
Technical University of Crete, Greece

School of Electronic and Computer Engineering

Cooperative Global Game State Estimation

for the RoboCup Standard Platform League

Nikolaos Pavlakis

Thesis Committee

Associate Professor Michail G. Lagoudakis (ECE)

Professor Minos Garofalakis (ECE)

Assistant Professor Aggelos Bletsas (ECE)

Chania, June 2013

http://www.tuc.gr
http://www.ece.tuc.gr

Nikolaos Pavlakis ii June 2013

Πολυτεχνειο Κρητης

Σχολη Ηλεκτρονικων Μηχανικων και Μηχανικων Υπολογιστων

Συνεργατική Εκτίμηση Καθολικής

Κατάστασης Παιχνιδιού για το

Πρωτάθλημα Standard Platform του

RoboCup

Νικόλαος Παυλάκης

Εξεταστική Επιτροπή

Αναπ. Καθ. Μιχαήλ Γ. Λαγουδάκης (ΗΜΜΥ)

Καθ. Μίνως Γαροφαλάκης (ΗΜΜΥ)

Επικ. Καθ. ΄Αγγελος Μπλέτσας (ΗΜΜΥ)

Χανιά, Ιούνιος 2013

http://www.tuc.gr
http://www.ece.tuc.gr

Nikolaos Pavlakis iv June 2013

Abstract

RoboCup is an international competition that promotes research in multi-robot teams

operating in dynamic environments. In the Standard Platform League (SPL) all teams

use identical robots, namely the Aldebaran NAO humanoid robots. SPL robots have

limited perceptual abilities, meaning that they can perceive only parts of their environ-

ment, due to directed vision, existence of dynamic obstacles, and high uncertainty in

locomotion actions and recognition ability. This fact implies that any single robot on its

own can only form a partial and possibly inaccurate estimate about the state of the world

around it. The importance of fusing these local beliefs into a single and consistent global

belief can be easily understood, considering that such information enables the possibility

of collaborative team planning and coordination. This thesis addresses the problem of

global game state estimation over a team of robots from their local state estimates. Our

approach takes as input each robot’s local belief about the world around it (pose within

the field, location of the ball, etc.) and combines all these local beliefs to estimate the

most probable global state of the world consistent with these local beliefs. In order to

generate this information in a principled way, an Extended Kalman Filter (EKF) is em-

ployed with appropriate state transition and observation models, applying linearization

where needed. An important aspect of this work is our implementation within the soft-

ware framework of team Kouretes, which allows for decentralized and asynchronous belief

updates and is optimized for real-time, on-board execution on the NAO robots. The ben-

efits of global game state estimation are demonstrated on two common game scenarios:

(a) cooperative, accurate estimation of ball location within the field from multiple, possi-

bly inaccurate, local estimations and (b) ability to acquire missing ball information and

walk towards the ball “seeing” it through the help of teammates. Our shared global state

information mechanism is currently used in the development of collaborative strategies

and coordinated planning.

Nikolaos Pavlakis vi June 2013

Περίληψη

Το RoboCup είναι ένας διεθνής διαγωνισμός που προωθεί την έρευνα σε πολυ-ρομποτικές

ομάδες που λειτουργούν σε δυναμικά περιβάλλοντα. Στο Πρωτάθλημα Standard Platform

(SPL) όλες οι ομάδες χρησιμοποιούν πανομοιότυπα ρομπότ και συγκεκριμένα τα ανθρω-

ποειδή ρομπότ Aldebaran NAO. Τα ρομπότ που χρησιμοποιούνται στο SPL έχουν περιορι-

σμένες ικανότητες αντίληψης, πράγμα που σημαίνει ότι μπορούν να αντιληφθούν μόνο μέρος

του περιβάλλοντός τους, λόγω κατευθυντικής όρασης, ύπαρξης δυναμικών εμποδίων, και

υψηλής αβεβαιότητας στις ενέργειες μετακίνησης και στην αναγνωριστική τους ικανότητα.

Το γεγονός αυτό σημαίνει ότι κάθε ένα ρομπότ από μόνο του μπορεί να διαμορφώσει μόνο

μια μερική και ενδεχομένως ανακριβή εκτίμηση της κατάστασης του κόσμου γύρω του. Η

σημασία της σύντηξης αυτών των τοπικών πεποιθήσεων σε μια ενιαία και συνεπή πεποίθηση

που αφορά όλο το περιβάλλον μπορεί να γίνει εύκολα κατανοητή, λαμβάνοντας υπόψη ότι

τέτοιου είδους πληροφορία δίνει στην ομάδα τη δυνατότητα συνεργατικού ομαδικού σχεδια-

σμού και συντονισμού. Η παρούσα διπλωματική εργασία εξετάζει το πρόβλημα της καθολικής

εκτίμησης της κατάστασης ενός παιχνιδιού στο SPL για μια ομάδα από ρομπότ μέσω των

τοπικών τους εκτιμήσεων. Η προσέγγισή μας λαμβάνει ως είσοδο την τοπική πεποίθηση του

κάθε ρομπότ για τον κόσμο γύρω του (τη θέση του και τον προσανατολισμό του μέσα στο

γήπεδο, τη θέση της μπάλας, κλπ.) και συνδυάζει όλες αυτές τις τοπικές πεποιθήσεις για

να εκτιμήσει την πιο πιθανή καθολική κατάσταση του κόσμου σύμφωνα με αυτές. Για να

δημιουργηθεί αυτή η πληροφορία με έναν αξιωματικό τρόπο, χρησιμοποιείται ένα Extended

Kalman Filter (EKF) με κατάλληλα μοντέλα μετάβασης και παρατήρησης, εφαρμόζοντας

γραμμικοποίηση όπου χρειάζεται. Μια σημαντική πτυχή αυτής της εργασίας είναι η υλο-

ποίησή της στο πλαίσιο του λογισμικού της ομάδας «Κουρήτες», η οποία επιτρέπει αποκεν-

τρωμένες και ασύγχρονες ενημερώσεις πεποίθησης και έχει βελτιστοποιηθεί για εκτέλεση σε

πραγματικό χρόνο, πάνω στο ρομπότ ΝΑΟ. Τα οφέλη της καθολικής εκτίμησης κατάστασης

του παιχνιδιού επιδεικνύονται σε δύο συνηθισμένα σενάρια παιχνιδιού: (α) την συνεταιρι-

στική, ακριβή εκτίμηση της θέσης της μπάλας μέσα στο γήπεδο από πολλές, ενδεχομένως

ανακριβείς, τοπικές εκτιμήσεις και (β) την ικανότητα απόκτησης μη υπάρχουσας πληροφορίας

για την μπάλα και προσέγγισής της «παρατηρώντας» την με τη βοήθεια των συμπαικτών. Ο

μηχανισμός καθολικής εκτίμησης κατάστασης που δημιουργήθηκε χρησιμοποιείται σε έρευνα

που στοχεύει στην ανάπτυξη συνεργατικών στρατηγικών και συντονισμένου σχεδιασμού.

Nikolaos Pavlakis viii June 2013

Acknowledgements

First of all, I would like to thank my advisor Michail G. Lagoudakis for his inspiration

and guidance.

Next, I would like to thank Manolis Orfanoudakis (a.k.a. vosk) for his suggestions and

help during the implementation of the work.

Next I would like to thank my parents for their awesome support and encouragement.

Team Kouretes, including older and newer members (N. Kofinas, A. Topalidou, M.

Karamitrou, D. Janetatou, vosk, I. Kyranou, E. Chantzilaris, N. Kargas, E. Miche-

lioudakis, S. Piperakis), played an important role during the duration of this thesis.

We also had a lot of fun at RoboCup events, as well as in our Lab (a.k.a. “ypoga”).

Last but not least, I would like to thank my friends with whom I had amazing moments

during my stay in Chania. E. Alimpertis, N. Kofinas (he paid five Euros for the second

reference), D. Iliou, K. Perros, and E. Soulas, thank you for being there for me whenever

I need you! Along the way I also made some new friends with whom I also had some great

times and I would like to thank them too. G. Demertzis, T. Demertzis, T. Magounaki

(Θ = Θ), S. Nikolakaki (a.k.a. fiouki), and D. Paliatsa (a.k.a. koumpara) you are all

awesome! (Please note that the names in this paragraph are arranged in alphabetical

order so that nobody complains.)

As a hidden bonus, I would like to thank a person that always makes me smile (even

without knowing it) and is an important part of my life. This “entry” exists for personal

reasons, so that it always reminds me of this person.

Nikolaos Pavlakis x June 2013

Contents

1 Introduction 1

1.1 Thesis Contribution . 2

1.2 Thesis Outline . 3

2 Background 5

2.1 RoboCup . 5

2.1.1 Standard Platform League . 6

2.1.2 Aldebaran Nao Humanoid Robot 6

2.2 RoboCup SPL Team Kouretes . 9

2.2.1 Monas Software Architecture . 11

2.2.2 Narukom Communication Framework 14

2.3 Kalman Filtering . 15

2.3.1 Brief Description . 15

2.3.2 Estimation Procedure . 16

2.3.3 Extended Kalman Filter . 18

3 Problem Statement 21

3.1 Global Game State Estimation . 21

3.2 Related Work . 22

3.2.1 Weighted Belief Averaging . 23

3.2.2 Remote Filter Updates . 23

3.2.3 Global Filtering . 24

4 Our Approach 27

4.1 The Idea . 27

4.2 Kalman Filter . 28

Nikolaos Pavlakis xi June 2013

CONTENTS

4.2.1 Prediction Step . 30

4.2.2 Update Step . 31

4.2.3 Transition Model . 32

4.2.4 Observation Model . 34

4.3 Extended Kalman Filter . 35

5 Implementation 39

5.1 Matlab Simulation . 39

5.2 KMat: Kouretes Math Library . 40

5.3 The SharedWorldModel Monas Activity 41

5.4 Distributed Individual Computation . 42

6 Results 45

6.1 Scenario I: Global estimate better than local ones 46

6.2 Scenario II:Approaching the ball without seeing it 47

7 Conclusion and Future Work 51

7.1 Conclusion . 51

7.2 Future Work . 51

7.2.1 Localization Feedback: Ball as a Landmark 51

7.2.2 Team Strategy and Coordination 52

7.2.3 Opponent Modelling . 53

References 57

Nikolaos Pavlakis xii June 2013

List of Figures

2.1 Standard Platform League at RoboCup German Open 2013 7

2.2 Aldebaran Nao robot (v3.3, academic edition) and its components 8

2.3 Embedded and desktop software for the Nao robot 9

2.4 The NAOqi process . 10

2.5 Team Kouretes at RoboCup 2012 in Mexico City 11

2.6 Team Kouretes at RoboCup Iran Open 2013 12

2.7 Kalman Filter phases . 17

4.1 Kalman Filter procedure [1] . 30

5.1 Simulation: true state (red), local beliefs (blue), global filter estimates

(green). 40

6.1 Scenario I: the true state of the world . 46

6.2 Scenario I: global (pink circle) and local (small gray circles) ball estimates 47

6.3 Scenario II: the true state of the world 48

6.4 Scenario II: true state (top) and estimated local and global states (bottom) 49

Nikolaos Pavlakis xiii June 2013

LIST OF FIGURES

Nikolaos Pavlakis xiv June 2013

Chapter 1

Introduction

The RoboCup Competition is an international annual aggregation of robotic competitions

which intends to promote Robotics and Artificial Intelligence (AI) research. RoboCup

Soccer constitutes the main RoboCup division and focuses on the game of soccer. The

research goals in RoboCup Soccer concern cooperative multi-robot and multi-agent sys-

tems in dynamic adversarial environments and all the participating teams have to find

real-time solutions to some of the most difficult problems in robotics, such as percep-

tion, cognition, action, and coordination. In the Standard Platform League (SPL) all

teams use identical robots (standard platform), therefore they concentrate on software

development only. Currently, the chosen SPL platform is the Aldebaran NAO humanoid

robot.

