
Technical University of Crete, Greece

Department of Electronic and Computer Engineering

Field Landmark Recognition and Localization

for the Robotstadium Online Soccer Competition

George Georgakis

Thesis Committee

Assistant Professor Michail G. Lagoudakis (ECE)

Assistant Professor Georgios Chalkiadakis (ECE)

Professor Michalis Zervakis (ECE)

Chania, October 2012

http://www.tuc.gr
http://www.ece.tuc.gr

George Georgakis ii October 2012

Πολυτεχνειο Κρητης

Τμημα Ηλεκτρονικων Μηχανικων και Μηχανικων Υπολογιστων

Αναγνώριση Χαρακτηριστικών Γηπέδου και

Εντοπισμός Θέσης για τον Διαδικτυακό

Διαγωνισμό Ποδοσφαίρου RobotStadium

Γιώργος Γεωργάκης

Εξεταστική Επιτροπή

Επίκουρος Καθηγητής Μιχαήλ Γ. Λαγουδάκης (ΗΜΜΥ)

Επίκουρος Καθηγητής Γεώργιος Χαλκιαδάκης (ΗΜΜΥ)

Καθηγητής Μιχάλης Ζερβάκης (ΗΜΜΥ)

Χανιά, Οκτώβριος 2012

http://www.tuc.gr
http://www.ece.tuc.gr

George Georgakis iv October 2012

Abstract

Visual object recognition is a key ability for autonomous robotic agents in dynamic and

partially observable environments, such as the RoboCup competition, where teams of au-

tonomous robots compete against each other in soccer games. Reliable object recognition

is also crucial in achieving reliable self-localization, namely awareness of the self-location

in the field at all times using the fixed field landmarks. This thesis focuses on the Robot-

Stadium Online Soccer Competition which is a simulation of the RoboCup Standard

Platform League (SPL) based on the Webots robot simulator. Our work aims at devel-

oping a dependable visual landmark recognition module and on top of that a dependable

self-localization module. Using a variety of image processing techniques, our landmark

recognition method successfully detects several field landmarks from the camera images:

the blue and the yellow goals, their left and right goal posts, the center circle, the four

field corners, the four goal area corners, and the two line junctions along the middle field

line. From any position in the field, using a wide horizontal scan, our robot player is

able to accurately detect several landmarks, disambiguate them, and estimate the dis-

tance and direction to each one of them. Subsequently, a constraint-based geometric

localization method pinpoints the agent’s location (position and orientation) in the field

by exploiting the constraints imposed by the observed landmarks. Our experimental re-

sults demonstrate that our approach leads to accurate self-localization with the average

error from the true location in position and orientation ranging from 12cm/4◦ in the

empty 4m × 6m SPL field to about 42cm/23◦ in the worst case of a full game, where

visual obstructions and misplacement due to pushing by other players are highly likely.

These promising results and the simplicity of our approach make it potentially suitable

for on-board execution on the real Aldebaran Nao humanoid robots used in the RoboCup

Standard Platform League (SPL).

George Georgakis vi October 2012

Περίληψη

Η οπτική αναγνώριση αντικειμένων αποτελεί βασική ικανότητα για αυτόνομους ρομποτι-

κούς πράκτορες μέσα σε δυναμικά και μερικώς παρατηρήσιμα περιβάλλοντα, όπως ο διαγω-

νισμός RoboCup, όπου ομάδες αυτόνομων ρομπότ ανταγωνίζονται μεταξύ τους σε αγώνες

ποδοσφαίρου. Η αξιόπιστη αναγνώριση αντικειμένων είναι επίσης ζωτικής σημασίας για

την επίτευξη αξιόπιστου εντοπισμού θέσης, δηλαδή για τη συνειδητοποίηση της θέσης

του πράκτορα μέσα στο γήπεδο ανά πάσα στιγμή χρησιμοποιώντας τα σταθερά χαρακτη-

ριστικά του γηπέδου. Η παρούσα εργασία επικεντρώνεται στον διαδικτυακό διαγωνισμό

ποδοσφαίρου RobotStadium ο οποίος είναι μια προσομοίωση του RoboCup Standard Plat-

form League (SPL) βασισμένη στον προσομοιωτή ρομποτικών συστημάτων Webots. Η

εργασία μας στοχεύει στην ανάπτυξη μιας αξιόπιστης μεθόδου οπτικής αναγνώρισης χαρα-

κτηριστικών γηπέδου και βάσει αυτής μιας αξιόπιστης μεθόδου εντοπισμού θέσης. Χρησι-

μοποιώντας διάφορες τεχνικές επεξεργασίας εικόνας, η προτεινόμενη μέθοδος αναγνώρισης

χαρακτηριστικών ανιχνεύει επιτυχώς διάφορα χαρακτηριστικά του γηπέδου μέσα από τις

εικόνες της κάμερας: το μπλε και το κίτρινο τέρμα, τα αριστερά και δεξιά δοκάρια τους,

τον κεντρικό κύκλο, τις τέσσερις γωνίες του γηπέδου, τις τέσσερις γωνίες στις περιοχές

τέρματος και τους δύο κόμβους γραμμών κατά μήκος της μεσαίας γραμμής του γηπέδου.

Από οποιαδήποτε θέση στο γήπεδο, χρησιμοποιώντας μια ευρεία οριζόντια σάρωση, ο ρο-

μποτικός παίκτης μας είναι σε θέση να ανιχνεύσει με ακρίβεια πολλά χαρακτηριστικά του

γηπέδου, να τα αποσαφηνίσει και να εκτιμήσει την απόσταση και την διεύθυνση για κάθε

ένα από αυτά. Στη συνέχεια, μία μέθοδος εντοπισμού θέσης βασισμένη σε γεωμετρικούς

περιορισμούς προσδιορίζει τη θέση του παίκτη (συντεταγμένες και προσανατολισμός) στο

γήπεδο αξιοποιώντας τους περιορισμούς που επιβάλλονται από τα παρατηρούμενα χαρακτη-

ριστικά γηπέδου. Τα πειραματικά μας αποτελέσματα δείχνουν ότι η προσέγγισή μας οδηγεί

σε ακριβή εντοπισμό θέσης με το μέσο σφάλμα από την πραγματική θέση (συντεταγμένες

και προσανατολισμός) να κυμαίνεται από 12cm/4◦ στο άδειο 4m × 6m γήπεδο SPL σε

περίπου 42cm/23◦ στη χειρότερη περίπτωση ενός πλήρους αγώνα, όπου οπτικά εμπόδια και

ανεπιθύμητες μετατοπίσεις από άλλους παίκτες είναι πολύ πιθανά. Αυτά τα ενθαρρυντικά

αποτελέσματα και η απλότητα της προσέγγισής μας την καθιστούν δυνητικά κατάλληλη

για υλοποίηση και εκτέλεση πάνω στο ανθρωποειδές ρομπότ Aldebaran Nao που χρησιμο-

ποιείται στο RoboCup Standard Platform League (SPL).

George Georgakis viii October 2012

Acknowledgements

First of all I would like to thank my advisor Michail G. Lagoudakis for his mentoring

during this thesis. I really appreciate his dedication and trust demonstrated towards

myself.

To all my friends here in Chania, I am happy we had the chance to spend these past

few years together. Special thanks to my colleague and friend Konstantinos.

Finally, I am deeply grateful towards my family for their support throughout the

duration of my education studies in Chania. I know that despite the difficulties, for them

I was always the priority.

Ευχαριστίες

Καταρχήν θα ήθελα να ευχαριστήσω τον επιβλέποντα καθηγητή μου Μιχαήλ Γ. Λαγου-

δάκη για την καθοδήγησή του κατά την διάρκεια της εργασίας. Εκτιμώ πραγματικά την

αφοσίωσή του και την εμπιστοσύνη που επέδειξε προς τον εαυτό μου.

Για όλους τους φίλους μου εδώ στα Χανιά, είμαι χαρούμενος που είχαμε την ευκαιρία να

περάσουμε τα τελευταία χρόνια μαζί. Ιδιαίτερες ευχαριστίες στον συμφοιτητή μου και φίλο

μου Κωνσταντίνο.

Τέλος, είμαι βαθύτατα ευγνώμων προς την οικογένεια μου για την υποστήριξη τους καθ΄

όλη την διάρκεια της φοίτησής μου στα Χανιά. Ξέρω ότι παρά τις δυσκολίες, γι΄ αυτούς

ήμουν πάντα η προτεραιότητα.

George Georgakis x October 2012

Contents

1 Introduction 1

1.1 Thesis Contribution . 2

1.2 Thesis Overview . 2

2 Background 5

2.1 RoboCup Soccer . 5

2.1.1 Humanoid League . 5

2.1.2 Middle-Size League . 6

2.1.3 Small-Size League . 6

2.1.4 Standard Platform League . 7

2.1.5 Simulation League . 7

2.2 RobotStadium Competition . 8

2.2.1 Webots . 9

2.2.2 Node Architecture . 10

2.2.3 Sensors and Actuators . 11

2.2.4 Robot Model . 13

2.2.5 Field and Supervisor . 13

2.3 Mathematical background . 16

2.3.1 Least-Squares Fit . 16

2.3.2 Fitting a Circle to Three Points 17

2.3.3 Intersection Points of Two Circles 18

3 Problem Statement 21

3.1 Simulated Nao Camera . 21

3.2 Landmark Recognition Problem . 24

3.2.1 Goals . 24

George Georgakis xi October 2012

CONTENTS

3.2.2 Field Lines . 25

3.3 Self-Localization Problem . 26

4 Landmark Recognition 29

4.1 Color Segmentation . 30

4.2 Direction and Distance Estimation . 31

4.3 Field Border Detection . 33

4.4 Goal Recognition . 35

4.5 Field Lines Recognition . 37

4.5.1 Scan Lines . 37

4.5.2 Line Formation . 39

4.5.3 Line Splitting and Merging . 41

4.5.4 Line Classification . 45

4.6 Validation . 49

5 Self-Localization 53

5.1 Field Coordinates . 54

5.2 Landmark Disambiguation . 55

5.3 Landmark Observation Constraints . 56

5.4 Candidate Position Filtering . 59

5.5 Odometer . 62

6 Results 69

6.1 Football Player Behavior . 69

6.2 Scenario 1: One Agent in an Empty Field 70

6.3 Scenario 2: One Agent Against Two Opponents 70

6.4 Scenario 3: Full Game . 74

6.5 Evaluation . 74

7 Related Work 81

7.1 B-Human Standard Platform League Team 81

7.2 Kouretes 2008 RobotStadium Team . 83

7.3 Kouretes 2013 3D Simulation League Team 83

7.4 Dutch Nao Team . 84

George Georgakis xii October 2012

CONTENTS

8 Conclusion 87

8.1 Future Work . 87

8.1.1 Game Strategy . 87

8.1.2 Ball and Player Localization . 88

8.1.3 Dynamic Movement . 88

8.1.4 Application to RoboCup SPL . 88

References 90

George Georgakis xiii October 2012

CONTENTS

George Georgakis xiv October 2012

List of Figures

2.1 Humanoid League: Kid (left), Teen (center), and Adult (right) players. . 6

2.2 Instance of a Middle-Size League game. 6

2.3 Instance of a Small-Size League game. 7

2.4 Standard Platform League game. 8

2.5 Simulation examples of 2D League (left) and 3D League (right). 8

2.6 The RobotStadium competition environment. 9

2.7 Examples of WeBots robotic models. 10

2.8 Webots node chart for the RobotStadium competition. 11

2.9 RobotStadium simulated Nao (left) and real Nao (right) robots. 14

2.10 SPL 2011 and RobotStadium 2011 field specifications. 15

2.11 Landmarks and kick-off positions. 15

2.12 Linear (left) and polynomial (right) least-squares fitting. 17

2.13 Points A,B,C,M and lines QM and PM. 18

2.14 Intersection of two circles. 19

3.1 Simulated Nao camera horizontal field of view. 22

3.2 Simulated Nao camera vertical field of view. 22

3.3 Simulated Nao camera image example. 23

3.4 Camera image examples with missing lines. 23

3.5 Camera images containing a goal from different views. 24

3.6 Camera images containing only one post of a goal. 25

3.7 Wholly-visible (left) and partially-visible (center and right) center circle. 26

3.8 Type L corners viewed from various angles. 27

3.9 Type T intersections viewed from various angles. 27

4.1 Camera raw image (left) and color-segmented image (right). 31

George Georgakis xv October 2012

LIST OF FIGURES

4.2 Estimation of the distance corresponding to the elevation of a target pixel. 33

4.3 Distance measure example. 33

4.4 Field border detection: before and after the Find Border Line call. 34

4.5 Goal recognition from various distances and angles. 37

4.6 Vertical scan lines below the field border for field line indication. 38

4.7 Application of the four rejection criteria on black lines. 39

4.8 Formation of lines after the grouping of valid black lines. 42

4.9 Before the use of the Split function (left), and after (right). 43

4.10 Lines formed before (left) and after (right) split and merge. 45

4.11 Line recognition: right/up corner (left), junction (middle), and circle (right). 48

4.12 Observation errors example 1. 50

4.13 Observation errors example 2. 50

4.14 Observation errors example 3. 51

4.15 Observation errors example 4. 51

4.16 Observation errors example 5. 52

5.1 Visible scan area. 54

5.2 Landmarks coordinates on the RobotStadium field. 55

5.3 Orientation system on the RobotStadium field. 56

5.4 Separated circles due to underestimation of distances to landmarks. . . . 57

5.5 Circles internally tangent yielding a single candidate position. 59

5.6 Contained circles due to overestimation of distance to landmark. 60

5.7 Intersecting circles yielding two candidate positions. 61

5.8 Constraint-based localization example 1. 64

5.9 Constraint-based localization example 2. 65

5.10 Constraint-based localization example 3. 66

5.11 Constraint-based localization example 4. 67

5.12 Odometer values in comparison with the agent’s real position. 68

6.1 Scenario 1: localization of a single player in an empty field (example 1). . 71

6.2 Scenario 1: localization of a single player in an empty field (example 2). . 71

6.3 Scenario 1: localization of a single player in an empty field (example 3). . 72

6.4 Scenario 1: localization of a single player in an empty field (example 4). . 72

6.5 Scenario 1: localization of a single player in an empty field (example 4). . 73

6.6 Scenario 1: localization of a single player in an empty field (example 5). . 73

George Georgakis xvi October 2012

LIST OF FIGURES

6.7 Scenario 2: localization of one agent against two opponents (example 1). 75

6.8 Scenario 2: localization of one agent against two opponents (example 2). 75

6.9 Scenario 2: localization of one agent against two opponents (example 3). 76

6.10 Scenario 2: localization of one agent against two opponents (example 4). 76

6.11 Scenario 3: localization of all field players in a full game (example 1). . . 77

6.12 Scenario 3: localization of all field players in a full game (example 2). . . 77

6.13 Scenario 3: localization of all field players in a full game (example 3). . . 78

6.14 Scenario 3: localization of all field players in a full game (example 4). . . 78

6.15 Mean position and orientation error values for each scenario. 79

7.1 B-Human 2011 SPL team: usage of scan lines and region building. 82

7.2 Kouretes 2008 RobotStadium team: article filter estimations. 84

7.3 Kouretes 2013 3D Simulation team: self-Localization with two landmarks. 85

George Georgakis xvii October 2012

LIST OF FIGURES

George Georgakis xviii October 2012

List of Tables

4.1 RGB values of used colors. 30

4.2 Possible direction labels for each line after Split. 45

4.3 Thresholds on least-squares fit parameters for line classification. 46

6.1 Position error values for each scenario. 79

6.2 Orientation error values for each scenario. 79

George Georgakis xix October 2012

LIST OF TABLES

George Georgakis xx October 2012

List of Algorithms

1 Find Field Border Line from the Left Side of the Image. 35

2 GetLine function. 41

3 Find Direction Labels of a Line. 44

4 Find Best Position and Orientation . 63

George Georgakis xxi October 2012

LIST OF ALGORITHMS

George Georgakis xxii October 2012

Chapter 1

Introduction

Robotic football competitions in the last decade are met with great enthusiasm and

