternative use 

for  it  could  be,  instead  of  improving  it,  to   employ  it  as  a  first  stage  in  a 

combination of image segmentation algorithms, where a problematic automated 

method can provide initialization for a superior non automated method.
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Chapter 3 - PROPOSED METHOD

In  the  present  work  the  goal  was  to  create  an  automated,  yet  effective 

technique  for  biomedical  image  segmentation.  The  literature  was  reviewed 

thoroughly and various methodologies were studied. Several issues were taken 

into consideration before starting the implementation, all pointed out throughout 

the published literature. Many questions were raised concerning every aspect of 

the  problem;  from  just  segmentation  efficiency  and  application  suitability  to 

speed and memory.   Combining two successful, well established approaches of 

the field seemed as the most promising course of action.

The  methods  combined  in  this  work  are  the  watershed  transform,  as 

described  by  Meyer  in  [17],  and  the  Improved  Seeded  Region  Growing 

algorithm, as described by Mehnert and Jackway in [20]. Although they are both 

long existing and popular algorithms, besides their implementation, significant 

effort  and  experimentation  were  required  before  the  way  they  would  be 

connected was decided. Apart from that, post processing was also required to 

surpass the limitations imposed by the algorithms' design principles. 

3.1. Description

The course of work for the proposed scheme was planned as follows. First 

the watershed algorithm would be used to provide a rough initial segmentation 

of the image. This output would be refined later by the Improved Seeded Region 
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Growing algorithm. A transitional step would be required so that the initial rough 

segmentation  could  be  utilized  as  additional  input  to  the  Improved  Seeded 

Region Growing algorithm, that is  to generate a replacement for the manual 

seed selection. So, the seed selection was handled as a post processing step of 

the  watershed  algorithm.  Next  the  post  processed  output  needed  to  be 

transformed  in  an  appropriate  structure  to  function  as  input  for  the  ISRG 

algorithm. After the ISRG was applied, any corrections and special cases would 

be handled by post processing. Last the output needed to be demonstrated on 

the initial  image and a solid  validation method to evaluate the results  to be 

decided. Prior  to  a more detailed description, the block diagram that  follows 

illustrates this process:

Step 1 – The Watershed algorithm: The initial stage of this implementation, 

the first segmentation with the watershed algorithm, was performed with respect 

to the image pixels' value 'topographical' distance, as described by Meyer in [17]. 

This  operation's  output  is  a  label  matrix.  A  label  matrix  has  the  size  of  its 

corresponding image,each cell representing the respective pixel, but the pixels, 

instead of being assigned a gray value, are assigned a label indicating the region 

they were allocated to; in our case the label was numerical, starting from 1 and 

reaching the total number of regions (with step equal to 1). Among pixels with 

different labels a line representing the watershed line was created. Then this 

matrix  was superimposed on the image. As expected, the output image was 
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severely oversegmented providing absolutely no useful results. The pixels being 

divided in numerous small groups is almost as good as not being grouped at all. 

But,  even though we realized that the image was partitioned every time the 

slightest variations of gray value occurred, and that this amount of detail was 

undesirable,  it  was  a  fact  that  the  image  was  also  segmented  when  bigger 

changes were present. This is the contribution of the first level of segmentation 

that we were seeking. 

Step 2 – Merging of oversegmented regions:  At this point the next task is 

apparent. We needed to employ a technique that would allow a form of filtering, 

to help us distinguish the significant gray value fluctuations from the insignificant 

ones. Common thresholding methods require the use of histograms, and since, 

having already incorporated quite  a  few data  type transitions  (labels  to  gray 

values and vice versa) in our scheme,  we were trying to confine the complexity 

of the structure when it was feasible, an alternative thresholding technique was 

implemented. In addition to preserving simplicity of the algorithm, another issue 

that needed alternative handling was the possible presence of noise that was 

responsible for the oversegmentation to start with. So a statistic (mean gray 

value in our case) related approach seemed more appealing.

