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Abstract

In present days, the advancement of robotic technology has opened several

possibilities for deployment in several domains, such as search and rescue,

surveillance, housekeeping tasks, elderly care, etc. However, despite the im-

proved hardware, the reduced costs, and the increased production rates of

robotic systems, the development of such consumer applications is still a do-

main of experts. This thesis describes Monas, a flexible software architecture

for the development of general-purpose robotic agents. Currently, robot soft-

ware developers have to overcome a variety of problems secondary to their

main task of development at the algorithmic and software level, such as hard-

ware differences, constantly evolving robot APIs, cross-compilation issues, per-

formance issues, and the lack of generic third-party software libraries. Monas

aims at addressing these problems by providing an abstraction from the robot

hardware level and a generic framework for synthesizing robotic agents. In

the quest of utilizing principled software engineering methodologies in the con-

text of robotics, we have integrated an Agent Oriented Software Engineering

(AOSE) methodology with Monas. Specifically, the Agent Systems Engineer-

ing Methodology (ASEME) was used for developing the software for a physical

robot team competing in the Standard Platform League of the RoboCup com-

petition (the robot soccer world cup). The team is composed by three humanoid

robots who play soccer autonomously in real time utilizing the on-board sens-

ing, processing, and actuating capabilities, while communicating and coordinat-

ing with each other in order to achieve their common goal of winning the game.

Our work addresses mainly the challenge of coordinating the robot’s base func-

tionalities (object recognition, localization, motion skills) in order to present a
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desired team behavior. Our framework demonstrates the added value of us-

ing an AOSE methodology in robotics, as ASEME allowed for compact repre-

sentations of the state of the agents and complex conditional state transitions,

automated a large part of the code generation process, and reduced the total

development time for the agents.
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Περίληψη

Στην σημερινή εποχή, η εξέλιξη της ρομποτικής τεχνολογίας έχει ανοίξει νέες

προοπτικές για ανάπτυξη σε διάφορους τομείς, όπως η αναζήτηση και διάσω-

ση, η επιτήρηση χώρων, οι οικιακές εργασίες, η φροντίδα ηλικιωμένων, κλπ.

Ωστόσο, παρά τη βελτίωση του υλικού, το μειωμένο κόστος και την αυξημένη

παραγωγή ρομποτικών συστημάτων, η ανάπτυξη τέτοιων εφαρμογών για το ευ-

ρύ καταναλωτικό κοινό, εξακολουθεί να απαιτεί την εμπλοκή εμπειρογνωμόνων.

Στην εργασία αυτή παρουσιάζεται η Monas, μια ευέλικτη αρχιτεκτονική λογισμι-

κού για ανάπτυξη ρομποτικών πρακτόρων γενικής χρήσης. Επί του παρόντος,

οι προγραμματιστές λογισμικού ρομποτικών συστημάτων πρέπει να ξεπερά-

σουν μια σειρά δευτερογενώνπροβλημάτωνπου ανακύπτουν πέρα από την κύ-

ρια εργασία της ανάπτυξης αλγορίθμων και λογισμικού, όπως οι μεταβολές στο

υλικό του ρομπότ, η συνεχής εξέλιξη του API, προβλήματα διαμεταγλώττισης,

ζητήματα απόδοσης, καθώς και η έλλειψη γενικών βιβλιοθηκών λογισμικού. Η

Monas στοχεύει στην αντιμετώπιση αυτών των προβλημάτων με την παροχή

ενός επιπέδου αφαίρεσης από το υλικό και ενός γενικού πλαισίου για τη σύνθε-

ση ρομποτικών πρακτόρων. Επιδιώκοντας την αξιοποίηση καταξιωμένων με-

θοδολογιών λογισμικού στο πλαίσιο της ρομποτικής, έχουμε ενσωματώσει μια

μεθοδολογία AOSE (Agent Oriented Software Engineering) στην Monas. Συ-

γκεκριμένα, η μεθοδολογία ASEME (Agent Systems Engineering Methodology)

χρησιμοποιήθηκε για την ανάπτυξη του λογισμικού για μια ρομποτική ομάδα

που συμμετέχει στο Standard Platform League (SPL) του διαγωνισμούRoboCup

(το παγκόσμιο κύπελλο ρομποτικού ποδοσφαίρου). Η ομάδα αποτελείται από

τρία ανθρωποειδή ρομπότ που παίζουν ποδόσφαιρο αυτόνομα σε πραγματικό

χρόνο χρησιμοποιώντας τις on-board δυνατότητες για αντίληψη, επεξεργασία,

και δράση, ενώ επικοινωνούν και συντονίζονται μεταξύ τους, προκειμένου να

επιτύχουν τον κοινό στόχο τους, να κερδίσουν δηλαδή το παιχνίδι. Η εργασία

vii



μας αντιμετωπίζει κυρίως το πρόβλημα του συντονισμού των βασικών λειτουρ-

γιών του κάθε ρομπότ (αναγνώριση αντικειμένων, εντοπισμός θέσης, κινητικές

δεξιότητες), προκειμένου να επιτευχθεί μια επιθυμητή ομαδική συμπεριφορά.

Το πλαίσιο που προτείνουμε καταδεικνύει την προστιθέμενη αξία της χρήσης

μιας μεθοδολογίας AOSE στη ρομποτική, καθώς η ASEME επέτρεψε συμπα-

γείς αναπαραστάσεις της κατάστασης των πρακτόρων και σύνθετες συνθήκες

μετάβασης καταστάσεων, αυτοματοποίησε ένα μεγάλο μέρος της διαδικασίας

παραγωγής κώδικα και μείωσε το συνολικό χρόνο ανάπτυξης των πρακτόρων.
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Chapter 1

Introduction

In present days, the advancement of robotic technology has opened several

possibilities for deployment in several domains, such as search and rescue,

surveillance, housekeeping tasks, elderly care, etc. However, despite the im-

proved hardware, the reduced costs, and the increased production rates of

robotic systems, the development of such consumer applications is still a do-

main of experts. This thesis describes Monas, a flexible software architecture

for the development of general-purpose robotic agents. Currently, robot soft-

ware developers have to overcome a variety of problems secondary to their

main task of development at the algorithmic and software level, such as hard-

ware differences, constantly evolving robot APIs, cross-compilation issues, per-

formance issues, and the lack of generic third-party software libraries. Monas

aims at addressing these problems by providing an abstraction from the robot

hardware level and a generic framework for synthesizing robotic agents.

Additionally, in the quest of utilizing principled software engineering method-

ologies in the context of robotics, we have integrated an Agent Oriented Soft-

ware Engineering (AOSE) methodology with Monas. Specifically, the Agent

SystemsEngineeringMethodology (ASEME)was used as it is an open-platform,

compact (requires the editing of a max of four models), and met the special re-

quirements for robotics.
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2 CHAPTER 1. INTRODUCTION

For the evaluation of our approach, we developed the software for a phys-

ical robot team competing in the Standard Platform League of the RoboCup

competition (the robot soccer world cup). The team is composed by three hu-

manoid robots who play soccer autonomously in real time utilizing the on-board

sensing, processing, and actuating capabilities, while communicating and co-

ordinating with each other in order to achieve their common goal of winning the

game. Our work addresses mainly the challenge of coordinating the robot’s

base functionalities (object recognition, localization, motion skills) in order to

present a desired team behavior. The software was implemented by three dif-

ferent approaches and finally it demonstrates the added value of using an AOSE

methodology in robotics, as ASEME allowed for compact representations of the

state of the agents and complex conditional state transitions, automated a large

part of the code generation process, and reduced the total development time

for the agents.

1.1 Thesis Overview

Chapter 2 provides some background information on the concepts used in the

thesis. This chapter is mainly intended to be a reference to the reader. Many

concepts are analyzed, with most important the Statechart (Section 2.4), Agent

System Engineering Methodology (Section 2.5), and the Narukom communica-

tion system (Section 2.6). Finally, the reader is introduced to RoboCup compe-

tition (Section 2.3), in which this thesis is evaluated. It is a rather introductory

chapter, presenting the basic ideas, subsequently should you need any further

details, please refer to the bibliography.

In Chapter 3 we discuss the problem that we aim to solve; where did we

receive our inspiration, what are our expectations from a software architecture,

and what were the difficulties that we faced on developing intelligent agents

on robots. All these questions are going to be answered in this chapter. Also,

Related Work (Section 3.4) is presented in this chapter.
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Continuing to Chapter 4 themain core of this thesis is presented, which is the

development of Monas architecture. The chapter is split it in three sections. The

first one describes the architecture structure and utilities within it (Section 4.1).

The second one, a simple way to instantiate software modules as well as with

a system for agent management (Section 4.2).

Moving on Chapter 5, a discussion on the results is taking place, provid-

ing a rather empirical evaluation of our work, since it was tested, judged and

compared against other team’s work in this competitive domain.

Lastly, in Chapter 6, we reader will find the conclusion, and some ideas for

further work.
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Chapter 2

Background

In this chapter we are going to discuss concepts that already exits and are used

by the implementation in this thesis. It acts both as a reference, as well as an

introduction to the reader to familiarize with the various fields that this thesis

combines.

2.1 Robotic Autonomous Agent

Researchers involved in the field of artificial intelligence often define the term

differently, each one trying to approach the essence of the agent in their con-

text of research. In this thesis, we specialize to autonomous agents running

on robotic platforms, therefor we can define the agent as a software entity or

system that inhabit some complex environment, has the ability to perceive it,

and acts autonomously in it. By doing so, the agent, realize a predefined set

of goals or tasks. The agent is viewed as an entity that perceiving its envi-

ronment through sensors and acting upon through the use of actuators. Can

be described mathematically (Equation 2.1), as a function f which maps every

possible percept sequence P ∗ to a possible actionA the agent can perform. We

5



6 CHAPTER 2. BACKGROUND

denote agents to be autonomous, at least to some degree,so that the agent ex-

ecutes independently, without any external interfering, making its decisions by

himself.

f : P ∗ → A (2.1)

The agent can be executed in a variety of environment with different charac-

teristics. Although the amount of possible different environments is vast, can be

classified according some properties to assist researchers in the agent design

process. The environment classification is done as follows:

Fully Observable or Partially Observable.

When the sensors of an agent provide access to the complete state of the

environment at each point of time the we derive the environment as fully

observable. If the environment because of sensor’s noise and inaccuracy

or because a part of the environment’s state is not covered by sensors the

environment is classified as partially observable.

Deterministic or Stochastic.

If the next state of the environment can be totally defined from the current

state and from the action that the agent executes then the environment is

deterministic; elsewhere is classified as stochastic. Whereas the environ-

ment is deterministic the agent may have the ability to partially observe it

and thus appear as a stochastic environment. Hence, it is generally best

to characterize the environment from the agent’s point of view.

Episodic or Sequential.

In an episodic environment the agent’s experience is divided into atomic

episodes. In each episode the agent receives a percept and the decides a

single action. The next episode does not does not depend on action done

on previous episodes. The selection of the action depends only from the

episode the agent is in. On sequential environments, on the other hand,

the current decision could affect all future decisions.
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Static or Dynamic.

An environment that has the ability to be modified while the agent is decid-

ing its next action then the environment is characterized as dynamic. The

characterization take place from the agent point of view and describe how

the environment is perceived by agent and is not assumed as amandatory

characteristic of the environment itself. If the environment is not dynamic,

then is classified as static.

Discrete or Continuous.

The separation between ta discrete and a continuous environment has to

do with the environment’s characteristics such as time, state and action

space. If the time can be discretized, as a turn based strategy game,

and the actions are also discrete, like the move of a chessman, then the

environment is discrete, otherwise is a continuous environment.

Single-Agent or Multi-Agent.

When the same environment is inhabited from multiple agents, is char-

acterized as a multi-agent environment, and when is inhabited by only

one agent a single-agent environment. Multi-agent environment can then

categorized into cooperative and competitive depending on inter-agent

relationship.

Generally the agent faces more difficulties when inhabits a partially observ-

able environment rather than a fully observable, a stochastic rather than an

episodic and so forth, with the latter classification in each characteristic making

the environment significantly harder for the agent to operate than the former.

2.2 Robot

Robot are electro-mechanical systems, capable for sensing its environment

and, with the use of actuators, modifying it in a way to achieve a goal or perform

a task. Robots are also often defined as physical agents as its usual environ-

ment is the real world and in rare cases a simulation world. The word ”robot”
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originate from the by Czech writer Karel Čapek in his play R.U.R. (Rossum’s

Universal Robots), published in 1920 [ČN04]. Robot nowadays are operated in

a variety of different applications and environments from manual labor, indus-

try, surgery and universe exploration to even intellectual tasks such as painting.

Robots, depending on the application, have various forms and shapes. Some-

times mimic the nature so their form is inspired from humans, dogs, hexapods

or larvas but mostly their shape is not found in nature and is designed for max-

imizing the robots efficiency such as the robotic arms and wheeled robots.

2.2.1 Aldebaran’s Nao Humanoid Robot

Nao is a humanoid robot developed by the French company AldebaranRobotics.

It is a programmable, medium-sized robot that reach the market on the first

quarter of 2008, after a tough research and development phase lasted over

three years []. The first version of the robot, was deployed for academic use

while the robot was also selected for the robocup competition. The platform

provides a great amount of precise sensors and actuators as well as a pro-

gramming framework, NaoQi named after the traditional Chinese culture, qi,

which enables fast and easy access to the robot’s hardware.

Nao robot is a 58 cm (23”) tall biped that weights about 4.3 kgs. TheRobocup

edition has 21 degrees of freedom, six on each leg, four on each hand, tow for

the head. The hip-yaw joint can not be controlled independently from each leg

but instead is coupled so that both legs share the same hip-yaw angle decreas-

ing the degrees of freedom to the total of 21. Nao’s on-board computer is an

AMD Geode system-on-a-chip microprocessor, clocked at 500MHz which sup-

ports the x86 instruction set. It occupies 256MB of Random Access Memory

(RAM) and a 2GB usb flash memory for storage purposes. The power on-board

is provided by a 6-cell lithium-ion (Li-ion) battery giving the robot about 90 min-

utes of autonomy. The robot is presented on Figure 2.1.
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Figure 2.1: Aldebaran’s Nao Robot (Robocup Edition)

The Nao’s operating system Linux distribution for usage on embedded sys-

tems and is customized by Aldebaran for use with the robot. As an interface be-

tween the robotic hardware Aldebaran provides the NaoQi framework capable

for controlling the robot’s actuators and gather the sensors information. Except

from the execution of simple control commands, NaoQi provides an interface

to more complex such as Cartesian space body-part movement as well as an

omni-directional walking engine. NaoQi additionally provides a Software De-

velopment Kit (SDK) that enable developing of custom applications. The SDK

provide two building methodologies: one that integrates directly on NaoQi, en-

abling fast access on the hardware, and a broker based which is failure tolerant

(as an application crash will not lead to a NaoQi crash) and can be used over the

network enabling power-consuming applications to run remotely. The architec-

ture is illustrated in Figure 2.2. Additionally, NaoQi except from the sequential

(blocking) calls, provide a mechanism for parallel execution, in which the call
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is assign to an other thread. Event driven programming, implementing through

callbacks, has a limited support. Finally, NaoQi calculates and checks if the

requested commands can be safely executed and aborts the commands that

can cause hardware damage.

Nao robot has a variety of sensors and actuators making it pretty competitive

among humanoid robots at this price list. It occupies twenty one variable-force

servo motors for executing complex movements as well as encoders in every

joint to provide the accurate angle of the joint. Nao operates two CMOS digital

cameras capable for video capture at a maximum resolution of 640x480 pixels

at 30 frames per second (fps). Stereoscopic vision is not available because

of hardware limitation which pose that only one camera can be enabled at the

moment and because the cameras are mounted on the forehead and on the

chin do not have an overlap area. Also two speakers and two microphones

can be used for sound communication mounted at the ears of the robot. The

speakers, in combination with the NaoQi’s text-to-speach (T2S) capabilities,

can be used for more natural communication between humans and the robot,

while the two microphones provide basic functionalities for sound localization.

Additionally four ultrasound sensors are placed on the robot’s chest for obstacle

detection.

Further more Nao provide internal inertial sensors, consisting of a 3-axis ac-

celerometer and a 2-axis gyrometer, located at the robot’s torso. Each foot oc-

cupies four force sensitive resistors which provide information on the pressure

distribution over the foot area and thus enabling the calculation of the center-

of-gravity (CoG). Bumpers at the front of each feet also provide detection of

collisions, sometime undetectable from the ultrasound sensors. A button at the

torso provide a convenient interface for starting-up and shutting-down the robot.