Software development for robots competing in the RoboCup SPL essentially aims

at developing autonomous agents. An autonomous robotic agent is a system that con-

tinuously perceives its environment through the robotic sensors, analyzes the percept

sequence using various AI techniques, and takes actions through the robotic actuators

with the goal of maximizing a utility function. The central problems of an autonomous

robotic agent include environment perception, robot localization, robotic mapping, path

planning, decision making under uncertainty, and learning. Apart from those, the cen-

tral problems of a team of autonomous agents working to achieve a common goal include

multi-agent planning, team coordination, and collaborative decision making. In order

for those problems to be tackled, all the agents of the team need to have a common

belief about the global state of the environment. This belief must be a common reference

Nikolaos Pavlakis 1 June 2013

1. INTRODUCTION

frame shared between all the team robots. Furthermore, apart from information sharing,

it needs to provide error correction in order to account for local module errors.

The simplest example to illustrate the importance of this common global world state

belief is the following. Imaging two players of the same team, both confident about their

own location inside the field, but only one of them observing the ball. Even though

the other player is not directly observing the ball (e.g. due to occlusion), if these two

robots maintain a common belief about the surrounding environment, they will both

share information about the location of ball and will be able to use this information for

appropriate decision making. This thesis aims at addressing the problem of multi-agent

belief fusion and information sharing which enables the possibility for collaborative team

planning and coordination.

1.1 Thesis Contribution

The contribution of this thesis is the creation of a mechanism that addresses the problem

of global game state estimation over a team of robots during a robotic soccer game. More

specifically, this mechanism takes as input each robot’s personal belief about the world

around it (its location inside the field, the ball’s location, teammate locations, opponent

locations, etc.) and combines all these beliefs to estimate the most probable global state

of the world. This means that the output of this mechanism is a state vector, which

includes the poses (positions and orientations) of all robots of the team, the position of

the ball, and the poses of opponent robots, if opponent robot recognition is available.

In order to generate and provide this information, this mechanism employs a filtering

algorithm, and more specifically, an Extended Kalman Filter (EKF). A key component

of this work is the definition of the appropriate EKF models (state transition model and

observation model) and their linearization where needed. A second component is the

implementation of a decentralized and asynchronous belief update method for the EKF,

so that it can be used in real game situations where computational and network resources

are limited.

The benefits of this method are numerous, yet the most important one is that all

robots share a common belief about the global game state. This implies that some robots

may consult this global belief to acquire information missing from their local beliefs. For

example, a robot can obtain the location of the ball in the field even without observing it

Nikolaos Pavlakis 2 June 2013

1.2 Thesis Outline

on its own, as long as at least one of its teammates does so. This feature is very important

since the domain of robotic soccer is characterized by partial observability, which implies

that local beliefs by themselves cannot always contain accurate information about the

global game state. Another great benefit of this method is that the robot team can exploit

this shared global state information to develop collaborative strategies and coordinated

planning, instead of relying on independent (egocentric) behaviors.

1.2 Thesis Outline

Chapter 2 describes the RoboCup competition, the Standard Platform League (SPL),

the Aldebaran NAO humanoid robot, our SPL team Kouretes, our software architecture

Monas, and our communication framework Narukom. Furthermore, it provides basic

background information about the Kalman Filter and the Extended Kalman Filter that

is used in this approach. In Chapter 3 we define the problem of global game state esti-

mation and we discuss the significance of developing an efficient and effective mechanism

for addressing the problem in real time. Additionally, we briefly review related work

by other RoboCup SPL teams. In Chapter 4 we describe our approach in detail, in-

cluding a justification for choosing an Extended Kalman Filter and the selection of the

required transition and observation models. In Chapter 5 we briefly present our im-

plementation within the software framework of Team Kouretes, including our choices for

real-time, on-board, asynchronous execution. In Chapter 6 we present a couple of scenar-

ios demonstrating the effectiveness and the efficiency of our global game state estimation

mechanism. Finally, in Chapter 7 we propose directions for future work and conclude.

Nikolaos Pavlakis 3 June 2013

1. INTRODUCTION

Nikolaos Pavlakis 4 June 2013

Chapter 2

Background

2.1 RoboCup

RoboCup, an abbreviation of “Robot Soccer World Cup”, is an international annual

competition which intends to promote robotics and artificial intelligence research. The

founding father of RoboCup, Professor Alan Mackworth, inspired the idea of building a

robot to play a soccer game autonomously in 1992. One year later, Hiroaki Kitano [2]

and his research group decided to launch a novel robotic competition. Finally, in 1997 the

actual establishment of the International RoboCup Federation occurred. The ambitious

goal of the RoboCup Initiative is stated as follows:

“By mid-21st century, a team of fully autonomous humanoid robot soccer

players shall win the soccer game, comply with the official rule of the FIFA,

against the winner of the most recent World Cup.”

All the teams participating in RoboCup have to find real-time solutions to some of

the most difficult problems in robotics (perception, cognition, action, coordination) and

apply their approaches on the various leagues of the four RoboCup divisions (RoboCup

Soccer, RoboCup Rescue, RoboCup@Home, Robocup Junior). Until today, noteworthy

progress has been made in advancing the state-of-the-art technology, while the number of

the participating researchers who aim to fulfill the initial challenge is constantly growing.

Nikolaos Pavlakis 5 June 2013

2. BACKGROUND

2.1.1 Standard Platform League

RoboCup Soccer constitutes one of the four RoboCup divisions and focuses mainly on

the game of soccer, where the research goals concern cooperative multi-robot and multi-

agent systems in dynamic adversarial environments. All robots in this division are fully

autonomous. RoboCup Soccer consists of five different leagues (Humanoid, Middle Size,

Simulation, Small Size, and Standard Platform). In the Standard Platform League (SPL)

all teams use identical robots (standard platform). Currently, the chosen SPL platform

is the Aldebaran Nao humanoid robot, therefore the teams concentrate only on soft-

ware development. The participating teams are prohibited to make any changes to the

hardware of the robot, meaning that off-board sensing or processing systems are not

allowed. The use of directional, as opposed to omnidirectional, vision forces a trade off

of vision resources between self-localization, ball localization, player identification, and

obstacle detection. The robots are completely autonomous and no human intervention

from team members is allowed during the games. The only interaction of the robots with

the “outer human world” is the reception of data from the Game Controller, a computer

that broadcasts information about the state of the game (score, time, penalties, etc.).

The SPL games as of 2013 are conducted on a 9m× 6m soccer field which consists of

a green carpet marked with white lines and two yellow goals (Figure 2.1). The ball is an

orange street hockey ball. Each team consists of five robots, one goal keeper, and four field

players. The robot players are distinguished by colored jersey shirts, blue for one team

and red for the other. The total game time is 20 minutes divided in two halves; each half

lasts 10 minutes. During the 10-minutes half-time break, teams have to switch field sides

and jerseys and only during this time is it permitted to change robots, change programs,

etc. The complete rules of the SPL games are stated in detail in the RoboCup Standard

Platform League (Nao) Rule Book [3], which is annually updated with enhancements and

additional challenging requirements that propel the general progress of the league.

2.1.2 Aldebaran Nao Humanoid Robot

The current hardware platform which all SPL teams are obliged to work with is Nao,

an integrated, programmable, medium-sized humanoid robot developed by Aldebaran

Robotics in Paris, France. Project Nao [4] started in 2004. In August 2007 Nao officially

Nikolaos Pavlakis 6 June 2013

2.1 RoboCup

Figure 2.1: Standard Platform League at RoboCup German Open 2013

replaced Sony’s AIBO quadruped robot in the RoboCup SPL. In the past few years Nao

has evolved over several designs and several versions.

Nao (version V3.3) [5] is a 58cm, 5kg humanoid robot (Figure 2.2). The Nao robot

carries a fully capable computer on-board with an x86 AMD Geode processor at 500 MHz,

256 MB SDRAM, and 2 GB flash memory running an Embedded Linux distribution. It is

powered by a 6-cell Lithium-Ion battery which provides about 30 minutes of continuous

operation and communicates with remote computers via an IEEE 802.11g wireless or a

wired ethernet link.

Nao RoboCup edition has 21 degrees of freedom; 2 in the head, 4 in each arm, 5 in

each leg, and 1 in the pelvis (there are two pelvis joints which are coupled together on

one servo and cannot move independently). Nao, also, features a variety of sensors and

transmitters. Two cameras are mounted on the head in vertical alignment providing non-

overlapping views of the lower and distant frontal areas, but only one is active each time

and the view can be switched from one to the other almost instantaneously. Each camera

is a 640 x 480 VGA device operating at 30fps. The native colorspace provided by the

cameras is the YUV422. Four sonars (two emitters and two receivers) on the chest allow

Nao to sense obstacles in front of it. In addition, the Nao has a rich inertial unit, with

one 2-axis gyroscope and one 3-axis accelerometer, in the torso that provides real-time

information about its instantaneous body movements. Two bumpers located at the tip

Nikolaos Pavlakis 7 June 2013

2. BACKGROUND

Figure 2.2: Aldebaran Nao robot (v3.3, academic edition) and its components

of each foot are simple ON/OFF switches and can provide information on collisions of

the feet with obstacles. Finally, an array of force sensitive resistors on each foot delivers

feedback of the forces applied to the feet, while encoders on all servos record the actual

values of all joints at each time.

Aldebaran Robotics has equipped Nao with both embedded and desktop software to

be used as a base for further development (Figure 2.3). The embedded software, running

on the motherboard located in the head of the robot, that the company provides includes

an embedded GNU/Linux distribution and NAOqi, the main proprietary software that

runs on the robot and controls it. Nao’s desktop software includes Choregraphe, a visual

programming application which allows the creation and the simulation of animations and

behaviors for the robot before the final upload to the real Nao, and Telepathe which pro-

vides elementary feedback about the robot’s hardware and a simple interface to accessing

Nikolaos Pavlakis 8 June 2013

2.2 RoboCup SPL Team Kouretes

Figure 2.3: Embedded and desktop software for the Nao robot

its camera settings. As far as the NAOqi framework is concerned, it is cross-platform,

cross-language, and provides introspection which means that the framework knows which

functions are available in the different modules and where. It provides parallelism, re-

sources, synchronization, and events. NAOqi, also, allows homogeneous communication

between different modules (motion, audio, video), homogeneous programming, and ho-

mogeneous information sharing. Software can be developed in C++, Python, and Urbi.