The tactic  actually  followed to decide the significance of  some watershed 

lines  over  others  was  merging  of  the  segments  produced  by  the  watershed 

segmentation.  More  specifically  the  mean  gray  value  of  each  segment  was 

calculated. Then, starting from the first region, the absolute difference between 

the mean gray values of each region and its adjacent ones was calculated, and, 

if  it  was  found  to  be  smaller  than  a  certain  threshold,  these  regions  were 

grouped  together.  This  was  done  iteratively  until  no  more  adjacent  regions 

qualified for merging with the group under examination. The same was repeated 

for  the  first  region  that  had  not  been  merged  (the  regions  being  labeled 

numerically, this is the first consecutive label number that was listed as non-

merged, an actually random process, since there is no consistency in the order 

that  labels  are  assigned),  until  no  further  merging  was  possible.  This  raises 

questions  about  order  dependencies  induced  by  the  implementation  choices. 

They will be discussed more thoroughly later.
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The matter that needs to be attended forthwith is how the threshold that 

determines weather two or more regions should be merged is selected. It is clear 

that, as it is a similarity criterion for mean gray values, it should be a gray value 

itself.  A constant value cannot be expected to  exhibit  good behavior without 

regard to the input image. But the option of adjusting it exclusively for every 

image  is  also  not  available,  as  our  intention  is  to  create  a  fully  automated 

method. Thus, we decided to use a threshold that is related to the statistics of 

the  image.  Mean gray  value  of  the  image is  an  indicative  parameter  of  the 

image, and so it is reasonable the threshold to be expressed as a fraction of the 

mean  gray  value.  The  exact  percentage  has  to  be  determined  through 

experimentation, taking into account that different classes of images may behave 

in a totally different manner. Although this will be presented in more detail in the 

result  chapter,  let  us  note  that,  for  both  biomedical  and  natural  gray  scale 

images,  the  threshold  value  that  ensures  the  desired  outcome  of   image 

segmentation, when the proposed scheme is implemented, was found to be 10–

20%  of  the  image's  mean  gray  value,  causing  neither  over-  nor 

undersegmentation.

So far we have overcome the oversegmentation problem and eliminated any 

unnecessary  responsiveness  of  the  watershed algorithm to  minor  changes  of 

gray level.  The image is  now segmented into larger  regions  that  have been 

constructed by merging smaller ones with similar mean gray values. This process 

would be sufficient for the watershed's oversegmentation problem to be fixed 

and for us to have our automatic non-oversegmenting algorithm working if it had 

not  been so roughly  approached.  The reason why more refinement  was  not 

pursued  is  that  we  are  yet  only  half  way  through  our  implementation  and 

detailed region separation will be achieved by the following stage.

Step  3  –  Seed  Acquisition:  The  next  step  was  to  connect  the  as  far 

processing with the second major algorithm we intended to utilize. The Improved 

Seeded Region Growing algorithm can supply the refined segmentation we are 

trying to achieve, as long as the seed selection is done correctly. Through the 

watershed  algorithm  and  its  post  processing  we  have  obtained  a  coarse 

segmentation of the image, that is not sufficient for our application's demands. It 
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is, however, relatively close to the desired output, having already identified the 

homogeneous  regions.  This  coarse  segmentation  was  at  this  point  used  to 

provide the  Improved Seeded Region Growing algorithm with its initial seed set.

The   Improved  Seeded  Region  Growing  algorithm  was  implemented  as 

described by Jackway and Mehnert in [20]. According to the authors each seed is 

a single point or a set of points (pixels) in the image. To improve the odds that 

our seeds are selected correctly, we used one point seeds to start the region 

growing process. Each seed resulted from one of the partitions created during 

the previous step. The  Improved Seeded Region Growing algorithm works in 

such a way that the regions do not grow evenly around the seed. This gives us 

the trust that, if we succeed to elect the seeds so that they belong anywhere 

within each expected region, the algorithm will  manage to produce a reliable 

partition of the image. Once more, in order to improve our odds of selecting the 

appropriate seed, we selected one of the middle points of each existing partition 

to serve as a seed for the  Improved Seeded Region Growing algorithm, when it 

was possible (for convex -in a relaxed sense- partitions), or just a non boundary 

one for non convex partitions.