success. Being a very popular sport as it is, football turned out to be the best incentive

for researchers and teams from all over the world who are attracted to participate to

the annual competition of RoboCup Soccer. Through its various leagues, RoboCup

Soccer intends to promote Robotics and Artificial Intelligence research in addition to the

study of numerous subjects, such as multi-agent systems in dynamic environments and

computer vision. Every team consists of fully autonomous robotic agents. This means

that the football players have to decide and act on their own during the game, without

any external control.

Robotstadium is a simulation of one of the most favoured leagues, the Standard

Platform League (SPL), where all teams compete with the same robotic platform, the

Aldebaran Nao humanoid robot. Therefore, software development is the main focus for

each team in order to build up its autonomous agents. This process can be complicated

on account of the basic Artificial Intelligence problems that need to be solved and applied

to the agent, such as perception of the environment, decision making under uncertainty,

agent self-localization, multi-agent planning, and team coordination.

Dependable vision and self-localization modules provide crucial abilities to a robotic

football player. The former is imperative for perceiving the environment and recognizing

objects, while the latter provides an estimated position for the agent in the field, including

its orientation. Both offer the opportunity for enhancing the abilities of the agents and

the team, as they make possible the development of team coordination and strategy.

George Georgakis 1 October 2012

1. INTRODUCTION

1.1 Thesis Contribution

This thesis presents a vision module for landmark recognition in the Robotstadium field

and a self-localization module that exploits the recognized landmarks. Our vision module

is able to recognize and locate field landmarks efficiently, in the interest of providing

dependable information to the self-localization process. Initially, we process all pixels

in the image, to achieve colour segmentation. This process is imperative as it reduces

the information we obtain from the image into a specific number of colours. Based on

that information, we detect objects of interest on the field. If a concentration of blue

or yellow pixels is found, then a goal is detected within our visible area of the field.

Furthermore, we recognize field lines by running vertical scan lines on the segmented

image to locate possible white areas that correspond to field lines segments. Then,

a filtering procedure is responsible to determine which of these segments are actually

parts of a field line, discarding all segments corresponding to other objects, such as

robot bodies. Subsequently, our method forms a set of detected lines by grouping the

remaining segments and identifies the line type using a least-squares fitting method. The

data sent to the self-localization module for each recognized landmark are the landmark

type, its distance and its direction from robot and the landmark’s fixed coordinates on the

field. Our approach to the self-localization problem avoids time-consuming probabilistic

methods and focuses on a constraint-based approach. Based on the detected landmarks,

we are estimating our position by calculating the intersection points of virtual circles on

the field, corresponding to candidate self-positions. After we collect a number of such

intersection points, an algorithm determines which one is the best candidate, depending

on the direction angles of the detected landmarks. Our numerous simulations provide us

with encouraging results about our method’s efficiency. Even in full game scenarios, where

our agent has low visibility of landmarks, our estimates of self-position are satisfyingly

close to the true position of the player.

1.2 Thesis Overview

Chapter 2 presents all the background information needed for this thesis, such as a de-

scription of the RoboCup Soccer competition and the RobotStadium online competition,

as well as the necessary mathematical background. In Chapter 3 we state our problem and

George Georgakis 2 October 2012

1.2 Thesis Overview

we discuss the difficulties we had to overcome in our approach. In Chapter 4 we describe

the field landmark recognition procedure for each individual landmark, while in chapter 5

we explain thoroughly our self-localization method. In Chapter 6 we demonstrate sev-

eral scenarios to prove our self-localization method’s effectiveness. In Chapter 7 we refer

to related work by other teams on landmark recognition and localization in simulated

soccer. Finally, Chapter 8 acts as an epilogue for this thesis, presenting our conclusions

along with future improvements of our work.

George Georgakis 3 October 2012

1. INTRODUCTION

George Georgakis 4 October 2012

Chapter 2

Background

2.1 RoboCup Soccer

RoboCup Soccer is the main division of the international robotics competition RoboCup [1].

It was founded in 1997 and aims at promoting the research fields of artificial intelligence,

multi-agent systems and robotics, focusing in the game of football. All agents must be

fully autonomous and able to function into dynamic environments, solving the issues of

robotic cooperation, cognition and behavior. The ultimate goal as stated by the RoboCup

Federation is:

“By mid-21st century, a team of fully autonomous humanoid robot soccer

players shall win the soccer game, comply with the official rule of FIFA,

against the winner of the most recent World Cup” [2].

RoboCup Soccer includes the leagues of Humanoid, Middle-Size, Small-Size, Standard

Platform and Simulation which are going to be presented shortly. Besides RoboCup

Soccer, the RoboCup competition embodies the leagues of RoboCup Rescue, RoboCup

@Home and RoboCup Junior with great success and world-wide participation.

2.1.1 Humanoid League

In this league, robots have human-like bodies and human-like senses. Challenges are the

development of human-like motions, visual perception, self-localization and coordination.

The league is divided into three subleagues depending on robot sizes; Kid, Teen and

Adult. Robot models of these three subleagues are featured in Figure 2.1.

George Georgakis 5 October 2012

2. BACKGROUND

Figure 2.1: Humanoid League: Kid (left), Teen (center), and Adult (right) players.

Figure 2.2: Instance of a Middle-Size League game.

2.1.2 Middle-Size League

Teams of six, up to 50cm diameter, robots are competing in this league with a FIFA

regular size ball in a scaled human soccer field. Figure 2.2 presents an example.

2.1.3 Small-Size League

Robot players must fit within a 18cm cylinder that is 15cm tall in order to qualify for

this league. Every team has five members and the game is played on a 6.05m long by

4.05m wide field with an orange golf ball. Figure 2.3 shows a highlight of a Small Size

League game.

George Georgakis 6 October 2012

2.1 RoboCup Soccer

Figure 2.3: Instance of a Small-Size League game.

2.1.4 Standard Platform League

Standard Platform League teams use the same robot. Aldebaran’s Nao humanoid robot

replaced the former standard robot of Sony’s AIBO since 2008. Teams concentrate on

software development while trying to solve several problems such as dynamic motion,

computer vision, perception, self-localization and ball-localization. Greece is being rep-

resented by team “Kouretes” [3], based at the Technical University of Crete. Figure 2.4

presents a game of Standard Platform League.

2.1.5 Simulation League

One of the oldest leagues in RoboCup Soccer focusing on team coordination and strategy.

The game is played inside a computer by software agents on a virtual field. There are

two subleagues; 2D and 3D which are presented in Figure 2.5.

George Georgakis 7 October 2012

2. BACKGROUND

Figure 2.4: Standard Platform League game.

Figure 2.5: Simulation examples of 2D League (left) and 3D League (right).

2.2 RobotStadium Competition

The RobotStadium Competition [4] is an online contest simulating the RoboCup Stan-

dard Platform League (SPL). It runs unofficially during the SPL, following its rules and

regulations. The idea was for everyone to be able to program a team of robots (Selec-

tion between Nao and Darwin) to play football. RobotStadium’s main focus is the use of

George Georgakis 8 October 2012

2.2 RobotStadium Competition

Figure 2.6: The RobotStadium competition environment.

robot’s vision and sensors to create a player agent, unlike RoboCup3D Simulation League

which is more focused on team coordination and strategy in the game. The competition

offers many challenges because there are numerous areas that need development, just

like the RoboCup SPL competition. A contestant has to implement computer vision, hu-

manoid locomotion, a perception module using the robot’s sensors, and a decision making

algorithm to cover just the basics for his team [5] [6]. Figure 2.6 is an example of the

RobotStadium environment.

2.2.1 Webots

WeBots is a professional development environment for robotic simulation. It started

in 1996 at the Swiss Federal Institute of Technology (EPFL) by the Cyberbotics com-

pany [7]. Webots allows the researcher to build worlds with real physical properties in

order to place a robot into certain conditions and includes a large collection of freely

modifiable robot models, plus the ability to create one of your own. It also provides a

George Georgakis 9 October 2012

2. BACKGROUND

Figure 2.7: Examples of WeBots robotic models.

variety of sensors and actuators which are usually used in robotic experiments (e.g. ac-

celerometers, proximity sensors, GPS, compass and gyro). The sensors are programmed

to resemble as much as possible those of real robots, including the deviation of measure-

ments. Webots is the platform in which the RobotStadium competition was built upon

and it is still the developing tool for anyone who wants to enter the contest. Figure 2.7

shows examples of robotic modeling in WeBots.

2.2.2 Node Architecture

Here we will examine the nodes and fields of the Webots world that is used for Robot-

Stadium. Figure 2.8 offers a chart of these nodes. In this chart, an arrow between two

nodes represents an inheritance relationship. The inheritance relationship indicates that

a derived node (at the arrow tail) inherits all the fields and API functions of a base

node (at the arrow head). As mentioned above, Webots provides functionality for some

sensors, that derive from the class Solid. The class Device which is in between, is ac-

tually an abstract class used to group common fields and functions such as the sensors

we need for RobotStadium. A Solid node represents an object with physical properties

such as dimensions, a contact material and optionally a mass. Therefore, a Robot node,

which is used as basis for building any kind of robot, also derives from Solid, and in turn

robot is extended by Supervisor and Player. Supervisor is a special kind of robot which

is specially designed to control the simulation. In the RobotStadium case, supervisor

controls the game sequence. Player is the robot team member and Player Camera is a

class that inherits all fields and functions from Camera device, in order to be used for an

George Georgakis 10 October 2012

2.2 RobotStadium Competition

Solid

Device RobotCamera

Accelerometer

Emitter

GPS

Gyro

LED

Receiver

DistanceSensor

TouchSensor

Servo

Supervisor

Player

Player
Camera

Figure 2.8: Webots node chart for the RobotStadium competition.

agent’s vision. Finally, the program that is developed to describe a robot in a simulation,

is called the controller.

2.2.3 Sensors and Actuators

Sensor nodes used in RobotStadium have been mentioned in the previous subsection,

but have not yet been described in details. Only the camera was utilized for our work

on landmark recognition and self-localization; the rest of the sensors were needed in the

creation of a simple agent that plays soccer.

• Camera Explicit analysis of the camera node is carried out in the next chapter.

• Accelerometer Measures acceleration and gravity-induced reaction forces over x,

y and z axes. It can be used for example to detect a fall or the up/down direction.

George Georgakis 11 October 2012

2. BACKGROUND

• Emitter Sends data, but cannot receive. Useful for team coordination in the game.

• Receiver Receives data, but cannot send. It is used with the Emitter node to

simulate unidirectional or bidirectional communication between two robots.

• GPS Models a Global Positioning System (GPS) sensor which can obtain informa-

tion about its absolute position in the environment.

• Gyro Measures, in radians per second [rad/s], the angular velocity over x, y and

z axes.

• LED Models a light emitting diode. The light produced by a LED can be used

for debugging or informational purposes. Nao robot has LEDs on various body

locations.

• Servo Is used to add a joint (1 degree of freedom (DOF)) in a mechanical simu-

lation. The joint can be active or passive. The servo can be of linear (prismatic)

or rotational (revolute) type. All joints on the Robot are accessed from the Servo

node.

• TouchSensor Models a bumper or a force sensor. The TouchSensor comes in three

different types. The “bumper” type simply detects collisions and returns a boolean

status, the “force” type measures the force exerted on the sensor’s body on one

axis (z-axis) and finally the “force-3d” type measures the 3d force vector exerted

by external object on the sensor’s body.

• Distance Sensor Is used to model an infra-red sensor, a sonar sensor, or a laser

range-finder. This device simulation is performed by detecting the collisions be-

tween one or several sensor rays and the bounding objects of Solid nodes in the

environment.

All sensors and actuators produce values during the simulation. For those values to

be accessed a step function call is employed which synchronizes the controller’s data

with the simulator and must be called at regular intervals. It retrieves all sensor data at

the specified time of the call.

George Georgakis 12 October 2012

2.2 RobotStadium Competition

2.2.4 Robot Model

RobotStadium offers the option of choosing between two robot models for your team;

the most commonly used Nao and recently added Darwin-OP. For the purposes of this

thesis Nao was used. The real Nao robot was developed by Aldebaran Robotics [8] as an

autonomous programmable humanoid robot mainly purposed for research and software

development. It weighs 4.3Kg and has a height of 58cm. Nao V4 (Last Generation) has

60 to 90 minutes autonomy, 25 degrees of freedom, two HD cameras (1288× 968 pixels),

an Intel Atom CPU, and a variety of sensors.

