

1

Department of Electronic and Computer Engineering

Technical University of Crete

THESIS

"A new location-aware Android application for automatic

synchronization of business and life calendars".

Liagouras Georgios Andreas

CHANIA

October, 2012

Advisor: Polychronis Koutsakis

2

ABSTRACT

 Since the beginning of the new millennium cell phones have been

quickly moving into our everyday life and becoming an important part of it.

Cell phones have coherently changed the way we live and work. The

significant technological advances led to the adoption of new and

elaborated features to cell phones turning them into a mini computer, a

mailing system, a text messenger, a video camera, even a game console.

 Over the last couple years a major breakthrough happened, the

development of mobile applications which was once a prerogative of cell

phone manufacturers, has been made available to the world of developers

for further improvements and innovation. This move marked the beginning

of a new era for cell phones, the era of smartphones. Mobile applications

with access to smartphones’ hardware such as 3G/Wi-Fi, GPS, camera,

offer services that have a great impact on the way we perform our daily

tasks.

 Motivated by this general concept, in this work we developed an

application for the Android platform that reads from the user’s calendar

the locations, descriptions and scheduled times of his daily events and

based on this data offers him the optimal route to visit these locations in

the minimum time. For even better user-experience, algorithms that

check estimated time of arrival (ETA) and current locations run in the

background, in order to display pop up messages if the user has activated

triggers while visiting a location. The app’s target group is wide, from

businessmen to ordinary people who face the complexity of everyday life.

3

ACKNOWLEDGMENTS

 I would like to express my greatest gratitude to the

people who have helped and supported me throughout my thesis. I am

grateful to my supervisor Polychronis Koutsakis for his continuous

support for the thesis, from initial advice and contacts in the early

stages of conceptual inception and through ongoing advice and

encouragement to this day.

 I would also like to thank the members of my thesis

committee, Prof Michael Lagoudakis and Prof Alexandros Potamianos, for

their participation.

 Special thanks tο Amir Sayegh for his continuous support

and co-supervision of this thesis through the exchange of ideas and

alternatives on how to proceed with the design of the application.

 Finally, I wish to thank my parents for their undivided

support and interest who inspired me and encouraged me to go my own

way, without whom I would be unable to complete my thesis. Last but not

least but not the least I want to thank my friends who appreciated me for

my work and motivated me.

4

TABLE OF CONTENTS

ABSTRACT--2

ACKNOWLEDGMENTS-------------------------------------3

TABLE OF CONTENTS-------------------------------------4

LIST OF TABLES, FIGURES, ACRONYMS------------------9-11

INTRODUCTION--12

Chapter 1:ANDROID PLATFORM----------------------------13

1.1 General Description----------------------------------13

1.2 Features--13

 1.2.1 Handset layouts--------------------------------13

 1.2.2 Storage--------------------------------------13

 1.2.3 Connectivity-----------------------------------13

 1.2.4 Messaging------------------------------------14

 1.2.5 Multiple language support------------------------14

 1.2.6 Web browser----------------------------------14

 1.2.7 Java support----------------------------------14

 1.2.8 Media support---------------------------------14

 1.2.9 Streaming media support-------------------------14

 1.2.10 Additional hardware support----------------------15

 1.2.11 Multi-touch-----------------------------------15

 1.2.12 Bluetooth-------------------------------------15

 1.2.13 Video calling----------------------------------15

 1.2.14 Multitasking------------------------------------16

5

 1.2.15 Voice based features-----------------------------16

 1.2.16 Tethering--------------------------------------16

 1.2.17 Screen capture----------------------------------16

 1.2.18 External storage---------------------------------16

1.3 Android version history-------------------------------17

 1.3.1 Gingerbread------------------------------------17

 1.3.1.1 UI refinements for simplicity and speed----------17

 1.3.1.2 Faster, more intuitive text input----------------18

 1.3.1.3 One-touch word selection and copy/paste---------18

 1.3.1.4 Improved power management-----------------19

 1.3.1.5 Control over applications--------------------19

 1.3.1.6 New ways of communicating,organizing---------19

 1.3.1.7 Internet calling------------------------------19

 1.3.1.8 Near-field communications------------------20

 1.3.1.9 Downloads management---------------------20

 1.3.1.10 Camera---------------------------------20

 1.3.1.11 Performance-----------------------------21

 1.3.1.12 Native input and sensor events--------------21

 1.3.1.13 Gyroscope and other new sensors, for improved 3D

motion processing--22

 1.3.1.14 Open API for native audio------------------22

 1.3.1.15 Native graphics management------------------22

 1.3.1.16 Native access to Activity lifecycle, window

management---22

6

 1.3.1.17 Native access to assets,storage---------------23

 1.3.1.18 Robust native development environment----------23

 1.3.1.19 Internet telephony--------------------------23

 1.3.1.20 Near Field Communications (NFC) -------------24

 1.3.1.21 Mixable audio effects-----------------------24

 1.3.1.22 Support for new media formats---------------25

 1.3.1.23 Access to multiple cameras-------------------25

Chapter 2: CREATING AN ANDROID PROJECT---------------25

2.1 What is the android SDK------------------------------25

2.2 Exploring the SDK------------------------------------26

2.3 Adding Platforms and Packages--------------------------27

2.4 Installing the Eclipse Plugin-----------------------------28

2.5 Using the Eclipse Indigo--------------------------------28

2.6 Directories and files----------------------------------30

2.7 Available options for running the application---------------30

 2.7.1 Creating an android Virtual Device(AVD)---------31

Chapter 3: DESIGNING MY APPLICATION-------------------31

3.1 User Interface--------------------------------------31

 3.1.1 Supporting Different Screens---------------31

 3.1.2 Layouts---------------------------------33

 3.1.2.1 Layout Parameters----------------------33

 3.1.2.2 Create a Relative Layout----------------34

 3.1.2.3 Positioning Views------------------------35

 3.1.2.4 Attributes-----------------------------36

7

 3.1.2.4.1 Add a Text Field-----------------36

 3.1.2.4.2 Add String Resources------------37

 3.1.2.4.3 Add a Button-------------------38

Chapter 4:PROGRAMMING MY APPLICATION-----------------39

4.1 Supporting Different Platform Versions-------------------39

 4.1.1 Specify Minimum and Target API Levels-------39

 4.1.2 Security Architecture (Permissions)-----------39

 4.1.2.1 Permissions Used in the application----------40

4.2 Activities---41

 4.2.1 Creating an Activity-------------------------42

 4.2.2 Declaring the activity in the manifest-----------42

 4.2.3 Using intent filters--------------------------43

 4.2.4 Managing the Activity Lifecycle----------------45

 4.2.5 Implementing the lifecycle callbacks------------46

4.3 Code Analysis--49

4.3.1 SimpleCalendarViewActivity----------------------49

4.3.1.1 General Description----------------------49

4.3.1.2 Class SimpleCalendarViewActivity-----------49

4.3.1.2.1 Variables----------------------49

4.3.1.2.2 Methods-----------------------52

4.3.1.3 Class GridCellAdapter--------------------55

4.3.1.3.1 Variables------------------------55

4.3.1.3.2 Methods------------------------56

4.3.2 TestingMapsActivity----------------------------57

 4.3.2.1 General Description-------------------57

8

4.3.2.2 Class TestingMapsActivity--------------58

4.3.2.2.1 Variables----------------------58

4.3.2.2.2 Methods-----------------------60

4.3.2.3 Class MyOverLay---------------------64

4.3.2.3.1 Variables----------------------64

4.3.2.3.2 Methods------------------------64

4.3.2.4 Class gia<T>---------------------------65

4.3.2.4.1 Methods-----------------------65

4.3.2.5 Class TouchOptions----------------------65

4.3.2.6 Public class PinpointClass------------------66

4.3.2.6.1 Variables------------------------66

4.3.2.6.2 Methods------------------------66

Chapter 5: ALGORITHM ANALYSIS-------------------------66

5.1 Graph Problem-------------------------------------66

5.2 Possible solutions-----------------------------------67

5.3 Permutation Algorithm-------------------------------69

 5.3.1 Analysis--------------------------------------69

5.3.2 Complexity and Proof---------------------------71

5.3.3 Experimental Times----------------------------72

 5.4 Other Algorithms----------------------------------74

 5.4.1 Algorithm in check_location----------------------74

 5.4.2 Algorithm in TouchOption-------------------------75

Chapter 6:FUNCTINALITY ISSUES-------------------------75

6.1 Acquiring Current Location------------------------------75

6.2 Update Interval--------------------------------------77

6.3 Screen Freezing--------------------------------------77

 6.4 All day Events---------------------------------------77

6.5 Calendar Applications----------------------------------77

Chapter 7: Requirements Analysis---------------------------78

7.1 Final Use Case, Flowchart Diagrams----------------------78

7.2 Use Case Diagram analysis------------------------------81

7.3 Behavioral Requirements-------------------------------87

Chapter 8:CONCLUSIONS---------------------------------87

REFERENCES--88

9

LIST OF TABLES

Table 1: lifecycle callback methods--------------------------48

Table 2: Global variables used in SimpleCalendarViewActivity.-----49

Table 3: Variables used in GridCellAdapter-------------------55

Table 4: Variables used in TestingMapsActivity----------------58

Table 5: Variables used in MyOverLay------------------------64

Table 6: Variables used in PinpointClass----------------------66

Table 7: Experimental Times-------------------------------72

Tables 8-11:Use Case Table Analysis-------------------- 81-87

Table 12: Behavioral Requirements--------------------------87

10

LIST OF FIGURES

Figure 1: Android SDK Manager-----------------------------27

Figure 2-4: New Android Project----------------------------29

Figure 5: Android Virtual Device Manager---------------------31

Figure 6: Create an Android Virtul Device Manager-------------31

Figure 7: Graphical Layout---------------------------------32

Figure 8: Linear Layout----------------------------------- 34

Figure 9: Application’s Layout Xml code-----------------------38

Figure 10: Application’s Layout Image------------------------38

Figure 11: Manifest--------------------------------------44

Figure 12: Activity States---------------------------------47

Figures 13-14:Launch Screen’s Pop up Messages----------------53

Figures 15-16:Launch Screen’s Pop up Messages----------------54

Figure 17: Launch Screen----------------------------------54

Figure 18: Launch--54

Figure 19: GPS message-----------------------------------60

Figures 20-21:check_location pop up messages-----------------62

Figures 22-25:check_location pop up messages-----------------63

Figure 26: Menu Options----------------------------------65

Figure 27: Undirected weighted graph------------------------67

Figure 28: Acquiring Current location Issue--------------------76

Figure 29: Final Flowchart Diagram--------------------------78

Figures 30-31: Final Use Cases Diagrams------------------79-80

11

LIST OF ACRONYMS

SDK:Software Development Kit

AVD: Android Virtual Device

API: application program interface

TSP: Travelling Salesman Problem

NDK: Native Development Kit

ETA: Estimated Time of Arrival

NN: Nearest Neighbor

MSTs :minimum spanning trees

AOSP: Android Open Source Project

J2ME: Java Micro-Edition

APP: Application

12

INTRODUCTION

In computer science context awareness refers to the idea that

computers can both sense, and react based on their environment.