Step 4 – The Improved Seeded Region Growing Algorithm: After selecting the 

seeds, the ISRG algorithm performs the final segmentation. Let us once more 

note  that the number of the final partitions equals the number of the initial seed 

set. This means that the ISRG has to grow a region for every single seed that it 

is provided with, although it is expected to restrain the size of any partition that 

seems  to  be  falsely  initialized.  Since  the  seed  selection  process  was  fully 

automatized, and  the ISRG algorithm exhibits a global behaviour that does not 

allow problematic areas to be expanded, it would be both wise and feasible to 

perform one last processing step to ensure the best output possible. This post 

processing step aims to minimize the possibility that unnecessary partition has 

been done to the image.

Step 5 – Elimination of small, insignificant regions: What we expect to obtain 

after  the  ISRG  is  a  fully  partitioned  image,  that  will  not  present 

oversegmentation. So, small areas will either have some meaning, or they should 

not exist at all. This was handled with the last step of the algorithm. A process 
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similar  to  the  merging  of  the  watershed's  partitions  merging  followed.  The 

difference is that the size of the partition to be merged was taken into account 

and that the mean gray value similarity constraint was relaxed. More specifically, 

the  regions  that  had  dimensions  less  than  3%  of  the  image's  respective 

dimension  will  be  the  new  candidates  for  merging.  The  reason  that  each 

dimension separately and not the total size (we did not use e.g. the total pixel 

number)  is  taken  into  account,  is  that  if  a  region  has  grown  along  one 

dimension, it will probably be significant despite its small size. The new merge-

candidate regions are next examined one by one, and the absolute difference 

between their mean gray value and the mean gray values of all their neighboring 

regions is calculated. If this difference is less than 10% of the neighbor's mean 

gray value,  then the candidate-region is  merged with  that  neighbor.  If  more 

neighbors qualify for merging, the larger partition will be selected.

This  step concludes the proposed scheme.  One last  point  that  should be 

made is that throughout implementation many different percentages were tested 

before we concluded to the ones mentioned above. Although these numbers did 

not always give the best results, their behaviour was always quite satisfying, and 

wanting to make the algorithm free of parameter tuning, they were selected as 

optimum for the general case.

3.1.1. Overview

As  it  will  become  obvious  in  the  Results  chapter,  the  proposed  scheme 

provides us with trustworthy image segmentation. In particular it performs well 

for segmenting biomedical images, it is fully automatic and parameter free and it 

combines  sensitivity  to  gray  value  fluctuations  and  robustness.  It  seems  to 

demonstrate  weaknesses  because  of  the  dependencies  caused  by 

implementation choices during the grouping process after the first segmentation 

with the watershed algorithm. Although they could have been avoided, of course 

causing increased complexity of the scheme, we find that they were overcome 

by the fact that they were used merely to provide the seed set. Moreover, they 

were never intended to give exact segmentation, so their goal to act indicatively 

was achieved.
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3.2. Validation

Clustering  is  the  classification  of  objects  into  different  groups,  or  more 

precisely, the partitioning of a data set into subsets (clusters), so that the data in 

each subset (ideally) share some common trait - often proximity according to 

some defined distance measure [23]. In that sense image segmentation consists 

a clustering method. In many biomedical applications cluster validation provides 

solutions for the systematic evaluation of the proposed clustering methodologies.

Several cluster validation methods have been proposed throughout the literature. 

To evaluate the present work the Davies-Bouldin Validation Index was chosen to 

be used, since it has shown to be a robust strategy for the prediction of optimal 

clustering partitions [24].

