
TECHNICAL UNIVERSITY OF CRETE
ELECTRONIC AND COMPUTER ENGINEERING DEPARTMENT

DIVISION OF COMPUTER SCIENCE

Model Driven Development in Sensor

Networks

by

Rontidis Pavlos

A thesis submitted in partial fulfillment of
the requirements for the diploma degree of

ELECTRONIC AND COMPUTER ENGINEERING

June 2013

THESIS COMMITTEE

Assistant Professor Vasilis Samoladas, Thesis Supervisor
Assistant Professor Antonios Deligiannakis
Associate Professor Yannis Papaefstathiou

Abstract

Sensor networks is an emerging, active research area with numerous appli-

cations. Despite their popularity, there are many implementation challenges

due to the fact that developing a sensors network application is a complex

process that requires expertise in various fields. The special needs of each

application domain, the distributed nature of such networks, the hardware

restrictions and radio protocols are common factors that make the sepa-

ration of concerns very difficult. The purpose of this diploma thesis is to

enable model driven development in the domain of sensor networks by pro-

viding a high-level domain specific language and a programming tool capable

of generating code. This development tool allows for quick system develop-

ment which promotes the re-usability of software components and libraries

while guaranteeing true functional and behavioral portability among differ-

ent hardware platforms and vendors. Programming in a high-level, domain

specific language enables the developers to focus on the application domain

and its specific features while the low-level, technical aspects are handled by

other specialists that implement the middleware or the hardware abstraction

libraries.

Keywords: Model Driven Development, Model Driven Architecture, Do-

main Specific Language, Model Transformation, Code Generation, Wireless

Sensor Networks, Eclipse Modeling Project

Thesis Supervisor: Vasilis Samoladas

Title: Assistant Professor

Acknowledgements

Several people have been of great a help to during my 5 year studies. Each

person, in his\her unique way contributed to a well-rounded university life.

First of all, I want to express my deep gratitude to my family that enabled

my studies with their consistent support. My father’s optimism about my

future, my mother’s emotional support as well as the admiration of my little

brother were invaluable.

Secondly, I want to thank my academic advisor, Vasili Samolada, for his

guidance and support. His abilities and experience enabled me to overcome

the most difficult obstacles I faced.

Last but not least, I want to thank my girlfriend and close friends that

helped me achieve balance in my life. This balance was source of my tran-

quility that enabled me to deal with the majority of daily problems in a calm

and successful manner.

4

Table of Contents

Table of Contents . 4

1 Introduction . 6

1.1 Wireless Sensor Networks . 6

1.2 An MDD Solution . 7

1.3 Introduction to the SensL DSL 7

1.4 Thesis impact on the real world 8

2 Related Work . 9

2.1 Model Driven Development 9

2.2 Applying MDD to the WSN field 11

2.3 Eclipse Modeling Project . 13

2.3.1 Eclipse Modeling Framework 14

2.3.2 Plug-in Development Environment 14

2.4 Xtext . 16

2.5 Model to Model Transformation 16

2.6 Model to Text Transformation 18

3 Modeling the problem domain 20

3.1 SensL Terminology . 20

3.2 SensL Execution semantics 24

3.3 Abstract Syntax Tree (AST) 26

3.4 Platform Independent Model (PIM) 27

3.4.1 nesC Terminology . 28

3.5 Platform Specific Model (PSM) 30

3.6 Ecore Models . 30

Table of Contents 5

4 Model to Model Transformation 36

4.1 SensL to Abstract Syntax Tree 36

4.2 Implementation of Model Transformation 36

4.2.1 AST to PIM . 36

4.2.2 PIM to PSM . 38

5 Code generation . 41

5.1 Implementation of M2T phase 41

5.2 Runtime component . 42

5.3 Standalone execution . 46

6 Conclusion . 48

6.1 Results . 48

6.2 Future work . 48

List of Figures . 50

List of Tables . 52

List of Abbreviations . 53

Bibliography . 54

6

Chapter 1

Introduction

1.1 Wireless Sensor Networks

Wireless sensor networks (WSNs) have gained worldwide attention in recent

years. These networks are comprised of small sensors, with limited processing

and computing resources. These sensor nodes can sense, measure, and gather

information from the environment and, based on some local decision process,

they can transmit the sensed data to a sink node or a server.

The main unit of a WSN is a sensor node. Sensor nodes are low power

devices equipped with one or more sensors, a processor, memory, a power

supply, a radio, and an actuator. A variety of mechanical, thermal, biological,

chemical, optical, and magnetic sensors may be attached to the sensor node to

measure properties of the environment. Since the sensor nodes have limited

memory and are typically deployed in difficult-to-access locations, a radio

is implemented for wireless communication to transfer the data to a base

station (e.g., a laptop, a personal handheld device, or an access point to a

fixed infrastructure).

The autonomy of a sensor is an important issue. Battery is the main

power source in a sensor node. In some case, additional power may be har-

vested power from the environment. For example, solar panels may be added

to the node depending on the appropriateness of the environment where the

sensor will be deployed. Depending on the application and the type of sensors

used, actuators may be incorporated in the sensors.

The ideas inspired from such networks and the vast number of possible

applications resulted in a creation of a big community that works on this

field. However, several implementation challenges still exist and hinder the

WSN application development. Several different specialists should cooperate

1.2. An MDD Solution 7

for the successful deployment of a WSN application. The application domain

is the responsibility of experts such biologists, geologists, environmental en-

gineers with no knowledge on WSN platforms. The other layers are in the

context of software, hardware and telecommunications engineering.

1.2 An MDD Solution

This thesis follows the paradigm of model driven development and provides

a code generation tool in order to develop a WSN application. Taking into

consideration the aforementioned implementation difficulties and the fact

that a team of various professionals may take part in building and deploying

a WSN application, the motivation for this thesis was to completely separate

the implementation concerns.

This work introduces a DSL -named SensL- that provides a new language

that aids the programmer to develop an application without worrying about

synchronization issues. Moreover, it provides a SensL to nesC transformation

that is performed with the EMP tools. To achieve this, the SensL text is

parsed into an AST, the AST is transformed into a PIM and the PIM is

transformed into a nesC PSM. Then, the nesC PSM is used for generating

code that can be compiled with an existing compiler. Finally, this approach

requires a runtime component that schedules the event processing, regulates

the rules’ order of execution and manages the memory allocation.

To summarize, the developer writes a SensL program that is automati-

cally transformed into a nesC model. The platform specific model is used

to generate nesC code. The genrated nesC code in combination with the

runtime component is compiled into an application that can be installed on

motes.

1.3 Introduction to the SensL DSL

This thesis introduces a DSL that is used to write WSN applications. It

allows the domain experts to describe a solution in a high level language

1.4. Thesis impact on the real world 8

when compared to a language such as C. A SensL editor is provided with

syntax-coloring and error detection features to make the development process

easier.

SensL is adjacent to an object-oriented language like Java but it includes

additional concepts such as module, ECA rule and frame. One can write

a SensL program by hand and then invoke the tool to generate code for a

specific platform. In the future, SensL may be used as an intermediate phase

in the MDD process by providing a tool that generates SensL given a even

higher level model which was created with a graphical modeling tool.