Devices may have information about the circumstances under which they

are able to operate based on rules and react accordingly. All modern

Smartphone devices have GPS, Accelerometer components.

Many new possibilities arise:

 Location Aware Advertisements

 Location Aware Information

 Location Aware services (transportation, entertainment etc.)

Based on the above we decided to create an app whose goal would

be to make user’s life easier by helping them take care of everyday tasks

in the minimum time. Hence, we came up with the idea of a location aware

calendar, that the user would use as his daily agenda and would offer him

the optimal route to visit all the day’s destinations in the minimum time,

thus saving time and money. Moreover we added extra functionality by

changing the route according to our needs, view the address of every

location on the map and implement messages on map’s locations which will

appear when the users arrive to them.

13

Chapter 1: ANDROID PLATFORM

1.1 General Description

 Android is a Linux-based operating system for mobile devices

such as smart phones and tablet computers, developed by Google in

conjunction with the Open Handset Alliance. Android was initially

developed by Android Inc, which Google financially backed and later

purchased in 2005. The unveiling of the Android distribution in 2007 was

announced with the founding of the Open Handset Alliance, a consortium

of 86 hardware, software, and telecommunication companies devoted to

advancing open standards for mobile devices. Google releases the Android

code as open-source, under the Apache License[28]. The Android Open

Source Project (AOSP) is tasked with the maintenance and further

development of Android. Additionally, Android has a large community of

developers writing applications ("apps") that extend the functionality of

devices. Developers write primarily in a customized version of Java, and

apps can be downloaded from online stores such as Google Play (formerly

Android Market), the app store run by Google, or third-party sites.[29]

1.2 Features

 1.2.1 Handset layouts

The platform is adaptable to larger, VGA, 2D graphics library, 3D

graphics library based on OpenGL ES 2.0 specifications, and traditional

Smartphone layouts.

 1.2.2 Storage

SQLite, a lightweight relational database, is used for data storage

purposes.

 1.2.3 Connectivity

 Android supports connectivity technologies including

GSM/EDGE, IDEN, CDMA, EV-DO, UMTS, Bluetooth, Wi-Fi, LTE, NFC

and WiMAX.

14

 1.2.4 Messaging

 SMS and MMS are available forms of messaging, including

threaded text messaging and Android Cloud To Device Messaging (C2DM).

The enhanced version of C2DM, Android Google Cloud Messaging (GCM),

is also a part of Android Push Messaging service.

 1.2.5 Multiple language support

 Android supports multiple languages.

 1.2.6 Web browser

 The web browser available in Android is based on the open-

source WebKit layout engine, coupled with Chrome's V8 JavaScript

engine.

 1.2.7 Java support

 While most Android applications are written in Java, there is

no Java Virtual Machine in the platform and Java byte code is not

executed. Java classes are compiled into Dalvik executables and run on

Dalvik, a specialized virtual machine designed for Android and optimized

for battery-powered mobile devices with limited memory and CPU. J2ME

(Java, Micro Edition) support is provided via third-party applications.

 1.2.8 Media support

 Android supports the following audio/video/still media formats:

WebM, H.263, H.264 (in 3GP or MP4 container), MPEG-4 SP, AMR, AMR-

WB (in 3GP container), AAC, HE-AAC (in MP4 or 3GP container), MP3,

MIDI, Ogg Vorbis, FLAC, WAV, JPEG, PNG, GIF, BMP, WebP.

 1.2.9 Streaming media support

 RTP/RTSP streaming (3GPP PSS, ISMA), HTML progressive

download (HTML5 <video> tag) are supported. Adobe Flash Streaming

(RTMP) and HTTP Dynamic Streaming are supported by the Flash plugin.

Apple HTTP Live Streaming is supported by RealPlayer for Android, and

by the operating system in Android 3.0 (Honeycomb).

15

 1.2.10 Additional hardware support

 Android can use video/still cameras, touch screens, GPS,

accelerometers, gyroscopes, barometers, magnetometers, dedicated

gaming controls, proximity and pressure sensors, thermometers,

accelerated 2D bit blits (with hardware orientation, scaling, pixel format

conversion) and accelerated 3D graphics.

 1.2.11 Multi-touch

 Android has native support for multi-touch which was initially

made available in handsets such as the HTC Hero. The feature was

originally disabled at the kernel level (possibly to avoid infringing Apple's

patents on touch-screen technology at the time). Google has since

released an update for the Nexus One and the Motorola Droid which

enables multi-touch natively.

 1.2.12 Bluetooth

 A2DP, AVRCP, sending files (OPP), accessing the phone book

(PBAP), voice dialing and sending contacts between phones is supported.

Keyboard, mouse and joystick (HID) support is available in Android 3.1+,

and in earlier versions through manufacturer customizations and third-

party applications.

 1.2.13 Video calling

 Android does not support native video calling, but some

handsets have a customized version of the operating system that

supports it, either via the UMTS network (like the Samsung Galaxy S) or

over IP. Video calling through Google Talk is available in Android 2.3.4 and

later versions. Gingerbread allows Nexus S to place Internet calls with a

SIP account. This allows for enhanced VoIP dialing to other SIP accounts

and even phone numbers. Skype 2.1 offers video calling in Android 2.3,

including front camera support. Users with the Google+ android app can

video chat with other Google+ users through hangouts.

16

 1.2.14 Multitasking

 Multitasking of applications, with unique handling of memory

allocation, is available.

 1.2.15 Voice based features

 Google search through voice has been available since initial

release. Voice actions for calling, texting, navigation, etc. are supported

on Android 2.2 onwards.

 1.2.16 Tethering

 Android supports tethering, which allows a phone to be used as

a wireless/wired Wi-Fi hotspot. Before Android 2.2 this was supported by

third-party applications or manufacturer customizations.

 1.2.17 Screen capture

 Android supports capturing a screenshot by pressing the power

and volume-down buttons at the same time. Prior to Android 4.0, the only

methods of capturing a screenshot were through manufacturer and third-

party customizations or otherwise by using a PC connection (DDMS

developer's tool). These alternative methods are still available with the

latest Android.

 1.2.18 External storage

 Most Android devices include microSD slot and can read

microSD cards formatted with FAT32, Ext3 or Ext4 file system. To allow

use of high-capacity storage media such as USB flash drives and USB

HDDs, many Android tablets also include USB 'A' receptacle. Storage

formatted with FAT32 is handled by Linux Kernel VFAT driver, while

third party solutions are required to handle other popular file systems

such as NTFS, HFS Plus and exFAT.

17

1.3 Android version history

 The version history of the Android operating system began

with the release of the Android beta in November 2007. The first

commercial version, Android 1.0, was released in September 2008. Since

its original release it has seen a number of updates to its base operating

system. These updates typically fix bugs and add new features. Since

April 2009, each Android version has been developed under a codename

based on a dessert or sweet treat. These versions have been released in

alphabetical order:[30]

 1 Android beta

 2 Android 1.0 Astro

 3 Android 1.1 Bender

 4 Android 1.5 Cupcake

 5 Android 1.6 Donut

 6 Android 2.0/2.1 Eclair

 7 Android 2.2.x Froyo

 8 Android 2.3.x Gingerbread

 9 Android 3.x Honeycomb

 10 Android 4.0.x Ice Cream Sandwich

 11 Android 4.1.x Jelly Bean

 1.3.1 Gingerbread[16]

 Our application was developed for the Gingerbread version

therefore we focus on this version from now on. This version brings the

following improvements from the Froyo version for both consumers and

developers.

 1.3.1.1 UI refinements for simplicity and speed

 The user interface is refined in many ways across the system,

making it easier to learn, faster to use, and more power-efficient. A

simplified visual theme of colors against black brings vividness and

contrast to the notification bar, menus, and other parts of the UI.

Changes in menus and settings make it easier for the user to navigate and

control the features of the system and device.

18

 1.3.1.2 Faster, more intuitive text input

 The Android soft keyboard is redesigned and optimized for

faster text input and editing. The keys themselves are reshaped and

repositioned for improved targeting, making them easier to see and press

accurately, even at high speeds. The keyboard also displays the current

character and dictionary suggestions in a larger, more vivid style that is

easier to read.

 The keyboard adds the capability to correct entered words

from suggestions in the dictionary. As the user selects a word already

entered, the keyboard displays suggestions that the user can choose

from, to replace the selection. The user can also switch to voice input

mode to replace the selection. Smart suggestions let the user accept a

suggestion and then return to correct it later, if needed, from the

original set of suggestions.

 New multitouch key-chording lets the user quickly enter

numbers and symbols by pressing Shift+<letter> and ?123+<symbol>,

without needing to manually switch input modes. From certain keys, users

can also access a popup menu of accented characters, numbers, and

symbols by holding the key and sliding to select a character.

 1.3.1.3 One-touch word selection and copy/paste

 When entering text or viewing a web page, the user can quickly

select a word by press-hold, then copy to the clipboard and paste.

Pressing on a word enters a free-selection mode — the user can adjust

the selection area as needed by dragging a set of bounding arrows to new

positions, then copy the bounded area by pressing anywhere in the

selection area. For text entry, the user can slide-press to enter a cursor

mode, then reposition the cursor easily and accurately by dragging the

cursor arrow. With both the selection and cursor modes, no use of a

trackball is needed.

19

 1.3.1.4 Improved power management

 The Android system takes a more active role in managing apps

that are keeping the device awake for too long or that are consuming CPU

while running in the background. By managing such apps — closing them if

appropriate — the system helps ensure best possible performance and

maximum battery life.

 The system also gives the user more visibility over the power

being consumed by system components and running apps. The Application

settings provide an accurate overview of how the battery is being used,

with details of the usage and relative power consumed by each component

or application.

 1.3.1.5 Control over applications

 A shortcut to the Manage Applications control now appears in

the Options Menu in the Home screen and Launcher, making it much

easier to check and manage application activity. Once the user enters

Manage Applications, a new Running tab displays a list of active

applications and the storage and memory being used by each. The user can

read further details about each application and if necessary stop an

application or report feedback to its developer.

 1.3.1.6 New ways of communicating, organizing

 An updated set of standard applications lets the user take new

approaches to managing information and relationships.

 1.3.1.7 Internet calling

 The user can make voice calls over the internet to other users

who have SIP accounts. The user can add an internet calling number (a

SIP address) to any Contact and can initiate a call from Quick Contact or

Dialer. To use internet calling, the user must create an account at the

SIP provider of their choice — SIP accounts are not provided as part of

the internet calling feature. Additionally, support for the platform's SIP

and internet calling features on specific devices is determined by their

manufacturers and associated carriers.

20

 1.3.1.8 Near-field communications

 An NFC Reader application lets the user read and interact with

near-field communication (NFC) tags. For example, the user can “touch”

or “swipe” an NFC tag that might be embedded in a poster, sticker, or

advertisement, then act on the data read from the tag. A typical use

would be to read a tag at a restaurant, store, or event and then rate or

register by jumping to a web site whose URL is included in the tag data.

NFC communication relies on wireless technology in the device hardware,

so support for the platform's NFC features on specific devices is

determined by their manufacturers.

 1.3.1.9 Downloads management

 The Downloads application gives the user easy access to any

file downloaded from the browser, email, or another application.

Downloads is built on a completely new download manager facility in the

system that any other applications can use, to more easily manage and

store their downloads.