The Davies-Bouldin Validation Index aims to identify sets of clusters that are 

compact  and well  separated.  For  any  partition  U  X : X 1∪... X i∪... X c , 

where  X i represents  the i th  cluster  of  such partition U ,  the Davies  – 

Bauldin validation index, DB, is defined as:

DB U=1
c∑i=1

c

max
i≠ j {Δ xi Δ x j

δ xi , x j  }
where  δ xi , x j  defines  the intercluster  distance between clusters X i and 

X j , Δ x i represents the intracluster distance ('diameter') of cluster X i , 

and  c is  the  number  of  clusters  of  partition  U .  Small  index  values 

correspond to goo clusters, that is to say, the clusters are compact and their 

centres are far away.

In the present work two criteria were used to calculate the distances; one 

based on euclidean distance and one based on absolute gray value distance. The 

intercluster euclidean distance was calculated as the euclidean distance between 

the clusters' centres of mass, the intercluster gray value distance as the absolute 

difference between the clusters'  mean gray values,  the  intracluster  euclidean 
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distance as the euclidean distance between each pixel  and its  corresponding 

cluster's centre of mass and the intracluster gray value distance as the absolute 

difference between a pixel's gray value and its corresponding cluster's mean gray 

value. 

If each pixel represents a point and the image a two dimensional plane, then 

all  the pixels are described by their coordinates, e.g.  P x , y . The digital 

images of course can only represent a digital plane, so the pixel's coordinates are 

discrete values. In  our implementation, in specific,  the images are stored in 

matrices  with  dimensions  the  dimensions  of  the  image  and  each  element 

holding the gray value of the respective pixel located at this position. So the 

coordinates of each pixel are now described by the matrix' row and column it is 

stored  in,  giving:  P col , row  .  So,  even  though  it  is  not  defined  in 

continuous  space,  the  Euclidean  Distance  criterion Dist EU  between  pixels 

P  and  P '  described  here  is  defined  as

Dist EU=∣P col , row −P ' col ' , row ' ∣ ,  or  following  the  Euclidean 

Distance  definition,  Dist EU
2 =col−col ' 2row−row ' 2 .  The  following 

figure illustrates the aforementioned distances in a clearer way.

We follow the formalization used to describe the Davies – Bauldin Validity 

Index. Let us consider a partition U  X : X , where X i represents the i

th cluster of such partition U . Figure 2 illustrates an instance of  U : X i

and X j are two neighboring clusters, points A and B are their centres (without 
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defining the distance criteria in specific,  we have to use such a vague term) 

respectively,  and point  C belongs to  cluster  X i .  The Intracluster  Distance 

δ xi , x j  for our case is the distance between A and B. Now let us consider 

for cluster X i the distance Δm xi  between its centre and a point m , that 

belongs in cluster X i . For our example, for point C this would be the distance 

between  B  and  C.  The  Intercluster  Distance  Δ x i for  cluster X i is  the 

maximum distance that can be defined that way, for all the pixels that belong to

X i .
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Chapter 4 - RESULTS

As we discussed earlier, the method comprises five steps.  For the first step 

the  input  is  the  original  image and  the  output  is  the  watershed  result,  an 

oversegmented  image.  In  the  second  step   this  oversegmented  image is 

processed and a roughly segmented image is acquired. The roughly segmented 

image is used in the third step to provide the seed set. Then, in the fourth step 

the  seed set consists the input for the ISRG, and the  ISRG result is produced. 

Finally,  in  the  fifth step some post processing offers  refinement of  the ISRG 

result, providing the final segmentation. 

The input and output of each step, as well as the ISRG result for random 

seed  selection  are  illustrated  for  an  outdoor  gray  scale  image  next.  Their 

evaluation using the Davies - Bauldin Validity Index follows.