1.4 Thesis impact on the real world

The tools and results that were created in the context of thesis will con-

tribute to the WSN-DPCM project. WSN-DPCM is a cooperation project

of several technical universities and companies from Spain, Italy, Lithuania

and Greece. The project is funded by the ARTEMIS Joint Undertaking (the

European technology platform representing the field of advanced research

and technology for embedded intelligence and systems), national authorities

and European partner companies.

The objective of WSN-DPCM is to develop a full platform to address the

main WSN challenges for smart environments that include the middleware

for heterogeneous wireless technologies and an integrated engineering tool-

set for Development, Planning, Commissioning, and Maintenance activities

for expert and non-expert users. To further increase the value for the field,

most of the project development will be released under a suitable open source

license for mutual benefit and to foster academic research and know how to

transfer to industry.

9

Chapter 2

Related Work

2.1 Model Driven Development

The Model Driven Development is an software development methodology

which focuses on creating and exploiting domain models. MDD gives archi-

tects the ability to define and communicate a solution while creating artifacts

that become part of the overall solution. In the context of MDD, model is

code i.e. the modeling languages take on the role of implementation lan-

guages, analogous to the way that third-generation programming languages

displaced assembly languages. Therefore, MDDs full benefits can be attained

when the automatic generation of complete programs from models is possi-

ble.The main motivation behind adopting such an approach is to improve

productivity. Another motivation is the communication of a specific solution

among big teams without ambiguities.

Some of the better known MDD initiatives are the Object Management

Group (OMG) initiative Model-Driven Architecture (MDA) and the Eclipse

ecosystem of programming and modelling tools. Standardization provides

a significant impetus for further progress because it codifies best practices,

enables and encourages reuse, and facilitates interworking between comple-

mentary tools. It also encourages specialization, which leads to more sophis-

ticated and more potent tools. Still, with all the benefits of automation and

standardization, model-driven methods are only as good as the models they

help us construct.

In this thesis, the paradigm of Model Driven Architecture approach is the

main guide on how to separate abstraction layers. There are four main prin-

ciples that underlie the OMGs MDA approach:

• Models expressed in a well-defined notation are a cornerstone to system

2.1. Model Driven Development 10

understanding for enterprise-scale solutions.

• Building system can be organized around a set of models by imposing

a series of transformation between models, organized into an architec-

tural framework of layers and transformations.

• A formal underpinning for describing models in a set of metamodels

facilitates meaningful integration and transformation among models,

and is the basis for automation through tools.

• Acceptance and broad adoption of this model-based approach requires

industry standards to provide openness to consumers and foster com-

petition among vendors

An MDA overview is depicted in the figure ??.

Figure 2.1: Overview of MDA

Specifically, in this thesis the application domain is modeled in the Plat-

form Independent Model (PIM) which focuses only on the problem domain.

Then, the PIM can be mapped to a Platform Specific Model (PSM) which

contains details about the platform. The PIM to PSM transformation is ex-

ecuted my using a Model to Model transformation tool. The PSM probably

requires a Model to Text transformation in order to produce code ready for

compilation by utilizing preexisting compilers and tools.

2.2. Applying MDD to the WSN field 11

2.2 Applying MDD to the WSN field

Several benefits emerge from the applying MDD to the WSNs field and they

will be discussed in this subsection. Currently, the are many platforms (e.g.

TinyOS, Contiki, COUGAR, SensOS etc.)each one having its own require-

ments, execution, programming environments and software tools that differ

slightly or greatly. The platform is chosen according the special needs of each

project.

The key thing to note is that the application domain is independent from

the platform chosen by the developers. Thus, the application logic can be

always described with the same PIM. This is not the case for the PSM be-

cause it contains details about each specific platform and a different PSM

must be created for each target platform. Consequently, the PIM to PSM

transformation also changes. The same applies to the code generation, it is

dependent on the PIM and the programming language, thus different imple-

mentation of generators are needed. Thus, for the MDD approach to support

a platform a PSM, a PIM to PSM transformation and a code generator are

needed. However, all the aforementioned artifacts are implemented only once

and are reusable.

The strong coupling between the application logic and the underlying

sensor platform, along with the lack of a methodology to support the de-

velopment lifecycle of WSN applications resulted in projects with platform

dependent code that are hard to maintain, modify, and reuse. Although the

initial overhead required by the MDD approach may be discouraging, the

benefits from adopting it are clear.

After defining a high-level domain specific language (DSL) and a PSM

and after implementing a code generator, the development of a WSN ap-

plication speeds up significantly. Developers can focus on the problem at

hand in a higher abstraction level without shifting their focus from the prob-

lem to the low-level platform details. This greatly reduces the complexity

of devising a solution and also reduces the time spent on dealing with im-

plementation difficulties. Also, the programmer’s\team’s effort is reduced in

all the development phases which are now decoupled. Finally, the MDD ap-

2.2. Applying MDD to the WSN field 12

proach enables low-cost prototyping, optimization and hardware-in-the-loop

simulation.

The following figures depict examples of how was MDD applied to WSN

applications.

Figure 2.2: A proposed development process for prototyping, Ref:[3]

Figure 2.3: Another proposed development framework, Ref:[5]

2.3. Eclipse Modeling Project 13

Figure 2.4: An Overview of the Moppet framework, Ref:[6]

Figure 2.5: A proposed DSL meta-model for WSN applications, Ref:[4]

2.3 Eclipse Modeling Project

All the utilities and tools that were implemented as part of this work, includ-

ing the meta-models and model transformations, have been developed using

the MDE facilities provided by the Eclipse platform. The Eclipse Modeling

Project (EMP) focuses on the evolution and promotion of model-based devel-

2.3. Eclipse Modeling Project 14

opment technologies within the Eclipse community by providing a unified set

of modeling frameworks, tooling, and standards implementations. This free

open-source environment offers one of the most widely used implementation

of the OMG standard Meta-Object Facility (MOF), called Eclipse Modelling

Framework (EMF). Although EMF currently supports only a subset of MOF,

called EMOF (Essential MOF), it allows designers to create, manipulate and

store both models and meta-models. This is the reason why many MDE-

related initiatives are currently being developed around Eclipse and EMF.

2.3.1 Eclipse Modeling Framework

The core EMF framework includes a meta model (Ecore) for describing mod-

els and runtime support for the models including change notification, persis-

tence support with default XMI serialization, and a very efficient reflective

API for manipulating EMF objects generically. An overview and a more

detailed version of the Ecore metamodel are depicted in the figures 3.1 and

the 3.2.

In this thesis, both the PIMs and the PSMs conform to the EMF’s Ecore

metamodel for various reason. First of all, it is simple yet sufficient to define

the PIM and the PSMs. Also, it is very useful because most of the MDD

tools and all of the EMP tools support this metamodel by default and inter-

operate by using it.

2.3.2 Plug-in Development Environment

The Plug-in Development Environment (PDE) provides tools to create, de-

velop, test, debug, build and deploy Eclipse plug-ins, fragments, features,

update sites and RCP products.PDE also provides comprehensive OSGi tool-

ing, which makes it an ideal environment for component programming, not

just Eclipse plug-in development.

