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”The question of whether computers can think is like the question of whether

submarines can swim.” (Edsger W. Dijkstra)
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Abstract

Coordination among robots is a popular research topic in robotics, artificial intelligence,

and multi-agent systems. Robotic soccer, known as RoboCup, represents a complex,

stochastic, real-time, multi-agent competitive domain. In such domains, cooperative

strategy is required for the success of the team’s mission, thus the ability of team coordi-

nation is crucial. Team coordination in RoboCup offer mechanisms for player positioning

and role assignment. This thesis studies the problem of coordination for a robotic soccer

team and offers a real-time module for on-board execution on Nao robots that achieves

dynamic positioning and role assignment using the basic principles of utility theory.

Specifically, a formation generator component is responsible for generating a set of can-

didate positions in the field, based on the global estimated ball position in the field, as

provided by the shared estimated global game state. The formation type (offensive or

defensive) is determined dynamically, depending on which half of the field the ball lies in,

and the candidate positions represent certain roles (supporter, attacker, defender, etc.).

Then, a role assignment component uses a team utility function to evaluate mappings of

players (robots) to positions (roles) and decides which mapping is best for the current

game situation. The utility function combines a variety of features to characterize good

aspects of teamwork. Since the candidate positions/roles may be more than the robots,

the number of possible mappings can be extremely large. Two role assignment algorithms

are proposed; one based on exhaustive search, which guarantees optimal solution albeit

with high computational cost, and another based on stochastic local search (Particle

Swarm Optimization), which cannot guarantee an optimal solution, but comes with very

low computational cost. The selected mapping is adopted by all robots and each robot

executes the behavior that implements the assigned role. Re-coordination takes place

whenever a significant change in the game state occurs. Our coordination module has

been integrated into the software architecture of our RoboCup team “Kouretes” and is

used for coordinating the team robots during RoboCup games.



Περίληψη

Ο πολυρομποτικός συντονισμός είναι ένα δημοφιλές θέμα έρευνας στη ρομποτική, την τε-

χνητή νοημοσύνη και τα πολυπρακτορικά συστήματα. Το ρομποτικό ποδόσφαιρο, γνωστό

και ως RoboCup, αποτελεί ένα περίπλοκο, στοχαστικό, πολυπρακτορικό και ανταγωνιστικό

περιβάλλον πραγματικού χρόνου. Σε τέτοιου είδους περιβάλλοντα, η στρατηγική συνερ-

γασίας είναι απαραίτητη και συνεπώς ζωτικής σημασίας για την αποτελεσματικότητα της

ομάδας. Ο συντονισμός στο διαγωνισμό RoboCup προσφέρει μηχανισμούς για την το-

ποθέτηση της ομάδας στο γήπεδο, καθώς και την ανάθεση ρόλων. Η παρούσα διπλωμα-

τική εργασία μελετά το πρόβλημα του συντονισμού για μια ρομποτική ποδοσφαιρική ομάδα

και προσφέρει λογισμικό, κατάλληλο για εκτέλεση πραγματικού χρόνου πάνω σε ρομπότ

Nao, που επιτυγχάνει δυναμική τοποθέτηση και ανάθεση ρόλων χρησιμοποιώντας τις βα-

σικές αρχές της θεωρίας χρησιμότητας. Πιο συγκεκριμένα, ένας μηχανισμός παραγωγής

συστημάτων είναι υπεύθυνος για την δημιουργία ενός συνόλου θέσεων στο γήπεδο, με

βάση την καθολικά εκτιμώμενη θέση της μπάλας, όπως προβλέπεται από το κοινό μοντέλο

καθολικής κατάστασης του παιχνιδιού. Ο τύπος του συστήματος (επιθετικό ή αμυντικό) κα-

θορίζεται δυναμικά, ανάλογα σε ποιο μισό του γηπέδου βρίσκεται η μπάλα και οι υποψήφιες

θέσεις αντιπροσωπεύουν ειδικούς ρόλους (υποστηρικτής, επιθετικός, αμυντικός...). Στην

συνέχεια, ο μηχανισμός ανάθεσης ρόλων χρησιμοποιεί μια συνάρτηση χρησιμότητας για την

αξιολόγηση αντιστοιχίσεων των παικτών (ρομπότ) σε θέσεις (ρόλοι) και αποφασίζει ποια

αντιστοίχιση είναι καλύτερη για την τρέχουσα κατάσταση του παιχνιδιού. Η συνάρτηση

χρησιμότητας συνδυάζει πολλά κριτήρια για να χαρακτηρίσει θετικά στοιχεία της ομαδικής

εργασίας. Δεδομένου ότι οι υποψήφιες θέσεις/ρόλοι μπορεί να είναι περισσότερες από τα

ρομπότ, ο αριθμός των πιθανών αντιστοιχίσεων μπορεί να γίνει εξαιρετικά μεγάλος. Δύο

αλγόριθμοι προτείνονται για την ανάθεση ρόλων, ένας που βασίζεται στην εξαντλητική α-

ναζήτηση και εγγυάται βέλτιστη λύση, ωστόσο με μεγάλο υπολογιστικό κόστος, και ένας

δεύτερος βασιζόμενος σε στοχαστική τοπική αναζήτηση (Particle Swarm Optimization),

ο οποίος δεν εγγυάται βέλτιστη λύση, αλλά έχει πολύ χαμηλό υπολογιστικό κόστος. Η

επιλεγμένη αντιστοίχιση υιοθετείται από όλα τα ρομπότ και κάθε ρομπότ είναι υπεύθυνο

να εκτελέσει την συμπεριφορά που υλοποιεί τον ρόλο που του ανατέθηκε. Ο συντονισμός

λαμβάνει χώρα κάθε φορά που υπάρχει κάποια σημαντική αλλαγή στην κατάσταση του παι-

χνιδιού. Οι παραπάνω μηχανισμοί έχουν ενσωματωθεί στην αρχιτεκτονική λογισμικού της

ομάδας RoboCup «Κουρήτες» και χρησιμοποιούνται για τον συντονισμό των ρομπότ της

ομάδας σε αγώνες RoboCup.
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Chapter 1

Introduction

The RoboCup Competition is an international annual aggregation of robotic competitions

which intends to promote Robotics and Artificial Intelligence (AI) research. RoboCup

Soccer constitutes the main RoboCup division and focuses on the game of soccer. The

research goals in RoboCup Soccer concerns multi-robot and multi-agent systems in dy-

namic adversarial environments and all the participating teams have to find real-time

solutions to some of the most difficult problems in robotics, such as perception, cogni-

tion, action, and coordination. In the Standard Platform League (SPL) all teams use

identical robots (standard platform), therefore they are not concerned with hardware im-

provements, they only concentrate on software development. Currently, the chosen SPL

platform is the Aldebaran Nao humanoid robot.

