
Technical University of Crete
Department of Electronic & Computer Engineering

Sparse Rank-Deficient Variance Maximization

Diploma Thesis

By
Megasthenis M. Asteris

Supervised by:
Assistant Prof. George N. Karystinos

Chania, July 26, 2010

Contents

List of Figures . iv

I Introduction . 1

II Problem Statement . 2

III Exhaustive search solution - The direct solution 3

IV Rank-1 case - A trivial case . 6

V Maximization of a Rank-deficient Quadratic Form with a Real Vector Ar-

gument under a cardinality constraint . 8

VI Algorithmic Developments . 22

VI.1 Rank-1 Case . 23

VI.2 Rank-2 Case . 23

VI.2.A Parallel Implementation 24

VI.2.B Serial Implementation 26

VI.2.C On the complexity of the two implementations 30

VI.3 Rank-3 Case . 32

VI.3.A Parallel Implementation 34

VI.3.B Serial Implementation 40

ii

VI.3.C On the complexity of the two implementations 48

VII Conclusions . 51

Appendix 54

A Proof of Proposition 1 . 54

iii

List of Figures

1 Example: Rank-2, Cells and regions in the Φ1 field. 12

2 Example: Rank-3, S(· ; ·) hypersurfaces. 16

3 Example: Rank-3, Partition of the Φ2 plane. 21

4 Rank-2: Intersection of two curves - Ambiguity Resolution. 26

5 Rank-2: Serial scanning of the Φ1 field. 27

6 Rank-2: Serial Algorithm Execution Instance. 29

7 Rank-2: Algorithm Complexity . 31

8 Rank-2: Points examined, Regions, Distinct I -sets. 32

9 Rank-3: Hypersurfaces described by the elements of |Vc(φ1:2)| and their

intersection. 33

10 Rank-3: Intersection of two hypersurfaces. 35

11 Rank-3: Intersection point - Ambiguity resolution. 39

12 Rank-3: Serial, At intersection point - Special Case 44

13 Rank-3: Serial, At intersection point - Case A 45

14 Rank-3: Serial, At intersection point - Case B 46

15 Rank-3: Serial, At intersection point - Non-Existent Case. 47

iv

16 Rank-3: Serial Algorithm Execution Instance. 48

17 Rank-3: Algorithm Complexity . 50

18 Rank-3: Points examined, Regions, Distinct I -sets. 50

v

Abstract

We consider the problem of the maximization of a positive (semi)definite quadratic form

that consists of matrix parameter and a sparse vector argument. The complexity of such

an optimization problem is determined by the characteristics of the matrix parameter, as

well as the alphabet of the vector argument. If, for example, the elements of the vector

argument belong to the real alphabet and there is no sparsity constraint, the optimal solu-

tion equals the maximum-eigenvalue eigenvector of the matrix parameter and is obtained

in polynomial time.

Complexity increases, however, if an additional, cardinality constraint (limitation on the

maximum number of nonzero elements) is imposed on the vector argument, since one

would have to determine the indices of nonzero elements in the optimal solution. Once

the optimal index-set for the nonzero elements of the vector argument is determined, the

optimization problem is reduced to a lower-dimensionality instance of the previous un-

constrained problem.

In the present work we seek a way to exploit rank deficiency of the matrix parameter,

in order to determine a, worst-case, polynomial - in terms of rank - size set of candidate

index-sets. By introducing auxiliary spherical coordinates, we show that the multidimen-

sional space is partitioned into a polynomial-size set of regions, each associated with one

index-set. Therefore, we can collect all candidate index-sets and numerically determine

the optimal index-set among them, avoiding exhaustive search among all possible index-

sets. Finally, we implement serial and parallel algorithms for the efficient collection of the

candidate index-sets when the rank of the quadratic form equals 2 or 3.

I Introduction

The maximization of a positive (semi)definite quadratic form that consists of a matrix

parameter and a vector argument is a common design problem. The complexity of such

an optimization depends both on the characteristics of the matrix parameter (whose rank

determines the rank of the quadratic form) as well as the constraints imposed on the vector

argument. For example, if the elements of the vector argument belong to the real alphabet

and only a norm constraint is imposed on the same vector, then the quadratic form is

maximized by the principal eigenvector of the matrix parameter (appropriately scaled to

meet the norm constraint) and the solution of the maximization problem is trivial.

Additional constraints may dramatically increase the complexity of the optimization prob-

lem. In this work, we confront the case where, in addition to the norm constraint, a cardi-

nality constraint is imposed on the vector argument, i.e. a limitation on the number of its

nonzero elements. In other words, we are seeking a sparse solution for the quadratic maxi-

mization problem. In order to gain some intuition into the complexity of the new problem,

one can see that ifN is the dimensionality of the vector argument andK is the (maximum)

number of nonzero elements allowed in the solution, there are
(
N
K

)
possible index-sets for

the nonzero elements of the vector argument. Once the optimal index-set is determined,

the maximization problem is once again trivial, since it is equivalent to a lower-dimension

quadratic form maximization problem, free of cardinality constraints. Determining the op-

timal index-set for the nonzero elements of the vector argument, however, is not that trivial

and exhaustive search among all possible index-sets can be prohibitive even for relatively

small values ofN andK. In fact, the problem in the general case is NP-Hard and therefore

most research focuses on the relaxation of the problem through replacement of the hard

cardinality constraint and seeks for approximate solutions. In [6] the hard cardinality was

relaxed to obtain a convex approximation, solved using semi-definite programming. In [5]

an alternative approach was pursued, using greedy search and branch-and-bound methods

to solve small instances of problem exactly and get good solutions for larger ones.

In this work we focus on determining the optimal solution and show that if the matrix

parameter is rank deficient, then exhaustive search among all candidate index-sets can be

avoided. In fact we show that size of the set of all candidate index-sets can be polynomi-

ally, in terms of rank, bounded. In the following we present the theoretic developments

1

for the existance of this polynomial-size set of candidate index-sets. Then, we present our

algorithmic developments for the efficient construction of the latter, for the cases where

the rank of the quadratic form is equal to 2 or 3.

Notation: Vectors and matrices are denoted by small and capital, respectively, bold letters.

For example x is a vector and A is a matrix. Their elements are denoted as xi and Ai,j .

Furthermore, if I is a set of indices (positive integers in the range of x), xI denotes the sub-

vector of x containing only the elements of x indexed by the elements of I in ascending

order and AI denotes the sub-matrix of A containing only the rows and columns of A
indexed by the elements of I in ascending order.1 Finally, when it comes handy, a Matlab-

like notation may be used, where Ai:j,k:l denotes the sub-matrix of A that consists of the

i-th up to j-th rows and k-th up to l-th columns of it.

II Problem Statement

We consider the quadratic form

xTAx, (1)

where A ∈ RN×N is a symmetric matrix and x ∈ RN is a real vector argument. Since A
is symmetric, it can be decomposed as

A =
N∑
n=1

λnqnqTn , (2)

λ1 ≥ λ2 ≥ . . . ≥ λN , ‖qn‖ = 1, qTnqTk = 0, n 6= k, n, k = 1, 2, . . . , N,

where λn and qn are its n-th eigenvalue and eigenvector, respectively. We are interested

in the computation of the real, unit-length vector x that has at most K nonzero elements

1To clarify these notations, if I is a set of K positive integers, then

xI =


xi1
xi2
...
xiK

 and AI =


Ai1,i1 Ai1,i2 · · · Ai1,iK
Ai2,i1 Ai2,i2 · · · Ai2,iK

...
. . .

...
AiK ,i1 AiK ,i2 · · · AiK ,iK

 ,
where i1, i2, . . . , iK ∈ I and i1 < i2 < . . . < iK .

2

and maximizes the quadratic form

xopt
4= arg max

x ∈ RN

‖x‖ = 1
‖x‖0 ≤ K

xTAx. (3)

Without loss of generality (w.l.o.g.) we assume that λN = 0. Indeed, if λN 6= 0, then A
can be substituted by A−λNI so that the quadratic forms xT (A−λNI)x = xTAx−NλN
and xTAx are maximized by the same vector x and the minimum eigenvalue of A− λNI
equals zero. Therefore, in the following, w.l.o.g. we assume that A is semidefinite positive

with rank D ≤ N − 1, i.e.:

A =
D∑
n=1

λnqnqTn , λ1 ≥ λ2 ≥ . . . λD ≥ 0. (4)

Furthermore, since λn > 0, n = 1, 2, . . . , D, we can define the weighted principal

component vn as:

vn
4=
√
λnqn, n = 1, 2, . . . , D (5)

and the corresponding N ×D matrix

V 4= [v1 v2 · · · vD]. (6)

Matrix V is full-rank and has the same rank D as matrix A (D ≤ N − 1). Obviously,

A = VVT and problem (3) can be written as:

xopt
4= arg max

x ∈ RN

‖x‖ = 1
‖x‖0 ≤ K

xTVVTx. (7)

III Exhaustive search solution - The direct solu-
tion

If we omit the zero-norm constraint in (3), the maximization problem is trivial: xopt is the

principal eigenvector of A, appropriately scaled to meet the norm constraint. Since λ1 is

3

the largest eigenvalue of A and q1 is the corresponding eigenvector as defined in (2), xopt

is:

xopt = q1 = v1

‖v1‖
. (8)

The zero-norm constraint requires that xopt has at most K (≤ N) nonzero elements. The

contribution of the zero elements of x in the value of xTAx is zero and, therefore, the

corresponding rows and columns of matrix A can be ignored.2 Let Iopt be the set of

indices of the nonzero elements of xopt. (Apparently, |Iopt| = K). Then,

max
x ∈ RN

‖x‖ = 1
‖x‖0 ≤ K

xTAx = max
y ∈ RK

‖y‖ = 1

yTAIopty, (9)

where y ∈ RK and AIopt is a the submatrix of A containing only the rows and columns

of A that correspond to the nonzero elements of xopt. The vector yopt that achieves the

maximum value of yTAIopty is:

yopt =
(aIopt)1

‖(aIopt)1‖
, (10)

where (aIopt)1 is the weighted principal eigenvector of matrix AIopt . Once yopt is deter-

mined, the optimal sparse solution of the original problem, xopt, can be obtained by ex-

panding vector yopt and inserting zeros at the appropriate positions:

xopt ∈ RN ,

 xoptIopt
= yopt (∈ RK),

xoptIopt
= 0(N −K)× 1 (∈ RN−K)

, (11)

where Iopt = {i : i ∈ {1, . . . , N} − Iopt} i.e. Iopt is a (N −K)-size subset of {1, . . . , N}
containing all elements that do not belong to Iopt.

2When the i-th element of x ∈ RN is 0, then ‖xTAx‖ equals ‖x̂T Âx̂‖ where x̂ is
the (N − 1) × 1 vector that derives from x if we omit the i-th element and Â is the
(N − 1)× (N − 1) matrix that derives from A if we omit its i-th row and i-th column of the latter:

...
xi−1,

0
xi+1,

...





T

xT

. . .
...

...
...

· · · Ai−1,i−1 Ai−1,i Ai−1,i+1 · · ·
· · · Ai,i−1 Ai,i Ai,i+1 · · ·
· · · Ai+1,i−1 Ai+1,i Ai+1,i+1 · · ·

...
...

...
. . .




A

...
xi−1

0
xi+1

...




x

=

...
xi−1
xi+1,

...




x̂T

T

. . .
...

...
· · · Ai−1,i−1 Ai−1,i+1 · · ·
· · · Ai+1,i−1 Ai+1,i+1 · · ·

...
...

. . .




Â

...
xi−1
xi+1

...




x̂

.

4

From the above, it is obvious that the calculation of xopt, given the optimal set of indices

of its nonzero elements, is trivial. Therefore, the problem is shifted to determining the

optimal index-set Iopt. The most obvious way for discovering Iopt is exhaustive search

among all possible index-sets. In other words, one may calculate the value of

m(I) M= max
y ∈ RK

‖y‖ = 1

yTAIy, (12)

for every possible index-set, I , and then determine the optimal set Iopt as that set for which

the maximum value in (12) is achieved:

Iopt = arg max
I
{m(I)}, (13)

Since I is a set of K elements and x belongs to RN , there are
(
N
K

)
possible index-sets for

the nonzero elements of xopt. The total complexity of the exhaustive method is therefore:

Cexh =
(
N

K

)
× Ceigv in RK×K , (14)

where Ceigv in RK×K is the cost of calculating the principal eigenvalue of a K ×K matrix.

Note that for each set I we are only interested in the calculation of the principal eigenvalue

of AI since the latter corresponds to the maximum value achieved by the quadratic form

for a given set I , under the unit-norm constraint. The principal eigenvector only has to be

calculated for AIopt in order to construct xopt.

