
Technical University of Crete

Department of Electronic and Computer Engineering

Implementation in C of the algorithm
that maximizes a quadratic form with a

binary vector

Dissertation Thesis

Anastasia Barkalaki

November 29, 2009

Abstract

The maximization of a full rank quadratic form over the binary alphabet can

be implemented in exponential complexity exhaustive search. It is proved that if the

rank of the form is not a function of the problem size then it can be maximized in

polynomial time. The binary vector that maximizes the quadratic form is testified

to reside to the polynomial size set of candidate vectors. Therefore the candidate

set is reduced from exponential to polynomial. We develop an algorithm, which

is implemented in C that estimates the polynomial size candidate set in polyno-

mial time and show that it is fully parallelizable and rank scalable. We implement

the algorithm parallel by executing in a lot of processors simultaneously and as a

result the execution time is improved according to the number of processors that

are used. We compare this algorithm with sphere decoding and observe the dis-

tinctions. Finally we demonstrate the efficiency of the proposed algorithm in the

context of multiple input multiple output signal detection by nesting the algorithm

in an OSTBC system.

Contents

1 Introduction 3

2 Problem Statement 5

3 Efficient maximization of a rank deficient quadratic form with a

binary vector argument 8

3.1 Theoretic developments . 8

3.2 Algorithmic developments . 14

4 Implementation of singular value decomposition 16

4.1 Theoretic development . 16

4.1.1 Introduction . 16

4.1.2 Intuitive explanation . 17

4.1.3 Problem Statement . 17

4.2 A SINGULAR-VALUE DECOMPOSITION ALGORITHM 19

4.3 Orthogonalisation by plane rotations 21

4.4 A fine point . 24

5 Implementation in C programming language 30

5.1 Introduction . 30

5.2 Functions that are used . 31

5.3 Comparisons C versus Matlab . 35

6 Implementation in C programming language based on paralleliz-

ability 39

6.1 Implementation of parallizable C algorithm 39

1

2

6.2 Parallel implementation versus single core implementation 41

7 Sphere Decoding 45

7.1 Overview of Sphere Decoding and the Fixed SphereDecoder 45

7.2 Reduction of algorithm that maximizes a quadratic form in sphere

decoder . 47

7.3 Reduction of sphere decoder in algorithm that maximizes a quadratic

form . 48

7.4 Comparisons Single core implementation versus sphere decoding . . . 48

8 Applying the algorithm in a Space time block coding system 51

8.1 System model and problem statement 51

8.2 Maximum-Likelihood Noncoherent Detection and the special case of

time-invariant Rayleigh fading . 53

8.3 Integration of our algorithm in a 2 × 2 MIMO system 53

Chapter 1

Introduction

The maximization of a positive (semi) definite quadratic form that consists of a

matrix parameter and a vector argument is common design problem in communica-

tions systems that appear at both the transmitter (signal design) and the receiver

(signal processing) end. It must be illuminated that the complexity of such an opti-

mization is determined by the characteristics of the matrix parameter (whose rank

specifies the quadratic form) as well as the alphabet of the vector argument.

For example, if the alphabet of the vector argument is unconstrained, then the

quadratic form is maximized by the maximum eigenvalue eigenvector of the matrix

parameter. However, maximization of a full rank quadratic form over the binary

alphabet is NP-hard in both a worst case and an average sense.

In digital communications, positive (semi) definite quadratic form maximiza-

tion often involves a binary vector argument. Prime examples include maximum

signal-to-noise ratio (SNR) spreading code design [5], [6], maximum likelihood sig-

nal detection in multiple input multiple output (MIMO) systems, and ML block

no coherent detection of MPSK signals [9]. Furthermore, integer least - squares

optimization [1], [10], is equivalent to positive (semi) definite quadratic form maxi-

mization, when the vector argument is binary.

Because of the exponential complexity of all the above problems in the general

case, several reduced-complexity alternative approaches have appeared in the litera-

ture recently. Sphere decoding provides the exact ML solution at low computational

cost for sufficiently high SNR and short vector argument. Finally a polynomial com-

3

4

plexity optimal method was developed for a special case of quadratics forms.

It has proved that the maximization of a quadratic form with a binary vector

argument is no longer NP-hard on condition that the rank of the form is not a

function of the problem size. Firstly it was developed an algorithm which computes

with log-linear complexity the binary vector that maximizes a rank-2 quadratic form.

The expansion was following by espousing the same idea and was concerned the

maximization of a rank-3 quadratic form, constructing an algorithm that computes

the optimal binary vector in log-quadratic time. It was implemented by utilizing

auxiliary spherical coordinates and partitioning the three- dimensional space into

a quadratic-size set of regions, where each region corresponds to a distinct binary

vector. The optimal binary vector is testified to belong to the quadratic-size set of

candidate vectors. Therefore the method reduces the size of the candidate vector set

from exponential to quadratic. On the other hand, Computational Geometry adopts

a different prespective about the maximization of any reduced-rank quadratic form

over the 0/1 field and uses a variety of CG algorithms such as reverse search [3], [2].

This algorithm is optimal in terms of speed and memory efficient.

Now we are going to describe an analytic procedure to generalize the approach

[4] and implement the algorithm in C in order to compute the binary vector that

maximizes a reduced rank quadratic form. We introduce as many auxiliary spherical

coordinates as the rank of the problem reduced by one and partition the multidi-

mensional space into a polynomial-size set of regions. Each region is in-wrought

with a distinct binary vector. The set of binary vectors we obtain has the same

size as the set produced by the reverse search. However the set is constructed in

a completely different manner in resulting time and memory issues. The algorithm

that we are going to present is fully parallelizable and rank scalable.

Chapter 2

Problem Statement

We consider the quadratic form

xTAx (2.1)

where A ∈ RN×N is a symmetric matrix and x ∈ {±1}N is a binary vector argument.

Since A is symmetric, it can be decomposed as

A =
N∑
n=1

λnqnq
T
n , λ1 ≥ λ2 ≥ · · · ≥ λN , ‖qn‖ = 1, qTnqk = 0, n 6= k (2.2)

n, k = 1, 2, . . . , N,

where λn and qn are its nth eigenvalue and eigenvector.

We are interested in computing the binary vector that maximizes the quadratic

form

xopt
∆
= arg max

x∈{±1}N
xTAx. (2.3)

Without loss of generality we assume that λN = 0. Indeed, if λN 6= 0, then A can be

substituted by A−λNI so that the quadratic forms xT (A−λNI)x = xTAx−NλN
and xTAx are maximized by the same binary vector and the minimum eigenvalue of

A−λNI equals zero. Therefore, in the following, A is assumed semidefinite positive

with rank D ≤ N − 1, i.e. A =
∑D

n=1 λnqnq
T
n , λ1 ≥ λ2 ≥ · · · ≥ λD > 0. we define

the weighted principal component

vn
4
=
√
λnqn, n = 1, 2, . . . , D, (2.4)

5

6

and the corresponding N ×D matrix

V
4
= [v1v2 . . .vD] (2.5)

such that A = VVT and

xopt = arg max
x∈{±1}N

{xTVVTx}. (2.6)

Notice that V is full-rank and matrices A and V have the same rank D ≤ N − 1.

If D = N − 1, then the computation is NP-hard and can be implemented

by exhaustive search among all elements of {±1}N with complexity O(2N) since

|{±1}N | = 2N .However, if D is not a function of N , then we can achieve solu-

tions with lower complexity.For example, if D = 1, then xopt = sgn(q1) where

sgn(·) denotes the vector sign operation. If D = 2 (so, V has size N × 2), then it

has been shown that there exists a set X (VN×2) ⊂ {±1}N which has cardinality

|X (VN×2)| = N and is constructed with complexity O(N logN) such that xopt can

be efficiently computed by numerical comparison of xTAx among the elements of

X (VN×2). Therefore, maximization of a rank-2 quadratic form xTAx with a binary

argument x is efficiently achieved with log-linear complexity.

Special emphasis for the case D = 3 was given recently in [5] where an efficient al-

gorithm for the computation of xopt was developed. The algorithm utilizes auxiliary

spherical coordinates and partitions the three-dimensional space into a quadratic-

size set of regions. Each region corresponds to a distinct binary vector and the set

X (VN×3) that contains all binary vectors associated with regions has cardinality

|X (VN×3)| =
(
N
2

)
+ 1 = O(N2), is constructed with complexity O(N2 logN), and

contains the optimal vector xopt.

From a different perspective, several works in the area of computational geometry

have treated the equivalent problem of maximization of a rank-D quadratic form

bTQb over the 0/1 field, i.e. when Q is a matrix of rank D and b ∈ {0, 1}N . They

do so by identifying a subset of {0, 1}N that contains
∑D−1

d=0

(
N−1
d

)
vectors among

which one vector is the maximizer of bTQb. The subset of interest is constructed

by the incremental algorithm or the reverse search. The incremental algorithm

7

is theoretically faster but very complicated to implement due to its large memory

requirement while the reverse search is simpler to implement and constructs the set of∑D−1
d=0

(
N−1
d

)
candidate vectors with complexity O(LP(N,D) ·ND) where LP(N,D)

denotes the time to solve a linear programming (LP) optimization problem with N

inequalities and D variables .

In the next section, we generalize the approach of [5] to treat the problem of

quadratic-form maximization for any D ≤ N − 1. Specifically, we introduce D − 1

auxiliary spherical coordinates and show that there exists a set X (VN×D) ⊂ {±1}N

which has cardinality |X (VN×D)| =
∑D−1

d=0

(
N−1
d

)
, can be computed in polynomial

time, and contains the optimal vector xopt . We also develop an algorithm that

constructs X (VN×D) with computational complexity O
(
ND
)

and show that it is

fully parallelizable and rank-scalable.