Nao V3R (RoboCup Edition) is the Nao edition chosen as the platform for the Stan-

dard Platform League since RoboCup 2010. Although RobotStadium uses the NaoV3R

model as well, there are three key differences compared to the real one. First, the real

NaoV3R has two cameras situated on its head with a resolution of 640× 480 pixels; one

above the eyes and the other below. This was done so that the cameras have two different

field of views for better vision, but they cannot operate simultaneously, only one at a

time. The simulated robot has one camera of 160×120 resolution, but with a selection of

high/low positions, which have an offset angle of 40 degrees, simulating the two cameras

of the real Nao. Secondly, the real NaoV3R robot has 21 degrees of freedom, whereas the

simulated one has 22. The extra degree is located at the pelvis giving the ability for the

two hipYawPitch joints (left and right) to move independently, whereas these two joints

on the real Nao are coupled and always take the same value. Furthermore, there are two

extra ultrasound sensors on the simulated Nao, situated at the lower body of the robot,

in addition to the two already existing on the upper body. The ultrasound sensors do

not detect parts of the host robot unlike the real NaoV3R where in multiple occasions a

robot’s hand can be detected.

The rest of the sensors and capabilities are the same on both robots. A 3-axes

Accelerometer, a 2-axes Gyro, 4 Foot Bumpers (2 on each foot), 8 Force Sensitive Resistor

(FSR) sensors (4 on each foot), LEDs on eyes, chest, ears and feet and both have no

actuated hands. Figure 2.9 displays the two robot models side by side.

2.2.5 Field and Supervisor

As said above, the RobotStadium Competition follows the rules and regulations of

SPL [9], therefore the field dimensions and landmarks are always imitating those of

George Georgakis 13 October 2012

2. BACKGROUND

Figure 2.9: RobotStadium simulated Nao (left) and real Nao (right) robots.

SPL. But, because the 2012 Robotstadium contest did not take place, the rules of 2011

remained and were followed throughout this thesis. The most significant difference is the

goal colors; in 2011 there were a yellow and a blue goal, unlike in 2012, where both goals

are yellow. The field is 6m long, 4m wide and the center circle has a diameter of 1.2m.

Figure 2.10 is a detailed representation of the specifications of the playing field.

The game is controlled by a program called supervisor. It is responsible for time

keeping, state sequence, halftime changes, fouls, kick-off and robot and ball positions.

The game is played in two periods of 10 minutes each. When the first period is over,

the supervisor changes sides and colors for the teams, and relocates the players and the

ball to the predefined positions, depending on the kick-off team. This also takes place

when a goal is scored. Starting positions of the robots are shown in Figure 2.11. In the

current instance, the blue team is the kick-off team and always defends the blue goal,

whereas the red team always defends the yellow goal. When the ball goes outside the

field’s boundaries, it is returned to a certain position near the exit point. There are two

major states in the game; normal play and penalty shootout. Normal play refers to the

course of the two periods of play and, if the game ends in draw, then the penalty shootout

takes place, where the teams take turns and shoot penalties to decide the winner. Other

George Georgakis 14 October 2012

2.2 RobotStadium Competition

Figure 2.10: SPL 2011 and RobotStadium 2011 field specifications.

Figure 2.11: Landmarks and kick-off positions.

game states are used at the beginning of the match in the following order: initial, ready,

set; when the match ends, the supervisor switches to state finish.

George Georgakis 15 October 2012

2. BACKGROUND

2.3 Mathematical background

Our method for landmark recognition and self-localization uses several mathematical

techniques. Here they are going to be presented and explained and their use will be

revealed in subsequent chapters.

2.3.1 Least-Squares Fit

The method of least squares [10] is a mathematical procedure for finding the best-fitting

curve to an unknown function, when only a finite set of points (values) of the function

is known. It determines the form of an unknown equation that best describes our data

and therefore the most important application is in data fitting. It does so by solving

an undetermined system, i.e. sets of equations where there are more equations than

unknowns. The solution minimizes the sum of the squares of the residuals (differences)

between the fitting curve and the data points. We will examine two parametric models

of curve equations used in least-squares problems:

• y = ax+ b (linear)

• y = c0 + c1x+ c2x
2 (polynomial of degree 2)

where x is an independent variable, y is a dependent variable and a, b, c0, c1, and c2

are the parameters of the model. The goal of least squares is the determination of these

parameters. Each parameter describes a different aspect of our curve’s behavior. In the

polynomial model c2x
2 + c1x + c0 = y, parameter c2 determines the curvature, c1 the

slope, and c0 the shifting of the curve. Therefore, if c2 is 0, or nearly 0, then our model

describes a straight line. Suppose that the data points are (x1, y1), (x2, y2), ..., (xn, yn).

Then the linear system we have to solve in order to find the best parameters of our curve

equation is: ∑n
i=1 x

4
i

∑n
i=1 x

3
i

∑n
i=1 x

2
i∑n

i=1 x
3
i

∑n
i=1 x

2
i

∑n
i=1 xi∑n

i=1 x
2
i

∑n
i=1 xi n

c2c1
c0

 =

∑n
i=1 x

2
i yi∑n

i=1 xiyi∑n
i=1 yi

Figure 2.12 shows examples of least-squares data fitting.

George Georgakis 16 October 2012

2.3 Mathematical background

Figure 2.12: Linear (left) and polynomial (right) least-squares fitting.

2.3.2 Fitting a Circle to Three Points

Given three points A,B,C on the plane, this method [11] is used to determine the center

point and the radius of a circle that passes through all three points (Figure 2.13). Let us

assume that the three points’ coordinates are A(xA, yA), B(xB, yB), C(xC , yC). We can

form two lines which pass from our given points; line l1 passes from A and B, and line l2

passes from B and C. These two lines have the following equations:

y1 = m1(x− xA) + yA

y2 = m2(x− xB) + yB

where m1, m2 are the slopes of the two lines and they are given by:

m1 =
yB − yA
xB − xA

m2 =
yC − yB
xC − xB

Then, we can form two more lines that pass through the midpoints of line segments AB

and BC and are perpendicular to them. The intersection point of these two lines will be

the center point M of the circle. Their equations are:

yPM = − 1

m1

(
x− xA + xB

2

)
+
yA + yB

2

yQM = − 1

m2

(
x− xB + xC

2

)
+
yB + yC

2

George Georgakis 17 October 2012

2. BACKGROUND

A

B

C

Q

P

M

Figure 2.13: Points A,B,C,M and lines QM and PM.

Now, we can find the coordinates of the center point M :

xM =
m1m2(yA − yC) +m2(xA + xB)−m1(xB + xC)

2(m2 −m1)

yM = − 1

m2

(
xM −

xB + xC
2

)
+
yB + yC

2

In order to find yM we simply substitute xM into one of the equations of the perpendicular

lines and solve for y. The radius of the circle is equal to the euclidean distance of point M

to any of the given points A,B,C. For better understanding of the solution, Figure 2.13

illustrates the aforementioned points and lines.

2.3.3 Intersection Points of Two Circles

When two circles on a plane overlap, at most two intersection points are formed. The

following method [12] describes how to find those points using Figure 2.14 as reference.

The intersection points are the points P3(x3, y3). The other points’ coordinates will be

referred to as P0(x0, y0), P1(x1, y1), P2(x2, y2). In order to be sure that the two circles

intersect, we calculate the euclidean distance d between the centers of the circles:

d = ‖P1 − P0‖

• If d > r0 + r1, then the circles do not overlap and there are no intersecting points.

George Georgakis 18 October 2012

2.3 Mathematical background

Figure 2.14: Intersection of two circles.

• If d < |r0 − r1|, then the circles are contained within each other and again there

are no intersecting points.

• If d = 0 and r1 = r0, then the circles are coincident and there are infinite solutions.

• If d = r1 + r2 or d = |r1 − r2|, then the circles are tangent and there is only one

intersecting point which lies along the line connecting the two centers.

If none of the above apply, then we can calculate the two intersecting points. Our first

goal is to find h and P2. We notice that two triangles are formed through points P0P2P3

and P1P2P3. Thus, from the Pythagorean theorem, we know that:

r20 = h2 + a2

r21 = h2 + b2

d = a+ b

Considering the above equations, we can solve for a,

a =
r20 − r21 + d2

2d

George Georgakis 19 October 2012

2. BACKGROUND

Now we can find h by substituting a into equation h2 = r20−a2 and P2 with the equations:

x2 = x0 +
a(x1 − x0)

d

y2 = y0 +
a(y1 − y0)

d

It remains to calculate the two sets of coordinates for the two P3 points:

x3 = x2 ±
h(y1 − y0)

d

y3 = y2 ∓
h(x1 − x0)

d

George Georgakis 20 October 2012

Chapter 3

Problem Statement

In this chapter we state the problem we study in this thesis, namely visual recognition

of the static landmarks in the RobotStadium field (goals and lines) and self-localization

of the robots based on the recognized landmarks. To understand better the challenges

behind this problem, we first provide a detailed description of the camera sensor and the

images it delivers.

3.1 Simulated Nao Camera

The resolution of the simulated Nao camera is 160 pixels in width and 120 in height. It

has a limited horizontal field of view of 46◦ and a vertical field of view of 34◦, as shown in

Figure 3.1 and Figure 3.2 respectively. In comparison to the real Nao camera, it has a lot

less noise and the colors are more distinguishable. Figure 3.3 shows an example camera

image, whereby the player is standing still at 3.6m from the goal near the center of the

field. The image suffers by a bit of distortion, when the simulated robot moves, but this

is done by the simulator in an attempt to resemble the distortion of the real camera. The

horizontal position index of the image has a range of [0, 159] and the vertical position

index has a range of [0, 119]. The (0, 0) position is located at the upper left corner of the

image.

There are however some drawbacks in the simulated camera, that renders the image

processing harder than it looks:

George Georgakis 21 October 2012

3. PROBLEM STATEMENT

46o

Figure 3.1: Simulated Nao camera horizontal field of view.

34o

Figure 3.2: Simulated Nao camera vertical field of view.

• The small resolution reduces dramatically the camera’s capabilities to recognize an

object, when it is rather far in the field. The width of the goal posts is sometimes

presented less than it should, lines disappear or get merged and, even if they’re

visible, they are only one pixel thick. Figure 3.4 presents examples of this problem.

The two images represent two consecutive frames captured as the player was in

motion at about 3.5m from the goal. The field base line is not visible in the left

image, whereas the main goal area line is not visible in the right image. Also notice

that the goal posts in the left image have more width than those in the right image,

even though the images were taken from the same position.

George Georgakis 22 October 2012

3.1 Simulated Nao Camera

Figure 3.3: Simulated Nao camera image example.

Figure 3.4: Camera image examples with missing lines.

• The small pixel count means that the pixel-to-pixel difference on the image has quite

a significant impact in estimating the direction and the distance of some object in

the field. So, if we want to obtain accurate estimations, we have to be very precise

about the positions of the pixels corresponding to the object of interest.

• The limited field of view forces the robot to scan the field by panning its head

and executing the landmark recognition procedure several times in order to collect

enough information for self-localization.

In general, the camera image provides information, however with significant errors. So,

in the interest of making our image data dependable, a lot of effort is required to deal

with this problem during the image processing procedure.

George Georgakis 23 October 2012

3. PROBLEM STATEMENT

Figure 3.5: Camera images containing a goal from different views.

3.2 Landmark Recognition Problem

In robotic football, simulated or not, implementing landmark recognition through vision

is indispensable. It enables the player to know at any given instance the kinds of object

that fall within the visual field of the camera. Accurate direction and distance estimates

of the visible objects are essential not only for self-localization, but also for the player’s

decision making algorithm and behavior in a game. In general, landmark recognition

provides the agent with the ability to perceive its surroundings in any given situation,

rendering it today a fundamental step in a robot’s development.

For the purposes of this thesis, specific landmarks of the football field were recognized

in order to achieve our objective, which is the self-localization of the player. These are the

objects that have a fixed position in the field, for example the ball cannot be perceived

as a field landmark.

3.2.1 Goals

The two goals are the most helpful landmarks in the field. Being one blue and the other

yellow, the two goals are easily distinguishable, as shown in Figure 3.5. The robot’s vision

has to detect blue or yellow pixels to separate the own from the opponent goal. The only

problem encountered, other than errors in measurements, is that in the occasion where

only one goal post is visible (Figure 3.6), it is essential to be identified as left or right.

This is necessary, because posts are treated as individual landmarks in the field and a

player’s distance from the left post usually differs from its distance from the right post.

George Georgakis 24 October 2012

3.2 Landmark Recognition Problem

Figure 3.6: Camera images containing only one post of a goal.

3.2.2 Field Lines

Unlike goal recognition, recognition of field lines is a more complex task. White pixels,

which may indicate the presence of a line, can be found anywhere in the robot’s camera

image, mostly due to other objects, such as other players or banners outside the field,

which occasionally are sensed as white in the image. Therefore, areas of white pixels

that indicate lines must be isolated from the rest. Finding the best settings in order to

separate the desired white areas as efficiently as possible is pretty challenging due to the

camera’s drawbacks mentioned above and the unlimited number of game situations that

may occur and projected on the camera. This is true, because the environment in which

our agent has to act is dynamic due to the presence of multiple agents. For example,

another agent may block the field of view of our agent or blend with field lines in the

image, but in any case it alters entirely the way we acquire the information we need.

Even if a line segment has been correctly recognized, it is still necessary to characterize

it as a straight line, a curved line, or a corner line. A problem here that has to be

surpassed is how to differentiate between curved lines and corner lines. In order to do

that, lines may have to be split and merged depending on the occasion. The main use of

line recognition is the determination of the following key landmarks:

• Center circle This is a very useful landmark, due to its positioning and uniqueness.

Being in the middle point between the two goals, its recognition is imperative for

self-localization for it covers a large area of the field, where there are no other

unique landmarks. A specific problem is that the center circle is projected on the

camera as an ellipse. Figure 3.7 shows how the center circle is viewed from different

angles.

George Georgakis 25 October 2012

3. PROBLEM STATEMENT

Figure 3.7: Wholly-visible (left) and partially-visible (center and right) center circle.

• Type L corners There are eight type L corners in the field; four at the field edges

and four at the goal areas. The main characteristic is the change of direction in the

image depending on the angle of view. Figure 3.8 shows how various corners in the

field are viewed.