In this work, we seek a way to reduce Cexh by avoiding the exhaustive search among all

possible index-sets. In the next sections, we will show that if matrix A is rank deficient,

then we can exploit rank-deficiency to reduce the number of candidate index-sets. Specifi-

cally, whenR(A) = D, we introduce D−1 auxiliary spherical coordinates and show that

there exists a set I(VN×D) of candidate index-sets, whose size is polynomially, in terms

of rank, upper-bounded and contains the optimal index-set, Iopt. We also present a fully

developed algorithm for the construction of I(VN×D) when the rank equals 2 or 3. Before

we proceed, we present the special, widely known case ofR(A) = 1. Although the rank-1
solution is rather trivial and cannot apply directly to higher-rank cases, its simplicity will

be a strong motivation for seeking a solution other than exhaustive search for higher ranks

as well.

5

IV Rank-1 case - A trivial case

In the case where the input matrix A is of rank-1, it can be written as A = vvT (i.e. matrix

V reduces to a vector in RN). Our optimization problem becomes:

xopt
4= arg max

x ∈ RN

‖x‖ = 1
‖x‖0 ≤ K

xTvvTx

= arg max
x ∈ RN

‖x‖ = 1
‖x‖0 ≤ K

‖vTx‖. (15)

In order to incorporate the concept of the index-set I into the maximization problem, we

can write:

max
x ∈ RN

‖x‖ = 1
‖x‖0 ≤ K

‖vTx‖ = max
x ∈ RN

‖x‖ = 1
‖x‖0 ≤ K

|vTx| =
(

max
I

max∑
i∈I xi

2 = 1
xi = 0 ∀i /∈ I

|
N∑
n=1

xnvn|

︸ ︷︷ ︸
Q(I)

)
,

where I is the set the K indices of the nonzero elements of x. For any given index-set I ,

we have:

Q(I) = max∑
i∈I xi

2 = 1
xi = 0 ∀i /∈ I

|
N∑
n=1

xnvn|

= max∑
i∈I xi

2=1
|
∑
i∈I

(xi · vi) +
∑
i/∈I

(0 · vi)|

= max∑
i∈I xi

2=1
|
∑
i∈I

(xi · vi)|

= max
‖xI‖ = 1

|vI
TxI |

(a)= ‖vI‖,

where (a) derives from Cauchy-Swartz inequality in which equality is achieved for:

xI = vI

‖vI‖
. (16)

6

The optimal index-set, Iopt, is, by definition, the index-set for which the maximum value

of Q(I) is achieved:

Iopt = arg max
I
Q(I)

= arg max
I
‖vI‖

= arg max
I

√∑
i∈I

v2
i

= arg max
I

∑
i∈I
|vi|. (17)

From (17) we conclude that the optimal index-set for the nonzero elements of xopt is the

set of indices of the K largest elements of |v|. Therefore, in the case R(A) = 1, not only

can exhaustive search among the
(
N
K

)
candidate vectors be avoided, but determining the

optimal solution reduces to:

1. Sorting the absolute values of the elements of v and selecting the indices of the K

largest elements of the sorted vector as the Iopt set (can be done in O(N logN)).

2. Constructing xopt ∈ RN (can be done in O(N)):

∀ i ∈ Iopt : xopti = vi
‖vIopt‖

& ∀ i ∈ Iopt : xopti = 0

In fact, in step 1, sorting the elements of |v| is unnecessary, since we are only interested

in the set of K largest elements and not their ordering. Towards this end, we can utilize

existing algorithms [4] that locate the K-th order element in an unsorted array in O(N)
and then determine the K − 1 elements smaller that the K-th order element, again in

O(N). Thus, the total complexity of the rank-1 solution declines even further.

7

V Maximization of a Rank-deficient Quadratic Form
with a Real Vector Argument under a cardinal-
ity constraint

In the general case, V is a N × D matrix. Since xTVVTx = (VTx)TVTx = ‖VTx‖2,

optimization problem (7) can be written as3:

xopt = arg max
x ∈ RN

‖x‖ = 1
‖x‖0 ≤ K

‖VTx‖. (18)

W.l.o.g. we assume that each row of V has at least one nonzero element, i.e. Vn,1:2 6=
01×2. Indeed, if there exists an index n ∈ {1, . . . , N} such that Vn,1:2 6= 01×2 then

independently of the the value of the corresponding element xn of x, the contribution

of this row to the value of ‖VTx‖2 will be zero. So there is no point in “spending”

in xn a weight that could be distributed to other elements of x: we can ignore the n-th

row of V, replace V by V{1,...,n−1,n+1,...,N},: and, hence, reduce the problem size from

N to N − 1. In the final solution xopt, xn will of course be set to zero. In addition, we

assume that no two rows of V have the same absolute value in their first element, i.e.

|Vi,1| 6= |Vj,1|, ∀i, j ∈ {1, . . . , N}.

For our subsequent developments, we introduce the spherical coordinates φ1 ∈ (−π, π],
φ2, . . . , φD−1 ∈ (−π

2 ,
π
2] and define the spherical coordinate vector

φi:j
M= [φi, φi+1, . . . , φj]T (19)

and the hyperpolar vector

3In the formation of (18) we have deliberately ignored the power of ‖VTx‖ since xopt defined
in (3) maximizes also the square root of the quadratic form.

8

c(φ1:D−1)
4=



sinφ1

cosφ1 sinφ2

cosφ1 cosφ2 sinφ3
...

cosφ1 cosφ2 . . . sinφD−1

cosφ1 cosφ2 . . . cosφD−1


. (20)

From Cauchy–Schwartz inequality we know that for any vector a ∈ RD:

aTc(φ1:D−1) ≤ ‖a‖ ‖c(φ1:D−1)‖︸ ︷︷ ︸
=1

, (21)

with equality if and only if φ1:D−1 is the vector of spherical coordinates of a. Substituting

vector a with vector
(
VTx

)
∈ RD in (21) we get:

(
VTx

)T
c(φ1:D−1) ≤ ‖VTx‖ ‖c(φ1:D−1)‖︸ ︷︷ ︸

=1

⇒ xTVc(φ1:D−1) ≤ ‖VTx‖. (22)

The quantity to be maximized appears in the right hand of the inequality. In addition, we

have already stated that equality in (22) can be achieved, if and only if VTx is parallel

to c(φ1:D−1). Since the choice of φ1:D−1 is arbitrary, for any x we can assign a value

to φ1:D−1 such that c(φ1:D−1) is co-linear with VTx and we can, thus, achieve equality

for any x. Based on this observation, in order to find x that maximizes ‖VTx‖, we can

equivalently try to find the (x,φ) pair that maximizes
(
VTx

)T
c(φ1:D−1). The advan-

tage of the transition from the original problem to the equivalent problem of maximizing(
VTx

)T
c(φ1:D−1) over x and φ will become obvious later.

According to the previous paragraph, we have the following, critical for our subsequent

developments, equality:

max
x ∈ RN

‖x‖ = 1
‖x‖0 ≤ K

‖VTx‖ = max
x ∈ RN

‖x‖ = 1
‖x‖0 ≤ K

max
φ1:D−1∈(−π, π]×(−π2 ,

π
2]

xTVc(φ1:D−1). (23)

9

We interchange the maximizations in (23) to obtain the equivalent problem

max
x ∈ RN

‖x‖ = 1
‖x‖0 ≤ K

‖VTx‖ = max
φ1:D∈(−π, π]×(−π2 ,

π
2]D−2

(
max

x ∈ RN

‖x‖ = 1
‖x‖0 ≤ K

xT Vc(φ1:D−1)︸ ︷︷ ︸
v′ (φ1:D−1)

)
. (24)

For a given point φ1:D−1 ∈ (−π, π]× (−π
2 ,

π
2]D−2, Vc(φ1:D−1) is a fixed vector and the

internal maximization problem

max
x ∈ RN

‖x‖ = 1
‖x‖0 ≤ K

xTVc(φ1:D−1) = max
x ∈ RN

‖x‖ = 1
‖x‖0 ≤ K

xTv′(φ1:D−1) (25)

is a rank-1 case problem! So for any given point φ1:D−1 we can determine the opti-

mal index-set I (φ1:D−1) of the nonzero elements of x based on the criteria developed

at (17): I (φ1:D−1) contains the indices of the K largest elements of vector |v′(φ1:D−1)| =
|Vc(φ1:D−1)|.

To gain some intuition into the purpose of inserting the second variable φ1:D−1, notice

that every element of ±Vc(φ1:D−1) is actually a continuous function of φ1:D−1, a D-

dimensional hypersurface and so are the elements of |Vc(φ1:D−1)|.

±Vc(φ1:D−1) =



±V1,1 sinφ1 ±
D−1∑
d=2

V1,d

d−1∏
i=1

cosφi sinφd ± V1,D

D−1∏
i=1

cosφi
...

±VN,1 sinφ1 ±
D−1∑
d=2

VN,d
d−1∏
i=1

cosφi sinφd ± VN,D
D−1∏
i=1

cosφi


. (26)

When we sort the elements of |Vc(φ1:D−1)| at a given point φ1:D−1, we actually sort the

hypersurfaces at point φ1:D−1 according to their magnitude. The key observation in our

algorithm, is that due to the continuity of the hypersurfaces in the ΦD−1 hypercube, we ex-

pect that in an area “around” φ1:D−1 the hypersurfaces will retain their magnitude-sorting.

So we expect the formation of cells in the ΦD−1 hypercube, within which the magnitude-

sorting of the hypersurfaces will remain unaltered, irrespectively of whether the magnitude

of each hypersurface changes. Moreover, even if the sorting of the hypersurfaces changes

at some point around φ1:D−1 it is possible that the I does not change. So we expect the

10

formation of regions in the ΦD−1 hypercube which expand over more than one cells and

within which the I -set remains unaltered, even if the sorting of the hypersurfaces changes.

If we can efficiently determine all these cells (or even better regions) and obtain the corre-

sponding I -sets, then the set of all candidate index-sets may be significantly smaller than

the set of all
(
N
K

)
possible index-sets. Once all the candidate I -sets have been collected,

Iopt and xopt will be determined through exhaustive search among the candidate sets.

Illustration Example 1

To illustrate such a partition of the ΦD−1 hypercube, we use a simple example from the

case D = R(V) = 2 and we set N = 4 and K = 2. In our case, the auxiliary vector of

spherical coordinates consists of only D − 1 = 1 element, φ1 and the rows of |Vc(φ1)|
correspond to two-dimensional hypersurfaces (curves). In Figure 1 we plot the 4 curves

that originate from the 4 rows of |Vc(φ1)|. We observe that there are cells (intervals) in the

Φ1 field within which the sorting of the curves does not change. The borders of cells are

denoted by vertical dashed lines at points φ̂1 where any two curves intersect. Highlighted

vertical dashed lines denote the end of regions, i.e. of areas in the Φ1 field, within which

the I -set does not change, even if the sorting of the curves does. In addition, note that

two independent regions, R1 and R3 are associated with the same index-set. Therefore,

although the number of cells given N and D is well determined, the regions can (and will

actually always) be fewer and the number of independent I -sets can be even lower.

In our simple example where N = 4, D = 2, K = 2, there are in total
(

4
2

)
= 6 possible

index-sets. The algorithm created 12 cells included in 4 regions which are associated with

3 independent candidate I -sets. Due to the small value of N , the number of cells exceeds

the total number of possible index-sets, but this is not true for greater values of N and K.

Despite this, our small-scale example allows us to observe the formation of regions and,

most importantly, that the size of candidate index-sets can be reduced. Our objective is to

efficiently identify these candidate index-sets since the optimal index-set Iopt lies among

them.

11

-pi/2 -pi/4 0 pi/4 pi/2

0

0.2

0.4

0.6

0.8

1

SRVM - Rank 2 Serial Algorithm

�
1

|V
�c

(�
)|

|V
1,:

c(�)|

|V
2,:

c(�)|

|V
3,:

c(�)|

|V
4,:

c(�)|

Figure 1: Example: Rank-2, Cells and regions in the Φ1 field.