4.1 Comparison with other methods

To  evaluate  the  proposed  method  against  the  Watershed  and  the  ISRG 

algorithms we used a sample outdoor gray scale image [25]. We segmented the 

sample  image  using  the  Proposed  Method  (with  threshold=0.15).  The  same 

image was also segmented using the ISRG algorithm for seed sets of various 

sizes. The seeds that initialize the ISRG algorithm were selected randomly.

Next we present the segmentation result for i) the watershed algorithm, ii) 

the  watershed  grouping  (step  2  of  the  Proposed  Method),  iii)  the  Proposed 
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Method,  iv)  the  ISRG algorithm with  a  few (5)  random seeds,  v)  the  ISRG 

algorithm with many (40) random seeds and vi) the ISRG algorithm with random 

seeds that are as many as our implementation's resulting number of regions. The 

seed  set  is  also  presented.  After  we  demonstrate  the  images  for  the 

aforementioned cases, they will be compared using the Davies – Bauldin Validity 

Index.
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Image 2: Original Image Image 1: Watershed Result

Image 3: Merging 
(thr=0.15) Image 4: Initial Seed Set

Image 5: ISRG Result  
with automatic seed 
selection(before post  
processing)

Image 6: Final Result  
(after post processing)
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Image 11: Random seed 
selection–40 seeds

Image 7:Random seed 
selection–5 seeds

Image 8: ISRG Result  
with random seed 
selection (5 seeds)

Image 9: Random seed 
selection-36 seeds

Image 10: ISRG Result  
with random seed 
selection(36 seeds)

Image 12: ISRG Result  
with random seed 
selection (40 seeds)



The Davies – Bauldin Validity Index was used for the methods' evaluation, 

using  two  criteria;  the  Euclidean  Distance  and  the  Gray  Value  Distance,  as 

described in section 3.2.

Method Watershed Watershed 
Grouping

ISRG
5 seeds

ISRG
40 seeds

ISRG
36 seeds

Proposed
Method

Number of
 Regions 602 47 5 40 36 36

Validity 
Index

(Euclidean 
distance)

3.4049 6.8452 1.9283 7.7498 6.2347 6.1494

Validity 
Index
(Gray 
value)

22.8321 15.9769 4.3188 30.3468 16.1436 14.4711

Table 1: Comparative Results of the Methods

From the results presented above, we observed that the Davies – Bauldin 

Validity Index seems to be mainly dependent on the number of clusters, and 

successively on the clusters' average size. Let us remind that smaller  Davies – 

Bauldin Validity Index value implies better segmentation. According to this, the 

Watershed (oversegmented) result – for the euclidean distance criterion- and the 

randomly  initiated  ISRG  (undersegmented)  result  are  superior  to  the  other 

results. This, however, is not supported by the images observation. The  Davies – 

Bauldin Validity Index is defined as:

DB U=1
c∑i=1

c

max
i≠ j {Δ x iΔ  x j 

δ xi , x j }
So, for the case of the Watershed algorithm, its good performance is due to 

small intercluster distances Δ x i , because of the clusters' small size. For the 

case of the ISRG algorithm with few seeds, the intracluster distance δ xi , x j 

among the clusters is  large because of the clusters' big size. This causes the 

Davies – Bauldin Validity Index to decrease implying better performance.

Given these observations, the safest way to evaluate the proposed method's 

performance are  visual  observation  and comparison with  the ISRG algorithm 
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when the number clusters is equal. The proposed method performs better than 

the ISRG in this case. All meaningful entities on the image are detected and their 

contours are formed with precision.

4.2 Results for Biomedical Images – Proposed Method

The proposed scheme was implemented for four biomedical images, a chest 

CT, a chest CR and a knee and a head MRIs and it was programmed with Matlab. 