The PDE subproject is broken down into three main components, Build,

UI and API Tools. Each of these components operate like a project unto

its own, with its own set of committers, bug categories and mailing lists.

2.3. Eclipse Modeling Project 15

Figure 2.6: Overview of org.eclipse.emf.ecore

Figure 2.7: Detailed version of org.eclipse.emf.ecore

2.4. Xtext 16

There are two additional components in PDE, Doc which handles the help

documentation and Incubator which develops non-SDK features.

All the EMF Models that were created in this thesis are part of a PDE

project. Additionally, for each model an editor can be generated by using

the EMF Generator Model. The project is an Eclipse plug-in which can be

installed in a standard Eclipse platform.

2.4 Xtext

Xtext is a framework for development of programming languages and domain

specific languages. It covers all aspects of a complete language infrastructure,

from parsers, over linker, compiler or interpreter to fully-blown top-notch

Eclipse IDE integration.

Xtext provides the developer with a set of domain-specific languages and

modern APIs to describe the different aspects of the created programming

language. Based on that information it gives a full implementation of that

language running on the JVM. The compiler components of the language are

independent of Eclipse or OSGi and can be used in any Java environment.

They include such things as the parser, the type-safe abstract syntax tree

(AST), the serializer and code formatter, the scoping framework and the

linking, compiler checks and static analysis aka validation and last but not

least a code generator or interpreter. These runtime components integrate

with and are based on the Eclipse Modeling Framework (EMF), which effec-

tively allows the developer to use Xtext together with other EMF frameworks

like for instance the Graphical Modeling Project GMF.

2.5 Model to Model Transformation

Model to model transformation is a crucial phase in the MDD process.

There are many approaches available and in this thesis a hybrid approach is

adopted that combines several MT approaches such as direct, operational,

and template-based approach. The EMP provides the QVTo tool that is very

2.5. Model to Model Transformation 17

suitable for the implementation of this phase.

To begin with, each source and target (output) model must conform to

a metamodel. This is not only good practice but it is also a requirement for

using QVTo. In addiotion, the cardinality of input-output models in general

may be 1-1, 1-N, N-1, N-N. All transformations presented in this thesis are

1-1. In the following figure a high level concept of the MT is depicted.

Figure 2.8: Basic concepts of Mode l Transformation [8]

The EMP provides tools which are suitable to perform the aforementioned

types of model to model transformations. The MMT project hosts Model-to-

Model Transformation languages and is a subproject of the top-level Eclipse

Modeling Project. The transformations are executed by transformation en-

gines that are plugged into the Eclipse Modeling infrastructure. Additional

approaches and further details can be found in the references.

Specifically, the ATL(ATL Transformation Language) is a model trans-

formation language and toolkit. In the field of Model-Driven Engineering

(MDE), ATL provides ways to produce a set of target models from a set of

source models. Another alternative is the QVTo which is a partial implemen-

tation of the Operational Mappings Language defined by the OMG standard

specification (MOF) 2.0 Query/View/Transformation. In long term, it aims

to provide a complete implementation of the operational part of the standard.

The QVTo was chosen to implement the M2M part of this thesis. QVT is

a hybrid approach to Model Transformation with separate components that

has 3 advantages:

• Standard: An OMG specification (currently v1.1) of this approach is

available. This set of transformation languages is standardized and

more mature than the other transformation alternatives.

2.6. Model to Text Transformation 18

• Support: It is part of the M2M project which a subproject of the

Eclipse Modeling Project. Several parties (such as IBM, Unisys, France

Telecom and university labs) have shown interest in this project so it

unlikely to be dropped in the near future.

• Practical: It is implemented and integrated in Eclipse Modeling Tools,

a portable and relatively mature tool. It can perform operations on

Ecore models by default, it supports OCL operations and has a mature

editor. Note that ATL is also integrated in EMT.

2.6 Model to Text Transformation

The final step of the MDD process is code generation and the combination

of the produced source files with the runtime component. From the tools

available in EMP, XPand was chosen for the code generation phase. It has

many useful features such as Ecore support, simplicity of template definition

and a good editor.

The Model to Text (M2T) project focuses on the generation of textual

artifacts from models. Its purpose is threefold: First of all, provide imple-

mentations of industry standard and defacto Eclipse standard model-to-text

engines. Secondly, provide exemplary development tools for these languages.

Thirdly, provide common infrastructure for this languages.

There are many alternatives in M2T such as JET, Acceleo, XPand etc.

For the purposes of this thesis, XPand was used. Xpand is a statically-

typed template language featuring polymorphic template invocation, aspect

oriented programming,functional extensions, a flexible type system abstrac-

tion, model validation and more. It comes with a good editor that offers

useful features like syntax coloring, error highlighting, navigation, refactor-

ing and code completion.

It is noteworthy that it supports Ecore model as input and the editor

can auto-complete by using information from the model. XPand features are

ideal for generating code from a model that conforms to a metamodel with

Ecore as its meta-meta-model. It also allows to write Java code in order to

2.6. Model to Text Transformation 19

create utilities that are not available in the tool. The aforementioned reasons

pushed towards choosing XPand for the model to text transformation.

20

Chapter 3

Modeling the problem domain

The separation of concerns during the development phases is very important

due to the reasons explained in the previous chapter. The MDD approach

requires a high-level DSL in order to decouple the application domain from

the low-level software and hardware implementation. For this reason, the

SensL DSL was created. The next sections explain the SensL terms and

elaborate on the details.

3.1 SensL Terminology

ECA rules: An Event\Condition \Action rule is defined within a module

and it consists of the following parts:

• Event: Events are objects defined by the programmer and indicate

that an important -i.e. the functionality of a node is affected- event

happened. It has a body inside which properties can be declared. An

event triggers a rule invocation and can be emitted by rules or resources.

• Condition: A boolean expression that its value determines the execu-

tion of the ECA rule’s action.

• Action: The action is the rules logic and it may:

a. Update local properties

b. Invoke methods

c. Emit new event

A scope for the action body must be defined. A rules action body has

access to:

1. Local variable or methods

3.1. SensL Terminology 21

2. Variables that belong to the rule’s module.

3. Variables that belong to used modules.

However, there are more preconditions for a rules execution. As mentioned,

the expression defined in the condition must be TRUE. Also, the module of

the rule must be active, i.e. its mandatory frame must be enabled. See the

Frame section for additional information.

Finally, if the condition part of an ECA rule is evaluated to TRUE the rule

is enabled and its corresponding action part must be executed.

A valid rule structure is the following:

onEvent foo(args) {
when{ condition }
do{ action }
}

Table 3.1: ECA rule structure

Module: A module is the SensL component that defines overall function

framework. A valid module structure is the following:

At any given time during execution a module has a state. The module

states are:

• Enabled module iff modules condition is TRUE.

• Enabled rule iff enabled module and rule condition is TRUE.

• Enabled submodule iff parent module is enabled and submodule con-

dition is TRUE.

The idea of enabled/disabled modules implicitly states that a specific

modules functionality may change according to the state of the modules

rules i.e. different combinations lead to the execution of different rules. The

order of execution may also alternate the modules functionality.