Finally wired - ethernet and serial - as well as wireless (WiFi) adapters provide

the necessary connectivity to the outer world.
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Figure 2.2: NaoQi’s middleware architecture

2.3 RoboCup Competition

RoboCup competition is an international research and education initiative. It

attempts to promote Artificial Intelligence and autonomous robotics by providing

a standard problem where wide range of technologies can be integrated and

examined. RoboCup was founded in 1993 by Hiroaki Kitano with a bold vision:

conduct a soccer game between a team of fully autonomous humanoid robots

and the human world soccer champions by the year of 2050, complying with

the official rule of the FIFA [KAK+97]. The name RoboCup is a contraction of

the competition’s full name, ”Robot Soccer World Cup”, but despite its original

name, there are many other stages of the competition such as ”Search and

Rescue” and ”Robot Dancing” have been added. The RoboCup competition,

while has a short history, has grown to a well-established annual event bringing

together the best robotics researchers from all over the world.
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Figure 2.3: RoboCup Federation’s Logo and major domains

RoboCup’s competitions bridges theory and practice as it poses real-world

challenges that the participants must overcome. Participating requires various

technologies to be incorporated that not only analyze the problem theoretically

but also require a wide range of system technicalities as well. Major problem

in robotics such as perception, cognition, action, and multi-agent collaboration

must be efficiently solved under real-time and resource constraints. RoboCup’s

competitive nature exhaustively tests the proposed approaches under the same

controlled conditions and promotes the best of them so to advance the state-

of-the-art in the area.

The contest currently holds four major competition domains, each with a

number of leagues and subleagues: RoboCup Soccer League, RoboRescue,

RoboCup Junior and RoboCup@Home. RoboCup’s main field of action is soc-

cer but despite its ostensibly simplicity, is considered as one of the most difficult

environments in Artificial Intelligence. As is an agent environment, it can be

classified as described in 2.1, hence it has the following attributes:

Partially Observable. While playing the agent has not full knowledge of the

environment due to sensor noise and error, camera restrictions and lack

of computational power so it is characterized as a partially observable

environment.

Sequential. A decision to move towards the ball will influence all the agents

later actions making the environment sequential.
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Stochastic. A kick’s success or not depends from a vast amount of parameters

that, although can be calculated analytically in theory, can’t be in practice

so the environment is considered as stochastic.

Dynamic. The environment is changing constantly, even during the time that

the agent is figuring out its next move, composing a dynamic environment.

Continuous. The player is playing in a real soccer field and its position is de-

termined by real coordinates.

Competitive Multi-Agent. The state space of the agent acts in is continuous

and many more agents, both friendly and rival, act in parallel forming a

multi-agent competitive and cooperative mixed environment.

To summarize, the trivial soccer environment for the human beings is for the

robotic agent very difficult to percept and even more difficult to decide the next

action.

2.3.1 RoboCup: Standard Platform League

Standard Platform League (SPL) belongs to the soccer domain of RoboCup

competition and is one of the most popular leagues. Each participant, uses

the same robotic platform to reduce the task of winning the game to the de-

veloping of efficient and sophisticated software implementations. This league

was formerly known as the Four-Legged League where the common platform

was Sony’s Aibo quadruped robotic dog. The current, common platform is the

humanoid Nao robot 2.2.1, provided by Aldebaran Robotics (Figure 2.4). The

league features three vs three games, increased to four vs four for 2011, in a

4× 6 meters soccer field marked with thick white lines on a green carpet. The

two colored goals (sky-blue and yellow) also serve as landmarks which aid the

localizing process of the robots on the field. The game consists of two 10-minute

halves and teams switch colors and sides at halftime. A complex set of rules

ensures the smooth flow during the game and is implemented by human pres-

ence. For example, a player is punished with a 30-seconds removal from the
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Figure 2.4: Standard Platform League game in Robocup 2010

field if he performs an illegal action, such as pushing an opponent for more than

three seconds, grabbing the ball between his legs for more than three seconds,

or entering his own goal area as a defender.

The main characteristic of the Standard Platform League is that no hard-

ware changes are allowed; all teams use the exact same robotic platform and

differ only in terms of their software. This convention results to the league’s

enrichment of a unique set of features: autonomous player operation, vision-

based perception, legged locomotion and action. Given that the underlying

robotic hardware is common for all competing teams, research effort has been

focused on the development of more efficient algorithms and techniques for vi-

sual perception, active localization, omni-directional motion, skill learning, and

coordination strategies. During the course of the years, one could easily notice

a clear progress in all research directions.

2.3.2 Team Kouretes

Team Kouretes was founded in February 2006 and became active in the Four-

Legged league. The team had its first exposure to RoboCup at the RoboCup
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Figure 2.5: Kouretes team 2008 formation. From left to right in the front row are An-

dreas Panakos (SPL), Daisy Chroni (Simulation Team), Alexandros Paraschos (SPL),

Stathis Vafias (Simulation Team), and in the back row Professor Michail G. Lagoudakis

(Kouretes Team Leader) and Georgios Pierris (SPL)

2006 event in Bremen, Germany, where it participated in the Technical Chal-

lenges of the Four-Legged league. At that time, Aibo programming by the team

was done exclusively in the interpreted Universal Real-Time Behavior Interface

(URBI), without any use of existing code. Subsequent work led to the partici-

pation of the team in the Four-Legged league of the RoboCup German Open

2007 competition in Hannover, Germany. The software architecture of the

team was developed on the basis of previously released code by GT2004 and

SPQRL 2006. In Spring 2007, the team began working with the newly-released

Microsoft Robotics Studio (MSRS). The team’s software was developed from

scratch exclusively in C# and included all the required services, as well as the

motion configuration files for the simulated RoboDog robot of RoboSoft. The

team’s participation in the MSRS Simulation Challenge at RoboCup 2007 in At-

lanta, USA led to the placement of the team at the 2nd place worldwide bringing

the first trophy home.
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In Spring 2008 the team switched to the new robotic platform, the Aldebaran

Nao humanoid robot, working simultaneously on the real robots and on the

Webots and MSRS simulators and developing new code from scratch. In the

recent RoboCup 2008 competition in Suzhou, China the team participated in all

divisions of the Standard Platform league (Aibo robots, Nao robots, NaoWebots

simulation, Nao MSRS simulation). The team’s efforts were rewarded in the

best possible way: 3rd place in Nao league, 1st place in the MSRS simulation,

and among the top 8 teams in the Webots simulation (Figure 2.5).

2.4 Statecharts

Finite state machines (FSM) are computational models that consist of a set of

states, an initial state, an input alphabet and a transition function that maps

every legal state combination to an other legal state combination, given an in-

put symbol. Hence, FSMs, “specifies the sequence of states an object goes

through during its lifetime in responses to events, together with its responses

to those events” [BRJ99]. FSMs achieve better results from textural represen-

tations when describing reactive rather than transactional systems.

Statecharts are state diagrams, very useful for behavioral modelling. They

differ from other forms of state diagrams, such as the classical finite state ma-

chines and its derivatives, because they address twomajor problems thatmainly

affect the number of nodes and transitions: hierarchy and orthogonality. Addi-

tionally, statecharts incorporate a very power visual representation which im-

proves the readability and understanding by the reader.

Statechart does not have a single formalism but instead have three, that ap-

pear to be very similar. Historically, the first one is Classical Harel’s state-

charts (as being implemented in Statemate [HN96]), while the other two were

developed almost concurrently—borrowing elements from each other—are the

object-oriented version of Harel’s statechart (implemented in Rhapsody [HK04]

tool) and the UML State Machine Diagrams, specified in [Gro05]. In this
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thesis, the formalism that is followed is a modified version of Rhapsody state-

charts (each difference is stated explicitly).

There are three types of states in a statechart [HK04], i.e. OR-states, AND-

states, and basic states. OR-states have sub-states that are related to each

other by “exclusive-or ”, and AND-states have orthogonal components that are

related by “and ”(they are executed in parallel). Basic states are those at the

bottom of the state hierarchy, that is those that have no sub-states. The state

at the highest level (the one with no parent state) is called the root. The active

states at a specific time, consist the active configuration of the statechart.

The execution flow is decided from the transitions between the states. Each

transition from one state (source) to another (target) can be labeled by an ex-

pression, whose general syntax is e[c]/a, where e is the event that triggers the

transition; c is a condition that must be true in order for the transition to be taken

when e occurs; and a is an action that takes place when the transition is taken.

All elements of the transition expression are optional. A transition with an empty

transition expression, all three parts missing, is called a null transition. More-

over, there are compound transitions (CT). These transitions are sequences of

transition segments, connected by special states (defined as connectors) be-

tween a source and a target state, or form an other point of view, transitions

that can have more than one source or target states. There are two kinds of

CTs: AND-connectors and OR-connectors. AND connectors are of two types,

joint transitions (more than one sources) and fork transitions (more than one

targets). The most commonly used OR-connector is the conditional transition.

The scope of a transition is the lowest level OR-state that is a common ancestor

of both the source and target states. When a transition occurs all states in its

scope are exited and the target states are entered.

Additionally, two more categories of states exist to help the realization of

specific behaviours on statecharts: psedo-states and transition connectors. In

the former category we can locate START and END states, witch represent the

initial transition and a sink (a state with no outgoing transitions). In the latter



18 CHAPTER 2. BACKGROUND

category we can find out states that are used on compound transitions such as

the junction, condition, fork and join connectors.

As being defined for FSMs, statechart are changing configurations given an

event. Then, none, one or more transitions (or compound transitions) are acti-

vated and change the active configuration of the statechart, leaving it in a legal

—statecharts can never “stop”their execution in the middle of a transition seg-

ment, a psedo-state, a connector or by activating a composite state and not it’s

substate —and stable (no more null-transitions can be executed) configuration.

Problems arise whenmore than one transitions can be executed at a specific

execution step, but each one leads to a different active configuration. The point

is crucial as if the two or more transitions are in different scopes, the one with

the lower scope has priority, but if the transitions are in the same scope, then

we arbitrary select one (the selection depends of the implementation).

Multiple concurrently active statecharts are considered to be orthogonal

components at the highest level of a single statechart. If one of the statecharts

becomes non-active (e.g. when the activity it controls is stopped) the other

charts continue to be active and that statechart enters an idle state until it is

restarted.

2.5 THE AGENT SYSTEMS ENGINEERING
METHODOLOGY

The Agent Systems Engineering MEthodology (ASEME) [SM10] is an Agent

Oriented Software Engineering (AOSE)methodology for developingmulti-agent

systems. It uses the Agent MOdeling LAnguage (AMOLA) [SM08], which pro-

vides the syntax and semantics for creating models of multi-agent systems

covering the analysis and design phases of a software development process.

It supports a modular agent design approach and introduces the concepts of
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intra- and inter-agent control. The former defines the agent’s behavior by co-

ordinating the different modules that implement his capabilities, while the latter

defines the protocols that govern the coordination of the society of the agents.

ASEME applies a model driven engineering approach to multi-agent sys-

tems development, so that the models of a previous development phase can

be transformed to models of the next phase. Thus, different models are created

for each development phase and the transition from one phase to another is as-

sisted by automatic model transformation, including model to model (M2M), text

to model (T2M), and model to text (M2T) transformations leading from require-

ments to computer programs. The ASEME Platform Independent Model (PIM),

which is the output of the design phase, is a statechart that can be instantiated

in a number of platforms using existing Computer Aided System Engineering

(CASE) tools.

2.5.1 ASEME Process

ASEME [SM10] specifies the entire software development process for the de-

velopment of agents. A Software Process is defined as a series of Phases that

produceWork Products. In each phase simple or complex activities take place.

Simple activities are defined as Tasks. Activities are achieved byHuman Roles.

Work products can be either graphical or textual models. Graphical models can

be Structural (focusing in showing the static aspects of the system—such as

class diagrams) or Behavioral (focusing on describing the dynamic aspects of

the system—what happens as time passes). Textual models can be completely

free text or follow some specifications or a grammar.

Three levels of abstraction are defined for each phase. The first is the soci-

etal level, in which the whole multi-agent system functionality is modeled. Then,

the agent level zooms in each member of the society, i.e. the individual agent.

Finally, the details that compose each of the agent’s parts are defined in the

capability level. The concept of capability is defined as the ability of an agent to

achieve specific tasks that require the use of one or more functionalities. The

latter refers to the technical solution(s) to a given class of tasks. Moreover,
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Figure 2.6: ASEME phases and their AMOLA products.

capabilities are decomposed to simple activities, each of which corresponds to

exactly one functionality. Thus, an activity corresponds to the instantiation of

a specific technique for dealing with a particular task. ASEME is mainly con-

cerned with the first two abstraction levels assuming that development in the

capability level can be achieved using classical (or even technology-specific)

software engineering techniques.

In Figure 2.6, the ASEME phases, the different levels of abstraction, and the

models related to each one of them are presented. Some of the products (like

the ontology product of the design phase) are not AMOLA models. In these

cases, classical software engineering models can be used. In the same figure

the reader can see the human roles that are expected to work at each phase.

2.5.2 AMOLA

AMOLA [SM08] describes both an agent and a multi-agent system. Before

presenting the language itself, some key concepts must be identified. Thus,

the concept of functionality is defined to represent the sensing, thinking, and

acting characteristics of an agent. Then, the concept of capability is defined

as the ability to achieve specific goals (for example, the goal of deciding which
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restaurant to dine in tonight) that requires the use of one or more functionalities.

The capabilities are themodules that are integrated using the intra-agent control

concept to define an agent. Individual agents are integrated to form a multi-

agent system using the inter-agent control concept.

The AMOLA models are related to the requirements analysis, analysis, and

design phases of the software development process. AMOLA aims to model

the agent community (by defining the protocols that govern agent interactions),

as well as the individual agents (by defining the agent capabilities and the func-

tionalities for achieving them). The agent’s functionalities are defined using

classical software engineering techniques.

In the requirements analysis phase, AMOLA defines the System Actors and

Goals (SAG) model, containing the system’s actors and their goals. In the

analysis phase, AMOLA defines the System Use Cases (SUC) model, where

the different activities that realize the agent capabilities are defined in a top-

down decomposition process, the Agent Interaction Protocol (AIP) model and

the System Roles Model (SRM), through which the previously defined activities

are connected to define the dynamic behavior of the roles, and the Functionality

Table (FT), which is mainly used by project managers to select the various tech-

nologies that will be used for the project implementation. In the design phase,

AMOLA defines the intEr-Agent Control (EAC) model and the Intra-Agent Con-

trol (IAC) model, which are based on the formalism of statecharts [HK04] and

define the functional and behavioral aspects of the multi-agent system. EAC

defines interaction protocols by specifying the necessary roles and the interac-

tions among them. The implementation of EAC is realized at the agent level

via the IAC, which specifies the capabilities and their appropriate interaction.

Finally, each capability is defined with respect to the required functionalities,

the technology used, the parametrization, and the implemented data structures

and algorithms. As a side note, IAC corresponds to the Platform Independent

Model (PIM) level of the Model Drive Architecture (MDA) [KWB03].
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AMOLA Metamodels

Use case model (SUC).

In the analysis phase, the analyst needs to start capturing the functionality

behind the system under development. In order to do that he needs to start

thinking not in terms of goal but in terms of what will the system need to do and

who are the involved actors in each activity. The use case diagram helps to

visualize the system including its interaction with external entities, be they hu-

mans or other systems. It is well- known by software engineers as it is part of

the Unified Modeling Language (UML). In AMOLA no new elements are needed

other than those proposed by UML, however, the semantics change. The ac-

tor “enters” the system and assumes a role. Agents are modeled as roles,

either within the system box (for the agents that are to be developed) or out-

side the system box (for existing agents in the environment). Human actors are

represented as roles outside the system box (like in traditional UML use case

diagrams). This approach aims to show the concept that we are modeling artifi-

cial agents interacting with other artificial agents or human agents. Finally, the

different use cases must be directly related to at least one artificial agent role.

Role model (SRM).

An important concept in AOSE is the role. An agent is assumed to undertake

one or many roles in his lifetime. The role is associated with activities and this

is one of the main differences with traditional software engineering, the fact

that the activity is no longer associated with the system, rather with the role.

Moreover, after defining the capabilities of the agents and decomposing them

to simple activities in the SUCmodel we need to define the dynamic composition

of these activities by each role so that he achieves his goals. Thus, we defined

the SRM model based on the Gaia Role model [WJK00]. Gaia defines the

liveness formula operators that allow the composition of formulas depicting the

role’s dynamic behavior. However, we needed to change the role model of Gaia

in order to accommodate the integration in an agent’s role the incorporation of

complex agent interaction protocols (within which an agent can assume more
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than one roles even at the same time), a weakness of the Gaia methodology.