The programmer can state which libraries have to be loaded when NAOqi starts via a

preference file called autoload.ini. The available libraries contain one or more mod-

ules, which are typically classes within the library and each module consists of multiple

methods (Figure 2.4).

2.2 RoboCup SPL Team Kouretes

Team Kouretes is the first and currently the only RoboCup SPL team founded in Greece,

hosted in the Intelligent Systems Laboratory of the School of Electronic and Computer

Engineering at the Technical University of Crete. Kouretes started developing their own

robotic software framework in 2008 and the code is constantly developed and maintained

ever since. The team’s publicly-available code repository includes a custom software

architecture, a custom communication framework, a graphical application for behavior

Nikolaos Pavlakis 9 June 2013

2. BACKGROUND

Figure 2.4: The NAOqi process

specification, and modules for object recognition, state estimation, localization, obstacle

avoidance, behavior execution, and team coordination, which are briefly described below.

The team participates in the main RoboCup competition since 2006 in various soccer

leagues (Four-Legged, Standard Platform, MSRS, Webots), as well as in various local

RoboCup events (German Open, Mediterranean Open, Iran Open, RC4EW, RomeCup)

and RoboCup exhibitions (Athens Digital Week, Micropolis, Schoolfest). Distinctions of

the team include: 2nd place in MSRS at RoboCup 2007; 3rd place in SPL-Nao, 1st place

in SPL-MSRS, among the top 8 teams in SPL-Webots at RoboCup 2008; 1st place in

RomeCup 2009; 6th place in SPL-Webots at RoboCup 2009; 2nd place in SPL at RC4EW

2010; and 2nd place in SPL Open Challenge Competition at RoboCup 2011 (joint team

Noxious-Kouretes). Recently, the team participated in the RoboCup German Open 2012

competition in Magdeburg, in RoboCup Iran Open 2012 in Tehran, in RoboCup 2012 in

Mexico City (Figure 2.5), in AutCup 2012 and in RoboCup Iran Open 2013 (Figure 2.6).

In the most recent RoboCup 2012 competition, the team succeeded to proceed to the

second round-robin round and rank among the top-16 SPL teams in the world.

Nikolaos Pavlakis 10 June 2013

2.2 RoboCup SPL Team Kouretes

Figure 2.5: Team Kouretes at RoboCup 2012 in Mexico City

2.2.1 Monas Software Architecture

Monas [6] is a flexible software architecture which provides an abstraction layer from

the hardware platform and allows the synthesis of complex robot software as XML-

specified Monas modules, Provider modules, and/or Statechart modules. Monas modules,

the so-called agents, focus on specific functionalities and each one of them is executed

independently at any desired frequency completing a series of activities at each execution.

The base activities, that an agent may consist of, are described briefly below:

• Vision [7] is a light-weight image processing method for humanoid robots, via which

Kouretes team has accomplished visual object recognition. The vision module

determines the exact camera position in the 3-dimensional space and subsequently

the view horizon and the sampling grid, so that scanning is approximately uniformly

projected over the ground (field). The identification of regions of interest on the

pixels of the sampling grid follows next utilizing an auto-calibrated color recognition

scheme. Finally, detailed analysis of the identified regions of interest seeks potential

matches for corresponding target objects. These matches are evaluated and filtered

by several heuristics, so that the best match (if any) in terms of color, shape, and

Nikolaos Pavlakis 11 June 2013

2. BACKGROUND

Figure 2.6: Team Kouretes at RoboCup Iran Open 2013

size for a target object is finally extracted. Then, the corresponding objects are

returned as perceived, along with an estimate of their current distance and bearing.

• LocalWorldState [8] is the activity which used to realize Monte-Carlo localization

(Particle Filters - PFs) and recently switched to using a Kalman Filter (KF). The

belief of the robot is a probability distribution over the 3-dimensional space of co-

ordinates and orientation (x, y, θ) represented approximately using a population of

particles in the case of PFs or using a 3-dimensional Gaussian distribution in the

case of KF. Belief update is performed using an odometry motion model for omni-

directional locomotion and a landmark sensor model for the goalposts (landmarks).

The robot’s pose is estimated as the pose of the particle with the highest weight

(PFs) or the mean (highest probability) of the Gaussian distribution (KF).

• SharedWorldModel is the end product of this thesis; it combines the local beliefs

of all robots to create a common and shared estimation of the current state of the

world. Details will be provided in Chapters 4 and 5.

Nikolaos Pavlakis 12 June 2013

2.2 RoboCup SPL Team Kouretes

• ObstacleAvoidance [9] is the activity which accomplishes obstacle avoidance by

first building a local obstacle occupancy map, which is updated constantly with

real-time sonar information, taking into consideration the robot’s locomotion. Af-

terwards, an A* search algorithm is used for path planning, the outcome of which

suggests an obstacle-free path for guiding the robot to a desired destination.

• Behavior is the activity which implements the desired robotic behavior. It op-

erates on the outputs of the Vision, LocalWorldState, and ObstacleAvoidance

activities and decides which one is the most appropriate action to be executed next.

• HeadBehavior manages the movements of the robot head (camera).

• MotionController [10] is used for managing and executing robot locomotion com-

mands and special actions.

• RobotController handles external signals on the game state.

• LedHandler controls the robot LEDs (eyes, ears, chest button, feet).

Provider modules accomplish the complete decoupling of the robotic hardware by col-

lecting and filtering measurements from the robot sensors and cameras and forming them

as messages in order to be utilized as input data by any interested Monas agents. Each

provider module can be executed independently and at any desired frequency.

Custom Forward and Inverse Kinematics [11, 12], designed specifically for the NAO

humanoid robot, have been implemented as an independent software library optimized

for speed and efficiency. The library is currently being used in other team projects, such

as omni-directional walk engine and dynamic kick engine.

Statechart modules [13, 14, 15] are executed using a generic multi-threaded statechart

engine, which provides the required concurrency and meets the real-time requirements of

the activities on each robot.

KMonitor [16] is a debugging tool created specifically for the Monas architecture that

takes advantage of the modularity of Kouretes code and helps in finding errors or verifying

that newly implemented features work correctly. It also allows for the easy creation of

colortables, the transmission of remote commands over the network, etc.

Nikolaos Pavlakis 13 June 2013

2. BACKGROUND

2.2.2 Narukom Communication Framework

Narukom [17] is the communication framework developed for the needs of the team’s code

and it is based on the publish/subscribe messaging pattern. Narukom supports multiple

ways of communication, including local communication among the Monas modules, the

Providers modules, and the Statechart modules that constitute the robot software, and

remote communication via multicast connection among multiple robot nodes and among

robot and external computer nodes. The information that needs to be communicated

between nodes is formed as messages which are tagged with appropriate topics and host

IDs. Three types of messages are supported:

• state, which remain in the blackboard until replaced by a newer message,

• signal, which are consumed at the first read, and

• data, which are time-stamped to indicate the time their values were acquired.

To facilitate the serialization of data and the structural definition of the messages, Google

Protocol Buffers were utilized. The user defines the data structure once and then uses

the generated source code to write and read the defined structures to and from a variety

of data streams using a variety of programming languages. Another great advantage of

protocol buffers is that data structures can be enhanced without breaking the already

deployed programs, which are capable of handling the old format of the structures. To use

protocol buffers one must describe the information for serialization by defining protocol

buffer messages in .proto files. A protocol buffer message is a small record of information,

containing name-value pairs. The protocol buffer message format is simple and flexible.

Each message type has at least one numbered field. Each field has a name and a value

type. The supported types are integer, floating-point, boolean, string, raw bytes, or other

complex protocol buffer message types, thus hierarchical structure of data is possible.

Additionally, the user can specify rules, if a field is mandatory, optional, or repeated.

These rules enforce both the existence and multiplicity of each field inside the message.

As a next step, the user generates code for the desired language by running the protocol

buffer compiler. The compiler produces data access classes and provides accessors and

mutators for each field, as well as serialization/unserialization methods to/from raw bytes.

Officially, Google supports C++, Java, and Python for code generation, but there are

several other unofficially supported languages.

Nikolaos Pavlakis 14 June 2013

2.3 Kalman Filtering

Additionally, the blackboard paradigm is utilized to provide efficient access to shared

information stored locally at each node and is extended to support history queries and a

mechanism that controls the information updates. Finally, to meet the delivery require-

ments among the remote and/or the local nodes, messages are relayed though a message

queue. The message queue is responsible for collecting the published messages and allo-

cating them to the interested subscribers through multiple buffers. Messages that have to

be delivered to remote nodes are committed to the KNetwork module, which implements

the multicast connection.

2.3 Kalman Filtering

The Kalman filter [18], also known as linear quadratic estimation (LQE), is an algorithm

that uses a series of measurements observed over time, containing noise (random vari-

ations) and other inaccuracies, and produces estimates of unknown variables that tend

to be more precise than those based on a single measurement alone. More formally, the

Kalman filter operates recursively on streams of noisy input data to produce a statisti-

cally optimal estimate of the underlying system state. The filter is named after Rudolf

E. Kalman, one of the primary developers of its theory.

The Kalman filter is a set of mathematical equations that provides an efficient com-

putational (recursive) solution of the least-squares method. The filter is very powerful in

several aspects: it supports estimations of past, present, and even future states, and it

can do so even when the precise nature of the modeled system is unknown.

2.3.1 Brief Description

The Kalman filter uses a system’s dynamics model (e.g., physical laws of motion), known

control inputs to that system, and multiple sequential measurements (from sensors) to

form an estimate of the system’s varying quantities (its state) that is better than the

estimate obtained by using any one measurement alone. As such, it is a sensor fusion

and data fusion algorithm.

All measurements and calculations based on models are estimates to some degree.

Noisy sensor data, approximations in the equations that describe system changes, and

external factors that are not accounted for introduce uncertainty about the inferred values

Nikolaos Pavlakis 15 June 2013

2. BACKGROUND

for a system’s state. The Kalman filter averages a prediction of a system’s state with a

new measurement using a weighted average. The purpose of the weights is that values

with less uncertainty are “trusted” more. The weights, also known as Kalman gain,

are calculated taking into account the covariance of the estimation which relates to the

estimated uncertainty of the prediction of the system’s state and the uncertainty of the

measurements. The result of the weighted average is a new state estimate that lies

between the predicted and the measured state and has a lower estimated uncertainty

than either alone. This process is repeated every time step, with the new estimate and

its covariance informing the prediction used in the following iteration. This means that

the Kalman filter works recursively and requires only the last “best guess”, rather than

the entire history, of a system’s state to calculate a new state.

Since the certainty of the measurements is often difficult to measure precisely, it is

common to discuss the filter’s behavior in terms of gain. The Kalman gain is a function

of the relative certainty of the measurements and current state estimate and can be

“tuned” to achieve a certain level of performance. With a high gain, the filter places

more weight on the measurements and thus follows them more closely. With a low gain,

the filter follows the model predictions more closely, smoothing out noise but decreasing

the responsiveness. At the extremes, a gain of one causes the filter to ignore the state

estimate entirely, while a gain of zero causes the measurements to be ignored.

When performing the actual calculations for the filter (as discussed below), the multi-

dimensional state estimate and covariances are coded into matrices to handle collectively

the multiple dimensions involved in a single set of calculations. This allows for represen-

tation of linear relationships between different state variables (such as position, velocity,

and acceleration) in any of the transition models or covariances.