Software development for robots competing in the RoboCup SPL essentially aims

at developing autonomous agents. An autonomous robotic agent is a system that con-

tinuously perceives its environment through the robotic sensors, analyzes the percept

sequence using various AI techniques, and takes actions through the robotic actuators

with the goal of maximizing a utility function. The central problems of an autonomous

robotic agent include environment perception, robot localization, robotic mapping, path

planning, decision making under uncertainty, and learning. Apart from those, the cen-

tral problems of a team of autonomous agents working to achieve a common goal include

multi-agent planning, team coordination, and collaborative decision making. This thesis

studies the problem of team coordination in order for the robotic soccer team to achieve

efficient positioning in the field depending on the current game situation and make col-

laborative decisions about role assignment.

Evangelos Michelioudakis 1 September 2013



1. INTRODUCTION

To illustrate the importance of team coordination and planning, consider the following

scenario. Imagine a team of players during a moment of the game in which each player is

observing the ball, but they have no way of coordinating their actions towards a common

goal. This common goal of the team is typically to score against the other team, while

simultaneously defending their own goalpost. Therefore, without coordination each player

can only assume a predefined role, either defend the own goalpost or approach the ball

and attack regardless of the other aspects of the current game situation (proximity to the

ball, players’ locations in the field, missing/penalized players, etc.). Clearly, the outcome

of such predefined strategies is suboptimal; the team may be left with no attackers or no

defenders or several players may conflict each other by attacking at the same time. In this

scenario the team lacks dynamic soccer strategy, such as sharing perceptual information,

coordinating in real time, and assigning roles dynamically to achieve the desirable team

behavior suitable for the current game situation. This thesis aims at addressing exactly

this problem, namely dynamic multi-robot coordination which enables the possibility for

more efficient game playing.

1.1 Thesis Contribution

This thesis contributes the development of a mechanism that addresses the problem of

team coordination and planning, during a robotic soccer game, using dynamic position-

ing and role assignment. More specifically, this mechanism takes the estimated global

game state shared among the robots as input and produces an (optimal) position/role

for each player/robot according to a certain team utility function. After coordination,

each player/robot executes the assigned role, which may include positioning in the field,

approaching the ball, or any other functionality described in the role, until a significant

change in the game situation occurs or a certain amount of time has passed, at which

point the team coordinates again.

In order for the above mechanism to provide the position/role for each player/robot

the shared belief about the global game state is required. This shared belief may include

information about the location of the ball in the field, number of active/penalized play-

ers, location of teammates in the field, opponent locations, etc. Our approach consists

of two major components: formation generator and role assignment. The formation gen-

erator component is responsible for generating a set of promising candidate positions on
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1.2 Thesis Outline

the field, based on the global ball position as provided by the shared belief. The role

assignment component produces and evaluates possible mappings of players/robots to

positions/roles using a custom-designed utility function and decides which mapping is

the best. The chosen mapping is shared among all teammates and the corresponding

roles are subsequently executed. Our approach is implemented in a distributed way, so

that coordination can be achieved by any combination of active and penalized players.

The benefits of the proposed method are numerous, yet the most important one is that

the robots can collaborate dynamically as a team in order to maximize their game per-

formance, instead of relying on independent predefined behaviors. Moreover our design

is modular, in the sense that formations are dynamically generated and are independent

from role assignment. This way we can easily change the team’s formation strategy just

by replacing that component or even have multiple formation generators which are used

at different times during a game. Respectively, the evaluation of the possible mappings

can be changed by replacing the utility function. Furthermore, the functionality of the

roles can be changed by simply modifying the corresponding individual robot behavior.

1.2 Thesis Outline

Chapter 2 describes the RoboCup competition, the Standard Platform League (SPL),

the Aldebaran Nao humanoid robot, our SPL team Kouretes, our software architec-

ture Monas, and our communication framework Narukom. Furthermore, it provides

basic background information about Utility Theory and the Particle Swarm Optimiza-

tion (PSO) algorithm that are being used in this approach. In Chapter 3 we define

the problem of team coordination and we discuss the significance of developing an effi-

cient and effective mechanism for addressing the problem in real-time. Additionally, we

briefly review related work by other RoboCup teams. In Chapter 4 we describe our ap-

proach in detail, separating the problem in formation generation, definition of utility, and

role assignment. In Chapter 5 we briefly present our implementation within the software

framework of Team Kouretes, including our choices for real-time, on-board, asynchronous

execution. In Chapter 6 we present a couple of scenarios demonstrating the effectiveness

and the efficiency of our team coordination mechanism. Finally, in Chapter 7 we propose

directions for future work and conclude.
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Chapter 2

Background

2.1 RoboCup

RoboCup, an abbreviation of “Robot Soccer World Cup”, is an international annual

competition which intends to promote robotics and artificial intelligence research. The

founding father of RoboCup, Professor Alan Mackworth, inspired the idea of building a

robot to play a soccer game autonomously in 1992. One year later, Hiroaki Kitano [2]

and his research group decided to launch a novel robotic competition. Finally, in 1997 the

actual establishment of the International RoboCup Federation occurred. The ambitious

goal of the RoboCup Initiative is stated as follows:

“By mid-21st century, a team of fully autonomous humanoid robot soccer

players shall win the soccer game, complying with the official rule of the

FIFA, against the winner of the most recent World Cup.”

All the teams participating in RoboCup have to find real-time solutions to some of

the most difficult problems in robotics (perception, cognition, action, coordination) and

apply their approaches on the various leagues of the four RoboCup divisions (RoboCup

Soccer, RoboCup Rescue, RoboCup@Home, Robocup Junior). Until today, noteworthy

progress has been made in advancing the state-of-the-art technology, while the number of

the participating researchers who aim to fulfill the initial challenge is constantly growing.
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2. BACKGROUND

2.1.1 Standard Platform League

RoboCup Soccer constitutes one of the four RoboCup divisions and focuses mainly on

the game of soccer, where the research goals concern cooperative multi-robot and multi-

agent systems in dynamic adversarial environments. All robots in this division are fully

autonomous. RoboCup Soccer consists of five different leagues (Humanoid, Middle Size,

Simulation, Small Size, and Standard Platform). In the Standard Platform League (SPL)

all teams use identical robots (standard platform). Currently, the chosen SPL platform

is the Aldebaran Nao humanoid robot, therefore the teams concentrate only on soft-

ware development. The participating teams are prohibited to make any changes to the

hardware of the robot, meaning that off-board sensing or processing systems are not

allowed. The use of directional, as opposed to omnidirectional, vision forces a trade-off

of vision resources between self-localization, ball localization, player identification, and

obstacle detection. The robots are completely autonomous and no human intervention

from team members is allowed during the games. The only interaction of the robots with

the “outer human world” is the reception of data from the Game Controller, a computer

that broadcasts information about the state of the game (score, time, penalties, etc.).