The SRM metamodel defines the concept Role that references the concepts:

• Activity, that refers to a simple activity with two attributes, name (its name)

and functionality (the description of what this activity does),

• Capability, that refers to groups of activities (to which it refers) achieving

a high level goal, and,

• Protocol. The protocol attributes name and participant refer to the rele-

vant items in the Agent Interactions Protocol (AIP) model. It is used for

identifying the roles that participate in a protocol, their activities within the

protocol and the rules for engaging.

The final formula can be described briefly as, denote two activities, A and

B, A.B means that activityB is executed after activityA, Aω means that activity

A is executed forever (ti restarts as soon as it finishes), A|B means that either

activity A or activity B is executed and A||B means that activities A and B

are executed in parallel. Additionally to the Gaia operators, a new operator is

introduced: |Aω|n which define an activity can be concurrently instantiated and

executed more than one times (n times).

IAC Metamodel.

In our work we use statecharts to model both IAC and EAC. As we said be-

fore, it corresponds to modeling the interaction between different capabilities,

defining the behavior of the agent. This interaction defines the interrelation in

a recursive way between capabilities and also between activities of the same

capability that can imply concurrent or sequential execution. This is the basic

and main difference with the way that statecharts have been used in the past.

Moreover, we use statecharts in order to model agent interaction, thus using

the same formalism for modeling inter and intra- agent control, which is also a

novelty.
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Table 2.1: Templates of extended Gaia operators for Statechart generation

In the agent level, we define the intra-agent control by transforming the live-

ness model of the role to a state diagram. We achieve that, by interpreting the

Gaia operators in the way described in Table 2.1. Initially, the statechart has

only one state named after the left-hand side of the first liveness formula of the

role model (probably named after the agent type). Then, this state acquires

sub-states. The latter are constructed reading the right hand side of the live-

ness formula from left to right, and substituting the operator found there with

the relevant template in Table 2.1. If one of the states is further refined in a next

formula, then new sub-states are defined for it in a recursive way.

At the society of the agents, we define the inter-agent control (EAC) model.

The EAC is a statechart that contains an initial (START) state, an AND-state

named after the protocol, and a final (END) state. The AND-state contains as

many OR-states as the protocol roles named after the roles. Two transitions

connect the START state to the AND state and the AND state to the END state.

The transition expressions are defined in EBNF format defined by the user.

Transitions can be triggered by a timeout event or by the ending of the executing

state activity.

Both EAC and IAC models are defined by the IAC metamodel. The IAC

metamodel, shown in Figure 2.7, is defined in ecore format [BBM03] and de-

fines a Model concept that has nodes, transitions, and variables references.
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Figure 2.7: The IAC Metamodel

Note that it also has a name attribute. The latter is used to define the names-

pace of the IAC model. The namespace should follow the Java or C# modern

package namespace format. The nodes contain the following attributes:

• name, the name of the node,

• type, the type of the node, corresponding to the type of state in a statechart

(AND, OR, BASIC, START, END),

• label, the label of the node, and

• activity, the activity related to the node.

Nodes also refer to variables. The Variable concept has the attributes name

and type (e.g. the variable with name “count” has type “integer”). The next

concept defined in this metamodel is that of Transition, which has four attributes:

• name, usually in the form “<source node> TO <target node>”,
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• TE, the transition expression, which contains the conditions and events

that make the transition possible and through which the modeler defines

the control information in the IAC. TEs can use concepts from an ontol-

ogy as variables. Moreover, the receipt or transmission of an inter-agent

message can be used in a TE (in the case of agent interaction protocols),

• source, the source node, and

• target, the target node.

2.6 Narukom Communication Framework

Narukom communication framework, tries to address the communication needs

for inter- and intra- robot communication as well as robot-to-computer commu-

nication. It is a message-based architecture and provides a simple, efficient

yet flexible way of exchanging messages between robots, without imposing re-

strictions on the type of the data transferred over the network. The framework

is based on the publish/subscribe paradigm and provides maximal decoupling

not only between nodes, but also between threads on the same node.

Narukom uses Google Protocol Buffers for the creation of its messages.

Protocol Buffers are a way of encoding structured data in an efficient, flexible

yet extensible format and is being used by Google for almost all of its inter-

nal Remote Procedure Call protocols and file formats. Data serialization and

un-serialization which is needed for network transmissions, especially between

different platforms, is carried out by Protocol Buffers.

Each transmitted message has a topic identifier which determine where the

message is going to be delivered. Receivers must subscribe the topics that are

interested in, in order to receive communication messages. The topic field in a

message, is set by the message sender and is published across the network.

Additionally, each message comprise useful meta-data that are being trans-

fered across the network. The meta-data contains the sender node name, the
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Figure 2.8: Narukom architectural model

publisher name as well as integrated temporal information address synchro-

nization needs.

Moreover, Narukom provide a blackboard to the publish/subscribe architec-

ture. Blackboard is a software architecture model, in which multiple individual

share a common knowledge base. Individuals can read or update the contents

of the blackboard and therefore cooperate to solve a problem. Is common for

blackboards to organize the containing knowledge as efficient as possible to en-

able quick retrieval of data. Blackboard in Narukom is available only between

individuals that run on the same thread of execution and provides full access,

read/write, on local information and read-only access to information that arrives

from third-parties.
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2.7 Implementation Languages

This section presents a brief description of the programming languages used for

implementing, configuring and auto-generating code in Monas software archi-

tecture. This is not an exhaustive apposition, how could be, of all the language

semantics and constructs which appear inMonas implementation but it provides

an introduction to the key constructs most often encountered in day-to-day use.

2.7.1 C++

C++, pronounced ”cee plus plus”, is a general-purpose programming language,

developed by Bjarne Stroustrup in 1979 at Bell Labs as an enhancement to the

C language. C++ was originally named C with Classes and was renamed to

C++ in 1983. C++ is statically typed, which means that type checking performs

at compile time rather than run-time, free-form, as the positioning of the charac-

ters in the listing text are not significant to the language and multi-paradigm, as

both purely functional or purely object-oriented programs can be implemented.

It also combines both high-level and low-level language features as the devel-

oper can write from classes to assembly instructions. C++ is a compile lan-

guage, but it produce efficient and portable executables and avoids features

that are platform specific or not general purpose.

C++’s standard library provide a collection of classes and functions which

assist the developer to manage input-output, collections of data as lists, sets,

maps etc. and manipulate data with wildly spread algorithms.

Additionally C++ support templates, which enable generic programming.

Templates are evaluated, and -in a way- executed, by the compiler, enabling

developers to run compile-time computations. Templates are a powerful mech-

anism that can be used for generic programming. Indeed are so powerful
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that a new term is used to describe their functionality, template metaprogram-

ming. Templates are proof to be Turing-complete, meaning that any computa-

tion which is expressible by a computer program can be computed by a template

metaprogram.

As C++ is one of the most popular programming languages ever created, is

widely used in many environments and systems including embedded and high-

performance software making it ideal for robotics. C++ has influence many

popular programming languages as C# and Java.

2.7.2 Extensible Markup Language (XML)

Extensible Markup Language (XML) is a language for for encoding documents

in both human and machine readable form. The language semantics are de-

fined in the XML 1.0 Specification. XML’s goals emphasize in simplicity, gener-

ality, and usability. XML is a very structured and convenient format. It is a tex-

tual data format capable for representation of arbitrary data structures. As being

a markup language, special characters are used to distinguish the markup from

the content. These characters are ”<” and ”>”, and every string that belongs to

the markup must begin and end with them accordingly. Character strings that

does not belong in markup shape the content of the file.

Tag, as being a markup construct, starts with a ”<” and ends with ”>”. Tag

come in three different types: start tag, end tag and empty-element tag. The first

two types always must form a pair, in order to maintain a valid XML schema,

whereas the third one does not. The special character ”/” is used to disam-

biguate the different tag types, as its absence forms a start tag (<aTag>), the

use right after the ”<” form an end-tag (</aTag>) and the use before the ”>”

character an empty-element tag (<emptyElmTag/>).

Elements are components of a document that belong in a tag. They are

written between a start-tag and an end-tag and can contain markup as well as

content. The markup constructs inside an element tag are modelled as children
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of the element, forming that way a tree structure. Obviously empty element tags

can not contain any elements.

Attributes are constructs consisting of a name/value pair that exists within a

start-tag or empty-element tag. Multiple attributes can exists within the tag. The

difference between data elements and attributes is semantically: the element

is used to store the data whereas the attributes is used to store the meta-data

or information that characterize the tag that the attribute belongs.

Comments may appear anywhere in an XML document and are being iden-

tified by the ”<!–”, as the start tag for the comment and the ”–>” which signals

its end. Markup can also be enclosed in a comment section without the need

of escaping. Nested comments are not valid in XML syntax.

XML files rarely are read directly by the application that is using them but in-

stead an application programming interfaces (API) is used to process the data.

The processor analyzes the markup and passes structured information to an

application. Many application programming interfaces have been developed in

order to process XML data. The processor is often referred as an XML parser.

A document in addition to being well-formed, needs to be valid. The doc-

ument, in order to check its validity, must contain a reference to a Document

Type Definition (DTD) that describes the schema of the file. The schema deter-

mines the set of elements that may be appear in the document, which attributes

may be applied in each case and the allowable parent/child relationships. XML

processors are responsible to classify the document as valid or not and report

error if occurred.

2.7.3 XPand Language

XPand language was proposed by Open Architecture Ware (oAW) and is used

for Model-to-Text (M2T) transformations. The language is offered as part of the
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Eclipse Modeling Framework (EMP) [BBM03], a project which provides a uni-

fied set of modelling frameworks, tooling and standard implementations. The

language allows the developer to define a set of templates that transform ob-

jects that exist in an instance of a model into text. Major advantages of XPand

are the fact that it is source model independent, which is usually source code

but it can be whatever text the user desires, and its vocabulary is limited, allow-

ing for a quick learning curve.

The language requires as input a model instance, the model and the trans-

formation templates. XPand first validates the instance through the provided

model and then, as the name suggests, expands the objects found in the in-

stance with the input templates. It allows the user to define, except form the

expansion templates, functions implemented in Java language using the Xtext

functionality.

XPand is a markup language and uses the ”�” and ”�” to mark the start

and the end of the markup context. Enables code expansion using the model

stracture (i.e. expanding all child elements of a specific type inside a node) and

supports if-then-else stracture. Functions call be called inside markup.

The advantages of Xpand are the fact that it is source model independent,

its vocabulary is limited allowing for a quick learning curve while the integration

with Xtend allows for handling complex requirements. Then, EMP allows for

defining workflows that can help a modeler to achieve multiple parsings of the

model with different goals.

2.8 TinyXML Parser

TinyXML is a simple XML parser, implemented in C++ that is easy to integrate

into other programs. It solves the text I/O problem, as it enables to users to read

and write XML files. TinyXML is an open source project and was mainly devel-

oped by Thomason Lee. Aims to be a simple, basic parser that is easy-to-use.
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The parser builds from the XML file a Document Object Model (DOM) that can

be read and modified, and also can be saved back in the XML form. It also

supports construction of an XML document from scratch by adding the appro-

priate C++ objects to the DOM tree. TinyXML is designed to be easy and fast to

learn and that is why it keeps the application programming interface as simple

as possible.

TinyXML fully supports UTF-8 encoding and does not pose any special re-

quirements on the compliant system, as does not rely on exceptions, RTTI or

even the STL as it can be compiled without. The parser is relatively small in

size, making it candidate for low-power systems.

As a disadvantage, the parser does not support the use of DTDs and thus

XML files can not be verified according to their schema.

2.9 CMake Building System

CMake is an open-source, cross-platform building system. CMake differs from

transitional building systems in the way that does not control the whole building

process but instead it generates native makefiles and workspaces that can be

used in the compiler environment of your choice. Performs the crucial task of

managing the build process in a compiler independent fashion. Controls the

software compilation process using multiple, simple, platform and compiler in-

dependent configuration files which collectively form the standard build files.

A useful feature is that it allows out-of-source building, so that the object files

and the source are not under the same folder, and support concurrent build-

ing for different platforms. CMake except from the default builders for common

languages, supports custom builders improving the flexibility of the architec-

ture. Additionally possesses the capability of compiling source codes, creating

libraries, building executable files in arbitrary combinations, by the specified

commands regardless the platform and the operating system. Supports both
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static as well as dynamic library builds, as also a ”module” built which supports

dlopen functionality.

At first, CMake search for CMakeLists.txt file at the specified direc-

tory and then follows the directory stracture and includes configuration files into

sub-folders through the add_subdirectory directive. Complex directory hi-

erarchies are supported as well as applications dependent on several libraries.

It can also handles projects consisting of multiple libraries, wherein each li-

brary might be spread over several directories. Options and parameters can

be passed into the system so to modify the building process depending on the

user needs. A graphical editor exists to make the handling of the options and

arguments easier.

2.10 Software Design Patterns

Software design patters, as formally declared, are solution that boost source

code reusability and architectural design to commonly occurring problems in

software engineering. Design patterns are templates, or descriptions, which

provide a method for solving a problem on a range of different situations. Can

be transformed to source code with ease, but, generally, are not a finished

design. Patterns differ from algorithms as former solve issues that arise on the

software design whereas the latter solve computational problems.

2.10.1 Singleton Pattern

Singleton pattern is a design pattern that is used when restricting the instanti-

ation of a class to exactly one object is applied. The pattern does not create

necessary the object at initialization but it is possible the object to be created

on first use. It is generally useful when exactly one object is needed to coordi-

nate actions across the system, as in case of an object factory. The concept of
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the singleton is sometimes generalized in order to specify an upper limit on the

number of objects created.

An implementation of a singleton pattern must asserts the unity of the in-

stance and provide a global point to access it. A singleton is an improved

global variable. Unlike global variables, the singleton pattern not only provides

that global access point but also restricts the instantiation of more objects of

the same type. To satisfy the object uniqueness that the pattern demands, the

constructor and copy-constructor are implemented as a private or protected

members. The copy-constructor must be explicitly declared in order to avoid a

public default implementation declared by the compiler. Additionally the mech-

anism to access the singleton class globally can be achieved by implementing

a public static method that returns the instance of the class. The static keyword

provides the global access point to the rest of the source code. The method is

also responsible for managing the single instance lifetime: although a singleton

can be implemented simply as a static instance so that the compiler manages

the construction and destruction of the instance, or it can also be lazily con-

structed, so that no memory or resources are required until needed but leaving

themethod to destroy the instance correctly at the termination of the application.

2.10.2 Factory and Generic Factory Pattern

The factory pattern is software engineering pattern that is involved the process

of object creation. Object creation often is not a simple process and may not be

appropriate to include it within the final object itself as may lead to significant du-

plication of code or require information not accessible to the object. Factories,

as the name suggest, act as producers of a specific type of objects. Can take

advantage of class hierarchies to produce objects of different types but of the

same base class, as a factory could produce different variations of a product.

Additionally, the factory can manage special cases that concerns the object but

should not be handled by it on the build-up and tear-down of the object. In other

words, a Factory is the location in the code at which objects are constructed.



2.10. SOFTWARE DESIGN PATTERNS 35

The intent in employing the pattern is to insulate the creation of objects from

their usage. This allows for new derived types to be introduced with no change

to the code that uses the base class.

Factories introduce an abstraction layer and help in the aliquot of the whole

design and can aid statically typed, compile language, as C++, to emulate the

concept of virtual constructors, whereas the information of the type of the object

that will be created is known at runtime. The client does not know which con-

crete objects it gets from each of these factories since it uses only the generic

interfaces of their products. This pattern separates the details of implemen-

tation of a set of objects from their general usage. The generic factory pat-

tern provides a unified theme that encapsulate a group of individuals factories.

Generic factories are parametrizable on the product that is going to be created

and support different number of arguments on the products constructor.

2.10.3 Policy Based Design

Policy based design is a pattern originally developed for C++ language based

on a language idiom and was introduced by Andrei Alexandrescu in [Ale01].

The pattern uses C++ template metaprogram to enable compile-time selection

of an algorithm in a class. Although the technique is generic, and could be

applied to other languages as well, it’s strong bind with the particular feature

set of that language is a disincentive factor.

The pattern consists from a class template, typically named as the host

class, that is taking several type parameters as input, parameters that define the

class behaviour. These types are called policy classes and are defined by the

developer to implement a particular implicit interface. Policy classes encapsu-

late an orthogonal aspect of the behaviour of the host class, and the host class,

by deriving them acquires their functionality. Providing a host class with a num-

ber of different policy’s implementations enable an exponential number of dif-

ferent combinations, each defining a different class behaviour. The advantage
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Figure 2.9: Architecture of the Thread Pool pattern

of this, decomposition, approach is that the source code has increased modu-

larity and expandability as well as better class hierarchy design as it highlights

the orthogonal components that the class consists. Additionally, the class ”as-

sembly” is done at compilation time, thus the additional flexibility is introduced

without any run-time overhead.