Chapter 3

Efficient maximization of a rank

deficient quadratic form with a

binary vector argument

3.1 Theoretic developments

Since xTVVTx = ‖VTx‖2, we have to optimize the following form

xopt = arg max
x∈{±1}N

‖VTx‖. (3.1)

We recall that V is a full-rank N ×D matrix, D ≤ N −1. We make the assumption

that each row of V has at least one nonzero element Vn,1:D 6= 01×D. If this condition

doesnt exist such that Vn,1:D = 01×D then neither xn = +1 nor xn = −1 have an

effect on VTx, implying that we can ignore the corresponding row of V, assign an

arbitrary value to xn = ±1, and reduce the size of the original problem from N to

N − 1. In addition, we assume that Vn,1 6= 0, n = 1, 2, . . . , N , because for any V ∈

RN×D there exists an orthogonal matrix U ∈ RD×D such that ‖VTx‖ = ‖(VU)Tx‖

and the N × D matrix VU contains no zero in its first column, [VU]n,1 6= 0,

n = 1, 2, . . . , N , as the following proposition states.

Proposition 1 For any N ×D matrix V there exists an orthogonal D×D matrix

U such that the matrix VU does not contain any zero in its first column.

8

9

To develop an efficient method for the maximization in (3.1), we introduce the

spherical coordinates φ1 ∈ (−π, π], φ2, . . . , φD−1 ∈ (−π
2
, π

2
] and define the spherical

coordinate vector

φi:j

4
= [φi, φi+1, . . . , φj]

T (3.2)

and the hyperpolar vector

c(φ1:D−1)
4
=



sinφ1

cosφ1 sinφ2

cosφ1 cosφ2 sinφ3

...

cosφ1 cosφ2 . . . sinφD−1

cosφ1 cosφ2 . . . cosφD−1


. (3.3)

A critical equality for our subsequent developments is

max
x∈{±1}N

∥∥VTx
∥∥ = max

x∈{±1}N
max

φ1:D−1∈(−π,π]×(−π
2
,π
2

]D−2

{
xTVc(φ1:D−1)

}
(3.4)

which results from Cauchy-Schwartz Inequality, since for any a ∈ RD

aTc(φ1:D−1) ≤ ‖a‖ ‖c(φ1:D−1)‖︸ ︷︷ ︸
=1

(3.5)

with equality if and only if φ1, . . . , φD−1 are the spherical coordinates of a. We

interchange the maximizations in (3.4) to obtain the equivalent problem

max
φ1:D−1∈(−π,π]×(−π

2
,π
2

]D−2

N∑
n=1

max
xn=±1

{
xnVn,1:Dc(φ1:D−1)

}
. (3.6)

For a given point φ1:D−1 ∈ (−π, π] ×
(
−π

2
, π

2

]D−2
, the maximizing argument of

each term of the sum in (3.6) depends only on the corresponding row of V and is

determined by

Vn,1:D c(φ1:D−1)
xn=+1

≷
xn=−1

0, n = 1, . . . , N. (3.7)

10

Motivated by the decision rule, for each D × 1 vector v we define the decision

function x that maps φ1:D−1 to +1 or −1 according to

Vn,1:D c(φ1:D−1)
xn=+1

≷
xn=−1

0, n = 1, . . . , N. (3.8)

Motivated by the decision rule, for each D × 1 vector v we define the decision

function x that maps φ1:D−1 to +1 or −1 according to

x(VN×D;φ1:D−1)
4
=


x(V1,1:D; c(φ1:D−1))

x(V2,1:D; c(φ1:D−1))
...

x(VN,1:D; c(φ1:D−1))

 = sgn(VN×Dc(φ1:D−1)) (3.9)

and the optimal vector xopt belongs to
⋃

φ1:D−1∈(−π,π]×(−π
2
,π
2

]D−2 x(VN×D;φ1:D−1).

We note that x(vT ;φ1 − π,φ2:D−1) = −x(vT ;φ1,φ2:D−1) for any v ∈ RD and

φ1:D−1 ∈ (−π, π]×
(
−π

2
, π

2

]D−2
, implying x(VN×D;φ1−π,φ2:D−1) = −x(VN×D;φ1,φ2:D−1)

for any real matrix VN×D and φ1:D−1 ∈ (−π, π]×
(
−π

2
, π

2

]D−2
. Since opposite binary

vectors x and −x result in the same metric value in, we can ignore the values of φ1

in
(
−π,−π

2

]
∪
(
π
2
, π
]

and rewrite the optimization problem in (3.6) as

max
φ1:D−1∈ΦD−1

N∑
n=1

max
xn=±1

{
xnVn,1:Dc(φ1:D−1)

}
, Φ

4
=
(
−π

2
,
π

2

]
. (3.10)

Finally, we collect all candidate binary vectors into set

X (VN×D)
4
=

⋃
φ1:D−1∈ΦD−1

{
x(VN×D;φ1:D−1)

}
=
{
x̄ ∈ {±1}N : ∃ φ1:D−1 ∈ ΦD−1 such that x(VN×D;φ1:D−1) = x̄

}
⊆ {±1}N

(3.11)

and observe that arg maxx∈{±1}N
{
xTVVTx

}
∈ X (V). In the following, we show

that |X (VN×D)| =
∑D−1

d=0

(
N−1
d

)
firstly and secondly develop an algorithm for the

construction of X (VN×D) with complexity O(ND).

11

We begin by observing that the decision function x determines a hypersurface

that partitions the (D − 1)-dimensional hypercube ΦD−1 into two regions; one cor-

responds to x(vT ;φ1:D−1) = +1 and the other corresponds to x(vT ;φ1:D−1) = −1.

The following proposition presents the details of such a partition.

Proposition 2 Let v ∈ RD, v1 6= 0, and φ1:D−1 ∈ ΦD−1. Then, the decision rule

x(vT ;φ1:D−1) = sgn
(
vTc(φ1:D−1)

)
is equivalent to

x(vT ;φ1:D−1) =

 −sgn(v1), φ1 ∈
(
−π

2
, tan−1

(
−vT2:Dc(φ2:D−1)

v1

)]
,

sgn(v1), φ1 ∈
(

tan−1
(
−vT2:Dc(φ2:D−1)

v1

)
, π

2

]
.

(3.12)

�

As seen in Proposition 2, for any v ∈ RD with v1 6= 0 the function φ1 = tan−1
(
−vT2:Dc(φ2:D−1)

v1

)
is equivalent to vTc(φ1:D−1) = 0 and determines a hypersurface S(vT) which parti-

tions ΦD−1 into two regions that correspond to the two opposite values x(vT ;φ1:D−1) =

±1. As a result, the N × D matrix VN×D is associated with N hypersurfaces

S(V1,1:D), S(V2,1:D), . . . , S(VN,1:D) that partition the hypercube ΦD−1 into K cells

C1, C2, . . . , CK such that
⋃K
k=1Ck = ΦD−1, Ck ∩ Cj 6= 0 if k 6= j, and each cell Ck

corresponds to a distinct xk ∈ {±1}N in the sense that x(VN×D;φ1:D−1) = xk for

any φ1:D−1 ∈ Ck and xk 6= xj if k 6= j, k, j ∈ {1, 2, . . . , K}.

Proposition 3 Let VN×D be a rank-D matrix and Vn,1 6= 0, n = 1, 2, . . . , N . The

following hold true.

(a) Each subset of {S(V1,1:D), S(V2,1:D), . . . , S(VN,1:D)} that consists of D−1 hy-

persurfaces has either a single intersection or uncountably many intersections

in ΦD−1.

(b) For any φ1, φ2, . . . , φD−1 ∈ Φ,

(i) x(VN×D;φ1:D−2,
π
2
) = x(VN×(D−1);φ1:D−2),

(ii) x(VN×D;φ1:D−2,−π
2
) = −x(VN×D;−φ1:D−2,

π
2
),

(iii) x(VN×D;φ1:D−3,
π
2
, φD−1) = x(VN×(D−2);φ1:D−3),

12

(iv) x(VN×D;φ1:D−3,−π
2
, φD−1) = −x(VN×D;−φ1:D−3,

π
2
, φ′D−1), ∀φ′D−1 ∈

Φ,

and (v) x(VN×D;φ1:D−3,±π
2
, φD−1) = x(VN×D;φ1:D−3,±π

2
, φ′D−1), ∀φ′D−1 ∈ Φ.

�

Let ID−1
4
= {i1, i2, . . . , iD−1} ⊂ {1, 2, . . . , N} denote the subset of D − 1 in-

dices that correspond to hypersurfaces S(Vi1,1:D), S(Vi2,1:D), . . . , S(ViD−1,1:D) and

φ (VN×D; ID−1) ∈ ΦD−1 equal the vector of spherical coordinates of their intersec-

tion. If φ (VN×D; ID−1) is uniquely determined according to Proposition 3, Part (a),

then it “leads” a cell, say C (VN×D; ID−1), associated with a distinct binary vec-

tor x (VN×D; ID−1) in the sense that x
(
VN×D;φ1:D−1

)
= x (VN×D; ID−1) for all

φ1:D−1 ∈ C (VN×D; ID−1) and φ (VN×D; ID−1) is the single point of C (VN×D; ID−1)

for which φD−1 is minimized.

We collect all such vectors into

J(VN×D)
4
=

⋃
ID−1⊂{1,...,N}

{x (VN×D; ID−1)} (3.13)

and observe that J(VN×D) ⊆ {±1}N and |J(VN×D)| =
(
N
D−1

)
.1 In other words,

J(VN×D) contains
(
N
D−1

)
binary vectors; each vector is associated with a cell in

ΦD−1 that minimizes its φD−1 component at a single point which constitutes the

intersection of the corresponding D − 1 hypersurfaces. We also note that there

exist cells that are not associated with such a vertex and contain uncountably many

points of the form (φ1, . . . , φD−2,−π
2
). However, according to Proposition 3, Part

(b.ii), every such a cell can be ignored since there exists another cell that contains

points of the form (−φ1, . . . ,−φD−2,
π
2
), is associated with the opposite vector, and

is “led” by a vertex-intersection (thus, it belongs to J(VN×D)) unless the initial

cell contains a point with φD−2 = ±π
2
, as Proposition 3, Part (b.v) mentions. For

example, for D = 3, the cells which are identified at the bottom of the plane, that

is, for φ2 = −π
2
. We observe that the vectors that are associated with these cells are

opposite to the vectors that are associated with the cells that are identified at the

1In general, |J(VN×D)| ≤
(

N
D−1

)
with equality if and only if the

(
N

D−1

)
intersections of hyper-

surfaces are distinct. In the sequel, we consider the most demanding case of distinct intersections.