Submodule: A module defined within another module. As implied by

the definition, a submodule has the same structure and states with a module.

3.1. SensL Terminology 22

Module Foo {
property p1, , pN;
frame f;
uses module1, , moduleN;
uses resource1, , resourceN;
condition expression;

rule r1 action m1 ;
rule r2 action m2 ;
...
rule rN action mN ;
method m1;
method m2;
...
method mN;
}

Table 3.2: Module structure

Module Hierarchy: Modules form a tree structure where the root is a

module, the internal nodes are also modules and the leaves are rules. This

tree can also be used to see illustrate when a submodule is enabled. The

following figure illustrates a sample tree.

Resource: A resource is a top level component that represents a hard-

ware (e.g. LED) or software (e.g. thread) resource. It may have properties,

classes, modules, other resources and also it can emit events.

Node: A node is a top level component. It is a collection of modules and

resources that defines a functionality. Enabling/Disabling a nodes module

results in functionality change too. A node may represent the following:

Mote, Base station, Server module.

Package: A package is a set of SensL components and is similar to a Java

package. SensL packages are used in order to provide namespace separation

to components. A collection of basic SensL components which comprise an

overall node functionality can be included it in a package. Thus, packages

are used to organize and separate the overall different operational modes of

a node.

3.1. SensL Terminology 23

Figure 3.1: Tree representing a module hierarchy

Node {
Class Cl1{...}
...
Class ClN{...}

Resource Rsc1{...}
...
Resource RscN{...}

Module Mod1{... }
...
Module ModN{...} }

Table 3.3: Node structure

Frame: A frame defines a module’s lifecycle. Different instances of the

same module can be used inside different frames. A frame can be either

initiated or terminated by an event (e.g. receive message event) or by the

Operating System (e.g. node boot). The implication of the frame concept

on the execution semantics is important.

3.2. SensL Execution semantics 24

Mandatory Frame: A mandatory frame of a module is a set of frames

which comprises of the frame of the current module and the frames of all the

modules which the current module uses. This is another SensL term concept

that greatly affects the runtime execution.

Context: A context is the set of all the active frames of a specific event

during runtime execution. An example of a context is shown the figure ??.

Figure 3.2: Context Concept

It is noteworthy that the context of an emitted event comprises of the

context of the triggering event plus the frame of the new event. Also, the

frame of the triggered event is not included in the context of the triggering

event. Furthermore, each event can attach a frame inside its context only if

the specific event triggers rules which belong to the frame’s modules.

To summarize, the connection of the above concepts is that modules

consist of a condition, zero or more properties and one or more rules. Also,

frames consist of a key and one or more modules. Finally, events consist of

one or more properties and one or more frames.

3.2 SensL Execution semantics

In the previous section, several concepts were introduced that have a serious

impact on the runtime execution. The frame concept, the event concept, the

context concept and the fact that modules and classes can be instantiated

must be taken under consideration because they regulate the runtime execu-

tion. The frames instantiate modules, the context groups module instances

3.2. SensL Execution semantics 25

and the event may trigger the execution of an action of an enabled module.

To support this idea and consequently implement it, data structures (e.g.

stack, queue), memory allocation and synchronous operations are needed.

Thus, to implement a runtime component that handles runtime execution

each platform must be able to provide the aforementioned utilities. Moreover,

there are several preconditions that must be met for a rule’s action part

to be executed. The mandatory frame plays an important part in these

preconditions and the details are provided explained below.

The mandatory frames affects states the module states as explained be-

low:

• The mandatory frame of a module comprises of all the mandatory

frames of the modules which the current module uses. So the manda-

tory frame is transitive.

• A mandatory frame is enabled only if all the modules which comprise

it, and the modules that these modules use, and so on are enabled.

• A module is active only if its mandatory frame is enabled.

Module scope: The mandatory frames affects states the module rules

as explained below:

• A rule’s mandatory frame is defined as the modules mandatory frame.

• A rule is active only if its module is active.

• A rule is ready for execution only if the rule is active and enabled.

The mandatory frames also affects the events. An event is terminated if

there are no ready rules in the stack. In addition, if an event is terminated

and a rule triggered from the specific event is not ready for execution, the

rule is not executed.

The table provided below highlights some of the aforementioned precon-

ditions. The blank cells indicate that a definition does not exist for the SensL

term, e.g. the Ready definition does not exist in the context of a Module.

3.3. Abstract Syntax Tree (AST) 26

SensLTerm/Definition Rule Module Mandatory Frame

Enabled
Rule’s Module is Enabled

+
Rule’s Condition is TURE

Module’s
Condition is

TRUE

All Modules in the current context
are enabled

+
All used Modules are Enabled

Active
Rule’s Mandatory Flame is

Enabled

Its
Mandatory
Frame is
Enabled

Ready
Rule’s is Active

+
Rule’s is Enabled

Table 3.4: SensLTerm / Definition Semantics

3.3 Abstract Syntax Tree (AST)

This section explains how the AST is created and then used in the MDD

process. The AST is very important because it is the starting point where

models become the primary artifacts that take part in building the WSN

application. The EMP tools used for this purpose are described in chapter

2.

The SensL learning curve -although it is not steep due to the resemblances

with object oriented languages like Java- may discourage developers to ac-

tually follow the building process proposed in thesis. To increase the ease

of learning the advisor’s team created a SensL editor with syntax coloring

and auto-completion features by using Xtext. The projects that are created

with this SensL editor plug-in have XText nature and consist of .snl files.

These *.snl files are both text and model that conforms to the metamodel

of the SensL DSL language. The SensL.ecore metamodel is automatically

generated by the XText tool and it conforms to the Ecore meta-meta-model.

This is important because interoperability between tools is guaranteed.

A model extracted from an .snl file has an XMI format and is called AST

because is a tree representation of the abstract syntactic structure of SensL

source code. An AST has many model elements due to the fact that each

source code element is mapped to an Eboject. This does not make it a good

candidate for transforming it into a PSM. It also does not have information

for runtime execution such as the list of rules that listen to a specific event.

Thus, it is a better choice to transform an AST into a simplified PIM that

3.4. Platform Independent Model (PIM) 27

contained additional information.

The complete AST is depicted in figure 3.3.

3.4 Platform Independent Model (PIM)

As stated in the previous section, the PIM is derived from the AST model.

This model is independent of the underlying WSN platform and thus it plays

an important role in the MDD approach. The PIM is the result of the first

QVTo model transformation. Model transformations are discussed in the

next chapter Model to Model Transformation.

The PIM model is strictly hierarchical due to the fact that the only or-

dering that QVTo guarantees is that of the ordered references. This means

that in case of poor modeling the PIM cannot be accessed in an appropriate

manner. The root object is the Model which contains one more or more

objects of the EClass Element. An Element may be a Module, an Event, a

Class, a Node or a Resource. A similar hierarchy is formed in all cases where

ordering is needed. The rest of the PIM elements were created to match all

the SensL terms. Each term is explicitly defined in the section 3.2: SensL

Terminology.

Another crucial part of the PIM are Statements because all code blocks

contain statement objects. A statement may contain a reference to the follow-

ing EClasses: If, For, While, Body and Expression. Method bodies contain

an ordered set of statements and with this model structure the source code

information that was modeled in the AST is maintained. The ordered set of

statements can efficiently be accessed using the QVTo tool.

