

H I G H - L E V E L D E B U G G I N G : FA C I L I T I E S

A N D I N T E R FA C E S . D E S I G N A N D

D E V E L O P M E N T O F A D E B U G - O R I E N T E D

I D E

by nick papoylias

committee:

Assistant Professor Michail G. Lagoudakis (Supervisor)

Assistant Professor Vasilis Samoladas

Assistant Professor Katerina Mania

Submitted to the Department of Electronic and Computer

Engineering in partial fulfilment of the requirements for

the degree of Diploma in Engineering

Technical University of Crete

October 2009

By Nick Papoylias: High-Level Debugging: Facilities and Interfaces. Design

and Development of a Debug-Oriented IDE, Submitted to the Department

of Electronic and Computer Engineering in partial fulfilment of the

requirements for the degree of Diploma in Engineering, Copyright ©

October 2009. Permission is granted to copy, distribute and/or mod-

ify this document under the terms of the GNU Free Documentation

License, Version 1.3 or any later version published by the Free Software

Foundation.

Dedicated to my family.

My father George, my mother Vagellia and my sister Matina.

A B S T R A C T

While debugging in general is an essential part of the development

cycle, debuggers have not themselves evolved over the years as other

development tools have through the advancement of Integrated Devel-

opment Environments. In this project we propose a way to overcome

this problem by introducing, designing and developing a high-level

debugging system.

High-Level debugging systems are systems that integrate a source -

level debugger with other technologies as to extent both the facilities

and the interfaces of the debugging cycle. We designed and developed

such a system in a debugging-centric IDE. This IDE introduces among

other things: syntax-aware navigation, data-displaying and editing, reverse

execution, debugging scripting and inter-language evaluation through the

integration of its source-level debugger (gdb) with a full-fledged source

parser, data visualisation tools and other free software technologies.

vii

When large numbers of non-technical workers are using a programmable

editor, they will be tempted constantly to begin programming in the

course of their day-to-day lives. This should contribute greatly to

computer literacy, especially because many of the people thus exposed

will be secretaries taught by society that they are incapable of doing

mathematics, and unable to imagine for a moment

that they can learn to program.

— Richard M. Stallman [1]

A C K N O W L E D G E M E N T S

My work in science and engineering would not have been the least

fruitful if it wasn’t for the unconditional support of my family. My

father George, my mother Vaggelia and my sister Matina.

All those years I ’ve spend in T.U.C a lot of people accompanied me

and helped me in my pursuits. Endless hours of scientific, philosophical

and political brain-storming and struggle. Some of them stand out of

this long list.. Thank you Julie, Blasi, Kosta K., Kosta A., Dimitri.

I am also grateful to my supervisor and committee for the trust

they showed especially in the early stages of my work, when these

thousands lines of code were just a mere proposal.

I would also like to thank the free software community and the Greek

student’s movement for giving me the software and psychological tools

to pursuit my goals.

And last but not least, many thanks goes to Misha the Bear (Moscow

’80 Olympics) for being the great mascot that he is.

ix

C O N T E N T S

1 introduction 1

1.1 The Development cycle and debugging. 1

1.2 Project workflow and IDEs. 2

2 background material 5

2.1 Symbolic Debugging inner workings. 5

2.2 Symbolic Debugging facilities. 7

2.3 Debugging Front-Ends and IDEs. 8

2.4 Debugging Systems. 8

3 problem statement 11

3.1 The current state of affairs. 11

3.2 The need for High-Level debugging systems. 12

4 related work 15

4.1 Published Work 15

4.2 Technological Advancements 17

5 our approach 21

5.1 Rethinking the debugging information flow 21

5.2 The five pillars of high-level debugging 22

6 implementation 27

6.1 The syntax parser 27

6.2 The symbolic debugger 29

6.3 The graph visualisation sub-system 29

6.4 The extension environment and language 30

6.5 The project-management module 30

6.6 The high-level debugging API 31

6.7 The User Interface 32

7 results 33

7.1 Syntax - aware navigation 33

7.2 Executing backwards in time 35

7.3 Data - Displaying and Editing 35

7.4 Debugging Console Interaction 36

xi

xii contents

7.5 Multi-language scripting 36

7.6 Project Management and Interfaces 39

8 future work - discussion 43

8.0.1 Supporting legacy debugging and programming

facilities 43

8.0.2 High-level debugging enhancements 43

8.1 Probing Further.. 44

bibliography 47

a gnu free documentation license 53

GNU Free Documentation License 53

1. APPLICABILITY AND DEFINITIONS 53

2. VERBATIM COPYING 56

3. COPYING IN QUANTITY 56

4. MODIFICATIONS 57

5. COMBINING DOCUMENTS 60

6. COLLECTIONS OF DOCUMENTS 60

7. AGGREGATION WITH INDEPENDENT WORKS 61

8. TRANSLATION 61

9. TERMINATION 62

10. FUTURE REVISIONS OF THIS LICENSE 62

11. RELICENSING 63

ADDENDUM: How to use this License for your documents 64

L I S T O F F I G U R E S

Figure 1 Development Cycle Example. 2

Figure 2 Gnu-Emacs integration of Gdb. 3

Figure 3 Symbolic Debugging Dependencies and UI. 5

Figure 4 Debugging Information Flow. 6

Figure 5 Example of a debugging front-end. 9

Figure 6 DDD a simple yet powerful debugging system. 9

Figure 7 JBixbe call-graph and data visualisations. 18

Figure 8 Expanding the information available to the de-

bugging system. 21

Figure 9 Misha in action. 25

Figure 10 A sample drawing of a finite automaton described

in the dot-language 30

Figure 11 Misha R.IDE welcoming screen 33

Figure 12 An aspect of syntax navigation. 34

Figure 13 Stepping through a logical loop iteration. 34

Figure 14 Setting a regional breakpoint. 35

Figure 15 Stepping backwards, in time. Reversing the exe-

cution flow. 36

Figure 16 Iterating throught the BST data-structure for key

integer value. 37

Figure 17 Data Display context-menu. 37

Figure 18 Editing Data during execution time, through the

data graph 38

Figure 19 Data graph menu navigation 38

Figure 20 Zooming in a specified region in the data graph 38

Figure 21 A snapshot of syntax error reporting and naviga-

tion through links 38

Figure 22 Graph expression evaluation, on the console. 39

Figure 23 An example of code scripting debugging con-

trol. 39

xiii

xiv List of Figures

Figure 24 Direct calling of c functions and code from python. 39

Figure 25 Two new buttons created, by invoking the on-line

extentibility API of Misha. 40

Figure 26 The first button’s callback function uses c, python

and external libraries to plot the results 40

Figure 27 The second button’s callback function uses c and

python to visualise a collatz fractal 41

Figure 28 The dependency management widget 41

Figure 29 Our bottom bar with our voice commands con-

trols 41

Figure 30 The mozilla client plugin with our online docu-

mentation searching system. 42

1
I N T R O D U C T I O N

1.1 the development cycle and debugging.

From the broad spectrum of computer science the work presented here

in focuses in the field of Programming Languages and Tools and in that

of Human-Computer Interaction. More specifically we concern ourselves

with Debugging Systems and Integrated Development Environments, that

is to say with some of the most important production tools that shape

the development cycle of software engineering.

While the term ’debugging’ itself is usually attributed to Grace Hop-

per creator of Cobol [2], debugging as a diagnostic process spans in

many more fields than programming languages and even beyond com-

puter science and engineering. This general applicability stems from A debugging system

is a tool that can

monitor and control

the execution flow as

well as the evolution

of data of an

algorithmic process.

the very nature of human-labour where an initial imaginary goal is

constantly shaping and being shaped by the overall process of produc-

tion. This interaction between the final goal and the process is generally

realised via the reoccuring feedback in between the cycles of applying

and evaluating in the presence of natural laws.

This evaluation and revaluation can be mediated by technical means

as is the case of oscillographs in hardware manufacturing, or cardio-

graphs in medicine. In our case this mediation comes in the form of a

debugging system that can monitor the execution flow as well as the

evolution of data in time of an algorithmic process.

Now depending on the nature of the flaws discovered during produc-

tion we are presented with a wide range of tools, some of which can

even automate the process of debugging and testing with - almost - no

human intervention. That is the case with syntax checking (that is an

integral part of language compilers), unit testing suites, static analysis

tools and to some extent delta debugging techniques [3].

But for the most part logical errors from their very nature tend to be

elusive of automated debugging tools, so technological mediation in

1

2 introduction

Figure 1. Development Cycle Example.

Figure 1 shows the development cycle of Extreme Programming
software engineering paradigm, which focuses on feedback in between

programming/debugging and testing cycles.

the form of human-computer interaction is needed for the programmer

to debug his algorithms.

In this work we concern ourselves with the latter form of debugging

tools, most commonly refered to as source-level debuggers, trying to both

evolve them in the direction of better monitoring the execution of

programs as well as in interacting more naturally with the programmer.

The significance of debugging tools in the overall development cycle

can be seen in scientific publications concerning effort estimation[4] and

project management which on average assert that testing and debugging

cover roughly 50 % percent of the development time [5].

In our opinion though the most crucial aspect of debugging and

execution monitoring is it’s ability to widen humanity’s grasp of au-

tomated processes of production. In our not so distant future it may

even become a necessity for programming skills to be part of the stan-

dard primary curriculum, given our present state and momentum of

automation. 1

1.2 project workflow and ides.