In (25) we observed that at a given point φ1:D−1 the maximization problem resembles the

rank-1 case and consequently, the I -set at φ1:D−1 consists of the indices of the K largest

elements of |Vc(φ1:D−1)|. Motivated by this observation, we define a labeling function

I(·) that maps a point φ1:D−1 to an index-set I :

I(VN×D; φ1:D−1)
M= arg max

I

∑
i∈I
|
(
Vc(φ1:D−1)

)
i
|. (27)

For simplicity, one can think of I(VN×D; φ1:D−1) as a function that sorts the elements

of |Vc(φ1:D−1)| and then returns the set of indices of the K largest elements. In terms

of complexity however, we underline that I(VN×D; φ1:D−1) does not sort the elements

of |Vc(φ1:D−1)| and operates in O(N). The index-set can be returned in many equivalent

forms, e.g. as set of K elements, or as a binary N × 1 vector in which the n-th place is

equal to 1 if index n is included in the I -set and 0 otherwise. Using the labeling function,

for the given N ×D matrix V, each point φ1:D−1 ∈ (−π, π]× (−π
2 ,

π
2]D−2 is mapped to

12

a candidate index-set and the optimal index-set Iopt belongs to

⋃
φ1:D−1∈(−π, π]×(−π2 ,

π
2]D−2

I(VN×D ; φ1:D−1). (28)

We note that Vc([φ1, φ2:D−1]) = −Vc([φ1+π, φ2:D−1])⇒ |Vc([φ1, φ2:D−1])| = |Vc([φ1+
π, φ2:D−1])| for any VN×D and φ1:D−1 ∈ (−π, π] × (−π

2 ,
π
2]D−2. So, the sorting of the

elements of |Vc(φ1:D−1)|, is the same at points [φ1, φ2:D−1] and [φ1 +π, φ2:D−1] and there-

fore, I(VN×D; [φ1, φ2:D−1]) = I(VN×D; [φ1 + π, φ2:D−1)]. Since φ1 and φ1 + π result in

the same candidate index-set, we can ignore the values of φ1 ∈ (−π, −π
2] ∪ (π2 , π] and

rewrite the optimization problem as:

max
φ1:D−1∈ΦD−1

max
I

∑
i∈I
|
(
Vc(φ1:D−1)

)
i
|, Φ M= (−π2 ,

π

2]. (29)

Finally, we collect all candidate index-sets into set

I(VN×D) M=
⋃

φ1:D−1∈ΦD−1

{
I(VN×D; φ1:D−1)

}
=
{
Î ⊆ {1, . . . , N} : |Î | = K and ∃φ1:D−1 ∈ ΦD−1 such

that Î = I(VN×D; φ1:D−1)
}

(30)

⊂
{
Î ⊆ {1, . . . , N} : |Î | = K}

and observe that the optimal index-set Iopt belongs to I(VN×D). In the following we:

(i) show that |I(VN×D)| ≤ ∑D−1
d=0

(
N2−N−1

d

)
and

(ii) develop an algorithm for the construction of I(VN×D).

We begin by observing that the labeling function which determines the I -set at a point

φ1:D−1, is based on pair-wise comparisons of the elements of Vc(φ1:D−1). Besides, even

sorting can be considered as a procedure associated with pairwise comparisons. Now,

recall that each element of |VN×Dc(φ1:D−1)| is a continuous function of φ1:D−1, a D-

dimensional hypersurface, and any point φ1:D−1 is mapped to an index-set I which is

determined by comparing the magnitudes of these hypersurfaces at φ1:D−1. Due to the

continuity of hypersurfaces, the index-set I does not change in the “neighborhood” of

13

φ1:D−1. A necessary condition for the I set to change is two of the hypersurfaces to change

their magnitude ordering. The switching occurs over the intersection of two hypersurfaces.

Note, that this is, of course, not a sufficient condition for the I -set to change, since the two

hypersurfaces that intersect can correspond to indices that are both outside or inside the

I -set. In such a case, although the ordering of the hypersurfaces changes, the index-set I
does not. At the intersection of two hypersurfaces, say those that originate from rows i

and j of V, we have:

∣∣∣(Vc(φ1:D−1)
)
i

∣∣∣ = ∣∣∣(Vc(φ1:D−1)
)
j

∣∣∣, i, j ∈ {1, . . . , N}. (31)

Equality (31) yields the following two equations:

(Vc(φ1:D−1)
)
i
= +

(
Vc(φ1:D−1)

)
j

⇒Vi,:c(φ1:D−1) = +Vj,:c(φ1:D−1)

⇒(Vi,: − Vj,:)c(φ1:D−1) = 0 (32)

⇒φ1 = tan−1
(
− (Vi,2:D − Vj,2:D)Tc(φ2:D−1)

(Vi,1 − Vj,1)
)

(33)

and

(Vc(φ1:D−1)
)
i
= −

(
Vc(φ1:D−1)

)
j

⇒Vi,:c(φ1:D−1) = −Vj,:c(φ1:D−1)

⇒(Vi,: + Vj,:)c(φ1:D−1) = 0 (34)

⇒φ1 = tan−1
(
− (Vi,2:D + Vj,2:D)Tc(φ2:D−1)

(Vi,1 + Vj,1)
)
. (35)

Each one of equations (33) and (35) determines a (D − 1)-dimensional hypersurface that

partitions the (D − 1)-dimensional hypercube ΦD−1 into two regions. More specifically:

1. Function φ1 = tan−1
(
− (Vi,2:D−Vj,2:D)T c(φ2:D−1)

(Vi,1−Vj,1)

)
determines a hypersurface S(Vi,: ; Vj,:)4

which partitions ΦD−1 into two regions: one where Vi,:c(φ1:D−1) > Vj,:c(φ1:D−1)
and one where Vi,:c(φ1:D−1) < Vj,:c(φ1:D−1)

4From equation (35), it is obvious that hypersurface S(−Vi,: ; Vj,:) coincides with S(Vi,: ; −Vj,:)
and S(−Vi,: ; −Vj,:) coincides with S(Vi,: ; Vj,:). Therefore, hypersurfaces S(−Vi,: ; Vj,:) and
S(−Vi,: ; −Vj,:) do not have to be considered separately.

14

2. Function φ1 = tan−1
(
− (Vi,2:D+Vj,2:D)T c(φ2:D−1)

(Vi,1+Vj,1)

)
determines a hypersurface

S(Vi,: ; −Vj,:)4 which partitions ΦD−1 into two regions: one where Vi,:c(φ1:D−1) >
−Vj,:c(φ1:D−1) and one where Vi,:c(φ1:D−1) < −Vj,:c(φ1:D−1)

Apparently, both hypersurfaces S(Vi,: ; Vj,:) and S(Vi,: ; −Vj,:) together, partition ΦD−1

into four regions, in two of which |Vi,:c(φ1:D−1)| > |Vj,:c(φ1:D−1)| while in the other two

|Vi,:c(φ1:D−1)| < |Vj,:c(φ1:D−1)|

The two hypersurfaces, S(Vi,: ; Vj,:) and S(Vi,: ; −Vj,:) originate from a pair of matrix V
rows. Since theN rows of theN×Dmatrix VN×D can be combined in

(
N
2

)
= N2−N

2 pairs,

and each pair yields two hypersurfaces, matrix V is associated with a total of 2 ·
(
N
2

)
=

N2 − N hypersurfaces, which partition the hypercube ΦD−1 into L cells C1, C2, . . . , CL

such that
⋃L
l=1Cl = ΦD−1, Cl ∩ Cm = ∅ if l 6= m and each cell Cl corresponds to an

index-set I . Of course more than one cells may correspond to the same index-set. Our

objective is to efficiently identify these candidate index-sets, since one of them is the

optimal index-set.

Illustration Example 2

To illustrate such a partition, we will refer to a rank-3 example, where each row of matrix

V originates a three-dimensional surface. Hypersurfaces S(Vi,: ; Vj,:) and S(Vi,: ; −Vj,:),
which are based on the intersection of two three-dimensional surfaces, are two-dimensional

curves in the Φ2 plane. In Figure 2a, we plot the curve S(Vi,: ; −Vj,:) = {(φ1, φ2) : φ1 =
tan−1

(
− (Vi,2:3−Vj,2:3)T c(φ2)

(Vi,1−Vj,1)

)
, φ1, φ2 ∈ (−π

2 ,
π
2]} and see that the curve partitions the two

dimensional plane Φ2 into two regions A and B. If Vi,1:3c(φ1:2) > Vj,1:3c(φ1:2) inside A,

then Vi,1:3c(φ1:2) < Vj,1:3c(φ1:2) inside B and vice-versa. Note, however, that the sorting

of |Vi,1:3c(φ1:2)| and |Vj,1:3c(φ1:2)| is not fixed in the interior of regions A and B.

In Figure 2b, we plot both curves S(Vi,: ; −Vj,:) and S(Vi,: ; Vj,:). Each partitions the two

dimensional plane Φ2 into two regions, for a total of four regions, A1, A2, B1 and B2. In

the interior of each one of the four areas, the sorting of |Vi,:c(φ1:2)| and |Vj,:c(φ1:2)| is

stable. The significant part is that when we move over S(Vi,: ; −Vj,:) or S(Vi,: ; Vj,:) the

sorting of |Vi,:c(φ1:2)| and |Vj,:c(φ1:2)| changes, while when moving over both curves, the

initial sorting is restored.

15

(a) S(Vi,1:3 ; Vj,1:3)

(b) S(Vi,1:3 ; Vj,1:3) and S(Vi,1:3 ; −Vj,1:3)

Figure 2: Example: Rank-3, S(· ; ·) hypersurfaces.

Several properties of the resulting partition that are very important for our subsequent

16

developments are presented in the following proposition. The proof is provided in the

Appendix.

Proposition 1 Let V ∈ RN×D be a rank-D matrix and |Vn,1| 6= |Vm,1|, n,m = 1, 2, . . . , N ,

n 6= m. The following hold true:

Part a Each set of D − 1 hypersurfaces of the form S(Vi,: ; ±Vj,:) has either a single

intersection or uncountably many intersections in ΦD−1.

Part b For any φ1, φ2, . . . , φD−1 ∈ Φ,

(i) |VN×Dc([φ1:D−2,
π
2])| = |VN×(D−1)c(φ1:D−2)|,

(ii) |VN×Dc([φ1:D−2,−π
2])| = |VN×Dc([−φ1:D−2,

π
2])| ,

(iii) |VN×Dc([φ1:D−3,
π
2 , φD−1])| = |VN×(D−2)c(φ1:D−3)|,

(iv) |VN×Dc([φ1:D−3,−π
2 , φD−1])| = |VN×Dc([−φ1:D−3,

π
2 , φ

′
D−1])|,∀φ′D−1 ∈ Φ ,

(v) |VN×Dc([φ1:D−3,±π
2 , φD−1])| = |VN×Dc([φ1:D−3,±π

2 , φ
′
D−1])|,∀φ′D−1 ∈ Φ.

(For Proof, see Appendix.) �

For convenience, in the following we use a pair {i, j} to denote the rows of matrix VN×D,

that originate hypersurface S(i
|i|V|i|,: ;

j
|j|V|j|,:). Moreover, we allow i and j to be negative

in order to encapsulate the information about the sign with which each row participates in

the generation of hypersurface S, i.e.:

{i, j} 7→ S(i
|i|
V|i|,: ;

j

|j|
V|j|,:), i, j ∈ {−N, . . . ,−1, 1, . . . , N}, |i| 6= |j|. (36)

Let PD−1
M= {{p1,1, p1,2}, {p2,1, p2,2}, . . . , {pD−1,1, pD−1,2}} denote a set of D − 1 such

pairs where p∗,1, p∗,2 ∈ −N, . . . ,−1, 1, . . . , N and |p∗,1| 6= |p∗,2|. Each pair {p∗,1, p∗,2}
corresponds to a hypersurface S(p∗,1

|p∗,1|V|p∗,1|,: ;
p∗,2
|p∗,2|V|p∗,2|,:) and φ(VN×D; PD−1) ∈ ΦD−1

is the vector of spherical coordinates of the intersection of the D − 1 hypersurfaces.

17

If φ(VN×D; PD−1) is uniquely determined according to Proposition 1 Part a, then it

“leads” a cell, say C(VN×D; PD−1), associated with an index-set I(VN×D; PD−1) in the

sense that I(VN×D; PD−1) = I(VN×D;φ1:D−1) for all φ1:D−1 ∈ C(VN×D; PD−1) and

φ(VN×D; PD−1) is the single point of C(VN×D; PD−1) for which φD−1 is minimized. In

other words, the I -set associated with all points φ1:D−1 in the interior of the cell is the

same as the I -set at the leading vertex. In fact, the actual sorting of |Vc(φ1:D−1)| for all

points in the interior of the cell is the same as the sorting at the leading vertex, and the

I -set may characterize a greater area that includes many cells. For the moment, lets just

say that each cell is associated with an I -set. We collect all index-sets into

I(VN×D) M=
⋃

PD−1

I(VN×D; PD−1) (37)

and observe that I(VN×D) can only be a subset of the set of all possible
(
N
K

)
index-sets.