 1.3.1.10 Camera

 The application now lets the user access multiple cameras on

the device, including a front-facing camera, if available.

New Developer Features

 Android 2.3 delivers a variety of features and APIs that let

developers bring new types of applications to the Android platform.

 Enhancements for gaming

 New forms of communication

 Rich multimedia

21

Enhancements for gaming

 1.3.1.11 Performance

 Android 2.3 includes a variety of improvements across the

system that makes common operations faster and more efficient for all

applications. Of particular interest to game developers are:

 Concurrent garbage collector — The Dalivik VM introduces a

new, concurrent garbage collector that minimizes application pauses,

helping to ensure smoother animation and increased responsiveness in

games and similar applications.

 Faster event distribution — the platform now handles touch

and keyboard events faster and more efficiently, minimizing CPU

utilization during event distribution. The changes improve responsiveness

for all applications, but especially benefit games that use touch events in

combination with 3D graphics or other CPU-intensive operations.

 Updated video drivers — the platform uses updated third-

party video drivers that improve the efficiency of OpenGL ES operations,

for faster overall 3D graphics performance.

 1.3.1.12 Native input and sensor events

Applications that use native code can now receive and process input and

sensor events directly in their native code, which dramatically improves

efficiency and responsiveness.

 Native libraries exposed by the platform let applications

handle the same types of input events as those available through the

framework. Applications can receive events from all supported sensor

types and can enable/disable specific sensors and manage event delivery

rate and queuing.

22

 1.3.1.13 Gyroscope and other new sensors, for

improved 3D motion processing

 Android 2.3 adds API support for several new sensor types,

including gyroscope, rotation vector, linear acceleration, gravity, and

barometer sensors. Applications can use the new sensors in combination

with any other sensors available on the device, to track three-dimensional

device motion and orientation change with high precision and accuracy.

For example, a game application could use readings from a gyroscope and

accelerometer on the device to recognize complex user gestures and

motions, such as tilt, spin, thrust, and slice.

 1.3.1.14 Open API for native audio

 The platform provides a software implementation of Khronos

OpenSL ES, a standard API that gives applications access to powerful

audio controls and effects from native code. Applications can use the API

to manage audio devices and control audio input, output, and processing

directly from native code.

 1.3.1.15 Native graphics management

 The platform provides an interface to its Khronos EGL library,

which lets applications manage graphics contexts and create and manage

OpenGL ES textures and surfaces from native code.

 1.3.1.16 Native access to Activity lifecycle, window

management

 Native applications can declare a new type of Activity class,

NativeActivity, whose lifecycle callbacks are implemented directly in

native code. The NativeActivity and its underlying native code run in the

system just as do other Activities — they run in the application's system

process and execute on the application's main UI thread, and they

receive the same lifecycle callbacks as do other Activities.

23

 1.3.1.17 Native access to assets, storage

 Applications can now access a native Asset Manager API to

retrieve application assets directly from native code without needing to

go through JNI. If the assets are compressed, the platform does

streaming decompression as the application reads the asset data. There

is no longer a limit on the size of compressed .apk assets that can be

read.

 Additionally, applications can access a native Storage Manager

API to work directly with OBB files downloaded and managed by the

system.

 1.3.1.18 Robust native development environment

 The Android NDK (Native Development Kit) provides a

complete set of tools, toolchains, and libraries for developing applications

that use the rich native environment offered by the Android 2.3

platform. For more information or to download the NDK, please see the

Android NDK page.

New forms of communication

 1.3.1.19 Internet telephony

 Developers can now add SIP-based internet telephony features

to their applications. Android 2.3 includes a full SIP protocol stack and

integrated call management services that let applications easily set up

outgoing and incoming voice calls, without having to manage sessions,

transport-level communication, or audio record or playback directly.

 Support for the platform's SIP and internet calling features on

specific devices is determined by their manufacturers and associated

carriers.

24

1.3.1.20 Near Field Communications (NFC)

 The platform's support for Near Field Communications (NFC)

lets developers get started creating a whole new class of applications for

Android. Developers can create new applications that offer proximity-

based information and services to users, organizations, merchants, and

advertisers.

 Using the NFC API, applications can read and respond to NFC

tags “discovered” as the user “touches” an NFC-enabled device to

elements embedded in stickers, smart posters, and even other devices.

When a tag of interest is collected, applications can respond to the tag,

read messages from it, and then store the messages, prompting the user

as needed.

 Starting from Android 2.3.3, applications can also write to tags

and set up peer-to-peer connections with other NFC devices.

 NFC communication relies on wireless technology in the device

hardware, so support for the platform's NFC features on specific devices

is determined by their manufacturers.

Rich multimedia

 1.3.1.21 Mixable audio effects

 A new audio effects API lets developers easily create rich

audio environments by adding equalization, bass boost, headphone

virtualization (widened soundstage), and reverb to audio tracks and

sounds. Developers can mix multiple audio effects in a local track or apply

effects globally, across multiple tracks.

25

 1.3.1.22 Support for new media formats

 The platform now offers built-in support for the VP8 open

video compression format and the WebM open container format. The

platform also adds support for AAC encoding and AMR wideband encoding

(in software), so that applications can capture higher quality audio than

narrowband.

 1.3.1.23 Access to multiple cameras

The Camera API now lets developers access any cameras that are

available on a device, including a front-facing camera. Applications can

query the platform for the number of cameras on the device and their

types and characteristics, then open the camera needed. For example, a

video chat application might want to access a front-facing camera that

offers lower-resolution, while a photo application might prefer a back-

facing camera that offers higher-resolution.

Chapter 2: CREATING AN ANDROID PROJECT

 An Android project contains all the files that comprise the

source code for your Android app. The Android SDK tools make it easy to

start a new Android project with a set of default project directories and

files.

Step 1: Installing the Android SDK

 2.1 What is the android SDK

 The android SDK is a software development kit that enables

developers to create applications for the Android platform. The Android

SDK includes sample projects with source code, development tools, an

emulator, and required libraries to build Android applications.

Applications are written using the Java programming language and run on

Dalvik, a custom virtual machine designed for embedded use which runs on

top of a Linux kernel.

26

2.2 Exploring the SDK[14]

 The Android SDK is composed of modular packages that you

can download separately using the Android SDK Manager. There are

several different packages available for the Android SDK. The table

below describes most of the available packages and where they're

located once you download them.

Available Packages

SDK Tools: Contains tools for debugging and testing, plus other utilities

that are required to develop an app.

SDK Platform-tools: Contains platform-dependent tools for developing

and debugging your application. These tools support the latest features

of the Android platform and are typically updated only when a new

platform becomes available. These tools are always backward compatible

with older platforms.

Documentation: An offline copy of the latest documentation for the

Android platform APIs.

 SDK Platform: There's one SDK Platform available for each version

of Android. It includes an android.jar file with a fully compliant Android

library. In order to build an Android app, you must specify an SDK

platform as your build target.

System Images: Each platform version offers one or more different

system images (such as for ARM and x86). The Android emulator requires

a system image to operate.

Sources for Android SDK: A copy of the Android platform source code

that's useful for stepping through the code while debugging the app.

Samples for SDK: A collection of sample apps that demonstrate a variety

of the platform APIs. These are a great resource to browse Android app

code.

Google APIs: An SDK add-on that provides both a platform you can use to

develop an app using special Google APIs and a system image for the

emulator so you can test the app using the Google APIs.

27

Android Support: A static library you can include in your app sources in

order to use powerful APIs that aren't available in the standard

platform.

Google Play Billing: Provides the static libraries and samples that

allow you to integrate billing services in your app with Google Play.

Google Play Licensing: Provides the static libraries and samples that

allow you to perform license verification for your app when distributing

with Google Play.

2.3 Adding Platforms and Packages[32]

 The Android SDK separates tools, platforms, and other

components into packages we can download using the Android SDK

Manager. When you open the Android SDK Manager, it automatically

selects a set of recommended packages. Simply click Install to install the

recommended packages. The Android SDK Manager installs the selected

packages into your Android SDK environment.

28

2.4 Installing the Eclipse Plugin[33]

 Our app was developed using the eclipse Indigo. Because of

that we had to install a custom plug-in that android offers for Eclipse

IDE, called Android Development Tools(ADT). This plug-in is designed to

give a powerful, integrated environment in which to develop Android apps.

It extends the capabilities of Eclipse to quickly set up new Android

projects, build an app UI, debug the app, and export signed (or unsigned)

app packages (APKs) for distribution.

STEP 2: Create a Project with Eclipse[34]

2.5 Using the Eclipse Indigo

 In Eclipse, click New Android App Project in the

toolbar.

 Application Name is the app name that appears to

users.

 Project Name is the name of project directory and

the name visible in Eclipse.

 Package Name is the package namespace for the app.

The package name must be unique across all packages

installed on the Android system.

 Build SDK is the platform version against which you

will compile your app. By default, this is set to the latest

version of Android available in your SDK.

 Minimum Required SDK is the lowest version of

Android that your app supports.

 The next screen provides tools to create a launcher

icon for the app.

 Next you select an activity template from which to

begin building your app.

 Finally, leave all the details for the activity in their

default state and click Finish.

29

30

 STEP 3: Running the Application [35]

 The android project that I have created contains the following

directories and files whose knowledge is essential for the development:

 2.6 Directories and files

 AndroidManifest.xml

 The manifest file describes the fundamental characteristics of

the app and defines each of its components.

 src/

 Directory for the app's main source files. By default, it

includes an Activity class that runs when the app is launched using the app

icon.

 res/

 Contains several sub-directories for app resources.

 drawable-hdpi/

 Directory for drawable objects (such as bitmaps) that are

designed for high-density (hdpi) screens. Other drawable directories

contain assets designed for other screen densities.

 layout/

 Directory for files that define the app's user interface.

 values/

 Directory for other various XML files that contain a collection

of resources, such as string and color definitions.

2.7 Available options for running the application

 Run on a Real Device

 Run on the Emulator

31

 2.7.1 Creating an android Virtual Device (AVD)

 To create an Android Virtual Device (AVD) we click “new” and

at the next window you select as target the primary android version that

our app is going to support. In our case that is Google APIs –API Level 10

that includes support for Google maps. The next option that we should

select is the resolution support which in our case is the default

WVGA800 resolution or 800*480 pixels. The other options are left at

the default selection. Then, we click Create AVD.

32

Chapter 3: DESIGNING AGENDA-ROUTE PLANNER

3.1 User Interface [36]

 The graphical user interface for an Android app is built using a

hierarchy of View and ViewGroup objects. View objects are usually UI

widgets such as buttons or text fields and ViewGroup objects are

invisible view containers that define how the child views are laid out, such

as in a grid or a vertical list. Android provides an XML vocabulary that

corresponds to the subclasses of View and ViewGroup so you can define

UI in XML using a hierarchy of UI elements.

 3.1.1 Supporting Different Screens [37]

 Android categorizes device screens using two general

properties: size and density. There are four generalized sizes: small,

normal, large, xlarge, and four generalized densities: low (ldpi), medium

(mdpi), high (hdpi), extra high (xhdpi). Our application was designed for

3.7 inches screens with resolution of 800*480, although it can work in

other screen sizes because the main factor here is the resolution. For

example the phone we used to test the app has a 3.8 inch screen.