2.10.4 Thread Pool Pattern

The thread pool pattern serves the problem where a number of tasks are as-

signed to a number of threads which are perform them. It is common that in-

coming tasks are organized in a queue, with the queue’s insertion policy varying

fromFiFo, LiFo and priority queue but other insertion schemes are not excluded.

At the completion of the task, the thread request the next task from the queue,

if exists, or sleeps otherwise. A graphical representation of the thread pool can

be seen on Figure 2.9. Creating and destroying a thread and its associated

resources is an expensive process in terms of time, which is the reason that

thread pools generally performs better from dedicated threads, when the tasks

are relatively small, as the pool’s threads are initialized once and are not de-

stroyed after the completion of the task but instead they request an other task.

Hence, the creation and destruction overhead is negated.

The number of threads the thread pool occupies is parameterized and can

be tuned to provide the best performance. Some implementations provide a
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variable number of threads, calculated dynamically, on the number of waiting

tasks. The total number of threads, may have a great impact on the system’s

performance as too many waste valuable resources and time for their creation,

whereas too fewmay cause significant latency from the task’s arrival to the start

of the tasks execution. Caution should be given not to create too many threads

as the throughput of the system will significantly decrease.

Thread pools can boost an applications flexibility and scalability as the ap-

plications can be run on single CPU cores systems to multi-core almost without

any modification, automatically improving the performance on the underlaying

system. Additionally, developers tend to write cleaner and easier maintainable

source code as it separates the task execution code from the thread manage-

ment code. Finally, thread pools are straightforward on their implementation,

with the only point that should be taken in notice, being the thread-safety of the

queue.
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Chapter 3

Problem Statement

3.1 Robotic Software Architectures

Since early ages of robotic development, designers wrote software to control

their robotic creations. The software needed to match the specific requirements

that robotic applications pose and the lack of available tools for this filed in-

creased the difficulty of developing robotic software. Developers used to pro-

gram the robot, to achieve a specific task, in a very verbose way, by writing

source code from top to bottom and often had the source code in, a consider-

able number of small, pieces that neither could be characterized as modules

nor could communicate. As a result, the robot could not be control in an efficient

way, limiting its capabilities not to due hardware constrains but due to improper

software implementations. Organizing the source code and standardize the de-

velopment procedure are two major problems that architectures must address.

First of all, software architecturesmust solve the problem of scattered source

code by introducing amodular approach on the design. They should provide the

appropriate mechanics for modular programming, enabling developers to divide

the problem efficiently into small fragments that can execute and co-operate into

39
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the architecture. Consequently, the source code acquires a structure and get

organized decreasing maintenance and improving development times.

Additionally, an other major problem is the communication between code

fragments. Communication can vary from simple cases, in which a message

must be delivered in the same executable object to extensive inter-object com-

munication in different network nodes, on different operating systems and sys-

tem architectures. Thus a robotic software architectures should cope with the

problem and provide an efficient and transparent way for communicating. Con-

sequently, it will allow developers to implement distributed algorithms, which

has two mainly effects. Firstly, it will enable high-level robot coordination and

secondly, it will allow developers to use dedicated, powerful systems to support

the on-board computer and increase the computational power.

Building source code for the target platform, usually the robot, can be a

difficult and time-consuming process that distract developers from their main

task. The process, in most of the cases, engage a cross-platform compiler that

either is not provided by the robot’s manufacture or, although that is provided,

requires additional configuration. Architectures must address the case and pro-

vide an easy-to-use interface that covers the whole building process and free

developers from the task.

Furthermore, developers working with physical robots, often attribute de-

crease on developing times on the lack of system and external libraries for the

target platform, while building them on their own is very problematic. Robotics

architectures should address the problem and provide building capabilities for

external source code, that does not require developers to know how to config-

ure the compilation and linking process but instead build the external source

code as it would normally do within the architecture.

Finally, a robotic software architecture should be support execution on per-

sonal computers, as it will enhance both the debugging and testing procedure,

as well as it will speedup the developing process.
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3.2 Agent Developing

An other major problem is the robotic agent development. Developers, usually,

do not follow a methodology for the creation of the agent and the main reason

is the is not easy to incorporate them with the underlaying framework, or if they

do, does not control the robot efficiently. The architecture should be designed to

enable integration with existing methodologies or even provide one. The effects

of a standardized procedure for agent creation, as we present on Chapter 5 are

profound.

3.3 Robot Independence

In software engineering, and engineering in general, there is a saying that each

problem must be solved only once. In our case, can be interposed as the fol-

lowing: developers should be able to implement a generic algorithm and run

it irrespectively of the underlaying robotic system. To achieve that, a good de-

sign of a robotic software architecture should be transparent to robot changing,

which means that a replace of the robotic platform should reflect form little to

no changes at the source code. The developer then, is able to implement high

level generic algorithms and compare their performance directly on different

platforms, with ease. To achieve that, the architecture should not only be capa-

ble of compiling on different platforms, but also is important to have the robotic

sensors and actuators modelled as well, in order to support transparency on

changes in the robot’s API.

3.4 Related Work

Murray [Mur03] proposes the use of extended statecharts for defining the be-

havior of RoboCup players. He designs the agent based on what he calls
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“modes”. These, however, need to be executed in parallel with sensors and ac-

tuators an issue not explained adequately. His work supports semi-automatic

code generation for Robolog, a robot programming language based on Pro-

log. The proposed methodology ha been tested only in RoboCup simulation

leagues, but not on real robots.

Gascuen�a and Fernández-Caballero [GFC09] used the Prometheusmethod-

ology [WP04] to design a robot. Their approach models each sensor and actua-

tor of the robot as an agent, whereas in our work these are considered as func-

tionalities coordinated using the intra-agent control concept. In Prometheus,

the authors use the terms of functionality and capability. However, they are

not used as independent terms. In fact, functionalities and capabilities refer

to the same concept as it evolves through the development phases (i.e. the

abilities that the system needs to have in order to meet its design objectives).

The support for implementation, testing, and debugging of Prometheus models

is limited. Another limiting issue of the methodology is the fact that the proto-

cols definition using AIP diagrams is not used later somehow formally at the

agent level. This means that the developer has to undertake the mental task of

transforming the AIP diagrams to processes. The authors propose that process

diagrams are to be developed by looking at the protocols involving the agent

in question, as well as the scenarios developed and the goals of the agent.

This is an issue that almost all the AOSE methodologies suffer from: the lack

of a systematic way to integrate interaction protocol specifications to the agent

capabilities.



Chapter 4

Our Approach

4.1 Software Architecture

4.1.1 Introduction

In our approach, we visualize the robot as a collection of agents. Agents are

running concurrently, having their own goals. They can use any information

available not only on the robot itself, but also information available on the robot’s

environment, for example other connected robots and computers. Thus, Monas

framework aims to manage the robot’s agents, allocate the resources appropri-

ately and provide a developing process for composing agents. Additionally,

Monas provide the necessary platform independence, in both robots and com-

puters, improving source code reusability among with software tools that ease

the developing of agents components. Composing the above, makes clear the

architecture’s name: Monas. According to the ancient Greek philosophers, the

Pythagoreans, Monas represents the first being, the indivisible, but also the to-

tality of all beings. Its symbol, a circle with a point at its center, is also been

used in astronomy, symbolizing the sun, as well as by alchemists to represent

gold. Hence, Monas, or μονάς in Greek, as software architecture for robotic

43
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Figure 4.1: Monas Software Architecture Components

agents represents the totality of the robot. Monas’s design goals include being

a convenient platform for agent developing and debugging.

4.1.2 Agent Decomposition

A major goal of any software architecture is to reach a sufficient level of ab-

straction in order to organize the source code, so Monas decompose the agent

into activities. An activity refers to a simple activity that the agent has the ability

to transact. The activity is suppose to be as simple as possible, but is not force

to, so providing the developer the necessary structure for organizing the code

without compensating its freedom.

To deal with larger activities, Monas provide further decomposition of ac-

tivities into functionalities. Functionalities are the implementation of what an



4.1. SOFTWARE ARCHITECTURE 45

activity does and each activity must be associated with at least one functional-

ity. Functionalities are source elements that implements a very specific feature

and are in the bottom of the hierarchy. Although the latter decomposition step

is not optional in the design, it can be omitted in practice when there is no gain

by decomposing the underlaying activity, like when the implementation is of the

activity functionality pair counts only a few lines of code.

The decomposition makes use of a stronger model in agent creation which

is beneficial because it guides the developer to divide the problem and conquer

each of the subproblems that arise (following the D&C paradigm), but also im-

proves the code reusability as functionalities and activities can be freely used

without modification in as many activities and agents respectively as the user

likes. The developer can also trace the execution of the activities and thus the

modification and data creation throughout the agent cycle proving a better de-

bugging performance. Another advantage of the activity model is that agents

can be modified at runtime by adding and/or removing modules without having

to stop the execution of the architecture or even of the agent.

4.1.3 File System Structure

Monas in order to organize the source code, makes use of the filesystem hier-

archy structure to separate the source code into divisions relative to the useful-

ness of each file. The resulting directory tree is presented in Figure 4.2. Each

directory is used to hold a certain type of files, so:

• config folder contains all the configuration files for both the architecture

and the user activities

• doc contains the architecture and user-written in-code documentation

• external folder holds source code and libraries that are not part of the

Monas
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config doc ex te rna l make scripts
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narukom sta techar tEngine generic_linux generic_windows robot target_l inux

aibo generic_nao nao_1_3_17 nao_1_6_0

Figure 4.2: Monas’s directory tree structure

• make directory contain utilities for building the architecture. Currently tow

subdirectories can be found undermake: build_linux and build_nao

each contains the appropriate configuration for building the architecture

for the linux and nao platform respectively.

• script is used to store useful user-scripts for setting up, configuring and

copying the executables to the robot.

• src directory contains the fundamental code for the architecture:

– activities user-defined activities source code

– architecture core-code of the Monas software architecture

– functionalities user-defined functionalities

– hal hardware and platform dependent source code. The folder

contains the generic infrastructure for robot support as well as their

implementations for specific robots. Also contains code to support

building on widely spread platforms, such as Microsoft Windows and

Linux.

– messages contains both the .proto files as well as the generated

.h and .cpp from the proto compiler. The defines the serializeable

classes used for communication.

– statecharts user created statecharts.
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Required Data Activity Provided Data

Functionality Functionality

Figure 4.3: Monas’s Activity Model

4.1.4 Activities in depth

Activities, as described in section 4.1.2 , are the base units of agents. Activities

are used to model the inside of the agent, introducing an abstraction layer that

helps the developing process. Activities may vary in size, depending on the

developers needs and style, but have a very specific task and accomplish it,

they use functionalities. The activity model, as illustrated in Figure 4.3 can be

described as an operator on data: requires data before its execution, and pro-

vides a data output after execution. The input/output data representations can

be formalized as messages, as described in 2.6, so that they can be transmit-

ted without further modification or extensive packaging. Whereas functionalities

are closely related with activities in the design model, functionalities are imple-

mented by classes defined by the user, with user created interfaces. Monas

does not force any constrains of formalism in functionalities. The developer, in

order to use the appropriate functionalities, must include the header files and

instantiate the functionalities manually.

The activity interface that is defined by the architecture consists from three

abstract functions that the developer must implement:
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1 class IExecutab le {

2 public :

3 v i r t ua l i n t Execute ( ) =0 ;

4 } ;

5

6 class I A c t i v i t y : public IExecutab le {

7 public :

8 void I n i t i a l i z e ( Narukom* , Blackboard * ) ;

9 v i r t ua l void Use r I n i t ( ) = 0 ;

10 v i r t ua l std : : s t r i n g GetName ( ) =0 ;

11 protected :

12 Narukom* _com ;

13 Blackboard * _b lk ;

14 } ;

The Execute() function, as the name suggests, will be called at runtime

when the activity needs to be executed and must contain the code that will

accomplish the activity’s task. The UserInit() is called when the activity is

initialized and can be used for communication as well as functionality and class

variable initialization. Finally the GetName() is used by the architecture to

display and manage the loaded activities.

Activities provide a mechanism for inter-agent communication through the

Narukom communication system. After the activity instantiation, Monas sets

through the Initialize() routine the instance of the Narukom and the

Blackboard assigned to the underlaying activity. The developer can access

Narukom directly through the internal protected variables.

Publishing the activities to the architecture is done by registering the activity

into the activity registrar. This is done by creating a temporary variable as is

demonstrated in 4.1. The variable is created within an unnamed namespace to

avoid namespace pollution. When the variable instantiates an entry containing

the activity name and a function pointer to the activity construction will be in-

serted to the ActivityFactory. The ActivityFactory is implemented as a singleton,

so only one instance of the factory may exist. Both ActivityFactory and Activi-

tyRegistrar, which are defined in 4.2, are specializations of the GenericFactory
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1 namespace {

2 Ac t i v i t yReg i s t r a r <BehaviorGoal ie > : : Type temp ( ” BehaviorGoal ie ” ) ;

3 }

Listing 4.1: Registering an activity to the ActivityRegistrar

1 typedef Gener icFactory < I A c t i v i t y , s td : : s t r i n g > Ac t i v i t y Fa c t o r y ;

2

3 template<class T>

4 struct Ac t i v i t yReg i s t r a r {

5 typedef Regis t ra r <Ac t i v i t yFac t o r y , I A c t i v i t y , s td : : s t r i ng , T> Type ;

6 } ;

Listing 4.2: Definition of ActivityFactory and ActivityRegistrar

and Registrar respectively. The implementation of the generic factory and its

registrar is discussed in section 4.1.6.

Finally, a CMake template is created to ease the building process. The

developer has to create a CMakeLists file and set the ActivityName and

ActivitySrcs variables before the inclusion of the activity cmake template

file. The process is presented in Listing 4.3. External libraries or other libraries

build within the project can be linked normally with the target_link_libraries

directive. Monas creates the ActivityBuildType variable that controls the

built of the activity: if is set to STATIC the activity will be statically link to the

executable, if is set to SHARED a dynamically loaded library will be created

and if set to MODULE the activity will be build as a dynamic library but Monas

will load it with a dlopen system call. The latter is the most sophisticated

approach from the three because does not require the final executable to be

linked with the library, making the building process simpler and faster. Monas

auto-detects the activities, Listing 4.3, under the activities folder and thus the

building system hasn’t to be modified each time a new activity is developed.
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1 set ( Act iv i tyName Behavior )

2 set ( A c t i v i t yS r c s Behavior . cpp )

3 i nc lude ( . . / ac t ivTemplate . cmake )

4 t a r g e t _ l i n k _ l i b r a r i e s ( Behavior NaoQiDep )

Listing 4.3: CMake example for building an activity

1 f i l e ( GLOB F i l e s I nD i r . * )

2

3 foreach ( a f i l e $ { F i l e s I nD i r } )

4 i f ( IS_DIRECTORY $ { a f i l e } )

5 set ( theSubDirs $ { theSubDirs } $ { a f i l e } )

6 message ( STATUS

7 ” A c t i v i t y $ { a f i l e } detected and added to the bu i l d i n g t ree ” )

8 end i f ( IS_DIRECTORY $ { a f i l e } )

9 endforeach ( a f i l e )

10

11 foreach ( subd i r $ { theSubDirs } )

12 add_subdi rec tory ( $ { subd i r } )

13 endforeach ( subd i r $ { theSubDirs } )

Listing 4.4: Activity auto-detection

4.1.5 Robot Abstraction & Platform Independence

Monas architecture is designed to be a mobile architecture framework that sup-

ports a variety of robotic platforms. The only platform requirements posed by

the architecture are the availability of a cpp (cross-) compiler for the on-board

computer and the appropriate configuration to accomplish the building.

In order to separate the user’s source code from the underlaying platform,

Monas introduce an abstraction layer that consists form a set of interfaces. The

set is divided into two major sections: one that manages the robots sensors and

actuators, and one for managing platform specific and operating system issues.

That approach is appropriate because it separates the robot from its operating

system and enables the architecture to run on a personal computer while is

configured for a specific robotic platform.
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Figure 4.4: Robot Abstraction Model

A robot has multiple means to interact and sense its environment. Robotic

actuators, such as the robot motors, affect the robots environment, where as

robotic sensors, such as the camera, sense it. The robot abstraction model is

illustrated in Figure 4.4. The user can expand the existing interfaces to match

its needs. Implementation of the interfaces, which of course depend on the

underlaying robot, are located in directory under the robots name (Figure 4.2.

A good policy is to control calls to the robot API through these interfaces so that

robot sensors and actuators are only accessed through special wrapper calls.