In addition, since the cells are defined by a leading vertex, and a vertex is determined by

a PD−1-set (the intersection of D − 1 hypersurfaces) we conclude that there are at most(
N2−N
D−1

)
cells5. However, we note that

(
N2−N
D−1

)
is only a rough upper bound on the num-

ber of cells, which would equal the number of intersecting points if every set of D − 1
hypersurfaces had a distinct intersection point.For D ≥ 3, although an intersection point

is determined by D − 1 hypersurfaces and all possible combinations of D − 1 hyper-

surfaces are considered, there are many cases in which more than D − 1 hypersurfaces

intersect at the same point. This leads to examining the same intersection point multiple

times. To see this, recall that each hypersurface originates from two rows of matrix V.

Now lets consider any two of the D − 1 intersecting hypersurfaces: S(i
|i|V|i|,: ;

j
|j|V|j|,:)

and S(k
|k|V|k|,: ;

l
|l|V|l|,:) where |i| 6= |j| and |k| 6= |l|. By the definition of each one

of these two hypersurfaces, at φ1:D−1 we have |V|i|,:c(φ1:D−1)| = |V|j|,:c(φ1:D−1)| and

|V|k|,:c(φ1:D−1)| = |V|l|,:c(φ1:D−1)|.

• If |i| /∈ {|k|, |l|} and |j| /∈ {|k|, |l|}, no further equality is implied. Of course,

there is a possibility all 4 D-dimensional hypersurfaces i
|i|V|i|,:c(φ), j

|j|V|j|,:c(φ),
k
|k|V|k|,:c(φ) and l

|l|V|l|,:c(φ) intersect at φ1:D−1 but the probability of such a case is

practically zero and it is, by no means, implied by the fact that S(i
|i|V|i|,: ;

j
|j|V|j|,:)

5We have already shown that matrix VN×D is associated with N2 − N hypersurfaces. Of
course, when combining theses hypersurfaces in sets of D − 1 hypersurfaces, there are

(
N2−N
D−1

)
possible combinations.

18

and S(k
|k|V|k|,: ;

l
|l|V|l|,:) intersect at φ1:D−1. Therefore, for simplicity, we ignore this

case.

• However, if |i| ∈ {|k|, |l|} or |j| ∈ {|k|, |l|}, then we know that one more hy-

persurface also goes through the intersection point: Assume, for example, that

|i| = |k|. Then, at point φ1:D−1 we have: |V|i|,:c(φ1:D−1)| = |V|j|,:c(φ1:D−1)|,
|V|i|,:c(φ1:D−1)| = |V|l|,:c(φ1:D−1)| and, therefore, a third equality, |V|j|,:c(φ1:D−1)|
= |V|l|,:c(φ1:D−1)|, is deduced. The last equality, implies that hypersurface

S(j
|j|V|j|,: ;

l
|l|V|l|,:), where ∗ = k

i
denotes only the proper sign, also goes through

the intersection point. The fact that more thanD−1, sayM , hypersurfaces intersect

at the same point, along with the fact that we blindly examine all possible combina-

tions of D − 1 hypersurfaces, will force us to examine the same intersection point(
M
D−1

)
times. However, there are at most

(
M
D−1

)
cells originating at that point. Illus-

trating Example 3 shows, for instance, that in the case of rank-3 cells are less than

the number of considered intersections.

Up to now, we have seen that the number of cells is only upper bounded by the number of

examined intersection points. We also have to note, though, that many cells are associated

with the same index-set. So, finally, we expect that the candidate index-sets contained

in I(VN×D) will be by far less than
(
N2−N
D−1

)
. However, the problem’s complexity is also

associated with the number of examined intersection points. Interestingly, the case of rank-

3, which has been fully solved, has allowed us to see that not all intersection points have

to be examined and has led to significant reduction in the number of examined intersection

points, which seems promising for the cases of even higher ranks. More details are given

in Section VI.3, where we provide the algorithmic developments for the rank-3 case.

We finally have to note that there exist cells that are not associated with an intersection-

vertex:

1. Such cells are those that contain uncountably many points of the form φ1:D−1 =
[φ1:D−2,−π

2]. In Figure 3 which presents a simple rank-3 example, such cells lie at

the bottom of Φ2 plane, like C(ii). However, according to Proposition 1 Part (b.ii),

every such cell can be ignored since there exists another cell that contains points of

the form φ′1:D−1 = [−φ1:D−2,
π
2], is associated with the same index-set, and is “led”

19

by an intersection-vertex, unless the initial cell contains a point with φD−2 = ±π
2 as

Proposition 1 Part(b.v) states.

2. If φD−2 = ±π
2 for a particular cell, then this cell “exists” for any φD−1 ∈ (−π

2 ,
π
2],

implying that we can ignore φD−1 or, say, set it to an arbitrary value φ′D−1, set φD−2

to ±π
2 and consider cells defined on ΦD−3 × {±π

2} × {φ
′
D−1}. In Figure 3 cell C(v)

is such a cell.

3. Finally, due to Proposition 1 Part (b.iv), the cells that are defined when φD−2 =
−π

2 are associated with the same index-sets as the cells defined when φD−2 = π
2 .

Therefore we can ignore the case φD−2 = −π
2 , set φD−2 to π

2 , ignore φD−1 and,

according to Proposition 1 Part (b.iii), identify the cells that are determined by the

reduced-size matrix VN×D−2 over the hypercube ΦD−3.

Hence, I tot(VN×D) = I(VN×D) ∪ I tot(VN×D−2) and, by induction,

I tot(VN×d) = I(VN×d) ∪ I tot(VN×d−2), d = 3, 4, . . . , D,

which implies that

I tot(VN×D) = I(VN×D) ∪ I(VN×D−2) ∪ . . . ∪ I(VN×(D−2bD−1
2 c)

)

=
bD−1

2 c⋃
d=0
I(VN×(D−2d)). (38)

As a result, the cardinality of I tot(VN×D) is

|I tot(VN×D)| ≤ |I(VN×D)|+ |I(VN×D−2)|+ . . .+ |I(VN×(D−2bD−1
2 c)

)|

≤
(
N2 −N
D − 1

)
+
(
N2 −N
D − 3

)
+ . . .+

(
N2 −N

D − 1− 2bD−1
2 c

)

=
bD−1

2 c∑
d=0

(
N2 −N

D − 1− 2d

)
=

D−1∑
d=0

(
N2 −N − 1

d

)
. (39)

20

Figure 3: Example: Rank-3, Partition of the Φ2 plane.

Illustration Example 3

In Figure 3 we demonstrate the partition of the Φ2 plane, based on a random matrix

VN×D with N = 4 and D = 3. Observe that each hypersurface (curve) intersects with

all other hypersurfaces (curves) exactly once. Each intersection point can be determined

as the intersection of D − 1 = 2 curves, irrespectively of how many curves go through

it. In the case where only two curves intersect, these are of the form S(i
|i|V|i|,: ;

j
|j|V|j|,:)

and S(k
|k|V|k|,: ;

l
|l|V|l|,:) with |i| 6= |j| 6= |k| 6= |l|. The intersection point is considered

only
(

2
2

)
= 1 time and it “leads” exactly one cell. In the case where three curves intersect,

these are of the form S(i
|i|V|i|,: ;

j
|j|V|j|,:), S(i

|i|V|i|,: ;
k
|k|V|k|,:) and S(j

|j|V|j|,: ;
k
|k|V|k|,:). Such

intersection points are naively considered
(

3
2

)
= 3 times, while only two cells are “led” by

them. Things get worse as D increases.

In Figure 3 we can also observe the cells at the bottom of the Φ2 plane, at φ2 = −π
2 which

are not associated with any node, such as cell C(ii). These type of cells can be ignored. In

addition, there are two cells that are attached to the φ1 = ±π
2 walls, like C(v), that “exist”

for any φD−1 = φ2 ∈ (−π
2 ,

π
2]. From these two cells, one can be ignored, and the other is

21

examined by taking the reduced-size matrix VN×D−2 = VN×1, i.e. the first column of V.

To summarize the developments in this section, we have utilized D− 1 auxiliary spherical

coordinates, partitioned the hypercube ΦD−1 into cells that are associated with index-sets

and proved that the optimal index-set, Iopt, belongs to I tot. Therefore, the initial problem

has been converted into numerical maximization of ‖VTx‖ among all index-sets I ∈
I tot(VN×D). The cost of such an optimization is upper bounded by

∑D−1
d=0

(
N2−N−1

d

)
⊆

O(N2(D−1)), but this is only a loose upper bound. In the next section we present a fully

developed algorithm for the construction of I(VN×D) in the rank-2 and rank-3 cases.

VI Algorithmic Developments

An algorithm for the construction of I(VN×D) has been fully implemented for the cases of

D = 2 andD = 3. Although the theoretic developments apply to higher rank cases as well,

there are still issues to be confronted before a full algorithm is designed. Before we pro-

ceed with the description of the two low-rank cases, we can describe one last detail: how

the vector of spherical coordinates φ(VN×D; Pd−1) is computed efficiently. Recall that

φ(VN×D; Pd−1) represents the intersection of S(p1,1
|p1,1|V|p1,1|,: ;

p1,2
|p1,2|V|p1,2|,:),

S(p2,1
|p2,1|V|p2,1|,: ;

p2,2
|p2,2|V|p2,2|,:), . . ., S(pd−1,1

|pd−1,1|
V|pd−1,1|,: ;

pd−1,2
|pd−1,2|

V|pd−1,2|,:), i.e. the solution of


Vp1,1, 1:d −Vp1,2, 1:d

Vp2,1, 1:d −Vp2,2, 1:d
...

Vpd−1,1, 1:d−Vpd−1,2, 1:d


︸ ︷︷ ︸

B

c(φ1:d−1) = 0(d−1)×1. (40)

According to the proof of Proposition 1, Part (a), for a full-rank (d − 1) × d real matrix

eq. (40) has a unique solution φ(VN×D; Pd−1) ∈ Φd−1 which consist of the spherical

coordinates of the zero right singular vector of B. Therefore, to obtain φ(VN×D; Pd−1)

22

we just need to compute the zero right singular vector of B and calculate its spherical

coordinates.

VI.1 Rank-1 Case

The construction of I(VN×D) for D = 1 is described in the last paragraph of Section IV.

VI.2 Rank-2 Case

In the caseR(A) = 2, (or, equivalently, D = R(V) = 2), the spherical coordinate vector

is reduced to a scalar, φ1 and the auxiliary hyperpolar vector c(φ1) is

c(φ1)
4=
sinφ1

cosφ1

 . (41)

Every element of vector |Vc(φ1)| corresponds to a continuous function of φ1 which de-

scribes a two-dimensional hypersurface:

|Vi,1:2c(φ1)| = |Vi,1 sinφ1 + Vi,2 cosφ1|, ∀i ∈ {1, . . . , N}. (42)

Of course,

± Vi,1:2c(φ), ∀i ∈ {1, . . . , N}, (43)

are also two-dimensional hypersurfaces. The intersection of any two hypersurfaces de-

scribed by (43), S(i
|i|V|i|,: ;

j
|j|V|j|,:) with |i| 6= |j|, |i|, |j| ∈ {1, . . . , N} is a point which

as expected, partitions the Φ1 field into two regions. According to the theoretic develop-

ments, we would have to take a combination of D − 1 hypersurfaces S(· ; ·) to obtain a

point in ΦD−1. However, now D − 1 = 2 − 1 = 1 and thus each hypersurface S(· ; ·) is

already a point.

Our goal, is the calculation of I(VN×2). We recall, from (37), that the construction of

I(VN×d) can also be fully parallelized, since the candidate index-set, I (VN×d ; Pd−1),
can be computed independently for each set Pd−1 which corresponds to a point in Φd−1.

As a result, we need to present a method for the computation of I (VN×2 ; P1). (We

23

note that, according to the above, in the case of rank-2 each P1 set consist of only one

pair {p1, p2}, |p1| 6= |p2|, |p1|, |p2| ∈ {1, . . . , N} which describes only one hypersurface

S(p1
|p1|V|p1|,: ; p2

|p2|V|p2|,:), since this hypersurface already is a single point).

In the following we present a method for the computation of I (VN×2 ; φ̂1) at each inter-

section point φ̂1. This method, allows the parallel construction of I(VN×2) and is, hence,

referred to as “parallel” implementation. Then we will present an alternative method for

the construction of I(VN×2) that sacrifices parallelization in order to achieve a lower com-

plexity. The second method relies on serial scanning of the Φ1 field and is, hence, referred

to as “serial” implementation.