33

3.1.2 Layouts [20]

 A layout defines the visual structure for a user interface, such

as the UI for an activity or app widget. We can declare a layout in two

ways:

1. Declare UI elements in XML. Android provides a

straightforward XML vocabulary that corresponds to the View

classes and subclasses, such as those for widgets and layouts.

2. Instantiate layout elements at runtime. The application can

create View and ViewGroup objects (and manipulate their

properties).

 The Android framework gives you the flexibility to use either

or both of these methods for declaring and managing your application. In

our application both methods were used, the first to create the MapView

and add buttons to the main screen and the second to populate the date

boxes.

 The advantage to declaring our UI in XML is that it enables us

to better separate the presentation of our application from the code that

controls its behavior. Our UI descriptions are external to the application

code, which means that we can modify or adapt it without having to

modify our source code and recompile. Additionally, declaring the layout

in XML makes it easier to visualize the structure of our UI, so it's easier

to debug problems.

 In general, the XML vocabulary for declaring UI elements

closely follows the structure and naming of the classes and methods,

where element names correspond to class names and attribute names

correspond to methods.

3.1.2.1 Layout Parameters

XML layout attributes named layout_something define layout

parameters for the View that is appropriate for the ViewGroup in which

it resides. Every ViewGroup class implements a nested class that extends

ViewGroup.LayoutParams. This subclass contains property types that

define the size and position for each child view, as appropriate for the

34

view group. As shown below, the parent view group defines layout

parameters for each child view (including the child view group).

 Every LayoutParams subclass has its own syntax for setting

values. Each child element must define LayoutParams that are appropriate

for its parent, though it may also define different LayoutParams for its

own children. All view groups include a width and height (layout_width and

layout_height), and each view is required to define them. Many

LayoutParams also include optional margins and borders.

These constants are used to set the width or height:

wrap_content: tells your view to size itself to the dimensions required by

its content

fill_parent :tells your view to become as big as its parent view group will

allow.

 3.1.2.2 Create a Relative Layout

 In our application we used a relative layout as the default

layout of the app. RelativeLayout is a view group that displays child views

in relative positions. The position of each view can be specified as relative

to sibling elements (such as to the left-of or below another view) or in

35

positions relative to the parent RelativeLayout area (such as aligned to

the bottom, left of center).

 A RelativeLayout is a very powerful utility for designing a user

interface because it can eliminate nested view groups and keep layout

hierarchy flat, which improves performance.

 3.1.2.3 Positioning Views

 RelativeLayout lets child views specify their position relative to

the parent view or to each other (specified by ID). So you can align two

elements by right border, or make one below another, centered in the

screen, centered left, and so on. By default, all child views are drawn at

the top-left of the layout, so you must define the position of each view

using the various layout properties. Some of the many layout properties

available to views in a RelativeLayout include:

 android:layout_alignParentTop

 If "true", makes the top edge of this view match the top edge

of the parent.

 android:layout_centerVertical

 If "true", centers this child vertically within its parent.

 android:layout_below

 Positions the top edge of this view below the view specified

with a resource ID.

 android:layout_toRightOf

 Positions the left edge of this view to the right of the view

specified with a resource ID.

 The value for each layout property is either a Boolean to enable

a layout position relative to the parent RelativeLayout or an ID that

references another view in the layout against which the view should be

positioned.

36

 3.1.2.4 Attributes

 Every View and ViewGroup object supports their own variety of

XML attributes. Some attributes are specific to a View object, but these

attributes are also inherited by any View objects that may extend this

class. Some are common to all View objects, because they are inherited

from the root View class. Other attributes are considered "layout

parameters," i.e., attributes that describe certain layout orientations of

the View object, as defined by that object's parent ViewGroup object.

 3.1.2.4.1 Add a Text Field

To create a user-editable text field, you add an <EditText> element inside

the <LinearLayout>.Like every View object, I must define certain XML

attributes to specify the EditText object's properties.

<EditText android:id="@+id/edit_message"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:hint="@string/edit_message" />

Regarding attributes:

android:id="@+id/edit_message"

 This provides a unique identifier for the view, which we can use

to reference the object from our app code, such as to read and

manipulate the object. The at sign (@) is required when we are referring

to any resource object from XML. It is followed by the resource type (id

in this case), a slash, then the resource name (edit_message). The plus

sign (+) before the resource type is needed only when you're defining a

resource ID for the first time. When you compile the app, the SDK tools

use the ID name to create a new resource ID in your project's gen/R.java

file that refers to the EditText element. Once the resource ID is

declared once this way, other references to the ID do not need the plus

sign. Using the plus sign is necessary only when specifying a new resource

ID and not needed for concrete resources such as strings or layouts.

37

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 Instead of using specific sizes for the width and height, the

"wrap_content" value specifies that the view should be only as big as

needed to fit the contents of the view. If you were to instead use

"match_parent", then the EditText element would fill the screen,

because it would match the size of the parent LinearLayout.

android:hint="@string/edit_message"

 This is a default string to display when the text field is empty.

Instead of using a hard-coded string as the value, the

"@string/edit_message" value refers to a string resource defined in a

separate file. Because this refers to a concrete resource (not just an

identifier), it does not need the plus sign.

 3.1.2.4.2 Add String Resources

 When you need to add text in the user interface, you should

always specify each string as a resource. String resources allow you to

manage all UI text in a single location, which makes it easier to find and

update text. Externalizing the strings also allows you to localize your app

to different languages by providing alternative definitions for each string

resource. By default, Android project includes a string resource file at

res/values/strings.xml. A strings.xml looks like this:

<?xml version="1.0" encoding="utf-8"?>

<resources>

 <string name="app_name">My First App</string>

 <string name="edit_message">Enter a message</string>

 <string name="button_send">Send</string>

 <string name="menu_settings">Settings</string>

 <string name="title_activity_main">MainActivity</string>

</resources>

38

 3.1.2.4.3 Add a Button

In order to declare a button to the xml file the code should look like this:

<Button

 android:id="@+id/selectedDayMonthYear"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignParentTop="true"
 android:layout_centerHorizontal="true"
 android:layout_gravity="center"
 android:textColor="#FFFFFF" >
 </Button>

All of the above can be combined to create an xml file that designs

applications layout.

39

Chapter 4: PROGRAMMING AGENDA-ROUTE PLANNER

4.1 Supporting Different Platform Versions [26]

 4.1.1 Specify Minimum and Target API Levels

 The AndroidManifest.xml file describes details about the app

and identifies which versions of Android it supports. Specifically, the

minSdkVersion and targetSdkVersion attributes for the <uses-sdk

element identify the lowest API level with which the app is compatible

and the highest API level against which we have designed and tested the

app. In our case the minimum API Level is API 8 (Android 2.2 Froyo) and

the target API Level is API 10 (Android 2.3 Gingerbread).

 4.1.2 Security Architecture (Permissions)

 A central design point of the Android security architecture is

that no application, by default, has permission to perform any operations

that would adversely impact other applications, the operating system, or

the user. Because Android sandboxes applications from each other,

applications must explicitly share resources and data. They do this by

declaring the permissions they need for additional capabilities not

provided by the basic sandbox. Applications statically declare the

permissions they require, and the Android system prompts the user for

consent at the time the application is installed.

 The structure of a permission declared in the manifest is the

following:

 syntax:

 <uses-permission android:name="string" />

 description:

 Requests a permission that the application must be granted in

order for it to operate correctly.

40

 attributes:

 android:name

 The name of the permission. It can be a permission defined by

the application with the <permission> element, a permission defined by

another application, or one of the standard system permissions, such as

"android.permission.CAMERA" or "android.permission.READ_CONTACTS".

As these examples show, a permission name typically includes the package

name as a prefix.

4.1.2.1 Permissions Used in the application

o android:name="android.permission.INTERNET"/>

 Allows applications to open network sockets.

o android:name="android.permission.ACCESS_FINE_LOCATI

ON"/>

 Allows an application to access fine (e.g., GPS) location

o android:name="android.permission.ACCESS_COARSE_LOC

ATION"/>

 Allows an application to access coarse (e.g., Cell-ID,

WiFi) location

o android:name="android.permission.READ_CALENDAR"/>

 Allows an application to read the user's calendar data.

o android:name="android.permission.ACCESS_NETWORK_S

TATE"/>

 Allows applications to access information about

networks

o android:name="android.permission.ACCESS_WIFI_STATE

"/>

 Allows applications to access information about Wi-Fi

networks

41

4.2 Activities [2]

 An Activity is an application component that provides a screen

with which users can interact in order to do something, such as dial the

phone, take a photo, send an email, or view a map. Each activity is given a

window in which to draw its user interface. The window typically fills the

screen, but may be smaller than the screen and float on top of other

windows.

 An application usually consists of multiple activities that are

loosely bound to each other. Typically, one activity in an application is

specified as the "main" activity, which is presented to the user when

launching the application for the first time. Each activity can then start

another activity in order to perform different actions. Each time a new

activity starts, the previous activity is stopped, but the system preserves

the activity in a stack (the "back stack"). When a new activity starts, it is

pushed onto the back stack and takes user focus. The back stack abides

to the basic "last in, first out" stack mechanism, so, when the user is done

with the current activity and presses the Back button, it is popped from

the stack (and destroyed) and the previous activity resumes.

 When an activity is stopped because a new activity starts, it is

notified of this change in state through the activity's lifecycle callback

methods. There are several callback methods that an activity might

receive, due to a change in its state—whether the system is creating it,

stopping it, resuming it, or destroying it—and each callback provides the

opportunity to perform specific work that's appropriate to that state

change. For instance, when stopped, our activity should release any large

objects, such as network or database connections. When the activity

resumes, we can reacquire the necessary resources and resume actions

that were interrupted. These state transitions are all part of the activity

lifecycle.

42

 4.2.1 Creating an Activity

 To create an activity, we must create a subclass of Activity. In

our subclass, you need to implement callback methods that the system

calls when the activity transitions between various states of its lifecycle,

such as when the activity is being created, stopped, resumed, or

destroyed. The two most important callback methods are:

 onCreate()

 The system calls this when creating our activity. Within our

implementation, we should initialize the essential components of our

activity. Most importantly, this is where we need to call setContentView()

to define the layout for the activity's user interface.

 onPause()

 The system calls this method as the first indication that the

user is leaving our activity (though it does not always mean the activity is

being destroyed). This is usually where we should commit any changes

that should persist beyond the current user session (because the user

might not come back). Moreover, by pausing the activity we conserve data

and battery.

 4.2.2 Declaring the activity in the manifest

 We must declare our activity in the manifest file in order for it

to be accessible to the system. To declare the activity, we add in the

manifest file an <activity> element as a child of the <application> element.

The structure of this declaration is the following

<manifest ... >

 <application ... >

 <activity android:name=".ExampleActivity" />

 ...

 </application ... >

 ...</manifest >

43

 4.2.3 Using intent filters

An <activity> element can also specify various intent filters—using

the <intent-filter> element—in order to declare how other application

components may activate it. When we create a new application using the

Android SDK tools, the stub activity that's created automatically

includes an intent filter that declares the activity responses to the

"main" action and should be placed in the "launcher" category. The intent

filter looks like this:

<activity android:name=".ExampleActivity"

android:icon="@drawable/app_icon">

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

</activity>

The <action> element specifies that this is the "main" entry point to

the application. The <category> element specifies that this activity should

be listed in the system's application launcher (to allow users to launch

this activity).