2.3.2 Estimation Procedure

In order to use the Kalman filter to estimate the internal state of a process given only

a sequence of noisy observations, one must model the process in accordance with the

framework of the Kalman filter. This means specifying the following matrices: Fk, the

state-transition model; Hk, the observation model; Qk, the covariance of the process

noise; Rk, the covariance of the observation noise; and sometimes Bk, the control-input

model, for each time-step, k.

Nikolaos Pavlakis 16 June 2013

2.3 Kalman Filtering

Figure 2.7: Kalman Filter phases

The Kalman filter addresses the general problem of trying to estimate the state x ∈ <n

of a discrete-time controlled process with control input u ∈ <l, which is governed by the

linear stochastic difference equation:

xk = Fkxk−1 + Bkuk + wk

using measurements z ∈ <m which depend on the state, that is

zk = Hkxk + vk

The random variables wk and vk represent the process and measurement noise respec-

tively. They are assumed to be independent (of each other), white, and with normal

probability distributions:

w ∼ N(0,Q)

v ∼ N(0,R)

The n × n matrix Fk relates the state at time step k to the state at step k + 1, in the

absence of either a control input or process noise. The n× l matrix B describes the effect

of the control input uk ∈ <l on the state xk. The m× n matrix Hk relates the state to

the measurement zk.

The Kalman filter is most often conceptualized as two distinct phases: predict and

update (Figure 2.7). The predict phase uses the state estimate from the previous timestep

to produce an estimate of the state at the current timestep. This predicted state esti-

mate is also known as the a priori state estimate because, although it is an estimate of

Nikolaos Pavlakis 17 June 2013

2. BACKGROUND

the state at the current timestep, it does not include observation information from the

current timestep. In the update phase, the current prediction is combined with current

observation information to refine the state estimate. This improved estimate is termed

the a posteriori state estimate.

Typically, the two phases alternate, with the prediction advancing the state until

the next scheduled observation, and the update incorporating the observation. However,

this is not necessary; if an observation is unavailable for some reason, the update may

be skipped and multiple prediction steps may be performed. Likewise, if multiple in-

dependent observations are available at the same time, multiple update steps may be

performed.

Predict :

Predicted (a priori) state estimate x̂k|k−1 = Fkx̂k−1|k−1 + Bk−1uk−1

Predicted (a priori) estimate covariance Pk|k−1 = FkPk−1|k−1F
>
k + Qk

Update:

Innovation or measurement residual ỹk = zk −Hkx̂k|k−1

Innovation (or residual) covariance Sk = HkPk|k−1H
>
k + Rk

Optimal Kalman gain Kk = Pk|k−1H
>
k S
−1
k

Updated (a posteriori) state estimate x̂k|k = x̂k|k−1 + Kkỹk

Updated (a posteriori) estimate covariance Pk|k = (I−KkHk)Pk|k−1

2.3.3 Extended Kalman Filter

The primary drawback of the Kalman filter is that it offers optimal estimates only for

linear system models with additive independent white noise in both the transition and

the measurement models. Unfortunately, in engineering most systems are nonlinear, so

some attempt was immediately made to apply this filtering method to nonlinear systems.

The Extended Kalman Filter [18] which adapted techniques from calculus, namely multi-

variate Taylor Series expansions, to linearize about a working point became the working

solution.

Nikolaos Pavlakis 18 June 2013

2.3 Kalman Filtering

In the Extended Kalman filter, the state transition and observation models need not

be linear functions of the state, but may instead be any differentiable functions.

xk = f(xk−1,uk−1) + wk−1

zk = h(xk) + vk

where wk and vk are the process and observation noises which are both assumed to be

zero-mean multivariate Gaussian noises with covariance Qk and Rk respectively.

The function f can be used to compute the predicted state from the previous estimate

and similarly the function h can be used to compute the predicted measurement from the

predicted state. However, f and h cannot be applied to the covariance directly. Instead a

matrix of partial derivatives (the Jacobian) is computed. At each time step, the Jacobian

is evaluated using the current predicted state. These matrices can be used in the Kalman

filter equations. This process essentially linearizes the non-linear functions around the

current state estimate.

Similarly to the linear Kalman filter, there are two phases: predict and update.

Predict :

Predicted (a priori) state estimate x̂k|k−1 = Fkx̂k−1|k−1 + Bk−1uk−1

Predicted (a priori) estimate covariance Pk|k−1 = FkPk−1|k−1F
>
k + Qk

Update:

Innovation or measurement residual ỹk = zk −Hkx̂k|k−1

Innovation (or residual) covariance Sk = HkPk|k−1H
>
k + Rk

Kalman gain Kk = Pk|k−1H
>
k S
−1
k

Updated (a posteriori) state estimate x̂k|k = x̂k|k−1 + Kkỹk

Updated (a posteriori) estimate covariance Pk|k = (I−KkHk)Pk|k−1

where the state transition and observation matrices are defined to be the following Jaco-

bians

Fk−1 =
∂f

∂x

∣∣∣∣
x̂k−1|k−1,uk−1

Hk =
∂h

∂x

∣∣∣∣
x̂k|k−1

Due to errors introduced by the linearization, the Extended Kalman filter does not per-

form optimal estimate updates and may even diverge in certain cases.

Nikolaos Pavlakis 19 June 2013

2. BACKGROUND

Nikolaos Pavlakis 20 June 2013

Chapter 3

Problem Statement

3.1 Global Game State Estimation

The need to operate under partial observability and interact with objects in the envi-

ronment makes the creation of a world model a necessity for most robotic systems. In

a multi-robot system, such as a Robocup game, where several agents interact simulta-

neously with each other and observe only portions of the environment, the need for a

consistent view of the world is even greater.

When using directed vision as the primary sensor for perception, soccer-playing agents

are usually unable to observe the entire environment at once. If no communication

between teammates is available, each robot must form a belief (a local world model)

about the environment without input from other agents. On the other hand, if inter-

robot communication is available, then there exists a possibility of creating a global world

model that will be shared by all the robots of the team and will reflect the fusion of each

robot’s personal belief with those of the others.

In any game of soccer, most activity takes places around the ball and strategies tend to

be based on where the ball is, so accurate knowledge about its position in the field is very

important. The same applies to the Robocup Standard Platform League where teams of

five robots must co-ordinate themselves to play games of soccer. In RoboCup, the ball is

the most important object and therefore a need for a shared world model that provides

an accurate position estimate for the ball at all times arises. Effective ball modelling can

be helpful in many situations. Through this shared world model, robots should be able

to cooperatively know where the ball is located, even if it is not within their own field of

Nikolaos Pavlakis 21 June 2013

3. PROBLEM STATEMENT

view. If a robot has no sight of the ball, whether it is due to obstruction by another robot

or due to looking towards a different direction, it can easily deduce the location of the

ball, if all the robots of the team work together to estimate it cooperatively. Therefore,

it was highly motivating to find ways to maintain a ball model at a global frame.

Furthermore, apart from the ball, it is of high importance for each robot to gain

and maintain knowledge about its teammates’ positions. Moreover, the creation of such

a model about the ball and the incorporation of teammate positions is very important

since it provides the opportunity of developing whole-team strategies contrary to single-

player behaviors. This fact introduces cooperation and coordination between robots,

which allow them to assume different roles within the field (e.g. attacker, defender,

supporter, etc.). Imagine a simple scenario where two robots of the same team see the

ball in front of an empty opponent goal. In the case where there is no communication

and no shared world model, the two robots would probably both rush towards the ball

to kick it and score, however they might bump to each other along the way, fall down,

and fail to score. On the contrary, if they share information about their positions and

the ball, using plain and simple role planning can handle the situation more effectively.

For example, the closest robot to the ball can assume the role of the attacker, while the

other robot becomes supporter; only one of them will go towards the ball to score and

the other one can move to a position near the ball and be ready to assume attacker role,

in case the first robot fails to score.

One can clearly see that in scenarios like the ones described above, the use of a shared

global world model would highly benefit the team. Of course, there is the need for network

communication for the creation and use of the model proposed, but in domains like

Robocup and robotic soccer leagues in general, this need is usually covered. Therefore,

Robocup soccer teams would greatly benefit from the creation of a mechanism that

gathers all local world beliefs from all the robots as input and generates a fusion of these

beliefs to create a global world model shared by all the robots of the team.

3.2 Related Work

Many Robocup teams have developed information sharing mechanisms, since they are

essential as discussed above. Below, we will briefly present some of these works. Con-

sidering all the methods reviewed, one cannot easily distinguish a single best choice to

Nikolaos Pavlakis 22 June 2013

3.2 Related Work

address the problem stated. This is the reason there are many variations of such methods

among the SPL teams and there is no “standard” way to go.

3.2.1 Weighted Belief Averaging

B-Human [19] and rUNSWift [20], two of the best teams in the Standard Platform League,

are using a simple, yet effective, technique to address this problem. Given that they have

developed their own walk engine and they have designed their own odometry which

leads to very accurate self-localization, their robots simply exchange their local position

estimates and, without any further processing, this collection of positions serves as the

fusion of their beliefs. Apart from the positions of the teammates, they also generate a

common, shared belief about the position of the ball within the field. Both teams create

this belief by computing a weighted average over all the local beliefs about the ball.

The weights, meaning how much the belief of each robot contributes to the resulting

belief, depend on various factors that each team determines according to their needs.

The most common factors taken into account is the uncertainty of each robot about their

own position inside the field, the time that has passed since they last saw the ball, the

uncertainty of the ball observation (usually higher ball bearing, means higher uncertainty

about the observation), etc.

This weighted-average approach works well, when the local beliefs are accurate. As

described above, the local beliefs depend on several factors: the accuracy of the walk

engine, the accuracy of the odometry, the accuracy of observations, the choice of the

self-localization algorithm, the choice of filtering techniques, the variety of recognized

landmarks, etc.

Similar fusion and information sharing techniques were also used by the CMU team [21]

at the time when the Robocup Standard Platform League was using the Sony Aibo robots.

3.2.2 Remote Filter Updates

Austin Villa [22], one of the best SPL teams, are using a slightly different approach.

Each robot uses an Unscented Kalman Filter (UKF) to keep track of its own pose and

the position of the ball, but it also allows other robots to perform updates to its own filter,

as if it has gotten a new observation. Since the robot’s pose and the position of the ball

are part of the same filter, if other robots update the position of the ball, this instantly

Nikolaos Pavlakis 23 June 2013

3. PROBLEM STATEMENT

reflects to the pose of this robot. This means that when a robot lacks observations of

localization landmarks (goal posts, lines, etc.), but receives several ball observations (e.g.

this robot is an attacker and has its head “locked” to the ball while approaching it), its

pose estimate can be corrected by other robots also observing the ball and updating the

position of the ball in its own local filter. Since the estimate about the position of the

ball will have a much lower uncertainty compared to the estimate of the robot’s pose, the

pose will eventually get adjusted to match the ball estimate.

This approach is more sophisticated than the one discussed in Section 3.2.1 and harder

to implement and debug, but it provides the opportunity of pose correction only through

ball observations, provided some assistance by other robots also observing the ball and

having accurate self-position estimate.