VI.2.A Parallel Implementation

At each intersection point φ̂1, we try to obtain the I -set associated by the cell “led” by

φ̂1 by calling the labeling function I(VN×2 ; φ̂1) which marks the K elements of the I -

set, i.e. the indices of the K largest elements of |Vc(φ̂1)|. Point φ̂1 is defined as the

intersection S(i
|i|V|i|,: ;

j
|j|V|j|,:) of a pair of two-dimensional hypersurfaces. So at φ̂1, we

have |V|i|,:c(φ̂1)| = |V|j|,:c(φ̂1)|. If indices |i| and |j| are both included in the I -set, then

since internal ordering of the K first elements of |Vc(φ̂1)| is insignificant, the I -set has

been fully determined at φ̂1. If indices |i| and |j| have been both excluded from the I -set,

then again the I -set has been fully determined at φ̂1. In both previous cases, irrespectively

of what the sorting of |V|i|,:c(φ̂1)| and |V|j|,:c(φ̂1)| is in the cell “led” by φ̂1, we know that

|i| and |j| will both remain inside or outside the I -set, respectively. However, a problem

arises if exactly K − 1 elements of |Vc(φ̂1)| are larger from |V|i|,:c(φ̂1)| and |V|j|,:c(φ̂1)|.
Then, in order to complete the I -set we have to choose one of |i| and |j|, according to

which of |V|i|,:c(φ̂1)| and |V|j|,:c(φ̂1)| is larger in the cell ”led“ by φ̂1, but this cannot be

determined at φ̂1 since these two elements are equal at that point. Intuitively, we would

like to move to φ̂1 + ε, ε > 0 as depicted in Figure 4, i.e. ε into the cell, and check what

the sorting is there. However, ε cannot be determined.

We have noted that any two two-dimensional hypersurfaces i
|i|V|i|,:c(φ1) and j

|j|V|j|,:c(φ1),
with |i| 6= |j| intersect at one point. So, if hypersurfaces i

|i|V|i|,:c(φ1) and j
|j|V|j|,:c(φ1)

intersect at φ̂1 this is their only intersection point, and thus in the following region they

retain their sorting up to φ1 = π
2 . However, we are interested in the sorting of their absolute

24

values rather than their actual sorting. Observing Figure 4, we see that the sorting of their

absolute values can be deduced:

1. If at φ̂1, the two intersecting curves have a positive value (point A), then due to

continuity there is an ε > 0 such that the curves remain positive at φ̂1 + ε. Thus,

the greater by absolute value (i.e. the more positive one), is the curve that lies above

the other at φ̂1 + ε and will remain above up to φ1 = π
2 (points B and C). So,

if i
|i|V|i|,1:2c(φ̂1) > 0 then in the interior of the immediately following cell, and

“near” the intersection point, |V|i|,:c(φ1)| > |V|j|,:c(φ1)| if and only if i
|i|V|i|,:c(

π
2) >

j
|j|V|j|,:c(

π
2).

2. If at φ̂1, the two intersecting curves have a negative value (point A), then due to

continuity there is an ε > 0 such that the curves remain negative at φ̂1 + ε. Thus, the

greater by absolute value (i.e. the more negative one), is the curve that lies below

the other at φ̂1 + ε and will remain below up to φ1 = π
2 (points B and C). So, if

at φ̂1, i
|i|V|i|,1:2c(φ̂1) < 0 then in the interior of the immediately following cell, and

“near” the intersection point, |V|i|,:c(φ1)| > |V|j|,:c(φ1)| if and only if i
|i|V|i|,:c(

π
2) <

j
|j|V|j|,:c(

π
2).

3. If at φ̂1, i
i
V|i|,1:2c(φ̂1) = j

|j|V|j|,1:2c(φ̂1) = 0, then also |V|i|,:c(φ̂1)| = |V|j|,:c(φ̂1)| =
0. At φ̂1 the labeling function searches for the K largest elements of |Vc(φ̂1)| which

are by definition greater or equal to zero. Since |V|i|,:c(φ̂1)| = |V|j|,:c(φ̂1)| = 0,

the probability of having other hypersurfaces of zero magnitude at φ̂1 (i.e. other

hypersurfaces intersecting at φ̂1) is practically zero. So we assume that all other

N − 2 hypersurfaces have a nonzero magnitude at φ̂1. Therefore, an ambiguity can

appear only if K = N − 1, when all indices that correspond to hypersurfaces of

nonzero magnitude at φ̂1 have been included in the I -set, and one of |i| and |j|,
which correspond to the two smallest elements of |Vc(φ̂1)|, also has to be included.

However, we assume K � N and we can, therefore, safely ignore this case.

Having described how ambiguities, when such appear, are resolved, we have fully de-

scribed a way to calculate the I -set at any intersection point φ̂1. The calculation costs

O(N) for determining the K-th order element of |VN×2c(φ̂1)| and then O(N) to deter-

mine theK−1 elements larger than theK-th order element. Calculation ends here, unless

an ambiguity appears. The discovery of an ambiguity requires checking if two indices |i|

25

Figure 4: Rank-2: Intersection of two curves - Ambiguity Resolution.

and |j| are inside the I -set and costs O(K) or O(D) depending on the implementation.

Finally, if an ambiguity exists, resolving required O(D) calculations. So in total, we can

determine the I -set at any point φ̂1 in O(N).

Constructing I(VN×2) requires “calling” the labeling function for all
(
N2−N
D−1

)
=
(
N2−N
2−1

)
=

N2 − N intersection points and hence the total complexity is (N2 − N) × O(N). How-

ever, note that since the calculations are independent among the intersection points, the

construction can be fully parallelized.

VI.2.B Serial Implementation

The “Parallel” version of the algorithm calculates the I -set at all intersection points. How-

ever, we know that most intersection points appear in the interior of regions of fixed I -set

and are only related to the reordering of the curves inside or outside the I -set. In or-

der to avoid the unnecessary examination of many points we suggest an alternative to the

“Parallel” version.

26

Figure 5: Rank-2: Serial scanning of the Φ1 field.

We have seen how to calculate the I -set at a certain point φ′1 in the Φ1 field. Due to the

continuity of the curves as functions of φ1 we know that in an area close to φ′1 the I -set

will not change. The fundamental question behind the new implementation is when the

I -set will change. Moving towards φ1 = π
2 , curves intersect, but not all intersection are

critical for determining the I -set. In order for an index i, i ∈ {1, . . . , N}, that is outside

of the I -set at φ′1 to be included in the I -set at some other point φ′′1 , the corresponding

curve |Vi,:c(φ1)| has to grow large enough to be among the K largest curves of |Vc(φ′′1)|.
In order to do that, due to continuity, curve |Vi,:c(φ1)| will have to gradually reach the

(K + 1)-th position, intersect with a curve holding the K-th position at some point φ̂1 and

swap places with the latter, to obtain the K-th position. So a necessary condition for the

I -set to change, in an area around φ′1 is the K-th order curve to intersect. However, the

K-th order curve may also intersect and switch places with the (K−1)-th curve, in which

case the ordering of the curves whose indices are include in the I -set changes but the I -

set itself does not. Therefore, the intersection of the K-th order curve is a necessary, but

not a sufficient condition for the I to change. Even in this case, though, the intersection

27

is useful in order to keep track of what the new K-th order curve is, since in order to

determine where the I -set actually changes, we need the intersections of the K-th curve.

The new algorithm, is as follows:

1. We call the labeling function at φ1 = −π
2 and obtain the index of the K-th order

element of |VN×2c(φ1)| at φ1 = −π
2 as well as the other K − 1 indices included

in the I -set. This is our fist candidate index-set and can be immediately added to

I(VN×2).

2. We calculate the intersections of the K-th order waveform of |VN×2c(φ1)| with the

other N − 1 waveforms described by the vector. The next point to be visited, φ1,next,

is the intersection of |Vi,:c(φ1)| closest to φ1 = −π
2 in the direction towards φ1 = π

2 .

3. We move at φ1,next which now becomes φ1,cur. If φ1,cur was the intersection of the

current K-th order waveform ,|Vi,:c(φ1)|, with |Vj,:c(φ1)|, j ∈ {1, . . . , N}, then j

is the index of the new K-th order waveform. If j was previously not included in

the I -set, then the latter changes and the new I -set has to be added to I(VN×2). If

j was previously included in the I -set, then no action need to be taken.

4. In any case, |Vj,:c(φ1)| is the new K-th order waveform. We calculate the 2(N − 1)
intersections of |Vi,:c(φ1)| with the other N − 1 waveforms |V∗,:c(φ1)|, where ∗ ∈
{1, . . . , N} − j. The new φ1,next point is the intersection of |Vj,:c(φ1)| closest to

φ1,cur in the direction towards φ1 = π
2 .

5. We repeat from step 3 until φ1,next ≥ π
2 .

Note that the labeling function is only called once at the beginning of the algorithm to

determine a reference I -set and mark the K-th order waveform at φ1 = π
2 . Then the al-

gorithm keeps track of the I -set by performing low cost swaps at the intersection points

when necessary. Therefore, the calculation of the I -set at any visited point (apart from

φ1 = −π
2) is actually limited to the modification of the I -set calculated at the previous vis-

ited point. Hence, in contrast to the “parallel” implementation, intersection points cannot

be examined independently. Instead, the alternative version has to “serially” scan the Φ1

28

Scanning direction

SRVM - Serial rank-2 algorithm

Figure 6: Rank-2: Serial Algorithm Execution Instance.

field as depicted in Figure 5 and, hence, the name of the algorithm.

Illustration Example 4

In Figure 6 we present an execution instance of the serial rank-2 algorithm on a random

matrix V6×2 with K = 3. Starting from φ1 = π
2 , all visited points are denoted by vertical

lines: dashed lines denote intersection points at which the I -set did not change, while

continuous black lines denote alteration of the I -set and thus the end of a region. Execution

is now at φ1,cur. This point is the end of a region and the beginning of a new one, since a

new index was inserted in the I -set. All the intersections of the new K-th order waveform

are calculated and φ1,next is the one closest to φ1,cur. At the new point, we see that the K-th

order waveform intersects and swaps with the (K − 1)-th order waveform and ,thus, only

an internal reordering of the waveforms included in the I -set will occur.

29

VI.2.C On the complexity of the two implementations

The fundamental motivation behind the serial algorithm was to minimize the number of

examined intersection points by avoiding the unnecessary examination of points which

would definitely not contribute more candidate index-sets to I(VN×2). Unfortunately, in

the parallel version, we cannot determine a-priori if a point’s contribution to I(N× 2),
and we, therefore, have to blindly examine all intersection points. On the contrary, the

serial scanning of the Φ1 field, allows the serial version to select which points to examine

according to information collected at each stage of the execution. Comparing the two

alternative versions of the rank-2 case algorithm, we note the following:

• We have experimentally seen that the serial algorithm examines by far less points

than the parallel version. At each visited point, the cost of calling the labeling func-

tion is dropped, since the latter is called once at the beginning of the execution.

Instead, the serial version performs constant cost functions for the modification of

the I -set and keeping track of the K-th waveform. In addition, in order to determine

the which point to visit next, the algorithm performs O(N) calculations. Therefore,

the cost at each visited point is still O(N).

• The main drawback of the serial algorithm is that it cannot be parallelized. The

execution must be carried out serially since decisions at each state, depend on the

previous states of the execution. On the contrary, decisions in the parallel version,

are independent at each point. So the execution can be fully parallelized and utilize

all available resources. In addition, depending on the implementation, the serial

version can be more memory consuming.

In Figure 7 we plot the complexity curves for the two versions of the rank-2 algorithm

versus the size N of the input for K = dN2 e. In the case of the parallel, complexity is

equal to (N2−N)×O(N). In the case of serial version, the complexity at each examined

point is again O(N), but the number of points examined is not a deterministic function

of N . Therefore, we plot an average complexity over many experimental executions. The

30

complexity of the parallel algorithm does not depend on K, however, in the case of the

serial algorithm we have observed that the smaller the value of K, the fewer the points

examined and therefore, the lower the complexity is. In Figure 8 we plot (a) the number

of points examined by the parallel version, (b) the average number of points examined by

the serial version, (c) the average number of regions in the Φ1 field and (d) the number of

distinct candidate index-sets (size of I(VN×2)), all versus the input size N for K = dN2 e.
Curves (a) and (b) are associated with those of Figure 7 (scaled by N). The number

of regions, is of course much smaller than the number of points examined by the two

algorithms. Finally, the the number of distinct candidate index-sets cannot be more than

the number of regions. Note that the number of distinct candidate vectors is orders of

magnitude smaller than the number of points examined. Although the complexity of the

algorithm for the construction of I(VN×2) is determined by the latter, the the cardinality

of the I(VN×2) is also significant, since the final solution to the maximization problem

will be numerically calculated with exhaustive search among the index-sets contained in

I(VN×2). Once again, note that the smaller the value of K, the fewer the regions and,

consequently, the fewer the distinct candidate index-sets.

Figure 7: Rank-2: Algorithm Complexity

31

Figure 8: Rank-2: Points examined, Regions, Distinct I -sets.