The SPL games as of 2013 are conducted on a 9m× 6m soccer field which consists of

a green carpet marked with white lines and two yellow goals (Figure 2.1). The ball is an

orange street hockey ball. Each team consists of five robots, one goal keeper, and four field

players. The robot players are distinguished by colored jersey shirts, blue for one team

and red for the other. The total game time is 20 minutes divided in two halves; each half

lasts 10 minutes. During the 10-minutes half-time break, teams have to switch field sides

and jerseys and only during this time is it permitted to change robots, change programs,

etc. The complete rules of the SPL games are stated in detail in the RoboCup Standard

Platform League (Nao) Rule Book [1], which is annually updated with enhancements and

additional challenging requirements that propel the general progress of the league.

2.1.2 Aldebaran Nao Humanoid Robot

The current hardware platform which all SPL teams are obliged to work with is Nao,

an integrated, programmable, medium-sized humanoid robot developed by Aldebaran

Robotics in Paris, France. Project Nao [3] started in 2004. In August 2007 Nao officially
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2.1 RoboCup

Figure 2.1: Standard Platform League at RoboCup 2013 in Eindhoven, Netherlands

replaced Sony’s Aibo quadruped robot in the RoboCup SPL. In the past few years Nao

has evolved over several designs and several versions.

Nao (version V3.3) [4] is a 58cm, 5kg humanoid robot (Figure 2.2). The Nao robot

carries a fully capable computer on-board with an x86 AMD Geode processor at 500 MHz,

256 MB SDRAM, and 2 GB flash memory running an Embedded Linux distribution. It is

powered by a 6-cell Lithium-Ion battery which provides about 30 minutes of continuous

operation and communicates with remote computers via an IEEE 802.11g wireless or a

wired ethernet link.

Nao RoboCup edition has 21 degrees of freedom; 2 in the head, 4 in each arm, 5 in

each leg, and 1 in the pelvis (there are two pelvis joints which are coupled together on

one servo and cannot move independently). Nao, also, features a variety of sensors and

transmitters. Two cameras are mounted on the head in vertical alignment providing non-

overlapping views of the lower and distant frontal areas, but only one is active each time

and the view can be switched from one to the other almost instantaneously. Each camera

is a 640 x 480 VGA device operating at 30fps. The native colorspace provided by the

cameras is the YUV422. Four sonars (two emitters and two receivers) on the chest allow

Nao to sense obstacles in front of it. In addition, the Nao has a rich inertial unit, with
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Figure 2.2: Aldebaran Nao robot (v3.3, academic edition) and its components

one 2-axis gyroscope and one 3-axis accelerometer, in the torso that provides real-time

information about its instantaneous body movements. Two bumpers located at the tip

of each foot are simple ON/OFF switches and can provide information on collisions of

the feet with obstacles. Finally, an array of force sensitive resistors on each foot delivers

feedback of the forces applied to the feet, while encoders on all servos record the actual

values of all joints at each time.

Aldebaran Robotics has equipped Nao with both embedded and desktop software to

be used as a base for further development (Figure 2.3). The embedded software, running

on the motherboard located in the head of the robot, that the company provides includes

an embedded GNU/Linux distribution and NAOqi, the main proprietary software that

runs on the robot and controls it. Nao’s desktop software includes Choregraphe, a visual

programming application which allows the creation and the simulation of animations and
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Figure 2.3: Embedded and desktop software for the Nao robot

behaviors for the robot before the final upload to the real Nao, and Telepathe which pro-

vides elementary feedback about the robot’s hardware and a simple interface to accessing

its camera settings. As far as the NAOqi framework is concerned, it is cross-platform,

cross-language, and provides introspection which means that the framework knows which

functions are available in the different modules and where. It provides parallelism, re-

sources, synchronization, and events. NAOqi, also, allows homogeneous communication

between different modules (motion, audio, video), homogeneous programming, and ho-

mogeneous information sharing. Software can be developed in C++, Python, and Urbi.

The programmer can state which libraries have to be loaded when NAOqi starts via a

preference file called autoload.ini. The available libraries contain one or more mod-

ules, which are typically classes within the library and each module consists of multiple

methods (Figure 2.4).

2.2 RoboCup SPL Team Kouretes

Team Kouretes is the first and currently the only RoboCup SPL team founded in Greece,

hosted in the Intelligent Systems Laboratory of the School of Electronic and Computer

Engineering at the Technical University of Crete. Kouretes started developing their own

robotic software framework in 2008 and the code is constantly developed and maintained
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Figure 2.4: The NAOqi process

ever since. The team’s publicly-available code repository includes a custom software

architecture, a custom communication framework, a graphical application for behavior

specification, and modules for object recognition, state estimation, localization, obstacle

avoidance, behavior execution, and team coordination, which are briefly described below.

The team participates in the main RoboCup competition since 2006 in various soccer

leagues (Four-Legged, Standard Platform, MSRS, Webots), as well as in various local

RoboCup events (German Open, Mediterranean Open, Iran Open, RC4EW, RomeCup)

and RoboCup exhibitions (Athens Digital Week, Micropolis, Schoolfest). Distinctions of

the team include: 2nd place in MSRS at RoboCup 2007; 3rd place in SPL-Nao, 1st place

in SPL-MSRS, among the top 8 teams in SPL-Webots at RoboCup 2008; 1st place in

RomeCup 2009; 6th place in SPL-Webots at RoboCup 2009; 2nd place in SPL at RC4EW

2010; and 2nd place in SPL Open Challenge Competition at RoboCup 2011 (joint team

Noxious-Kouretes). Recently, the team participated in RoboCup German Open 2012 in

Magdeburg, in RoboCup Iran Open 2012 in Tehran, in RoboCup 2012 in Mexico City,

in AutCup 2012 in Tehran, in RoboCup Iran Open 2013 in Tehran (Figure 2.5) and in

RoboCup 2013 in Eindhoven, Netherlands (Figure 2.6).
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Figure 2.5: Team Kouretes at RoboCup Iran Open 2013

2.2.1 Monas Software Architecture

Monas [5] is a flexible software architecture which provides an abstraction layer from

the hardware platform and allows the synthesis of complex robot software as XML-

specified Monas modules, Provider modules, and/or Statechart modules. Monas modules,

the so-called agents, focus on specific functionalities and each one of them is executed

independently at any desired frequency completing a series of activities at each execution.