• Type T intersections Although there are six type T intersections, only two of

them are really useful, the ones at the end of the middle line. The intersections

next to the goal posts can be ignored due to existence of better landmarks nearby.

Figure 3.9 shows how several type T intersections are viewed.

Random straight line segments could also be detected, but they cannot offer useful in-

formation because of the multitude of their possible positions.

3.3 Self-Localization Problem

Self-localization as a problem is crucial in order to achieve autonomy for an agent. If a

robot has conviction about its own position, then it is easier to make decisions regarding

future actions. But to do so, the agent needs information capable of providing the means

to find where it is. This information can be obtained by sensors (e.g. camera, laser, sonar)

or by an odometer. There is always an uncertainty in measurements, so consequently

faults in the estimated position are expected. The goal of localization is to determine the

own position as accurately as possible.

Several techniques, such as Kalman filters, particle filters, and constraint-based meth-

ods, are used to achieve localization. In robotic football, localization gives a significant

advantage to a player. It is widely addressed by most RoboCup teams. Game strategy,

George Georgakis 26 October 2012

3.3 Self-Localization Problem

Figure 3.8: Type L corners viewed from various angles.

Figure 3.9: Type T intersections viewed from various angles.

team cooperation, and player movements can be guided through position estimations

provided by a localization method. A player’s field position is characterized by three

variables; x, y, and θ, where (x, y) are the coordinates on the field plane and θ is the

angle value that describes the player’s orientation.

The primary problem that has to be confronted in localization is how to deal with

the errors present in the estimations. Landmark recognition is not carried out perfectly

and small deviations of the landmarks’ estimated positions in regard to the player are

expected. However, even small, those deviations can become significant during the com-

putation of the candidate positions of a player in the field, so a filtering procedure should

be implemented that chooses the best candidate. Besides this, a landmark with serious

error measurements may not be taken into consideration for the self-localization process.

George Georgakis 27 October 2012

3. PROBLEM STATEMENT

George Georgakis 28 October 2012

Chapter 4

Landmark Recognition

In this chapter we will explain how the camera image processing was done, with the

purpose of recognizing the following field landmarks:

• 4 goal posts

• 2 goal centers

• 1 field center circle

• 4 L type junctions at the field corners

• 4 L type junctions at goal areas corners

• 2 T type junctions at the ends of the middle line

This is a total of 17 landmarks. During the process of scanning for landmarks, the robot’s

head (HeadPitchAngle) is turned 17◦ downwards and the top position of the camera is

used, so as to have the best view over the field as the head pans left and right. In the

present chapter, when coordinates are mentioned, the intention is to pinpoint a pixel’s

position on the image.

Our landmark recognition module was implemented to aid only the self-localization

process of the player, therefore ball recognition is not covered. Ball detection during

game is served through a different recognition procedure.

George Georgakis 29 October 2012

4. LANDMARK RECOGNITION

Color R G B

255 0 0

0 255 0

0 0 255

255 255 0

0 255 255

255 0 255

255 140 0

0 0 0

255 255 255

Table 4.1: RGB values of used colors.

4.1 Color Segmentation

The image given by the simulator is an array with a length that corresponds to the

number of pixels in the image. Each element of this array represents one pixel coded in

RGB (Red, Green, Blue) model, whose levels can be accessed. Every pixel of an RGB

image is actually a vector consisting of three values; one for each of the Red, Green, and

Blue components in the range of [0, 255], if we refer to an 8-bit color depth image. Every

combination of these three values produces a different color. Basic colors are Red, Green,

and Blue, and secondary colors are Yellow, Cyan, and Magenta. All of these colors were

used in our work in addition to Black, White, and Orange. Table 4.1 illustrates their

RGB values.

The color segmentation of the camera image is imperative. It divides all pixels into a

certain subset of colors making image processing and landmark recognition a lot easier.

The red, green, and blue values of each pixel are provided to a simple algorithm which

uses thresholds and color priorities, depending on the percentage of every color in the

field, to determine its color. Simply put, every pixel in the image is examined if it fits into

a particular range of values, depending on the color we want to fit it with. If the pixel

does not qualify for the first color, then we examine the next one, and so on. The color

priority sequence is: green, white, blue, yellow, orange, and cyan. If the algorithm fails

to fit a pixel into a specific color, the pixel becomes white. Some faulty outlier pixels may

George Georgakis 30 October 2012

4.2 Direction and Distance Estimation

Figure 4.1: Camera raw image (left) and color-segmented image (right).

appear, but it takes little effort to fix, by checking the colors of the neighboring pixels.

When a pixel is identified as a color other than white and there are no neighboring pixels

with the same identified color, then the pixel will be taken as white. If, however, a pixel is

identified as white and there are no other neighboring white pixels, then it will be taken

as green or orange, depending on the existence and the number of neighboring orange

pixels. Figure 4.1 offers an example of color segmentation.

4.2 Direction and Distance Estimation

For each recognized landmark, we need to be able to know its exact direction angle and

distance in regard to the player’s position. Every pixel on the image represents a different

segment of the visible area of the field. Consequently, we can extract the distance and

direction to that field segment from the pixel’s coordinates. Our convention for angles is

that positive angles are to the right or to the top (clockwise), whereas negative angles

are to the left or to the bottom (counter-clockwise).

To determine direction, first we have to find the direction angle between the camera

center and the target pixel on the image using the following equation:

DirectionAngle =
(w

width
− 0.5

)
× horizontalFOV

where w is the pixel’s width (horizontal) coordinate and width is the width of the image.

If the robot’s head is looking straight forward, then the DirectionAngle we estimated

is the direction in radians we are looking for. However, when the head is turned in any

George Georgakis 31 October 2012

4. LANDMARK RECOGNITION

way, we have to add the horizontal turn angle of the head to our estimation, assuming it

follows our convention for angles1:

Direction = DirectionAngle+HeadHorizontalAngle

Before we can calculate the distance, the elevation angle between the camera center and

the target pixel on the image has to be estimated:

ElevationAngle = −
(

h

height
− 0.5

)
× verticalFOV

where h is the pixel’s height (vertical) coordinate and height is the height of the image.

The elevation angle is only affected by the pixel’s height coordinate, hence pixels with the

same height coordinate all have the same elevation angle. Much alike direction, we have

to add the vertical turn angle of the head and the camera offset angle to our estimation,

assuming that both of them follow our convention for angles:

Elevation = ElevationAngle+HeadV erticalAngle+ CameraOffsetAngle

Possessing the above information we can now compute the distance between the player

and the segment of the field corresponding to the target pixel (target segment). First, we

compute the distance corresponding to the elevation of the target pixel assuming a zero

direction (zero segment):

y =
0.51

tan(−Elevation)

where 0.51 is the robot camera height with respect to the ground. Figure 4.2 presents an

example of estimating the distance y to the zero segment, when the HeadV erticalAngle

and the CameraOffsetAngle are both zero, and therefore the Elevation is equal to the

ElevationAngle. Then, we compute the distance between the target and zero segments:

x = y × tan(−DirectionAngle)

Finally, using the Pythagorean theorem we estimate the distance from the player to the

target segment:

d =
√
x2 + y2

Figure 4.3 presents an example of the above procedure for estimating the distance to the

base of the blue right post.

1In RobotStadium, the angle values for the robot joints follow the exact opposite convention.

George Georgakis 32 October 2012

4.3 Field Border Detection

Elevationy
Camera

Target

Figure 4.2: Estimation of the distance corresponding to the elevation of a target pixel.

x

y

d

DirectionAngle

Target segment

Zero segment

Figure 4.3: Distance measure example.

4.3 Field Border Detection

Finding where the field ends is very useful for the detection of lines in the field. It

reduces the number of pixels that have to be processed because the field border acts as a

limit. Furthermore, the detection of a field border in the image determines whether the

rest of the landmark recognition procedure will continue. Under normal conditions and

due to our choice for the HeadPitchAngle during landmark recognition, the field border

must be visible. If it is not visible, it is an indication that the player may have fallen

on the ground or his camera has been obstructed by other players. In those instances,

no landmarks are visible, the field border cannot be detected and, therefore, the early

George Georgakis 33 October 2012

4. LANDMARK RECOGNITION

Figure 4.4: Field border detection: before and after the Find Border Line call.

termination of landmark recognition saves the player from unnecessary image processing.

Field border detection (Figure 4.4) begins with finding the first green pixel and mark-

ing it, starting from the top of the image and going downwards. This is done every

third column over the entire image, saving the image height coordinates of the marked

positions (shown as dots in Figure 4.4). Then, a function is called to determine whether

a field border line can be drawn on the image along these dots or not. This function,

shown in Algorithm 1, takes as inputs the array with the height coordinates, a starting

point, a pixel height threshold, and a rejection percentage and returns a boolean variable,

indicating whether a field border line was detected or not, and an array containing the

field border line. Using the height coordinates and the pixel height threshold, it attempts

to connect the dots. If a dot exceeds the limit (pixel height threshold) with respect to

the previous dot in the border line, then it is ignored (it is marked with a −1) and the

loop continues with the next dot. This is done in order to avoid including obstacles above

or below the field border line. During the loop, an assessment is made, depending on

the number of ignored dots, to determine early if the field border line cannot be drawn

and has to be rejected; in this case, the function simply returns False. If a sufficient

number of dots are successfully connected, the function returns True along with an array

containing the heights belonging to the detected field border line (the detected border

line is shown in red in Figure 4.4). There is a symmetric function that detects a field

border line starting from the right side of the image. In order to exhaust all possibilities,

these two functions alternate as long as they return False with starting points that begin

at the extremes of the image and proceed towards the middle until one returns True.

George Georgakis 34 October 2012

4.4 Goal Recognition

Algorithm 1 Find Field Border Line from the Left Side of the Image.

1: Input: ArrayHeight, Start, HeightThreshold (default value = 3),

RejectionPercentage (default value = 0.75)

2: Output: FoundLine,BorderLine

3: BorderLine = ArrayHeight

4: Left = Start

5: Right = Start+ 1

6: Counter = 0

7: while Right < size(ArrayHeight)− 1 do

8: if BorderLine[Left] == −1 then

9: Left+ +

10: else

11: if
∣∣ArrayHeight[Left]− ArrayHeight[Right]∣∣ < HeightThreshold then

12: Left+ +

13: else

14: BorderLine[Right] = −1

15: Counter + +

16: end if

17: Right+ +

18: end if

19: if Counter > RejectionPercentage× size(BorderLine) then

20: return False

21: end if

22: end while

23: return True,BorderLine

4.4 Goal Recognition

Goalposts are the most characteristic landmarks in the field. Their size and color unique-

ness make them easy to detect and very important during the localization procedure. As

mentioned at the beginning of this chapter, our robot’s head is turned a bit downwards

to achieve maximum view of the field. So only the vertical posts of the goals can be

seen in the camera image, but that is sufficient for goal detection. The entire image is

scanned vertically and when a pixel is identified as part of a goal (due to its color), its

George Georgakis 35 October 2012

4. LANDMARK RECOGNITION

coordinates are stored to examine them further as an object and not as a single point.

The goal examination includes the following basic steps:

1. First, we need to determine if both posts are visible or just one. The stored coor-

dinates are checked for a gap in width (the default value is 20 pixels) and in that

occasion we split the pixels into two different post objects.

2. Next, we have to locate the pixel corresponding to the base of each post, so that we

can use its coordinates to estimate direction and distance. This is done by finding

the average width of the pixel concentration belonging to the post on the image

and the maximum value of height (lowest in the image) among these pixels.

3. When both posts are detected, we find two base pixels, one for the left post and one

for the right post. In this case it is very useful to determine the goal center position

to treat it as an extra landmark. Average values of base pixels are calculated to do

so.

4. If only one post is visible then the problem of identifying which one was detected is

solved by turning the robot’s head upwards, until the horizontal post of the goal is

found. Depending on the direction of the horizontal post (left or right of detected

vertical post), we decide which post was initially found.

Sometimes during the game, a post can be obstructed by another robot and the pixel

concentration that we detect is not sufficient to make a proper assessment. To avoid

using wrong measures and to verify our findings, two checks are being performed:

1. If both posts are visible, then we compare their heights (difference between maxi-

mum and minimum height coordinates in the concentration) on the image. If their

height difference is greater than a given threshold (default value is 40 pixels), then

the post with the lower height is rejected.

2. If a post’s distance estimate is longer than our field’s dimensions, then it is rejected.

In the above cases, due to the lack of both post objects, the calculation of the goal center

does not take place. In Figure 4.5 we can see examples of goal recognition; goal posts are

outlined with a purple border.

George Georgakis 36 October 2012

4.5 Field Lines Recognition

Figure 4.5: Goal recognition from various distances and angles.

4.5 Field Lines Recognition

4.5.1 Scan Lines

For the white areas of the image to be marked, we run a vertical scan that starts from the

field border up to the bottom of the image every fifth column. These five pixels define

the constant width difference between any two scan lines and hereafter will be mentioned

as dist. Every white pixel found is turned black, thus creating small black lines on white

segments all around the segmented image. Figure 4.6 illustrates the use of scan lines.

Black lines indicate the possibility of a field line. Notice that in some cases a robot’s

body may cover a considerable percentage of the white areas.

Some of the black lines are part of the field lines we want to detect and some are

robot’s parts. In order to include the former in our recognition process and reject the

latter, certain criteria had to be matched for every black line. The criteria that are used

in the matching process are the following:

Criterion 1 All black lines that have as a starting or ending point a pixel other than

green are being discarded. For example, if a black line starts from the field border

line then it has to be rejected. Also this criterion is a precaution for any faults in

the color segmentation sequence.

George Georgakis 37 October 2012

4. LANDMARK RECOGNITION

Figure 4.6: Vertical scan lines below the field border for field line indication.

Criterion 2 If a black line has other than white pixels next to its interior points (the

two ends are ignored), then it is being rejected.

Criterion 3 Black lines must not be longer than a particular pixel count threshold,

which is calculated depending on the average length of all black lines on the image

that are larger than three pixels. The threshold is twice this average.

Criterion 4 For a black line to be a part of a line segment, it has to fit into a certain

continuity of black lines. Therefore, a procedure is responsible to determine for each

black line if it belongs to a series of three “close-enough” black lines. By “close-

enough” we mean that there should be some kind of overlap in height coordinates

between neighboring black lines. Any black line that fails to meet these conditions

is rejected. Furthermore, this criterion discards any black line that is significantly

smaller compared to the next black line.