If these calls are the only ones with direct access to the robot API, enable the

developer to implement, test and debug algorithms that are robot-independent.

Direct comparison of these algorithms can be done with ease under different

robotic platforms.

Monas is designed to run on different operating systems. To achieve it,

system calls and the concurrency model has to modeled. The Thread and

Mutex interfaces model the concurrency framework whereas the SysCall

interface is used to group and manage the required system calls. Finally the

Main() function, which acts as the application’s start point, is also modeled.

Monas provide Talws class which encapsulate the whole architecture, and

convenient methods Start and Stop direct the execution of the framework.

Developer has just to instantiate an object of the class. Thus Monas, except
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Figure 4.5: CMake building options

from standalone execution, can be integrated with ease in any existing frame-

work.

Building system undertake the task to auto-detect available robots and plat-

forms. Platform dependent options which are required for the correctly build-

ing of the software architecture are locate within the interface implementations.

Thus, all the necessary platform-dependent files for a specific platform are

grouped under the same directory. Figure 4.5 presents the special options that

direct the building to the selected platform.

4.1.6 Tools & Utilities

To ease the developing process, Monas provides tools that facilitate the config-

uration and debugging of agents.

Logger

The Logger tool is used to capture useful output from both the agents and

the architecture. It separates the information into five main sections according

to their significance: FatalError , Error , Info , ExtraInfo and

ExtraExtraInfo . The significance level, determines whether the information
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1 <?xml version= ” 1.0 ” ?>

2 < !−− Con f igu ra t i on f o r logger module −−>

3

4 <MessageLogFile>MonasLog . t x t < / MessageLogFile>

5

6 < !−− MessageLogCerr set to ’ 1 ’ w i l l p r i n t logger messages −−>

7 < !−− to standard er ro r , ’ 0 ’ w i l l not −−>

8 <MessageLogCerr>1< / MessageLogCerr>

9 <MessageLogCerrColor>1< / MessageLogCerrColor>

10

11 < !−− A c t i v i t i e s t ha t w i l l reach the LogFi le −−>

12 < !−− Fa ta lE r r o r and Er ro r d i r e c t i v e s can ’ t be blocked −−>

13 <!−− Spec ia l keyword ’ a l l ’ w i l l enable a l l a c t i v i t i e s −−>

14 <MessageLogFil ter > a l l < / MessageLogFil ter >

15

16 <!−− Fa ta lE r r o r =0 , Error , In fo , Ex t ra In fo , Ex t r aEx t ra In fo −−>

17 <!−− Verbos i ty l e v e l i s l im i t e d to >= 0 Fa ta lE r r o r can ’ t be blocked−−>

18 <LogF i leVerbos i t yLeve l>4< / LogF i leVerbos i t yLeve l>

Listing 4.5: Logger Configuration File

will reach the actual output of the logger, or not. The configuration is done

through an XML file, as in Listing 4.5, which controls expect from the verbosity

level, the filename (and the output path) that the data will be written in, a filter

that enables only specific activities to reach the output preventing information

pollution, and two special flags: the first one that redirects the output also to the

standard error stream, and the second one that colors that output.

Logger also ensures that FatalError messages can’t be blocked with ei-

ther selecting a negative verbosity lever or by filtering the activity that is produc-

ing them. Additionally, FatalError , Error messages are flushed to output

immediately to assert that can be retrieved even if the architecture crashes.

Using the logger tools is meant to be an easy process. As demonstrated in

Listing 4.6, to output an information message the developer calls WriteMsg

function which is templated and accepts as message any type that implements

the streaming operator. The Logger tools is instantiated as a Singleton so the
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1 class LoggerClass {

2 public :

3 enum MsgType { Fa ta lE r r o r =0 , Error , In fo ,

4 Ext ra In fo , Ex t raEx t ra In fo } ;

5 template<class T>

6 void WriteMsg ( s td : : s t r i n g name, const T& msg, MsgType type ) ;

7 } ;

8

9 typedef Single ton <LoggerClass> Logger ;

10

11 Logger : : Ins tance ( ) . WriteMsg ( ” Behavior ” ,

12 ” E r ro r i n ge t t i n g memory proxy ” , Logger : : E r ro r ) ;

Listing 4.6: Logger tool interface and usage

1 template<class T>

2 std : : s t r i n g _ toS t r i ng ( T va l ) {

3 std : : os t r ings t ream ost ;

4 ost << va l ;

5 ost . f l u sh ( ) ;

6 return ost . s t r ( ) ;

7 }

Listing 4.7: _toString function implementation

user can access it easily and the architecture asserts that at most one instance

of the logger exists.

Using the logger tool can be quite frustrating when the exit message con-

tains a string and a variable because you can not concatenate them. Thus

the _toString function comes along which accepts any type that can be

streamed and returns a string with the result. For the implementation, as is

shown in Listing 4.7, we use the stringstream form the standard library in which

we stream the input variable.
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XML Parsing Library

Monas prefer XML as the configuration language. Although XML is not very

human friendly, ensures correctly parsing of the configuration files in any plat-

form. Monas also encourage the developer to use XML for the configuration

of the agents, when of course there is no significant overhead. Hence, Monas

provide an XML library to read and create XML files. The library comes into two

flavors: XMLConfig and XML.

XMLConfig is a simplified version of an XML pareser library and does not

support the full schema of the XML. The main simplification the library does is

that it manages all XML tags as root tags and thus the tree structure that denotes

the XML files does not be preserved. While this sound pretty restrictive when

used with configuration files in the architecture is not and the much simpler

interface enhances the usability of the library and speed ups the development.

XMLConfig provides two ways to read and modify an XML file. The first

way manages tag-element pairs which can be queried and set through the

QueryElement and SetElement methods respectively, whereas the sec-

ondwaymanages tag-attributes pairs. Implementing tag-attributemanagement

enable multiple name-variable pairs to be read/written with a single method call.

The methods that query and set the variable pairs are overloaded instances of

the previous ones. The XMLConfig interface is listed in 4.8.

XMLConfig is a templated library that allow the developer to use any type

that can be streamed. Basic types are supported by default and any user de-

fined type can be used by implementing the streaming operators. Both QueryElement

and SetElement methods supports this functionality. When setting up an el-

ement, the isIterative option controls the creation of new tuples: when

false, which is also the default value a new tuple will be created if does not exist

and the element value will be store in it. If the tuple exists, the element value will

be modified to the new value. When true a new tuple will be created whether a

tuple with the same tag exists or not.
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1 class XMLConfig {

2 public :

3 XMLConfig ( const std : : s t r i n g & f i lename ) ;

4 bool IsLoadedSuccessfu l ly ( ) const ;

5 bool SaveConf igurat ion ( ) ;

6

7 template < class T >

8 bool SetElement ( const std : : s t r i n g& ElName ,

9 const T& Value , bool i s I t e r a t i v e = fa lse ) ;

10 template < class T >

11 bool QueryElement ( const std : : s t r i n g& ElName , T& Value ) const ;

12 template < class T >

13 bool QueryElement ( const std : : s t r i n g& ElName ,

14 std : : vector <T>& Value ) const ;

15 template < class T >

16 bool SetElement ( const std : : s t r i n g& ElName ,

17 const std : : map<std : : s t r i ng , T > & Values ,

18 bool i s I t e r a t i v e = fa lse ) ;

19 template < class T >

20 bool QueryElement ( const std : : s t r i n g& ElName ,

21 std : : map< std : : s t r i ng , T > & Values ) ;

22 template < class T >

23 bool QueryElement ( const std : : s t r i n g& ElName ,

24 std : : vec to r < s td : : map< std : : s t r i ng , T > >& Values ) ;

25 } ;

Listing 4.8: XMLConfig class Interfce

In order to store a tag with multiple attributes, XMLConfig implements a

SetElement overload method that accepts a map. The map uses as key a

character string and the value type can be defined by the user. Multiple tag

entries can be store and retrieved by using the appropriate vector overloads.

Example 4.9 describes the storage of a pose sequence for the Nao robot,

4.10 the resulting XML file and 4.11 the code that retrieves the sequence. The

value type has not been indicated to the library but is automatically detected

through the template mechanism. The above method is transparent because

poses can be store and retrieved in a generic manner with the sequence that

the joints to influent the process.
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1 XMLConfig con f i g ( ” t e s t . xml ” ) ;

2 s td : : map<std : : s t r i ng , double> pose1 , pose2 ;

3

4 pose1 [ ”HeadYaw” ]=0 .876 ;

5 pose1 [ ” HeadPitch ” ]=1 .324 ;

6 pose2 [ ”HeadYaw” ]=0 .227 ;

7 pose1 [ ” HeadPitch ” ]=0 .912 ;

8

9 con f i g . SetElement ( ” pose ” , pose1 , true ) ;

10 con f i g . SetElement ( ” pose ” , pose2 , true ) ;

Listing 4.9: Storing of poses in a configuration file

1 <?xml version= ” 1.0 ” ?>

2 <pose HeadYaw=0.876 HeadPitch=1.324 / >

3 <pose HeadYaw=0.227 HeadPitch=0.912 / >

Listing 4.10: The resulting XML file

Monas’s XML library, although is does not support the full XML schema,

it support much more complicated schemas. This flavor preserves the tree

structure and enables searches within specific branches of the tree. To assist

the tree traversal, a tree node structure is defined. As listed in 4.12, the node

structure contains the tag’s name, element and attributes. The developer can

then query tags by name and get as a reply a vector of tree nodes. Every node

will contain both the element value as well as a map of string-value pairs of the

attributes stored in the tag. The query function, which is listed in 4.13, accepts

also an XMLNode in the parameters list defining the tree node that will search

in to. If no node is passed in the query the search is narrowed to the root of the

tree.

The careful reader will note that the XMLNode (List: 4.12) does not have

a public accessor or mutator for the node field to prevent arbitrary access to

the tree structure. It encapsulates the tree information and can be used only in

combination with the query. The only assertion made in the implementation of

the library is that all attributes inside a tag are of the same type.
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1 XMLConfig con f i g ( ” t e s t . xml ” ) ;

2 std : : vector <s td : : map<std : : s t r i ng , double> > poses ;

3 bool found = con f i g . QueryElement ( ” pose ” , poses ) ;

Listing 4.11: Reading the poses from the configuration file

1 template<class TxtType , class AttrType , class Key = std : : s t r i ng >

2 class XMLNode {

3 public :

4 std : : s t r i n g name ;

5 TxtType value ;

6 std : : map<Key , At t rType > a t t r b ;

7 XMLNode( s td : : s t r i n g name) : name(name) , node ( 0 ) ;

8 private :

9 const TiXmlNode * node ;

10 XMLNode( s td : : s t r i n g name, const TiXmlNode * node ) ;

11 f r iend class XML;

12 } ;

Listing 4.12: XMLNode class

Both library flavors do not parse the XML file by themselves but instead

they use TinyXML parser. The libraries act as an additional abstraction layer

that maintain a constant interface which is not subject to variations by changes

in the TinyXML’s API. Additionally the parser change is possible with minimum

changes in the source code. The newly defined user interface, especially for the

XMLConfig library, is much easier to use than a full parsers interface, enabling

the developer to prefer XML as the configuration language.

Abstract Factories

To deal with the problem of activity instantiation given the activity name in string,

Monas implements the abstract factory pattern. The generic factory class, List-

ing 4.14, maintains an associative container, currently set to map, to keep prod-

uct identifications and pointers to object construction entries that will allow later
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1 class XML {

2 public :

3 XML ( const std : : s t r i n g & f i lename ) ;

4 template <class TxtType , class AttrType , class Key >

5 std : : vector <XMLNode<TxtType , Att rType , Key> > QueryElement (

6 const std : : s t r i n g & ElName ,

7 XMLNode<TxtType , Att rType , Key> * pNode = NULL) const ;

8 } ;

Listing 4.13: XML Query Class

to instantiate the product. Currently products that take none, one or two ar-

guments at their constructor are supported but can be extended to almost any

number of arguments by creating additional CreateObject methods.

In order to ease the registration of a product a Registrar was cre-

ated. The registrar is responsible to create the appropriate functions that create

a product and then register the product and the created function to the fac-

tory. The creation of the functions exploits the fact that given a template class

the compiler implements only the functions that are called in the source code

and only for the specific type. Registrar creates the overloaded function

NewProductFunc that accepts up to three parameters and returns a new

product instance. The compiler then selects the appropriate function given the

number of parameters. Extension to support more parameters can be easily

done.

Monas make use of the abstract factory pattern in the cases of activity and

thread instantiation. Abstract factories are easy to used as demonstrated in

Listing 4.2 and 4.1 for using with activities.

Singleton

As the Singleton pattern is used in the architecture, an abstract singleton

implementation had to be created. The Singleton class has private constructor
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1 template <

2 class Product ,

3 class IdType ,

4 class ProductCreator = Product * ( * ) ( ) ,

5 class T1 = bool ,

6 class T2 = bool ,

7 class Er ro rPo l i c y =P r i n tE r rAndEx i tPo l i c y >

8 class Gener icFactory : public Er ro rPo l i c y {

9 public :

10 bool Regis ter ( const IdType& id , ProductCreator c r ) ;

11 Product * CreateObject ( const IdType& id ) ;

12 Product * CreateObject ( const IdType& id , T1 p1 ) ;

13 Product * CreateObject ( const IdType& id , T1 p1 , T2 p2 ) ;

14 private :

15 typedef std : : map<IdType , ProductCreator > Id2TypeMap ;

16 Id2TypeMap assoc ;

17 } ;

Listing 4.14: Abstract Factory Implementation

and destructor and unimplemented copy constructor and assignment operator

so that singleton objects can not created outside the singleton class and can

not be copied. The class is templated so any class can act as a singleton by us-

ing a typedef directive. The instance can be accessed through the Instance

method which returns a reference to the statically created object. Listing 4.15

indicates the Singleton implementation and demonstrates its usage. The

singleton pattern is used in the architecture for the logger and the abstract fac-

tory implementations.

Stopwatches

Stopwatches allow measuring the execution time on a code segment. The

users should instantiate a StopWatch object and select a policy for the time

measurement. Default policy calculates the time by using exponential mov-

ing average, so instead for the specific time interval, the average is returned.
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1 template< class T>

2 class Sing le ton : public T {

3 public :

4 s ta t i c T& Instance ( ) {

5 s ta t i c T t ;

6 return t ;

7 }

8 private :

9 Sing le ton ( ) ;

10 Sing le ton ( const Sing le ton &) ;

11 Sing le ton& operator =(const Sing le ton &) ;

12 ~Sing le ton ( ) ;

13

14 } ;

15

16 typedef Single ton <aClass> aSingletonClass ;

Listing 4.15: Singleton implementation and usage

1 template<class AvgPol = StatMovingAverage>

2 class StopWatch : public AvgPol {

3 public :

4 void Star tT im ing ( ) ;

5 double StopTiming ( ) ;

6 } ;

Listing 4.16: StopWatch class interface

Additionally, the policy provides the average variance also calculated by expo-

nential moving average algorithm. The interface of the stopwatch class is listed

in 4.16. The policy based design enables implementations of new policies to be

easily added on the stopwatch; new policies may define a new interface that is

available only on objects that uses the policy, without interfering with the rest.
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1 <agent IsRealTime=1 P r i o r i t y =1 ThreadFrequency=10 StatsCycle=15>

2 <name>Motion< /name>

3 < a c t i v i t y >V is ion< / a c t i v i t y >

4 < a c t i v i t y >Behavior< / a c t i v i t y >

5 < / agent>

Listing 4.17: XML agent definition

4.2 Agent Management

To control the agent creation a primitive agent management system was imple-

mented. Agents are defined in an XML file, Listing 4.17, and instantiate at run-

time. Each agent runs at its own thread with its activities executed sequentially.

The proposed approach has the advantage that is very easy to understand and

use efficiently. Managing agents from an XML file that is required at the start of

the architecture, gives the developer the freedom to change the components of

the agent and create new agents without the necessity to recompile the source

code. Monas also supports to start and terminate agents on the fly, by sending

the appropriate network message. Agent modification is also supported over

the network but the interface is not implemented yet.

Monas parse the XML configuration file and instantiate the agent. As shown

in Listing 4.18, the agent derives from the Thread class which deduce that the

agent will run at its own thread of execution. The set of the activities passed to

the agent through its constructor in a form of a string vector and then the agent

instantiates the activities with appropriate calls to the activity factory, Listing

4.19. As presented in Listing 4.17, the agents thread can be configured through

the XML file. The IsRealTime and Priority attributes control the kernel

scheduling of the underlaying thread and are compatible only with pthreads.

The ThreadFrequency attribute controls the number of execution cycles in

a second (or the Hertz). The execution cycle starts when the first activity in the

activities list starts its execution and ends when the last activity has finished.