3.2.3 Global Filtering

Nao Devils [23, 24] and NTU RoboPAL [25] are using another approach to address the

problem we study. They are creating an augmented “state” which includes the poses

of all the robots of the team and information about the ball and possibly other moving

objects (e.g. opponent robots in the approach of Nao Devils). Then they perform a

filtering algorithm over this augmented state. Nao Devils are using Unscented Kalman

filtering, while NTU RoboPAL are using Extended Kalman filtering. The choice between

Extended and Unscented Kalman filter for this task is widely discussed in the literature,

so one cannot be certain about which one is the best choice, and should decide after

considering all needs and facts.

Apart from the algorithmic differences, the method used by both teams is similar, with

the difference that NTU RoboPAL are using vision observations as direct measurements

in their collective filter, while Nao Devils are using either personal localization information

(e.g. pose and uncertainty) in the case where any robots of their team observes a static

world element or they run a Maximum Likelihood (ML) algorithm in the case where they

observe a dynamic feature. This dynamic feature could be a teammate or an opponent

robot. The reason they use the ML algorithm is to determine whether the observation

made corresponds to one of the existing entries in the state of their filter. If all the choices

are highly unlike, a new entry (model) is inserted into the state to represent the newly

Nikolaos Pavlakis 24 June 2013

3.2 Related Work

detected object, which is most likely an opponent robot, given that ML did not find a

suitable enough entry.

In conclusion, both methods are quite similar with the main difference being that NTU

RoboPAL are performing one layer of global filtering, while Nao Devils are performing

two layers of filtering, namely local filtering whose output serves as input (observations)

to global filtering.

Nikolaos Pavlakis 25 June 2013

3. PROBLEM STATEMENT

Nikolaos Pavlakis 26 June 2013

Chapter 4

Our Approach

Our solution to the problem of shared global game state estimation is based on the

creation of a mechanism that is responsible for collecting all the local world state beliefs

(output of the local estimation filter), performing filtering in order to integrate them, and

producing a consistent belief about the global collective state of the game. This belief

will be common to all robots, so that they all share the same information which allows

the opportunity for cooperative decision making. Our approach is similar to the ideas

described in Section 3.2.3.

4.1 The Idea

For the purposes of this thesis we define the global game state to be the field poses

(positions and orientations) of all robots in our team and the location of the ball within

the field. Other state variables could be included in the global game state, such as the

field poses of opponents and the field positions of dynamic objects (e.g. human referees),

however we chose to ignore them in this work, due to lack of recognition ability for these

features. Nevertheless, our methodology could incorporate such elements, provided there

exists corresponding recognition and local estimation procedures for these.

The general idea of our approach for global game state estimation is fairly simple.

Apart from their local (egocentric) belief, all robots maintain a global belief, which is

updated using data from the whole team. Each robot monitors the network and listens

for local belief messages from all the robots (including self) containing information about

their pose and information about the ball (if any). For each incoming message, the

Nikolaos Pavlakis 27 June 2013

4. OUR APPROACH

receiving robot performs a filtering step in order to incorporate the new information into

the current global belief. Therefore, sharing and fusing the local beliefs, enables each

robot to correct local errors and gain knowledge about the state of its teammates and

the location of the ball.

4.2 Kalman Filter

We chose to use a Kalman Filter (KF) for this state estimation problem, because it

seems to be a suitable option for our needs and it is proven to produce optimal results,

if the models used are realistic. Each robot needs to maintain a (3N + 2)-dimensional

Kalman filter, where N represents the number of robots in the team. We need three

variables (xi, yi, θi) for the pose (location and orientation) of robot i and two vari-

ables (xb, yb) for the location of the ball. The said Kalman filter will use local belief

messages from each robot as its observations. An update step takes the observation

(robotx, roboty, robotθ, ballx, bally) and updates only the cells of the Kalman matrices that

correspond to this specific robot. This is achieved through the H matrix which translates

how the observation relates to the state.

The Kalman matrices for our problem are described below:

x̂ : (3N + 2)× 1, represents the global state we need to estimate.

P : (3N + 2)× (3N + 2), represents the uncertainty of the filter.

F : (3N + 2)× (3N + 2) is the matrix of the state transition model.

Q : (3N + 2)× (3N + 2), is the covariance matrix of the state transition model noise.

H : 3×(3N+2) (no ball information), 5×(3N+2) (with ball information) is the matrix

of the observation model.

R : 3 × 3 (no ball information), 5× 5 (with ball information), is the covariance matrix

of the observation model noise.

z : 3× 1 (no ball information), 5× 1 (with ball information), represents the observation.

ỹ : 3× 1 (no ball information), 5× 1 (with ball information), the innovation matrix cap-

turing the measurement residual (difference between observation and estimation).

Nikolaos Pavlakis 28 June 2013

4.2 Kalman Filter

S : 3× 3 (no ball information), 5× 5 (with ball information), represents the covariance

matrix of the innovation noise.

K : (3N + 2)× 3 (no ball information), (3N + 2)× 5 (with ball information), represents

the optimal Kalman gain and determines the effect of the innovation matrix on the

current belief.

Note that typical Kalman filtering also includes a matrix B, as described in Section 2.3,

which expresses the effect of the control input on the state. Since there is no explicit

control over the process at the global level in our case, B is taken to be a zero matrix.

In fact, control inputs at the local level are viewed as process “noise” at the global level,

hence we only track the system’s state through observations. Control inputs are taken

explicitly into account at the level of local state estimation.

As shown by the dimensions of some of the matrices described above, in our Kalman

filter we consider two possible scenarios; the received belief message may or may not

contain information about the ball (apart from information about the robot’s pose). In

the first scenario, the observation is 5-dimensional, whereas in the second scenario, the

observation is 3-dimensional. Thus, we need to maintain two different versions of some

matrices (H,R, z, ỹ,S,K) in order to deal with each possible scenario. This feature

does not affect the functionality of our filter, because each update, using the appropriate

matrix, only updates state variables related to the current observation.

Given the above, the KF equations used in our filter are summarized below:

Predict : x̂k|k−1 = Fkx̂k−1|k−1

Pk|k−1 = FkPk−1|k−1F
>
k + Qk

Update: ỹk = zk −Hkx̂k|k−1

Sk = HkPk|k−1H
>
k + Rk

Kk = Pk|k−1H
>
k S
−1
k

x̂k|k = x̂k|k−1 + Kkỹk

Pk|k = (I−KkHk)Pk|k−1

Nikolaos Pavlakis 29 June 2013

4. OUR APPROACH

Prediction step
Based on e.g.

physical model

Prior knowledge
of state

Update step
Compare prediction

to measurements

Measurements

Next timestep

Output estimate
of state

Figure 4.1: Kalman Filter procedure [1]

The filtering procedure is also illustrated in Figure 4.1. The key filtering steps (predict

and update) and the definitions of the chosen models are described in the following

sections.

4.2.1 Prediction Step

The prediction step of our filter is straightforward. The main assumption we make is that

on the next time step, the pose of each robot will be somewhere “in the neighborhood”

of its current pose, independently of the poses of the other robots in the team, because of

the nature of the system we are observing. Therefore, at the global level this assumption

implies that the global state at the next time step will not be too different compared to

the current global state. As a result, F is chosen to be the identity matrix I and Q is

chosen to be a block-diagonal matrix with values that reflect the size of this neighborhood

independently for each robot and the ball.

Q =

Q1 0 · · · 0

0 Q2
... 0

... · · · . . .
...

0 0 · · · Qb

Under these assumptions, the pose of each robot i can be seen as a 3-dimensional Gaussian

distribution, centered around its current pose estimate with covariance Qi. Similarly, the

Nikolaos Pavlakis 30 June 2013

4.2 Kalman Filter

location of the ball can be seen as a 2-dimensional Gaussian distribution, centered around

its current location estimate with covariance Qb. While the global state estimate does not

change during the prediction step (x̂k = Ix̂k−1), the uncertainty of the filter is increased

additively by the covariance matrix of the transition model noise (Pk = IPk−1I
> + Q).

4.2.2 Update Step

Our update step is somewhat unusual. Normally, one would have to accumulate all

the messages from all the robots, then combine them into one “large” observation and

perform the typical Kalman update steps. Yet, in our case, each observation either

(robotx, roboty, robotθ) or (robotx, roboty, robotθ, ballx, bally) from any specific robot, only

updates parts of the filter that relate to this robot. This is controlled through the H

matrix, which translates how the observation relates to the state. So, if H is chosen

correctly, observations from a specific robot will only affect the parts of the filter that

relate to this particular robot.

Let’s assume we have three robots currently in the team (with IDs 1, 2 and 3).

An observation received from robot 1 containing no information about the ball, will be

processed using the following H matrix:

H =

1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0

Accordingly, an observation from robot 2 containing no information about the ball, will

be processed using the following H matrix:

H =

0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1

So, the H matrix is constructed by blocks of either identity or zero matrices depending

on the ID of the sender robot. In the first example, the sender robot has ID 1, so the

first 3× 3 block is an identity matrix, while the other two 3 × 3 blocks are zero. In the

second example, the H matrix is augmented by two more rows in order to account for

the information received about the ball. Hence, the second (horizontally) 3× 3 block is

Nikolaos Pavlakis 31 June 2013

4. OUR APPROACH

an identity matrix (since the sender robot has ID 2) and the bottom right 2 × 2 block

is an identity matrix corresponding to the ball state variables. The uncertainty in the

observation is expressed by the covariance matrix R, which is either 3× 3, if there is no

ball information, or 5× 5, if there is ball information.

It should be noted that the H matrix could alternatively be defined as a (3N + 2)×
(3N + 2) block-diagonal matrix (with appropriate identity or zero block matrix entries)

with the observation being a vector of constant size (3N + 2) × 1. The net effect on

the update step of the filter would be the same, however the factored representation

presented above was preferred over this choice to avoid costly matrix operations, such as

the inversion of the S matrix. For example, for N = 5 we would have to invert a 17× 17

matrix, whereas in our case we only have to invert either a 3× 3 or a 5× 5 matrix.

4.2.3 Transition Model

To complete the prediction step, the Kalman filter requires a transition model, namely

the F and Q matrices. It has been mentioned already that, in our case, F is taken to be

the identity matrix I. Matrix Q represents the covariance of the transition model noise,

meaning the noise in the motion of the robots and the ball in our case. This noise at

the global state level corresponds to all possible locomotion actions that can be taken

by the robots and all common displacements of the ball respectively. This expresses in a

way the maximum possible movement in each dimension of the state; the noise in each

of these dimensions is assumed to be independent from the others. Therefore, we define

σ2
xi

, σ2
yi

, σ2
θi

to be the variances for robot’s i state variables and the corresponding 3× 3

block Qi in Q will only contain these values along the diagonal. Similarly, we define σ2
xb

and σ2
yb

to be the variances for ball’s state variables and the 2×2 block Qb in Q will only

contain these values along the diagonal. These variances need to be scaled by ∆t2, where

∆t is the time step between successive filter iterations, so that the noise is proportional

to the elapsed time. Note that ∆t need not be constant; the actual elapsed time since the

previous iteration can be measured dynamically at each iteration and inserted into the

model. In summary, Q becomes a fully diagonal (3N + 2)× (3N + 2) matrix, as shown

Nikolaos Pavlakis 32 June 2013

4.2 Kalman Filter

below:

Q = ∆t2

σ2
x1

0 0
0 σ2

y1
0

0 0 σ2
θ1

 0 · · · 0

0

σ2
x2

0 0
0 σ2

y2
0

0 0 σ2
θ2

 ... 0

... · · · . . .
...