VI.3 Rank-3 Case

In the case R(A) = 3 (or, equivalently, D = R(V) = 3), the spherical coordinate vector

is a two-element vector, φ1:2 = [φ1, φ2] and the auxiliary hyperpolar vector c(φ1:2) is

c(φ1:2)
4=


sinφ1

cosφ1 sinφ2

cosφ1 cosφ2

 . (44)

Every element of vector |Vc(φ1:2)| corresponds to a continuous function of φ which de-

scribes a three-dimensional hypersurface:

|Vi,1:3c(φ1:2)| = |Vi,1 sinφ1 + Vi,2 cosφ1 sinφ2 + Vi,3 cosφ1 cosφ2|, ∀i ∈ {1, . . . , N}.
(45)

Of course,

± Vi,1:3c(φ1:2), ∀i ∈ {1, . . . , N} (46)

32

(a) (b) (Reverse Angle)

Figure 9: Rank-3: Hypersurfaces described by the elements of |Vc(φ1:2)| and their
intersection.

are also three-dimensional surfaces. The intersection of any two surfaces described by

(46), is a curve and its projection on the Φ2 plane, S(i
|i|V|i|,: ;

j
|j|V|j|,:) with |i| 6= |j|,

|i|, |j| ∈ {1, . . . , N}, is a two-dimensional curve which partitions the Φ2 plane into two

regions. According to the theoretic developments, we take combinations of D − 1 =
3− 1 = 2 hypersurfaces S(· ; ·) to obtain points leading cells in Φ2.

Our goal, is the calculation of I(VN×3). We recall, from (37), that the construction of

I(VN×d) can also be fully parallelized, since the candidate index-set, I (VN×d ; Pd−1),
can be computed independently for each set Pd−1 which corresponds to a point in Φd−1.

As a result, we need to present a method for the computation of I (VN×3 ; P2). We re-

mind that, according to the above, in the case of rank-3 each P2 set consist of two pairs

{{p1,1, p1,2}, {p2,1, p2,2}} where |p1,1| 6= |p1,2|, |p2,1| 6= |p2,2| and |p∗,∗| ∈ {1, . . . , N}.
The two pairs describe two hypersurfaces S(p1,1

|p1,1|V|p1,1|,: ;
p1,2
|p1,2|V|p1,2|,:) and

S(p2,1
|p2,1|V|p2,1|,: ;

p2,2
|p2,2|V|p2,2|,:) respectively, and therefore the P2 set corresponds to an in-

tersection point on the Φ2 plane.

In the following we will present such a method for the computation of I (VN×3 ; φ̂1:2)
at each intersection point φ̂1:2. This method, allows the parallel construction of I(VN×3)
and is, hence, referred to as “parallel” implementation. Then we will present an alternative

method for the construction of I(VN×3) that sacrifices parallelization in order to achieve

a lower complexity like the case of rank-2. The latter is based on serial scanning of the

33

Φ2-plane and is, hence, referred to as “serial” implementation.

VI.3.A Parallel Implementation

At each intersection point φ̂1:2, we try to obtain the I -set associated with the cell origi-

nating at φ̂1:2 by calling the labeling function I(VN×3 ; φ̂1) which marks the K elements

of the I -set, i.e. the indices of the K largest elements of |Vc(φ̂1:2)|. Point φ̂1:2 is de-

fined as the intersection of two two-dimensional hypersurfaces S(i
|i|V|i|,: ;

j
|j|V|j|,:) and

S(k
|k|V|k|,: ;

l
|l|V|l|,:), as depicted in Figure 10. According to the theoretic developments,

there are in total
(
N2−N
D−1

)
=
(
N2−N

2

)
intersection points, which can all be blindly exam-

ined. However, it turns out that in the case of rank-3, we can significantly reduce the

number of points examined. In the following, we will first describe which are the points

of interest in the Φ2 plane and we will then proceed with the process of determining the

I -set at each point.

As noted, in the case of rank-3, i
|i|V|i|c(φ1:2), i ∈ {−N, . . . , −1, 1, . . . , N} corresponds

to a three-dimensional surface. The projection of the intersection of any two such sur-

faces i
|i|V|i|c(φ1:2) and j

|j|V|j|c(φ1:2) with |i| 6= |j| on the Φ2-plane, S(i
|i|V|i|,: ;

j
|j|V|j|,:),

is a two-dimensional curve. Any two such curves intersect at one point φ̂1:2. There are(
N2−N
D−1

)
=
(
N2−N

2

)
intersection points, leading cells within which the sorting of |Vc(φ1:2)|

is fixed. More than one cells in the same neighborhood may correspond to the same I -set

and then they form a “region”. We would like to avoid the examination of all intersection

points leading cells that belong to the same region, since all these points are associated

with the same I -set and cannot contribute any extra candidate index-set to I(VN×3). We

observed that among the cells that form a region, one cell will be the souther cell and its

leading vertex can be considered as the leading vertex of the whole region. In addition,

the two borders of this cell will also be the region’s borders “near” its leading vertex. The

key observation, is the following: “near” the leading vertex of a region, the surfaces of

|Vc(φ1:2)| have a certain sorting, and a certain surface is the K-th order surface. If |i| is

the index of this K-th order surface, both left and right borders of the region “near” the

leading vertex, have to be of the form S(i
|i|V|i|,: ;

∗
|∗|V|∗|,:) where | ∗ | is not included in the

I -set of a region. Had | ∗ | been included in the I -set, then over S(i
|i|V|i|,: ;

∗
|∗|V|∗|,:) only

an internal swapping of surfaces would occur and the curve would not be a region-border.

34

Left Border
Right B

order

Figure 10: Rank-3: Intersection of two hypersurfaces.

Hence, we expect that “leading-vertices” of regions, are points where both intersecting

curves are of the form S(i
|i|V|i|,: ;

∗
|∗|V|∗|,:)

6, where |i| is the index of the K-th order surface

in the interior of the region, “near” the leading vertex.

Therefore, we can only examine intersection points of this form, which are potential

region-leading vertices. Although it is possible that not all such points lead a region,

based on the previous observation we avoid the examination of point where the intersecting

curves are of the form S(i
|i|V|i|,: ;

j
|j|V|j|,:) and S(k

|k|V|k|,: ;
l
|l|V|l|,:), with |i| 6= |j| 6= |k| 6= |l|.

Such intersection points lie in the interior of regions, and can, therefore, contribute nothing

more to I(VN×3). We also note the following:

When two curves S(i
|i|V|i|,: ;

j
|j|V|j|,:) and S(i

|i|V|i|,: ;
k
|k|V|k|,:) intersect at one point φ̂1:2,

6Note that the two borders may also be of the form S(i|i|V|i|,: ; ∗|∗|V|∗|,:) and
S(−i|−i|V|−i|,: ; ∗|∗|V|∗|,:), but since S(−i|−i|V|−i|,: ; ∗|∗|V|∗|,:) = S(i|i|V|i|,: ; −∗|−∗|V|−∗|,:), we write only the
general case for simplicity.

35

then a third curve S(j
|j|V|j|,: ;

k
|k|V|k|,:) also intersects with the previous two at the same

point, unless k = −j in which case no third curve is implied. Hence,

• If k = −j, then at the intersection point φ̂1:2 we would have i
|i|V|i|,:c(φ̂1:2) =

j
|j|V|j|,:c(φ̂1:2) = − j

|j|V|j|,:c(φ̂1:2) where the last equality implies that |V|i|,:c(φ̂1:2)| =
|V|j|,:c(φ̂1:2)| = 0. Since the labeling function searched for the K largest elements

of |Vc(φ̂1:2)|when called at the intersection point, zero-valued surfaces would never

be chosen among the K largest surfaces, unless K ≥ N − 1. Since, we assume that

K << N , we can ignore this case.

• According to the previous observation, we are only interested in intersection points

where |i| 6= |j| 6= |k|. Every set of 3 indices gives 4 such intersection point. For

example, if indices 1, 2 and 3 give:

+V1,:c(φ̂1:2) = +V2,:c(φ̂1:2) = +V3,:c(φ̂1:2)
−V1,:c(φ̂1:2) = +V2,:c(φ̂1:2) = +V3,:c(φ̂1:2)
+V1,:c(φ̂1:2) = −V2,:c(φ̂1:2) = +V3,:c(φ̂1:2)
+V1,:c(φ̂1:2) = +V2,:c(φ̂1:2) = −V3,:c(φ̂1:2)

.

To summarize the above, we have to examine 4 intersection points for each subset of

{1, . . . , N} of size 3. There are
(
N
3

)
such subsets, so we will eventually examine 4

(
N
3

)
intersection points. These, for sufficiently largeN , are significantly fewer points compared

to the
(
N2−N
D−1

)
=
(
N2−N

2

)
we would blindly examine.

36

Recall, that in the case of rank-2, we had to examine all intersection points, which were

equal to
(
N2−N
D−1

)
D=2= N2−N . In rank-3 we reduced the number of “interesting” intersec-

tion points down to 4
(
N
3

)
. We observe that:

• D = 2 : N2 −N =
(
N

2

)
21 =

(
N

D

)
2D−1

• D = 3 :
(
N

3

)
4 =

(
N

3

)
22 =

(
N

D

)
2D−1

.

Therefore, in both rank-2 and rank-3 cases, we have to examine
(
N
D

)
2D−1 points. This is

probably a good hint on discovering the points we need to consider in higher rank cases!

Furthermore, this number is a new upper bound for the size of I(VN×D), D = 2, 3.

Up to now we have determined the points that need to be examined and it remains to

describe how we obtain the I -set associated with each point φ̂1:2. The first step if, of

course, to call the labeling function at φ̂1:2. However, at φ̂1:2 we have |V|i|,:c(φ̂1)| =
|V|j|,:c(φ̂1)| = |V|k|,:c(φ̂1)| where |i|, |j| and |k| are the indices of the surfaces whose pair-

wise intersection-curves all meet at φ̂1:2. So if indices |i|, |j| and |k| are all included in the

I -set, then since internal ordering of the K first elements of |Vc(φ̂1:2)| is insignificant, the

I -set has been fully determined at φ̂1:2. Similarly, if all three indices have been excluded

from the I -set, then again the I -set has been fully determined at φ̂1:2 and no further action

is required. However, a problem arises if any of the three indices is included in the I -

set while others are excluded or vice-versa. Then, we need to determine the “ordering”

of |V|i|,:c(φ1:2)|, |V|j|,:c(φ1:2)| and |V|k|,:c(φ1:2)| in the interior of the cell determine which

indices should be included in the I -set. This information cannot be deduced at φ̂1:2 though.

Let’s see how ambiguity is resolved. Take, for example, the {|i|, |k|} pair: we want to

determine which one of |V|i|,:c(φ1:2)| and |V|k|,:c(φ1:2)| is greater in the interior of the

region. Observe, referring to Figure 10 that surfaces i
|i|V|i|,:c(φ1:2) and k

|k|V|k|,:c(φ1:2) only

intersect along S(i
|i|V|i|,: ;

k
|k|V|k|,:). So in the interior of the region, i.e. towards the other

two curves that intersect at φ̂1:2, the two surfaces i
|i|V|i|,:c(φ1:2) and k

|k|V|k|,:c(φ1:2) retain

their sorting. So for example, in Figure 10, if i
|i|V|i|,:c(φ1:2) > k

|k|V|k|,:c(φ1:2) in the interior

of the region “near” the intersection point at the side of the curve S(i
|i|V|i|,: ;

j
|j|V|j|,:), then

37

i
|i|V|i|,:c(φ1:2) > k

|k|V|k|,:c(φ1:2) for all points of the cell “near” S(i
|i|V|i|,: ;

j
|j|V|j|,:), up to

point A. So we can check the relationship of i
|i|V|i|,:c(φ1:2) and k

|k|V|k|,:c(φ1:2) at point

A. Like in the case of rank-2, utilizing the information about the sign of the value of the

surfaces i
|i|V|i|,:c(φ1:2) and k

|k|V|k|,:c(φ1:2) at the intersection point, as well as their sorting

at A, we can deduce the sorting of their absolute values “near” the intersection point at the

side of S(i
|i|V|i|,: ;

j
|j|V|j|,:):

1. If i
|i|V|i|,1:3c(φ̂1:2) > 0 then in the interior of the cell “near” the intersection point

at the side of S(i
|i|V|i|,: ;

j
|j|V|j|,:), |V|i|,1:3c(φ1:2)| > |V|k|,:c(φ1:2)| if and only if

i
|i|V|i|,1:3c(φA) > k

|k|V|k|,:c(φA).

2. If i
|i|V|i|,1:3c(φ̂1:2) < 0 then in the interior of the cell “near” the intersection point

at the side of S(i
|i|V|i|,: ;

j
|j|V|j|,:), |V|i|,1:3c(φ1:2)| > |V|k|,:c(φ1:2)| if and only if

i
|i|V|i|,1:3c(φA) < k

|k|V|k|,:c(φA).