The agent then sleeps for 1/ThreadFrequency - ExecInterval sec-

onds before the start of the next cycle. If the resulted time is negative, a warning
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1 class Agent : public Thread {

2 public :

3 Agent ( s td : : s t r i n g name, AgentConfig cfg ,

4 Narukom* com, s td : : vector <std : : s t r i ng > a c t i v i t i e s )

5 v i r t ua l ~Agent ( ) ;

6 i n t Execute ( ) ;

Listing 4.18: The agent class interface

1 for ( Ac t i v i t yNameL is t : : c o n s t _ i t e r a t o r i t = a c t i v i t i e s . begin ( ) ;

2 i t != a c t i v i t i e s . end ( ) ; i t ++ )

3 _ a c t i v i t i e s . push_back (

4 Ac t i v i t y Fa c t o r y : : Ins tance ()−>CreateObject ( ( * i t ) ) ) ;

Listing 4.19: Agent activity creation

message is print in the logger and the execution continues immediately to the

next cycle. Developer has the ability to time schedule the activities controlling

the ThreadFrequency and, indirectly, control the cpu load. The agent model is

thus suitable for any type of agents, from reactive agents to complicated com-

puter intensive as well as any combination of them.

Debugging procedure is also boosted by this agent management system, as

the developer can isolate the components of the agent one by one until it creates

a minimum set of activities that reproduce the error so that the search for it is

narrowed. Furthermore, as it can been noticed in Listing 4.17, the developer

can print statistics from the time scheduling of each agent as well as of each

activity inside the agent. The StatsCycle attribute controls the frequency the

statistics will be printed. Time statistics are smoothed using the exponentially

weighted moving average for the mean time of execution for both agents and

agent’s activities but the variance is also been calculated to help the developer

to spot inconsistencies in the expected execution time.
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4.3 ASEME Methodology

In our quest for a principled approach to designing complex elaborate agents,

we found that ASEME 2.5 and AMOLA offer a number of advantages compared

to other related methodologies. ASEME is a convenient methodology for agent

developing and enhances Monas to a complete architecture which supports all

phases in the physical agent developing process, from requirement analysis

to agent design. The final step of the realization of the designed agent is to

implement and configure the agent for the specific hardware platform.

ASEME, is model driven development (MDD) process which guides the de-

veloper from gathering requirements to an implementation Platform-Specific

Model (PSM). These platform-specific models, can be automatically or man-

ually transformed to source code. ASEME produces a platform-independent

model (PIM) as the outcome of the design phase that includes the Intra Agent

Control (IAC) and the Inter Agent Control (EAC), which are based on the for-

malism of statecharts. Thus, we need a run-time statechart execution engine

for instantiating these models on the robotic platform.

4.3.1 Yet Another Statechart Engine (YASE)

YASE statechart model details and comparison with existed models

The statechart model that this engine supports has differences from the com-

mon ones found in the literature([HN96, HK04, Gro05]). Compared to the most

popular platforms, i.e. the Statemate tool [HN96], UML 2.0 [Gro05] and Rhap-

sody tool [HK04], the notation and schematics defined and used by YASE are

closer to the Rhapsody tool. The differences are in most of the cases quite

simple, but their effects can dramatically change the execution behaviour and

lead to unexpected results.

First of all, before analyzing the differences, the transition expression gram-

mar must be defined. In a transition expression the user should be able to,
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optionally, define events and conditions, as well as multiple actions if desired.

Additionally, the grammar must describe the access of variables in order to

create a unified scheme. At YASE, the variable model is similar to an ontology,

and variables can be described by their message type (a structure similar to

the object-oriented class) and the message’s element (a class public member).

If the variable originates from an other capability, but within the same host, the

capabilities name has to be specified before the message and element names.

Finally, to access a variable sent by another host, the modeler has to specifies

the agent’s name before the rest of the expression. In YASE, there are two

special action directives, “process_messages” and “StartTimeout”. The former

applies an update to the communication system and the latter, as the name

suggests, starts a timeout. When the timeout expires, a timeout event is send

to the engine. The transition expressions are defined in EBNF format (based

on Russel) and are depicted in Figure 4.6).

YASE adopts the strategy of defining START-states and END-states as in

the UML 2.0 specification. While the START-state substitutes the default tran-

sition scheme of Rhapsody, the END-state represents a state with no outgoing

transitions. The latter is modeled as a simple state, rather than a psedostate,

as the transition algorithm, must be able to “stop” when in this state. Addition-

ally, more than one transitions, with conditions (guards) in their expressions,

can originate from a START-state, as opposed to UML 2.0. The limitations that

are posed in this case are that all the outgoing transitions targets must be inside

the composite state and that at least one, not to have a condition.

The engine gives the freedom to the developer, to decide if he wants to use

condition-states or multiple transitions connecting the source states to the all

targets states. Both cases will lead to the same active configuration with the

latter having a performance penalty on a high number of outgoings transitions.

When a transitions is taken, conditions are evaluated before the any action’s

execute, a structure similar to the static choice of the UML specification.

Unlike STATEMATE and UML, the engine is following Rhapsody approach

and does not support neither conjunction, disjunction or negation of events. The
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transitionExpression = [ event ] [ ”[” condition ”]” ] [ /action ]

event = string

condition = variable compOp ( variable | value )

| condition logicOp condition | ”(”condition”)”

| ”not” ”(”condition”)”

action = variable ”=” ( variable | value )

| action connectiveOp action | ”process_messages”

| ”StartTimeout(” variable ”,” time ”)”

compOp = ”<” | ”<=” | ”>” | ”>=” | ”==” | ”!=”

logicOp = ”&&” | ”||”

connectiveOp = ”;”

variable = host ”.” cap_name ”.” message ”.” element

| cap_name ”.” message ”.” element

| message ”.” element

time = digit_list ”ms”

host = string

process = string

message = string

element = string

string = letter_or_digit | letter_or_digit string

letter_or_digit = letter | digit

letter = ”a” | ”b” | ”c” | ”d” | ”e” | ...

digit_list = digit | digit digit_list

digit = ”0” | ”1” | ”2” | ”3” | ...

Figure 4.6: The transition expressions grammar in EBNF.

approach appears to have functionality loss comparable to the other implemen-

tations, but thats not the case: disjunction functionality can be implemented by

creating a transition for each event on the disjunction while the negation, given

the universe of events, can be transformed into a disjunction, adding also a

transition with no event. Event conjunction not be implemented, as the engine

adheres the concept of run-to-completion (RTC). RTC is interpreted to ensure
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the correct dispassion of events. Each event processing must have been fin-

ished before the following event is dispatched. TheRTC concept also applies to

the UML implementation, and thus event conjunction is not supported neither.

As we analysed in Section 2.4, if more than one transitions can be executed

during a step, are considered in conflict, if their effects resume to different active

configurations. YASE follows the object-oriented design approach and, thus,

gives priority to the transition with the lowest scope. The approach is followed by

both UML 2.0 and Rhapsody tool but not by Stetemate. Executing a transition,

either the transition itself or the transition actions are not consider to take a

significant amount of time, but it take only a fraction of time. The time can be

approximated as a fixed-execution time or as zero- depending on the semantics

that the modeler defines.

On a transition between two states, the transition expression may contains

none, one or multiple actions. Again, YASE, follows UML 2.0 and Rhapsody

so the actions are executed in the defined sequence, instead of the parallel

execution that is supported by Stetemate. This case is very important, because

the difference is on the semantics and statecharts in different formalisms, while

are correctly designed, their execution may lead to unexpected results.

Furthermore, it should be noted that YASE adheres the “step” concept that

was introduced by Rhapsody tool. As a result, in the scenario in which a tran-

sition’s target is a composite state, then the action of the underlaying transition

will be executed before the default transition of the composite state. This lead

to a conflict with UML, as if outgoing transitions from the START-state contain

conditions, then the data that the conditions will be evaluated with, may have

change by the action which “targets” the composite state.

In Table 4.1, there is a comparison between YASE and the existing models

of statecharts. At the first column, we present the UML 2.0 mode and, as UML

has been the “de facto” standard in software modelling, the rest models are

compared with it. If the first part of the table, we cover differences in the syntax

of the model where as in the second on the semantics.
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Table 4.1: Supporting Attributes and comparison between UML, Rhapsody and
YASE statechart formalisms. Table has been inspired from [CD07]

Construct/Concept UML Class. Rhapsody YASE Boost

Syntax
States
entry/exit actions • � • • •
do-activity • � � • ⊗
deferred events • ⊗ ⊗ ⊗ •

Pseudostates
initial • • • • �
final • • • • ⊗
fork • � � ⊗ ⊗
join • � � ⊗ ⊗
shallow history • � ⊗ ⊗ •
deep history • � � ⊗ •
junction (static) • • � ⊗ �
conditional (static) N/A • • • ⊗
choice (dynamic) • ⊗ ⊗ ⊗ ⊗

Transitions
event trigger • � � � �
action (behaviour) • � • • �
completion • ⊗ ⊗ • �
event disjunction • • ⊗ ⊗ ⊗
event conjunction ⊗ • ⊗ ⊗ ⊗
event negation ⊗ • ⊗ ⊗ ⊗
compound trans. ⊗ • ⊗ • ⊗
null transitions • • • • ⊗

Semantics
simultan. events N/A • N/A N/A ⊗
seq. action exec. • ⊗ • • �
bottom-up priority • ⊗ • • •

Open-source platform N/A ⊗ ⊗ • •
Multi-Threaded support N/A ⊗ ⊗ • ⊗

Legend for Table 4.1

Symbol Description

• The concept is supported by the formalism
� The concept has considerable differences from UML 2.0
⊗ The concept is not supported by the formalism
N/A not applicable
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Figure 4.7: Statechart’s engine architectural model

YASE Implementation

Statecharts major difference from finite state machines and its derivatives is

that they natively support concurrency. When on a finite state machine only

one state can be active, whereas on statecharts multiple states can, modelling

that way orthogonality which occurs anyway in agent design. To support that

in the engine itself, without introducing loss of the system responsiveness, we

split the execution of the engine into two parts. The first part is responsible

for stepping the engine and is executed in its own thread, whereas the second

one is responsible for executing all the activities that are active at the time,

implemented as a thread pool. The implementation model of the statechart

engine is illustrated in Figure 4.7. The implementation enables the developer

to specify the maximum number of activities that can be active simultaneously,

managing the CPU load and taking advantage of multi-cores CPU’s.

The tread pool initializes a specific amount of threads, currently set to twelve,

and a FiFo queue. When a job arrived at the pool, enqueues and a signal wakes

up a thread. The thread dequeues then and execute the job. When the job is

finished it will try to dequeue an other job and execute it. If there are no other

jobs in the queue, sleeps in a condition variable. Other scheduling scheme can

be used, such as a priority queue, but with the current design all jobs which are

actually agent activities run with the same privileges and priority so the needed

information for prioritizing the jobs is not present. A LiFo schemewould be really

bad choice as it would introduce random latency and performance decrease on

a system load.
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Player

Start Initialize Robot Stiffness On AND-State OR-State End

OR-State OR-State Start Goto Idle Position End

Start Walk Towards Ball Condition Kick Ball End Start Scan Head End

Blackboard 1

Blackboard 2

Blackboard 3

Figure 4.8: Blackboard scope in Statechart Engine

Monas’s statechart engine, incorporates the Narukom communication sys-

tem for inter-activity and inter-statechart communication, giving the ability to

every activity, action and transition to direct access a Narukom instance, which

is unique within the underlaying statechart, and to a blackboard instance. Thus,

activities can communicate, actions can interact with the environment and tran-

sitions evaluate their conditions using the publish-subscribe system as described

in 2.6. The blackboard instance is not one for every statechart instantiation but

its is scoped. The scope include all the states between the lowest level OR-

state that is a common ancestor of both the source and target states. The

concept is illustrated at Figure 4.8. As a result, activities that live in a differ-

ent region of an AND-state will not have the same data at a specific time, this

does also apply to the evaluation of transitions expressions in which the same

condition may evaluate to true in a region whereas in an other one to false.The

communication model solve the synchronisation issues that arise, such as the

consumer-producer problem which occurs when an activity is executed more

times than an other activity which uses data provided by the first, as well as the

starvation problem when multiple threads try to lock the same mutex simulta-

neously, that would have been occurred if have used a shared-memory model

for the communication.

Monas statechart engine implementation has slightly different semantics

from the Harrel’s Rhapsody tool [HK04]. Beyond the OR-state, AND-state and

BASIC-state, it defines the START-state and END-state, as in UML [Gro05].

Theses states are introduced to formalize the default transition inside an OR-

state and to indicate that the inner state has reach its end of execution respec-

tively. These states are useful because they ease not only the development
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of the engine but also the visual representation of the statechart. Also tran-

sition expressions can, of course, be included in their outgoing and incoming

transitions making further control of the entrance and exit of an OR-stage for-

malized. As illustrated in the class diagram, Figure ??, every state can have an

entry and an exit action. Actions deffer from activities as they do not consider

to consume any, significant, computational time. Both actions are optional and

will executed in the activation and deactivation of the state. An activity must

be assigned to the BASIC-state. On the activation of the state, the activity is

enqueued to the thread pool and is then executed, according to the thread pool

internal algorithm, on a separate thread. The activity is not executed endlessly

as long as the state is active but it only runs once. As long as the activity is run-

ning, a shared mutex is lock so the states which share the same blackboard can

not step to ensure the correct execution of the statechart. Transition segments

support transition expressions which is represented visually as e[c]/a with

’e’ denotes the event, ’c’ the condition and ’a’ the action. The transition

expressions controls the execution of the transition: if the event match and the

condition evaluate to true only then the action is executed. In the transition algo-

rithm the event is disambiguated by the cpp typeid which indicates the class

type of an object at runtime. Transition segments can orientate and/or reach

the states that are described above or special states called connectors, forming

compound transitions. A compound transition can be either executed as a hole,

which means that every transition segment that participate must be executed,

or not executed at all. From the connectors introduced in Rhapsody only the

condition connector is implemented. Other connector can be implemented with

ease as the engine is written to be expandable. Transition segments are tem-

plate classes with arguments the source and the destination type. The type,

which can be done either a normal state or the condition connector, is used by

the compiler to select the appropriate transition algorithm at compile time.

The stepping algorithm for the statechart engine is distributed among the

state and transition classed that constitute the statechart. The execution starts

form the Statechart::Execute() method. While on running mode, it

tries to step the statechart until no transition can be taken. As as step is con-

sider the execution of at list one transition segment. More transition executions
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Algorithm 4.1 Statechart’s main thread execution algorithm
loop
while Step() = true do

do_nothing

end while
mutex_lock()

if notified = true then
notified ← false

mutex_unlock()

continue

end if
condition_var.wait()

end loop

can occur in a single step if, and only if, are in different AND-state regions

or are parts of a compound transition. When further stepping is not permit-

ted, the execution thread sleeps in a condition variable. The algorithm of the

Statechart::Execute() method is shown in Algorithm 4.1.

The stepping algorithm for BASIC-state, START-state and END-state is the

same and is implemented in the State base class, so the sub classed derive the

method. The algorithm, which is presented in 4.2, tries to execute transitions

that have been added to the state, by the addition order, until it finds one that can

be executed, so that themethod returns true. Themethod returns false when an

activity, in the region that the states belong, is executing or if none of the states

transitions can be executed. In anOR-state, the stepping algorithm tries to step

the active substate and if fails then tries the OR-state itself. Again if an activity

is running on the region the method returns false immediately. The algorithm

is illustrated in Listing 4.3. Finally, at an AND-state, tries to step every region

in the state. If succeed to step at least one, returns true, else is at least one of

the regions was running before the it tries to step, return false. In the case that

neither a step could be taken on a region, nor any activities was running on the

regions, the algorithm tries to step the AND-state itself by calling the, base class,

Step method. The algorithm for stepping an AND-state is presented in 4.4. It

must be mentioned that the stepping algorithm selects the first transition that

can be followed, so if two transitions can the result is undefined. At the current
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Algorithm 4.2 Generic stepping algorithm for BASIC-, START-, END-state
if isRunning then
return false

end if
for tr in transisions do
if tr->Execute()=true then
return true

end if
end for
return false

Algorithm 4.3 Stepping algorithm for OR-state
if isRunning then
return false

end if
if activeState->Step() = true then
return true

else
return State::Step()

end if

implementation the evaluation of the transitions, thus the selection, matches

the order that the transitions were added to the state.