0 0 · · ·
[
σ2
xb

0
0 σ2

yb

]

Robot motion model variances

The values of σ2
xi

, σ2
yi

, σ2
θi

are determined by looking at robot’s i specifications, taking the

maximum range along each dimension, and assuming that this represents 3σ or 99.7% of

our distribution. In our case (Standard Platform League), these values do not vary from

robot to robot, however this need not be the case; our model allows for custom values for

each robot, therefore it can accommodate diverse robot platforms. For the NAO robot,

we have determined the following values:

• σ2
xi

: NAO’s maximum speed is about 30cm/s, therefore 3σxi = 0.3 =⇒ σ2
xi

= 0.01

• σ2
yi

: NAO’s maximum speed is about 30cm/s, therefore similarly to σxi , σ
2
yi

= 0.01

• σ2
θi

: NAO’s maximum angular velocity is about 2.1rad/s, so σ2
θi

= 0.49

Ball motion model variances

The ball’s movement is more unpredictable compared to that of a robot. The range

of ball’s movement is highly dependent on the power and the angle of the kick (if one

occurred) or any other unpredictable occurred event (e.g. human referee mistakes). Since

each kick is different and new kicks are constantly designed, we cannot know the exact

covariance of the noise that should be used. Hence, we chose an arbitrarily large value

(σ2
xb

= σ2
yb

= 100) for the covariance of the noise for each ball state variable to account

for this unpredictability.

As confirmed by various experiments with different values for these variances, there

is no significant impact on the outcome of the algorithm as long as there are observations

Nikolaos Pavlakis 33 June 2013

4. OUR APPROACH

for the ball. The only element affected is how fast the uncertainty of our filter about the

ball rises in the case where there are no ball observations.

4.2.4 Observation Model

To complete the update step, the Kalman filter requires an observation model, namely

the H and R matrices. It has been mentioned already that, in our case, H is a block

matrix with some blocks being identity matrices. Matrix R represents the covariance of

the observation model noise, meaning the uncertainty in the local belief of each robot. If

there is no ball information, R is a 3 × 3 matrix expressing the uncertainty in the pose

estimate of the sender robot. If there is ball information, R is a 5×5 matrix. Depending

on the implementation of the local filtering, R is either a full 5 × 5 matrix or a block-

diagonal 5× 5 matrix, consisting of a 3× 3 block followed by a 2× 2 block. If robot pose

and ball location are estimated jointly at the local level, then R is the full covariance

matrix of the local joint estimation outcome. On the other hand, if robot pose and ball

location are estimated independently at the local level, which is the case in our team,

the two blocks of R are the corresponding covariance matrices of the local estimation

outcomes.

Robot observation model variances

In our team, each robot performs local filtering for self-localization and the observation

for a robot’s pose is simply the outcome of this local filter. Therefore, matrix R at the

global level is taken to be equal to the uncertainty of the local filter. Our team currently

uses 3-dimensional Kalman filtering for self-localization, so the uncertainty of the local

filter of the sender robot, expressed by the 3× 3 covariance matrix of the local estimate,

is copied directly into R.

Ball observation model variances

In our team, each robot performs local filtering for ball location estimation and the

observation for the ball is simply the outcome of this local ball filter. Therefore, the 2×2

block of matrix R at the global level is taken to be equal to the uncertainty of the local

ball filter. Our team currently uses two independent 1-dimensional Kalman filters for

Nikolaos Pavlakis 34 June 2013

4.3 Extended Kalman Filter

ball localization, so the uncertainties of these two local ball filters of the sender robot fill

the diagonal of the 2× 2 block of matrix R.

4.3 Extended Kalman Filter

The Kalman filter in its original form is optimal for systems which fulfill a number

of assumptions, such as the sole involvement of zero-mean Gaussian noise and linear

transition and observation models. This is rarely true in practical applications, since

most systems of interest are non-linear in one aspect or another. The Kalman concept

is popular and successful nonetheless, due to the possibility of linearizing the non-linear

models around the current estimate. This provides a decent enough approximation to

allow fairly accurate tracking of the state. This is the main idea behind the Extended

Kalman Filter (EKF).

The classic Kalman filter algorithm proved to be unsuitable in our case for a single, yet

important, reason. So far, we have assumed that ball observations are given in global field

coordinates to match the corresponding ball state variables at the global level. However,

in practice, ball observations are relative to the robot’s pose. This means that the position

of the ball is expressed with respect to the pose of the robot, which is taken to be the

origin. If robot i offers a ball observation and its exact pose in global field coordinates

is known, then the exact global position of the ball (xb, yb) within the field is derived by

the following equation: [
xb
yb

]
=

[
xrb
yrb

] [
cos θi − sin θi
sin θi cos θi

]
+

[
xi
yi

]
where (xi, yi, θi) stands for robot’s i pose, while (xrb, yrb) stands for the ball’s coordinates

relative to the pose of robot i. The relationship between (xrb, yrb) and (xb, yb) is clearly

non-linear thanks to θi.

Initially, we attempted to apply the linear Kalman filter described above by manually

converting the relative ball observations to global field coordinates using the equations

above. However, since the exact true pose of the sender robot is not known, we relied

on using either the current pose estimate from the global filter or the current robot pose

observation. Both choices, being estimates, contain significant errors and this uncertainty

is not reflected on the computed ball observations, which end up being tampered with

Nikolaos Pavlakis 35 June 2013

4. OUR APPROACH

non-linear noise. These attempts failed. Furthermore, we tried to address this issue by

introducing cross-correlations between robot pose and ball position through matrix R.

However, by definition, these cross-correlations can only capture linear dependencies. As

expected, this fix failed, too.

To address this problem formally, we followed a direct, analytical approach. First, we

inverted the non-linear equations above to create a causal observation model describing

how an observation (relative ball position) is “produced” directly from the state (robot

pose and ball position in global field coordinates). Hence, solving for (xrb, yrb), we get

the following equation: [
xrb
yrb

]
=

[
cos(−θi) − sin(−θi)
sin(−θi) cos(−θi)

] [
xb − xi
yb − yi

]
which leads to the following observation model:

h(x) =

[
hx
hy

]
=

[
cos(−θi) − sin(−θi)
sin(−θi) cos(−θi)

] [
xb − xi
yb − yi

]
This observation model is clearly non-linear and cannot be described by a matrix H,

therefore linear Kalman filtering is not applicable. However, h(x) is a differentiable

function. Therefore, the next step was to make a transition to an Extended Kalman

Filter by linearizing this function about the current a priori state estimate (after the

prediction step). Linearization constructs the matrix Hk using the partial derivatives

(Jacobian) of h(x):

Hk =
∂h(x)

∂x

∣∣∣∣
x̂k|k−1

Matrix H is similar to H described above in the linear Kalman filter, however but the

block that correlates the pose of the robot with the ball position, as well as the block

referring to the ball itself, are different. More specifically, using the same example as

before, where there are three robots and robot with ID 1 sends an observation without

information about the ball, H would have the same form as H above:

H =

1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0

Nikolaos Pavlakis 36 June 2013

4.3 Extended Kalman Filter

However, if robot 2 sends an observation which includes ball information, H would take

the following form:

H =

0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 ∂hx

∂xi

∂hx
∂yi

∂hx
∂θi

0 0 0 ∂hx
∂xb

∂hx
∂yb

0 0 0 ∂hy
∂xi

∂hy
∂yi

∂hy
∂θi

0 0 0 ∂hy
∂xb

∂hy
∂yb

where∂hx∂xi

∂hx
∂yi

∂hx
∂θi

∂hy
∂xi

∂hy
∂yi

∂hy
∂θi

 =

− cos(θi) − sin(θi) (xi − xb) sin(θi) + (yb − yi) cos(θi)

sin(θi) − cos(θi) (xi − xb) cos(θi)− (yb − yi) sin(θi)

and ∂hx∂xb

∂hx
∂yb

∂hy
∂xb

∂hy
∂yb

 =

 cos(θi) sin(θi)

− sin(θi) cos(θi)

As described in Section 2.3, the EKF equations we used are the following:

Predict : x̂k|k−1 = Fkx̂k−1|k−1

Pk|k−1 = FkPk−1|k−1F
>
k + Qk

Update: ỹk = zk −Hkx̂k|k−1

Sk = HkPk|k−1H
>
k + Rk

Kk = Pk|k−1H
>
k S
−1
k

x̂k|k = x̂k|k−1 + Kkỹk

Pk|k = (I−KkHk)Pk|k−1

The only difference introduced in this Extended Kalman filter compared to the linear

Kalman filter described above is the use of a variable matrix Hk at each iteration k,

which is produced by linearization about the current state estimate. All other elements

are identical.

Nikolaos Pavlakis 37 June 2013

4. OUR APPROACH

Nikolaos Pavlakis 38 June 2013

Chapter 5

Implementation

5.1 Matlab Simulation

Before creating an actual Monas activity in order to implement this idea on the actual

robots, we created a simulation in Matlab to test whether the idea of global shared state

estimation was worth to be implemented.

We created a set of fake observations, including robot poses and possibly ball in-

formation, and ran them through a Kalman filtering algorithm implemented in Matlab.

The state transition model and the observation model used in this simulation are rough

estimates of the models described in Sections 4.2.3 and 4.2.4. Since no full local estima-

tion algorithm was executed at the local level, we took the covariance of the observation

noise to be equal to the covariance of the state transition noise. This choice is certainly

far from optimal, however it was sufficient to get a first glimpse of whether our global

filtering approach would work.

Figure 5.1 shows a screenshot of the simulation output. In this test scenario, three

robots move at constant speed diagonally in the field; additionally, a ball moves with some

initial speed towards the top of the field and eventually comes to rest after some steps.

Each robot provides an observation about its pose estimate at each execution cycle. With

a probability of 0.5 it also provides a ball observation directly in global coordinates to

avoid the problems of non-linear noise correlation and use a linear Kalman filter. These

observations (local beliefs) are noisy measurements of the true state. The true state in

Figure 5.1 is shown with red crosses, while the local beliefs are shown with blue dots.

The outcome of the linear Kalman filter, that is the estimated global state, is shown with

Nikolaos Pavlakis 39 June 2013

5. IMPLEMENTATION

Figure 5.1: Simulation: true state (red), local beliefs (blue), global filter estimates (green).

green marks. One can easily see that even with this rough first approach, the global filter

yields better estimates than the local beliefs (the green marks are “closer” to the red

crosses than the blue dots).

5.2 KMat: Kouretes Math Library

KMat [7] is a software library that supports a selected subset of algebraic matrix oper-

ations. The focus of the library is mainly on real number operations and the primary

goals of KMat are low memory footprint and calculation efficiency. Existing linear alge-

bra libraries typically perform run-time validation for the compatibility of the operands

and are optimized for large matrices. On the other hand, KMat is optimized for small

matrices (up to 5× 5) and supports only a selected subset of operations (addition, sub-

traction, multiplication, scalar addition, scalar multiplication, transposition, inversion).