The base activities, that an agent may consist of, are described briefly below:

• Vision [6] is a light-weight image processing method for humanoid robots, via

which Kouretes team accomplishes visual object recognition. The vision module

determines the exact camera position in the 3-dimensional space and subsequently

the view horizon and the sampling grid, so that scanning is approximately uniformly

projected over the ground (field). The identification of regions of interest on the

pixels of the sampling grid follows next utilizing an auto-calibrated color recognition

scheme. Finally, detailed analysis of the identified regions of interest seeks potential
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Figure 2.6: Team Kouretes at RoboCup 2013 in Eindhoven, Netherlands

matches for corresponding target objects. These matches are evaluated and filtered

by several heuristics, so that the best match (if any) in terms of color, shape, and

size for a target object is finally extracted. Then, the corresponding objects are

returned as perceived, along with an estimate of their current distance and bearing.

• LocalWorldState [7] is the activity which used to realize Monte-Carlo localiza-

tion (Particle Filters - PFs) and recently switched to using an Extended Kalman

Filter (EKF) [8]. The belief of the robot is a probability distribution over the 3-

dimensional space of coordinates and orientation (x, y, θ) represented approximately

using a population of particles in the case of PFs or using a 3-dimensional Gaus-

sian distribution in the case of EKF. Belief update is performed using an odometry

motion model for omnidirectional locomotion and a landmark sensor model for the

goalposts (landmarks). The robot’s pose is estimated as the pose of the particle

with the highest weight (PFs) or the mean (highest probability) of the Gaussian

distribution (EKF).

• SharedWorldModel [9] is the activity that combines the local beliefs of all robots to

create a common and shared estimation of the current state of the world consistent
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with these local beliefs. In order to generate this information, an Extended Kalman

Filter (EKF) is employed with appropriate state transition and observation models,

applying linearization where needed.

• PathPlanning [10] is the activity which accomplishes path planning with obstacle

avoidance by first building a local, polar, obstacle occupancy map, which is updated

constantly with real-time sonar information, taking into consideration the robot’s

locomotion. Afterwards, an A* search algorithm is used for path planning, the

outcome of which suggests an obstacle-free path for guiding the robot to a desired

destination. The way-points of the planned path are finally translated into walk

commands to guide the robot along the path.

• Behavior is the activity which implements the desired robotic behavior. It op-

erates on the outputs of the Vision, LocalWorldState, and SharedWorldModel

activities and decides which one is the most appropriate action to be executed next

(walk, kick, etc.). Locomotion actions are passed to the PathPlanning activity for

obstacle-free navigation, while motion actions are sent to the MotionController

activity for execution. Our mechanism for team coordination and planning pro-

posed in this thesis was integrated into this activity. Details will be provided in

Chapters 4 and 5.

• HeadController manages the movements of the robot head (camera).

• MotionController [11] is used for managing and executing robot locomotion com-

mands and special actions.

• RobotController handles external signals on the game state.

• LedHandler controls the robot LEDs (eyes, ears, chest button, feet).

Provider modules accomplish the complete decoupling of the robotic hardware by col-

lecting and filtering measurements from the robot sensors and cameras and forming them

as messages in order to be utilized as input data by any interested Monas agents. Each

provider module can be executed independently and at any desired frequency.

Custom Forward and Inverse Kinematics [12, 13], designed specifically for the NAO

humanoid robot, have been implemented as an independent software library optimized
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for speed and efficiency. The library is currently being used in other team projects, such

as omni-directional walk engine and dynamic kick engine.

Statechart modules, which offer an alternative intuitive graphical specification of

robot behavior, have also been integrated into Monas [14]. Kouretes Statechart En-

gine (KSE) [15, 16] is our own graphical tool for designing and editing statecharts for

robot behavior. Statecharts are automatically transformed into code and are executed

on-board using a generic multi-threaded statechart engine, which provides the required

concurrency and meets the real-time requirements of the activities on each robot.

KMonitor [17] is our own debugging tool created specifically for the Monas architec-

ture that takes advantage of the modularity of Kouretes code and helps in finding errors

or verifying that newly implemented features work correctly. It also allows for the easy

creation of colortables, the transmission of remote commands over the network, etc.

2.2.2 Narukom Communication Framework

Narukom [18] is the communication framework developed for the needs of the team’s code

and it is based on the publish/subscribe messaging pattern. Narukom supports multiple

ways of communication, including local communication among the Monas modules, the

Providers modules, and the Statechart modules that constitute the robot software, and

remote communication via multicast connection among multiple robot nodes and among

robot and external computer nodes. The information that needs to be communicated

between nodes is formed as messages which are tagged with appropriate topics and host

IDs. Three types of messages are supported:

• state, which remain in the blackboard until replaced by a newer message,

• signal, which are consumed at the first read, and

• data, which are time-stamped to indicate the time their values were acquired.

To facilitate the serialization of data and the structural definition of the messages, Google

Protocol Buffers were utilized. The user defines the data structure once and then uses

the generated source code to write and read the defined structures to and from a variety

of data streams using a variety of programming languages. Another great advantage of

protocol buffers is that data structures can be enhanced without breaking the already
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deployed programs, which are capable of handling the old format of the structures. To use

protocol buffers one must describe the information for serialization by defining protocol

buffer messages in .proto files. A protocol buffer message is a small record of information,

containing name-value pairs. The protocol buffer message format is simple and flexible.

Each message type has at least one numbered field. Each field has a name and a value

type. The supported types are integer, floating-point, boolean, string, raw bytes, or other

complex protocol buffer message types, thus hierarchical structure of data is possible.

Additionally, the user can specify rules, if a field is mandatory, optional, or repeated.

These rules enforce both the existence and multiplicity of each field inside the message.

As a next step, the user generates code for the desired language by running the protocol

buffer compiler. The compiler produces data access classes and provides accessors and

mutators for each field, as well as serialization/unserialization methods to/from raw bytes.

Officially, Google supports C++, Java, and Python for code generation, but there are

several other unofficially supported languages.