Debuggers although so crucial for the development cycle are not the

only tools of the development process. A whole range of software from

1 If of course in the meantime humanity will not destruct itself instead of socially and
technologically advance towards producing goods in abundance and supporting access
to scientific creativity for all human beings. [6]

1.2 project workflow and ides. 3

compilers to project management scripts and from revision systems

to profiling tools aid the developer to achieve his goals. We call the

succession of processes and tools used to develop a project the ’project’s

workflow’. Starting from the early days of operating systems, various

environments where used to automated repetitive parts of this workflow

and facilitate communication between the different tools used.

We can trace such environments back to the first command line in-

terpreters that incorporated their own scripting language, such as the

Bourne Shell [7] which is still in wide use even today. But when it comes

to integrating all programming tools in one consistent environment, it is

the Emacsen 2 and especially the Gnu-Emacs editor [1] that revolution-

ized the field. It was indeed here that the editor, the console, the compiler,

and the debugger where first brought together in such a consistent way.

Needless to say that this combination is what in general terms defines

IDEs even today, although the field has since grown substantially as to

incorporate many more technologies.

Figure 2. Gnu-Emacs integration of Gdb.

Speaking of modern IDEs and the current trends in their development

today, we can see that the primary focus is more in the aforementioned

integration of new tools - such as gui builders - rather than in the refine-

ment and development of the more basic technologies that constitute

the base of the environment, such as debuggers.

In this work from the perspective of the development of IDEs we shall

focus in the integration and development of debugging tools trying to

elevate the programmer’s experience from the ground up. To do so we

must first introduce the reader to some background knowledge about

2 plural, meaning class of Emacs editors

4 introduction

the inner working of debuggers and their relation with IDEs, starting

with the following chapter.

2
B A C K G R O U N D M AT E R I A L

2.1 symbolic debugging inner workings .

We are mainly concered here with the inner workings of symbolic,

source-level debuggers which are responsible for the debugging process

of all non-kernel processes. For any such debugging system to perform

its magic, access to scope and symbolic information from the source

files and/or symbol table is required in the form of debugging stabs, as

well as access to the underlying OS-specific debugging api. Figure 3

elaborates on these dependencies.

Figure 3. Symbolic Debugging Dependencies and UI.

This is as far as compiled languages go, although things are not all

that different in the interpreted side, with the runtime-environment

playing the role of the OS-specific debugging api while keeping record

of symbolic equivalence between source code and intermediate byte-

code. It could be expected that by their very nature debuggers of

high-level interpreted languages should present more facilities to the

programmer, given their environment’s advantage for introspection. But

oddly enough this is not the case, usually debuggers of such environ-

ments mimic a subset of the facilities presented to the C programmer,

but this is a fact that we will address later on in chapter 3, when dealing

with our problem statement.
5

6 background material

We now turn our attention to the production of debugging informa-

tion during the development cycle. The debugging information flow

starts with the compiler. The compiler compiles C source in a ’.c’ file

into assembly language in a ’.s’ file, which in turn the assembler trans-

lates into a ’.o’ file followed by the linker which combines the output

with other ’.o’ files and libraries to produce an executable file.

Usually with some special directive upon invocation the compiler

puts in the ’.s’ file additional debugging information, which is then

slightly transformed by the assembler and linker, and carried through

into the final executable. This debugging information describes features

of the source file like line numbers, the types and scopes of variables,

as well as function names and parameters.

For some object file formats, the debugging information is encapsu-

lated in assembler directives known collectively as stab (symbol table)

directives, which are interspersed with the generated code. Stabs are

the native format for debugging information in the a.out and XCOFF

object file formats, as far Unix environments are concerned.

The assembler adds the information from stabs to the symbol infor-

mation it places by default in the symbol table and the string table of

the ’.o’ file it is building. The linker merges the ’.o’ files into one exe-

cutable file, with one symbol table and one string table. Debuggers use

the symbol and string tables in the executable as a source of debugging

information about the program.

We can see this information flow in Figure 4.

Figure 4. Debugging Information Flow.

2.2 symbolic debugging facilities. 7

More information on the subject of debugging stabs can be found in

[8] and in [9].

2.2 symbolic debugging facilities.

Now the most common descriptions for a symbolic debugger [10]

follow more or less the following pattern:

1. A symbolic debugger, allows you to monitor what is going on

’inside’ a program while it executes or what the program was

doing the moment it crashed.

2. Start your program, specifying anything that might affect its

behaviour.

3. Make your program stop on specified conditions.

4. Examine what has happened, when your program stopped.

5. Change things in your program so you can experiment with

correcting the effects of one bug and go on to learn about another.

In terms of available facilities presented to the programmer - see

Figure 3 - the most common of them are:

• Line navigation, per command-lines as well as naviating in and

out of functions

• Stack examination upon program stop, in addition to frame and

backtrace information.

• Breakpoints, as places of interest where the program should stop

for further examination.

• Watchpoints, as varibles or expression of interest upon the change

of which the program should stop for further examination.

• Catchpoints, as signals and os-specific events of interest upon

the invocation of which the program should stop for further

examination

8 background material

• Data viewing/editing upon demand, for expression evaluation and

editing.

Some additional facilities found at the current ’state of the art’ sym-

bolic debuggers such as gdb and are still consider experimental are

seperately examined in chapter 4.

2.3 debugging front-ends and ides .

With the term debugging front-ends we are referring to the graphical (or

some times textual) user interfaces that attempt to facilitate the use of a

symbolic debugger (referred to as a backend) by providing a one-by-one

access to the underlying facilities. This is the case for all major IDEs in

current use today, such as Eclipse, Netbeans, Anjuta, Kdevelop or the

proprietery Visual Studio e.t.c

While we ’ll be addressing this issue more closely up in chapter

3, this kind of integration for the debugger and other tools, does not

convey new facilities but in effect only provides a visual summation of

the development tools currently in use by the developer.

Nevertheless this kind of visual integration has gained symbolic

debuggers wide spread use, which is one of the reasons that most

of them have a special mode of operation, for communication with

these front-ends. In the case of gdb that we ’ll be discussing shortly,

this communication is done via a domain-specific language, part of the

gdb/mi (machine-inteface)[10].

2.4 debugging systems.

Now debugging systems, in contrast with front-ends do not only pro-

vide access to the underlying facilities of the symbolic debugger but

rather use them as a building block for larger systems that can provide

execution monitoring. In this case the debugging facilities offered are a

result of the integration of the symbolic debugger with other software,

such as graph visualization tools, as is the case of the Data Display

Debugger [11] (see Figure 6) and the Gnu Visual Debugger of the GNAT

Programming Studio [12].

In this work we will elaborate on this kind of integration and vi-

sualization taking it some steps further, having multiple parts of the

2.4 debugging systems. 9

Figure 5. Example of a debugging front-end.

Figure 5 shows Anjuta the official Gnome IDE, which is a typical
example of a debugging front-end.

debugging system interacting with each other offering many more

options to the developer than before. In addition we will try to enrich

the debugging information flow as to evolve debugging systems at a

more fundamendal level.

But more on this in the following chapters, where we describe our

solution approach to the problem statement that follows.

Figure 6. DDD a simple yet powerful debugging system.

3
P R O B L E M S TAT E M E N T

3.1 the current state of affairs.

Having introduced the reader to some background material, let us now

consider the fact that today’s advancement in IDEs although constantly

offering new programming tools and levels of sophistication, has left

debuggers where they were 20 years ago, mainly giving the program-

mer the ability to pinpoint source-lines of interest, stepping through

subsequent lines of source-code, and monitoring certain expressions

as he goes along. Of course the underlying technology offers some

additional number of tools - in the same line of thinking - which are

nevertheless rarely "embedded" in IDEs and used by the programmer,

if - that is - any debugging tools are embedded or used at all.

Why debuggers have not substantially evolved over the years, re-

gardless the interesting efforts that were occasionally proposed, is a

very interesting question, which has surprisingly only two possible

answers. The first answer, comes quite naturally, and is of course false

stating that debuggers are "perfect systems" which have reached the

end of their evolution potential. If that statement were true of course,

we should all be living in a bug-free software world, with no frustration

whatsoever about the development process and the problems it involves.

The second answer states that we didn’t had - not up until recently -

the "means" to evolve debuggers, or more correctly, up until recently,

in absence of the "means" that could eventually lead to the evolution of

debugging systems, thinking about such an evolution was impossible

and of course talking about it was meaningless.

Having already seen the importance of software monitoring and

debugging we favour the second approach and propose - both theo-

11

12 problem statement

retically and technologically - a possible route for their evolution that

would hopefully meet the current needs of software engineering.

3.2 the need for high-level debugging systems.

While this evolution can surely come in the form of rethinking the

whole information debugging flow - and that’s in part what we will do

- it can also emerge in the form of a debugging system, that as we saw

earlier can use current debugging technology as it’s building block. This

system though given the current advancement in computer technology

and development tools should exhibit higher level of operability than

similar efforts a decade or more ago1.

So let us now introduce the notion of "High-Level debugging" systems

- as opposed to "source-level" debuggers or legacy debugging systems -

that are in general terms systems that can be build on-top of today’s

debugging facilities, not simply by giving graphical access to the un-

derlying technology, but by offering more sophisticated methods of

monitoring a software system, as well as new ways for a programmer

to form his development cycle.

The term "high-level" in this approach can be thought of as a loan

from the programming language world, the usage of which can be

substantiated by the fact that "lower-level" debuggers can be used as

building blocks for more complex debugging systems. As a matter

of fact "lower-level" debugging languages do exist as the aforemen-

tioned Gdb/Mi [10] and can be used to build "higher level" debugging

structures.