KMat is optimized for and supports two type of matrices: dense matrices and affine

transformation matrices. In our work, all the essential Kalman filtering operations were

Nikolaos Pavlakis 40 June 2013

5.3 The SharedWorldModel Monas Activity

implemented using KMat.

5.3 The SharedWorldModel Monas Activity

In order to implement our approach on the real NAO robots, we created a Monas activity,

named SharedWorldModel. This activity subscribes to the blackboards of all robots and

monitors the topic where local estimation (self and ball localization) messages are being

published. Our activity is currently executed as a separate agent (cf. Section 2.2.1)

and is specified as such inside our agents.xml configuration file that determines which

activities will be running on the robot and at what frequency. Our activity is currently

being executed at a frequency of 5Hz (five times per second).

One could easily wonder: “In filtering, the estimation gets more accurate with more

iterations, so why do you perform only five iterations per second?”. The answer to

this question lies in the limited processing power available on the robot. We need to

keep in mind that we are developing software for an embedded platform with limited

resources that are shared throughout all programmed functionality, as well as middleware

operations. Hence, the workload of each activity must be in accordance with the total

workload on the robot. The frequency we chose for our activity was empirically found

to strike a good balance between computational load and filter efficiency for global game

state estimation.

In each execution cycle, our activity performs a filter prediction step and then it

iterates over all the known hosts (all the robots in our case, including self) and checks

if a new local belief message exists. If it finds one, it performs a filter update step, using

that message as an observation. If multiple local belief messages are found, a separate

update step is performed for each one of them. When the update iteration is over,

meaning that the robot running this activity communicated with all the robots that are

currently connected to the network, it creates a message containing the outcome of the

global filtering algorithm (the global state estimate containing each robot’s pose and a

global position for the ball) and publishes it to the corresponding topic (worldstate).

This way, any other activity (on the same robot, on a different robot, or on a remote

computer) that needs this global state information, can simply subscribe to this topic

and receive this message.

Nikolaos Pavlakis 41 June 2013

5. IMPLEMENTATION

5.4 Distributed Individual Computation

After having read the description of our approach, one would assume that global state

estimation is performed only on a single robot and is then broadcast to all other robots.

This was indeed our initial idea, but we decided to discard it, because it is quite com-

mon for the UDP network to “lose” packets; if packet loss occurs while the outcome is

broadcast, we would lose all this valuable information we strived to compute and share.

What we decided to do instead, was to let each robot execute our SharedWorldModel

activity and perform its own global game state estimation. This proved to be a much

better choice for two main reasons. One is that each robot generates this estimate

locally and there is no need to actually transmit it through the UDP network. Each

robot still creates a SharedWorldInfo message and publishes it to the appropriate topic,

but this message only serves activities running on the same robot. The other reason is

that a centralized approach, whereby only one robot performs the global estimation and

publishes it, is prone to failures, if the robot responsible for the computation goes inactive

(e.g. penalization, battery shortage, hardware failure, etc.). In addition, we would also

need an algorithm to detect the failure and determine which robot would assume this

centralized role next, which would induce extra costs in both aspects of computational

power. Since the robots would need to exchange additional messages to decide which one

will assume this role, there will be network usage penalties as well. Furthermore, these

messages might even get lost, so apart from the actual algorithm, we would also need to

create a retransmission protocol that would introduce even more complexity and network

overload.

An obvious question instantly rises from the statement above: “Are all the global

game state estimates identical on all robots?”. The quick theoretical answer to this

question would be “No, they may not be exactly the same!”. This lies on the fact that

we are using a UDP network that is known to lose messages, so if for example robot 1

broadcast its local belief and robot 2 received it, while robot 3 did not due to network

error, then robot 2 and robot 3 would produce a different global state estimate. This

inconsistency does not create any substantial problem in practice, because of two reasons.

The first is that filtering at the global level is mostly performed to provide a collective

knowledge about the rough state of the world, not its details. The poses of the robots

and the position of the ball do not need to be totally identical between two robots, when

Nikolaos Pavlakis 42 June 2013

5.4 Distributed Individual Computation

they are using them to decide which role to assume. As we observed, the differences are

extremely small (not visible by eye when observing and comparing the SharedWorldInfos

of two robots through KMonitor). This means that with the tolerance of a small error,

we save on valuable resources by avoiding a centralized approach. The second reason lies

in the nature message exchange in our team’s code. In our implementation, we are using

messages of type data which remain on the blackboard as long as the available buffer

isn’t full. In our filtering algorithm, we only need the last published observation, so even

if a message fails to be delivered to a robot, it will remain written in the blackboard of

the sender robot and most likely it will be received on the next execution cycle. This

means that the SharedWorldInfos of different robots might not be in total sync at some

cycle, but they will most likely become identical after a few cycles.

Nikolaos Pavlakis 43 June 2013

5. IMPLEMENTATION

Nikolaos Pavlakis 44 June 2013

Chapter 6

Results

In this chapter we present the results of our work and show how it benefits the rest

of the team. First, we need to clarify that our approach typically introduces a second,

more abstract, layer of filtering. The first layer of filtering is performed inside the local

estimation module of each robot and our approach takes the outputs of all these filters

as input, combines them, and performs another layer of filtering trying to fuse them in

the best possible way. The standard approach to show that a framework like the one

created works well, would be to compare the output estimate of the global filter to the

true state of the world and use a standard error metric (e.g. mean square error). Then

we should do the same by comparing the results of individual local beliefs to the true

state and computing a cumulative error metric (e.g. sum of mean square error over all

the local beliefs). This way we would easily be able to see if our global state estimation

provides a better estimate of the true state of the world than individual local beliefs.

Unfortunately, in our case this comparison cannot be performed because we do not have

an effective mechanism that allows us to know the exact true state of the world (i.e. the

pose of each robot and the position of the ball within the field), also known as a “ground

truth” mechanism. In lack of ground truth, we cannot provide quantitative results, yet

we will provide some qualitative results on certain scenarios that could occur during a

robotic soccer game and show that our approach proves to be really useful.

Nikolaos Pavlakis 45 June 2013

6. RESULTS

Figure 6.1: Scenario I: the true state of the world

6.1 Scenario I:Global estimate better than local ones

Our first goal is to check how accurate our global estimate is compared to the local

estimates. In this scenario (Figure 6.1) there are two stationary robots in the field. One

is placed at the center of the field, while the other one is placed on the side line, aligned

with the penalty cross. The ball is placed on the penalty cross. Both robot observe

the ball and each one of them maintains a local estimate of the ball position. We used

KMonitor [16] in order to check the global estimate produced by our activity as well as

the local estimates of the two robots. As shown in Figure 6.2, the global estimate about

the position of the ball is better than each of the local estimates and closer to the true

location of the ball. This is highly important because, even when none of the robots has

a good enough estimate, the collective state estimate provides an accurate ball position,

which can be used by all robots. This can greatly help in cases where robot cameras are

faulty or missalligned, which occurs quite often in practice.

Nikolaos Pavlakis 46 June 2013

6.2Scenario II:Approaching the ball without seeing it

Figure 6.2: Scenario I: global (pink circle) and local (small gray circles) ball estimates

6.2 Scenario II:Approaching the ball without seeing it

Another goal was to test if our approach can be helpful for the entire team, for example if

a robot can approach the ball without necessarily observing it. The ball could be hidden

from the robot’s view due to obstacles (e.g. another robot) or physical limitations (e.g.

too far). As long as there is at least one teammate robot observing the ball, a global ball

position estimate can be formed and any robot can start moving towards the estimated

position of the ball, at the same time scanning the field trying to locate the ball on its

own.

This ability of shared world information is quite essential, especially since the dimen-

sions of the field changed from 6× 4 to 9× 6 in the rules of RoboCup SPL 2013 [3]. The

larger field introduces more chance that the ball will not be visible by some robots, so it

is of great advantage if all the robots could know where the ball is located, even when

only one robot observes the ball. Of course, there is a key prerequisite to achieve this

outcome, namely that the output of local estimation is fairly correct, otherwise, since the

ball estimate is relative to the robot’s pose, the global ball estimate would be far from

correct.

Before the creation of SharedWorldModel, in such a scenario, each robot not observing

Nikolaos Pavlakis 47 June 2013

6. RESULTS

Figure 6.3: Scenario II: the true state of the world

the ball would need to start scanning the field area around it for the ball. If the scan

ends up being unsuccessful, the robot would need to start a random walk in order to

scan another area for the ball. One can easily see that this solution is highly inefficient

compared to the outcome of the solution described above using our global estimation.

To test this solution, we designed a scenario with two robots (Figure 6.3). One of

them is located at the center of the field, is stationary, and stares at the ball which was

positioned in front of it. The other robot is located on the side line of the field, as if it

was returning from a penalized state. An obstacle is placed between the moving robot

and the ball, so that the robot returning to the game cannot directly observe the ball.

Even though this robot could not observe the ball at any time, it successfully approaches

it solely by using the estimate provided by our global estimation filter, since the other

robot was updating the position of the ball by “feeding” the filter with ball observations.

Some snapshots of the robot’s course can be seen in Figure 6.4. Note that the local pose

estimate of the moving robot is not totally accurate, yet it manages to approach the ball.

Nikolaos Pavlakis 48 June 2013

6.2Scenario II:Approaching the ball without seeing it

Figure 6.4: Scenario II: true state (top) and estimated local and global states (bottom)

Nikolaos Pavlakis 49 June 2013

6. RESULTS

Nikolaos Pavlakis 50 June 2013

Chapter 7

Conclusion and Future Work

7.1 Conclusion

This thesis summarizes the work performed and incorporated into the software archi-

tecture and repository of the RoboCup team Kouretes. As explained in Chapter 4, the

end result of our work is a higher level of filtering that takes the outcomes of the local

estimation filters and performs a global Extended Kalman Filtering to combine them and

produce a global game state estimate. The outcome of our algorithm is the collective

state estimate about the world (robot poses and ball position). As shown in Chapter 6,

our work proves useful in common scenarios during RoboCup games and provides the

opportunity of building extra features that require our work as a prerequisite. Our in-

formation sharing mechanism also creates room for further development of new features.

Some of them are briefly discussed below.

7.2 Future Work

7.2.1 Localization Feedback: Ball as a Landmark

One of the most important features that could be implemented is a closed-loop feedback

mechanism to the local module of each robot for self-localization. Currently, the self-

localization module performs its filtering without taking into account the output of our

activity. It could possibly improve its local estimates, if there was feedback from our

global filter back to the local filter of each robot. More specifically, given that the global

Nikolaos Pavlakis 51 June 2013

7. CONCLUSION AND FUTURE WORK

estimate about the ball is better than the local ones, this global ball estimate could be

introduced into the self-localization algorithm as an additional field landmark.