The experiments were conducted for seven thresholds for each image, from 10% 

up to 22% of the original image's mean gray value, with a step of 2%. The 

sample images were taken by S. Barre's online repository [26]. The images were 

in DICOM format,  a format  used in biomedical  applications,  and prior  to the 

processing they were converted to JPEG and they were subsampled. Following 

the  segmentation  procedure,  the  results  were  validated  using  the  Davies  – 

Bauldin Validity Index. The algorithm's results will be presented and discussed 

for  every  image separately,  while  a  total  evaluation  will  be  presented in  the 

Conclusions chapter. 
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I. Chest CR

The first image we processed was a Computer Radiography (an electronic X-ray) 

image  of  a  human  chest.  First,  we  present  the  original  image,  next  the 

watershed  algorithm  result,  and  then  the  output  of  our  implementation  for 

various thresholds.
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Image 13: Chest CR (original  
image)

Image 15: Chest CR - Proposed 
scheme  (threshold = 0.1)

Image 16: Chest CR - Proposed 
scheme  (threshold = 0.12)

Image 14: Chest CR - Watershed
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Image 18: Chest CR - Proposed 
scheme  (threshold = 0.14)

Image 19: Chest CR - Proposed 
scheme  (threshold = 0.18)

Image 17: Chest CR - Proposed 
scheme  (threshold = 0.16 )

Image 20: Chest CR - Proposed 
scheme  (threshold = 0.2)



Thresholds/
(mean  Gray 
value)

0.1 0.12 0.14 0.16 0.18 0.2 0.22

Number  of 
Regions 95 95 62 57 53 53 50

Validity 
Index 
(Euclidean 
distance)

3.3896 3.4324 4.9275 3.2464 3.0897 3.2227 11.6964

Validity 
Index  (Gray 
value)

22.0743 18.9827 8.9058 11.2936 19.7293 17.6986 18.6787

Table 2: Validity Indexes – Chest CR

First  we observe that the number of  regions decreases as the threshold 

increases. This was expected; the threshold determines the merging process of 

step 2 of  the Proposed Method. Higher thresholds allow more regions to be 

grouped together. So, fewer seeds are selected to initialize step 4 of the method, 

resulting in fewer final partitions in the image.

The Validity Index behave differently when different criteria are used. The 
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Image 21: Chest CR - Proposed 
scheme  (threshold = 0.22)



Validity  Index  according  to  the  Euclidean  Distance  criterion  is  minimized  for 

threshold equal to 18% of the mean gray value of the image, while according to 

the Gray Value Distance it is minimized for threshold equal to 14% of the  mean 

gray value of the image. Visual observation supports the conclusion according to 

the Euclidean Distance, so it is found to be more reliable. The Validation Index, 

as it is defined, when calculated using the Gray Value criterion is sensitive to 

fluctuations that we tried to overcome during the method's designing stage. One 

single pixel's gray value can affect the intercluster distance, thus affecting the 

Validity Index. This is not acceptable, so, although the Validity Index according to 

the Gray Value Distance offers useful conclusions when no errors are present, 

when it contradicts with the conclusions exported by the Validity Index according 

to the Euclidean Distance, it is treated with skepticism. 
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II. Chest CT

The second image we processed was a Computerized Tomography image of a 

human chest. First, we present the original image, next the watershed algorithm 

result, and then the output of our implementation for various thresholds.
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Image 22: Chest CT (original image)

Image 23: Chest CT - Watershed



43

Image 24: Chest CT - Proposed scheme (threshold 
= 0.12)

Image 25: Chest CT - Proposed scheme (threshold = 0.1)
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Image 26: Chest CT - Proposed scheme (threshold 
= 0.14)

Image 27: Chest CT - Proposed scheme (threshold 
= 0.16)
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Image 28: Chest CT - Proposed scheme (threshold 
= 0.18)

Image 29: Chest CT - Proposed scheme (threshold 
= 0.2)



Thresholds/
(mean  Gray 
value)

0.1 0.12 0.14 0.16 0.18 0.2 0.22

Number  of 
Regions 69 57 56 46 46 41 36

Validation
(Euclideandi
stance)