Additionally, the blackboard paradigm is utilized to provide efficient access to shared

information stored locally at each node and is extended to support history queries and a

mechanism that controls the information updates. Finally, to meet the delivery require-

ments among the remote and/or the local nodes, messages are relayed though a message

queue. The message queue is responsible for collecting the published messages and allo-

cating them to the interested subscribers through multiple buffers. Messages that have to

be delivered to remote nodes are committed to the KNetwork module, which implements

the multicast connection.

2.3 Utility Theory

In Economics, utility is a quantitative representation of preferences over some set of

goods and services. In Artificial Intelligence (AI), we design agents that make intelligent

decisions and when this decision-making process is under uncertainty it can be proved

to be quite complicated. Thus, the purpose for using utility theory in decision-making

is to create a mathematical model to aid the process by giving the decision maker the

ability to quantify the desirability of certain alternatives. Utility theory [19] is used for

analyzing scenarios where uncertainty and risk are considered. The benefit of using such

a principled approach is the reduction of decision making into a problem of optimizing a

Evangelos Michelioudakis 15 September 2013



2. BACKGROUND

gainloss

Uvalue

Figure 2.7: The relationship between utility function and desirability

function which represents the agent designer’s preferences, given a certain set of design

attributes, and can change the behavior of the agent to a desired behavior.

2.3.1 Utility Functions

Utility theory uses functions, commonly known as utility functions, to denote mathemat-

ical models representing certain criteria or preferences and can be used in the decision-

making process to evaluate states of the world. A utility function delivers a single number

to express the desirability of a state; the higher the value of the utility function the larger

the gain (more desirable state) and likewise the lower the value the larger the loss (less

desirable state), as shown in Figure 2.7. More formally, U : S 7→ R is used to denote the

utility of a state, where S is the state space of a problem and R is the set of real num-

bers. A utility function represents a preference relation � on S if and only if ∀s1, s2 ∈ S,

U(s1) ≤ U(s2) implies s1 � s2. If U represents �, then this implies that � is complete

and transitive, and hence rational. A rational agent would consistently make decisions

which lead to states with higher utility. Completeness and transitivity are axioms which

are meant to eliminate inconsistencies and suboptimal choices when it comes to trade-offs
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and uncertainty.

• Completeness of complete order: (X � Y ) ∨ (X ≺ Y ) ∨ (X ∼ Y ), which implies

that X is either preferred, less-preferred, or equally-preferred to Y .

• Transitivity: if X � Y and Y � Z, then X � Z.

2.3.2 Multi-Attribute Utility Functions

There are two general types of utility functions, single-attribute (SAU) and multi-attribute

(MAU). The single-attribute utility functions are monotonic functions, where the best

outcome is set to 1 and the worst to 0. SAU functions are then developed to describe

the designer’s compromise between the best and worst alternatives. On the other hand,

when certain independence conditions are met, a mathematical combination of several

SAU functions, with scaling constants (weights), results in a multi-attribute (MAU) func-

tion, which is the overall utility function with all attributes considered. Scaling constants

reflect designer’s preference on the attributes, which is based on scaling constant lottery

questions and preference independence questions.

In designing intelligent systems, one usually encounters at some stage the problem of

evaluating states with respect to multiple performance criteria. The evaluation methods

often vary in terms of complexity depending on the nature of the states themselves, the

structure of the problem domain, the importance of a specific task, and other factors. In

such cases, we need to determine a multi-attribute utility function (MAU) to match our

problem preferences. Below, we present more formally the MAU functions.

Let X1, ..., Xn, n ≥ 2, be a set of attributes associated with the consequences of a

decision problem. The utility of a consequence (x1, ..., xn) can be determined in two ways:

• direct assessment : compute the combined utility U(x1, ..., xn) over all attributes.

• decomposed assessment [20]:

– compute n single-attribute utilities Ui(xi) for the n attributes.

– compute U(x1, ..., xn) by combining the Ui(xi) of all n attributes.

U(x1, ..., xn) = f
(
U(x1), ..., U(xn)

)
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There are multiple different functional forms for the combining function f of the decom-

posed assessment. If X and Y are two attributes (generalization to n ≥ 2 is straightfor-

ward), the main forms are the following:

• U has an additive form, if for scaling constants wX and wY

U(X, Y ) = wXUX(X) + wYUY (Y )

or, in general, for n attributes

U(X1, ..., Xn) =
n∑

i=1

wiUi(Xi)

• U has an multi-linear form, if for scaling constants wX , wY , and wXY

U(X, Y ) = wXUX(X) + wYUY (Y ) + wXYUX(X)UY (Y )

or, in general, for n attributes

U(X1, ..., Xn) =
n∑

i=1

wiUi(Xi)+
n∑

i=1

∑
j>i

wijUi(Xi)Uj(Xj)+...+w12...nU1(X1)...Un(Xn)

• U has an multiplicative form, if for scaling constants wX , wY , cX , and cY

U(X, Y ) =
(
wXUX(X) + cX

)(
wYUY (Y ) + cY

)
or, in general, for n attributes

U(X1, ..., Xn) =
n∏

i=1

(wiUi(Xi) + ci)

2.4 Particle Swarm Optimization

Particle swarm optimization (PSO) was developed by Kennedy and Eberhart in 1995 [21],

based on the swarm behavior, such as fish and bird schooling in nature. Since then,

PSO has generated much wider interest, and forms an exciting, ever-expanding research

subject, called swarm intelligence [22]. PSO has been applied to almost every area in

optimization, computational intelligence, and design/scheduling applications.
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2.4.1 PSO Description

In computer science, particle swarm optimization (PSO) [23] is a computational method

that optimizes a problem by iteratively trying to improve a candidate solution with

regard to a given measure of quality. PSO optimizes a problem by having a population

of candidate solutions, here dubbed particles, and moving these particles around in the

search space according to simple mathematical formula over the particle’s position and

velocity. Each particle’s movement is influenced by its local best known position and is

also guided toward the global best known position in the search space, which is updated

as better positions are found by other particles. This is expected to move the particle

swarm toward the best solutions.

PSO is a metaheuristic as it makes few or no assumptions about the problem being

optimized and can search very large spaces of candidate solutions. However, metaheuris-

tics, such as PSO, being local search methods, cannot guarantee an optimal solution will

ever be found. On the other hand, PSO does not use the gradient of the problem being

optimized, which means that PSO does not require the optimization problem to be dif-

ferentiable, as is required by classic optimization methods, such as gradient descent and

quasi-newton methods. Therefore, it can also be used on optimization problems that are

partially irregular, noisy, and changing over time.