As seen in Figure 4.7 the above criteria can minimize the number of undesirable white

areas in the recognition process. Each black line that is erased by a different criterion

is painted with a specific color. Criterion 1 is orange, 2 is magenta, 3 is cyan, and 4 is

yellow. Those that remain black will be further used for recognition. Nevertheless, due

to the fact that we are dealing with a dynamic environment faults are expected. Some

George Georgakis 38 October 2012

4.5 Field Lines Recognition

Figure 4.7: Application of the four rejection criteria on black lines.

unwanted black lines will pass the criteria and some that are desirable will be sacrificed.

Our goal was to distinguish them as efficiently as possible, so the existing errors can be

taken into consideration and surpassed at a succeeding recognition stage.

4.5.2 Line Formation

After the scan lines have been filtered we need to determine our visible lines. The valid

black lines from the previous subsection viewed as a sequence form the lines we want to

detect. The AddLines function performs the process of finding those sequences by taking

into consideration various parameters we are about to analyze. AddLines embodies three

other functions: GetStart, GetLine, and Split. Here, we will explain the first two functions

and the last will be explained in the next subsection:

• GetStart All valid black lines attributes (coordinates on image, length, middle

pixel) are stored vertically beginning with the one that is upper left in the image

and ending with the one that is lower right in the image. This function’s aim is to

find the starting point of a field line by iterating through the black lines array. It

starts by marking the first black line as the start of the first field line. If it is called

again it searches to find the next available black line that can be a possible start of

George Georgakis 39 October 2012

4. LANDMARK RECOGNITION

a field line. When all black lines have been used and therefore there are no more

starting points, the function does nothing and −1 is returned.

• GetLine This function takes as input the starting point from GetStart and iterates

through the black lines array in order to find and add those that belong to the

particular field line. It compares the attributes of the current black line (current)

with those of the next one in the array (next), so that all following criteria are met:

1. next’s flag attribute has to be 0, meaning that it wasn’t added to another line.

2. next must not have the same width coordinate as current.

3. The difference in width coordinates between current and next must not ex-

ceed the value of 6×dist. In this occasion, the GetLine function is interrupted

and the loop does not continue to the next black line. This is done to prevent

adding black lines that are very far from each other in the image.

4. next and current difference in height coordinates of their midpoints must

not exceed a certain limit. This limit depends on their width difference on the

image and their average length. If current has a length of len1 pixels and a

width coordinate of w1, and respectively next has len2 and w2, the limit will

be computed as:

AddLimit =
len1 + len2

2
+
w2 − w1

dist
− 1

provided that len1 and len2 do not have a large deviation. If they have a large

deviation, the criterion is considered as failed, to avoid connecting black lines

with highly unequal lengths.

5. To avoid adding corners to a single line at this stage, the local direction is

being tracked using also the previous black line in addition to current and

next. Their height differences are being examined to conclude if direction is

valid, i.e. it proceeds without changing sign.

If the detected line is less than three black lines in length, then it is rejected, along with

the particular black lines. Line formation examples are shown in Figure 4.8.

George Georgakis 40 October 2012

4.5 Field Lines Recognition

Algorithm 2 GetLine function.

1: Input: BlackLines, start, dist

2: Output: Line

3: Line = Add(NULL, BlackLines[start])

4: current = start

5: next = start+ 1

6: while next < BlackLines.size do

7: if BlackLines[next].width−BlackLines[current].width ≥ 6× dist then

8: break

9: end if

10: AddLimit = getAddLimit(current, next, dist)

11: if CheckCriteria(BlackLines, current, next, AddLimit) == true then

12: Line = Add(Line,BlackLines[next])

13: BlackLines[next].f lag = 1

14: current = next

15: end if

16: next+ +

17: end while

18: return Line

4.5.3 Line Splitting and Merging

At this stage we possess the formed lines each consisting of a set of black lines. Although

a local misdirection check (Criterion 4) was carried out in the GetLine function, a more

extensive direction comparison is performed next along with a procedure that examines

if any two lines can be merged. There are two reasons that declare these necessary. First,

we don’t want our lines to be formed as corners yet, due to the great possibility of misin-

terpreting a corner as a curve, and secondly, to correct any mistakes made in the previous

procedure of line formation. The goal here is to arrange our lines as distinguishable as

possible. Thus, with the discovery of a misdirection, the line is split into two parts. The

Split and Merge functions are thoroughly explained:

• Split This function examines and tags each detected line with an appropriate direc-

tion sequence. Initially, the line is divided into non-overlapping adjacent segments

of three black lines each. Each segment is analyzed and characterized depending on

George Georgakis 41 October 2012

4. LANDMARK RECOGNITION

Figure 4.8: Formation of lines after the grouping of valid black lines.

the height differences of the midpoints of the black lines in the segment. Note that

the height differences within a segment cannot have opposite signs, because of the

last criterion checked by GetLine. If the segment has an upwards inclination, then

it is labeled up, if downwards, down, and, if there is no inclination, straight. Next,

we need to find all direction changes that occur between the segments of a particu-

lar line and store them along with the index of the segments in which the direction

changes take place. The occurred direction changes describe the line’s tendency.

For example, if all segments of a line are labeled up, then there are no direction

changes and the whole line is labeled with only up. In contrary, a curved line has

direction changes between its segments and, therefore, it will be marked as one of

the following sequences: up, straight, down or down, straight, up. The procedure

up to this point is described in Algorithm 3. Afterward, we examine the sequence

patterns that emerge from each line and, if an unacceptable one is found, then the

George Georgakis 42 October 2012

4.5 Field Lines Recognition

Figure 4.9: Before the use of the Split function (left), and after (right).

line gets split at the segment where the direction change took place. Unaccepted

sequences are the following:

1. The labels up and down cannot be consecutive in a line’s direction sequence

in order to avoid corners. Figure 4.9 illustrates an example of a corner split

into two side lines.

2. The sequences up, straight, up and down, straight, down indicate that a side

line has been added to a circle line and thus they have to be split.

3. If a straight label has been added to the beginning or the end of a circle’s

direction sequence, then it has to be removed.

Table 4.2 summarizes the possible direction sequences that emerge after the com-

pletion of the splitting procedure.

• Merge After all black lines have been grouped into lines and split in case of mis-

direction, a merge procedure is responsible for comparing all pairs of the formed

lines and merging those pairs that can fit the following:

1. Compatibility. Two line directions are compatible if they can be merged into

acceptable line forms. Referring to Table 4.2, the list of compatible directions

includes only the following ordered pairs: S1 − S1, S2 − S2, S3 − S3, S4 − S2,

S6 − S1, S2 − S5, S1 − S7.

George Georgakis 43 October 2012

4. LANDMARK RECOGNITION

Algorithm 3 Find Direction Labels of a Line.

1: Input: Line

2: Output: LineDirection, ChangeSegments

3: segments = SplitLineIntoSegments(Line)

4: for all s ∈ segments do

5: diff1 = s.height1 − s.height2
6: diff2 = s.height2 − s.height3
7: if diff1 + diff2 ≥ +2 then

8: s.direction = “up”

9: else if diff1 + diff2 ≤ −2 then

10: s.direction = “down”

11: else

12: s.direction = “straight”

13: end if

14: end for

15: currentDirection = s[0].direction

16: LineDirection = Add(NULL, s[0].direction)

17: ChangeSegments = Add(NULL, s[0])

18: for all s ∈ segments do

19: if currentDirection 6= s.direction then

20: currentDirection = s.direction

21: LineDirection = Add(LineDirection, s.direction)

22: ChangeSegments = Add(ChangeSegments, s)

23: end if

24: end for

25: return LineDirection, ChangeSegments

2. No overlapping. Two lines cannot be merged if they overlap in the vertical

dimension; this is easily checked using the width coordinates of their ends.

3. Continuity. The last segment of first line and the first segment of the second

line must be close enough in terms of width (default: no more than 20 pixels)

and height (default: no more than 10 pixels) coordinates.

George Georgakis 44 October 2012

4.5 Field Lines Recognition

Index Direction Label Sequence Line Type

S1 “up” Side line with up gradient

S2 “down” Side line with down gradient

S3 “straight” Straight line

S4 “up”, “straight” Up corner

S5 “straight”, “up” Down corner

S6 “down”, “straight” Down corner

S7 “straight”, “down” Up corner

S8 “up”, “straight”, “down” Upper half-circle

S9 “down”, “straight”, “up” Down half-circle

Table 4.2: Possible direction labels for each line after Split.

Figure 4.10: Lines formed before (left) and after (right) split and merge.

Figure 4.10 shows how useful split and merge can be. In the left image, line formation

wrongly added the side line to the upper-half circle line, but as we can see in the right

image, with the use of split and merge, the correct line formation was established.

4.5.4 Line Classification

At this stage we are trying to extract the information we need for each detected line

in the image. In the interest of distinguishing a curved line from a straight one, we

applied the least-squares fit method, explained in Section 2.3.1. The data provided for

George Georgakis 45 October 2012

4. LANDMARK RECOGNITION

Thresholds Conclusion

If (a > 0.7) && (a < 5.2) && (b < 0.6) && (b > −0.6) Upper Half-Circle

else if (a < −0.7) && (a > −5.2) && (b < 0.6) && (b > −0.6) Down Half-Circle

else if (a >= 5.2) && (b < 0.6) && (b > −0.6) Up corner

else if (a <= −5.2) && (b < 0.6) && (b > −0.6) Down corner

else if (b > 0.07) Side line with down gradient

else if (b < −0.07) Side line with up gradient

else Straight line

Table 4.3: Thresholds on least-squares fit parameters for line classification.

least-squares fit of a degree-2 polynomial includes the pairs (wi, hi) for all black lines i

belonging to the line, where wi is the width coordinate and hi is the height coordinate

of the midpoint of the corresponding black line. The parameters a, b, and c returned by

the method are provided to the ProcessLine function, which compares them with certain

thresholds and ultimately returns the type of the detected line. Parameter a is scaled to

1000 times of its original value to make the comparisons easier. These thresholds were

determined after a lot of experimentation and deep consideration in order to make the

function as successful as possible. ProcessLine can also identify corners that weren’t able

to be broken in the previous subsection. Table 4.3 presents how the thresholds are used

for line classification.

When a line has been identified, a particular pixel of each line type is sent to esti-

mate the direction and distance to the corresponding part of the line, as explained in

Section 4.2:

• For side lines with gradient or not, we send the middle pixel of the line.

• For an upper corner, we send the pixel of the line that is highest in the image

(the lowest height coordinate), whereas for a down corner we send the pixel that is

lowest in the image (the largest height coordinate).

• Because curved lines are only detected in the center circle area, when a curved

line is found, we are attempting to position the circle’s center, so we can estimate

distance and direction from that point. However, the field center circle is projected

George Georgakis 46 October 2012

4.5 Field Lines Recognition

as an ellipse in our image, so we cannot estimate distance and direction directly, like

the other line types. We choose three points from the detected curved line (first,

middle, and last), we estimate distance and direction to each of these three points,

we convert these polar coordinates to Cartesian coordinates on the ground, and

finally we apply the method described in Section 2.3.2 to fit a circle to these three

points on the ground. This method returns the (cx, cy) coordinates of the circle’s

center in regard to our position. Finally, the estimated distance and direction to

the center of the circle can be calculated as follows:

CircleDistance =
√
cx2 + cy2

CircleDirection = arctan 2(cy, cx)

It is important to mention, that because of the great similarity between corners and

curved lines, when a circle section is detected from the ProcessLine function, a procedure

is called to verify the existence of a curved line. This procedure breaks the line in

two equal parts and reapplies the least-squares method on each part using a quadratic

polynomial. Depending on the new a parameters, it generates a new estimation about

the original line type. If a1 and a2 are the parameter values of the quadratic term of the

two half lines scaled by a factor of 1000, then a curved line is verified if |a1| > 1 and

|a2| > 1. If a curved line cannot be verified, then we have to check if our line is a corner

or a side line. So, if |a1| < 1 and |a2| < 1, then our original line is taken as a side line.

Finally, if none of the above holds, then the original line is taken as a corner.

Furthermore, a DetectCornersAndJunctions function is implemented to decide if two

neighboring side lines form a corner or a junction:

• FindCorner First, we check that the directions of the two side lines can form a

corner. For example, two side lines that are both marked as up cannot do so. Then,

we find the smallest distance between the two ends of the two lines. This way, four

different corner types can emerge:

1. Up corner The distance between the end of line1 and start of line2 is the

smallest, the direction of line1 is up, and the direction of line2 is down.

2. Down corner The distance between the end of line1 and start of line2 is the

smallest, the direction of line1 is down, and the direction of line2 is up.

George Georgakis 47 October 2012

4. LANDMARK RECOGNITION

Figure 4.11: Line recognition: right/up corner (left), junction (middle), and circle (right).

3. Right corner The smallest distance is between the end of line1 and the end of

line2.

4. Left corner The smallest distance is between the start of line1 and the start

of line2.

Of course, the above are not enough to conclude the existence of a corner. Addi-

tionally the two ends of the lines that form the corner must be close enough (no

more than 10 pixels in width, and no more than 5 pixels in height). Finally, when

we are sure that a corner is detected, we choose the pixel corresponding to the cor-

ner, for estimating direction and distance from the corresponding corner landmark

on the field.

• Find Junction Only two junctions of the field are recognized and used in the

localization process; they are spotted on the middle line of the field. Their detection

process is simpler compared to the rest of the landmarks and it is based on checking

the start and end coordinates of each line. If one of these coordinates is within a

certain distance from the other line (no more than 5 pixels in height), then we

conclude that a junction is recognized. For estimating distance and direction the

pixel at the junction point is used.

Figure 4.11 presents detected lines. The magenta line is the fitted line calculated by the

least-squares method.

George Georgakis 48 October 2012

4.6 Validation

4.6 Validation

We explained in Section 3.1 the disadvantages of the virtual camera. The small resolu-

tion of 160× 120 pixels cannot offer precise object recognition and therefore observation

errors appear. The deviation in the estimation of distance and direction from a landmark

depends on the range and the direction angle of the robot from the specific landmark. We

tried to assess the quality of landmark recognition by using a GPS sensor on the robot

(not allowed in an official game) to obtain the true coordinates (GPSx, GPSy, GPSθ)

of the exact position and orientation of the robot in the field and plotting the observed

landmarks as perceived from that position in the field. The observation error is pre-

sented as the discrepancy between the true and the projected position of each landmark.