3. If i
|i|V|i|,1:3c(φ̂1:2) = 0, we can be sure that an ambiguity cannot appear, for reasons

that have been thoroughly explained above as well as in section VI.2, for the Rank-2
case.

In the same way, we can determine the ordering for the {|j|, |k|} pair at point A. So we

know two binary relationships at A which are also valid for the interior of the cell, “near”

the intersection point at the side of S(i
|i|V|i|,: ;

j
|j|V|j|,:). However, at A we cannot decide

about the relationship of |V|i|,1:3c(φ̂1:2)| and |V|j|,:c(φ̂1:2)| since we are on the intersection

of these three-dimensional surfaces. This decision can be taken on the same way, at one

of the points B and C.

Since we do not know the relative position of the three curves (unless we compare pointsA,

B andC), we can visit all pointsA,B andC and at each determine the binary relationships

that can be determined at that point, regarding the ambiguities caused by the other two

curves. Then we will have 3 · 2 = 6 binary “ordering” relationships. According to these

relationships we can finally determine which indices of |i|, |j| and |k| have to be included

in the I -set. If conflicting relationships appear, we can create all the candidate index-sets

implied by the binary ordering-relationships and add the all to I(VN×3). In fact the points

that are leading vector of regions, will only give one candidate index-set, i.e. the curve

in the middle will denote a rearrangement of surfaces either in or out of the I -set. If two

38

Figure 11: Rank-3: Intersection point - Ambiguity resolution.

candidate index-sets are obtained, it means that two regions meet at the intersection point

and lie at the two sides of the middle curve. Then instead of adding both to I(VN×3), we

can ignore them since the same index-sets will be obtained at the leading vertices of these

two regions.

We now have fully described how the I -set is determined at an intersection point φ̂1:2. De-

termining the K-th order element of |VN×3c(φ̂1:2)| as well as the K − 1 elements larger

than the K-th order element costs O(N). Discovering an ambiguity requires checking if

the three indices |i|, |j| and |k| are all inside or all outside of the I -set, while its resolu-

tion requires O(1) calculations. In total, we can determine the I -set at any point φ̂1:2 in

O(N). Constructing I(VN×3) requires calling the labeling function for all 4
(
N
3

)
intersec-

tion points. Therefore, the total complexity of the rank-3 Parallel version is 4
(
N
3

)
O(N).

Note, however, that since the calculation of the I occurs independently at each point, the

construction of I(VN×3) can be fully parallelized.

39

VI.3.B Serial Implementation

In the rank-2 case, we serially scanned the Φ1 field from φ1 = −π
2 to φ1 = π

2 , trying

to determine the regions of fixed I -set. Regions were intervals on the φ1-axis and their

borders were single points. At any point φ′1 there was one active region associated with

a certain I -set and the point to be visited next was determined by the intersections of the

K-th order element of vector |Vc(φ1)| which was a two-dimensional curve. The K-th

order curve could, of course, change in the interior of a region.

The rank-3 case is more complex: elements of |Vc(φ1:2)| are surfaces, and the projection

of their intersections on the Φ2 plane are two dimensional curves. Regions of fixed I -

set expand over one or more cells and their borders are parts of these two dimensional

curves. The K-th order surface can vary in the interior of the region, but the I -set does

not change. In the serial version of rank-3, we scan the Φ2 plane, moving a horizontal

line parallel to the φ1-axis from φ2 = −π
2 to φ2 = π

2 . At any value of φ2, the horizontal

scanning-line intersects with more than one regions. So, contrary to the rank-2 case, the

serial scanner of the Φ2 plane must keep (in parallel) track of the evolution of more than

one regions. The “region” as an entity can be sufficiently described by (a) its I -set, (b)

its left and right borders and (c) the two indices of the K-th order surfaces “near” the

left and right borders respectively. The region borders are two-dimensional curves of the

form S(i
|i|V|i|,: ;

j
|j|V|j|,:), |i|, |j| ∈ {1, . . . , N}. Obviously, if S(i

|i|V|i|,: ;
j
|j|V|j|,:) is the left

border of a region, one of |i|, |j| is the index of theK-th order surface of this region “near”

its left border, while the other is the index of the K-th order surface near the right border

of the adjacent region.

To keep track of the region, we need to know when its borders change, which is equivalent

to the modification of the left or right K-th order surface. If |i| is the index of the K-th

order surface “near” a border, then this border is of the form S(i
|i|V|i|,: ;

∗
|∗|V|∗|,:). Moving

along this border, towards φ2 = π
2 , remaining in interior of a region, theK-th order surface

will eventually swap with another surface, over a curve of the form S(i
|i|V|i|,: ;

∗
|∗|V|∗|,:).

Over the new curve, the region may change or not, depending on the new K-th order

surface and whether its index was previously included in the I -set. In any case however,

the K-th order surface will change and the corresponding border will also be modified.

Therefore, modifications of regions occur at points where both intersecting curves are

40

of the form S(i
|i|V|i|,: ;

∗
|∗|V|∗|,:) where |i| is the index of the K-th order surface “near”

the border. This was expected, since these were the points also examined by the parallel

version. There, we explained that each such point is the intersection of three curves, unless

j = −k. Contrary to the parallel version, the serial one must also handle this case in order

to keep track of the regions’ evolution. Finally, we note that due to the fact that adjacent

regions share a common border, we can keep track only of the left border of each region.

This way we also examine the right border of the region on its left.

The suggested algorithm is as follows:

1. We begin, by running a serial rank-2 algorithm on matrix [V:,1 − V:,2] which is a

concatenation of the first column of V and the opposite of its second column. This

is equivalent to identifying the regions formed at the bottom of the Φ2 plane, at

φ2 = −π
2 . In Figure 16 which depicts an execution instance of the serial rank-

3 algorithm, the red markers at the bottom plane, show the region border-points

determined by the rank-2 serial algorithm. If curves |i| and |j| intersect at a marker,

then this implies that the projection of the intersection of surfaces |i| and |j| in the

rank-3 problem, S(i
|i|V|i|,: ;

j
|j|V|j|,:), originates from this marker and is the border of

a region near the bottom of the Φ2 plane. Therefore, we obtain a list of active regions

at φ2 = −π
2 . Each region is described by its I -set, its two borders, and the indices of

the K-th order surface near the left and right borders respectively. Note that the last

region, that contains uncountably many points of the form (π2 , φ2) is considered the

same region as the one that contains uncountably many points of the form (−π
2 , φ2).

The algorithm will gradually scan the Φ2 plane, keeping track of the evolution of all

active regions.

2. The φ2 value to be visited next, φ2,next, is the level at which the active region list

has to be modified (region removal, insertion or modification). Modifications occur

at the intersection points of borders, as described above. For each one of the active

regions, we calculate the 2(N−1) intersections of its left-border S(i
|i|V|i|,: ;

j
|j|V|j|,:),

with all other curves of the form S(i
|i|V|i|,: ;

∗
|∗|V|∗|,:) where | ∗ | /∈ {|i|, |j|} and |i|

is the index of K-th order surface of the region “near” the left border. Among all

these points, we mark the intersection point whose φ2 coordinate is closest to φ2,cur

value. This is the nearest modification point, and no alteration occurs on the regions

between the current level, φ2,cur and the next level φ2,next.

41

3. Having determined the φ2,next value, we must determine the kind of modification

that occurs in the intersection point of interest and then update the active region

list accordingly. The examination of an intersection point is thoroughly described

in the next paragraph. Every time a new border appears to any of the cells, its

intersections must be calculated to be taken under consideration in the next iteration

for the determination of the new φ2,next value.

4. φ2,next is now φ2,cur. We repeat from step 2 until φ2,next ≥ π
2 .

It remains to describe, how the regions are modified at an intersection point. In the fol-

lowing description, the border that intersects at the chosen intersection point (∗, φ2,next)
is referred to as the Reference Border. The region on its right, i.e. the region whose left-

border is the Reference Border, is referred to as the Current Region. The regions on its

left and right, are the Previous and Next regions respectively. The curve intersecting the

Reference Border is the Intersecting Curve, while the third curve that did not explicitly

participate in determining the intersection point, but we know that goes through it, is the

Induced Curve. We note that, if more than two borders intersect at the chosen intersec-

tion point, we choose the left-most border to be the Reference-Border and of course the

corresponding region as the Current Region. This choice will simplify the examination of

the intersection point. Finally, in the illustrating Figures 12 to 15, d(l,m) will stand for

the Reference Border, with |l| being the index of the K-th order surface of the Current

Region near the Reference Border. d(l, n) stands for the Intersecting curve and d(m,n) is

the Induced Curve.

At the intersection point, we first check if n = −m:

• If yes, we are in the special case depicted in Figure 12. The case is referred to as

special, since it is the only case in which only two curves intersect at the intersection

point. The two curves are the borders of the Current Region. These borders are

swapped and the right border of the Previous Region as well as the left border of

the Next Region are modified accordingly. Although the left and right borders of

the Current Region intersect, and we could thus consider that the Current Region is

terminated and should be removed from the active-region list, we observe that the

region actually continues above the intersection point (I -set does not change).

42

• If not, then the intersection point is the intersection of three curves, d(l,m), d(l, n)
and d(m,n). The actions taken, depend on the following cases. We first check check

whether the I -set changes over the Intersecting curve, d(l, n), “near” the intersection

point. In other words, we check whether |n| which swaps places with |i|, was not a

member of the I -set of the Current Region.

A If yes, then region changes over the Intersecting Curve, d(l, n). There two

sub-cases, depending on whether the d(l, n) is the right border of the Current

Region or not:

A.1 If yes, we are in sub-caseA.1, depicted in Figure 13a. The Current Region

is terminated since its left and right borders intersect. According to the re-

arrangements of the sorting of |V c(φ)| we derive that the Induced curve,

d(m,n), can only be in the interior of the Current Region. Above the in-

tersection point, the Previous and Next regions meet at their new common

border: d(m,n).

A.2 If no, we are in sub-case A.2, depicted in Figure 13b. In this case, we ob-

serve that the Intersecting Curve, d(l, n), can only come from the left of

the Reference-Border, and will become the new left-border of the Current

Region after the intersection point. Also, the induced curve d(n,m) be-

comes the new right-border of the Previous Region. A new region appears

between the Current and the Previous region.

B If no, i.e. if |n| is already in the I -set and the index-set of the Current Re-

gion does not change over the Intersecting curve, d(l, n), near the intersection

point. In this case, the Intersecting curve can only come from the right of

the Reference-Border (moving towards the intersection point). This is justi-

fied in Figure 15 and is based on the fact the the algorithm always selects as

the Reference Border the left-most border among all borders intersecting at

the intersection point of interest. Two sub-cases arise, depending whether the

Induced Curve is the right-border of the Current Region or not.

B.1 If yes, we are in sub-case B.1, depicted in Figure 14a. The Current Re-

gion is terminated, since its two borders intersect. The Previous and Next

Regions meet at their new common border, d(l, n).

B.2 If no, we are in sub-case B.2, depicted in Figure 14b. The Induced Curve

43

R
ef

er
en

ce
 C

ur
ve

In
te

rs
ec

tin
g

C
ur

ve

Figure 12: Rank-3: Serial, At intersection point - Special Case

can only be on the left of the Reference-Border and it cannot, of course,

be the right border of the Current Region. After the intersection point, it

becomes the new left border of the Current Region and d(l, n) becomes

the new right border of the Previous Region. A new cell appears between

the modified Previous and Current Regions.

44

R
ef

er
en

ce
 B

or
de

r

In
du

ce
d

C
ur

ve

In
te

rs
ec

tin
g

C
ur

ve

(a) Sub-Case A.1

In
te

rs
ec

tin
g

C
ur

ve

R
ef

er
en

ce
 B

or
de

r

In
du

ce
d

C
ur

ve

(b) Sub-Case A.2

Figure 13: Rank-3: Serial, At intersection point - Case A

45

R
ef

er
en

ce
 B

or
de

r

In
te

rs
ec

tin
g

C
ur

ve

In
du

ce
d

C
ur

ve

(a) Sub-Case B.1

In
du

ce
d

C
ur

ve

R
ef

er
en

ce
 B

or
de

r

In
te

rs
ec

tin
g

C
ur

ve

(b) Sub-Case B.2

Figure 14: Rank-3: Serial, At intersection point - Case B

46

In
te

rs
ec

tin
g

C
ur

ve

In
du

ce
d

C
ur

ve

R
ef

er
en

ce
 B

or
de

r

Figure 15: Rank-3: Serial, At intersection point - Non-Existent Case.