If we want our application to be self-contained and not allow other

applications to activate its activities, then we don't need any other intent

filters. Only one activity should have the "main" action and "launcher"

category, as in the previous example. Activities that we don't want to

make available to other applications should have no intent filters.

However, if you want your activity to respond to implicit intents

that are delivered from other applications, then you must define

additional intent filters for your activity. For each type of intent to

which you want to respond, you must include an <intent-filter> that

includes an <action> element and, optionally, a <category> element and/or a

44

<data> element. These elements specify the type of intent to which our

activity can respond.

In the following image we can see the application’s manifest file

that implements everything that is mentioned so far in this section.

45

4.2.4 Managing the Activity Lifecycle

The lifecycle of an activity is directly affected by its association

with other activities, its task and back stack. An activity can exist in

essentially three states:

1. Resumed

The activity is in the foreground of the screen and has the user’s

focus.

2. Paused

Another activity is in the foreground and has focus, but this one is

still visible. That is, another activity is visible on top of this one and that

activity is partially transparent or doesn't cover the entire screen. A

paused activity is completely alive (the Activity object is retained in

memory, it maintains all state and member information, and remains

attached to the window manager), but can be killed by the system in

extremely low memory situations.

3. Stopped

The activity is completely obscured by another activity (the

activity is now in the "background"). A stopped activity is also still alive

(the Activity object is retained in memory, it maintains all state and

member information, but is not attached to the window manager).

However, it is no longer visible to the user and it can be killed by the

system when memory is needed elsewhere.

If an activity is paused or stopped, the system can drop it from

memory either by asking it to finish (calling its finish() method), or simply

killing its process. When the activity is opened again (after being finished

or killed), it must be created all over.

46

4.2.5 Implementing the lifecycle callbacks

When an activity transitions into and out of the different states

described above, it is notified through various callback methods. All of

the callback methods are hooks that we can override to do appropriate

work when the state of our activity changes. The callbacks methods

available are the following:

 onCreate()

 onStart()

 onResume()

 onPause()

 onStop()

 onDestroy()

Taken together, these methods define the entire lifecycle of an

activity. By implementing these methods, we can monitor three nested

loops in the activity lifecycle:

 The entire lifetime of an activity happens between the call to

onCreate() and the call to onDestroy(). Our activity should perform

setup of "global" state (such as defining layout) in onCreate(), and

release all remaining resources in onDestroy().

 The visible lifetime of an activity happens between the call to

onStart() and the call to onStop(). During this time, the user can

see the activity on-screen and interact with it.

 The foreground lifetime of an activity happens between the call to

onResume() and the call to onPause(). During this time, the activity

is in front of all other activities on screen and has user input focus.

An activity can frequently transition in and out of the foreground.

47

The following diagram illustrates these loops and the paths

an activity might take between states. The rectangles represent

the callback methods that can be implemented to perform

operations when the activity transitions between states.

48

The lifecycle callback methods are listed in the following table, which

describes each of the callback methods in more detail and locates each

one within the activity's overall lifecycle, including whether the system

can kill the activity after the callback method completes.

49

4.3 Code Analysis

The activities of our application are the following two:

1. SimpleCalendarViewActivity

2. TestingMapsActivity

4.3.1 SimpleCalendarViewActivity[9]

4.3.1.1 General Description

This is the primary activity of our application and it is used

for the application’s launch. It contains methods that are used to

populate the initial screen with image objects, button assignments

that make the transitions to the user’s calendar or the map

Activity and algorithms that display pop up messages based on the

network status and the calendar events.

4.3.1.2 Class SimpleCalendarViewActivity

4.3.1.2.1 Variables

In this section we give a short description of the global

variables used in this activity.

Variable

Description

input This variable is used to store the

event’s locations. It is used as

static because it will be

transferred to the mapActivity

help_input The purpose of this variable is

the same as above only in this

case we use it when the user

decides to change the order of

event’s

Recalculation This Boolean is used to check if

the user decides to recalculate

the optimal route. If so then the

previous countdown timer is

stopped and a new one is

initiated.

50

Variable

Description

selectedDayMonthYear This button is used to display the

selected day, month, year

ViewMap This button is used to initiate the

mapActivity

currentMonth_button

This button displays the current

Month.

viewData This button is used to initiate the

agenda activity to display the

events of a selected date.

prevMonth Button that makes the switch to

the previous month

nextMonth Button that makes the switch to

the next month

CalendarView This variable is used to display

the calendar screen in a gridview

style as it is mentioned before

Month, year Integers with the number of

month and year

enter_data Button used to initiate the

phone’s calendar activity to

schedule an event on a selected

date

temp2 In this string we store the

selected date, to display it to the

selectedDayMonthYear button.

dateTemplate String that shows the format of

date

temp3 In this array we store the days,

months and years numbers

separately as a result of the split

method applied to temp2

esoteriko This Boolean is used to

distinguish if the map activity has

been called from the initial

screen or from inside the map.

51

Variable

Description

cal It is a GregorianCalendar variable

that will be used to construct a

new GregorianCalendar initialized

to midnight in the default

TimeZone and Locale on the

specified date.

helpCurrentDay

In this variable we store the

days’ number that we acquire

from the first position of array

temp3

helpCurrentMonth In this variable we store the

months’ number that we acquire

from the second position of array

temp3

helpCurrentYear In this variable we store the

years’ number that we acquire

from the third position of array

temp3

Locations In this ArrayList we store the

events’ locations of one selected

date

help_locations This ArrayList has the same

purpose as mentioned above but

is used in case the user decides

to change the order of events.

descriptions In this ArrayList we store the

events’ descriptions on a selected

date

Help_descriptions This ArrayList has the same

purpose as mentioned above but

is used in case the user decides

to change the order of events.

times In this variable we store the

events’ start time.

52

4.3.1.2.2 Methods

In this section we present only the methods that were not

discussed in Section 4.2.5.

 private void setGridCellAdapterToDate (int month, int year)

An Adapter object acts as a bridge between an AdapterView

and the underlying data for that view. The Adapter provides access

to the data items. The Adapter is also responsible for making a

View for each item in the data set. In this method we use the

adapter to set each grid on the calendar launch screen to display

the correct day, month, and year.

 public void onClick(View v)[18,19,22]

This method is called when a ViewObject has been clicked. In

this method we check the following five cases:

1. User clicks the prevMonth button whick means the app has

to display the days of the previous month.

2. User clicks the nextMonth button which means the app has

to display the days of the next month

3. User clicks the enter_data button which means the user

wants to add an event. When this action is chosen the

following procedure is initiated:

(a) Check if the user has selected a date. If not, a pop up

message will notify him to do so.

(b) Read the current date and time from the phone’s clock

and open the calendar to this specific date. Also we set

the end time of the event one hour after the starting

time.

4. User clicks the viewData button which means he wants to

see the events of a selected date. In this case the following

procedure is initiated:

(a) Check if the user has selected a date. If not, a pop up

message will notify him to do so.

(b) Read the current date and time from the phone’s clock

and open the agenda to the specific date.

53

5. User clicks the viewMap button which means he wants to see

the optimal route of the calendar’s events on a selected

date. In this case the following procedure is initiated:

(a) Check if the user has selected a date, if not then a pop

up message will notify him to do so.

(b) Check if the data network is active (wi-fi, 3G), if not a

pop up message will notify him to do so. It is mandatory

for the app to work an active internet connection.

(c) I read the calendar’s events on a selected date, and store

in variables the event’s locations, descriptions and

starting time.

(d) I check if the input variable which contains the locations

is empty. If so, then a pop up message will notify the user

about this. If not, then the mapActivity will initiate to

display the optimal route based on the data acquired.

54

 public void onBackPressed()

Called when the activity has detected that the user pressed

the back key. The default implementation simply finishes the

current activity but in this case we override it to display an alert

dialog which asks the user whether he wants to exit the app or not.

There are two possible options here, OK and Cancel. If the user

clicks on OK the app exits, or if he clicks Cancel the app returns to

the initial screen.

55

4.3.1.3 class GridCellAdapter

This inner class in SimpleCalendarViewActivity is used to

tailor the basic adapter that android provides us to our needs.

The code was taken from this source, and builds a simple

calendar view with the right transition between months, years

and days.[3]

4.3.1.3.1 Variables

Variable

Description

_context
Interface to global information about

an application environment. This is an

abstract class whose implementation

is provided by the Android system. It

allows access to application-specific

resources and classes, as well as up-

calls for application-level operations

such as launching activities,

broadcasting and receiving intents,

etc.

list A List is a collection which maintains

an ordering for its elements. Every

element in the List has an index. Each

element can thus be accessed by its

index. In this list we add the month

days.

Months

In this array we keep all the months’

names.

daysOfMonth In this array we keep the number of

days that each month has.

daysInMonth In this integer we store the number

of days per month.

56

Variable

Description

currentDayOfMonth In this integer we store the number

of this month’s current day

currentWeekDay In this integer we store the number

of the current week’s day

gridcell we use this variable to display data

on the launch screen

4.3.1.3.2 Methods

 private void setCurrentDayOfMonth(int currentDayOfMonth)

This method is used to set the current day of the month.

 public void setCurrentWeekDay(int currentWeekDay)

This method is used to set the current week day.

 private void printMonth(int mm, int yy)

This method is used to add to the list variables mentioned before

the correct dates.

 public View getView(int position, View convertView, ViewGroup

parent)

This method is used to display the data at the specified

position in the data set

Parameters

position
The position of the item within the adapter's data set of the

item whose view we want.

convertView The old view to reuse, if possible.

parent The parent that this view will eventually be attached to

Returns A View corresponding to the data at the specified position.

57

 public void onClick(View view)

This method is called when a ViewObject has been clicked. In this

method we do the following:

(1) Assign in the selectedDayMonthYear button the selected

day so it can be displayed in the initial screen

(2) Read the selected date and split it in three parts (day,

month, year)

(3) Read all events of the selected date and display a pop up

message to inform the user about their number.

 private String getMonthAsString(int i)

With we can retrieve a month’s name from the months array

based on the month’s number.

 private int getNumberOfDaysOfMonth(int i)

With this method we can retrieve the total number of a

month’s days based on the month’s number.

 public int getCurrentDayOfMonth()

This method is used to get the number of the current day.

4.3.2 TestingMapsActivity

 4.3.2.1 General Description

This activity is launched when the user clicks the viewMap

Button.[4.3.1.2.1]. It displays the map that contains the optimal route.

Moreover in this activity there are algorithms that

1) calculate the optimal route,

2) track user’s current position every 15 seconds,

3) change the order of destinations according to user’s wishes,

4) toggle between satellite and street view,

5) recalculate optimal route if an error occurs,

6) view an event at a selected location on the map,

7) display the address of a selected location of the map

8) check if there is an active GPS connection, and if there isn’t any an

alert dialog prompts the user to activate the phone’s GPS

9) Alert the user to start in 10, 5, 0 minutes in order to be at his

appointment at the scheduled time.