Figures 4.12, 4.13, 4.14, 4.15, 4.16 present five such scenarios of landmark recognition

from various field positions. All estimations were taken in the absence of other robots in

the field, using a horizontal scan of five image frames. Notice that almost all landmarks

within the range of the scan are correctly recognized and the observation error is quite

small. We did not quantify observation errors further, because these errors are ultimately

included within the deviations in self-localization, which is the target of our work and we

thoroughly evaluate.

George Georgakis 49 October 2012

4. LANDMARK RECOGNITION

-3

-2

-1

0

1

2

3

-4 -3 -2 -1 0 1 2 3 4

Goal Observations
GPS Position

Corners Observations

Figure 4.12: Observation errors example 1.

-3

-2

-1

0

1

2

3

-4 -3 -2 -1 0 1 2 3 4

Goal Observations
GPS Position

Corners Observations

Figure 4.13: Observation errors example 2.

George Georgakis 50 October 2012

4.6 Validation

-3

-2

-1

0

1

2

3

-4 -3 -2 -1 0 1 2 3 4

Goal Observations
GPS Position

Corners Observations

Figure 4.14: Observation errors example 3.

-3

-2

-1

0

1

2

3

-4 -3 -2 -1 0 1 2 3 4

Goal Observations
GPS Position

Corners Observations

Figure 4.15: Observation errors example 4.

George Georgakis 51 October 2012

4. LANDMARK RECOGNITION

-3

-2

-1

0

1

2

3

-4 -3 -2 -1 0 1 2 3 4

Goal Observations
GPS Position

Corners Observations

Figure 4.16: Observation errors example 5.

George Georgakis 52 October 2012

Chapter 5

Self-Localization

In this chapter we present how the principal objective of this thesis is achieved. Up to

this chapter we have explained how the image processing works with the aim of creating

a dependable landmark recognition module for our agent. This module is useless until it

is exploited in order to help our agent become a better football player. In my opinion

the most important utilization of vision is a self-localization module. Without it, the

player moves in the field and makes decisions exclusively depending on the ball position,

having no conviction about his position. Therefore, he is unable to make more complex

decisions involving his team. On the contrary, if he was equipped with a self-localization

module, he could participate in global decision making for his team’s best interest, such

as game strategy, team coordination and role assignment among the players. In this

thesis however the further exploitation of self-localization is not covered.

The self-localization method we use is constrained-based, meaning that we are trying

to pinpoint our agent’s location using the constraints imposed by the observations of

landmarks. So, for our method to be as efficient as possible, we need to obtain as much

information from the field as possible. Given that the camera’s horizontal view is rather

narrow, we are forced to pan the player’s head from left to right in pursuance of scanning

a larger percentage of the field. Figure 5.1 presents the increase of the scan angle from

46◦, which is the horizontal field of view angle, to 206◦ providing us with the advantage

of recognizing more landmarks. Five image frames with little overlap are taken at each

scan; one straight ahead, two to the left, and two to the right of the robot.

George Georgakis 53 October 2012

5. SELF-LOCALIZATION

-3

-2

-1

0

1

2

3

-4 -3 -2 -1 0 1 2 3 4

206o

Figure 5.1: Visible scan area.

5.1 Field Coordinates

Our agent’s environment is consisted of specific landmarks. Before the problem of self-

localization can be addressed, we need to know what the fixed positions of those land-

marks are. Each position in the playing field is uniquely defined by a set of coordinates

and thus the position of every field object is established by a set of (x, y) coordinates.

Figure 5.2 shows these fixed positions. The origin of the axes is located at the field’s

center, the x axis runs from the blue goal to the yellow goal and its range is [−3, 3], and

the y axis runs along the middle line of the field with the blue goal on the left and its

range is [−2, 2]. To describe the robot’s position in the field uniquely, we additionally

need an orientation. The zero degrees angle is defined towards the yellow goal, turning

left means positive angle, and turning right means negative angle. Figure 5.3 presents

the zero orientation angle.

George Georgakis 54 October 2012

5.2 Landmark Disambiguation

-3

-2

-1

0

1

2

3

-4 -3 -2 -1 0 1 2 3 4

x

y

(0,0)

(0,2)

(0,-2)

(-3,2)

(-3,-2)

(-3,0.7)

(-3,-0.7)

(-3,0)

(-2.4,-1.1)

(-2.4,1.1)

(3,2)

(3,-2)

(3,0.7)

(3,-0.7)

(3,0)

(2.4,1.1)

(2.4,-1.1)

Figure 5.2: Landmarks coordinates on the RobotStadium field.

5.2 Landmark Disambiguation

Some landmarks, such as the goals, the goalposts and the field center, can be positioned

on the field directly after recognition, because they are unique and we know in advance

what their coordinates are. Corners and junctions however, cannot be treated like the rest

of the landmarks. When an up corner is detected, we are unable to know in advance which

one of the existing four field corners was recognized due to the fact that they are almost

identical to each other. Consequently, a procedure has the responsibility to disambiguate

a detected corner or junction. This procedure calculates the angle differences between

the current corner and all detected goalposts. The smallest angle difference defines which

goal post is closer to our detected corner. Depending on this goalpost and the corner type

we can easily infer the unique position of the detected corner. For example, if the smallest

angle difference of an up corner is calculated from the blue left post, then this corner

is located at the (−3,−2) coordinates of the field. In order to avoid any false detected

George Georgakis 55 October 2012

5. SELF-LOCALIZATION

-3

-2

-1

0

1

2

3

-4 -3 -2 -1 0 1 2 3 4

0o
+

-

Figure 5.3: Orientation system on the RobotStadium field.

corners, if the smallest calculated angle is larger than a certain threshold (default value

51◦), then the corner is rejected. This procedure for landmark disambiguation is also

used for the two junctions. Obviously, if no goalpost is visible, then no corner or junction

can be positioned. The normalizeAngle function in the algorithm takes as input an angle

and wraps it within the [−π, π] range.

5.3 Landmark Observation Constraints

Our constrained-based self-localization method tries to pinpoint the robot’s location using

the constraints imposed by the landmark observations. These constraints generate several

candidate field positions, which are subsequently filtered to keep the one that seems to

be best. In the interest of producing the candidate field positions, every time a landmark

is recognized, we construct a virtual circle on the field with its center at the landmark’s

fixed coordinates and with radius equal to the estimated distance between the player and

George Georgakis 56 October 2012

5.3 Landmark Observation Constraints

-3

-2

-1

0

1

2

3

-4 -3 -2 -1 0 1 2 3 4

Figure 5.4: Separated circles due to underestimation of distances to landmarks.

the landmark. This circle represents all possible field positions from which this particular

landmark can be observed at this particular distance. Thus, when two landmarks are

recognized and, therefore, two circles are constructed, the intersection points that emerge

between these circles represent two candidate positions for our player. If more than two

landmarks are detected, then candidate positions are estimated pairing all landmarks

with each other. Apparently when only one landmark is visible, we are unable to extract

any candidate positions.

Due to deviations in the landmark recognition module, circles are not perfectly aligned

on the field and the candidate positions do not necessarily match the true one. If d is the

distance between the two circle centers, and r0, r1 are the radius of circle 0 and circle 1

respectively, then five different occasions can emerge:

• Circles are separated When d > r0+r1, the two circles have no intersection points

and consequently no candidate positions. It occurs rarely when both landmarks are

far and therefore the error in the estimated distances is large. An example is shown

in Figure 5.4, where the distance to the two landmarks has been underestimated.

• Circles are coincident When d = 0 and r0 = r1, there is an infinite number of

intersections and so this occasion is also rejected.

George Georgakis 57 October 2012

5. SELF-LOCALIZATION

• Circles are tangent If d = r0 + r1 or d = |r1 − r0|, then there is a tangent point

between the two circles. In the first case, the circles are externally tangent, whereas

in the second case they are internally tangent. Thus, the desired candidate position

is located on one of the circles’ circumference. To extract that position, first we

have to find the θ angle on the plane indicating the orientation of one landmark

with respect to the other. If C1(C1x, C1y) and C2(C2x, C2y) are the center points of

the two circles and the landmarks positions respectively, then:

θ = arctan 2(C2y − C1y, C2x − C1x)

Now that if this angle is known we can calculate the P (Px, Py) point. If r1 is the

radius of the larger circle, then:

Px = r1 cos(θ) + C1x

Py = r1 sin(θ) + C1y

Figure 5.5 presents the above method for internally tangent circles in addition to

an example. In the first image the circumference point marked in red is a possible

location of our agent.

• Circles are contained within each other If d < |r1 − r0|, we have no inter-

section points. However, in this case we can compute the error between the two

distance estimations, subtract it from the larger circle radius and make the two

circles internally tangent, in which case we can use the solution applied in the pre-

vious occasion. We chose this resolution because typically the error is caused by the

distance estimation error of the farthest landmark. Assuming that r0 is the large

circle’s radius then the error e is computed as e = r0 − (d+ r1). After subtraction

the radius of the larger circle becomes equal to d+ r1. Figure 5.6 offers an example

of this occasion.

• Circles intersect If none of the above holds then two candidate positions can be

extracted using the method explained in Section 2.3.3. Figure 5.7 illustrates two

instances of this occasion. In the first image one of the candidate positions falls

outside the field’s border and is directly rejected, whilst in the second image both

candidate positions will be kept.

George Georgakis 58 October 2012

5.4 Candidate Position Filtering

θ

C1

P

r

C2

-3

-2

-1

0

1

2

3

-4 -3 -2 -1 0 1 2 3 4

Figure 5.5: Circles internally tangent yielding a single candidate position.

5.4 Candidate Position Filtering

After all candidate positions have been extracted, we need to determine which one is the

closest to the real position of the robot. Candidate positions that fall outside the field’s

borders are rejected during the previous stage. Additionally, we have to find the player’s

orientation in the field. For this task it is essential to calculate the orientation of each

recognized landmark in the orientation system of the field from each candidate position.

George Georgakis 59 October 2012

5. SELF-LOCALIZATION

-3

-2

-1

0

1

2

3

-4 -3 -2 -1 0 1 2 3 4

r1
r0

e

Figure 5.6: Contained circles due to overestimation of distance to landmark.

For each candidate position and for each recognized landmark, we compute the robot’s

orientation in the field by subtracting the observed direction angle to that landmark

from the computed orientation of that landmark in the field. If that candidate position

was the true one, all recognized landmarks would yield the same robot orientation in

that position. However, since most of them are incorrect, different recognized landmarks

would yield completely different robot orientations in the same candidate position. In

fact, even the best candidate position, due to observation errors, would not yield identical

robot orientations. Therefore, for each candidate position we find and store the maximum

difference between all pairs of the resulting robot orientations. The candidate position

yielding the least of these maximum differences is chosen as the best candidate. In other

words, we are seeking to obtain the candidate position that best matches all observation

angles of the recognized landmarks. Finally, the best robot orientation is taken from the

best candidate position. Algorithm 4 describes this procedure in detail. Next we will

present a series of examples:

1. In the instance of Figure 5.8 our agent was in a place to recognize the blue goal and

its posts, the field center, two corners in the edges of the field and the two junctions

George Georgakis 60 October 2012

5.4 Candidate Position Filtering

-3

-2

-1

0

1

2

3

-4 -3 -2 -1 0 1 2 3 4

-3

-2

-1

0

1

2

3

-4 -3 -2 -1 0 1 2 3 4

Figure 5.7: Intersecting circles yielding two candidate positions.

George Georgakis 61 October 2012

5. SELF-LOCALIZATION

due to the widening of the scan area. We notice that the majority of the candidate

positions is very close to the real one, and the chosen position is almost identical.

2. In the example of Figure 5.9 we were able to recognize the two goal area corners

besides the blue goal and its posts and the two corners on the edge. Similarly as

the previous example, most of the candidate positions are gathered in a small area,

very close to the real robot’s position. However, due to errors in the calculation of

direction the chosen position is not the best, but it is still satisfactory.

3. In Figure 5.10 we observe that although most of the field was visible, we were able

to recognize and use only five landmarks: blue goal left and right posts, yellow

goal left and right posts, and field center, because as mentioned in Chapter 3 our

camera’s resolution is small, rendering object recognition from far not dependable.

Nevertheless our best estimation is almost identical to the robot’s real position.

4. In the instance of Figure 5.11 we recognize the yellow goal posts, the two field

corners and the center circle. We notice that even though the full field’s center was

not in our scan area, a small part of it was visible in our image, making it possible

for a curved line to be detected.

All the above figures present various localization examples, illustrating the candidate

positions, the chosen best position, the robot’s real position and the landmarks recognized

in the process. During these examples the agent was alone and moving randomly in the

field.

5.5 Odometer

A very useful module in self-localization is the odometer. Its function is to update

the position and orientation of the agent, every time he makes a move. This way we

obtain another source of estimating our position, although it is not as dependable as

the localization procedure we described. This is due to the fact that errors accumulate,

as the odometer updates its values in consecutive time steps. Figure 5.12 displays the

aforementioned effect. Notice the rapid increase of error in the odometer values in both

occasions. This happens because the odometer takes into consideration the effect that

every motion has on the agent’s movement which cannot be perfectly measured. For

George Georgakis 62 October 2012

5.5 Odometer

Algorithm 4 Find Best Position and Orientation

1: Input: Positions,RecognizedLandmarks

2: Output: Best Robot Position and Orientation

3: for all p ∈ Positions do

4: for all l ∈ RecognizedLandmarks do

5: l.fieldDirectionAngle = arctan 2(l.y − p.y, l.x− p.x)

6: θ = normalizeAngle(l.fieldDirectionAngle+ l.observedDirectionAngle)

7: Orientations.add(θ)

8: end for

9: p.orientation = Orientations(0)

10: p.maxDiff = 0

11: for all (θ1, θ2) ∈ Orientations×Orientations do

12: diff =
∣∣normalizeAngle(θ1 − θ2)∣∣

13: p.maxDiff = max
{
p.maxDiff, diff

}
14: end for

15: end for

16: best = arg min
p∈Positions

{
p.maxDiff

}
17: return (best.x, best.y, best.orientation)

example, a motion that supposedly turns our agent 40◦ right, it doesn’t actually do so

with accuracy on the field; the actual turn angle may be anywhere between 35◦ and

45◦. Consequently, we avoid to use the odometer too many times without a localization

procedure based on landmarks intervening. When a localization outcome is accepted,

the odometer resets its values accordingly. The odometer is only used in the following

occasions:

• When the player recognizes less than two landmarks and so a candidate position

cannot be extracted.