2.4.2 PSO Algorithm

The basic PSO algorithm works by having a population, called swarm, of candidate so-

lutions, called particles. These particles are moved around in the search space according

to a simple formula. The movement of a swarming particle consists of two major compo-

nents, a stochastic component and a deterministic component. Each particle is attracted

toward the positions of the current global best solution g∗ and its own best local solu-

tion x∗i in history, while at the same time it has a tendency to move randomly. When

improved positions are being discovered these will then come to guide the movements of

the swarm. The process is repeated and by doing so it is hoped, but not guaranteed, that

a satisfactory solution will eventually be discovered.

More formally, let xi and vi be the position vector and velocity for particle i respec-

tively, where xi ∈ Rn and vi ∈ Rn. The new velocity and position at step t + 1, given
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Figure 2.8: Visualization of the PSO update step

the velocity and position at step t, are determined by the following formulas:

vt+1
i = θ(t)vt

i + αε1 ◦
(
g∗ − xt

i

)
+ βε2 ◦

(
x∗i − xt

i

)
xt+1
i = xt

i + vt+1
i

where ε1 and ε2 are two random vectors with entries taking values between 0 and 1 and

◦ is the element-wise (Hadamard) product between two vectors. The parameters α and

β are the learning parameters or acceleration constants, which can typically be taken

as, α ≈ β ≈ 2. The most noticeable influence on the performance of the algorithm

derives from the use of the inertia function θ(t), where θ(t) ∈ (0, 1). In the simplest

case, the inertia function can be taken as a constant, typically θ ≈ 0.5 ∼ 0.9. This is

equivalent to introducing a virtual mass to stabilize the motion of the particles and thus

the algorithm is expected to converge more quickly. A visualization of PSO update is

shown in Figure 2.8.

PSO searches the space of an objective function by adjusting the trajectories of indi-

vidual agents, called particles, as the piecewise paths formed by positional vectors in a
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quasi-stochastic manner. Formally, let f : Rn 7→ R be the cost function which must be

minimized. The function takes a candidate solution as argument in the form of a vec-

tor of real numbers and produces a real number as output which indicates the objective

function value of the given candidate solution. As we mentioned before the gradient of f

is not known. The goal is to find a solution a for which f(a) < f(b) for all b in the search

space, which would mean a is the global minimum (Figure 2.9). Maximization can also

be performed by considering the function h = −f instead.
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Figure 2.9: PSO search for global minimum: objective function f(x, y) = x2 + y2 (left)

and particle movement towards the optimal solution (0, 0) (right)
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Chapter 3

Problem Statement

3.1 Dynamic Multi-Robot Coordination

In a multi-robot system, such as a RoboCup game, where several intelligent agents must

interact simultaneously under partial observability to achieve a common goal as a team,

the need for coordination and planning is a necessity, because such a mechanism offers

better game performance and leads to efficient team-play. Therefore, it is crucial to

come up with a high-level process, which will coordinate skills, such as player actions,

perceptions, and communication means, yielding as a result a complete behavior for

each agent within the frame of a global team strategy. As behavior we understand the

execution of a selected pre-determined plan (among several choices) using local perception

as input and local actions as output. In a sense, coordination provides the robots with a

thinking process which enables them to decide what plan they should follow at any time

for the global benefit of the team.

In any game of soccer, one of the most important issues, which favors effective team-

play, is the formation or positioning of the team in the field, which defines where each

player should be located inside the field in order to tackle the opponent team strategy.

The same applies to the RoboCup Standard Platform League where teams of five robots

each develop strategies through coordination to play soccer games effectively. Therefore,

team positioning can be helpful in many situations. More specifically, robots should

be able to generate a formation dynamically based on the global estimated ball position,

which is provided by the shared world model of our team, by examining several candidate
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positions of importance to them as well as for the team for the current game situation.

The problem of formation generation is one of the problems we address in this thesis.

Furthermore, apart from formation, it is of high importance to develop a team strat-

egy, that is for each robot to undertake a specific role in order to execute the corresponding

behavior, which is best suited for the current game situation. Obviously, the assignment

of a role depends on the current location of each player in the field and takes into account

the candidate positions in the generated formation. Therefore, it is necessary to come

up with a role assignment algorithm, which allows the robots to assume different roles

within the field (e.g. attacker, defender, supporter, etc.). To illustrate the importance of

such a decision-making process, let us consider the following example. Imagine a simple

scenario where two robots of the same team see the ball somewhere inside the field. In

the case where there is no coordination mechanism, the robots must act individually to

achieve their goal, that is to score. The result would probably be that both robots would

rush towards the ball to kick it and score, however in this case they might bump into

each other along the way, fall down, and fail to score. Imagine the worst-case scenario

in which all four robot players (the goalkeeper excluded) are trying to score in the same

way; the outcome will most likely be a congestion around the ball with no goals scored.

Moreover, in the above examples no players assume responsibilities, such as acting as

defenders or supporters. On the contrary, if they coordinate, generate a formation, and

assume a specific role corresponding to a position, they can clearly handle the situation

more effectively. For example, only one of them will approach the ball, while the oth-

ers will either choose to protect their goalpost acting as defenders or choose to support

the attacking robot by staying alert to take action if necessary. The problem of role

assignment is the second major problem we address in this thesis.

One can clearly see that in scenarios like the ones described above, the use of coordi-

nation would highly benefit the team. Of course, such a coordination mechanism must

be supported by a reliable communication method between the robots, by a shared world

model that provides the necessary state information, and by individual robot skills so

that the decided roles can be executed. Given that the required support is now available

in our RoboCup SPL team, the goal of this thesis is to provide an effective coordination

mechanism, which includes dynamic positioning and role assignment.
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3.2 Related Work

Many RoboCup teams have developed coordination and planning mechanisms, since they

are essential as discussed above. Since these mechanisms are crucial for team performance,

most SPL teams choose to not publish their strategies. Therefore, below we will briefly

present some of the related work done by teams on other RoboCup leagues. Considering

all the methods reviewed, one can hardly distinguish a single best choice to address the

problem stated. This is the reason behind the numerous coordination methods among

RoboCup teams and there is no single “standard” way to go.

3.2.1 Dynamic Role Assignment and Formation

UT Austin Villa is one of the best teams in RoboCup 3D Simulation League and the

RoboCup 2011 champion in that league. In a paper they published that year [24], they

purposed a coordination mechanism for dynamic positioning on the field and role assign-

ment. Specifically, a formation is produced based on the ball location and the candidate

positions, corresponding to different roles, are generated using relative offsets from the

ball and the formation is broken into two different groups, an offensive and a defensive

(Figure 3.1). Then by using a custom role assignment function, using mainly distance as

a feature, they evaluate all possible mappings of agents/players to positions/roles through

a dynamic programming algorithm to reduce the search in the space of mappings. Given

that this procedure is executed locally on each agent and the information about the world

is not always perfect, after the optimal mapping is found by each agent, they commu-

nicate and through a voting system they share their mappings and decide to adopt the

mapping with the most votes.