Illustration Example 5

In Figure 16 we present an execution instance of the rank-3 serial algorithm on random

matrix V4×3, with K = 2. Execution starts by running a rank-2 serial algorithm on matrix

[V:,1 − V:,2] which determines the beginning of the regions, at the bottom of the Φ2 plane

(red markers). We proceed by scanning the Φ2 plane towards φ2 = π
2 , keeping track of the

evolution of all regions. Dashed horizontal lines, mark the visited φ2 values, i.e. the φ2

values at which an intersection point for one (or more) of the borders was examined.

Execution is now at φ2,cur. There are four active regions (the region on the right, attached

to φ1 = π
2 is the region on the left, attached to φ1 = −π

2). We examine the intersections of

the left-border of each region, and choose the next φ2 value, φ2,next, based on the first point

at which one or more of the regions are modified. We observe that two border-curves, the

left-borders of regionsA andB, both share the nearest intersection point. According to the

algorithm, the left-most of the intersecting borders, the left border of regionA is selected as

the Reference Border and regionA is, thus, the Current Region. The intersection point will

be examined according to the cases developed in the previous paragraph and the necessary

47

S
ca

nn
in

g
di

re
ct

io
n

Figure 16: Rank-3: Serial Algorithm Execution Instance.

modifications will then be applied to the active region list.

VI.3.C On the complexity of the two implementations

The parallel and serial version of the algorithm have been thoroughly compared in the

rank-2 case. The same observations apply in the rank-3 case.

In Figure 17 we plot the complexity curves for the two versions of the rank-3 algorithm

versus the size N of the input for K = dN2 e. In the case of the parallel, complexity is

equal to
(
N2−N

2

)
× O(N). In the case of serial version, the complexity at each examined

point is again O(N), but the number of points examined is not a deterministic function

of N . Therefore, we plot an average complexity over many experimental executions. The

complexity of the parallel algorithm does not depend on K, however, in the case of the

48

serial algorithm we have observed that the smaller the value of K, the fewer the points

examined and therefore, the lower the complexity is.

In Figure 18 we plot (a) the number of points determined by all pair-wise intersections of

curves, (b) the number of points examined by the parallel version, (c) the average num-

ber of points examined by the serial version, (d) the average number of regions in the

Φ2 plane and (e) the number of distinct candidate index-sets (size of I(VN×3)), all ver-

sus the input size N for K = dN2 e. From curves (a) and (b) we see that the number

of intersection points examined by the rank-3 Parallel algorithm is significantly smaller

than the number of points we would examine by taking all pair combinations of curves

(
(
N
D

)
2D−1 �

(
N2−N
D−1

)
, D = 3). Curves (b) and (c) are associated with those of Figure

17 (scaled by N). The relationship of the complexity of the two versions is the same as

that in the rank-2 case. Finally, curves (d) and (e) allow us to see that the number of re-

gions and distinct I -sets is much smaller than the number of points examined by the two

algorithms. We note that the number of regions and distinct candidate index-sets is not

fixed N , D and K. In addition, in the average sense, it seems to depend on K: the smaller

the value of K, the fewer the regions and distinct candidates. Finally, we once again un-

derline that, although the complexity of the algorithm for the construction of I(VN×3) is

mainly determined by the number of points examined, the the cardinality of the I(VN×3)
is also significant, since the final solution of the maximization problem will be numerically

calculated with exhaustive search among the index-sets contained in I(VN×3).

49

Figure 17: Rank-3: Algorithm Complexity

Figure 18: Rank-3: Points examined, Regions, Distinct I -sets.

50

VII Conclusions

We considered the problem of identifying the index-set of the nonzero elements of the

vector that maximizes a rank-deficient quadratic form. We introduced auxiliary spherical

coordinates and proved that there exists a set of candidate index-sets whose size is polyno-

mially bounded, in terms of rank, and contains the optimal index-set, i.e. the index-set of

the nonzero elements of the optimal solution of the quadratic form. Finally, we developed

(parallel and serial implementations of) an algorithm that computes the collection of the

candidate index-sets in polynomial time, for the cases where the rank of the quadratic form

equals 2 or 3.

51

Appendix

52

53

A Proof of Proposition 1

Part a

Consider PD−1 = {{p1,1, p1,2}, {p2,1, p2,2}, . . . , {pD−1,1, pD−1,2}} and the D− 1 hyper-

surfaces S(p1,1
|p1,1|V|p1,1|,: ;

p1,2
|p1,2|V|p1,2|,:), . . . , S(pD−1,1

|pD−1,1|
V|pD−1,1|,: ;

pD−1,2
|pD−1,2|

V|pD−1,2|,:) that cor-

respond toD−1 pairs of rows of VN×D. Since each hypersurface S(p∗,1
|p∗,1|V|p∗,1|,: ;

p∗,2
|p∗,2|V|p∗,2|,:)

is described by the equation (p∗,1
|p∗,1|V|p∗,1|,:−

p∗,2
|p∗,2|V|p∗,2|,:)c(φ1:D−1) = 0, {p∗,1, p∗,2} ∈ PD−1,

their intersection will satisfy the system of equations



(p1,1
|p1,1|V|p1,1|,: −

p1,2
|p1,2|V|p1,2|,:)c(φ1:D−1) = 0

(p2,1
|p2,1|V|p2,1|,: −

p2,2
|p2,2|V|p2,2|,:)c(φ1:D−1) = 0

...

(pD−1,1
|pD−1,1|

V|pD−1,1|,: −
pD−1,2
|pD−1,2|

V|pD−1,2|,:)c(φ1:D−1) = 0︸ ︷︷ ︸
VPc(φ1:D−1)=0(D−1)×1

. (47)

The above system is rewritten as VPc(φ1:D−1) = 0(D−1)×1. Therefore, the solution

φ1:D−1 is such that c(φ1:D−1) belongs to the null space of VP which is denoted by

N (VP) and has dimension greater than or equal to one, since R(VP:,1:D) ≤ D − 1. Let

VP:,1:D = Ũ(D−1)×(D−1)Λ(D−1)×DUT
D×D be the singular value decomposition of VP:,1:D,

where Ũ and UT are orthogonal matrices, Λ = [diag(λ1, λ2, . . . , λD−1) 0(D−1)×1] and

w.l.o.g. λ1 ≥ λ2 ≥ . . . ≥ λD−1 ≥ 0.

We consider two cases.

1. If λD−1 > 0, thenN (VP:,1:D) = {αU1:D,D : α ∈ R}, which implies that c(φ1:D−1) =
U1:D,D
‖U1:D,D‖

. Since we require φ1 ∈ (−π
2 ,

π
2], only one solution ± U1:D,D

‖U1:D,D‖
is valid and

the spherical coordinate vector we look for is uniquely determined by the spherical

coordinates of U1:D,D
‖U1:D,D‖

or − U1:D,D
‖U1:D,D‖

.

2. if λD−1 = 0, then dimN (VP:,1:D) ≥ 2 which implies that there are uncountably

many solutions for c(φ1:D−1) that satisfy the requirement φ1 ∈ (−π
2 ,

π
2].

54

Part b

(i)

|VN×Dc([φ1:D−2,
π

2])|

= |VN×D



sinφ1

cosφ1 sinφ2
...

cosφ1 · · · cosφD−2 sin π
2

cosφ1 · · · cosφD−2 cos π2


| = |VN×D


sinφ1

cosφ1 sinφ2
...

cosφ1 · · · cosφD−2

 |

= |VN×(D−1)c(φ1:D−2)|

(ii)

|VN×Dc([φ1:D−2,−
π

2])|

= |VN×D



sinφ1

cosφ1 sinφ2
...

cosφ1 · · · cosφD−2 sin−π
2

cosφ1 · · · cosφD−2 cos−π
2


| = |VN×D



− sin−φ1

− cos−φ1 sin−φ2
...

− cos−φ1 · · · cos−φD−2 sin π
2

− cos−φ1 · · · cos−φD−2 cos π2


|

= | −VN×Dc([−φ1:D−2,
π

2])| = |VN×Dc([−φ1:D−2,
π

2])|

55

(iii)

|VN×Dc([φ1:D−3,
π

2 , φD−1])|

= |VN×D



sinφ1

cosφ1 sinφ2
...

cosφ1 · · · cosφD−3 sin π
2

cosφ1 · · · cosφD−3 cos π2 sinφD−1

cosφ1 · · · cosφD−3 cos π2 cosφD−1


| = |VN×D


sinφ1

cosφ1 sinφ2
...

cosφ1 · · · cosφD−3

 |

= |VN×(D−2)c(φ1:D−3)|

(iv)

|VN×Dc([φ1:D−3,−
π

2 , φD−1])|

= |VN×D



sinφ1

cosφ1 sinφ2
...

cosφ1 · · · cosφD−3 sin−π
2

cosφ1 · · · cosφD−3 cos−π
2 sinφD−1

cosφ1 · · · cosφD−3 cos−π
2 cosφD−1


| = |VN×D


− sin−φ1

− cos−φ1 sin−φ2
...

− cos−φ1 · · · cos−φD−3

 |

= |VN×D



− sin−φ1

− cos−φ1 sin−φ2
...

− cos−φ1 · · · cos−φD−3 sin π
2

− cos−φ1 · · · cos−φD−3 cos π2 sinφ′D−1

− cos−φ1 · · · cos−φD−3 cos π2 cosφ′D−1


| = | −VN×Dc([−φ1:D−3,

π

2 , φ
′

D−1])|

= |VN×Dc([−φ1:D−3,
π

2 , φ
′

D−1])|

56

(v)

|VN×Dc([φ1:D−3,±
π

2 , φD−1])|

= |VN×D



sinφ1

cosφ1 sinφ2
...

cosφ1 · · · cosφD−3 sin±π
2

cosφ1 · · · cosφD−3 cos±π
2 sinφD−1

cosφ1 · · · cosφD−3 cos±π
2 cosφD−1


| = |VN×(D−2)


sinφ1

cosφ1 sinφ2
...

± cosφ1 · · · cosφD−3

 |

= |VN×D



sinφ1

cosφ1 sinφ2
...

cosφ1 · · · cosφD−3 sin±π
2

cosφ1 · · · cosφD−3 cos±π
2 sinφ′D−1

cosφ1 · · · cosφD−3 cos±π
2 cosφ′D−1


| = |VN×Dc([φ1:D−3,±

π

2 , φ
′

D−1])|

57

Bibliography

[1] G. N. Karystinos and D. A. Pados, “Rank-2-optimal adaptive design of binary spread-

ing codes,” IEEE Trans. Inform. Theory, vol. 53, pp. 3075-3080, Sept. 2007.

[2] G. N. Karystinos and A. P. Liavas, “ Efficient computation of the binary vector that

maximizes a rank-3 quadratic form,” 2006 Allerton Conf. Commun., Control, and

Computing, Allerton House, Monticello, IL, Sept. 2006, pp. 1286-1291.

[3] G. N. Karystinos and A. P. Liavas, “ Efficient computation of the binary vector that

Maximizes a Rank-deficient Quadratic Form,” IEEE Trans. Inform. Theory, vol. 56,

pp. 3581-3593, July 2010.

[4] T.H Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, “Introduction to Algorithms,” 2nd

ed.MIT Press 2001, Part II, Chapter 9.

[5] B. Moghaddam, Y. Weiss and S. Avidan, “Spectral Bounds for Sparse PCA: Exact and

Greedy Algorithms,” Advances in Neural Information Processing Systems 18 (NIPS),

MIT Press, 2006.

[6] A. D’Aspremont, L. El Ghaoui, M. I. Jordan and G. R. G. Lanckriet, “A direct formu-

lation for sparse PCA using semidefinite programming,”, SIAM Review, vol. 49, no.

3, pp. 434–448, 2007.

[7] B. K. Sriperumbudur, D. A. Torres and G. R. G. Lanckriet, “Sparse Eigen Methods by

D.C. Programming”, Proceedings of the 24 th International Conference on Machine

Learning, Corvallis, OR, 2007.

[8] T. Jolliffe, N.T. Trendafilov and M. Uddin, “A modified principal component tech-

nique based on the LASSO,”, Journal of Computational and Graphical Statistics, vol

12, pp. 531–547, 2003.

58

	List of Figures
	Introduction
	Problem Statement
	Exhaustive search solution - The direct solution
	Rank-1 case - A trivial case
	Maximization of a Rank-deficient Quadratic Form with a Real Vector Argument under a cardinality constraint
	Algorithmic Developments
	Rank-1 Case
	Rank-2 Case
	Parallel Implementation
	Serial Implementation
	On the complexity of the two implementations

	Rank-3 Case
	Parallel Implementation
	Serial Implementation
	On the complexity of the two implementations

	Conclusions
	Appendix
	Proof of Proposition 1