The Expressions need careful treatment because they may contain various

expression arguments such as constants of various types, references to model

objects and have many possible operators. In addition, the PSM Expressions

are modeled exactly as the PIM Expressions thus the code generation is also

affected by these model elements. Each expression necessarily has a left side

expression argument and an operator. A right side argument is optional, it

may be used to from two sided expression of the form expression argument

- operator - expression argument. Note that the expression argument may

3.4. Platform Independent Model (PIM) 28

contain an expression.

The complete PIM is depicted in figure 3.5.

3.4.1 nesC Terminology

At this point, an enumeration of and a brief explanation of the terms that

belong to the target domain is helpful.

nesC program: a collection of wired components. The term Applica-

tion is a synonym in the context of TinyOS.

Component Components are either modules or configurations. By de-

fault, components in TinyOS are singletons i.e. only one exists. There is an

one-to-one mapping between file name and nesC component (also true for

interfaces).

Module: A module is the main nesC source file which has two sections.

First, the module{ } section consists of declarations of the from ”uses inter-

face interface name” and ”provides interface interface name”. Secondly, the

implementation{ } section which consists of variables declaration, internal

C functions with scope private to the component, commands -i.e. provided

functions used by other components-, event handlers -i.e. functions executed

upon signal reception, tasks -i.e. synchronously executed functions (sched-

uled with the post keyword).

Configuration: A configuration is a nesC source file which wires compo-

nents in order to abstract and it has two sections. The configuration{ } sec-

tion which consists of declarations of the from ”uses interface interface name”

and ”provides interface interface name”. Secondly, the implementation sec-

tion which consists of wiring statements and component instantiation (using

the new operator).

Generic Component: A generic component is an instantiable compo-

nent. Thus, a generic component is reusable and prevents unnecessary code

duplication. E.g. the QueueC component can be instantiated with a specific

queue type and maximum size as instantiation parameters. This feature is

available for TinyOS versions higher than v1.1.

Interface: An Interface describes a functional relationship between two

3.4. Platform Independent Model (PIM) 29

or more components. The interface declaration has two kinds of functions:

commands and events.

Generic Interface: A generic interface is a parameterized interface.

Thus it is reusable and prevents unnecessary code duplication.

Header files: A nesC header file has the same syntax and usage with C

header files.

Atomic: Due to interrupts, the program execution may be preempted.

To enable synchronous execution, code blocks in nesC can be declared as

atomic. Such blocks are executed non-preemptively.

Async: nesC code blocks can be declared as async. Commands and

events that run preemptively from interrupt handlers must be declared with

the async keyword. Note that, all interrupt handlers are automatically async,

and so they cannot include any sync functions in their call graph. The one

and only way that an interrupt handler can execute a sync function is to post

a task.

Split-phase interface: In this pattern, the request that initiates an

operation completes immediately and the actual operation is executed in

a callback. For example, to acquire a sensor reading with an ADC, first

the software writes to registers. Then, when ADC completes, it issues an

interrupt and the software retrieves the result from a data register.

Libraries: Several low (or high) level functions are already implemented

as generic components. Applications usually rely on them and their provided

interfaces. Examples of component-interface are: MainC → Boot, AMSend

→ AMSenderC, Packet → AMReceiverC, Timer〈TMilli〉 → TimerMilliC(),

Leds → LedsC, Queue〈t〉 → QueueC〈t〉 etc.

For more formal definitions, the reader can refer to the Glossary of the

document: nesC 1.3 Language Reference Manual.

Memory Allocation: Due to the new SensL operator memory man-

agement is an issue that needs to be addressed. A malloc() implementation

exists in the libraries but it is problematic and may lead to reading/writing

junk after a while because segmentation faults are not handled. An alterna-

tive to memory allocation is the PoolC component. This component does

3.5. Platform Specific Model (PSM) 30

pseudo-dynamic memory allocation. When instantiated, it allocates a space

equal to an estimation of the maximum needed RAM. Then, allocation and

de-allocations are performed on this memory space only.

All the aforementioned nesC terms appear in the PSM which conforms to

the Ecore meta-meta-model. The statements, the expressions and the bodies

are modeled in an identical way with the PIM. However, the PIM and the

PSM differ greatly because they model Packet domains.

3.5 Platform Specific Model (PSM)

The purpose of the PSM implemented in this thesis is to model the concepts

TinyOS platform and, once it is available, is fed as input to the code generator

for the production of nesC code. This phases of the MDD process required

a lot of effort in comparison with the straightforward AST to PIM mapping.

This is due to the fact that the source domain is defined in terms of the

SensL DSL and the target domain is defined in terms of the an existing

WSN platform.

The complete PSM is depicted in figure 3.6.

3.6 Ecore Models

In the following pages the Ecore metamodels are provided.

3.6. Ecore Models 31

(a) part 1 (b) part 2

Figure 3.3: Generated AST Ecore

3.6. Ecore Models 32

(a) part 3

Figure 3.4: Generated AST Ecore (cont.)

3.6. Ecore Models 33

(a) part 1 (b) part 2

Figure 3.5: SensL Ecore Metamodel

3.6. Ecore Models 34

(a) part 1 (b) part 2

Figure 3.6: nesC Ecore Metamodel

3.6. Ecore Models 35

(a) part 3

Figure 3.7: nesC Ecore Metamodel (cont.)

36

Chapter 4

Model to Model

Transformation

4.1 SensL to Abstract Syntax Tree

As mentioned in the section 3.3, SensL files created with the SensL plug-

in are also models. These models are extracted and are called ASTs. The

number of the SensL files is arbitrary and thus the number of input models

is not known apriori. However, the QVT tool does not support arbitrary

number of input model and that is the reason why a single input model is

created. The single input model conforms to the SensL.ecore metamodel

and has many Model objects equal to the number of the SensL files. The

figure 4.1 depicts a part of the SensL grammar and part of the generated

SensL.ecore.

4.2 Implementation of Model

Transformation

4.2.1 AST to PIM

After the extraction of the AST, it was decided not to directly transform it

into the PSM. Although the AST and the PIM models are similar and model

the same concepts, the PIM acts an intermediate stage. The PIM created by

the AST to PIM transformation not only maintains all the AST information

but is also augments the model and simplifies the consequent PIM to PSM

transformation.

The AST Ecore was generated using the XText and thus it was not de-

4.2. Implementation of Model Transformation 37

Figure 4.1: A sample of SensL.xtext in contrast with the SensL.ecore

signed for enabling an easier model transformation. Specifically, there are

many EClasses for modeling expressions, i.e. one EClass for each possible

expression operator. Furthermore, the modeling of property types, symbols

references and assignments results to a complicated AST. However, the PIM

was designed in order to reduce the aforementioned complexity and make the

transition to PSM easier.

The QVT standard integrates the OCL 2.0 standard and also extends

it with imperative features. The OCL as well as the extra features aided

the AST to PSM transformation. These OCL operations enabled the QVTo

transformation to handle all the model elements. For example, some model

elements are declared EObject and the casting operation oclAsType() made

it possible to handle them as instances of an EClass. To provide an additional

example, the oclIsTypeOf() operation helped to determine the exact EClass

4.2. Implementation of Model Transformation 38

type when only the superclass type was known.