• When all candidate positions are rejected before being able to choose the best

candidate position.

• When the best candidate position is more than half meter away from the odometer

position. However, if this occurs for a second consecutive time, then the odometer

values will be reset at the new position. This is done to prevent receiving false

George Georgakis 63 October 2012

5. SELF-LOCALIZATION

-3

-2

-1

0

1

2

3

-4 -3 -2 -1 0 1 2 3 4

Estimated Positions
Real Position

Best Estimated Position

Figure 5.8: Constraint-based localization example 1.

positions from the odometer, when the player falls on the ground or is being moved

by an external factor (i.e the supervisor).

The odometer updates the agent’s orientation by adding the turn angle of the last

performed turn motion to the already existing orientation angle. If this angle is not in

the [−π,+π] range, then it is normalized. The new position is updated depending on the

last performed move motion and the current orientation. If it is a forward motion then:

Odometerx = Odometerx + cos(θ)× d

Odometery = Odometery + sin(θ)× d

and if we are talking about a side step motion then the x,y estimations are reversed:

Odometerx = Odometerx + sin(θ)× d

Odometery = Odometery + cos(θ)× d

George Georgakis 64 October 2012

5.5 Odometer

-3

-2

-1

0

1

2

3

-4 -3 -2 -1 0 1 2 3 4

Estimated Positions
Real Position

Best Estimated Position

Figure 5.9: Constraint-based localization example 2.

where Odometerx and Odometery are the current odometer coordinates, θ is the current

orientation angle value and d is the distance traveled by the motion. The initial odometer

values are set to the predetermined positions depending on whether our agent is in the

blue or red team and whether it has the kick-off or not. At each kick-off the odometer

values are reset.

George Georgakis 65 October 2012

5. SELF-LOCALIZATION

-3

-2

-1

0

1

2

3

-4 -3 -2 -1 0 1 2 3 4

Estimated Positions
Real Position

Best Estimated Position

Figure 5.10: Constraint-based localization example 3.

George Georgakis 66 October 2012

5.5 Odometer

-3

-2

-1

0

1

2

3

-4 -3 -2 -1 0 1 2 3 4

Estimated Positions
Real Position

Best Estimated Position

Figure 5.11: Constraint-based localization example 4.

George Georgakis 67 October 2012

5. SELF-LOCALIZATION

-3

-2

-1

0

1

2

3

-4 -3 -2 -1 0 1 2 3 4

GPS Position
Odometry Position

-3

-2

-1

0

1

2

3

-4 -3 -2 -1 0 1 2 3 4

GPS Position
Odometry Position

Figure 5.12: Odometer values in comparison with the agent’s real position.

George Georgakis 68 October 2012

Chapter 6

Results

In this chapter we will demonstrate a variety of tests in order to present our self-

localization module’s performance. The tests are built around three scenarios: one agent

moving around in the field, one agent against two opponents, and a full game of four

players on each side. The reason for this variety is to display the different levels of dif-

ficulty an agent faces depending on the number of other robots in the field. In all three

occasions the simulation is let to run independently without any interference and at its

conclusion we collect the data we need, which are the agent’s real position via GPS and

our estimated one, for comparison.

6.1 Football Player Behavior

A football player behavior is required for our agent to participate in the aforementioned

scenarios. For the purposes of this thesis we employed a behavior that was formerly

developed during the course of “Autonomous Agents” in the Technical University of

Crete, in collaboration with my colleague Konstantinos Hatzipetrou [13]. It uses most of

the sensors and actuators that were presented in Section 2.2.3 in order to accomplish the

following:

• Detect when the player has fallen to the ground and also with what side so that it

chooses the appropriate motion to stand up.

• Detect any obstacles in front of it, recognize if the obstacle is an opponent, a

teammate, or a goalpost and try to avoid it.

George Georgakis 69 October 2012

6. RESULTS

• Recognize and track ball during the game, with the aim of approaching it and

attempting to shoot.

• Recognize and focus on opponent goal when ready to shoot.

• When a shoot motion is performed, detect if the ball was actually kicked. If not,

try to gain a better position for shooting.

In general this agent implements basic field player behavior. Slight modifications allowed

us to add the landmark recognition along with the self-localization module. In the en-

hanced behavior, we simply enabled our player to kick the ball towards the opponent goal

without trying to visually locate it first. This is made possible, because it is straightfor-

ward to compute the direction angle to the opponent goal, when our player knows his

position and orientation in the field. There are several opportunities to utilize a depend-

able localization module, such as team formations, roles, strategies, etc., however these

fall beyond the scope of this thesis.

6.2 Scenario 1: One Agent in an Empty Field

An agent is let to freely choose a random motion and move in the field. The GPS and

estimated positions are extracted just before our agent makes a move. So, after each

move, the agent performs a scan and localizes himself. This is a very simple scenario,

representing the best case, because we have no other players in the field to obstruct our

agent’s vision or cause misplacement. This scenario serves as the baseline of evaluating

our work. Figures 6.1, 6.2, 6.3, 6.4, 6.6 feature several examples of this scenario. We

observe that some self-location estimations are precise, while others are only close to the

real position. There is no case, where the estimated self-location is totally wrong. Notice

that the worst estimations are made when the agent is farther from any landmarks and,

therefore it, is more possible for deviations to occur.

6.3 Scenario 2: One Agent Against Two Opponents

In this scenario our agent is playing against two field players of the opponent team.

The total number of robots on the field is five including our player and, of course, the

George Georgakis 70 October 2012

6.3 Scenario 2: One Agent Against Two Opponents

-3

-2

-1

0

1

2

3

-4 -3 -2 -1 0 1 2 3 4

GPS Position
Estimated Position

Figure 6.1: Scenario 1: localization of a single player in an empty field (example 1).

-3

-2

-1

0

1

2

3

-4 -3 -2 -1 0 1 2 3 4

GPS Position
Estimated Position

Figure 6.2: Scenario 1: localization of a single player in an empty field (example 2).

George Georgakis 71 October 2012

6. RESULTS

-3

-2

-1

0

1

2

3

-4 -3 -2 -1 0 1 2 3 4

GPS Position
Estimated Position

Figure 6.3: Scenario 1: localization of a single player in an empty field (example 3).

-3

-2

-1

0

1

2

3

-4 -3 -2 -1 0 1 2 3 4

GPS Position
Estimated Position

Figure 6.4: Scenario 1: localization of a single player in an empty field (example 4).

George Georgakis 72 October 2012

6.3 Scenario 2: One Agent Against Two Opponents

-3

-2

-1

0

1

2

3

-4 -3 -2 -1 0 1 2 3 4

GPS Position
Estimated Position

Figure 6.5: Scenario 1: localization of a single player in an empty field (example 4).

-3

-2

-1

0

1

2

3

-4 -3 -2 -1 0 1 2 3 4

GPS Position
Estimated Position

Figure 6.6: Scenario 1: localization of a single player in an empty field (example 5).

George Georgakis 73 October 2012

6. RESULTS

two goalkeepers. The purpose is to observe how efficient our self-localization method

is in a semi-crowded environment. Figures 6.7, 6.8, 6.9, 6.10 offer four examples. It is

obvious that our estimations are not as good as those in the previous scenario, but still

dependable. When our agent falls on the ground the orientation arrow is not presented.

In the second example (Figure 6.8) we observe two totally wrong estimations. These occur

when the odometer calculations significantly deviate from the reality due to obstructions

in the field. This is similar to the occurrence of robot kidnapping, a well-known problem

in robot localization. However, as seen in the same example, the estimation is quickly

fixed in subsequent steps.

6.4 Scenario 3: Full Game

Here, we use all available players (three field players and one goalkeeper on each side) to

demonstrate a full game between two teams in Robotstadium. Our agent has to overcome

several difficulties in order to self-localize, such as low visibility of field landmarks, large

deviation of odometer, and high error rates. The opponent team was chosen deliberately

not to use their sensors to detect obstacles in their path resulting in multiple collisions

between robots in the game. This was done in order to simulate even worse conditions

than a Standard Platform League game to test our self-localization method. As a con-

sequence, our estimations are worse compared to the other two scenarios, but, given the

circumstances, are still sufficiently accurate and can deal with the kidnapping problem.

Figures 6.11, 6.12, 6.13, 6.14 present the estimated and the true traces of all three field

players of the team during a full game.

6.5 Evaluation

In order to compare the three aforementioned scenarios, we have obtained statistics from

multiple executions; these statistics include the average errors in position and orientation

estimations out of 50 samples in each case, as well as the 95% confidence intervals. Ta-

bles 6.1 and 6.2 show these values and Figure 6.15 displays these results graphically. Our

experimental results demonstrate that our approach leads to accurate self-localization

with the average error from the true location in position and orientation ranging from

12cm/4◦ in the empty 4m × 6m SPL field to about 42cm/23◦ in the worst case of a

George Georgakis 74 October 2012

6.5 Evaluation

-3

-2

-1

0

1

2

3

-4 -3 -2 -1 0 1 2 3 4

GPS Position
Estimated Position

Figure 6.7: Scenario 2: localization of one agent against two opponents (example 1).

-3

-2

-1

0

1

2

3

-4 -3 -2 -1 0 1 2 3 4

GPS Position
Estimated Position

Figure 6.8: Scenario 2: localization of one agent against two opponents (example 2).

George Georgakis 75 October 2012

6. RESULTS

-3

-2

-1

0

1

2

3

-4 -3 -2 -1 0 1 2 3 4

GPS Position
Estimated Position

Figure 6.9: Scenario 2: localization of one agent against two opponents (example 3).

-3

-2

-1

0

1

2

3

-4 -3 -2 -1 0 1 2 3 4

GPS Position
Estimated Position

Figure 6.10: Scenario 2: localization of one agent against two opponents (example 4).

George Georgakis 76 October 2012

6.5 Evaluation

-3

-2

-1

0

1

2

3

-4 -3 -2 -1 0 1 2 3 4

Player 1
Player 2
Player 3

Figure 6.11: Scenario 3: localization of all field players in a full game (example 1).

-3

-2

-1

0

1

2

3

-4 -3 -2 -1 0 1 2 3 4

Player 1
Player 2
Player 3

Figure 6.12: Scenario 3: localization of all field players in a full game (example 2).

George Georgakis 77 October 2012

6. RESULTS

-3

-2

-1

0

1

2

3

-4 -3 -2 -1 0 1 2 3 4

Player 1
Player 2
Player 3

Figure 6.13: Scenario 3: localization of all field players in a full game (example 3).

-3

-2

-1

0

1

2

3

-4 -3 -2 -1 0 1 2 3 4

Player 1
Player 2
Player 3

Figure 6.14: Scenario 3: localization of all field players in a full game (example 4).

George Georgakis 78 October 2012

6.5 Evaluation

Position (x, y) Mean Error Value (cm) 95% C.I.

Scenario 1 12.39 2.83

Scenario 2 27.83 9.62

Scenario 3 43.09 12.69

Table 6.1: Position error values for each scenario.

Orientation (θ) Mean Error Value (degrees) 95% C.I.

Scenario 1 3.53 2.86

Scenario 2 16.32 4.53

Scenario 3 22.91 11.20

Table 6.2: Orientation error values for each scenario.

full game. We observe that the number of players in a game significantly affects our

self-location estimations. The mean error values are quite low, when the agent is moving

alone in the field, but become high in the full game scenario, where visual obstructions

and misplacement due to pushing by other players are highly likely.

0

10

20

30

40

50

60

Scenario1 Scenario2 Scenario3

Position Error(cm)
Orientation Error(degrees)

Figure 6.15: Mean position and orientation error values for each scenario.

George Georgakis 79 October 2012

6. RESULTS

George Georgakis 80 October 2012

Chapter 7

Related Work

Given that there is insufficient information regarding how other RobotStadium partic-

ipants developed their teams, we expanded our search to any form of robotic football

simulation that embodies our field of research; landmark recognition and self-localization.

Some related work by other teams is presented shortly.

7.1 B-Human Standard Platform League Team

B-Human [14] is currently one of the most successful teams participating in the Standard

Platform League (SPL). It was founded in 2006 by the University of Bremen and the

German Research Center for Artificial Intelligence (AI). B-Human has won the SPL

championship in RoboCup 2009, RoboCup 2010, and RoboCup 2011. In their 2011 code

release they explain how their landmark detection module works and how self-localization

is implemented.

First, they run scan lines starting from the field border to the bottom of the image

to detect any non-green areas and they use them to create segments. Then, they create

regions by iterating over all segments and connecting the current segment to an existing

region or to a new one. Figure 7.1 displays this procedure. Two segments of the same

color touching each other need to fulfill certain criteria to be united to a region: they

cannot be larger than a maximum region size, the length ratio between them must not

exceed a threshold, there must not be a change of direction, and, finally, if they’re already

connected to a region, they cannot be united. Next, they classify the created regions

depending on whether they are parts of a line or the ball. Here, we will describe only

George Georgakis 81 October 2012

7. RELATED WORK

Figure 7.1: B-Human 2011 SPL team: usage of scan lines and region building.

the conditions needed for a region to be accepted as a part of a line: the region has to

be of a certain size containing a certain number of segments, a certain amount of green

pixels must be detected above and below or right and left of the region depending on its

orientation, and finally the axis of orientation must be determinable. All regions that

are accepted as parts of a line are stored as LineSpots. To built the field lines they use

the information stored in LineSpots and in addition they try to determine the existence

of a circle. When the clustering of straight line segments is done, all remaining line

segments are taken into account for the circle detection. For each pair of segments with a

distance smaller than a threshold, the intersection of the perpendicular from the middle

of the segments is calculated. If the distance of this intersection is close to the real circle

radius then a spot is created at that position. Then, the same procedure that was used

for line clustering is also used to find a cluster for the circle. Finally, all resulting lines

are intersected. Depending on where the start and end points of the two lines are, the

George Georgakis 82 October 2012

7.2 Kouretes 2008 RobotStadium Team

intersection type is decided.