13

top of the plane. Therefore, the former ones can be ignored. Similarly, for D = 4,

the binary vectors that are determined for φ3 = −π
2

are opposite to the vectors

determined for φ3 = π
2
, hence the former ones can again be ignored. In addition,

if φD−2 = ±π
2

for a particular cell, then this cell “exists” for any φD−1 ∈
(
−π

2
, π

2

]
,

implying that we can ignore φD−1 (or, say, set it to an arbitrary value φ′D−1), set

φD−2 to ±π
2
, and consider cells defined on ΦD−3 ×

{
±π

2

}
×
{
φ′D−1

}
.

Finally, due to Proposition 3, Part (b.iv), the cells that are defined when φD−2 =

−π
2

are associated with vectors which are opposite to the vectors that are associated

with cells defined when φD−2 = π
2
. Therefore, we can ignore the case φD−2 = −π

2
,

set φD−2 to π
2
, ignore φD−1, and, according to Proposition 3, Part (b.iii), identify the

cells that are determined by the reduced-size matrix VN×(D−2) over the hypercube

ΦD−3. For D = 4 we set φ2 = φ3 = π
2

and examine the cells that appear on the

leftmost vertical edge of the cube. Hence, X (VN×D) = J(VN×D) ∪ X (VN×(D−2))

and, by induction,

X (VN×d) = J(VN×d) ∪ X (VN×(d−2)), d = 3, 4, . . . , D, (3.14)

which implies that

X (VN×D) = J(VN×D) ∪ J(VN×(D−2)) ∪ . . . ∪ J(VN×(D−2bD−1
2 c))

=

bD−1
2 c⋃

d=0

J(VN×(D−2d)),

(3.15)

since X (VN×1) = J(VN×1) with |X (VN×1)| = |J(VN×1)| = 1 and X (VN×2) =

J(VN×2) with |X (VN×2)| = |J(VN×2)| = N . As a result, the cardinality of

X (VN×D) is

|X (VN×D)| = |J(VN×D)|+ |J(VN×(D−2))|+ . . .+ |J(VN×(D−2bD−1
2 c))|

=

(
N

D − 1

)
+

(
N

D − 3

)
+ . . .+

(
N

D − 1− 2
⌊
D−1

2

⌋)

=

bD−1
2 c∑

d=0

(
N

D − 1− 2d

)
=

D−1∑
d=0

(
N − 1

d

)
.

(3.16)

14

To summarize the developments in this subsection, we have utilized D − 1 aux-

iliary spherical coordinates, partitioned the hypercube ΦD−1 into

∑D−1
d=0

(
N−1
d

)
cells that are associated with distinct binary vectors which constitute

X (VN×D) ⊆ {±1}N ,

and proved that xopt ∈ X (VN×D). Therefore, the initial problem in (3.1) has been

converted into numerical maximization of ‖VTx‖ among all vectors x ∈ X (VN×D).

Such an optimization costs O
(∑D−1

d=0

(
N−1
d

))
= O(ND−1) comparisons upon con-

struction of X (VN×D). An efficient algorithm for the construction of X (VN×D) is

developed in the next section.

3.2 Algorithmic developments

Let VN×D be a real matrix that satisfies the assumptions made in the begin-

ning of Section III. According to (3.15), the construction of X (VN×D) reduces to

the parallel construction of J(VN×D), J(VN×(D−2)), . . . , J(VN×2) if D is even and

J(VN×D), J(VN×(D−2)), . . . , J(VN×1) if D is odd. We describe a way to construct

J(VN×d) for any d. Interestingly, from (3.13), we observe that the construction of

J(VN×d) can also be fully parallelized since the candidate vector x (VN×d; Id−1) can

be computed independently for each Id−1 ⊂ {1, 2, . . . , N}. As a result, we only need

to present a method for the computation of x (VN×d; Id−1) ∀ Id−1 ⊂ {1, 2, . . . , N},

d ∈ {3, 4, . . . , D}.

We consider a certain value of d ∈ {3, 4, . . . , D} and a certain set of indices

Id−1 ⊂ {1, 2, . . . , N} such that the d− 1 hypersurfaces

S(Vi1,1:d), S(Vi2,1:d), . . . , S(Vid−1,1:d)

intersect at a single point φ (VN×d; Id−1). Cell C (VN×d; Id−1) that is “led” by

φ (VN×d; Id−1) is associated with the binary vector x (VN×d; Id−1).

To identify x (VN×d; Id−1), we consider its N elements separately and observe

the following.

15

(i) For any index n ∈ {1, 2, . . . , N}−Id−1, the corresponding element of x (VN×d; Id−1)

maintains its value at φ (VN×d; Id−1), hence it is determined by

xn (VN×d; Id−1) = x (Vn,1:d;φ(VN×d; Id−1)) . (3.17)

(ii) For any index n ∈ Id−1, say n = ik, the corresponding element of x (VN×d; Id−1)

cannot be determined at φ (VN×d; Id−1). However, it maintains its value at

the intersection of the remaining d−2 hypersurfaces S(Vi1,1:d−1), S(Vi2,1:d−1),

. . ., S(Vik−1,1:d−1), S(Vik+1,1:d−1), S(Vik+2,1:d−1), . . ., S(Vid−1,1:d−1), hence it is

determined by

xn (VN×d; Id−1) = x
(
Vn,1:d−1;φ

(
VN×(d−1); Id−1 − {ik}

))
. (3.18)

suggest the following construction of x (VN×d; Id−1). If the
(
N
d−1

)
intersections of hy-

persurfaces are distinct, then only the d−1 hypersurfaces S(Vi1,1:d), S(Vi2,1:d), . . . , S(Vid−1,1:d)

pass through the “leading” vertex φ (VN×d; Id−1) of cell C (VN×d; Id−1). Therefore,

if n ∈ {1, 2, . . . , N} − Id−1, then the corresponding hypersurface S(Vn,1:d) does not

pass through φ (VN×d; Id−1), implying that the polarity of φ (VN×d; Id−1) with re-

spect to S(Vn,1:d) is the same as the polarity of any point of the cell of interest

C (VN×d; Id−1) with respect to the same hypersurface. As a result, the sign of the

corresponding binary element xn (VN×d; Id−1) is well-determined at the “leading”

vertex, as (3.17) states. It remains to describe how the vector of spherical coordi-

nates φ (VN×d; Id−1) is computed efficiently. Recall that φ (VN×d; Id−1) represents

the intersection of S(Vi1,1:d), S(Vi2,1:d), . . . , S(Vid−1,1:d), i.e. the solution of

VId−1,1:d c(φ1:d−1) = 0(d−1)×1. (3.19)

According to the proof of Proposition 3, Part (a), for a full-rank (d − 1) × d real

matrix eq. (3.19) has a unique solution φ (VN×d; Id−1) ∈ Φd−1 which consists of

the spherical coordinates of the zero right singular vector of VId−1,1:d. Therefore,

to obtain φ (VN×d; Id−1) we just need to compute the zero right singular vector of

VId−1,1:d and calculate its spherical coordinates.

Chapter 4

Implementation of singular value

decomposition

In this part, I describe the usage of singular value decomposition and the algorithm

implementation that I have used in my program development.

4.1 Theoretic development

4.1.1 Introduction

In linear algebra, the singular value decomposition (SVD) is an important

factorization of a rectangular real or complex matrix, with many applications in

signal processing and statistics. Applications which employ the SVD include com-

puting the pseudoinverse, least squares fitting of data, matrix approximation, and

determining the rank, range and null space of a matrix.

Suppose A is an m-by-n matrix whose entries come from the field K, which is

either the field of real numbers or the field of complex numbers. Then there exists a

factorization of the form where U is an m-by-m unitary matrix over K, the matrix

S is m-by-n diagonal matrix with nonnegative real numbers on the diagonal, and

V* denotes the conjugate transpose of V, an n-by-n unitary matrix over K. Such a

factorization is called a singular-value decomposition of A.

A common convention is to order the diagonal entries Si,j in non-increasing

16

17

fashion. In this case, the diagonal matrix S is uniquely determined by A (though

the matrices U and V are not). The diagonal entries of S are known as the singular

values of A.

4.1.2 Intuitive explanation

In

A = USV* (4.1)

• the columns of V form a set of orthonormal ”input” or ”analyzing” basis

vector directions for A

• the columns of U form a set of orthonormal ”output” basis vector directions

for A

• The matrix S contains the singular values, which can be thought of as scalar

”gain controls” by which each corresponding input is multiplied to give a

corresponding output.

4.1.3 Problem Statement

In order to carry out computations with matrices, it is common to decompose them

in some way to simplify and speed up the calculations. For a real m by n matrix A,

the QR decomposition is particularly useful. This equates the matrix A with the

product of an orthogonal matrix Q and a right- or upper-triangular matrix R, that

is

A = QR (4.2)

Where Q is m by m and

QTQ = QQT = I (4.3)

and R is m by n with all elements

18

Ri,j = 0, for i > j (4.4)

The QR decomposition leads to the singular-value decomposition of the matrix

A if the matrix R is identified with the product of a diagonal matrix S and an

orthogonal matrix VT, that is

R = SV T (4.5)

Where the m by n matrix S is such that

Si,j = 0, for i 6= j (4.6)

And V, n by n, is such that

V TV = VV T = I (4.7)

Note that the zeros below the diagonal in both R and S imply that, apart from

orthogonality conditions imposed by 4.3, the elements of columns (n + 1), (n + 2),

. . . , m of Q are arbitrary. In fact, they are not needed in most calculations, so

will be dropped, leaving the m by n matrix U, where

U TU = In (4.8)

Note that it is no longer possible to make any statement regarding UUT. Omit-

ting rows (n + 1) to m of both R and S allows the decompositions to be written

as

A = UR = USV T (4.9)

Where A is m by n, U is m by n and, R is n by n and upper-triangular, S is n

by n and diagonal, and V is n by n and orthogonal.