4.2.2 PIM to PSM

In order to execute the SensL application on the TinyOS platform the SensL

concepts must be mapped to nesC concepts. This is done in the PIM to

PSM transformation. Some mapping rules are straightforward and map a

single term to another single term. However, some mapping rules required

more complex transformation. These transformation rules are discussed in

the following table. For SensL and nesC terms definitions and explanations

refer to sections 3.1 and 3.4.1.

Table 4.1: SensL-nesC Semantics Mapping

SensL Term nesC Term Discussion

Property Variable\Struct Each SensL property is mapped to a nesC

variable or a struct in case it is a complex

type. The variables types are derived from a

lookup table.

Module Module Each SensL module is mapped to a nesC

module. All SensL module properties are

mapped to variables and then they form a

nesC struct. Also, an array of such struct

is declared with size that is determined by

the runtime component. This statically allo-

cated structs are used by the runtime com-

ponent.

Condition Command The module’s condition expression is

mapped to a module command. The

command’s arguments include a pointer to

the module’s struct in order to access the

properties of the module’s instance.

4.2. Implementation of Model Transformation 39

Rule Command The mapping is similar to the Condition to

Command mapping. A command argument

is needed in order to enable access to the

event properties. This argument is a pointer

to event struct.

Method Command Similar to the above mappings to a Com-

mand. It is noteworthy that the argument

list is deduced by searching the method’s

body. For example, if the body contains ref-

erences to used modules, a pointer to the

used module’s struct is added.

Class Module Similar to the module to module mapping.

However, the maximum number of class in-

stances must be known at compile time or a

default maximum number is chosen.

Resource existing nesC component The TinyOS provides libraries that abstract

the low level hardware details. Thus, a set of

available resources is specified to the SensL

program and according to the sensor board

the proper wiring is done in the runtime con-

figuration. This can be seen as a resource

interface to resource interface that concludes

with an interface wiring.

Node Modules + Resources For each node module the module to mod-

ule mapping is invoked. The same applies

for the Resources, the resource is determined

from the resource to nesC component map-

ping. Also, the node may define constants

that are used by the runtime such as the

event queue size.

4.2. Implementation of Model Transformation 40

Package naming convention During the M2M phase all the package el-

ements are renamed by adding the package

name as a prefix. Due to the fact that pack-

age names are unique the produced element

names are also unique.

Event Struct Each event property is mapped according

to the property to variable mapping. The

mapped variables are used to create a struct.

The PSM handles these event structs differ-

ently and stores metadata such as the rule

IDs that listen to this type of event. The

metadata are used during the creation of the

runtime component.

Frame Struct The frame to struct mapping is similar to

event to struct mapping. The PSM also

stores metadata that are used by the run-

time component. However, the frames are

allocated and deallocated dynamically. This

is the reason that a maximum number of

instances must defined. It is noteworthy

that frame management is pseudo-dynamic

because the maximum number of objects is

statically allocated at compile time.

41

Chapter 5

Code generation

5.1 Implementation of M2T phase

The code generation in XPand is template-based. This means that the pro-

grammer write templates that are expanded i.e. model elements are replaced

with the text that the template defines. First of all, main template is defined

as the starting point of the transformation. Then, templates are expanded

for the model elements that the current element contains. This is achieved

by using the EReferences to invoke the expansion of templates from within

the current template. It is noteworthy that the model must be hierarchical

in order to preserve the correct ordering of the model elements.

Furthermore, to enhance the readability of the templates, the Root.xpt

template is defined. This is the entry point of the Xpand tool and is used

to expand the Makefile.xpt as well as the CodeGen.xpt. Thus the code-gen

folder is populated with the Makefile along with the nesC files. In order to

avoid a very big CodeGen template, the templates that generate the runtime

component are also defined in a different file, namely the Runtime.xpt.

The code generator must produce syntactically correct code. This means

that, when compiled using the existing nesC compiler, it must not produce

compilation errors. The spacing between keywords, variables etc. is impor-

tant but it was easy to avoid this kind of errors. Furthermore, extra attention

was given to the conversion of certain model elements to string. For example,

a Plus expression operator is replaced with ”+’ and a variable that is a struct

field is accessed by using the struct name and a ”.” as suffix.

Another issue was the readability of the generated code. The first prob-

lem was the code structure and it was solved by invoking templates with

parameters. The delegation of the current number of tab characters to all

5.2. Runtime component 42

the consequent template expansions is sufficient to maintain the code struc-

ture. For example, consider an if statement and the statements of its body.

The If template passes its number of tabs to the Body template and all the

body statements increase the number of tabs by one. Furthermore, newline

characters had to be suppressed to avoid redundant empty lines of code.

A sample template defined in the Template.xpt is depicted in the following

figure.

Figure 5.1: XPand template sample

5.2 Runtime component

A very important aspect of a WSN application is the execution environment.

Each underlying platform provides a unique execution model with different

5.2. Runtime component 43

advantages as well as restrictions Also, each platform supports various sensor

boards a fact which affects the SensL resources. Thus, the needs of each

platform must be addressed separately. To achieve this, a runtime component

that implements the SensL concepts such as event emission, rule scheduling

and frame allocations must implemented. In this thesis, a nesC runtime

component was implemented that allows SensL applications to run on the

TinyOS platform.

The SensL language has runtime semantics that are not directly reflected

in the metamodels. These runtime semantics determine all aspects of the

SensL application execution. The runtime component’s purpose is to act as

an intermediate layer between the TinyOS execution model and the SensL

execution model. Given this runtime component, a nesC application can

be executed on the TinyOS platform by conforming to the SensL runtime

semantics. In the following paragraphs the implementation details are dis-

cussed.

First of all, the runtime component is generated with XPand along with

the rest of the nesC application code files. However, it is a special hybrid

case of handwritten and generated nesC code. A distinction can be made

within the runtime module between the data structures which are generated

and the algorithmic parts which are partly handwritten. The runtime com-

ponent is modeled in the nesC metamodel with a runtime module, a runtime

header and a runtime configuration. These model elements contain PSM-

extracted information such as rule IDs for each SensL event, set of modules

for each frame, the event queue entry type etc. The aforementioned infor-

mation is used to generate the runtime nesC files. These files combined with

the generated modules and interfaces form a complete nesC application.

The runtime header contains all the frame structs, the event properties

structs and the event queue entry type. It also contains the enumerations

that hold global constants such as the maximum allowed number of events in

the event queue. This header is included in the runtime module and provides

all the necessary structs that it uses. As mentioned before, the PSM contains

all the necessary information for the generation of the runtime header.

The runtime module contains the global variables, arrays and structs

5.2. Runtime component 44

that are needed for the runtime execution. It contains a struct that stored

the current event that is processed, the frame masks array that is used for

the allocation\deallocation of frames etc. It also uses interfaces that are

needed for the sensor’s startup as well as SensL module interfaces. The

runtime configuration is used for the wiring of the used interfaces and resource

instantiation.