We should note here that although the term has not yet been stan-

dardised in computer literacy (being in its infancy as a subject) it -

appears in more or less the same context - in a lot of works like Golan

and Hanson, [13] , Ducassé and Emde, [14] and others that we will be

discussing shortly after. Moreover we shall see that in these last couple

of years a number of research initiatives concerning the development of

debugging systems have appeared taking various approaches, and we

1 That is the case of DDD, which we saw earlier as an example of a debugging system. The
main characteristics of this - then revolutionary - system, were forged in 1995.[11]

3.2 the need for high-level debugging systems. 13

believe that this scientific interest proves that our initial observations

in the beginning of this work about the future needs of this field were

justified.

4
R E L AT E D W O R K

Before continuing we should take a brief look on related work, and

current efforts on advancing debugging technology. We have divided

our research of the field in two major categories one concerning biblio-

graphic proposals, conference proceedings and published work and the

other current trends in technological efforts towards new debugging

systems which have reached their alpha or beta stage of production. In

this last category we will find - besides the free software community -

major players of the software industry like Microsoft, Google, IBM and

Wolphram Research Inc. which our humble - in terms of resources - effort

dares to challenge, and we believe that it does so with some significant

success.

4.1 published work

In published work there is a great deal of references for high-level

debuggers that are concerned with task specific debugging such as

parallel execution. Here for example the main problem usually stems

from the specific inability of traditional debugging schemes to monitor

the complexity involved in concurrent execution, so in most cases a

higher level of monitoring abstraction is proposed. This is the case of

Aral and Gertner, [15] as well as Cunha et al., [16] where interesting

propositions appear such as variable tracing, debugging via assertions

and scalable remote debugging, although some of them are now pretty

outdated. For reference a State of the Art report of this field can be found

in Huselius, [17] . Our own approach though to high-level debugging

systems, as we will see later, is more broad than the ones described

above and not so task-specific, nevertheless the basic tools 1 for a future

development in this area too, have been led.

1 such as thread and fork/exec monitoring

15

16 related work

From these works we should separately examine Cheng, [18] where

a separation from the source-line navigation approach in debugging

was first proposed. The unique feature that HDB2 introduced was

that of debugging checksums, which were used to compress arrays and

groups of variables without losing meaningful information. By using

these checksums and their differences this article supports that it is

possible and more convenient to detect misbehaviour of a program

at a place near the source of the error. Now despite the fact that this

approach did not make it to mainstream debugging, mainly because

unit testing tools were widely introduced, we believe that the suggestion

of navigation through larger and well defined portions of a program

while monitoring it’s execution is a worthy pursuit. A similar high-

level approach is proposed in Cifuentes et al., [19] from the completely

different perspective of assembly code debugging and monitoring. More

on this subject when we discuss syntax-aware debugging and navigation

in Chapter 5.

Then there are high-level debugging systems that have been proposed

and concern a domain-specific extension language that leaves on top of

legacy debugging systems. This is truly an intriguing concept. That is

the case with Golan and Hanson, [13] with Duel and Ducassé and Emde,

[14] with Opium. In the case of Duel we have a high-level debugging

system targeting the C language that during normal execution inter-

acts with gdb providing new expression evaluations through a domain

specific query language. In the case of Opium on the other hand the

domain-specific query language (based on Prolog) analyses traces of

program execution for post-mortem analysis. Both tools really pro-

vide higher levels of abstraction, extensibility and new ways for the

programmer to monitor his running source-code. But we believe that

there is a catch here given the fact that since their proposals debugging

technology didn’t catch up with these ideas even though for example

Duel that was developed in Princeton is now part of Microsoft Research

bibliography.

2 the tool that Cheng, [18] was based on

4.2 technological advancements 17

In essence a domain-specific language for debugging no matter how

powerful and extensible, adds immensely to the complexity of the

resulting development environment, and learning such a new language

may seem like the last thing a programmer will want to do. In contrast

maybe to a widely used and understood general purpose language

that provides the same functionality without the burden of learning

a debugging-specific one. This is actually where we are heading, and

independently this is where gdb wants to go [20], but we will talk more

about this subject later.

In addition there is the thriving field of reversible and replay debugging.

We regard the ability to debug backwards in time one of the key

components of high-level debugging systems, and so does the free

software community [21]. A lot of different technologies have been

proposed to accomplish this behaviour but all fall broadly in three

major categories: a) remote execution in a virtual environment b) native

execution via machine instruction monitoring and c) replay execution

via language-dependent traces. In terms of published work some of

these approaches can be found in Narayanasamy et al., [22] , Lewis, [23]

and Akgul and Mooney, [24] .

Last but certainly not least for reasons that will become more ap-

parent in Chapter 5 and 6 our work is also related to the work of the

Harmonia Project in Berkeley (see Boshernitsan et al., [25] and Begel

and Graham, [26]) which deals with high-level interactive software de-

velopment, Language-Aware programming tools and programmer-computer

interaction although their work has yet to be expanded in debugging.

4.2 technological advancements

Beyond academic tools and proposals the last couple of years there

were some advancements made directly on the technological end, in

popular IDEs and widely used debugging tools. Although we must say

that the overall adoption of new technologies is still incredibly slow.

18 related work

Besides expanding basic multi-threading support which appears in

both major source-level debuggers 3, the gdb development team has

lately taken a step further giving a lot of attention in the aforementioned

facilities of reverse/replay debugging, and scripting extensibility [27],

[20]. Our work relies heavily on some experimental work done for gdb

[28] for the first subject but we have taken a very different architectural

approach on the second. Nevertheless this convergence on experimental

choices strengthens our belief that we are on the right track.

We now turn our attention to advancement in debugging aids through

IDEs. Starting with industry standard environments, some related and

interesting work appears in Visual Studio’s data visualisers [29] were

data in html, xml or image form is according to semantics visualised

to the programmer during debugging. This is a very interesting fea-

ture despite the fact that usually logical errors are found in the inner

relationships of data-structures and not in the semantic representation

of a type which usually appears in the running process – as is the

case with images. Then there is the high-level debugger of Mathematica

[30] which supports arbitrary computation at breakpoints in it’s own

language, including some visualisation of intermediate results, mainly

mathematical formulae.

Figure 7. JBixbe call-graph and data visualisations.

In terms of replay/reverse debugging now, we have a lot of compa-

nies and groups implementing the basic feats, some of them on top

of the remote machine interface of gdb, others on top of the javaVM

like the temporal debugger [31] from Cisco Systems and Bill Lewis’ ODB,

3 Gdb and MVSD

4.2 technological advancements 19

presented at GoogleTalks [32]. For the end an independent - but propri-

etary - project that we would like to mention is the high-level debugger

JBixbe [33] which has some advanced capabilities in terms of call-graph

visualisation and also a basic support for visualising data like ddd does,

see Figure 7.

Having now scattered the field for related innovations and proposals

we now turn our attention to the solutions we propose about high-level

debugging and integrated development environments, starting with

the next chapter.

5
O U R A P P R O A C H

5.1 rethinking the debugging information flow

All features and facilities of debugging systems depend on the amount

and nature of information that is available in the debugger and concerns

the equivalency of source code with the running process. As we saw

earlier, in the most such systems in current use today, this kind of

information is usually embedded by the compiler or interpreted in

the executable or intermediate byte-code respectively. This is done

according to some predefined standard such as the pdx stabs format

[8] which anticipates specific uses for the kind of information that it

embeds.

In our work in order to support current development and future uses

of debugging systems other than the ones offered by today’s technology

we expanded the nature and amount of information available to the

debugging system by providing it with direct access to the semantically

annotated parse tree of the source code. Our choice alters the classical

debugging information flow which was presented in chapter 2 as

follows:

Figure 8. Expanding the information available to the debugging system.
21

22 our approach

Now as seen in Figure 8 in order to construct this semantically anno-

tated parsing tree and provide additional information to the debugger,

we designed and developed a seperate parser as part of our debugging

system. This parser will provide us with the means to develop and sup-

port features like syntax-aware navigation, reverse-debugging and tracing

among other things and potential future uses. To our knowledge this

is the first time that debugging information is enhanced in such a way

rather than simply being embedded in the intermediate or machine

code.

In addition such a parser can also be used as a crucial building

block for a lot of things that are in current use today in IDEs or

have been proposed for their development. Some examples include

symbol-browsing, unit-testing, documentation extraction, syntax-completion

and refactoring. To some extend these other uses are the aim of the

Harmonia Project in Berkeley [34], that we mentioned in chapter 4. Their

architectural approach also includes a seperate parser to support these

functions rather than using the first pass of the compiler itself. This

desicion seems mandatory for the time being, due to the architectural

structure of current compilers which favors syntax-trees in intermediate

languages for optimization purposes. The [35] multi-language intro-

spection tool [35] is also relevant in this context. In the future we may

be able to support these functions directly from the compiler itself, see

[36] and [37].

Keeping this new approach in mind, let’s now take a closer look

to the facilities, intefaces and other interacting parts of our high-level

debugging system.

5.2 the five pillars of high-level debugging

syntax-aware debugging: This first feature is intented to be the workhorse

of the overall effort, and is based directly on the afformentioned

extention of available debugging information. The implication

here is that by using the parser to analyze source code, debugging

and execution navigation can take place in terms of specific syntactic

5.2 the five pillars of high-level debugging 23

structures having different "template" information readily avail-

able to the user according to syntactic and semantic information

of the target language. The programer is thus able to pinpoint

structures of interest as a whole, and not just source-lines, while

debugging can take place both as stepping through a "logical-

unit" of evolution and as watching the execution flow over time,

freezing the program when needed. The navigation through the

syntax-tree operates in two modes breadth and depth first besides

the classical single-line mode. In addition, through the general

purpose extention language that we will examine later, condi-

tional debugging as well as user-defined in-structure information

can be supported.

data visualisation: Greatly inspired by the work on DDD, data visu-

alisation is an essential part of our high-level debugging system.