19

4.2 A SINGULAR-VALUE DECOMPOSITION

ALGORITHM

While the svd is somewhat of a sledgehammer method for many nutshell prob-

lems, its versatility in finding the eigensolutions of a real symmetric matrix, in

solving sets of simultaneous linear equations or in computing minimum-length solu-

tions to least-squares problems makes it a valuable building block in programs used

to tackle a variety of real problems. This versatility has been exploited in a single

small program to carry out the above problems as well as to find inverses and gener-

alised inverses of matrices and to solve nonlinear least-squares problems. However,

for computational purposes, an alternative viewpoint is more useful. This considers

the possibility of finding an orthogonal matrix V, n by n, which transforms the real

m by n matrix A into another real m by n B whose columns are orthogonal. The

analysis is according to [7]. It is desired to find V such that

B = AV = (b1, b2, . . . , bn) (4.10)

Where

bT
i b j = S2

i δ ij (4.11)

And

VV T = V TV = In (4.12)

The kronecker delta takes values

δi,j =

 0, for i 6= j

1, for i = j
(4.13)

The quantities Si may, as yet, be either positive or negative, since only their

square is defined by equation 4.11. They will henceforth be taken arbitrarily as

20

positive and will be called singular values of the matrix A. The vectors

uj = bj/Sj (4.14)

which can be computed when none of the Sj is zero, are unit orthogonal vectors.

Collecting these vectors into a real m by n matrix, and the singular values into a

diagonal n by n matrix, it is possible to write

B = US (4.15)

and

UTU = In (4.16)

Where U is a unit matrix of order n.

In the case that some of the Sj are zero, equations 4.10 and 4.11 are still valid,

but the columns of U corresponding to zero singular values must now be constructed

such that they are orthogonal to the columns of U computed via equation 4.14 and to

each other. Thus equations 4.15 and 4.16 are also satisfied. An alternative approach

is to set the columns of U corresponding to zero singular values to null vectors. By

choosing the first k of the singular values to be the non-zero ones, which is always

possible by simple permutations within the matrix V, this causes the matrix UTU

to be a unit matrix of order k augmented to order n with zeros. This will be written

δi,j =

 1k,

0n−k

 (4.17)

While not part of the commonly used definition of the svd, it is useful to require

the singular values to be sorted, so that

S11 > S22 > S33 > · · · > Skk > · · · > Snn (4.18)

This allows (4.1.8) to be recast as a summation

21

A =
n∑
j=1

ujSjjv
T
j (4.19)

Partial sums of this series give a sequence of approximations Ã1, Ã2, . . . , Ãn.Where,

obviously, the last member of the sequence Ãn = A. Since it corresponds to a com-

plete reconstruction of the singular value decomposition. The rank-one matrices

ujSjjv
T
j can be referred to as singular planes, and the partial sums (in order of de-

creasing singular values) are partial svds (Nash and Shlien 1987).A combination of

4.10 and 4.15 gives

AV = US (4.20)

or, using 4.12, the orthogonality of V, A = USVT 4.9 which expresses the svd

of A. The preceding discussion is conditional on the existence and computability of

a suitable matrix V. The next section shows how this task may be accomplished.

4.3 Orthogonalisation by plane rotations

The matrix V sought to accomplish the orthogonalisation 4.10 will be built up as a

product of simpler matrices

V =
z∏

k=1

V(k) (4.21)

where z is some index not necessarily related to the dimensions m and n of

A, the matrix being decomposed. The matrices used in this product will be plane

rotations. If V(k) is a rotation of angle ϕ in the ij plane, then all elements of V(k)

will be the same as those in a unit matrix of order n except for

V
(k)
ii = cosϕ = V

(k)
jj

V
(k)
ij = sinϕ = V

(k)
ji .

(4.22)

Thus V(k) affects only two columns of any matrix it multiplies from the right.

These columns will be labeled x and y. Consider the effect of a single rotation

22

involving these two columns

(x,y)

 cosϕ − sinϕ

sinϕ cosϕ

 = (X,Y) (4.23)

Thus we have

X = x cosϕ+ y sinϕ

Y = −x sinϕ+ y cosϕ
(4.24)

If the resulting vectors X and Y are to be orthogonal, then

XTY = 0 = −(xTx− yTy) sinϕ cosϕ+ xTy(cos2 ϕ− sin2 ϕ) (4.25)

There is a variety of choices for the angle f, or more correctly for the sine and

cosine of this angle, which satisfy 4.25. Some of these are mentioned by Hestenes

(1958), Chartres (1962) and Nash (1975). However, it is convenient if the rotation

can order the columns of the orthogonalised matrix B by length, so that the singular

values are in decreasing order of size and those which are zero (or infinitesimal) are

found in the lower right-hand corner of the matrix S as in equation 4.9. Therefore,

a further condition on the rotation is that

XTX− xTx > 0 (4.26)

For convenience, the columns of the product matrix

A
z∏

k=1

V(k) (4.27)

will be donated aii = 1, 2, . . . , n. The progress of the orthogonalisation is then

observable if a measure Z of the non-orthogonality is defined

Z =
n−1∑
i=1

n∑
j=i+1

(aTi aj)
2 (4.28)

Since two columns orthogonalised in one rotation may be made non- orthogonal

in subsequent rotations, it is essential that this measure be reduced at each rotation.

23

Because only two columns are involved in the kth rotation, we have

Z(k) = Z(k−1) + (XTY)2 − (xTy)2 (4.29)

But condition 4.25 implies

Z(k) = Z(k − 1)− (xTy)2 (4.30)

so that the non-orthogonality is reduced at each rotation.

The specific formulae for the sine and cosine of the angle of rotation are (see e.g.

Nash 1975) given in terms of the quantities

p = xTy (4.31)

q = xTx− yTy (4.32)

And

v = (4p2 + q2)(1/2) (4.33)

They are

cosφ =

[
(v + q)

2v

]1/2

, for q ≥ 0 (4.34)

sinφ = p/v cosφ, for q ≥ 0 (4.35)

sinφ = sgn(p)[(v − q)/2v]1/2, for q < 0 (4.36)

cosφ = p/v sinφ, for q < 0 (4.37)

24

sgn(p) =

 1, p ≥ 0

−1, p < 0
(4.38)

Note that having two forms for the calculation of the functions of the angle of

rotation permits the subtraction of nearly equal numbers to be avoided. As the

matrix nears orthogonality p will become small, so that q and v are bound to have

nearly equal magnitudes. It is choosen to be performed the computed rotation only

when q r, and to use

sinφ = 1 cosφ = 0, when q < 0 (4.39)

This affects an interchange of the columns of the current matrix A. However,

it is more efficient to perform the rotations as defined in the code presented. The

rotations 4.39 were used to force nearly null columns of the final working matrix to

the right-hand side of the storage array. This will occur when the original matrix

A suffers from linear dependencies between the columns (that is, is rank deficient).

In such cases, the rightmost columns of the working matrix eventually reflect the

lack of information in the data in directions corresponding to the null space of the

matrix A. The current methods cannot do much about this lack of information,

and it is not sensible to continue computations on these columns. In the current

implementation of the method (Nash and Shlien 1987), we prefer to ignore columns

at the right of the working matrix which become smaller than a specified tolerance.

This has a side effect of speeding the calculations significantly when rank deficient

matrices are encountered.

4.4 A fine point

Equations 4.30 and 4.26 cause the algorithm just described obviously to proceed

towards both an orthogonalisation and an ordering of the columns of the resulting

matrix A(z). However the rotations must be arranged in some sequence to carry this

task to completion. Furthermore, it remains to be shown that some sequences of

rotations will not place the columns in disorder again. For suppose a1 is orthogonal

25

to all other columns and larger than any of them individually. A sequential arrange-

ment of the rotations to operate first on columns (1, 2), then (1, 3), (1, 4) . . . (1, n),

followed by (2, 3) . . . (2, n)(3, 4) . . . ((n− 1), n) will be called a cycle or sweep. Such

a sweep applied to the matrix described can easily yield a new a2 for which

aT2 a2 > aT1 a1 (4.40)

If, for instance, the original matrix has a2 = a3 and the norm of these vectors is

greater than 2−
1
2 times the norm of a1. Another sweep of rotations will put things

right in this case by exchanging a1 and a2. However, once two columns have achieved

a separation related in a certain way to the non-orthogonality measure 4.28, it can be

shown that no subsequent rotation can exchange them. Suppose that the algorithm

has proceeded so far that the non-orthogonality measure Z satisfies the inequality

Z < t2 (4.41)

where t is some positive tolerance. Then, for any subsequent rotation the pa-

rameter p, equation 4.32, must obey

p2 < t2 (4.42)

Suppose that all adjacent columns are separated in size so that

aTk−1ak−1 − aTk ak > t (4.43)

Then a rotation which changes ak (but not ak1) cannot change the ordering of

the two columns. If x = ak−1, then straightforward use of equations 4.34 and 4.35

or 4.36 and 4.37 gives

XTX− xTx = (v − q)/2 ≥ 0. (4.44)

Using 4.42 and 4.33 in 4.44 gives

26

XTX− xTx ≤ (v − q)/2 ≥ [(4t2 + q2)(1/2)− q]/2 ≤ [(2t+ q)− q]/2 = t. (4.45)

Thus, once columns become sufficiently separated by size and the onorthogo-

nality sufficiently diminished, the column ordering is stable. When some columns

are equal in norm but orthogonal, the above theorem can be applied to columns

separated by size.