3.2.2 Non-Communicative Action-Level Coordination

UvA Trilearn [25], also one of the best teams in simulated robot soccer, is using a different

approach that focuses on action coordination among the agents rather than positioning

and role assignment. In their work they use a game theoretic approach to address the

problem of coordination by defining roles and attach to each role a set of possible actions.

Then by using coordination graphs they exploit dependencies among the agents, meaning

that each agent has to coordinate only with a small subset of other agents (Figure 3.2).
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Figure 3.1: UT Austin Villa formation

Thus, assuming that a global payoff function can be decomposed into a linear combina-

tion of local payoff functions, each involving only a few agents, they perform a variable

elimination algorithm to achieve coordination among role’s actions. In order to perform

the graph elimination a role assignment process is done by using associated potentials

for each role, which agents use to estimate how appropriate they are for a specific role.

Moreover, the elimination algorithm can be applied even when communication is unavail-

able, assuming the payoff function of each agent is common knowledge among all agents

that are directly reachable from him in the coordination graph. Although, this approach

focuses on action coordination that can achieve a more strategic playing, it requires a set

of actions for each role, which depend on complex skills such as passing, ball controlling,

and even opponent recognition and modeling, when we refer to actual robots.

3.2.3 Dynamic Role Assignment Through Bidding Functions

CMU team [26] at the time of the Four-Legged League with Sony Aibo robots had pro-

posed a mechanism for dynamic role assignment using a common set of bidding functions

and shared information about the ball location and robot beliefs about their position in

the field. These functions encode heuristic information about the world and return an

estimate of how suitable each robot is for a particular task. More specifically, robots first
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A1

A2 A3

A4

f1 f2

f3

Figure 3.2: Coordination graph with four agents (nodes) and loose dependencies (edges)

calculate their own suitability using local information from their own world model and

then they use the same functions to calculate the bids of their teammates using only the

shared information provided by each teammate. Once each robot calculates the bids for

itself and each of its teammates, it compares them. If it has the highest bid for the task

being considered, it undertakes that task. If it was not the winner, it assumes that the

winning robot will take up that particular task and performs calculations for the next

task in the list. Due to the simplicity of auction clearance, this approach works well,

when the task bids do not depend on the final assignments for the other tasks, in other

words the various tasks are loosely dependent, and additionally when the local beliefs are

fairly accurate.
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Chapter 4

Our Approach

Our solution to the problem of coordination is based on the creation of a mechanism that

is responsible for generating dynamically a team formation based on the global estimated

ball position, provided by our shared world model, and choosing a mapping of robots to

positions of the formation, that also yields a role assignment, according to a team utility

function. The output of the coordination mechanism allows the robots to assume a best

role and execute the corresponding behavior (plan). Our approach is similar to the ideas

described in Sections 3.2.1 and 3.2.3.

4.1 The Idea

For the purposes of this thesis, we define coordination to be a positioning and role as-

signment problem that allows the team robots to assume roles based on the current game

situation. Coordination can take place at different levels of granularity. We chose the

level of player roles, because the current skills of our robots allow interaction between

the robots only at this level. The lower action level, which currently includes locomotion,

kicking, blocking, and ball tracking, does not allow for direct interaction between the

robots, such as ball passing, and therefore is not suitable for coordination. Given the

choice of the role level, complex and computationally intensive coordination methods at

a detailed action level, such as coordination graphs described in Section 3.2.2, did not fit

our purposes. Nevertheless, our methodology can be extended to a more detailed level

and possibly incorporate such methods, provided there exists corresponding actions/skills

at that level.
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The general idea of our approach for coordination is fairly simple. Each robot is using

the global estimated ball position to generate a set of candidate positions in the field.

Each of these positions correspond to a specific role that is decided during the generation

process. The set of positions that is produced is consistent among robots because it is

derived directly from the common global belief they maintain. Then, each robot executes

the same role assignment algorithm, evaluates possible mappings of the currently active

robots to that formation in order to decide the best one. Once the best mapping is

decided, each robot undertakes the corresponding role and executes the corresponding

role behavior. The entire process is repeated when a significant change in the game

situation occurs or a certain amount of time has passed to keep the team constantly

coordinated.

4.2 Formation Generation

In this section we describe the first phase of our coordination mechanism, the formation

generator, which takes as input the currently global estimated ball position (xball, yball),

the size n of the formation to be generated (n ≥ 4 positions) and computes dynamically a

set of promising candidate positions on the field. The generator produces both offensive

and defensive types of formations, depending on which side of the field the ball lies and

thus its functionality can be distinguished in two cases. In each case a subset of all possible

roles (Table 4.1) is used based on the formation type and the size n requested. Specifically,

in order to determine where each role should be positioned, the generator assumes a

simple parametric grid adapted to the dimensions of the field (Figure 4.1) and places the

formation roles based on which area of the grid the ball lies, using a set of simple equations

for each role type. These equations exploit specific offsets and percentages combined with

the field specifications (Figure 4.2, Table 4.2) to produce a consistent set of positions

regardless of the actual field dimensions. Therefore, it determines the formation type by

examining the value of the xball coordinate and updates the corresponding roles for that

type according to the grid area the ball is located in using each role’s equations. The

offsets and percentages used in these equations were determined through experimentation

and are presented in Table 4.3. By convention, we consider the left side of the field to be

the own side and the right side of the field to be the opponent side. We further assume

that the field is centered at (0, 0).
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BBAA

CC DD EE FF

GG HH II JJ

Figure 4.1: Field areas of possible ball locations for determining formation

Table 4.1: Possible roles of robot players for realizing a team strategy

Code Role Description

GK Goalkeeper Protects the team’s goalpost in the goal area

D Defender Protects the team’s goalpost in the middle field zone

DL Left Defender The Defender role in the left field zone

DR Right Defender The Defender role in the right field zone

OB On Ball/Attacker Approaches the ball in order to claim possession

S Supporter Assists the On Ball/Attacker role

LS Left Supporter The Supporter role in the left field zone

RS Right Supporter The Supporter role in the right field zone

4.2.1 Offensive Formation

In the offensive formation case we assume that the most important subset of roles are

the goalkeeper, the defender, the on ball, and the supporter (when n = 4) or the left and

the right supporters (when n ≥ 5). Therefore, whenever the ball is located in a grid area
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Figure 4.2: SPL 2013 field specifications [1]