On the addition of a new transition the transition must be initialized and

the deactivation and activation lists must be drawn up. These lists specifies the

order that the states will deactivate and activate respectively when the transition

executes. To implement the functionality the algorithm starts from the state that

the transition originates and completes a list of every ancestor until the root state

is found. The same process also applies to the destination state but the list is

created in a reverse order. Then we search the first list for a state that exists in

the second list. The state that is found is the lowest common ancestor of the

originate and destination states. The deactivation list will contain all ancestors

from the origin to that state and the activation list will contain all ancestors from

the destination state but in the reverse order. Thus the implementation matches

the transition algorithm proposed in the Rhapsody tool [HK04]. Pseudo-code

is presented in Listing 4.5.
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Algorithm 4.4 Stepping algorithm for AND-state
isRunning ← false

for state in substates do
if state->isRunning() = true then

isRunning = true

end if
end for
stepTaken ← false

for state in substates do
if state->Step() = true then

stepTaken = true

end if
end for
if stepTaken = true then
return true

else
if isRunning = true then
return false

else
return State::Step()

end if
end if

Algorithm 4.5 Transition initialization algorithm
List srcAncestors

State parent = src_node

repeat
parent = parent.GetParent()

srcAncestors.push_back(parent)

until parent 6= rootState
List trgAncestors

parent = trg_node

repeat
parent = parent.GetParent()

trgAncestors.push_front(parent)

until parent 6= rootState
for i in srcAncestors do
for j in trgAncestors do
if i = j then
deactivationLst.assign(srcAncestors.begin(),i)

activationLst.assign(++j,trgAncestors.end())

return
end if

end for
end for
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Algorithm 4.6 Transition detection of execution
Require: Event e

if hasEvent then
if e 6= 0 ∨ typeid(e) 6= typeid(event) then
return false

end if
else
if e 6= 0 then
return false

end if
end if
if hasCondition then
if condition.eval() = false then
return false

end if
end if
return true

When the Execute method is called, it tries to execute the transition seg-

ment and if succeeds return true, otherwise false. The transition algorithm de-

pends directly to the type of the destination state. As a first step on the algo-

rithm, despite the destination type, the segment checks if it can executes: if the

transition expression contains an event then the event must match the event

passed to the execute function and if contains a condition, the condition must

evaluate to true. The algorithm is presented in 4.6. When the destination state

is not a condition connector and the transition segment can execute, first the

source state is deactivated which is followed by the states in the deactivation

list. Then the transition action is executed if exists, states in the activation list

and the destination state activated. The algorithm is presented in 4.7. When

the destination state is a condition connector, first a valid path of transition seg-

ments that can be executed is found and then each of the participating seg-

ments executes.

While YASE was designed and developed with the current implementation

of ASEME, the engine can be used as a stand-alone library. The required

code that the user must developed has been keep as simple as possible, which

speeds-up development, improve code robustness and ease the maintenance

process. YASE fully supports transitions in any applicable scenario, but does



76 CHAPTER 4. OUR APPROACH

Algorithm 4.7 Transition execution algorithm
if CanExecute(e) = false then
return false

end if
src_node.deactivate()

for i in deactivationLst do
i.deactivate()

end for
if hasAction then
action.Execute()

end if
for i in activationLst do
i.activate()

end for
trg_node.activate()

not provide the user with junction, fork, joint and history pseudostates. These

pseudostates, while are not currently supported, YASE’s extensible design al-

low the developer to implemented them depending on it’s needs.

4.3.2 Transforming ASEME Models for YASE

The final step on the ASEME process, is the transformation of the resulting

model from the design phase to the Monas architecture. In the last phase of

the design, the modeler merges the Inter-Agent Control (EAC) into the Intra-

Agent Control (IAC), to facilitate a complete model, which describe the entity of

the agent as whole. The final model, which is still referred as IAC, is platform

independent and based on the formalism of statecharts, thus to implement it,

must be transformed into source code compatible with YASE, Monas’s state-

chart engine.

The model utilize XML Metadata Interchange (XMI) format as the represen-

tation for its data. Hence, a model-to-text (M2T) transformation is needed to

transliterate the model into source code. As IAC, is being defined through the

use of statecharts and having the statechart engine designed to fulfill ASEME

requirements, there is a, close to, injective (one-to-one) relationship between
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Table 4.2: IAC to Statechart Engine Node Transformations

IAC Node Types

Tag Type Attrb. C++ Source Code

IAC:root OR Statechart «label»(”«name»”, com);
IAC:Node OR OrState «label»(”«name»”, «Parent(label)»);
IAC:Node AND AndState «label»(”«name»”, «Parent(label)» );
IAC:Node BASIC IActivity Activ«name» = CreateActiv(«name»);

BasicState «label»(
”«name»”, «Parent(label)», Activ«name»);

IAC:Node START StartState «label»(”«name»”, «Parent(label)» );
IAC:Node END EndState «label»(”«name»”, «Parent(label)» );
IAC:Node CONDITION ConditionConnector «label»(

”«name»”, «Parent(label)» );

the model and the engine. In order to achieve the transformation, XPand lan-

guage 2.7.3, which is offered by Eclipse Modeling Project1 was mobilized to

transform the IAC XMI model to C++ source code.

Transforming the IACmodels is a trivial process, and basically depends from

the IAC::Node type. For each type, Table 4.2 illustrates the automatically

generated source code. The transformation process starts by searching for the

root node in the XMI file and it transforms it to an instance of the Statechart

class. Then, every other node is expanded to source code by instantiating the

appropriate class of the statechart engine according to the node’s type. Node

expansion follows and preserves the hierarchy of the model, so that all the

ancestor nodes to be instantiated before the current node.

Afterwards, transitions are expanded. The expansion depends from the

source and target types. Special attention is given when either the source or

the target type is a condition connector. The transformation into source code is

given in Table 4.3. Transition expressions are also evaluated in each transition

node and if any combination of event, condition or action is detected then the

expansion stalls until the expansion of the transition expression is completed

first.
1The Eclipse Modeling Project provides a unified set of modeling frameworks, tooling, and stan-

dards implementations [BBM03].
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Table 4.3: IAC to Statechart Engine Transition Transformations. The Src and
Dst noted with “*” can be any type of state or pseudostate except the condition
connector.

IAC:Transition Types

Src. Type Dst. Type C++ Source Code

* Condition TransitionSegment<State,ConditionConnector>(
«source.label»,«target.label»);

Condition * TransitionSegment<ConditionConnector,State>(
«source.label»,«target.label»);

Condition Condition TransitionSegment<
ConditionConnector,ConditionConnector>(

«source.label»,«target.label»);
* * TransitionSegment<State,State>(

«source.label»,«target.label»);

Finally, to complete the transition to Monas architecture, appropriate build-

ings files must be generated to enable seamless compilation of the statechart.

Thus, CMakelists.txt file is created, a file compatible with CMAKE build-

ing system. The, newly designed, statechart is now ready for usage and should

be placed under Statecharts directory, in Monas’s filesystem. To execute

it, the user should modify the config/Agents.xml file appropriately.

As XPand closely collaborates with XText, it allows of Java helper functions

to be implemented. These functions provide functionality to detect and analyze

transition expression as well as modification on node names using Java native

libraries for string manipulation. This is extremely useful as the name and la-

bel attributes in IAC:Nodes contain invalid characters in the C++ namespace,

such as dots (‘.’). With the help of theses functions we can transform them into

dashes (‘-’) or underscores (‘_’) by a simple call.



Chapter 5

Results

In this chapter, our approach is going to be tested and evaluated using various

methods as an attempt to provide objective results. As the subject of this thesis

is more about the quality of the source code that enables to be written rather

than the quantity, the problem of measuring the efficiency and the added value

arises. To begin with, the evaluation procedure is presented in the next section,

followed by the experiments that took placed and finishing with the results.

5.1 Testing and Evaluation Procedure

To evaluate all the proposed solutions, we develop agents in the RoboCup field.

RoboCup, as being a difficult robotic environment, requires complex, deliber-

ate agents to be developed. Additionally the RoboCup competition represents a

challenging multi-agent environment, whereby individual robot skills alone can-

not lead to team success. Furthermore, the real-time constraints on agent op-

eration, imposed by the robotic hardware dependencies, makes the task more

difficult and inappropriate for many agent-oriented software engineering ap-

proaches, as it will be insufficient in designing effective robot teams. Finally,

79
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RoboCup is a very competitive environment, where most researchers bench-

mark their work in the real-world problems that it poses and it is not uncommon

for calibration and fine-tuning on both algorithms, agents and robots up to the

last-minute before the game start. Hence, RoboCup is an ideal field for the

Monas’s thorough testing and evaluation procedure as it requires not only com-

plex agent design and advanced robotic control but also as user friendliness

and reduced developing times.

The evaluation will be deployed in the RoboCup’s standard platform league

as well as the, currently unofficial, Webots simulation league using Aldebaran’s

Nao robot. As both SPL and Webots are soccer leagues, enables testing and

evaluation on Monas’s platform independence as well. Two agents were de-

cided to be developed, an attacker and a goalie player. The agents will be

implemented using four different approaches:

• Direct on NaoQi, Aldebaran’s middleware which provides, beside the API

for controlling the robot, a platform for modular developing and a thread-

safe mechanism for communication.

• Monas’s Agents, which directs to a divide and conquer developing ap-

proach. The developer creates functionalities and activities that can be

used on the robot and then configures the execution order in different

threads of execution with a convenient XML file.

• Agent System Engineering Methodology, a complete methodology that

first analyze and then through a series of model transformations aid the

developer in the design process.

Each approach is evaluated through the use of various metrics that try to

cover the majority of aspects of Monas software architecture. As the quality

of the software can’t be quantified other metrics must be used in order to ap-

proach, as objectively as possible, the evaluation measurement. The metrics

that are used, together with a brief explanation and approval of its usage, are

the following:
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• Source Lines of Code, whereas is an controversial metric, it applicable

for Monas’s evaluation as every approach yields to the same functional-

ity, using the same developing language, and using the same software

paradigm. Additionally, it counts the source code created by the same

individual so that source code style and comprehensiveness remains the

same. This metric is concrete and very easy to measure both manually

or even with an automated process.

• Total Developing Time to achieve exactly, or equal if not applicable, func-

tionality among each approach. The total developing time includes the

time needed to complete the developing process starting from scratch

and includes time for as many re-design phases needed. Time spend for

debugging purposes is excluded.

• Number Global State Variables used to describe analytically the state of

each player. These variables are controlled by the user on NaoQi and

Monas’s agents implementation in contrast to the transparent, automated

management that achieved with the Statechart based implementations.

It is design to quantify the increasing difficulty on complex agent creation

when the user does not use a state engine to implement the agent. The

metric is appropriate because the same agent is created with various im-

plementations whereas it would be inapplicable otherwise.

• Code Cohesion determines how strongly-related is the functionality ex-

pressed by a part of source code. There are several rankings that de-

scribe the level of cohesion of the source code.

• Code Coupling is the degree to which each program module relies on

each one of the other modules. High code coupling main disadvantage is

that a change in one module usually leads to a ripple-effect of changes in

the dependent modules and thus is considered a drawback in the design.

• Run Time Performance determines the system load when the agent runs.

As the system remains the same (Nao robot) and each agent performs the

same task it is an objective metric for evaluation of the aforementioned

agent developing approaches.
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• Debugging Time and Number of Bugs, is the time consumed for debug-

ging the agent. Combined with the total number of bugs that found can

provide a convenient metric of how easy or difficult the debugging process

is.

5.2 Agent Description

In order to evaluate our approach two RoboCup agents were developed: an

attacker and a goalkeeper. The agents are kept simple enough to fulfill a min-

imum of a RoboCup player as the thesis propose an architectural approach to

the problem and not a complete player. The attacker, is able to communicate

with the game controller and, when the game state is set to PLAYING , ap-

proach the ball and kick it. Goalkeeper accordingly must be able to defend its

goalpost by falling or diving when the ball is approaching the goalpost. Deci-

sion between falling or diving depends from the approaching angle and speed.

Agent behaviour can be described in an algorithmic form as in Algorithm 5.1,

which refer the attacker execution plan and Algorithm 5.2, for the goalkeeper.

In the design process, a set of, already developed, source code components

that provide common functionality is integrated into the agents to simplify the

developing process. Namely the components are:

• RobotController, implements the state machine which provides the game

state to the rest of the platform, as it is being documented at the latest

RoboCup SPL rules [Rob10]. The component achieves its functionality by

capturing torso button presses as well as listening to the Game Controller

special software, provided by SPL the organizing committee, through the

WiFi interface.

• Vision, which provides the whole procedure of image analysis. The com-

ponent first captures the image from the robots camera, the applies a

color segmentation procedure to reduce the color-space to the few colors
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Algorithm 5.1 Attacker Execution Algorithm
Stand Up
Calibrate Camera
loop
if GameState = PLAYING then
Process Image
if BallFound then
if BallDistance>0.25m then
Move Towards Ball

else
if |BallXi - KickPosX| > 0.025m ∨ |BallY - KickPosY| > 0.025 then
Fine Approach Ball

else
Kick Ball

end if
end if

else
Search for Ball

end if
end if

end loop

Algorithm 5.2 Goalkeeper Execution Algorithm
Stand Up
Calibrate Camera
loop
if GameState = PLAYING then
Process Image
if BallFound∧BallDistance>0.8m then
if 15◦<|BallBearing|<25◦ then
Fall to Ball Direction

else
Dive to Ball Direction

end if
else if BallFound then
Track Ball

else
Search for Ball

end if
end if

end loop



84 CHAPTER 5. RESULTS

that are used in a RoboCup scenario and, finally, applies object detection

algorithms. At its current state, the component can detect and provide dis-

tance and bearing information only for the, but additional object detection

is work in progress.

• MotionController, provide a convenient interface for implementations of

motion patterns. Supports an omni-directional walking commands, Carte-

sian space walk as well as capable for realising complex motion skills

(a.k.a special actions), in a reproducible way, such as kicks, dives and

falls. Moreover, MotionController auto-detects if the robot has fallen down

so a stand-up routine to be called.

• Sensors, a module that captures sensor data ordinated from the robot

and publish them into other execution threads as well as the network, if

needed. Its functionality is vital as it enable other components to access

not only the current value of a sensor but a short history of values, which

is very important for accurate computations — i.e. given an image, the

head-roll angle is required to calculate the ball bearing correctly; if there

is a time-skew between the image capture and the capture of the sensor

value the calculation will not be accurate.

• LedHandler, is a code component for managing the robot’s LEDs. While

the module does not provide a fancy functionality, it simplifies the control

API.

5.3 NaoQi Implementation

As a first part of our evaluation process, we implement the described agents

(Section 5.2) directly on the NaoQi framework. NaoQi is provided from Alde-

baran, the robot’s manufacturer, as the appropriate framework for developing

applications. Except from the API for interfering with the robot, it provides a

modular architecture and capabilities from agent instantiation. We include it in

the evaluation section to act as reference point and to highlight the problems

that decrease the efficiency of development, and lead us on creation Monas.
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Robot Controller AL Mem

VisionMotion Controller

Led Handler
Behavior

in: g
ame_state,

out: game_state

in: motion_command out: 
dete

cte
d_o

bjects

in: game_state,detected_objs

out: motion_command
detected_objects

Figure 5.1: Implementation using the provided NaoQi framework.

For the implementing the two agents in NaoQi, we decided to create the

four modules: the Robot Controller, Led Handler, Motion Controller, and Vision

& Behavior module. It should be noted that the Vision & Behavior module is

a combination of the Vision with a concrete section that implements the deci-

sion making for achieving the desired behaviour. The module implements two

different roles, Goalie and Attacker, and the developer can choose which one

to use at the robots initialization. The design is considered compact as each

of the proposed modules can’t be joint with an other module. That is because

it may need to run on different frequency form the rest modules, i.e the Motion

Controller checks if the robot has fallen of faster than the behaviour needs to

execute for determining the next action, or it requires data from modules that

run on different frequencies, as in the Led Handler’s case, or executes blocking

calls, as the Robot Controller does. We used NaoQi’s AL Memory communica-

tion mechanism, for exchanging data between modules. The resulting system

is depicted graphically in Figure 5.1.

5.4 Monas Agent Design

For evaluating the Monas agent instantiation architecture, we used the provided

software components to create agents. Each of the components had to bemod-

ified and modelled as “activities”, so that can be instantiated within the archi-

tecture, as long as make use of the Narukom system for inter-object commu-

nication. Additionally, two new Behavior modules ware created, to implement
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the desired robot behavior, the BehaviorGoalie and BehaviorPlayer. Both mod-

ules, are responsible for the decision making process, as well as sending the

appropriate commands to the Motion Controller. Finally, we decided to instan-

tiate each activity as an agent, selecting appropriately between BehaviorGoalie

and BehaviorPlayer. This approach enables us to fine-tune the execution fre-

quencies of each activity, and thus, increase the system’s efficiency.