We present the algorithm that was implemented in C

procedure NashSVD(nRow, nCo1: integer; {size of problem} var W: wma-

trix; {working matrix} var Z: rvector); {squares of singular values} {The algo-

rithm forms a singular value decomposition of matrix A which is stored in the first

nRow rows of working array W and the nCo1 columns of this array. The first

nRow rows of W will become the product U * S of a conventional svd, where

S is the diagonal matrix of singular values. The last nCo1 rows of W will be

the matrix V of a conventional svd. On return, Z will contain the squares of

the singular values. An extended form of this commentary can be displayed on

the screen by removing the comment braces on the writeln statements below. }

27

Var i, j, k, EstColRank, RotCount, SweepCount,

slimit : integer; eps, e2, tol, vt, p, h2, x0, y0, q, r, c0, s0, c2, d1, d2 : real;

procedure rotate; (STEP 10 as a procedure)

(This rotation acts on both U and V, by storing V at the bottom of U)

begin (<< rotation)

for i :=1 to nRow+nCol do

begin

D1 := W[i,j]; D2:= W[i,k];

end; { rotation >>}

W[i,j] := D1*c0+D2*s0; W[i,k] := -D1*s0+D2*c0

end; { rotate }

begin { procedure SVD }

{STEP 0 Enter nRow, nCo1, the dimensions of the matrix to be decomposed.}

eps:= Calceps; {Set eps, the machine precision.}

slimit := nCo1 div 4; if slimit¡ then slimit := 6;

{Set slimit, a limit on the number of sweeps allowed. A suggested limit is

max([nCol/4], 6).}

SweepCount := 0; {to count the number of sweeps carried out}

e2 := 10.0*nRow*eps*eps;

tol:= eps*0.1;

{Set the tolerances used to decide if the algorithm has converged.

For further discussion of this, see the commentary under STEP 7.} EstColRank

:= nCo1; {current estimate of rank};

{Set V matrix to the unit matrix of order nCo1. V is stored in rows (nRow+1) to

(nRow+nCol) of array W.}

for i := 1 to nCo1 do

begin

for j := 1 to nCo1 do

W[nRow+i,j]:= 0.0; W[nRow+i,i]:= 1.0;

end; {loop on i, and initialization of V matrix}

{Main SVD calculations}

repeat {until convergence is achieved or too many sweeps are carried out}

RotCount := EstColRank*(EstColRank-1) div 2; {STEP 1 – rotation counter}

SweepCount := SweepCount+1

for j := 1 to EstColRank-1 do {STEP 2 – main cyclic Jacobi sweep}

28

begin {STEP 3}

for k := j+l to EstColRank do

begin {STEP 4}

p :=0.0; q:= 0.0; r := 0.0;

for i :=1 to nRow do {STEP 5}

begin

x0 := W[i,j]; y0 := W[i,k];

p := p+x0*y0; q:= q+x0*x0; r := r+y0*y0;

end;

Z[j] := q; Z[k]:=r;

{Now come important convergence test considerations. First we will decide if

rotation will exchange order of columns.}

if q >= r then {STEP 6 – check if the columns are ordered.}

begin {STEP 7 Columns are ordered, so try convergence test.}

if (q<=e2*2[1]) or (abs(p)<= tol*q) then RotCount := RotCount-1

{There is no more work on this particular pair of columns in the current sweep.

That is, we now go to STEP 11. The first condition checks for very small column

norms in BOTH columns, for which no rotation makes sense. The second condition

determines if the inner product is small with respect to the larger of the columns,

which implies a very small rotation angle.}

else {columns are in order, but their inner product is not small}

begin {STEP 8}

p := p/q; r:= 1-r/q; vt:= sqrt(4*p*p + r*r);

c0 := sqrt(0.5*(1+r/vt)); s0 := p/(vt*c0);

rotate;

end end {columns in order with q>=r}

else {columns out of order – must rotate}

begin {STEP 9}

{note: r > q, and cannot be zero since both are sums of squares for

the svd. In the case of a real symmetric matrix, this assumption

must be questioned.}

p := p/r; q := q/r-1; vt :=sqrt(4*p*p + q*q);

s0 :=sqrt(0.5*(1-q/vt));

if p¡0 then s0 := -s0;

29

co :=p/(vt*s0);

rotate; {The rotation is STEP 10.}

end; {Both angle calculations have been set up so that large numbers do not

occur in intermediate quantities. This is easy in the svd case, since quantities

x2,y2 cannot be negative. An obvious scaling for the eigenvalue problem does not

immediately suggest itself.} end; {loop on K – end-loop is STEP 11}

end; {loop on j – end-loop is STEP 12}

{STEP 13 – Set EstColRank to largest column index for which

Z[column index] > (Z[1]*tol + tol*tol)

Note how Pascal expresses this more precisely.}

while (EstColRank >=3) and (Z[EstColRank] <= Z[1]*tol + tol*tol)

do EstColRank:= EstColRank-1;

{STEP 14 – Goto STEP 1 to repeat sweep if rotations have been

performed and the sweep limit has not been reached.}

until (RotCount=0) or (SweepCount>slimit);

{STEP 15 – end SVD calculations}

if (SweepCount > slimit) then writeln(**** SWEEP LIMIT EXCEEDED);

if (SweepCount > slimit) then

{Note: the decomposition may still be useful, even if the sweep limit has been

reached.}

end;

Chapter 5

Implementation in C

programming language

5.1 Introduction

In this section, I am going to present the implementation of the algorithm in C

programming language. At first place, I have to compute the combinations
(
N
D−1

)
,

where N is the number of rows of the matrix and D−1 the cols of the matrix. As we

have described above, I have to compute all possible combinations which correspond

to
(
N
D−1

)
. To this way I have created a routine which takes as inputs the number

of rows and the number of cols and gives us the file which contains all the possible

combinations. The file is saved with spectacular onomatology which is donated by

N and D. So I have computed all the combinations for a variety of N and D. After

that, I load this file into my main program. The basic function that is used is int

**compute(double **V, int D, int N) . As we observe, this function takes as

inputs the matrix V of quadratic form, the dimensions, number of rows and columns

of this matrix and returns the candidate set. We have to mention that we dont

have fulfilled the processes in order to obtain all the candidate set, so according

to the theory I reduce the dimensions by two scalars and call again the function

compute until theD parameter is equal to 1 or 2, which is translated that I take

into consideration only the first one or two columns of matrix Vcorrespondingly.

I mention that each time that function compute is called I put in apposition all

30

31

vectors that are returned so we collect all vectors J(VN×D), which constitutes the

candidate set.

5.2 Functions that are used

In this section I am going to describe the components that were implemented and

used.

• Function combinations

void combinations(int n, int k, int *array, int finished)

In first place, I have to compute all possible subsets. This function takes as

inputs the number of rows and number of columns of matrix V of quadratic

form and returns in an file all possible combinations recursively. The file has

a specific onomatology, as we mentioned before , according the D and N .

Based on the algorithm if the size of problem is D we have to estimate
(
N
D−1

)
combinations.

• Function find intersection

void find intersection(double *result, double **Ainitial, long rowsn,

long cols, long D);

Calculates the Cartesian coordinates of the intersection of the hyper faces

that correspond to the rows of its input matrix within a sign ambiguity by the

singular value decomposition, according to the proof of proposition 3, part(a).

Then the conversion into spherical coordinates is only necessary to resolve the

sign ambiguity and is performed by function determine sign.

Actually this function estimates the singular value decomposition based on the

algorithm development which was described on chapter 4. We introduce an

auxiliary matrix A which must be pre-allocated with 2N rows and N columns.

On calling the matrix to be decomposed is contained in the first N rows of A.

On return the N first rows of A contain the product US and the lowerN rows

contain V(not V′). The S2 vector returns the square of the singular values.

And the right singular vector is returned to the main program.

32

Note; We have to mention that the input matrix hasD−1 rows and D columns,

whose rows are determined by the file which contains all possible combinations(
N
D−1

)
, as we described above.

• Function determine sign

int determine sign(double *c, int cols)

This function takes as inputs the right singular vector that is estimated in find

intersection and the dimension D. In fact contains the decision rule that was

described in theoretic development and returns the sign of this specific singular

vector to the main program in order to be resolved the sign ambiguity.

• Function total cols

int total cols(int cols, int rows)

This function calculates the total columns of candidate set. As it has been

shown in theoretic development the cardinality of candidate set is ;

|X (VN×D)| = |J(VN×D)|+ |J(VN×(D−2))|+ . . .+ |J(VN×(D−2bD−1
2 c))|

=

(
N

D − 1

)
+

(
N

D − 3

)
+ . . .+

(
N

D − 1− 2
⌊
D−1

2

⌋)

=

bD−1
2 c∑

d=0

(
N

D − 1− 2d

)
=

D−1∑
d=0

(
N − 1

d

)
.

(5.1)

• Function find subarrays

void find subarrays(double **Ainitial,double **V init sub, long cols,

long n, long d ptr)

This function estimates all possible subspaces as it has described in step two

in algorithm development. It takes as input the initial matrix and returns the

sub matrix except the row which concerns the variable d ptr.

• Function compute

int **compute(double **V init,int cols, int rows)

33

This function takes as input the matrix V of quadratic form, the number of

rows and columns and returns the candidate set which concern the specific

dimension that is called each time. Firstly the function checks the dimension

of the matrix (actually variable cols is checked). If the dimension is equal to

one then the decision rule for the candidate vector takes into consideration

only the first column of V matrix. If the dimension is equal to two then the

decision rule for the candidate vector is based on the following relations;


V11 V12

...
...

VN1 VN2

 (5.2)

θi = −tan−1

(
Vi2

Vi1

)
(5.3)

c(ϕ) =

 cosϕ

sinϕ

 (5.4)

Where ϕi = θi+θi−1

2
, 2 ≤ i ≤ N and ϕ1 =

−π
2

+θ1
2

So the decision rule for the candidate vector X = sgn(Vc(φ)).