7.3628 6.1001 5.8016 5.4734 3.6560 7.6478 14.1355

Validation
(Gray value) 28.745 26.1708 15.866 11.309 4.3058 28.5602 16.852

Table 3: Validity Indexes - Chest CT

Once  more  we  observe  that  the  number  of  regions  decreases  as  the 

threshold increases. The Validity Index according to both the Euclidean Distance 

and  the  Gray  Value  Distance  criterion  shows  that  the  best  segmentation  is 

achieved when the threshold equals 18% of the image's mean gray value. This is 

supported by visual observation as well.
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Image 30: Chest CT - Proposed scheme (threshold 
= 0.22)



III. Head MRI

The third image we processed was a Magnetic Resonance Image of a head. First, 

we present the original image, next the watershed algorithm result, and then the 

output of our implementation for various thresholds.
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Image 31: Head MRI (original  
image)

Image 32: Head MRI - Watershed

Image 34: Head MRI - Proposed 
scheme (threshold = 0.1)

Image 33: Head MRI - Proposed scheme 
(threshold = 0.12)
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Image 35: Head MRI - Proposed 
scheme (threshold = 0.14) Image 36: Head MRI - Proposed scheme 

(threshold = 0.16)

Image 37: Head MRI - Proposed 
scheme (threshold = 0.18) Image 38: Head MRI - Proposed scheme 

(threshold = 0.20)



Thresholds/
(mean  Gray 
value)

0.1 0.12 0.14 0.16 0.18 0.2 0.22

Number  of 
Regions 192 172 158 140 134 120 113

Validation
(Euclideandi
stance)

5.6393 6.1465 4.3254 6.2936 5.1273 5.3437 4.06

Validation
(Gray value) 23.5667 25.3853 16.5654 9.4693 12.7493 13.6033 18.5434

Table 4: Validity Indexes - Head MRI

For  the third image we observe that the Validity  Index according to the 

Euclidean  Distance  is  minimized  for  threshold  equal  to  16% of  the  original 

image's  mean gray  value.  Although the Validity  Index according to  the  Gray 

Value Distance is not minimized for the same threshold, it behaves in similar way, 

supporting the first conclusions. 
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Image 39: Head MRI - Proposed 
scheme (threshold = 0.22)



IV. Knee MRI

The fourth image we processed was a Magnetic Resonance Image of a human 

knee. First, we present the original image, next the watershed algorithm result, 

and then the output of our implementation for various thresholds.
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Image 40: Knee MRI (original image) Image 41: Knee MRI - Watershed

Image 43: Knee MRI - Proposed 
scheme (threshold = 0.1)

Image 42: Knee MRI - Proposed 
scheme (threshold = 0.12)
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Image 44: Knee MRI - Proposed 
scheme (threshold = 0.14) Image 45: Knee MRI - Proposed 

scheme (threshold = 0.16)

Image 47: Knee MRI - Proposed 
scheme (threshold = 0.18)

Image 46: Knee MRI - Proposed 
scheme (threshold = 0.2)



Thresholds/
(mean  Gray 
value)

0.1 0.12 0.14 0.16 0.18 0.2 0.22

Number  of 
Regions 205 182 168 154 136 127 116

Validation
(Euclideandi
stance)

5.7231 7.1284 6.4595 6.1866 8.9479 8.7083 8.1595

Validation
(Gray value) 25.7061 24.65 23.3185 14.3082 23.08 25.2644 24.0073

Table 5: Validity Indexes - Knee MRI

Again, we observe that the number of regions decreases as the threshold 

increases. The Validity Index according to both the Euclidean Distance and the 

Gray Value Distance criterion shows that the best segmentation is achieved when 

the threshold equals 16% of the image's mean gray value. This is supported by 

visual observation as well.