Taking things a bit further than conventional approaches we have

used and integrated software which is used for representing struc-

tural information as diagrams of abstract graphs and networks

[38], and on top of that we have provided a comprehensive and

generic API for visualising language-oriented datatypes (contain-

ers, strings, integers, interlations). In addition we have developed

from scratch a graphical widget for interacting with these graphs,

which supports editing and updating graph values, infinite graph ex-

pansion via menus and depth settings, layout capabilites and other

features that we will explore later on in chapter 7.

Futhremore, it is worth mentioning that our data visualisation

solution intergrates nicely with our syntax parser. One example

of this integration is the ability to examine identifiers that are

referenced in code as far as the execution line, and not only local

variables of the current scope that usually exclude global identi-

fiers while including unreferenced uninitialised data. More details

about the inner-workings of our data visualisation subsystem can

be found in chapter 6.

general-purpose extention language: Our third step was to inte-

grate a general purpose extention language to our debugging

24 our approach

system, which will be able to control our parser, the visualisation

subsystem, the symbolic debugger as well as the "high-level" de-

bugging facilities. We chose python which is a widely used and

understood high-level language, distancing ourselves from the

domain specific approaches that we saw earlier in previous chap-

ters. Part of what we have achieved here (controlling the symbolic

debugger via python) is also a future goal of gdb, which aims to

use this extention language as a separate platform for writting

usefull tools [20].

In our approach besides being able to control all of the different

subsystems (and not just the symbolic debugger) from the de-

bugging console and in-project python scripts, thus being able to

extend both the debugging system and the IDE, there is the abil-

ity to directly and seamlessly call each project’s C functions from

within python. This feature besides being usefull for unit testing

and code benchmarking purposes, encourages a multi-language

approach in software enginnering which is a critical aspect of our

future intentions for Misha.

reverse debugging: Stepping backwards in time while debugging is

a valuable tool that cannot be absent from our research effort. It

is also a community proposal, listed in the high priority project

list of the Free Software Foundation. In responce to this interest

and based upon the still exprerimental work done for i386 native

reverse execution [27], we integrated and enhanced the execution

record facility of gdb with our syntax-aware navigation so that it

is able to execute back in terms of complete syntactic structures,

just as the programmer using the forward execution will have

expected.

As we will see later with the integration of our parser with a

recording execution system, memory issues that concern reverse

execution can be addressed through static-code analysis. More on

this on chapter 8, when we will deal with future work.

5.2 the five pillars of high-level debugging 25

innovative interfaces: Presenting the programmer with a lot of data

and options all at the same time, is not always the best thing

to do, but debuggers and IDEs from the very nature tend to

demand their share of the desktop. In order to address these

issues we developed new graphic widgets for the gnome platform,

innovative input facilities that support speech and bluetooth de-

vices, a web-documentation system with a dedicated crawler and

a comprehensive project management system based on gnu-make

that automates the search for library and source dependencies

resolutions. We will examine these features with greater detail in

the next chapter, where it will become obvious that although our

research IDE is debug oriented it has also the potential of becoming

a full-blown development solution.

So lets now take a look at the inner workings and the technologies

that can make all these features happen.

Figure 9. Misha in action.

6
I M P L E M E N TAT I O N

There are over a dozen different technologies and software that were

used for the development of our debugging system and IDE. For the

purposes of this chapter we will focus in the major building blocks and

technologies and we will describe their inner workings with some detail.

Five interconnected sub-systems constitute the core implementation of

our debug-oriented IDE:

• the syntax parser

• the symbolic debugger

• the graph visualisation sub-system

• the extension environment and language

• the project-management module

On top of them lies the high-level debugging API and the graphical user

interface (editor, console, on-line help system) that uses it’s facilities.

As we mentioned before, some additional technologies have also been

developed to elevate the programmer’s experience that include among

other things specifically tailored graphical widgets and input methods.

The development model was generally multi-lingual with the proces-

sor and memory intensive parts written in C [39] - like the syntax-parser

- while the graphical interface and all other extendible parts written

in Python [40]. More detailed information about design, tools, libraries

and technologies used, follows.

6.1 the syntax parser

Our syntax parser is an ansi-c99 compliant parser with support for

all the major gcc extensions and c-preprocessor directives. It is based

27

28 implementation

upon the standard BNF notation for the language described originally

in Brian W. Kernighan, [39] and revised here [41]. Besides syntax, it

collects a variety of semantically interesting information for generic

use in IDEs as well as debugging purposes in our particular case. We

designed our parser with modularity in mind so that it can be used

separately in other projects and for different circumstances and pur-

poses. It was devised with standard and robust compiler construction

tools – flex [42] and bison [43] – with the support of the standard c and

gnome libraries (libc [44], glib [45]) for data-structures and miscella-

neous services. Our resulting implementation in terms of context-free

grammars is an LALR(1) parser. The syntax tree is an n-ary tree with

uniform nodes. Typical structure and information stored per node can

be seen in the following code-snippet.

Syntax node snippet

1 typedef struct syntax_struct_tag{//the tree is initialise with

basic types

syntax_type type;//syntax type

3 gchar* name;//var,function,type name

GNode* return_id;//var decl type, func decl type, typedef

initial struct

5 gchar* expr_text;//the text on for,if,while,do

gint start_line;//self-explanatory

7 gint end_line;//self-explanatory

gchar* filename;//self-explanatory

9 GList* refer_ids;//id list of referenced id’s in this

syntax structure

GList* expr_ids;//id list of referenced id’s in the syntax

structures expression section

11 gint dimension;//dimention of var,type

gint refer_depth;//reference depth ** of var or type

13 gboolean mirror;//True if it is a struct declaration

awaiting definition

GList* qualifier_list;//Data type qualifiers

15 GList* ret_lines;//FUNC_DEF keep here their return lines (

expr of return lines can be retrieved via line number)

6.2 the symbolic debugger 29

GList* misc;//for future reference, enumarations keep here

the enumed strings, functions keep temporarily

17 //their parametrs,vars keep their init assign status

}syntax_struct; �
6.2 the symbolic debugger

In order to use gdb as a building block for our debugging system and

expose its functionality to our general purpose extension language,

we wrote a second parser for the gdb-machine-interface. This parser was

then used to devise the low-level debugging api which is accessible

via the extension language and the high-level debugging interface. We

used python’s PLY [46] for our second parser and managed to cover all

of the underlying functionality of gdb as it is described here [10]. These

python bindings for gdb, although architecturally different from what

the gdb development team is currently planning [20] cover today a lot

of ground of their planned future work.

6.3 the graph visualisation sub-system

As mentioned earlier we also developed a visualisation library for

language-oriented datatypes using the graphviz package. Our recur-

sively constructed datatypes are translated in the dot-language and

accompanied tools which generate directed graphs as hierarchies using

active research in the field of graph visualisation see Koutsoos et al., [47] .

Our visualisation API is fully customisable in terms of shapes, colours

and presented interconnections, supports four generic datatypes (num-

bers, strings, pointers/references and containers) that can be further ex-

panded through inheritance. The accompanied widget provides full

navigation, customisation and editing for the graphs. Of course ev-

ery aspect of the visualisation sub-system is accessible through our

extension language. See Figure 10 for a sample drawing with dot.

30 implementation

Figure 10. A sample drawing of a finite automaton described in the dot-
language

6.4 the extension environment and language

We used python [40] as our extension environment and language and

by using the language’s introspection facilities we managed to provide

both online (through our console) and on-demand (through python

project files) extensibility to our debugging system and IDE. The script-

ing environment is failsafe and secured so as to prevent unexpected

hang-ups of the application in case of errors or exceptions and has

access to everything our system has to offer. From the high-level debug-

ging API to the underlying symbolic debugger and the ansi-c parser,

and from the data-display subsystem to the IDE gui itself. But first and

foremost it can directly call the programmer’s c project functions pro-

viding an unprecedented tool for testing, debugging and multi-lingual

development.

This is achieved through execution-time translation of expressions and

textual evaluation in the target language, either through the interpreter

of a high-level language or through the symbolic debugger for low-level

languages such as c, which have direct access to the symbol table of the

executable. We will promptly see some examples of this technology in

the following chapter.

6.5 the project-management module

The project management module is based on the versatile and ubiqui-

tous tool gnu make [48], making project imports and exports to other

6.6 the high-level debugging api 31

tools and environments a breeze. Our IDE reads and writes directly

to the project’s Makefile storing there any information it might need

without messing with other user specific directives the programmer

might wish to add to his project.

In addition our Makefiles automatically detect header file dependencies

directly from source code, while managing libraries, compilation flags

and include paths without the programmer’s intervention using the pkg-

config [49] utility in the background. In essence with our approach, all

the programmer has to do is add source files to his project and choose the

libraries he wishes to use by name from a list of automatically detected

installed libraries in his system.