Otherwise, we call the function find intersection, and the input matrix is the

first subset that is computed by the function combination. For example if the

dimension is three D = 3 then the first input of function find intersection is

the first line of the file that has been created by combination function which

represents the first two rows of V matrix of quadratic form. After that this

function returns the right singular vector which is placed as argument in de-

termine sign function. After that, the output of determine sign function is

multiplied with the output of function find intersection in order to solve the

sign ambiguity and finally this result is multiplied with the initial matrix V of

quadratic form. This quantity constitutes the criterion, which was formulated

34

in problem statement and was defined as decision function

x(vT ;φ1:D−1)
4
= arg max

x=±1

{
xvTc(φ1:D−1)

}
= sgn(vTc(φ1:D−1)). (5.5)

According to the instance above, we have to mention that, we cannot estimate

the values of candidate vector in the first and second positions of candidate

vector, which concerns the first two rows of matrix V of quadratic form. This

happens because in these positions we cannot decide about x(1, 1) and x(2, 1)

as the value of x is on curve that is created by V(1, 1 : N) and V(2, 1 : N)

and produce the section φ(VN×3; {1, 2}) . In order to compute the values of x

candidate vector in these positions, I pass the projection on axis label φ2 and

as a consequence x(1, 1) is computed. So I have to implement the proportional

procedure to compute x(2, 1), that is I pass the projection on axis label φ1. The

programming development that was used to implement the procedure below

was; firstly I call the function find subarrays, which returns a matrix with

dimensions D− 2×D− 1. After that the routine find intersection was called

with the first sub-array as input and then function determine sign was called

and used as input the zero right singular vector from the previous function.

Finally the multiplication between the fixed zero right singular vector, the sub-

array and the D − 1 rows of V matrix that were used on the first time that

function find intersection was called produces the right sign for x candidate

vector in these positions above. So we have fulfilled the process in order to

compute the first vector x. The function compute terminates when the same

process repeated
(
N
D−1

)
times with an exception that D is equal to 1 or 2 as it

was mentioned before. So this function returns the candidate set for a specific

dimension D.

Main procedure; I commit memory in order to save the candidate set. The

number of columns of candidate set is computed by function total cols. The

function computes takes as input the V matrix and the dimension D. Then

the first candidate set which concerns dimension D is returned. Until now

we have estimated the vectors which were extracted by cells that ”lead” an

35

intersection. Cells that were created and surrounded by axis label in order

to compute the intersection I reduce the dimensions by two scalars. Function

compute is called again and the candidate set which is extracted concerns

dimension D − 2. I put in apposition the candidate matrix that is produced

each time and reduce the dimensions by two scalars until the D parameter is

equal to 1 or 2. So the algorithm is terminated and the whole candidate set is

constructed with the cardinality that was proven above.

5.3 Comparisons C versus Matlab

It is mentioned the execution time of the algorithm implemented in C versus Matlab

• N=20 and a variety of D (D=3, 4, 5, 6, 7)

D=3 D=4 D=5 D=6 D=7

C Matlab C Matlab C Matlab C Matlab C Matlab

0.000 0.040 0.002 0.350 0.240 2.320 1.930 10.470 8.510 36.560

0.000 0.040 0.002 0.360 0.240 2.310 1.780 1.460 8.520 36.690

0.000 0.040 0.002 0.350 0.240 2.320 1.790 10.450 8.480 36.550

0.000 00240 0.002 0.360 0240 2.310 1.780 10.450 8.480 36.580

0.000 0.040 0.002 0.350 0.240 2.320 1.830 10.460 8.480 36.560

0.000 0.040 0.002 0.350 0.240 2.320 1.790 10.470 8.480 36.640

0.000 0.040 0.002 0.350 0.240 2.310 1.830 10.440 8.510 36.630

0.000 0.040 0.002 0.360 0.250 2.310 1.780 10.450 8.480 36.700

0.000 0.040 0.002 0.360 0.240 2.320 1.790 10.440 8.510 36.640

0.000 0.040 0.002 0.360 0.260 2.310 1.780 10.450 8.970 36.690

0.000 0.040 0.020 0.355 0.243 2.315 1.808 10.454 8.563 36.624

• N=40 and a variety of D (D=3, 4, 5, 6, 7)

36

D=3 D=4 D=5 D=6 D=7

C Matlab C Matlab C Matlab C Matlab C Matlab

0.000 0.200 0.200 3.090 4.740 43.130 72.670 426.400 800.560 out of memory

0.000 0.150 0.200 3.120 4.720 43.020 72.350 426.130 824.280

0.000 0.160 0.200 3.07 4.720 43.060 72.250 426.140 810.160

0.000 0.150 0.200 3.060 4.720 43.070 72.300 426.400 824.280

0.000 0.150 0.200 3.050 4.700 43.070 72.460 426.300 812.600

0.000 0.150 0.200 3.060 4.710 43.090 72.280 426.100 800.560

0.000 0.150 0.200 3.060 4.700 43.070 72.490 426.300 824.280

0.000 0.160 0.210 3.070 4.700 43.130 72.320 426.400 810.160

0.000 0.150 0.210 3.060 4.710 43.070 72.320 426.500 800.560

0.000 0.160 0.210 3.060 4.710 43.090 72.490 426.350 824.280

0.000 0.158 0.203 3.070 4.713 43.080 72.393 426.302 814.132

• N=60 and a variety of D (D=3, 4, 5, 6, 7)

D=3 D=4 D=5 D=6 D=7

C Matlab C Matlab C Matlab C Matlab C Matlab

0.010 0.360 0.740 10.660 25.770 230.080 612.250 out of memory 9811.450 out of memory

0.010 0.360 0.800 10.670 25.700 230.110 604.330 9813.350

0.010 0.340 0.740 10.670 25.740 229.580 612.300 9813.450

0.010 0.340 0.810 10.670 25.710 230.100 608.650 9813.350

0.010 0.350 0.750 10.670 25.700 230.090 608.500 9813.350

0.010 0.340 0.750 10.670 25.770 230.110 612.900 9811.450

0.010 0.340 0.750 10.670 25.720 229.760 609.100 9812.500

0.010 0.350 0.740 10.670 25.710 229.580 612.300 9820.100

0.010 0.340 0.770 10.670 25.710 230.010 604.700 9821.200

0.010 0.350 0.750 10.670 25.740 230.080 604.780 9821.100

0.010 0.347 0.760 10.669 25.727 229.950 608.981 9821.190

37

Figure 5.1: Ratio C/Matlab versus D, for N=20

Figure 5.2: Ratio C/Matlab versus D, for N=40

38

Figure 5.3: Ratio C/Matlab versus N, for D=4

Figure 5.4: Ratio C/Matlab versus N, for D=5

It is noticable that for small values of N and D the ratio C towards Matlab

is getting smaller distinguishablly. This is attributed to the interpenter that uses

matlab each time which executes a program. Finally we observe, that the ratio

grows up for bigger values of N and D but the ascendancy of C is discernible.

Chapter 6

Implementation in C programming
language based on parallelizability

6.1 Implementation of parallizable C algorithm

A basic principle of the proposed algorithm concerns the parallelizability which

means the | X(VNxd)| =
∑D−1

d=0

(
N−1
d

)
cells are visited independently of each other

so that the candidate vectors of X(VNxD) are computed independently of each

other. Hence, the algorithm is fully parallelizable. By taking into consideration

this characteristic, our implementation in C was amended in order to execute our

program simultaneously into a large number of processors.

For this purpose grid technology was used in order to implement and cover the

needs of the algorithm. A definition for Grid ; is an emerging infrastructure that

provides seamless access to computing power and data storage capacity distributed

over the globe.

Firstly it is noticeable that there were not any dependencies in our code so we

don’t have to use threads for this parallel implementation. The only control that it

was used in order to testify that each processor was executing a single process was

a bash script which denotes this test.

The modification, that was introduced, was included the following; firstly the

number of inputs in main program except number of rows and columns were also

included the number of processors(partsCount), which denote in how many parts

the program is going to split and finally which part is being executed each time.

In fact, the file that contains the combinations was split, and each time was being

39

40

executed the equivalent part according to the last argument. More specifically, the

function compute takes three arguments in addition which are; firstly the variable

startLines that denotes the number of lines that are being executed of the file that

contains the combinations, secondly the variable parts that concerns which number

of part will be run and finally the variable lines which concerns the number of the

remaining lines of combination file of the last part that will be executed. For example

if partsCount is k therefore

startLines =



 N

D − 1


k


and

lines =

 N

D − 1

− startLines× (k − 1)

So each time we execute the nth part of the combination file until all parts will be

executed. Each time an output file, that contains the nth part of candidate set of

vectors, is produced and when all processes in all processors have been fulfilled, I

put them in apposition in order to create the whole candidate set.

The only thing, which must be mentioned, is about the control of the processors

in order to be ensured that each processor executes only one process each time. This

can be achieved by creating a bash file that contains an if state. The conditions of

this if statement include a variable named PBSARRAYID, which denotes the id of

process that is implemented by a specific processor. So if PBSARRAYID is equal to

one, it is ensured that the following statement will be executed by the first processor.

We have to mention that the statement of this if declaration is the executable file of

our program in which we assign the appropriate arguments. For example if number

of processors is ten, I introduce an if condition which is parted by ten cases and

the executable program in order to be fulfilled it must be run ten times separately.

When all processes of both ten processors will end, the final candidate set will be

constructed.

It must be noticed that I implement an additional source code, which links all

output files into one which is the entire candidate set.

41

6.2 Parallel implementation versus single core im-

plementation

In this part, ten processors are used in order to implement our program parallel. So

the simulations concern with k=10 processors.

• D=3 and a variety of N (N=20, 30, 40, 50, 60) the required time in order to

complete all processes both of ten processors is zero.