58

4.3.2.2 class TestingMapsActivity

4.3.2.2.1 Variables

Variable

Description

overlaylist This type of list is used to

display items on the map

mapView Our map

touchedPoint

This variable is the position that

the user touched on the map

pointToDraw This variable has the

coordinates of a map’s location

that belongs in the optimal

route

Lm With this variable we use the

location services available by

google

obj This variable is used to call the

permutation algorithm

check In this variable we store the

provider’s name (GPS, Wi-Fi).

timeToDestination In this integer we store the

estimated time arrival that

google servers return between

two locations

Start, Stop These two variables are used to

count the time from the moment

the user presses the screen to

the moment he removes his

finger.

time This variable contains the total

time to visit a route.

Geopoints This list contains all the places

in the database with the form

of coordinates.

array This array of Booleans is used to

mark each location as visited or

not.

59

Variable

Description

Check2 This Boolean is used to check if

the location that the user

touched on the map exists on

the database

GetMemonomenhDiadromh This variable is used to display

the locations in order for the

user to change their order.

Stop_Timer This Boolean is used to stop the

countdown timer.

pause This Boolean is used to pause

the app if it is not in the

foreground.

thesh This variable is used to store

the location’s position in the

list which the user has selected

to visit first.

lo This variable is used to track

our current position and

activate compass function on

the map

Message1 Check if the message for the

10 minute warning has been

shown.

Message2 Check if the message for the 5

minute warning has been shown.

Message3 Check if the message for the 0

minute warning has been shown.

dialog A progress dialog that informs

the user that the map is

loading.

60

4.3.2.2.2 Methods

 private void gpsMessage()

This function checks if the user has activated the phone’s GPS. If

not, then an alert dialog prompts the user to do so. If the user agrees to

activate the GPS, then by clicking the settings button he is transferred

to the phone’s settings. If he clicks Cancel then he returns to the map

screen. In case the gps is active before the activity starts then nothing

is shown.

 private void timer2()

This function is used to start the countdown time that

delays the main algorithm to start by 2 seconds in order to give

time to the map to load.

 private void teliko(String[] ksexwristes_diadromes)[24,25]

This function contains the major part of our algorithm that

computes the optimal route and draws it on the map.

 private void timer()

Countdown timer used to call teliko and teliko2 functions

every 15 seconds.

61

 private String[] vres_diadromes(Collection<String> input)

This function calls the permutation algorithm used to

calculate all the possible routes.

 private int calculation(GeoPoint src, GeoPoint dest)[15]

In this function we calculate the estimated arrival time from

one geopoint to another.

 private void DrawPath(GeoPoint src, GeoPoint dest, int color,

MapView mMapView) [24.25,38]

This function has the code that establishes the connection

with Google’s servers to get the location’s coordinates.

 private List<GeoPoint> decodePoly(String encoded)[24.25,38]

This function decodes the encoded message that comes as a

response to our request from the servers.

 private String makeUrl(GeoPoint src, GeoPoint dest)[24,25,38]

This function is used to remake our request for the servers

in a form that they will understand.

 private Drawable createFromView(int positionNumber)[4]

This function is used to draw a number on each location on

the optimal route.

 protected void onPause()

Function that pauses the activity when the app goes to

background and disables the compass function

 protected void onResume()

Function that resumes the activity when the app comes again

on the foreground.

 protected boolean isRouteDisplayed()

Function that is used for accounting purposes. The server

needs to know whether or not any kind of route information, such

as a set of driving directions, is currently being displayed.

62

 private void check_location()

This function does all the background checking such us:

 tracking down the user’s position every 15 seconds

 informing the user about his arrival at a destination point,

when he at a radius of 120 meters around this point.

 informing the user about his the route’s end when he has

visited all the locations,

 informing the user about location empty events

 informing the user about messages in this location

 Finally informing the user with warning messages 10,5,0

minutes before his immediate departure in order to keep

the schedule.

63

64

 private void teliko2(String[] ksexwristes_diadrome)

This function does exactly the same as teliko but it is called

only when the user decides to change the order of locations of the

route.

 public void onBackPressed()

Called when the activity has detected that the user pressed

the back key. The default implementation simply finishes the

current activity but in this case we override it to terminate the

current process and free all resources allocated.

4.3.2.3 class MyOverLay

This inner class is called from the DrawPath() method to draw the

route on the map.

4.3.2.3.1 Variables

Variable

Description

pathColor This variable is the path color,

green in our case

points The list of geopoints that have

been downloaded from the

server.

4.3.2.3.2 Methods

 public Boolean draw(Canvas canvas, MapView mapView, boolean

shadow,long when)

This function sets the starting and ending point in the route

and then calls the drawOval() method to draw the route between

them.

 private void drawOval(Canvas canvas, Paint paint, Point point)

This method draws the route between two geopoints on the

map.

65

4.3.2.4 class gia<T>

This class contains only one method which is the permutation

algorithm to find all possible routes.

4.3.2.4.1 Methods

 private Collection<List<T>> permute(Collection<T> input)

This is the permutation algorithm that generates all possible

routes. It will be explained in detail in the next section.

4.3.2.5 class TouchOptions

As the name suggests this class contains an option menu that

is integrated into the map. In order to view this menu the user

must touch the map for over 1,25 seconds. The menu’s options are:

1. Change between satellite and street mode

2. View the message of a touched location (if there is

any).

3. Change the order of destinations by giving priority

to one of them.

4. Recalculate the route if it is not displayed

correctly or to view the original route if you have

previously chosen the second option.

5. Display the address of a touched point on the map.

66

4.3.2.6 Public class PinpointClass

This class, although it is not an inner class is used in the

TestingMapsActivity class widely. With this class we insert a pinpoint on

the map such us the numbers on the locations. It needs 2 assignments:

i) The drawable item, in this case the location’s order number

ii) The context of the application which gives us access to Map

View.

4.3.2.6.1 Variables

Variable

Description

pinpoints The list of pinpoints

ctx The app’s context

4.3.2.6.2 Methods

 public void InsertPinpoint (OverlayItem item)

This method adds the pinpoint to the pinpoint’s list in order

to display it on the map.

Chapter 5: ALGORITHM ANALYSIS

5.1 Graph Problem

Our problem can be modeled as an undirected weighted graph, where

locations are the graph's vertices, paths are the graph's edges, and a

path's distance is the time between two vertices. It is a minimization

problem starting at a specified vertex and ending after having visited

each vertex exactly once. It is very similar to the travelling salesman

problem (TSP) with the only difference that we do not return to the

starting location when we have visited all our destinations. It can be

easily though transformed into a TSP problem by adding the starting

location as a calendar event and then choosing to change the order of the

events. The following graph, containing random values, gives a generic

representation of the problem.

67

5.2 Possible solutions

 Prim’s algorithm

 Kruskal’s algorithm

 Nearest Neighbor algorithm

 Dijkstra's Algorithm

 Permutation algorithm

In order to pick the right algorithm in order to find the optimal route we

followed the method of elimination.

 Prim’s and Kruskal’s algorithms were the first to eliminate.

These two algorithms are used to find minimum spanning

trees (MSTs), i.e., a tree that connects all vertices. Degree-

constrained MSTs are NP-hard problems. In fact, for any

fixed constant d ≥ 2, the problem of finding a minimum cost

degree-constrained spanning tree of degree at most d is still

NP-hard [11-13]. Also, for any fixed rational α > 1 and any

fixed d, finding a spanning tree with degree constraint d and

cost within a factor α of the optimal is NP-hard. Various

heuristics solutions have been proposed (see [11] and

references therein), which work well but do not produce the

optimal route, which is our goal in this thesis.

 Dijkstra’s Algorithm was the next one to be eliminated. This

algorithm is a single source shortest path algorithm that

works well when the goal is to find the path between two

points on the map. Our problem is to define the shortest

68

route between all the designated map points, for which

Dijkstras algorithm does not provide an optimal solution [17].

 The last algorithm eliminated is the Nearest Neighbor (NN)

algorithm. Although this algorithm appears to be a logical

solution since every path is the shortest path between two

nodes, it fails greatly to deliver the optimal path. The reason

is that NN tries to find the local optimum, in each case,

whereas, we are looking for the global optimal route. For N

cities randomly distributed on a map the algorithm on

average yields a path 25% longer than the shortest possible

path. Also, there exist many specially arranged city

distributions which make the NN algorithm give the worst

route [21].

Therefore, we used the exhaustive permutation algorithm because:

1) It guarantees that the solution will be the global optimum.

2) An average mobile user is not likely to have to visit over 5 places in

one day and even if he does, the permutations generated don’t need

much CPU time for today’s CPU’s. The computational part of our

measures needs less than 5 seconds even for 10 entries.

69

5.3 Permutation Algorithm

 5.3.1 Analysis

private Collection<List<T>> permute(Collection<T> input) {
 Collection<List<T>> output = new
ArrayList<List<T>>();
 if (input.isEmpty()) {
 output.add(new ArrayList<T>());
 return output;
 }
 List<T> list = new ArrayList<T>(input);
 T head = list.get(0);
 List<T> rest = list.subList(1, list.size());
 for (List<T> permutations : permute(rest)) {
 for (int i = 0; i <= permutations.size();
i++) {
 List<T> subList = new
ArrayList<T>();
 subList.addAll(permutations);
 subList.add(i, head);
 output.add(subList);
 } }
 return output; }

The algorithm accepts one argument which is the list of locations.

If the list is Empty then it returns an empty list because no permutations

can be generated.

If the list is not empty, then for every permutation we call the

method recursively. In this way we create sublists that contain all the

original locations but in every different order. We add these to the

output list which is essentially a large list in which each element is a

sublist that contains a permutation of the original locations.

ksexwristes_diadromes = pnr.toString().split("],");

After retrieving the output, we split it twice. The first time

happens in order to convert the list into an array(ksexwristes_diadromes)

where each element contains one possible route.

70

for (j = 0; j < ksexwristes_diadromes.length; j = j + 1) {
 int time = 0;
 memonomenes_diadromes =
ksexwristes_diadromes[j].split("\\,");

 for (int i = 0; i <
memonomenes_diadromes.length; i = i + 1) {
 dest_lat = 0;
 dest_long = 0;
 Address loc = null;

 try {
 memonomenes_diadromes2 =
memonomenes_diadromes[i];
 address_dest =
coder.getFromLocationName(
 memonomenes_diadromes2,
1);

 if (address_dest.size() > 0) {
 loc = address_dest.get(0);
 dest_lat = loc.getLatitude();
 dest_long =
loc.getLongitude();
 }
 } catch (IOException e) {
 e.printStackTrace();
 }
 Geopoints.add(i + 1, (new GeoPoint((int) (dest_lat *
1E6),
 (int) (dest_long * 1E6))));

 time = time + calculation(Geopoints.get(i),
Geopoints.get (i + 1));
 }
time2.add(j, time);}

Then we split this array into multiple arrays, each one containing

one possible route. In these new arrays every position corresponds to a

location. We store this location to a variable (memonomenes_diadromes)

and request the ETA from our current position to this location. In the

next iteration we request the ETA from this location to the next one and

so on until we find the total ETA time from our current position to the

last location of this route. This procedure is repeated for every possible

route in order to find the minimum ETA that corresponds to the optimal

route.