The grouping process, that provides a first estimation about the regions of 

interest in the image, depends on the similarity criterion according to which the 
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Image 48: Knee MRI - Proposed 
scheme (threshold = 0.22)



watershed regions are merged. So the final segmentation is greatly influenced by 

the choice of the threshold in step 2 of the proposed method. For all the images, 

both  observation  and cluster  evaluation  with  the Davies  –  Bauldin  Validation 

Index, conclude that the Proposed Method offers optimum segmentation when 

the threshold is about 16% of the mean gray value.
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Chapter 5 - CONCLUSIONS & 

FUTURE WORK

5.1. Conclusions

As imaging becomes a  major  component  of  most  biomedical  applications, 

methods  that  warrant  reliable  image  segmentation  have  become a  necessity 

during the last years. Various algorithms have been presented throughout the 

literature, following different approaches, requiring different input and resources 

and offering different levels of performance.

In this work two popular methods for image segmentation were implemented 

and combined to improve segmentation performance on biomedical gray scale 

images. First the watershed transform was used to produce an automatic but 

inaccurate segmentation, and after post processing the appropriate seed set for 

the Improved Seeded Region Growing algorithm was created. The  ISRG was 

then utilized to produce a more refined segmentation, and after one more post 

processing step the final segmentation was obtained. The choice of the similarity 

threshold  in  the  seed  selection  step  was  found  to  affect  the  output  of  the 

proposed  scheme  and  its  optimum  value  was  determined  through 

experimentation.

The  proposed  method,  although  fully  automatic,  offered  reliable  image 

segmentation.  It  proved  to  clearly  outperform  the  watershed  algorithm, 
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providing meaningful separation of the image. It was accurate recognizing the 

gray level transitions, without presenting the undesired watershed's sensitivity to 

noise and small gray value fluctuations.  

The method's  final  output was largely dependent on the ISRG algorithm's 

performance. However, it managed to overcome the ISRG's biggest weakness, 

manual seed selection. Although the method was not expected to outperform the 

ISRG when content based initialization is provided manually, the results were 

very satisfactory compared to ISRG with random seed selection.

The ISRG automatic initialization relied on the suitable selection of  a merging 

criterion for the watershed result. The tests proved that the appropriate merging 

technique was to group together the neighboring regions, the mean gray value 

different of which was about 14 to 16 percent of the image's mean gray value. 

This threshold, along with the final deletion of the insignificant areas caused this 

method's output to be comparable with manual image segmentation.

The proposed method ensures robust, accurate segmentation of gray scale 

images. It offers fully automatic and reliable segmentation of biomedical images, 

contributing  to  several  biomedical  tasks,  such  as  morphometry  and  change 

detection that require precision, objectiveness and reproducibility.

5.2. Future Work

The proposed scheme proved to have met its design expectations. There are, 

however,  some  extensions  that  could  improve  its  outcome  and  broaden  its 

applicability.

The most obvious disadvantage of this method is the contour display. The line 

that divides  the regions is irregular, and though it follows the region growing 

process precisely, its appearance is not natural, especially when mild transitions 

of the gray level occur. For the present work the contours were outlined just to 

illustrate the final region formation, but for a more complete application they 

need to become smoother and more regular. This can be performed as a post 

processing step, affecting solely the line appearance, not actually altering the 

segmentation.
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There  are  also  a  few  limitations  to  the  proposed  method.  First,  its 

functionality was only tested on gray scale images. We can extend this method 

to  colored images,  by  treating  each  subband individually  and combining  the 

results.  More  elaborate  techniques  that  take  into  account  inter-subband 

correlation can also be applied. Second, the images were uncoded (bmp, JPEG). 

Medical  images  are  usually  provided  in  application  specific  formats  (Dicom, 

analyze75),  that  include  an  abundance  of  additional  information.  This 

information  can  be  extracted  and further  support  the  segmentation  (e.g.  by 

taking  into  account  exposure  time  or  other  parameters  and  preprocess  the 

image).
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