• D=5 and a variety of N (N=20, 30, 40, 50, 60)

N=20 N=30 N=40 N=50 N=60

C parallel C C parallel C C parallel C C parallel C C parallel C

0.025 0.240 0.160 1.470 0.540 4.740 1.410 11.750 3.130 25.770

0.025 0.240 0.160 1.460 0.540 4.720 1.400 11.740 3.110 25.700

0.025 0.240 0.160 1.460 0.540 4.720 1.400 11.760 3.130 25.740

0.025 0.240 0.160 1.460 0.540 4.720 1.400 11.750 3.130 25.710

0.025 0.240 0.160 1.460 0.540 4.700 1.400 11.740 3.130 25.700

0.025 0.240 0.160 1.460 0.540 4.710 1.400 11.740 3.110 25.770

0.025 0.240 0.160 1.470 0.540 4.700 1.410 11.760 3.130 25.720

0.025 0.250 0.160 1.470 0.540 4.700 1.410 11.760 3.110 25.710

0.025 0.240 0.160 1.470 0.540 4.710 1.410 11.750 3.110 25.710

0.025 0.260 0.160 1.470 0.540 4.710 1.410 11.750 3.110 25.740

0.025 0.243 0.160 1.465 0.540 4.713 1.405 11.750 3.120 25.727

• D=7 and a variety of N (N=20, 30, 40, 50, 60)

N=20 N=30 N=40 N=50 N=60

C paral. C C paral. C C paral. C C paral. C C paral. C

0.940 8.510 14.340 124.380 94.140 800.560 390.070 3267.300 1231.960 9811.450

0.940 8.520 14.330 124.310 93.630 824.280 390.520 3268.400 1233.450 9813.350

0.940 8.480 14.340 124.310 93.630 810.160 390.070 3269.500 1240.500 9813.450

0.940 8.480 14.330 124.380 94.140 824.280 390.520 3270.200 1230.450 9813.350

0.940 8.510 14.340 124.380 94.140 800.560 391.010 3267.400 1231.450 9813.350

0.940 8.510 14.330 124.380 93.630 824.280 390.520 3268.450 1231.960 9811.450

0.940 8.480 14.340 124.380 94.140 812.600 390.520 3267.340 1241.300 9812.500

0.940 8.660 14.330 124.310 93.700 800.560 390.450 3268.420 1231.960 9820.100

0.940 8.510 14.340 124.310 94.140 824.280 390.120 3269.500 1233.450 9821.200

0.940 8.970 14.330 124.310 94.140 810.160 391.800 3270.220 1230.070 9821.100

0.940 8.563 14.335 124.310 93.943 814.132 390.560 3268.673 1233.655 9815.13

42

Figure 6.1: Ratio C parallel/C versus N, for D=5

Figure 6.2: Ratio C parallel/C versus N, for D=7

43

In this part, twenty processors are used in order to implement our program

parallel. So the simulations concern with k=20 processors.

• D=3 and a variety of N (N=20, 30, 40, 50, 60) the required time in order to

complete all processes both of twenty processors is zero.

• D=5 and a variety of N (N=20, 30, 40, 50, 60)

N=20 N=30 N=40 N=50 N=60

C parallel C C parallel C C parallel C C parallel C C parallel C

0.013 0.240 0.080 1.470 0.270 4.740 0.700 11.750 1.550 25.770

0.013 0.240 0.080 1.460 0.270 4.720 0.710 11.740 1.560 25.700

0.013 0.240 0.080 1.460 0.280 4.720 0.700 11.760 1.550 25.740

0.013 0.240 0.080 1.460 0.280 4.720 0.700 11.750 1.560 25.710

0.013 0.240 0.080 1.460 0.280 4.700 0.700 11.740 1.560 25.700

0.013 0.240 0.080 1.460 0.280 4.710 0.700 11.740 1.560 25.770

0.013 0.240 0.080 1.470 0.270 4.700 0.710 11.760 1.560 25.720

0.013 0.250 0.080 1.470 0.280 4.700 0.710 11.760 1.550 25.710

0.013 0.240 0.080 1.470 0.270 4.710 0.710 11.750 1.550 25.710

0.013 0.260 0.080 1.470 0.270 4.710 0.710 11.750 1.550 25.740

0.013 0.243 0.080 1.465 0.275 4.713 0.705 11.750 1.555 25.727

• D=7 and a variety of N (N=20, 30, 40, 50, 60)

N=20 N=30 N=40 N=50 N=60

C paral. C C paral. C C paral. C C paral. C C paral. C

0.470 8.510 7.180 124.380 47.190 800.560 195.720 3267.300 619.920 9811.450

0.470 8.520 7.180 124.310 47.300 824.280 196.700 3268.400 620.220 9813.350

0.470 8.480 7.180 124.310 47.200 810.160 196.700 3269.500 618.120 9813.450

0.470 8.480 7.180 124.380 47.150 824.280 195.700 3270.200 620.300 9813.350

0.470 8.510 7.180 124.380 47.230 800.560 195.720 3267.400 621.500 9813.350

0.470 8.510 7.180 124.380 47.190 824.280 195.720 3268.450 615.150 9811.450

0.470 8.480 7.180 124.380 47.300 812.600 196.550 3267.340 616.300 9812.500

0.470 8.660 7.180 124.310 47.150 800.560 196.550 3268.420 619.200 9820.100

0.470 8.510 7.180 124.310 47.200 824.280 195.720 3269.500 619.100 9821.200

0.470 8.970 7.180 124.310 47.190 810.160 195.700 3270.220 618.120 9821.100

0.470 8.563 7.180 124.345 47.210 814.132 196.078 3268.673 618.793 9815.13

44

Figure 6.3: Ratio C parallel / C versus N, for D=5

Figure 6.4: Ratio C parallel / C versus N, for D=7

Chapter 7

Sphere Decoding

7.1 Overview of Sphere Decoding and the Fixed

SphereDecoder

This section provides a very brief overview of how the fixed sphere decoder differs

from the standard sphere decoder

The maximum likelihood decoder for a MIMO receiver operates by comparing

the received signal vector with all possible noiseless received signals corresponding to

all possible transmitted signals. Under certain assumptions, this receiver achieves

optimal performance in the sense of maximizing the probability of correct data

detection. However, the complexity of this decoder increases exponentially with the

number of transmit antennas, making it impossible to implement for large array

sizes and high order digital modulation schemes.

The main idea of the Sphere Decoder is to reduce the computational complexity

of the maximum likelihood detector by only searching over only the noiseless re-

ceived signals that lie within a hypersphere of radius R around the received signal.

Normally, this algorithm is implemented as a depth first tree search, where each

level in the search represents one transmit antenna’s signal. This is illustrated in

Figure 2 below. If at a given level, a given branch exceeds the radius constraint, then

that part of the tree can be removed from further consideration. Unfortunately, it

is difficult to estimate how much of the tree needs to be searched in advance, since

this depends on both the noise and the channel conditions. This means that the

complexity of the sphere decoder is not fixed, but will typically vary with time.

45

46

Figure 7.1: The Tree Structure and Sphere Constraint for the Sphere Decoder

The main idea behind the Fixed Sphere Decoder is to perform a search over

only a fixed number of possible transmitted signals, generated by a small subset

of all possible signals located around the received signal vector. This ensures that

the detector complexity is fixed over time, a major advantage for hardward imple-

mentation. In order for such a search to operate efficiently, a key point is to order

the antennas in such a way that most of the points considered relate to transmit

antennas with the poorest signal-to-noise (SNR) conditions. Antennas with higher

SNR conditions are much more likely to be detected correctly, based only on the

received signal. Figure 3 below shows a hypothetical subset S in 4 transmit antenna,

4 receive antenna system with 4-QAM constellations used at each transmit antenna.

The number of points considered per level (i.e. transmit antenna) is (n1, n2, n3, n4)

= (1, 1, 2, 3). In each level, the closest points to the received signal are considered

as components of the subset S. In this case, the Euclidean distance of only 6 trans-

mitted vectors would be calculated, whereas the total number of possible vectors,

256, is much larger.

47

Figure 7.2: A Hypothetical Tree Structure for the Fixed Sphere Decoder

7.2 Reduction of algorithm that maximizes a quadratic

form in sphere decoder

The basic principle of sphere decoder is related with the minimization of quantity

min
x
‖y −Hx‖ (7.1)

In order to use the tool that maximizes the quadratic form we follow the proce-

dure below:

min
x
‖y −Hx‖2 =

min
x
‖ y ‖2 +xTHTHx− yTHx− xTHTy =

min
x̃=[x1]

x̃T

 HTH HTy

−yTH 0

 x̃

 =

max
x̃=[x1]

{
x̃T (I−B)x̃

}
So relation 7.2 is equivalent with the asked type of quadratic form.

48

7.3 Reduction of sphere decoder in algorithm that

maximizes a quadratic form

As we have mentioned above, we have to maximize the quantity

max
x

{
xTAx

}
(7.2)

In order to use the sphere decoder tool we follow the procedure below:

max
x

{
xTAx

}
= minx

{
−xTλx + λxTIx

}
= min

x

xT (λI−A)︸ ︷︷ ︸
B

x


= min

x

[
x̃T 1

] B̃ −b

−bT c

 x̃T

1

 = min
x̃

{
x̃T B̃x̃− bTx̃− x̃Tb+

}
= min

x

{
‖ a ‖2 +x̃TLLTx̃− ãTLTx̃− x̃TLa

}
= min

x
‖ a− LTx̃ ‖2

And λ− λi ≥ 0↔ λ ≥ λi↔ λ = max(λi)

So relation 7.3 is equivalent with the asked type of sphere decoder form.