To detect goalposts, they scan the projection of the horizon in the image for blue or

yellow segments to detect points of interest and attempt to find the foot and head of a

possible post. Next, they detect the borders of the post and therefore its width in order

to examine if it can be accepted. At the end, they transform the foot and head into

field coordinates, and if the distance between these two measurements doesn’t exceed a

certain threshold the foot coordinates are accepted.

For self-localization, B-Human uses a particle filter based on the Monte Carlo method.

This gives them the ability to obtain accurate results and to deal with the kidnapped

robot problem, albeit with a more complicated probabilistic method, compared to ours.

7.2 Kouretes 2008 RobotStadium Team

In 2008, Kouretes [15] entered the RobotStadium Competition and managed to qualify

for the final stages of the tournament. The field player agent of the team supported

basic movements, goal and ball detection, and a behavior module. Self-localization was

attempted, but was never included in the actual players. It used a particle filter based on

the Monte Carlo method. Due to the fact that only the goal posts were recognized, the

update of the particle weights was done in accordance to the goal distance and direction.

The estimated self-position was the mean value of all particles whose distance was less

than a given threshold from the particle with the highest weight. Because of the limited

field landmark recognition, the self-localization suffered from large deviations, especially

when goals were not in the visible area of the agent. Figure 7.2 offers an example of the

particle estimation when the agent is in the middle of field, looking directly to the goal.

7.3 Kouretes 2013 3D Simulation League Team

Kouretes plan to enter the 3D Simulation League [16] with a recently-developed frame-

work, implementing player behavior and team strategy. The 3D Simulation League is

similar to RobotStadium, given that they are both simulations and the football field

along with the players are graphically represented. However, the two competitions in-

tend to focus on different problems. In the 3D Simulation League there is no need for

George Georgakis 83 October 2012

7. RELATED WORK

Figure 7.2: Kouretes 2008 RobotStadium team: article filter estimations.

landmark recognition, because the game server is responsible for providing all necessary

information of the visible field landmarks to the players.

The self-localization method of this team is very similar to our implementation. For

every two visible landmarks, two circles are formed with radius equal to the observed

distance and each one of them is centered at the fixed coordinates of these landmarks.

These two circles intersect at two points which represent two candidate self locations.

Because all landmarks are situated along the border of the field, one of the two candidate

locations will always be outside the field limits. When more than two landmarks are

visible this procedure iterates between all pairs of landmarks. The final estimated location

is computed as the average of the outcomes of all pairs. Figure 7.3 shows an example.

7.4 Dutch Nao Team

Dutch Nao team [17] consists of Artificial Intelligence (AI) Bachelor’s and Master’s stu-

dents, supported by a senior staff member. They debuted at the Standard Platform

League (SPL) competition at RoboCup German Open 2010. We will examine their self-

localization method which uses a dynamic tree [18].

Dynamic tree localization splits the field recursively into blocks. Each node of the tree

represents a specific area or region of the field. Each block holds a probability that a robot

George Georgakis 84 October 2012

7.4 Dutch Nao Team

Figure 7.3: Kouretes 2013 3D Simulation team: self-Localization with two landmarks.

is in this block. Besides a probability, a block contains a list with the distance (a range)

and the angle (also a range) towards each possible observable feature. As features, the

goals and line crossings are used. All observed features are propagated through all nodes

in the current belief (the tree) and the probability of a block is updated depending on a

feature’s attributes. Once all observations are propagated through the tree, sets of rules

determine if a block needs to be expanded or collapsed. Collapsing a block results in the

removal of all the (grand)children which entails that the accuracy of the area described by

the block (and its children) decreases. Expanding works the other way around. When the

children of a node are created, a list with all minimum and maximum distances towards

all features in the environment is created. Having such a list makes it easy to check if

a feature is observable from a certain block. When the expanding process is over, the

estimated position is the node with the higher probability. Dynamic tree localization has

lower computational complexity compared to other probabilistic approaches, is robust

against noisy data, and can handle kidnapping.

George Georgakis 85 October 2012

7. RELATED WORK

George Georgakis 86 October 2012

Chapter 8

Conclusion

In the course of this thesis, we realized that landmark recognition and self-localization

in robotic football are two problems that can be under improvement indefinitely. The

fact that both take place in a dynamically, partially observable and noisy environment

renders them quite demanding with a high possibility of deviations in estimations. Our

self-localization module is proven to be inexpensive in terms of computational resources,

in comparison to other methods, because it avoids probabilistic calculations and up-

dates, which are time-consuming. This was crucial because the robot’s resources are very

limited.

8.1 Future Work

The current landmark recognition and self-localization modules are sufficient at the mo-

ment to accomplish our goal in this thesis. However, in the future this work can become

the basis of a very competitive RobotStadium team or it can be even modified and applied

to real Nao robot teams. Whatever the case may be, there are numerous improvements

that can be made. In this section we propose some of them.

8.1.1 Game Strategy

A self-localization method is little used, when it is not exploited to help team play.

So, a future installment would be a game strategy component that would embody a

coordination protocol among players, a role and responsibility assignment, and a better

George Georgakis 87 October 2012

8. CONCLUSION

team behavior. Our location estimations would navigate our agents to assume defensive

or offensive formations and thus gain an advantage towards an opponent team.

8.1.2 Ball and Player Localization

In order to have a global view of the world’s state, the coordinates of other players and

the ball can be calculated and placed into a general field map, providing us the advantage

of planning optimal paths towards the ball, while avoiding obstacles.

8.1.3 Dynamic Movement

Currently, our agent’s movements are controlled by predefined motions. This can present

problems during a game, due to the fact that the motions are not carried out perfectly in

the field. Additionally, there is no way we can detect if the motion was executed at all,

when another agent obstructs our player, rendering the odometer useless. To confront

this problem we have to create a dynamic locomotion module, which controls the robot’s

servos in real time, making decisions, and feeding us with information depending on the

agent’s perception. This way we can be informed accurately of all robot’s movements

and upgrade our odometer’s use.

8.1.4 Application to RoboCup SPL

Our approach seems to be working at a very acceptable level within the simulated envi-

ronment. An important future direction can be the transfer of our implementation from

the RobotStadium platform to the real Nao robot platform and the RoboCup Standard

Platform League, in the search of a more efficient and less time-consuming self-localization

module for our SPL team “Kouretes”.

George Georgakis 88 October 2012

References

[1] RoboCup: Official site: http://www.robocup.org. 5

[2] Kitano, H., Asada, M., Kuniyoshi, Y., Noda, I., Osawa, E., Matsubara, H.:

Robocup: A challenge problem for AI. AI Magazine 18(1) (1997) 73–85 5

[3] Kouretes: Official site: http://www.kouretes.gr. 7

[4] Robostadium: Official site: http://www.robotstadium.org. 8

[5] Marc, P.: Nao programming for the RobotStadium online contest (2009) Only avail-

able online: https://unball.googlecode.com/svn/humanoide/Walknao/Nao_

Programming_for_the_Robotstadium_On-line_Contest.pdf. 9

[6] Babas, K.: TUC United @ RobotStadium (2011) Semester Project in the Au-

tonomous Agents Course. Only available online: http://www.intelligence.tuc.

gr/~robots/ARCHIVE/2011w/projects/Babas/index.html. 9

[7] Cyberbotics: Official site: http://www.cyberbotics.com. 9

[8] Robotics, A.: Official site: http://www.aldebaran-robotics.com. 13

[9] RoboCup SPL Technical Committee: Standard Platform League rule book (2011)

Only available online: www.tzi.de/spl/pub/Website/Downloads/Rules2011.pdf.

13

[10] Wolberg, J.: Data Analysis Using the Method of Least Squares: Extracting the

Most Information from Experiments. Springer (2005) 16

George Georgakis 89 October 2012

http://www.robocup.org
http://www.kouretes.gr
http://www.robotstadium.org
https://unball.googlecode.com/svn/humanoide/Walk nao/Nao_Programming_for_the_Robotstadium_On-line_Contest.pdf
https://unball.googlecode.com/svn/humanoide/Walk nao/Nao_Programming_for_the_Robotstadium_On-line_Contest.pdf
http://www.intelligence.tuc.gr/~robots/ARCHIVE/2011w/projects/Babas/index.html
http://www.intelligence.tuc.gr/~robots/ARCHIVE/2011w/projects/Babas/index.html
http://www.cyberbotics.com
http://www.aldebaran-robotics.com
www.tzi.de/spl/pub/Website/Downloads/Rules2011.pdf

REFERENCES

[11] Casey, J.: “The Circle.” - Ch. 3 in A treatise on the analytical geometry of the point,

line, circle, and conic sections, containing an account of its most recent extensions,

with numerous examples. University of Michigan Library (2001) 17

[12] Weisstein, E.W.: Circle-circle intersection Only available online: http://

mathworld.wolfram.com/Circle-CircleIntersection.html. 18

[13] Georgakis, G., Chatzipetrou, K.: Team creation for the RobotStadium compe-

tition (2011) Semester Project in the Autonomous Agents Course. Only available

online: http://www.intelligence.tuc.gr/~robots/ARCHIVE/2011w/projects/

GeorgakisChatzipetrou/. 69

[14] Röfer, T., Laue, T., Müller, J., Fabisch, A., Feldpausch, F., Gillmann, K., Graf,

C., de Haas, T.J., Härtl, A., Humann, A., Honsel, D., Kastner, P., Kastner, T.,

Könemann, C., Markowsky, B., Riemann, O.J.L., Wenk, F.: B-Human team report

and code release 2011 (2011) Only available online: www.b-human.de/downloads/

bhuman11_coderelease.pdf. 81

[15] Chatzilaris, E.: Robotstadium 2008 participation (2008) Semester Project in the

Autonomous Agents Course. Only available online: http://www.intelligence.

tuc.gr/~robots/ARCHIVE/2008/projects/Chatzilaris/. 83

[16] Methenitis, G.: Player behavior and team strategy for the RoboCup 3D simulation

league. Diploma thesis, Technical University of Crete, Greece (2012) 83

[17] Verschoor, C., ten Velthuis, D., Wiggers, A., Cabot, M., Keune, A., Nugteren,

S., van Egmond, H., van der Molen, H., Rozeboom, R., Becht, I., de Jonge, M.,

Pronk, R., Kooijman, C., Visser, A.: Dutch Nao Team description for RoboCup

2012 (2012) Only available online: http://www.dutchnaoteam.nl/wp-content/

uploads/2012/05/Dutchnaoteam_2012_TeamDescriptionPaper.pdf. 84

[18] van der Molen, H.: Self-localization in the RoboCup soccer standard platform league

with the use of a dynamic tree. Diploma thesis, University of Amsterdam (2011) Only

available online: http://staff.science.uva.nl/~bredeweg/pdf/BSc/20102011/

VanDerMolen.pdf. 84

George Georgakis 90 October 2012

http://mathworld.wolfram.com/Circle-CircleIntersection.html
http://mathworld.wolfram.com/Circle-CircleIntersection.html
http://www.intelligence.tuc.gr/~robots/ARCHIVE/2011w/projects/GeorgakisChatzipetrou/
http://www.intelligence.tuc.gr/~robots/ARCHIVE/2011w/projects/GeorgakisChatzipetrou/
www.b-human.de/downloads/bhuman11_coderelease.pdf
www.b-human.de/downloads/bhuman11_coderelease.pdf
http://www.intelligence.tuc.gr/~robots/ARCHIVE/2008/projects/Chatzilaris/
http://www.intelligence.tuc.gr/~robots/ARCHIVE/2008/projects/Chatzilaris/
http://www.dutchnaoteam.nl/wp-content/uploads/2012/05/Dutchnaoteam_2012_TeamDescriptionPaper.pdf
http://www.dutchnaoteam.nl/wp-content/uploads/2012/05/Dutchnaoteam_2012_TeamDescriptionPaper.pdf
http://staff.science.uva.nl/~bredeweg/pdf/BSc/20102011/VanDerMolen.pdf
http://staff.science.uva.nl/~bredeweg/pdf/BSc/20102011/VanDerMolen.pdf

	1 Introduction
	1.1 Thesis Contribution
	1.2 Thesis Overview

	2 Background
	2.1 RoboCup Soccer
	2.1.1 Humanoid League
	2.1.2 Middle-Size League
	2.1.3 Small-Size League
	2.1.4 Standard Platform League
	2.1.5 Simulation League

	2.2 RobotStadium Competition
	2.2.1 Webots
	2.2.2 Node Architecture
	2.2.3 Sensors and Actuators
	2.2.4 Robot Model
	2.2.5 Field and Supervisor

	2.3 Mathematical background
	2.3.1 Least-Squares Fit
	2.3.2 Fitting a Circle to Three Points
	2.3.3 Intersection Points of Two Circles

	3 Problem Statement
	3.1 Simulated Nao Camera
	3.2 Landmark Recognition Problem
	3.2.1 Goals
	3.2.2 Field Lines

	3.3 Self-Localization Problem

	4 Landmark Recognition
	4.1 Color Segmentation
	4.2 Direction and Distance Estimation
	4.3 Field Border Detection
	4.4 Goal Recognition
	4.5 Field Lines Recognition
	4.5.1 Scan Lines
	4.5.2 Line Formation
	4.5.3 Line Splitting and Merging
	4.5.4 Line Classification

	4.6 Validation

	5 Self-Localization
	5.1 Field Coordinates
	5.2 Landmark Disambiguation
	5.3 Landmark Observation Constraints
	5.4 Candidate Position Filtering
	5.5 Odometer

	6 Results
	6.1 Football Player Behavior
	6.2 Scenario 1: One Agent in an Empty Field
	6.3 Scenario 2: One Agent Against Two Opponents
	6.4 Scenario 3: Full Game
	6.5 Evaluation

	7 Related Work
	7.1 B-Human Standard Platform League Team
	7.2 Kouretes 2008 RobotStadium Team
	7.3 Kouretes 2013 3D Simulation League Team
	7.4 Dutch Nao Team

	8 Conclusion
	8.1 Future Work
	8.1.1 Game Strategy
	8.1.2 Ball and Player Localization
	8.1.3 Dynamic Movement
	8.1.4 Application to RoboCup SPL

	References