6.6 the high-level debugging api

Our high-level debugging API is a neat example of OOP design. All the

functionality of our high-level debugging system is wrapped up in a class

which directly inherits our ansi-c parser API and the symbolic debugger

interface, thus enabling the integration of the two in implementing new

debugging facilities. Figure 8 illustrates this concept. A template header

of some basic navigation calls from our high-level debugging API can

be seen in the following snippet:

Syntax node snippet

class High_level_dbg(Gdb,Parser):

2 ...

def play(self,options):

4 pass

def stop(self,options):

6 pass

def pause(self,options):

8 pass

def forward(self,options):

10 pass

def backward(self,options):

12 pass

def fast_forward(self,options):

32 implementation

14 pass

def fast_backward(self,options):

16 pass

def record(self):

18 pass

def reverse(self):

20 pass

def record_stop(self):

22 pass

def resume(self,options):

24 pass

... �
6.7 the user interface

For our user interface we used the python bindings [50] of gtk+ which

is the standard gui library of the gnome [] platform. We developed

from scratch new interaction widgets that include among other things

a tabbed two panel interface a graph editing and a console widget besides

enhancing existing technologies, such as the text and source editor that

our toolkit provided.

Our on-line help system is based on the integration of a light mozilla

[51] client inside our IDE which is served by a dedicated crawler

software htdig [52] for specified documentation sites. Our misha terminal

is a specifically initialised x terminal, while the speech recognition

facilities are based on a pocket-sphinx [53] instance trained with the

wall street journal corpora which is specifically tailored to recognise

debugging navigation commands. Last but not least our icon artwork

is part of the nuoveXT project [54] which is released under the LGPL

license.

But let us now proceed to seeing the Misha research I.D.E. and our

high-level debugging system in action.

7
R E S U LT S

We will be examining a demo project developed with our environment

involving a standard implementation of a Binary Search Tree as well

as an experimentation with the unsolved mathematical conjecture of

the Collatz sequences, see [55] for more information. A full video

presentation of this demo is available through the project’s site at

launchpad [56].

Figure 11. Misha R.IDE welcoming screen

7.1 syntax - aware navigation

We will begin by demonstrating our syntax aware capabilities. As we

can see in Figure 12 individual group statements, if, while and other

syntax structures are blocked together to form logical units of execution

that can accordingly be traversed. For example loop statements (either

while or for loops) can be traversed as a whole structure, iteration by

iteration or even in user-defined evolution steps. This traversal can be

either breadth-first in a bottom-up fashion inside the syntax tree, or depht-
33

34 results

first while the debugger is automatically advancing through source code

in human-mode.

Figure 12. An aspect of syntax navigation.

Figure 13. Stepping through a logical loop iteration.

Moreover during syntax navigation various kinds of parsing infor-

mation is used to ease the process of debugging and development. One

such example is the selective display of variables that are so far (up to

the current syntax structure) referenced, rather than simply displaying

all set of local variables that usually include uninitialised data.

7.2 executing backwards in time 35

In addition now to standard source-line breakpoints, syntax structure

breakpoints can be set that can more convinietly express the program-

mers’ entire region of interest.

Figure 14. Setting a regional breakpoint.

Of course all the standard navigational commands of the legacy line

by line traversal, step-in, step-out, step-over are also supported, through

the forward button depicted above.

7.2 executing backwards in time

As we can see in Figure 15 upon invocation of the record facility

by the user, the ability to step backwards in time is enabled. Syntax

navigation is also enabled in this mode, providing total control over

program monitoring. In the example that follows, the programmer

steps backwards from an if statement to review the invokation of the

bst search function.

As above the equivalent reverse line by line navigation commands

are supported via the backward button.

7.3 data - displaying and editing

Now focusing on our data-displaying and editing facilities we examine

the inner workings of the aforementioned bst search function. In the

figures below, the iteration inside a bst tree is depicted, while the

programmer is monitoring in execution time the evolution of data on

the graph and through menus or even editing values as he goes along.

The graph depth is variable and can be arbiteraly defined by the user,

36 results

Figure 15. Stepping backwards, in time. Reversing the execution flow.

as well as the zoom factor for the entire data display through scrolling

of the mouse wheel. The data display context menu, provides several

facilities, including showing/hiding address values and evaluation of

user-defined expressions among other things. All these facilities are

illustrated respectively from Figure 16 to Figure 20.

7.4 debugging console interaction

Let’s now take a look to our versatile debugging console interaction, that

supports among other things syntax error reporting, data displaying in

graphs, full scripting of the environment’s API and direct python to c

calls for the project being developed. This is where the main interaction

with our general purpose debugging extention language takes place.

The programmer can monitor and control literally every aspect of the

environment from this very console and intrepreter. Some examples of

this interaction follow, from Figure 21 throughout Figure 24.

7.5 multi-language scripting

As we saw earlier python to c calls apart from being a versatile tool for

debugging in our environment, can also be used for unit-testing and

multi-language software developement. Elaborating on this idea our

IDE provides seamless inclusion of python source files to our c projects

that can be invoked right upon entrance to our projects’ main function.

By convencion this happens automatically if a ’main.py’ file is present

in the project.

7.5 multi-language scripting 37

Figure 16. Iterating throught the BST data-structure for key integer value.

Figure 17. Data Display context-menu.

Moreover these scripts have access to the extentibility API of the en-

vironment, a feature that when combined with our multi-language

development approach can provide on-line extentibility of our IDE both

in c and in python during normal program execution.

38 results

Figure 18. Editing Data during execution time, through the data graph

Figure 19. Data graph menu navigation

Figure 20. Zooming in a specified region in the data graph

Figure 21. A snapshot of syntax error reporting and navigation through links

Figures Figure 25 to Figure 27 show two extention plugins in action,

that use the projects’ c funtions, the extentibility API, python and

7.6 project management and interfaces 39

Figure 22. Graph expression evaluation, on the console.

Figure 23. An example of code scripting debugging control.

Figure 24. Direct calling of c functions and code from python.

external libraries to visualise results of two simple Collatz sequence

experiments.

7.6 project management and interfaces

Last but not least we present some of the peripheral interfaces that were

developed to ease the usage of our IDE. From Figure 28 to Figure 30

we can see among other things, our online documentation searching sys-

40 results

Figure 25. Two new buttons created, by invoking the on-line extentibility API of
Misha.

Figure 26. The first button’s callback function uses c, python and external
libraries to plot the results

tem, the automatic dependency management widget, and our bottom bar

buttons from where our speech commands can be enabled.

7.6 project management and interfaces 41

Figure 27. The second button’s callback function uses c and python to visualise
a collatz fractal

Figure 28. The dependency management widget

Figure 29. Our bottom bar with our voice commands controls

42 results

Figure 30. The mozilla client plugin with our online documentation searching
system.

8
F U T U R E W O R K - D I S C U S S I O N

Introducing new facilities and interfaces for debugging systems, was

only the first step of our journey. As we have shown so far Misha R.ide

is a source-code base that can both be expanded to meet the needs of a

full-blown IDE and provide a framework for future research proposals

on development tools, interfaces and programming languages.

In this last chapter we examine more closely the future potential of

our work.

8.0.1 Supporting legacy debugging and programming facilities

We would like to see our system integrate some additional legacy

debugging techniques that are not currently supported by this first

version of Misha. These include cathpoints, watchpoints and tracing that

although are covered by our python bindings of the gdb machine interface

have not yet been integrated with the rest of the system.

In terms of common programming facilities that appear in most

mainstream IDEs, Misha should certainly support, syntax completion,

profiling, refactoring, unit-testing, code revisioning and a user-interface de-

sign solution. With these features added we believe that our IDE will

not only be an innovative tool but rather a complete state of the art

development solution.

8.0.2 High-level debugging enhancements

Now for our high-level debugging system we would like to focus

on ideas that further intergrate our syntax-parser with the rest of the

environment.

43

44 future work - discussion

One such intergration for example can result in a memory optimization

solution for our reverse debugging system. Currently the recording

mechanism keeps track of data changes occuring on a instruction-level

basis. This is a rather redundant approach since the changes that are

really relevant to the programmer occur on the statement level (that

can span many machine instructions wide) and only for the part of

the execution stack that resides inside the programmers’s source code,

excluding all external library calls. This kind of optimization that can

easily be developed with the augmented debugging information of

our parsing tree can greatly reduce the memory footprint of the replay

debugging system.

We will also like to see our system expanding to the thrieving field

of multi-threaded debugging. As mentioned earlier the basic operations

are already implemented for such an expantion, but there are other

posibilities as well. Static code analysis for example that uses our

versetile parser can be implement to automatically deduce various race

conditions between different threads.

In the same line of thinking, our data display system can be expanded

to incorporate call-graph representations from which a more intuitive

interface for setting breakpoints can emerge.

Finally the core implementation of our parser can be enhanced to read

source code incrementally, giving the possibility among other things to

graphically monitor source code changes as they happen.

8.1 probing further..

Apart from the experience and knowledge gained in the course of this

work, a lot of new ideas that transent debugging systems have emerged.

Especially the multi-language testing and development facilities that

we have developed, made us think of the possibility of integrating

more than two languages that seamlessly interconnect (without the

programmer’s intervention through glue-code) in a single and unified

8.1 probing further.. 45

environment. Without of course the need of a common intermediate

representation.1.

We have already begun working towards this direction, that does not

only aim to unify language environments but also different execution

platforms such as the linux desktop and the web. We believe that Misha

R.ide will proove to be a creative source-code base for developing such

a Multi-language, multi-purpose and free environment. . . So we urge you

to stay tuned ;)

1 as in .net or jython environements for example where there is a common byte-code
backend

B I B L I O G R A P H Y

[1] Richard M. Stallman. Emacs: The extensible, customizable display

editor. ACM Conference on Text Processing, 1981. (Cited on pages ix

and 3.)

[2] Imperial College Department of Computing. Free on-line dictio-

nary of computing. http://foldoc.org/Grace+Hopper. (Cited on

page 1.)