5.5 ASEME Design Process

This section demonstrates the ASEME development process for our RoboCup

team. We decided to skip the requirements analysis phase as the business

modeling is quite simple; the team players have one collective goal, to win the

game. In this section, except from the simple attacker player that is able to

approach the ball and kick it, going one step further and taking advantage of

the ASEME multi-agent co-ordination capabilities, we implement an updated

attacker player, which coordinates with other players in order to implement an

attack protocol. The analysis, design and implementation phases are described

in detail below.

5.5.1 Analysis Phase

During the analysis phase in the societal level of abstraction, the developer

needs to identify the roles that the robots may assume in the game and the pro-

tocols of interaction (AIP model) between these roles. Then, for each concrete

role (i.e. a role that will be implemented as an agent), an individual System

Roles Model is defined. Finally, the project team decides on the technologies

that will be used for each identified functionality. For the RoboCup soccer team

there are two concrete roles: the player (two players move freely around the

field to attack and/or defend) and the goalie (the goalie stays near the team’s

goal posts and tries to prevent the other team from scoring).
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Agent Interaction Protocols

During this analysis activity, the analyst defines what each role does within a

given protocol. As both the player and the goalie are primitive and does not col-

laborate with each other, as described in Section 5.2, no protocols are needed

to be defined. For the case of the advanced attacker player, in which we can

unfold the advantages gained by integrating with ASEME, an attack protocol is

designed and illustrated in Table 5.1. The two players participate by assuming

the roles of center and center_for (one role each). The process followed

by each role differs. When the center role is assigned to the agent, it sup-

poses to go to the ball and if possible and pass it to the center_for. On

the other hand, the center_for agent, move towards the opponent goal and

when it take the control of the ball (if it has been passed correctly), shoots it to

the goal (if there is a clear path). Gaia operators [WJK00] are used to create

the liveness formulas that define the process of the role. The resulting formu-

las are presented at the last row of Table 5.1. Finalizing the protocol, requires

to specifically define the engagement rules as well as the possibles outcomes.

The protocol is engaged when no robot has control of the ball and center is

the robot closest to the ball and center_for is the robot farthest from the ball.

The possible outcomes can varying from the center_for roles shooting the

ball to goal or an opponent taking control of the ball or the ball going out of

bounds (e.g. due to an inaccurate pass) The rule for engaging in these roles is

depicted in the second row of Table 5.1, followed by the expected outcomes in

the third .

System Roles Models Definition

The system roles model defines each concrete role with a liveness model in-

cluding the processes of the protocols in which it participates. To build the

formula, we have to distinguish and recored the special needs of each role.

Furthermore we have to organize the needs in groups and set which of them

are needed to be executed concurrently, which continuously, which each in a
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Table 5.1: The AIP model for the Attack protocol.

Participants center center_for

Engagement
Rules

No robot has control of the ball and center is the robot
closest to the ball and center_for is the robot farthest
from the ball

Outcomes One of the center_for roles shoots to goal or an op-
ponent takes control of the ball or the ball goes out of
bounds

Process WalkTowardsBall.
[passBall]

WalkTowardsGoal.
[WalkTowardsBall.
[kickBall] ]

Role: goalie

Protocols: N/A

Liveness:

goalie = RobotController ω || LedHandler ω || MotionController ω

|| ( Stand . SendCalibration . active)

active = Sensors ω ‖ Vision ω ‖ decision ω

decision = WaitForBallMessage . ( SearchBall | takeAction )

takeAction = TrackBall | action

action = RightFall | LeftFall | RightDive | LeftDive

Figure 5.2: The SRM model for the goalie.

specific order etc. covering the full range of Gaia operators. For the RoboCup

players, we have find that each player, regardless of its role, have to concur-

rent and continuously execute the RobotController, LedHandler and Motion-

Controller modules, while the Sensors and Vision modules are needed to be

executing only when the game state is set to Playing (a brief description of

the functionality of each of the above modules is presented in Section 5.2).

These source code modules are used directly in the resulting formulas, in con-

junction with new ones, in order to achieve the agent behaviour described in

Section 5.2. The formula for the goalie is presented in Figure 5.2, whereas

Figure 5.3 for the attacker.



5.5. ASEME DESIGN PROCESS 89

Role: attacker player

Protocols: N/A

Liveness:

player = RobotController ω || LedHandler ω || MotionController ω

|| ( initialize . active)

initialize = Stand . SendCalibration

active = Sensors ω || Vision ω || decision ω

decision = WaitForBallMessage . ( SearchBall | takeAction )

takeAction = TrackBall . ( WalkTowardsBall | AlignWithBall | kickBall )

kickBall = LeftKick | RightKick

Figure 5.3: The SRM model for the attacker player.

The extended liveness formula for the advanced attacker, with co-ordination

capabilities, is shown if Figure 5.4. Note that in this scenario, the attacker can

participate in the Attack Protocol (see Section 5.5.1) either as a center or as a

center_for. It should be mentioned that the SRM model is exactly the same

as in the basic attacker role (Figure 5.3) up to the point of integration to the

Attack Protocol. The protocol is inserted smoothly into the model by appending

it, without the need of extensive modification. The agent’s conformity to the

Attack Protocol is ensured as the implementation of the protocol, is neither re-

designed nor reinvented, but instead is provided by the AIP model itself. This

novel feature of ASEME is one of the reasons that lead in its selection by this

thesis.

The Functionality Table

In the SRM each activity that participates in the liveness formula is also asso-

ciated with a functionality, therefore the next step is to build the functionality

table (FT). This table helps the development team to identify the competencies

needed and to decide on the technology to be used. In Figure 5.5 the reader

can see the FT for the goalie role whereas in Figure 5.6 represents both the

attacker player and the extended attacker player implementations.
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Role: extended attacker player

Protocols: Attack: center, Attack: center_for

Liveness:

player = RobotController ω || LedHandler ω || MotionController ω

|| ( initialize . active )

initialize = Stand. SendCalibration

active = Sensors ω || Vision ω || decision ω

decision = WaitForBallMessage. ( SearchBall | takeAction )

takeAction = TrackBall . ( WalkTowardsBall | AlignWithBall | kickBall

| center | center_for )

kickBall = LeftKick | RightKick

center = WalkTowardsBall. [passBall]

center_for = WalkTowardsGoal. [WalkTowardsBall. [kickBall]]

Figure 5.4: The SRM model for the extended attacker player.

We decide to present both attachers in the same figure as it is clear that except

from the center and center_for sections, the rest of the figure remains ex-

actly the same.

Although in our approach there are many activities, there are only three

basic functionalities. The first one, is to interface directly with the Nao robot

libraries, which provide access to the whole supported API. This method, pro-

vides the fastest way to interact with the robot but is subject to both version

updates from Aldebaran as well as the lost of platform independence. The sec-

ond functionality that is present on the FT, is the Monas’s Hardware Abstraction

Layer which supports a constant interface for building activities while it can be

used with different underlaying platforms. The functionality, although it is linked

to the Nao Libraries, is done with a transparent to the user way. Narukom, the

third available functionality, is the publish/subscribe blackboard communication

system, which has been the successful candidate for Monas’s communication

system. It is responsible for circulating the information among different activi-

ties, robots and computers in general.
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Figure 5.5: The functionality table for the goalie role.

It should be noted, that in both cases (goalie and player), there has been

an important abstraction in the design from the robotic hardware. Developers

are interact with the hardware only for low-level tasks, as opposed to the rest

of the design which interact with the communication system. That provides the

required functionality for writing more coherent source code, which is easier to

maintained and developed.

5.5.2 Design Phase

In the design phase, the ASEME SRM2IAC tool can be used to transform the

SRM model to an EAC or an IAC model. The EAC and IAC models are stat-

echarts where the developer can insert events, conditions, and actions in the

transition expressions, thus controlling each role’s process either in a proto-

col (in the EAC model) or for coordinating its capabilities (in the IAC model).

Hence at this development phase, the behaviour of the system is finalized. Im-

plementation phase, which is the remaining phase for realizing the system, is
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Figure 5.6: The functionality table for both the attacker player and the

extended attacker player. The sections center and center_for,

apply only on the later.

an one-to-one transformation in which modifications of the design models are

restricted.

Inter-Agent Control Model

The SRM2IAC tool can be used to transform the process part of the agent in-

teraction protocol model to a statechart, namely the inter-agent control model

(EAC). A state diagram is generated by an initial AND-state named after the

protocol. Then, all participating roles define OR sub-states. The right hand

side of the liveness formula of each role is transformed to several states within

each OR-state by interpreting the Gaia operators [SM09].
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Figure 5.7: The EAC model in a graphical representation using the schematics

of statecharts.

Currently, the only developed protocol is the Attack Protocol, which

concerns the only the extended player, thus we must transform the expres-

sion “attack_protocol = center || center_for” followed by the processes of the

two participating roles. The result is depicted graphically in the form of a stat-

echart (see Figure 5.7). The modeler had to define transition expressions for

all the transitions in order to realize the appropriate functionality and the possi-

ble outcomes, as they were defined in AIP model of the Attack Protocol

(Figure 5.4).
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Intra-Agent Control Model

The final step in the design process, is to generate the IAC model for each

agent. The model can capture multiple roles, as they have been defined in

the previous step of the SRM model creation. The intra-agent control model

is also initiated by the SRM2IAC tool for each role. The resulting model is

not a finished design, but has to be completed with transition expressions, on

each transition, manually by the modeler. Transition expressions must follow

the syntax defined in Table 4.6. This step requires the most attention by the

modeler, as wrongly defined expressions can lead to incorrect or unexpected

behaviour on the run-time execution of the statechart. Finally, the modeler has

to fine-tune the expressions to achieve better efficiency from the system.

Designing the transition expressions for both players, faces some common

challenges. First of all, an important separation should be made between the

structural and the behavioural components of the system, as IAC, model them

in the same representation. While this introduction is a novelty of IAC, is still

must be considered as a separate task for the modeler because the selec-

tion of the appropriate expressions have an great impact on the system’s effi-

ciency and performance. The system components are common on both player

are the, already developed components described in Section 5.2, namely the

RobotController, LedHandler, MotionController, Sensors and Vi-

sion. Additionally, apart from these components, the decision component

can also be considered as structural, as it’s functionality as a whole, describes

the behavior of the system. The transition expressions in these components,

are mainly timeout conditions — paired with start-timeout actions — to manage

the system’s reactiveness and performance, as long as CPU time distribution.

In addition, can control the execution of a component when a condition is active,

i.e. when the games state equals Playing.

For the behavioural components, the modeler is based on the agent’s ex-

ecution algorithms, as being defined in Section 5.2, in order to implement the

same behaviour. The conditions that change the agent’s behaviour, such as

WalkTowardsBall when the ball distance is less than 0.25 meters, can be
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Figure 5.8: The IAC Model (statechart) for the goalie.

taken directly from the algorithms. As a result, Figure 5.8 and Figure 5.9 shows

IAC model for the goalie and player respectively.

In the case of the extended player, the modeler has to integrate the At-

tack Protocol with the already created design of the player (Figure 5.9).
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Figure 5.9: The IAC Model (statechart) for the player.
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As both IAC and EAC models are based on statecharts, it can be done by di-

rectly inserting the EAC into the IAC, at the correct position, with little to no

modifications. The method provides a significant advantage: the agent is en-

sured that will implement the co-ordination protocol correctly. To finalize the

design, only the engagement rules of the protocol must be implemented as

conditions on the agent’s statechart (IAC), in order to activate the protocol. The

design is illustrated in Figure 5.10.

5.5.3 Implementation Phase

As a last step in ASEME process, comes the implementation phase, responsi-

ble for the realization of the agent. At this point, the designed IACmodels which

describe the agents are transformed, using the IAC2Monas process (which an-

alyzed in Section 4.3.2). The process provides the appropriate mechanism to

automatically transform the IAC model into source code, compatible with, the

Monas’s architecture, statechart engine. The platform-independent IAC model

must be transformed to a platform-dependent one (adhering to the Nomad ar-

chitecture) and to executable code. After the transformation and building the

generated source code, the has been fully realized and is ready to run on the

selected hardware (physical) platform.

5.5.4 Methodology Comparison

Comparing the implemented methodologies, using the metrics defined in Sec-

tion 5.1, we can see the pros ans cons that it methodology offers. First of

all, using NaoQi directly, without Monas, we observe a performance decrease.

That was because of the overload of AL Memory system in the exchanging of

information between the modules. Developing times are higher in the Monas,

as is NaoQi because of the more complex communication interface. While

ASEME should score less, due to the lack of graphical tools, it requires more

time than the other two methodologies. In parenthesis, is the total time minus
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Figure 5.10: The IAC Model (statechart) for the extended player.
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Table 5.2: Comparison of evaluated methodologies

Metric/Concept NaoQi Monas Agents ASEME Agents

Run-Time Performance low high high
Developing Process
Total Developing Time 7 9 12(5)
Source Lines of Code 390 486 826
of them auto-generated N/A N/A 760

Num. of State Variables 18 18 N/A
Code Coupling high low low
Code Cohesion low low high

Debugging Process
Debugging Time 13 15 5
Num. of Bugs 16 16 4
Type of most common Bugs logical logical syntactical

from the time required to fill the IAC model with transition expressions. On the

lines of code, ASEME methodology was require, by far, the fewest lines, as it is

based on code auto-generation. Monas requires slightly more lines, mainly be-

cause of Narukom. The implementations of behavior modules on both NaoQi

and Monas, require the developer to control a great number of global variables

that define the current state of the agent, as opposed to ASEME that such a

concept is not applicable. Developing on the NaoQi platform directly, leads to

a high degree of code coupling as even a small change on the API, especially

the AL Memory interface, will propagate a series of modifications on the source

code. On code cohesion, both NaoQi and Monas score low, as the behavior

modules are build as monolithic components, and the source code is not dis-

tributed. ASEME instead uses statechart formalism to model both the system

and the behavior, and divides the source code in activities and functionalities.

The above, are reflected on the debugging process, in which NaoQi andMonas

Agents have increased debugging times, with most of the bugs found at the be-

havior code segments. As opposed to ASEME, most of the bugs were logical,

and thus harder to detect.
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Chapter 6

Conclusion

Conclusion: end or termination, the close. But that would simply be unfair for

Monas, who has just given birth. In this thesis, we try to cover many aspects

relative to robotic development but the task is far from reaching the finishing

point. Monas can, and should, be further developed and, hopefully, have a

long journey to go.

6.1 Future Work

In this thesis, we designedMonas to be a complete architectural framework and

to address as many issues as possible related to robotic development. But as

the task is far from over, further work is required to be done, in order to make

the architecture more flexible, optimized and expand it, as well as to attract

third-party developers to work with it from the open source community.

First of all, whileMonas is designed to be robot independent, it is only config-

ured for use with the Nao robotic platform. Additional platforms can be added to

the source tree, so that developers and researchers, which are currently work-

ing on other platforms, can be attracted and evaluate the architecture.

101
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Additionally, while testing the Monas on the RoboCup competition, we find

out that the team wasn’t using the provided interfaces that abstract from the

robotic hardware, and thus allow a seaming-less robot replacement, but was

using the API provided from the robot’s manufacture directly. Consequently, the

provided interfaces failed to capture the special requirements that were needed

and design analysis must be done to improve them. A new approach on the

robot configuration part, can also be completed with a kinematic library, as it

will boost the developing process.

Finally, the statechart engine can be improved. Condition connectors sup-

ported by UML can be implemented, promoting the engine as a standalone

application that is not bounded to IAC metamodel. Also, as far as the system

modelling concerns, the engine can support a priority scheme, so that activities

with higher priority scheduled for immediate execution instead of waiting in the

queue. One last addition, could also be a non-deterministic execution of tran-

sitions, with or without a priory probability, when a transitions conflict occurs.

6.2 Lessons Learned

During the progress of this thesis, the first lesson that i learned, and that was

done “the hard way”, was not to underestimate the so-called “system work”.

When the developing process takes places on a remote system, with different

operating system, which needs a cross-compiler and low-level developing has

to be done the human work-hours are increasing exponentially.

Furthermore, the second lesson that i thought while developing the thesis,

was that there is no such think as a generic, optimized system! Instead, a

there is a trade-off between generality and optimization: the more optimize the

system is for the target platform— andmust be optimized a lot while developing

for robotic systems — the greater the loss on generality.

Finally, this thesis provide me experience on team-work, as it was used in

RoboCup team Kouretes. This experience is proven to be very valuable as it
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is clearly stated by Andrew Carnegie: “Teamwork is the ability to work together

toward a common vision. The ability to direct individual accomplishments to-

ward organizational objectives. It is the fuel that allows common people to attain

uncommon results”.
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