7.4 Comparisons Single core implementation ver-

sus sphere decoding

• D=3 and a variety of N (N=30, 40, 50, 60)

N=30 N=40 N=50 N=60

C Sphere C Sphere C Sphere C Sphere

0.000 0.000 0.000 0.100 0.420 1.040 0.010 294.000

0.000 0.000 0.000 0.100 0.420 1.040 0.010 295.000

0.000 0.000 0.000 0.100 0.420 1.040 0.010 293.300

0.000 0.000 0.000 0.100 0.420 1.040 0.010 291.010

0.000 0.000 0.000 0.100 0.420 1.040 0.010 296.020

0.000 0.000 0.000 0.100 0.420 1.040 0.010 295.100

0.000 0.000 0.000 0.100 0.420 1.040 0.010 294.000

0.000 0.000 0.000 0.100 0.420 1.040 0.010 291.700

0.000 0.000 0.000 0.100 0.420 1.040 0.010 294.100

0.000 0.000 0.000 0.100 0.420 1.040 0.010 295.200

0.000 0.000 0.000 0.100 0.420 1.040 0.010 293.943

49

• D=4 and a variety of N (N= 40, 50, 60,70)

N=40 N=50 N=60 N=70

C Sphere C Sphere C Sphere C Sphere

0.200 0.400 0.420 1.220 0.740 64.930 1.230 1041.200

0.200 0.400 0.420 1.230 0.800 62.200 1.250 1041.200

0.200 0.400 0.420 1.220 0.740 62.270 1.240 1041.200

0.200 0.400 0.420 1.240 0.810 64.300 1.240 1060.400

0.200 0.400 0.420 1.220 0.750 62.380 1.240 1047.340

0.200 0.400 0.420 1.220 0.750 64.930 1.230 1041.200

0.200 0.400 0.420 1.220 0.750 62.100 1.250 1047.340

0.210 0.400 0.420 1.220 0.740 63.450 1.250 1047.340

0.210 0.400 0.420 1.220 0.770 62.600 1.230 1041.200

0.210 0.400 0.420 1.220 0.750 64.500 1.240 1060.400

0.203 0.400 0.420 1.220 0.760 63.336 1.240 1046.882

Figure 7.3: Ratio C / Sphere Decoder versus N, for D=3

50

Figure 7.4: Ratio C / Sphere Decoder versus N, for D=4

Observe that the proposed algorithm for large N and small D is more efficient

than sphere decoding. This is atributed to the implemantation of sphere decoder

and it depends on the size of the tree. Furthermore for low SNR, the complexity

of sphere decoder is affected. So complexity of sphere decoding algorithm depends

on the size of the generated tree, which is equal to the sum of the number of lattice

points in spheres of radius r and dimensions d = 1, ..., D. In our case, we choose an

infinite radius and according to [1] the complexity of sphere decoder for large N and

small D increases rapidly. The simulations that are gathered, concern SNR = 7db

and it is distinct that for these cases the proposed algorithm is the optimal solution.

Chapter 8

Applying the algorithm in a Space
time block coding system

8.1 System model and problem statement

In this chapter, we are going to present the modeling of the system and define

the problem. The main section is to proceed this model into the quadratic form in

order to incorporate our algorithm.

We consider a multiple-input multiple-output (MIMO) system with Mt transmit

and Mr receive antennas that employs orthogonal space-time coded transmission of

size Mt × T and rate R = N
T
, N ≤ T . We assume transmission of binary data that

are split into vectors of N bits. Each bit vector forms a corresponding space-time

block (matrix) of size Mt × T . The Mt × T space-time block C(s) ∈ CMt×T that

corresponds to the N × 1 data vector s ∈ {pm1}N is given by

C(s) =
N∑
n=1

Xnsn (8.1)

where sn = ±1 denotes the nth element of s, n = 1, 2, . . . , , , N and Xn ∈

CMt×T , n = 1, 2, , , , , . . . , N, are orthogonal space-time codes that satisfy the equa-

tion

C(s)CH(s) =‖ s ‖2 IMt = TIMt (8.2)

For any sn = ±1. Equation 8.2 denotes orthogonality and leads to maximum

spatial diversity gain. Let s(p) =
[
s

(p)
1 s

(p)
2 . . . s

(p)
N

]
denote the data vector contained

in the pth transmitted code block p = 1, 2, 3, The down converted and pulse-

51

52

matched equivalent pth received block of size Mr × T is

Yp = HpC
(
s(p)
)

+ Vp (8.3)

In 8.3, Hp ∈ CMr×Mt refers to the pth transmission and represents the channel

matrix between the Mt transmit and Mr receive antennas. In general, Hp consists

of correlated coefficients that are modeled as circular complex Gaussian random

variables and account for flat fading. We assume that all collected energy is ab-

sorbed by the channel matrix Hp. In addition, Vp ∈ CMr×T denotes zero-mean

additive spatially and temporally white circular complex Gaussian noise with vari-

ance σ2
ν . The channel and noise matrices Hp and Vp respectively,,,, p = 1, 2, 3, . . . ,

are independent of each other.

If the receiver has knowledge of the channel matrix, then coherent ML detection

simplifies to one-shot block decisions according to

s̃(p) = sinhn
(
<
{
tr
{

Y(p)XH
n

(
H(p)

)H}})
, n = 1, 2, . . . , , , N, p = 1, 2, 3, . . . (8.4)

In this work, we assume that the channel matrices H(p), p = 1, 2, 3, . . . are not

available to the receiver. Hence, coherent detection in ?? cannot be utilized and

the ML receiver takes the form of a sequence detector. We consider a sequence of

P space-time blocks consecutively transmitted by the source and collected by the

receiver, say Y(1), . . . ,Y(p) and form the Mr × T observation matrix

Y
.
=
[
Y(1) . . .Y(p)

]
=
[
H(1)C

(
s(1)
)
. . .H(p)C

(
s(p)
)]

+
[
V(1) . . .V(p)

]
(8.5)

In the sequel, based on the observation of P blocks at the receiver we present

ML noncoherent detection developments.

53

8.2 Maximum-Likelihood Noncoherent Detection

and the special case of time-invariant Rayleigh

fading

The ML maximizes the optimal decision according to the equation;

ŝopt = arg max f(Y|s) = arg max f(vec(Y)|s) = arg max f(y|s). It has been

proved that ML noncoherent OSTBC is attained with polynomial complexity if the

mean channel vector belongs to the range of the channel covariance matrix whose

rank is not a function of the sequence length. Since the time-invariant Rayleigh fad-

ing is a special case of channel model, this conclusion which concerns the complexity

is immediately in effect for this case too.

The ML detector becomes [8] ŝopt = arg mins(p)∈{±1}N ‖ VTs ‖ where V
.
=

[<{A}={A }] and A
.
= Z

(
IMt ⊗YH

)
Q
(
ID + TP

σ2
ν

Σ
)−1

2
Note that the latter is

always feasible, since µ = 0 belongs to the range of Ch.

8.3 Integration of our algorithm in a 2 × 2 MIMO

system

We consider a 2× 2 MIMO system that employs Alamouti space-time coding (with

rate R = N
T

= 1, since N = T = 2 to transmit binary data in an unknown Rayleigh

fading channel environment. Space-time ambiguity induced by the rotatability of

the Alamouti code is resolved by employing differential space-time modulation due

to which the pth transmitted space-time block is

C(p) = C(p−1)X(p) where X(p) =

 sp1 0

0 sp2

 if sp1s
p
2 > 0,X(p) =

 0 sp2

−sp1 0

 if

sp1s
p
2 < 0 and C(0) =

 1 1

−1 1

 so that C(p) follows the Alamouti code structure,

for any p = 1, 2, According to the literacy, we adopt the model in which the

covariance matrix is equal with Ch =


1 r t w1

r∗ 1 w2 t

t∗ w∗2 1 r

w∗1 t∗ r∗ 1

. In our consideration

we set t = r = 0 and w1 = w2 = 1, this setup provides us a higher ergodic capacity.

54

Observe that the rank of such a matrix is 2, therefore the overall complexity of the

proposed ML receiver becomes O (P 4).

We focus on Rayleigh fading channel and demonstrate the bit error rate of the

non coherent receiver, by denoting a specific SNR(in our case is 8db), as a function

of parameter N which concerns the size of the problem. Note; we have to mention

that the size of the problem N and sequence lengths P are given by the relation

N = 2P . For D = 8 and over 150 channel realizations, we present the fluctuation

of BER versus N . We observe that as N increases the BER is reduced and for only

small values of N BER is reduced too.

Figure 8.1: BER versus N, for SNR=8db Demonstrate Coherent Detection and Non
Coherent Detection

55

Conclusions
We considered the problem of identyfing vector that maximizes a

rank deficient quadratic form. I implemented this in C programming
language. The algorithm was proved that is full parallizable. Taking
the advantage of this property, I implement the algorithm parallel in
many processors in order to increase the speed up of our program.
Furthermore the proposed algorithm was compared with sphere de-
coder and observed that was more efficient on time issues for specific
parameters. Finally, we demonstrate the efficiency of the algorithm
by nesting in a OSTBC system and notice that the simulation time is
really improved, when the proposed algorithm is implemented in C.

Bibliography

[1] B. Hassibi and H. Vikalo. ”on the sphere - decoding algorithm
i. expected complexity ”. IEEE Trans. Signal Proc, vol 53, pp.
2806-2818, August 2005.

[2] K. Fukuda J. A. Ferrez and Th. M. Liebling. ”solving the fixed
rank convex quadratic maximization in binary variables by a par-
allel zonotope construction algorithm”. European Journal of op-
erational research, vol. 166, pp 35-50, 2005.

[3] T.M.Liebling K. Allemand, K. Fukuda and E. Steiner. ”a poly-
nomial case of unconstrained zero-one quadratic optimization”.
Mathematical programming Series, Oct 2001.

[4] G. N. Karystinos and A. P. Liavas. ”efficient computation of the
binary vector that maximizes a rank-deficient quadratic form”.
IEEE Transactions on Information Theory, 2006.

[5] G. N. Karystinos and D. A. Pados. ”efficient computation of the
binary vector that maximizes a rank-3 quadratic form”. Proc.
2006 Allerton Conference on Communication, Control, and Com-
puting, Allerton House, Monticello, 2006.

[6] G. N. Karystinos and D. A. Pados. ”rank-2-optimal binary
spreading codes”. Proc. 2006 Conf. on Inform. Sc. and Syst.
(CISS 2006), Princeton University, Princeton, NJ, 2006.

[7] J C Nash. Compact Numerical Methods For Computers, Linear
Algebra and Function Minimization, Second Edition. 1990.

[8] D. S. Papailiopoulos and G. N. Karystinos. ”maximum-likelihood
noncoherent ostbc detection with polynomial complexity”. IEEE
Transactions on Wireless Communications, 2006.

56

57

[9] R. Schober V. Pauli, L. Lampe and K. Fukuda. ”multiple-symbol
differential detection based on computational geometry”. IEEE
International conference on communications, Glasgow, Scotland,
June 2007.

[10] H. Vikalo and B. Hassibi. ”on the sphere - decoding algorithm ii.
generalizations, second-order statistics, and applications to com-
munications ”. IEEE Trans. Signal Proc, vol 53, pp. 2819-2834,
August 2005.