[3] Andreas Zeller. Isolating cause-effect chains from computer pro-

grams. In SIGSOFT FSE, pages 1–10, 2002. (Cited on page 1.)

[4] Narasimhaiah Gorla, Alan C. Benander, and Barbara A. Benander.

Debugging effort estimation using software metrics. IEEE Trans.

Software Eng., 16(2):223–231, 1990. (Cited on page 2.)

[5] Frederick P. Brooks, Jr. The mythical man-month (anniversary ed.).

Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,

1995. ISBN 0-201-83595-9. (Cited on page 2.)

[6] V.A. Vazioulin. The Logic of History (in greek). Ellhnika Grammata,

2004. Translation-Diligence-Comments: Dimitris Patelhs. (Cited

on page 2.)

[7] Brian W. Kernighan and Rob Pike. The UNIX Programming En-

vironment. Prentice Hall Professional Technical Reference, 1983.

ISBN 0139376992. (Cited on page 3.)

[8] David MacKenzie Julia Menapace, Jim Kingdon. The "stabs" debug

format. Cygnus Support, 2004. (Cited on pages 7 and 21.)

[9] Stan Shebs John Gilmore. GDB Internals. Cygnus Solutions, 2004.

(Cited on page 7.)

[10] Stan Shebs Richard Stallman, Roland Pesch. Debugging with GDB.

Gnu Press, 2003. (Cited on pages 7, 8, 12, and 29.)

47

http://foldoc.org/Grace+Hopper

48 bibliography

[11] Andreas Zeller. Debugging with DDD. Gnu Press, 2004. (Cited on

pages 8 and 12.)

[12] AdaCore. Using the gnat programming studio. http:

//libre.adacore.com/wp-content/files/auto_update/

gps-docs/The-Data-Window.html. (Cited on page 8.)

[13] Michael Golan and David R. Hanson. Duel - a very high-level

debugging language. 1993. (Cited on pages 12 and 16.)

[14] Mireille Ducassé and Anna-Maria Emde. Opium: a debugging

environment for prolog development and debugging research.

SIGSOFT Softw. Eng. Notes, 16(1):54–59, 1991. ISSN 0163-5948. doi:

http://doi.acm.org/10.1145/126496.126500. (Cited on pages 12

and 16.)

[15] Ziya Aral and Ilya Gertner. High-level debugging in parasight.

In PADD ’88: Proceedings of the 1988 ACM SIGPLAN and SIGOPS

workshop on Parallel and distributed debugging, pages 151–162, New

York, NY, USA, 1988. ACM. ISBN 0-89791-296-9. doi: http://doi.

acm.org/10.1145/68210.69230. (Cited on page 15.)

[16] Jose C. Cunha, Joao Lourenco, and Vitor Duarte. Using ddbg to

support testing and high-level debugging interfaces. 1995. (Cited

on page 15.)

[17] Joel Huselius. Debugging parallel systems: A state of the art report.

Technical report, 2002. (Cited on page 15.)

[18] D. Y. Cheng. Hdb-a high level debugging. In Supercomputing

’89: Proceedings of the 1989 ACM/IEEE conference on Supercomputing,

pages 568–573, New York, NY, USA, 1989. ACM. ISBN 0-89791-

341-8. (Cited on page 16.)

[19] Cristina Cifuentes, Trent Waddington, and Mike Van Emmerik.

Computer security analysis through decompilation and high-level

debugging. In In Proceedings of the Workshop on Decompilation Tech-

niques, pages 375–380. IEEE Press, 2001. (Cited on page 16.)

[20] Gdb Development Team. Pythongdb. http://sourceware.org/

gdb/wiki/PythonGdb, 2009. (Cited on pages 17, 18, 24, and 29.)

http://libre.adacore.com/wp-content/files/auto_update/gps-docs/The-Data-Window.html
http://libre.adacore.com/wp-content/files/auto_update/gps-docs/The-Data-Window.html
http://libre.adacore.com/wp-content/files/auto_update/gps-docs/The-Data-Window.html
http://sourceware.org/gdb/wiki/PythonGdb
http://sourceware.org/gdb/wiki/PythonGdb

bibliography 49

[21] Free Software Foundation. High-priority projects. http://www.

fsf.org/campaigns/priority.html, 2009. (Cited on page 17.)

[22] Satish Narayanasamy, Gilles Pokam, and Brad Calder. Bugnet: Con-

tinuously recording program execution for deterministic replay

debugging. In In ISCA, pages 284–295, 2005. (Cited on page 17.)

[23] Steven Allen Lewis. Techniques for efficiently recording state

changes of a computer environment to support reversible debug-

ging, 2001. (Cited on page 17.)

[24] Tankut Akgul and Vincent J. Mooney. Instruction-level reverse

execution for debugging, 2002. (Cited on page 17.)

[25] Marat Boshernitsan, Susan L. Graham, and Marti A. Hearst. Align-

ing development tools with the way programmers think about

code changes. In CHI ’07: Proceedings of the SIGCHI conference on

Human factors in computing systems, pages 567–576. ACM, 2007.

(Cited on page 17.)

[26] Andrew Begel and Susan L. Graham. An assessment of a speech-

based programming environment. In VLHCC ’06: Proceedings of

the Visual Languages and Human-Centric Computing, pages 116–120.

IEEE Computer Society, 2006. (Cited on page 17.)

[27] Gdb Development Team. Gdbreversible. http://sourceware.org/

gdb/wiki/ReversibleDebugging, 2009. (Cited on pages 18 and 24.)

[28] Teawater. Gdb record patch. http://sourceforge.net/project/

shownotes.php?release_id=604719, 2009. (Cited on page 18.)

[29] Visual Studio Developer Center. Visualisers. http://msdn.

microsoft.com/en-us/library/zayyhzts.aspx, 2009. (Cited on

page 18.)

[30] Wolfram Research. Instant high-level debugging. http://www.

wolfram.com/technology/guide/InstantHighLevelDebugging/,

2009. (Cited on page 18.)

[31] Dan Burque. Time travel made possible with eclipse. http://www.

eclipsecon.org/2006/Sub.do?id=84, 2006. (Cited on page 18.)

http://www.fsf.org/campaigns/priority.html
http://www.fsf.org/campaigns/priority.html
http://sourceware.org/gdb/wiki/ReversibleDebugging
http://sourceware.org/gdb/wiki/ReversibleDebugging
http://sourceforge.net/project/shownotes.php?release_id=604719
http://sourceforge.net/project/shownotes.php?release_id=604719
http://msdn.microsoft.com/en-us/library/zayyhzts.aspx
http://msdn.microsoft.com/en-us/library/zayyhzts.aspx
http://www.wolfram.com/technology/guide/InstantHighLevelDebugging/
http://www.wolfram.com/technology/guide/InstantHighLevelDebugging/
http://www.eclipsecon.org/2006/Sub.do?id=84
http://www.eclipsecon.org/2006/Sub.do?id=84

50 bibliography

[32] Bill Lewis. Debugging backwards in time. http://video.

google.com/videoplay?docid=3897010229726822034&ei=t_

17SpSUAaac2wKx9_XXAw&q=odb+bill+debugging, 2006. (Cited on

page 19.)

[33] Ds-emedia. Jbixle, high-level debugger. http://www.jbixbe.com/,

2006. (Cited on page 19.)

[34] Berkeley. Harmonia project. http://harmonia.cs.berkeley.edu/

harmonia/index.html, 2009. (Cited on page 22.)

[35] Stefan Seefeld. Synopsis: A source-code introspection tool.

http://synopsis.fresco.org/index.html, 2009. (Cited on page 22.)

[36] Tom Tromey. Interview: Gcc as an incremental compile server.

http://harmonia.cs.berkeley.edu/harmonia/index.html, 2007.

(Cited on page 22.)

[37] Brad King Kitware. Gcc xml, extention. http://www.gccxml.org/

HTML/Index.html, 2009. (Cited on page 22.)

[38] John Ellson. Graphviz, graph visualization software. http://www.

graphviz.org/, 2009. (Cited on page 23.)

[39] Dennis M. Ritchie Brian W. Kernighan. The C Programming Lan-

guage, Second Edition. Prentice Hall, 1998. (Cited on pages 27

and 28.)

[40] Guido van Rossum. Python programming language. http://

python.org/, 2009. (Cited on pages 27 and 30.)

[41] Jutta Degener Jeff Lee, Tom Stockfisch. Ansi c yacc grammar.

http://www.quut.com/c/ANSI-C-grammar-y.html, 1998. (Cited

on page 28.)

[42] Will Estes Vern Paxson and John Millaway. Lexical Analysis With

Flex. University of California, 2007. (Cited on page 28.)

[43] Richard Stallman Charles Donnelly. Bison – The Yacc-compatible

Parser Generator. Gnu Press, 2009. (Cited on page 28.)

http://video.google.com/videoplay?docid=3897010229726822034&ei=t_17SpSUAaac2wKx9_XXAw&q=odb+bill+debugging
http://video.google.com/videoplay?docid=3897010229726822034&ei=t_17SpSUAaac2wKx9_XXAw&q=odb+bill+debugging
http://video.google.com/videoplay?docid=3897010229726822034&ei=t_17SpSUAaac2wKx9_XXAw&q=odb+bill+debugging
http://www.jbixbe.com/
http://harmonia.cs.berkeley.edu/harmonia/index.html
http://harmonia.cs.berkeley.edu/harmonia/index.html
http://harmonia.cs.berkeley.edu/harmonia/index.html
http://www.gccxml.org/HTML/Index.html
http://www.gccxml.org/HTML/Index.html
http://www.graphviz.org/
http://www.graphviz.org/
http://python.org/
http://python.org/
http://www.quut.com/c/ANSI-C-grammar-y.html

bibliography 51

[44] Roland McGrath Sandra Loosemore, Richard Stallman. The GNU

C Library Reference Manual. Gnu Press, 2007. (Cited on page 28.)