71

Geopoints.add(i + 1, (new GeoPoint((int) (dest_lat *
1E6),(int) (dest_long * 1E6))));

 DrawPath(Geopoints.get(i), Geopoints.get(i + 1),
Color.GREEN,mapView);

When we find this route we add each location’s Geopoint to our
Geopoints list and draw the route for these Geopoints.

5.3.2 Complexity and Proof

In order to execute the permutations we had to define some criteria.

1) Repetitions are not allowed.

2) Order is important.

Based on this criteria we know that the number of permutations can

be extracted from the following mathematic formula:

n=number of locations

r=locations chosen

 Permutation formula proof

 There are n ways to choose the first element

 n-1 ways to choose the second

 n-2 ways to choose the third

 …

 n-r+1 ways to choose the rth element

 By the product rule, that gives us:

 P(n,r) = n(n-1)(n-2)…(n-r+1)

Hence this exhaustive algorithm has a complexity of O (n!), which

means that for a large number of locations (n>100) it would be

difficult to generate the permutations in a tolerable amount of time.

Actually, it needs to be emphasized that the permutation algorithm is

the most computationally complex, in comparison to all the algorithms

72

discussed in Section 5.2. A computationally simpler solution would be

to retain in memory every ETA, in order not to have to request it again

for the next permutation when we will need it. Due to the possibility

of often changing traffic conditions, this approach might not always

provide the optimal route but is of a much lower complexity. This

approach will be used in future versions of our application, in order to

compare its results and efficiency (in terms of delays) against the

exhaustive permutation algorithm.

5.3.3 Experimental Times

During our application testing, we measured the following average

completion times, depending on the number of locations.

Locations

Completion Time*

0 1 second

1 <3 seconds

2 <7 seconds

3 <17 seconds

4 <55 seconds

5 Almost 5 minutes

6 Not recommended

These observations are based on Wi-Fi connections. For 3G

connections, we encountered 50% - 70% additional delay, due to the

smaller connection speeds. We define Completion time as:

*Completion time= Map Loading Time + Route Drawing Time + Received

Data Time + Permutation Algorithm Execution

 Hence, completion time is the sum of four different times. However,

each of these times holds a different weight in this sum. Basically this

rule applies:

Received Data Time >> Permutation Algorithm Execution > Map Loading

Time = Route Drawing Time

73

 The first 2 times have a minimal impact on the completion time. When

the input has no locations, Completion Time is calculated by the sum of

these two arguments since the other two are zero and is equal to 1 second

as seen on the table above.

 The Received Data and Permutation Algorithm Execution times are

the ones that contribute the biggest part on the total delay. The delay

increases exponentially for every location increment by 1 due to the O (n!)

complexity of the permutation algorithm. Although the CPU time required

is small even for 10 entries, the big problem lies in the large number of

permutations generated. For each permutation we must calculate the

total time to complete the route and to do that we must send requests

and receive responses from the servers.

To give a simple example consider the following case:

 We have 3 locations to visit in a certain day

 We must find the permutation of these

cities by combining them into groups of three.

 This will generate P (3,3) = 6 permutations.

 Each permutation contains 3 elements which

are the addresses.

 We must find the ETA between current

location and these addresses in the way described in [5.4.1].

 This will give us 3 pairs of requests and

responses per permutation.

 So we have a total of 18 pairs of requests

and responses for all permutations generated.

 Considering the network lag for every pair of

requests and responses we can see that for a large number of

entries the Received Data Time is large and can have a serious

impact on the Completion Time.

 For an input of 5 cities we have P (5,5) =120

permutations and a total of 600 pairs of requests and responses!

74

5.4 Other Algorithms

 Besides the main algorithm that we analyzed in the previous section,

there are other algorithms that run in the background and give the app

navigation functionality. These algorithms are used in check_location

method and the TouchOptions class (sections 4.3.2.2.2 and 4.3.2.4

respectively).

5.4.1 Algorithm in check_location

This algorithm reads the location database every 15 seconds and

compares the current location with all the locations in database. We

compare the first five digits of the address’s geopoint with the 5 digits

of the current location’s geopoint, thus creating a radius around each

location of about 120 meters. When a user enters the radius, triggers are

activated and pop up messages appear with the location’s name and

message.

if ((help_lat3[0] == help_lat[0])&& (help_lat3[1] ==
help_lat[1])&& (help_lat3[2] == help_lat[2])
&& (help_lat3[3] == help_lat[3])
&& (help_lat3[4] == help_lat[4])
&& (help_lon3[0] == help_lon[0])
&& (help_lon3[1] == help_lon[1])
&& (help_lon3[2] == help_lon[2])
&& (help_lon3[3] == help_lon[3])
&& (help_lon3[4] == help_lon[4])
&& array[i] != true) {
 Toast.makeText(this,"You are arriving at "+
SimpleCalendarViewActivity.locations.get(i),
Toast.LENGTH_LONG).show();
if
(!SimpleCalendarViewActivity.descriptions.get(i).isEmpty())) {
Toast.makeText(this,"You have the folowing message for"+
SimpleCalendarViewActivity.locations.get(i),
Toast.LENGTH_SHORT).show();
Toast.makeText(this,SimpleCalendarViewActivity.descriptions.ge
t(i), Toast.LENGTH_LONG).show();
 }
 array[i] = true;
 }

75

 Additionally we check if we have visited all destinations or if there is a

problem with a specific location (such us no geopoints applied to it).

5.4.2 Algorithms in TouchOptions

In this class there are two algorithms worth mentioning.

1) The first algorithm is to View the message

at a touched location. This algorithm uses the exact same

methodology as in section [5.4.1].

2) The second one is the one that changes the

location’s order on the route. Its function is as follows:

 The geopoint of the user’s selected location

is being inserted to the second position of the Geopoint’s

list.

 Hence the first two positions are occupied

by the current location and the user’s selected location.

 For the next spots the permutation

algorithm is applied, repeating the procedure from the start.

 The complexity of these algorithms is O (n), since only a simple

reading on the lists is required and some comparisons.

76

Chapter 6: FUNCTIONALITY ISSUES

 6.1 Acquiring Current Location

In order for the app to work properly, the acquirement of

current location must be precise. For this reason the user is

notified immediately if the phone’s GPS is turned off.

In the case that GPS is not available when the localization

starts then the results might not be accurate. If this occurs,

there are two cases:

1) There is a Wi-Fi network available, so the app uses this

network-type to acquire the user’s location. In this case there

can be an offset of 50 meters but the real problem occurs while

the user is out of range. The app’s behavior can be

unpredictable in this case, it can either display a warning

message or even crash.

77

In the picture above we can see that for the same address 2

different locations have been acquired. The first location is acquired

from Wi-Fi whereas the second one from the server. As we can see there

is an offset of a few meters (42 meters) between them. The second one

is the most accurate since it is being retrieved from Google satellites

database, but in the end this small offset will not have any serious impact

on the app’s functionality.

2) There is only 3G availability. In this case the app’s functionality

is limited. It is almost impossible to acquire user’s location using

cell towers. The offset can be from a few hundred meters to

some kilometers depending on the tower’s location.

Furthermore, at times when the server cannot find via 3G the

user’s location it just sends the last known location from its

database. In either case the optimal route is completely wrong

since the starting point is wrong.

NETWORK TYPE OFFSET(meters) ACCEPTABLE

Wi-Fi 50 Yes

3G >1000 No

 6.2 Update Interval

As mentioned in Section [4.3.2.1] the update interval is 15 seconds.

If for some reason there is no data connection available (via 3G or Wi-Fi)

and during this time no data will be received, then a second request will

be sent while the first is still incomplete. In this case the app’s behavior

is unpredictable. It can either display warning messages about the

locations or can even crash.

6.3 Screen Freezing

During the update procedure the screen might temporarily freeze.

This happens because the app is trying to run all background algorithms

and redraw the map. The freeze lasts for a fraction of second and might

not even happen in smartphones with up to date hardware. In case such a

freeze occurs, Android thinks that the app is going to crash and displays

a message that asks the user

78

 either to force-terminate the app

 or wait

 In this case the wait option must be selected; then the screen

unfreezes immediately.

 6.4 All day Events

 Google calculates time in each region based on Greenwich Mean Time

(GMT). Therefore, all day events differ from region to region. In Greece

there is a time difference of +3 hours (GMT+3:00) from Greenwich, thus

an all day event is considered to last from 3a.m of current day to 3a.m of

the next day. This creates a problem when calculating the optimal route

of the daily events because the algorithm adds the last day’s all day event

to the location’s database. As a result we have an increased complexity

and a wrong optimal route.

6.5 Calendar Applications

For the time being this version of the app works only with the

default calendar application. The synchronization with the online Google

calendar is not yet supported.

79

Chapter 7: Requirements Analysis

 7.1 Final Flowchart Diagram,Use case Diagrams

80

81

82

7.2 Use Case Diagram analysis

Use Case 1 Start the Application

Goal In Context Successful start of our application

Preconditions
User has found the app’s icon from the his phone’s

app drawer

Success End

Condition

User has successfully launched the app and sees the

initial screen

Failed End

Condition

App didn’t launch and the OS displays an error

message

Primary Actors User

Trigger User touched the app’s icon

Description Step Action

0 The app is launched

1 The initial screen is displayed

2 The app shows the number of events on a

selected date.

Extensions Step Branching Action

1

The app doesn’t find any previous entries so
the calendar’s cells are not marked.

83

Use Case 1 Enter Data

Goal In

Context
User will create a new calendar event

Preconditions User has successfully launched the application.

Success End

Condition
User has successfully created the new calendar event

Failed End

Condition
User failed to create a new calendar event

Primary

Actors
User

Trigger
User touched a preferable date from the screen or the

plus button at the bottom to add the new event

Description Step Action

0
The application launches the phone’s calendar

application

1 User fill in the fields

2 The app stores the entry to memory

3
User returns to the initial screen

Use Case 2 Start Calculation

Goal In

Context

Find the optimal route

84

Preconditions
User has entered all the required fields for the

calculation to start

Success End

Condition
A map will be displayed with the optimal route

Failed End

Condition
Nothing will be displayed

Primary

Actors
Application

Trigger
After the user has entered the required fields then

the app automatically activates the navigation function

Description Step Action

1 The application acquires current location via

Google servers

2 The locations are sent to the server and for

each one it finds the optimal route

3
From the routes that the server sends back to

the phone it chooses the fastest one.

3.1
The application after it has collected all the

data it shows the map with the optimal route.

Extensions Step Branching Action

1

Check scheduled times

After the app has received the data for the

optimal route it compares the time given from

the user with the estimated route duration and

checks if he can stick to the schedule.

 1.1
The user cannot make it in time so a pop up
message appears

85

The user is informed that he has to leave in the

next 15 minutes if he wants to make it on time.

 1.2
The user can make it in time

We move on to the Map

 2 On the Map the app checks if Gps is active

 2.1 GPS is active

 The app shows the Map without the user knowing

anything about this background check.

 2.2 Gps is not active

A message pops up which asks the user to

activate the Gps

2.2.1 User accepts

 The app redirects him to the phone settings to

activate his Gps and from there he can return

back to the app to see the map. 2.2.2 User declines

 The app shows the Map and the navigation can

begin

86

Use Case 2 Following the current route

Goal In

Context

Follow the route until the end of it

Preconditions

User has entered all the required data, internet

connection available,(Gps for better precision), location

acquired and optimal route calculated.