The PSM-extracted information make possible the generation of com-

mands, functions or event handlers because some variable values such as the

frame id, the module id, rule id etc. are known beforehand. This allows to

not store such in information in RAM. In addition, writing an event handler

per event type or a createFrame() command per frame by hand would be

time consuming. An alternative solution would be to create a signle hanlder

with a case handling by using a switch statement or if \else if statements.

However, the MDA paradigm does not require such effort because these code

parts are generated. Every change in a SensL file, requires zero changes in

the runtime template.

The runtime execution model is based on event handlers and tasks. Each

SensL module can define rules that listen to the SensL Boot event. This is

a special event type because it is the starting point of a SensL application

execution. Once the sensor setup is complete the event Boot.booted() is called,

it adds to the event queue the Boot event and posts the task nextEvent().

The nextEvent() task performs a dequeue operation and posts the proper

task process EventType Rules() task. This task for each rule, checks if the

rule is ready for execution and calls the corresponding command in case it

is. Then it checks if the are pending events in the event queue and posts a

nextEvent() task if there are pending events. To complete the cycle, each

SensL event handlers, check if the queue was empty before was called and if

it was, it post the nextEvent() task. The aforementioned process is depicted

in the figure ??.

The are many alternatives for implementing a rule-based system. In this

thesis, the rule execution has once-off semantics. This means that each rule

can be executed only once in the context of its event. Thus, each time a rule

is executed a boolean ruleExecutedOnce is set to TRUE in order to avoid

5.2. Runtime component 45

Figure 5.2: Runtime execution - Event handling

another execution even if the rule is ready for execution. To summarize, the

process EventType rules task checks for each rule that listens to the event

if the rule is ready for execution. If a rule is ready and the rule has not

executed once then the corresponding module rule command is called.

In this paragraph the frame allocation and deallocation is discussed.

A frame is allocated when the developer requests it with the new Frame

frame name; command. This call returns SUCCESS when the maximum

number of frame instances is not reached and a new frame instance is created.

The call return FAIL in two cases, either the frame is already instantiated in

the context of the rule’s event or the maximum number of frame instances is

already reached. The frame deallocation is performed in a lazy manner due

to the fact that it costs an event queue traversal. Thus when a new Frame

frame name; is made and the maximum number of instances is reached the

function delete FrameType Instances() is called. A frame instance is deleted

if no event in the queue contains the instance in its context.

Several optimizations are possible and in this paragraph discusses the

compression of a context in order to reduce its size in RAM. The context

is stored as an unsigned integer and the bits of this integer are indexes to

module instances. The number of bits must be equal or greater that the

sum of log2(max instances + 1) for each frame. Bit-wise operations are used

5.3. Standalone execution 46

to retrieve the context information e.g. to retrieve the index of a module

instance which is represented by 3 bits the context is shifted to the right

until these two bits are the LSBs and then an AND operation is performed

with the number 7 (binary representation is 111). The figure 5.3 illustrates

this idea.

Figure 5.3: Compress event context

Another important issue is the synchronization and the avoidance of race

conditions. There are only two cases in which a SensL event is added to the

event queue. An event can be emitted by a hardware resource or a module’s

rule. Due to the fact that rules are executed synchronously within the body

of a task there is no need for critical sections. The handlers are all declared

implicitly as sync and they cannot be interrupted. Thus, the programmer

does not need to worry about concurrency.

5.3 Standalone execution

To automate the process of exporting the Abstract Syntax Tree (AST), in-

voking the QVTo interpreter for the model transformation and invoking the

XPand *.xpt a Java runable jar was created. The jar contains Java packages

that utilize the tool APIs in order to programatically invoke the operations.

It is also with command line arguments.

Due to the fact that some Java classes require many parameters the con-

figuration is done via using an XML configuration file. This file is used to

populate the member variables of the class dpcm.end2ned.config.Constants.

The following figures illustrates how to set the SENSL DIR parameter, the

5.3. Standalone execution 47

folder in which the SensL text files -created using the SensL editor- are lo-

cated.

Figure 5.4: Config parameter example

The AST mentioned in the previous paragraphs is the model represen-

tation of the SensL text. It is created from an Eclipse Plug-in created with

Xtext. This is the starting point of the model-driven development because

the text is parsed into a model and this model is used in the first model trans-

formation. Additional details are explained in the chapter Model to Model

Transformation.

To conclude this chapter, the standalone execution is important because

it does not restrict the MDD solution within the Eclipse ecosystem. It also

speeds up the end to end -SensL text to nesC text- process.

48

Chapter 6

Conclusion

6.1 Results

This thesis introduced SensL, a DSL that enables WSN application devel-

opers to write code in a high level language. Due to the execution model of

this language, the programmer does not need to worry about concurrency

issues. The higher abstraction level enables teams to complete separate their

tasks, e.g. a domain expert working on the application layer does not need

to cooperate with the person responsible for the middle-ware.

After the introduction of SensL, a model compiler was developed that

translates SensL code into nesC code that can be compiled and run on a

TinyOS platform by using preexisting tools. In the context of the SensL

model compiler a SensL editor was implemented and a SensL PIM was writ-

ten as well. These parts of the tool can remained unchanged and provide a

basis for extensions e.g. support more platforms. This MDA approach offers

a faster and easier development phase.

6.2 Future work

There are several important extensions to the existing work that can sig-

nificantly raise the effectiveness of the solution proposed in this thesis. To

begin with, SensL model compilers that support other existing platforms can

be written. This will allow developers to chose the best platform for their

project without worrying about the implementation details. Moreover, given

SensL libraries in combination with the speedup in the development process

developers will be encouraged to test new ideas.

The SensL layer in the application development process can also be used

6.2. Future work 49

as an intermediate layer that guarantees the separation of concerns. This im-

plies that WSN applications can be described with high level models created

with a graphical modeling tool. In this case, the models can be translated

into SensL files by implementing a SensL generator tool for each graphical

modeling tool. Finally, the SensL model compiler -given a platform- can

generate code, ready for compilation. The aforementioned process, is a pure

MDA approach that enables the creation of WSN applications by designing

models. The process is depicted in figure 6.1.