[45] Gnome documentation library. http://library.gnome.org/

devel/glib/, 2009. (Cited on page 28.)

[46] David Beazley. Ply (python lex-yacc). http://www.dabeaz.com/

ply/, 2008. (Cited on page 29.)

[47] Eleftherios Koutsoos, Eleftherios Koutso Os, Stephen C. North,

Intsparcd Compsparc, Sparcascode Sparccm, Sparcmcemit Sparcm-

code Sparcasemit, and Intsparc Intnull Intnulld. Drawing graphs

with dot, 1993. (Cited on page 29.)

[48] Paul Smith Richard Stallman, Roland McGrath. GNU Make – A

Program for Directing Recompilation. Gnu Press, 2007. (Cited on

page 30.)

[49] Tollef Fog Heen. Pkgconfig. http://pkg-config.freedesktop.

org/wiki/, 2009. (Cited on page 31.)

[50] The GNOME Project and PyGTK Team. Pygtk: Gtk+ for python.

http://www.pygtk.org/, 2009. (Cited on page 32.)

[51] Gtkmozembed: Gtk mozilla embedding widget. http://www.

mozilla.org/unix/gtk-embedding.html, 2009. (Cited on page 32.)

[52] ht://Dig Group. Htdig www search engine software. http://www.

htdig.org/, 2009. (Cited on page 32.)

[53] David Huggins-Daines. Pocketsphinx - sphinx for handhelds.

http://www.speech.cs.cmu.edu/pocketsphinx/, 2009. (Cited on

page 32.)

[54] Alexandre Moore. nuovext icon theme for gnome. http://

nuovext.pwsp.net/, 2009. (Cited on page 32.)

[55] Jeffrey C. Lagarias. The 3x+1 problem and its generalizations.

American Mathematical Monthly, 92:3–23, 1985. (Cited on page 33.)

[56] Papoylias Nikos. Misha research ide. https://launchpad.net/

misha, 2009. (Cited on page 33.)

http://library.gnome.org/devel/glib/
http://library.gnome.org/devel/glib/
http://www.dabeaz.com/ply/
http://www.dabeaz.com/ply/
http://pkg-config.freedesktop.org/wiki/
http://pkg-config.freedesktop.org/wiki/
http://www.pygtk.org/
http://www.mozilla.org/unix/gtk-embedding.html
http://www.mozilla.org/unix/gtk-embedding.html
http://www.htdig.org/
http://www.htdig.org/
http://www.speech.cs.cmu.edu/pocketsphinx/
http://nuovext.pwsp.net/
http://nuovext.pwsp.net/
https://launchpad.net/misha
https://launchpad.net/misha

A
G N U F R E E D O C U M E N TAT I O N L I C E N S E

Version 1.3, 3 November 2008

Copyright © 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.

<http://fsf.org/>

Everyone is permitted to copy and distribute verbatim copies of this

license document, but changing it is not allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other

functional and useful document “free” in the sense of freedom: to as-

sure everyone the effective freedom to copy and redistribute it, with

or without modifying it, either commercially or noncommercially. Sec-

ondarily, this License preserves for the author and publisher a way to

get credit for their work, while not being considered responsible for

modifications made by others.

This License is a kind of “copyleft”, which means that derivative

works of the document must themselves be free in the same sense.

It complements the GNU General Public License, which is a copyleft

license designed for free software.

We have designed this License in order to use it for manuals for

free software, because free software needs free documentation: a free

program should come with manuals providing the same freedoms that

the software does. But this License is not limited to software manuals;

it can be used for any textual work, regardless of subject matter or

whether it is published as a printed book. We recommend this License

principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

53

54 bibliography

This License applies to any manual or other work, in any medium,

that contains a notice placed by the copyright holder saying it can

be distributed under the terms of this License. Such a notice grants

a world-wide, royalty-free license, unlimited in duration, to use that

work under the conditions stated herein. The “Document”, below, refers

to any such manual or work. Any member of the public is a licensee,

and is addressed as “you”. You accept the license if you copy, modify or

distribute the work in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the

Document or a portion of it, either copied verbatim, or with modifica-

tions and/or translated into another language.

A “Secondary Section” is a named appendix or a front-matter section

of the Document that deals exclusively with the relationship of the

publishers or authors of the Document to the Document’s overall subject

(or to related matters) and contains nothing that could fall directly

within that overall subject. (Thus, if the Document is in part a textbook

of mathematics, a Secondary Section may not explain any mathematics.)

The relationship could be a matter of historical connection with the

subject or with related matters, or of legal, commercial, philosophical,

ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are

designated, as being those of Invariant Sections, in the notice that says

that the Document is released under this License. If a section does

not fit the above definition of Secondary then it is not allowed to be

designated as Invariant. The Document may contain zero Invariant

Sections. If the Document does not identify any Invariant Sections then

there are none.

The “Cover Texts” are certain short passages of text that are listed, as

Front-Cover Texts or Back-Cover Texts, in the notice that says that the

Document is released under this License. A Front-Cover Text may be at

most 5 words, and a Back-Cover Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy,

represented in a format whose specification is available to the general

public, that is suitable for revising the document straightforwardly with

bibliography 55

generic text editors or (for images composed of pixels) generic paint

programs or (for drawings) some widely available drawing editor, and

that is suitable for input to text formatters or for automatic translation to

a variety of formats suitable for input to text formatters. A copy made

in an otherwise Transparent file format whose markup, or absence

of markup, has been arranged to thwart or discourage subsequent

modification by readers is not Transparent. An image format is not

Transparent if used for any substantial amount of text. A copy that is

not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain

ASCII without markup, Texinfo input format, LaTeX input format,

SGML or XML using a publicly available DTD, and standard-conforming

simple HTML, PostScript or PDF designed for human modification.

Examples of transparent image formats include PNG, XCF and JPG.

Opaque formats include proprietary formats that can be read and

edited only by proprietary word processors, SGML or XML for which

the DTD and/or processing tools are not generally available, and the

machine-generated HTML, PostScript or PDF produced by some word

processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus

such following pages as are needed to hold, legibly, the material this

License requires to appear in the title page. For works in formats which

do not have any title page as such, “Title Page” means the text near the

most prominent appearance of the work’s title, preceding the beginning

of the body of the text.

The “publisher” means any person or entity that distributes copies of

the Document to the public.

A section “Entitled XYZ” means a named subunit of the Document

whose title either is precisely XYZ or contains XYZ in parentheses fol-

lowing text that translates XYZ in another language. (Here XYZ stands

for a specific section name mentioned below, such as “Acknowledgements”,

“Dedications”, “Endorsements”, or “History”.) To “Preserve the Title” of such a

section when you modify the Document means that it remains a section

“Entitled XYZ” according to this definition.

56 bibliography

The Document may include Warranty Disclaimers next to the notice

which states that this License applies to the Document. These Warranty

Disclaimers are considered to be included by reference in this License,

but only as regards disclaiming warranties: any other implication that

these Warranty Disclaimers may have is void and has no effect on the

meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either

commercially or noncommercially, provided that this License, the copy-

right notices, and the license notice saying this License applies to the

Document are reproduced in all copies, and that you add no other con-

ditions whatsoever to those of this License. You may not use technical

measures to obstruct or control the reading or further copying of the

copies you make or distribute. However, you may accept compensation

in exchange for copies. If you distribute a large enough number of

copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above,

and you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly

have printed covers) of the Document, numbering more than 100, and

the Document’s license notice requires Cover Texts, you must enclose

the copies in covers that carry, clearly and legibly, all these Cover Texts:

Front-Cover Texts on the front cover, and Back-Cover Texts on the back

cover. Both covers must also clearly and legibly identify you as the

publisher of these copies. The front cover must present the full title

with all words of the title equally prominent and visible. You may add

other material on the covers in addition. Copying with changes limited

to the covers, as long as they preserve the title of the Document and

satisfy these conditions, can be treated as verbatim copying in other

respects.

bibliography 57

If the required texts for either cover are too voluminous to fit legibly,

you should put the first ones listed (as many as fit reasonably) on the

actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document num-

bering more than 100, you must either include a machine-readable

Transparent copy along with each Opaque copy, or state in or with

each Opaque copy a computer-network location from which the general

network-using public has access to download using public-standard

network protocols a complete Transparent copy of the Document, free

of added material. If you use the latter option, you must take reason-

ably prudent steps, when you begin distribution of Opaque copies in

quantity, to ensure that this Transparent copy will remain thus accessi-

ble at the stated location until at least one year after the last time you

distribute an Opaque copy (directly or through your agents or retailers)

of that edition to the public.

It is requested, but not required, that you contact the authors of the

Document well before redistributing any large number of copies, to

give them a chance to provide you with an updated version of the

Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document

under the conditions of sections 2 and 3 above, provided that you release

the Modified Version under precisely this License, with the Modified

Version filling the role of the Document, thus licensing distribution and

modification of the Modified Version to whoever possesses a copy of it.

In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct

from that of the Document, and from those of previous versions

(which should, if there were any, be listed in the History section of

the Document). You may use the same title as a previous version

if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities

responsible for authorship of the modifications in the Modified

58 bibliography

Version, together with at least five of the principal authors of the

Document (all of its principal authors, if it has fewer than five),

unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified

Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adja-

cent to the other copyright notices.