Success End

Condition

The user will complete the route and the final message

will appear

Failed End

Condition

User will never complete the route, no final message or

maybe crash of the app

Primary

Actors
Application, User

Trigger
After the map is displayed the user starts moving and

his move is displayed on the map

Description Step Action

1 The app via Google’s server tracks the position

of the user while he is moving

2 The application marks the areas visited once

the user arrives at them

3 The navigation ends when all places are marked

as visited

Extensions Step Branching Action

1

The app checks the time of the events and
compares it with current time and the
remaining time for the next task

 1.1

User is running late

Pop up message appear notifying the user he is

running late and disappears after a few

seconds.

 1.2 User is within time limits

87

User continues his route

 2 App checks if the user is in a marked area

 2.1 User is not in a marked area

 User continues his route

 2.2 User is in a marked area

 Alert the user about it with a pop up message

 2.2.1
Application checks if there are any messages
for this area

 2.2.1.1 There are messages for this area

A message pops up for this area for a short

period of time and then the app returns to the

map screen with the marked area. Eg Remember

to buy staff from the supermarket

 2.2.1.2 There are no messages for this area

 The app just shows the map with the marked

area.
 3 The user decided to change his mind and alter

his route

 The user presses the button alter in the menu

 3.1 A message pops up asking the user if he wants

to choose one of the existing locations

 3.1.1 User wants to go to one of the existing
locations

A list of the existing locations is displayed and
user chooses one of them and we recalculate
the whole algorithm

 4
The application checks how many locations are
visited

88

 4.1

The number of visited locations equals the
number of total locations so the user has
completed his route and the application alerts
the user with a message and exits the
navigation function, enters the calendar
function

 4.2

Still the number of locations visited is smaller
than the total locations so the user continues
his route, everything stays as it is, continue to
check in background without disturbing the
user.

7.3 Behavioral Requirements

OS Android

VERSION 2.2, 2.3, (compatibility with higher versions may

be possible but not tested)

TESTING DEVICE Huawei Ideos X5

DEVICE’S OS Android 2.3

APP’S SIZE 108KB

RAM

REQUIREMENTS

<15MB

CACHE 400KB

Chapter 8: CONCLUSIONS

 This work is an effort to take advantage of the modern capabilities

that smartphones offer in order to make our life easier. Developing this

app is a multi-level procedure, starting from internet research about

similar work not necessarily on the field of app programming,

programming in different languages (java, xml), interface designing,

algorithmic approach in order to give the app some functionality and

accessing to phone’s hardware components. By combining all of the above

we have ourselves a working application environment.

89

REFERENCES

[1] http://developer.android.com/guide/topics/manifest/uses-permission-

element.html

[2]

http://developer.android.com/guide/components/activities.html#Startin

gAnActivity

[3]

http://developer.android.com/reference/android/widget/Adapter.htMl

[4] http://stackoverflow.com/questions/6501413/how-to-create-

dynamically-numbered-pin-pointers-on-mapview

[5] http://www.youtube.com/watch?v=qHAnGcnvRBI

[6] http://w2davids.wordpress.com/android-simple-calendar/

[7] http://www.youtube.com/watch?v=XdduYAs7klY

[8] http://developer.android.com/training/basics/firstapp/building-

ui.html

[9] http://code.google.com/p/android-calendar-

view/source/browse/trunk/src/com/exina/android/#android%2Fcalendar

[10] http://developer.android.com/training/basics/firstapp/creating-

project.html

[11] Bui, T. N. and Zrncic, C. M. 2006. An ant-based algorithm for finding

degree-constrained minimum spanning tree. In GECCO ’06: Proceedings of

the 8th annual conference on Genetic and evolutionary computation, pages

11–18, New York, NY, USA. ACM.

[12] Garey, Michael R.; Johnson, David S. (1979), Computers and

Intractability: A Guide to the Theory of NP-Completeness, W.H.

Freeman, ISBN 0-7167-1045-5. A2.1: ND1, p. 206.

http://developer.android.com/guide/topics/manifest/uses-permission-element.html
http://developer.android.com/guide/topics/manifest/uses-permission-element.html
http://developer.android.com/guide/components/activities.html#StartingAnActivity
http://developer.android.com/guide/components/activities.html#StartingAnActivity
http://developer.android.com/reference/android/widget/Adapter.htMl
http://stackoverflow.com/questions/6501413/how-to-create-dynamically-numbered-pin-pointers-on-mapview
http://stackoverflow.com/questions/6501413/how-to-create-dynamically-numbered-pin-pointers-on-mapview
http://www.youtube.com/watch?v=qHAnGcnvRBI
http://w2davids.wordpress.com/android-simple-calendar/
http://www.youtube.com/watch?v=XdduYAs7klY
http://developer.android.com/training/basics/firstapp/building-ui.html
http://developer.android.com/training/basics/firstapp/building-ui.html
http://code.google.com/p/android-calendar-view/source/browse/trunk/src/com/exina/android/%23android%2Fcalendar
http://code.google.com/p/android-calendar-view/source/browse/trunk/src/com/exina/android/%23android%2Fcalendar
file:///D:/Dropbox/ΔΙΠΛΩΜΑΤΙΚΗ/%5d%20%20http:/developer.android.com/training/basics/firstapp/creating-project.html
file:///D:/Dropbox/ΔΙΠΛΩΜΑΤΙΚΗ/%5d%20%20http:/developer.android.com/training/basics/firstapp/creating-project.html

90

[13] Fürer, Martin; Raghavachari, Balaji (1994), "Approximating the

minimum-degree Steiner tree to within one of optimal", Journal of

Algorithms 17 (3): 409–423, doi:10.1006/jagm.1994.1042

[14] http://developer.android.com/sdk/exploring.html

[15] http://androidforums.com/application-development/292512-get-

time-between-two-geopoints.html

[16] http://developer.android.com/about/versions/android-2.3-

highlights.html

[17] http://cs.stackexchange.com/questions/1749/dijsktras-algorithm-

applied-to-travelling-salesman-problem

[18] http://stackoverflow.com/questions/4373074/how-to-launch-

android-calendar-application-using-intent-froyo

[19] http://jimblackler.net/blog/?p=151&cpage=2#comments

[20] http://developer.android.com/guide/topics/ui/declaring-layout.html

[21] Gutin, G.; Yeo, A.; Zverovich, A. (2002), "Traveling salesman should

not be greedy: domination analysis of greedy-type heuristics for the

TSP", Discrete Applied Mathematics 117 (1–3): 81–86,

http://www.sciencedirect.com/science/article/pii/S0166218X01001950

[22] http://stackoverflow.com/questions/5368769/open-and-display-

calendar-event-in-android?rq=1

[23]

http://developer.android.com/guide/topics/security/permissions.html

[24] http://blog.synyx.de/2010/06/routing-driving-directions-on-

android-part-1-get-the-route/

[25] http://blog.synyx.de/2010/06/routing-driving-directions-on-

android-–-part-2-draw-the-route/

[26] http://developer.android.com/training/basics/supporting-

devices/platforms.html

http://developer.android.com/sdk/exploring.html
http://androidforums.com/application-development/292512-get-time-between-two-geopoints.html
http://androidforums.com/application-development/292512-get-time-between-two-geopoints.html
http://developer.android.com/about/versions/android-2.3-highlights.html
http://developer.android.com/about/versions/android-2.3-highlights.html
http://cs.stackexchange.com/questions/1749/dijsktras-algorithm-applied-to-travelling-salesman-problem
http://cs.stackexchange.com/questions/1749/dijsktras-algorithm-applied-to-travelling-salesman-problem
http://stackoverflow.com/questions/4373074/how-to-launch-android-calendar-application-using-intent-froyo
http://stackoverflow.com/questions/4373074/how-to-launch-android-calendar-application-using-intent-froyo
http://jimblackler.net/blog/?p=151&cpage=2%23comments
http://developer.android.com/guide/topics/ui/declaring-layout.html
http://www.sciencedirect.com/science/article/pii/S0166218X01001950
http://stackoverflow.com/questions/5368769/open-and-display-calendar-event-in-android?rq=1
http://stackoverflow.com/questions/5368769/open-and-display-calendar-event-in-android?rq=1
http://developer.android.com/guide/topics/security/permissions.html
http://blog.synyx.de/2010/06/routing-driving-directions-on-android-part-1-get-the-route/
http://blog.synyx.de/2010/06/routing-driving-directions-on-android-part-1-get-the-route/
http://blog.synyx.de/2010/06/routing-driving-directions-on-android-–-part-2-draw-the-route/
http://blog.synyx.de/2010/06/routing-driving-directions-on-android-–-part-2-draw-the-route/
http://developer.android.com/training/basics/supporting-devices/platforms.html
http://developer.android.com/training/basics/supporting-devices/platforms.html

91

[27]

https://developers.google.com/maps/documentation/distancematrix/#JS

ON

[28] http://www.openhandsetalliance.com/android_overview.html

[29] http://officialandroid.blogspot.gr/2012/09/google-play-hits-25-

billion-downloads.html

[30] http://developer.android.com/about/dashboards/index.html

[32] http://developer.android.com/sdk/installing/adding-packages.html

[33] http://developer.android.com/sdk/installing/installing-adt.html

[34] http://developer.android.com/training/basics/firstapp/creating-

project.html

[35] http://developer.android.com/training/basics/firstapp/running-

app.html

[36] http://developer.android.com/training/basics/firstapp/building-

ui.html

[37] http://developer.android.com/training/basics/supporting-

devices/screens.html

[38] http://stackoverflow.com/questions/11323500/google-maps-api-

version-difference/11357351#11357351

https://developers.google.com/maps/documentation/distancematrix/%23JSON
https://developers.google.com/maps/documentation/distancematrix/%23JSON
http://www.openhandsetalliance.com/android_overview.html
file:///D:/Dropbox/ΔΙΠΛΩΜΑΤΙΚΗ/%5d%20http:/officialandroid.blogspot.gr/2012/09/google-play-hits-25-billion-downloads.html
file:///D:/Dropbox/ΔΙΠΛΩΜΑΤΙΚΗ/%5d%20http:/officialandroid.blogspot.gr/2012/09/google-play-hits-25-billion-downloads.html
http://developer.android.com/about/dashboards/index.html
http://developer.android.com/sdk/installing/adding-packages.html
http://developer.android.com/sdk/installing/installing-adt.html
http://developer.android.com/training/basics/firstapp/creating-project.html
http://developer.android.com/training/basics/firstapp/creating-project.html
http://developer.android.com/training/basics/firstapp/running-app.html
http://developer.android.com/training/basics/firstapp/running-app.html
http://developer.android.com/training/basics/firstapp/building-ui.html
http://developer.android.com/training/basics/firstapp/building-ui.html
http://developer.android.com/training/basics/supporting-devices/screens.html
http://developer.android.com/training/basics/supporting-devices/screens.html
http://stackoverflow.com/questions/11323500/google-maps-api-version-difference/11357351%2311357351
http://stackoverflow.com/questions/11323500/google-maps-api-version-difference/11357351%2311357351