Since the switch of the Standard Platform League to using two goals with the same

color (yellow) in 2012, it is quite common for a robot with increased uncertainty about

its pose (e.g. a robot that was fallen and got up) to face ambiguities in its estimation due

to field symmetries. Symmetries are quite dangerous during a game, because if a wrong

choice is made, the robot may score a goal against its own team. In fact, in an extreme

attempt to overcome such situations, certain teams prefer to leave their robots on the

ground after a fall, so that they get penalized for inactivity and placed on the sideline of

the field in their own half, thus resetting their localization estimates!

The existence of the global estimate of the ball as a landmark inside the existing self-

localization algorithm could be used to resolve those symmetries. If the ball is treated

as a landmark and an estimate is available (meaning that at least one robot in the team

observes the ball), then the robots’ local filter will easily resolve symmetries.

Another use of this feedback apart from solving symmetries is self position estimate

correction. Consider the scenario described in Section 3.2.2, where an attacker is heading

towards the ball starring solely at the ball. This robot receives many observations about

the ball, but possibly no observations about field landmarks, such as goal posts and field

lines, because its head is “locked” to the ball. If its teammates are also observing the ball

and the global ball estimate is corrected by them, then the pose of the attacker could

also be corrected, if the ball is treated as a landmark. Since the attacker’s uncertainty

about the relative position of the ball will be fairly low (due to many observations) and

the uncertainty of the global ball estimate will also be fairly low, despite the uncertainty

of the attacker’s pose being high (due to very few observations), the attacker’s pose will

automatically be corrected by the local filter to account for the landmark (global ball)

observation.

7.2.2 Team Strategy and Coordination

There is currently work in progress in our team on team strategies, coordination, and

dynamic role assignment based on the output of our filter. It is quite obvious that there

is no possibility of creating effective collaborative multi-agent behaviors without a shared

global state estimation mechanism. Creating coordinated team behaviors is a necessity

Nikolaos Pavlakis 52 June 2013

7.2 Future Work

in robotic soccer for various reasons. The simplest and most important is that not all the

robots of the team need to run after the ball, if they are all observing it. For example,

if two robots are observing the ball, a rational decision would be to let only one of them

approach the ball, while the other heads towards the opponent goal to anticipate a pass or

simply be at a position close to where the ball will end up in case of an unsuccessful kick

by the first robot. Without coordination and role assignment, such decisions cannot be

realized; both robots would probably head towards the ball, resulting in either bumping

into each other or, in the best case, one taking a shot, while the other one stands right

next or behind it.

7.2.3 Opponent Modelling

Currently, our team does not have the ability to recognize opponent robots through the

camera, the main sensor for perception. However, when this feature is implemented and

added, our approach could be easily applied on the augmented global game state which

includes three extra state variables for the pose of each opponent robot. This could

lead to making even better and more strategic team planning during the game, such as

avoiding passing the ball to a robot blocked by opponents, choosing a kicking direction

towards the opponent goal that clears all players (opponents and teammates), or avoiding

collision with and obstructions by opponent robots.

Nikolaos Pavlakis 53 June 2013

7. CONCLUSION AND FUTURE WORK

Nikolaos Pavlakis 54 June 2013

References

[1] Wikipedia: Kalman filter — wikipedia, the free encyclopedia (2013) http://en.

wikipedia.org/w/index.php?title=Kalman_filter. xiii, 30

[2] Kitano, H., Asada, M., Kuniyoshi, Y., Noda, I., Osawa, E., Matsubara, H.:

RoboCup: A challenge problem for AI. AI Magazine 18(1) (1997) 73–85 5

[3] RoboCup SPL Technical Committee: Standard Platform League rule book (2013)

Only available online: www.tzi.de/spl/pub/Website/Downloads/Rules2013.pdf.

6, 47

[4] Gouaillier, D., Blazevic, P.: A mechatronic platform, the Aldebaran Robotics hu-

manoid robot. In: Proceedings of the 32nd IEEE Annual Conference on Industrial

Electronics (IECON). (2006) 4049–4053 6

[5] Aldebaran Robotics: NAO documentation (2012) Only available online: www.

aldebaran-robotics.com/documentation. 7

[6] Paraschos, A.: Monas: A flexible software architecture for robotic agents. Diploma

thesis, Technical University of Crete, Greece (2010) 11

[7] Orfanoudakis, E.: Reliable object recognition for the RoboCup domain. Diploma

thesis, Technical University of Crete, Greece (2011) 11, 40

[8] Chatzilaris, E.: Visual-feature-based self-localization for robotic soccer. Diploma

thesis, Technical University of Crete, Greece (2009) 12

[9] Kyranou, I.: Path planning for NAO robots using an egocentric polar occupancy

map. Diploma thesis, Technical University of Crete, Greece (2012) 13

Nikolaos Pavlakis 55 June 2013

http://en.wikipedia.org/w/index.php?title=Kalman_filter
http://en.wikipedia.org/w/index.php?title=Kalman_filter
www.tzi.de/spl/pub/Website/Downloads/Rules2013.pdf
www.aldebaran-robotics.com/documentation
www.aldebaran-robotics.com/documentation

REFERENCES

[10] Tzanetatou, D.: Interleaving of motion skills for humanoid robots. Diploma thesis,

Technical University of Crete, Greece (2012) 13

[11] Kofinas, N., Orfanoudakis, E., Lagoudakis, M.G.: Complete analytical inverse kine-

matics for NAO. In: Proceedings of the 13th International Conference on Au-

tonomous Robot Systems and Competitions (ROBOTICA). (2013) 13

[12] Kofinas, N.: Forward and inverse kinematics for the NAO humanoid robot. Diploma

thesis, Technical University of Crete, Greece (2012) 13

[13] Paraschos, A., Spanoudakis, N.I., Lagoudakis, M.G.: Model-driven behavior speci-

fication for robotic teams. In: Proceedings of the 11th International Conference on

Autonomous Agents and Multiagent Systems (AAMAS). (2012) 13

[14] Topalidou-Kyniazopoulou, A., Spanoudakis, N.I., Lagoudakis, M.G.: A CASE tool

for robot behavior development. In: Proceedings of the 16th RoboCup International

Symposium. (2012) 13

[15] Topalidou-Kyniazopoulou, A.: A CASE (computer-aided software engineering) tool

for robot-team behavior-control development. Diploma thesis, Technical University

of Crete, Greece (2012) 13

[16] Karamitrou, M.: KMonitor: Global and local state visualization and monitoring

for the RoboCup SPL league. Diploma thesis, Technical University of Crete, Greece

(2012) 13, 46

[17] Vazaios, E.: Narukom: A distributed, cross-platform, transparent communication

framework for robotic teams. Diploma thesis, Technical University of Crete, Greece

(2010) 14

[18] Welch, G., Bishop, G.: An introduction to the kalman filter. Technical Report TR

95-041, University of North Carolina at Chapel Hill (2011) 15, 18

[19] Röfer, T., Laue, T., Müller, J., Fabisch, A., Gillmann, K., Graf, C., Härtl, A.,

Humann, A., Wenk, F.: B-Human 2011 team description for RoboCup 2011.

Technical report, The University of Bremen (2011) Only available online: http:

//www.b-human.de/downloads/bhuman11_tdp.pdf. 23

Nikolaos Pavlakis 56 June 2013

http://www.b-human.de/downloads/bhuman11_tdp.pdf
http://www.b-human.de/downloads/bhuman11_tdp.pdf

REFERENCES

[20] Teh, B.: Ball modelling and its applications in robot goalie be-

haviours. Master’s thesis, The University of New South Wales (2011) Only

available online: http://cgi.cse.unsw.edu.au/~robocup/2011site/reports/

Teh-BallModelling-GoalieBehaviour.pdf. 23

[21] Roth, M., Vail, D., Veloso, M.: A real-time world model for multi-robot teams

with high-latency communication. In: Proceedings of the IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS). Volume 3. (2003) 2494–2499

23

[22] Barrett, S., Genter, K., Hester, T., Khandelwal, P., Quinlan, M., Stone, P.: Austin

Villa 2011 technical report UT-AI-TR-12-01. Technical report, The University

of Texas at Austin (2011) Only available online: www.cs.utexas.edu/~pstone/

Papers/bib2html-links/UTAITR1201-sbarrett.pdf. 23

[23] Tasse, S., Kerner, S., Urbann, O., Hofmann, M., Schwarz, I.: Nao Devils Dort-

mund team report 2011 (2011) Only available online: www.irf.tu-dortmund.de/

nao-devils/download/2011/TeamReport-2011-NaoDevilsDortmund.pdf. 24

[24] Tasse, S., Hofmann, M., Urbann, O.: On sensor model design choices for humanoid

robot localization. In Chen, X., Stone, P., Sucar, L.E., der Zan, T.V., eds.: RoboCup

2012: Robot Soccer World Cup XVI. Lecture Notes in Computer Science. Springer

Berlin / Heidelberg (2013) to appear 24

[25] Chang, C.H., Wang, S.C., Wang, C.C.: Vision-based cooperative simultaneous

localization and tracking. In: Proceedings of the IEEE International Conference on

Robotics and Automation (ICRA). (2011) 5191–5197 24

Nikolaos Pavlakis 57 June 2013

http://cgi.cse.unsw.edu.au/~robocup/2011site/reports/Teh-BallModelling-GoalieBehaviour.pdf
http://cgi.cse.unsw.edu.au/~robocup/2011site/reports/Teh-BallModelling-GoalieBehaviour.pdf
www.cs.utexas.edu/~pstone/Papers/bib2html-links/UTAITR1201-sbarrett.pdf
www.cs.utexas.edu/~pstone/Papers/bib2html-links/UTAITR1201-sbarrett.pdf
www.irf.tu-dortmund.de/nao-devils/download/2011/TeamReport-2011-NaoDevilsDortmund.pdf
www.irf.tu-dortmund.de/nao-devils/download/2011/TeamReport-2011-NaoDevilsDortmund.pdf

	1 Introduction
	1.1 Thesis Contribution
	1.2 Thesis Outline

	2 Background
	2.1 RoboCup
	2.1.1 Standard Platform League
	2.1.2 Aldebaran Nao Humanoid Robot

	2.2 RoboCup SPL Team Kouretes
	2.2.1 Monas Software Architecture
	2.2.2 Narukom Communication Framework

	2.3 Kalman Filtering
	2.3.1 Brief Description
	2.3.2 Estimation Procedure
	2.3.3 Extended Kalman Filter

	3 Problem Statement
	3.1 Global Game State Estimation
	3.2 Related Work
	3.2.1 Weighted Belief Averaging
	3.2.2 Remote Filter Updates
	3.2.3 Global Filtering

	4 Our Approach
	4.1 The Idea
	4.2 Kalman Filter
	4.2.1 Prediction Step
	4.2.2 Update Step
	4.2.3 Transition Model
	4.2.4 Observation Model

	4.3 Extended Kalman Filter

	5 Implementation
	5.1 Matlab Simulation
	5.2 KMat: Kouretes Math Library
	5.3 The SharedWorldModel Monas Activity
	5.4 Distributed Individual Computation

	6 Results
	6.1 Scenario I: Global estimate better than local ones
	6.2 Scenario II: Approaching the ball without seeing it

	7 Conclusion and Future Work
	7.1 Conclusion
	7.2 Future Work
	7.2.1 Localization Feedback: Ball as a Landmark
	7.2.2 Team Strategy and Coordination
	7.2.3 Opponent Modelling

	References