F. Include, immediately after the copyright notices, a license notice

giving the public permission to use the Modified Version under

the terms of this License, in the form shown in the Addendum

below.

G. Preserve in that license notice the full lists of Invariant Sections

and required Cover Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and

add to it an item stating at least the title, year, new authors, and

publisher of the Modified Version as given on the Title Page. If

there is no section Entitled “History” in the Document, create one

stating the title, year, authors, and publisher of the Document as

given on its Title Page, then add an item describing the Modified

Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for

public access to a Transparent copy of the Document, and likewise

the network locations given in the Document for previous versions

it was based on. These may be placed in the “History” section.

You may omit a network location for a work that was published

at least four years before the Document itself, or if the original

publisher of the version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”,

Preserve the Title of the section, and preserve in the section all the

bibliography 59

substance and tone of each of the contributor acknowledgements

and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in

their text and in their titles. Section numbers or the equivalent are

not considered part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may

not be included in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements”

or to conflict in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or ap-

pendices that qualify as Secondary Sections and contain no material

copied from the Document, you may at your option designate some or

all of these sections as invariant. To do this, add their titles to the list of

Invariant Sections in the Modified Version’s license notice. These titles

must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it con-

tains nothing but endorsements of your Modified Version by various

parties—for example, statements of peer review or that the text has

been approved by an organization as the authoritative definition of a

standard.

You may add a passage of up to five words as a Front-Cover Text,

and a passage of up to 25 words as a Back-Cover Text, to the end

of the list of Cover Texts in the Modified Version. Only one passage

of Front-Cover Text and one of Back-Cover Text may be added by

(or through arrangements made by) any one entity. If the Document

already includes a cover text for the same cover, previously added by

you or by arrangement made by the same entity you are acting on

behalf of, you may not add another; but you may replace the old one,

on explicit permission from the previous publisher that added the old

one.

60 bibliography

The author(s) and publisher(s) of the Document do not by this License

give permission to use their names for publicity for or to assert or imply

endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released

under this License, under the terms defined in section 4 above for

modified versions, provided that you include in the combination all of

the Invariant Sections of all of the original documents, unmodified, and

list them all as Invariant Sections of your combined work in its license

notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and

multiple identical Invariant Sections may be replaced with a single

copy. If there are multiple Invariant Sections with the same name but

different contents, make the title of each such section unique by adding

at the end of it, in parentheses, the name of the original author or

publisher of that section if known, or else a unique number. Make the

same adjustment to the section titles in the list of Invariant Sections in

the license notice of the combined work.

In the combination, you must combine any sections Entitled “History”

in the various original documents, forming one section Entitled “His-

tory”; likewise combine any sections Entitled “Acknowledgements”,

and any sections Entitled “Dedications”. You must delete all sections

Entitled “Endorsements”.

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other

documents released under this License, and replace the individual

copies of this License in the various documents with a single copy that

is included in the collection, provided that you follow the rules of this

License for verbatim copying of each of the documents in all other

respects.

You may extract a single document from such a collection, and

distribute it individually under this License, provided you insert a copy

bibliography 61

of this License into the extracted document, and follow this License in

all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT

WORKS

A compilation of the Document or its derivatives with other separate

and independent documents or works, in or on a volume of a storage

or distribution medium, is called an “aggregate” if the copyright re-

sulting from the compilation is not used to limit the legal rights of the

compilation’s users beyond what the individual works permit. When

the Document is included in an aggregate, this License does not apply

to the other works in the aggregate which are not themselves derivative

works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies

of the Document, then if the Document is less than one half of the entire

aggregate, the Document’s Cover Texts may be placed on covers that

bracket the Document within the aggregate, or the electronic equivalent

of covers if the Document is in electronic form. Otherwise they must

appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may dis-

tribute translations of the Document under the terms of section 4.

Replacing Invariant Sections with translations requires special permis-

sion from their copyright holders, but you may include translations of

some or all Invariant Sections in addition to the original versions of

these Invariant Sections. You may include a translation of this License,

and all the license notices in the Document, and any Warranty Dis-

claimers, provided that you also include the original English version of

this License and the original versions of those notices and disclaimers.

In case of a disagreement between the translation and the original

version of this License or a notice or disclaimer, the original version

will prevail.

62 bibliography

If a section in the Document is Entitled “Acknowledgements”, “Ded-

ications”, or “History”, the requirement (section 4) to Preserve its Title

(section 1) will typically require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document

except as expressly provided under this License. Any attempt oth-

erwise to copy, modify, sublicense, or distribute it is void, and will

automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license

from a particular copyright holder is reinstated (a) provisionally, unless

and until the copyright holder explicitly and finally terminates your

license, and (b) permanently, if the copyright holder fails to notify you

of the violation by some reasonable means prior to 60 days after the

cessation.

Moreover, your license from a particular copyright holder is rein-

stated permanently if the copyright holder notifies you of the violation

by some reasonable means, this is the first time you have received notice

of violation of this License (for any work) from that copyright holder,

and you cure the violation prior to 30 days after your receipt of the

notice.

Termination of your rights under this section does not terminate the

licenses of parties who have received copies or rights from you under

this License. If your rights have been terminated and not permanently

reinstated, receipt of a copy of some or all of the same material does

not give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of

the GNU Free Documentation License from time to time. Such new ver-

sions will be similar in spirit to the present version, but may differ in de-

tail to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number.

If the Document specifies that a particular numbered version of this

bibliography 63

License “or any later version” applies to it, you have the option of

following the terms and conditions either of that specified version or

of any later version that has been published (not as a draft) by the

Free Software Foundation. If the Document does not specify a version

number of this License, you may choose any version ever published

(not as a draft) by the Free Software Foundation. If the Document

specifies that a proxy can decide which future versions of this License

can be used, that proxy’s public statement of acceptance of a version

permanently authorizes you to choose that version for the Document.

11. RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means

any World Wide Web server that publishes copyrightable works and

also provides prominent facilities for anybody to edit those works. A

public wiki that anybody can edit is an example of such a server. A

“Massive Multiauthor Collaboration” (or “MMC”) contained in the site

means any set of copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike

3.0 license published by Creative Commons Corporation, a not-for-

profit corporation with a principal place of business in San Francisco,

California, as well as future copyleft versions of that license published

by that same organization.

“Incorporate” means to publish or republish a Document, in whole

or in part, as part of another Document.

An MMC is “eligible for relicensing” if it is licensed under this

License, and if all works that were first published under this License

somewhere other than this MMC, and subsequently incorporated in

whole or in part into the MMC, (1) had no cover texts or invariant

sections, and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in

the site under CC-BY-SA on the same site at any time before August 1,

2009, provided the MMC is eligible for relicensing.

64 bibliography

ADDENDUM: How to use this License for

your documents

To use this License in a document you have written, include a copy

of the License in the document and put the following copyright and

license notices just after the title page:

Copyright © YEAR YOUR NAME. Permission is granted

to copy, distribute and/or modify this document under the

terms of the GNU Free Documentation License, Version

1.3 or any later version published by the Free Software

Foundation; with no Invariant Sections, no Front-Cover

Texts, and no Back-Cover Texts. A copy of the license is

included in the section entitled “GNU Free Documentation

License”.

If you have Invariant Sections, Front-Cover Texts and Back-Cover

Texts, replace the “with . . . Texts.” line with this:

with the Invariant Sections being LIST THEIR TITLES, with

the Front-Cover Texts being LIST, and with the Back-Cover

Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other

combination of the three, merge those two alternatives to suit the

situation.

If your document contains nontrivial examples of program code, we

recommend releasing these examples in parallel under your choice

of free software license, such as the GNU General Public License, to

permit their use in free software.

	Dedication
	Abstract
	Acknowledgements
	Contents
	List of Figures
	1 Introduction
	1.1 The Development cycle and debugging.
	1.2 Project workflow and IDEs.

	2 Background Material
	2.1 Symbolic Debugging inner workings.
	2.2 Symbolic Debugging facilities.
	2.3 Debugging Front-Ends and IDEs.
	2.4 Debugging Systems.

	3 Problem Statement
	3.1 The current state of affairs.
	3.2 The need for High-Level debugging systems.

	4 Related Work
	4.1 Published Work
	4.2 Technological Advancements

	5 Our Approach
	5.1 Rethinking the debugging information flow
	5.2 The five pillars of high-level debugging

	6 Implementation
	6.1 The syntax parser
	6.2 The symbolic debugger
	6.3 The graph visualisation sub-system
	6.4 The extension environment and language
	6.5 The project-management module
	6.6 The high-level debugging API
	6.7 The User Interface

	7 Results
	7.1 Syntax - aware navigation
	7.2 Executing backwards in time
	7.3 Data - Displaying and Editing
	7.4 Debugging Console Interaction
	7.5 Multi-language scripting
	7.6 Project Management and Interfaces

	8 Future Work - Discussion
	8.0.1 Supporting legacy debugging and programming facilities
	8.0.2 High-level debugging enhancements

	8.1 Probing Further..

	Bibliography
	A GNU Free Documentation License
	GNU Free Documentation License
	1. APPLICABILITY AND DEFINITIONS
	2. VERBATIM COPYING
	3. COPYING IN QUANTITY
	4. MODIFICATIONS
	5. COMBINING DOCUMENTS
	6. COLLECTIONS OF DOCUMENTS
	7. AGGREGATION WITH INDEPENDENT WORKS
	8. TRANSLATION
	9. TERMINATION
	10. FUTURE REVISIONS OF THIS LICENSE
	11. RELICENSING
	ADDENDUM: How to use this License for your documents