Figure 6.1: Pure model driven development

50

List of Figures

2.1 Overview of MDA . 10

2.2 A proposed development process for prototyping, Ref:[3] . . . 12

2.3 Another proposed development framework, Ref:[5] 12

2.4 An Overview of the Moppet framework, Ref:[6] 13

2.5 A proposed DSL meta-model for WSN applications, Ref:[4] . . 13

2.6 Overview of org.eclipse.emf.ecore 15

2.7 Detailed version of org.eclipse.emf.ecore 15

2.8 Basic concepts of Mode l Transformation [8] 17

3.1 Tree representing a module hierarchy 23

3.2 Context Concept . 24

3.3 Generated AST Ecore . 31

(a) Generated AST Ecore 1 31

(b) Generated AST Ecore 2 31

3.4 Generated AST Ecore (cont.) 32

(a) Generated AST Ecore 3 32

3.5 SensL Ecore Metamodel . 33

(a) SensL Ecore 1 . 33

(b) SensL Ecore 2 . 33

3.6 nesC Ecore Metamodel . 34

(a) nesC Ecore 1 . 34

(b) nesC Ecore 2 . 34

3.7 nesC Ecore Metamodel (cont.) 35

(a) nesC Ecore 3 . 35

4.1 A sample of SensL.xtext in contrast with the SensL.ecore . . . 37

List of Figures 51

5.1 XPand template sample . 42

5.2 Runtime execution - Event handling 45

5.3 Compress event context . 46

5.4 Config parameter example . 47

6.1 Pure model driven development 49

52

List of Tables

3.1 ECA rule structure . 21

3.2 Module structure . 22

3.3 Node structure . 23

3.4 SensLTerm / Definition Semantics 26

4.1 SensL-nesC Semantics Mapping 38

53

List of Abbreviations

AST Abstract Syntax Tree

DSL Domain Specific Language

EMF Eclipse Modeling Framework

EMT Eclipse Modeling Tools

EMP Eclipse Modeling Project

M2M Model to Model

M2T Model to Text

MDA Model Driven Architecture

MDD Model Driven Development

ML Modeling Language

MT Model Transformation

MOF Meta Object Facility

OCL Object Constraint Language

OMG Object Management Group

QVTd Query/View/Transformation Declarative

QVTo Query/View/Transformation operational

PDE Plug-in development environment

PIM Platform Independent Model

PSM Platform Specific Model

URI Uniform Resource Identifier

WSN Wireless Sensor Network

Bibliography

[1] Bran Selic. 2003. The Pragmatics of Model-Driven Development. IEEE

Softw. 20, 5 (September 2003), 19-25.

[2] Rodrigues, T.; Dantas, P.; Delicato, F.C.; Pires, P.F.; Pirmez, L.;

Batista, T.; Miceli, C.; Zomaya, A., ”Model-Driven Development of

Wireless Sensor Network Applications,” Embedded and Ubiquitous

Computing (EUC), 2011 IFIP 9th International Conference on , vol.,

no., pp.11,18, 24-26 Oct. 2011.

[3] Ryo Shimizu, Kenji Tei, Yoshiaki Fukazawa, and Shinichi Honiden.

2011. Model driven development for rapid prototyping and optimiza-

tion of wireless sensor network applications. In Proceedings of the 2nd

Workshop on Software Engineering for Sensor Network Applications

(SESENA ’11). ACM, New York, NY, USA, 31-36.

[4] Nguyen Xuan Thang, Michael Zapf, and Kurt Geihs. 2011. Model driven

development for data-centric sensor network applications. In Proceed-

ings of the 9th International Conference on Advances in Mobile Comput-

ing and Multimedia (MoMM ’11). ACM, New York, NY, USA, 194-197.

[5] Nguyen Xuan Thang and Kurt Geihs. 2010. Model-driven development

with optimization of non-functional constraints in sensor network. In

Proceedings of the 2010 ICSE Workshop on Software Engineering for

Sensor Network Applications (SESENA ’10). ACM, New York, NY,

USA, 61-65.

[6] Pruet Boonma and Junichi Suzuki. 2011. Model-driven performance en-

gineering for wireless sensor networks with feature modeling and event

calculus. In Proceedings of the 3rd workshop on Biologically inspired

Bibliography 55

algorithms for distributed systems (BADS ’11). ACM, New York, NY,

USA, 17-24.

[7] Kai Beckmann and Marcus Thoss. 2010. A model-driven software devel-

opment approach using OMG DDS for wireless sensor networks. In Pro-

ceedings of the 8th IFIP WG 10.2 international conference on Software

technologies for embedded and ubiquitous systems (SEUS’10), Sang

Lyul Min, Robert Pettit, Peter Puschner, and Theo Ungerer (Eds.).

Springer-Verlag, Berlin, Heidelberg, 95-106.

[8] Tom Mens and Pieter Van Gorp. 2006. A Taxonomy of Model Transfor-

mation. Electron. Notes Theor. Comput. Sci. 152 (March 2006), 125-142

[9] K. Czarnecki and S. Helsen. 2006. Feature-based survey of model trans-

formation approaches. IBM Syst. J. 45, 3 (July 2006), 621-645.

[10] Singh, Y.; Sood, M., ”Models and Transformations in MDA,” Com-

putational Intelligence, Communication Systems and Networks, 2009.

CICSYN ’09. First International Conference on , vol., no., pp.253,258,

23-25 July 2009.

[11] Fernando Losilla, Cristina Vicente-Chicote, Brbara lvarez, Andrs Iborra,

and Pedro Snchez. 2007. Wireless sensor network application develop-

ment: an architecture-centric MDE approach. In Proceedings of the

First European conference on Software Architecture (ECSA’07), Flavio

Oquendo (Ed.). Springer-Verlag, Berlin, Heidelberg, 179-194.

[12] Luis Redondo, Rodrigo Castieira, Technical Annex v1.2, WSN Develop-

ment, Planning and Commissioning and Maintenance ToolSet

[13] Dave Steinberg, Frank Budinsky, Marcelo Paternostro, Ed Merks, EMF:

Eclipse Modeling Framework (2008), 2nd Edition,Addison-Wesley Pro-

fessional

[14] Anneke Kleppe, Jos Warmer, Wim Bast, MDA Explained: The Model

Driven Architecture: Practice and Promise (2003), Addison-Wesley

Bibliography 56

[15] Martin Fowler, Domain-Specific Languages (2010), Addison-Wesley Pro-

fessional

[16] David Gay, Philip Levis, David Culler, Eric Brewer, nesC 1.3 Language

Reference Manual(2009)

[17] Charles Forgy, OPS5 User’s Manual, Technical Report CMU-CS-81-135

(Carnegie Mellon University, 1981)

[18] Object Management Group Specifications, Meta Object Facility Core,

http://www.omg.org/spec/MOF/

[19] Object Management Group Specifications, Object Constraint Language,

http://www.omg.org/spec/OCL/

[20] Object Management Group Specifications, MOF Query / View / Trans-

formation, http://www.omg.org/spec/QVT/

[21] XText Documentation,

http://www.eclipse.org/Xtext/documentation/2.4.0/Documentation.pdf

[22] XPand Reference,

http://www.openarchitectureware.org/pub/documentation/4.3.1/

	Table of Contents
	Introduction
	Wireless Sensor Networks
	An MDD Solution
	Introduction to the SensL DSL
	Thesis impact on the real world

	Related Work
	Model Driven Development
	Applying MDD to the WSN field
	Eclipse Modeling Project
	Eclipse Modeling Framework
	Plug-in Development Environment

	Xtext
	Model to Model Transformation
	Model to Text Transformation

	Modeling the problem domain
	SensL Terminology
	SensL Execution semantics
	Abstract Syntax Tree (AST)
	Platform Independent Model (PIM)
	nesC Terminology

	Platform Specific Model (PSM)
	Ecore Models

	Model to Model Transformation
	SensL to Abstract Syntax Tree
	Implementation of Model Transformation
	AST to PIM
	PIM to PSM

	Code generation
	Implementation of M2T phase
	Runtime component
	Standalone execution

	Conclusion
	Results
	Future work

	List of Figures
	List of Tables
	List of Abbreviations
	Bibliography