Table 4.2: Field parameters for the SPL 2013 field

Name Value/Interval (Meters) Description

Xfield [−4.5,+4.5] Field x-axis dimension

Yfield [−3.0,+3.0] Field y-axis dimension

XLgoalarea [−4.5,−3.9] Left goal area in x-axis

XRgoalarea [+3.9,+4.5] Right goal area in x-axis

Ygoalarea [−1.1,+1.1] Goal area in y-axis

YLgoalpost +0.7 Left goalpost y-coordinate

YRgoalpost −0.7 Right goalpost y-coordinate

XLmark −2.7 Left penalty mark x-coordinate

XRmark +2.7 Right penalty mark x-coordinate

Ymark 0.0 Penalty mark y-coordinate

dcenter 1.5 Center circle diameter

which is on the opponent side of the field (areas B, E, F, I, J or xball ≥ 0), the generator
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Table 4.3: Offsets and percentages used in our formation generator

Name Value Description

sideZone 50% Size of side zones (C/D,G/H) relative to half-field x-dimension

midZone 26.8% Size of grid middle zones (A,B) relative to field y-dimension

ballOffset −0.2m Offset from the ball along the x-axis for the on ball role

xFactor 22% Relative offset on the x-axis for support roles

xFwdFactor 33% Relative offset on the x-axis for forward support roles

xBwdFactor 44% Relative offset on the x-axis for backward support roles

goalOffset 0.1m Offset from goalpost along the y-axis for the goalkeeper role

offset 0.2m Offset along the x- or y- axis for goalkeeper/defender roles

xBound 75% Relative bound to x-coordinate for defender roles

yBound 50% Relative bound to y-coordinate for defender roles

constructs a set of these roles and computes their positions, according to the field grid,

as described above. Thereafter, if the size n of the formation requested is greater than

this set, additional positions are generated (Section 4.2.3). Below, we present the set of

equations for each role of the offensive type of formation based on the location of the ball

in the field grid (Figure 4.1).

• Goalkeeper :

xgoalkeeper = min(Xfield)

ygoalkeeper = 0

• Defender :

xdefender = xBound×min(Xfield)

ydefender =

{
+offset if yball < 0
−offset if yball ≥ 0

• On Ball/Attacker :

xonball = xball + ballOffset

yonball = yball
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• Supporter (n = 4):

xsupporter =


xball − xFwdFactor ×max(Xfield) ball in area F or J
xball + xFwdFactor ×max(Xfield) ball in area E or I
xball ball in area B

ysupporter =


min(Ygoalarea) ball in area F or (in B and yball > 0)
max(Ygoalarea) ball in area J or (in B and yball ≤ 0)
0 ball in area E or I

• Left Supporter (n ≥ 5):

xlsupporter =


xball − xFactor ×max(Xfield) ball in area B or J
xball + xFwdFactor ×max(Xfield) ball in area E
xball ball in area F or I

ylsupporter =


+|xlsupporter|−1 ball in area B
max(Ygoalarea) ball in area J
0 ball in area E, F, or I

• Right Supporter (n ≥ 5):

xrsupporter =


xball − xFactor ×max(Xfield) ball in area B or F
xball + xFwdFactor ×max(Xfield) ball in area I
xball ball in area E or J

yrsupporter =


−|xrsupporter|−1 ball in area B
min(Ygoalarea) ball in area F
0 ball in area E, F, or I

Figure 4.3 presents the formations generated, when the ball is located in area B, either

back or forth (ball is the orange circle beside the on ball role). Figure 4.4 presents the

formations generated, when the ball is located in areas J and E.

4.2.2 Defensive Formation

In a similar way, we assume that the most important subset of roles for the defensive

formation case are the goalkeeper, the on ball, the left defender, the right defender, and

the supporter (n ≥ 5). Therefore, whenever the ball is located in a grid area which is on

the own side of the field (areas A, C, D, G, H or xball < 0), the generator constructs a set

of these roles and computes their positions, according to the field grid, as described above.

Thereafter, if the size n of the formation requested is greater than this set, additional
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Figure 4.3: Offensive formation when the ball in area B (back) and in area B (forth)
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Figure 4.4: Offensive formation when the ball in area J (left) and in area E (right)

positions are generated (Section 4.2.3). Below, we present the set of equations for each

role of the defensive type of formation based on the location of the ball in the field grid

(Figure 4.1).
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• Goalkeeper :

xgoalkeeper =



min(Xfield) ball in area A
min(Xfield) + offset ball in area C or G

min(Xfield) +
yball −max(Ygoalarea)

2 max(Yfield)
ball in area D

min(Xfield)−
yball −min(Ygoalarea)

2 max(Yfield)
ball in area H

ygoalkeeper =



0 ball in area A
YLgoalpost − goalOffset ball in area C
YRgoalpost + goalOffset ball in area G
yball −max(Ygoalarea)

max(Yfield)
ball in area D

yball −min(Ygoalarea)

max(Yfield)
ball in area H

• On Ball/Attacker :

xonball =

 max

{
xball + ballOffset
max(XLgoalarea)

}
min(Ygoalarea) ≤ yball ≤ max(Ygoalarea)

xball + ballOffset yball > max(Ygoalarea) or yball < min(Ygoalarea)

yonball = yball

• Left Defender :

xldefender =

 xBound×min(Xfield)−
yball −max(Ygoalarea)

25
ball in area C or D

xBound×min(Xfield) ball in area A, G, or H

yldefender =

 yBound×max(Ygoalarea)−
yball −max(Ygoalarea)

2|max(Yfield)| − 1
ball in area C or D

yBound×max(Ygoalarea) ball in area A, G, or H

• Right Defender :

xrdefender =

 xBound×min(Xfield) +
yball −min(Ygoalarea)

25
ball in area G or H

xBound×min(Xfield) ball in area A, C, or D

yrdefender =

 yBound×min(Ygoalarea)−
yball −min(Ygoalarea)

2|min(Yfield)| − 1
ball in area G or H

yBound×min(Ygoalarea) ball in area A, C, or D

Evangelos Michelioudakis 36 September 2013



4.2 Formation Generation

• Supporter (n ≥ 5):

xsupporter = xBwdFactor ×max(Xfield)

ysupporter =


max(Ygoalarea) ball in area C or D
min(Ygoalarea) ball in area G or H
yball ball in area A

Figure 4.5 presents the formations generated, when the ball is located in area A, either

back (inside the goal area) or forth (ball is the orange circle beside the on ball role).

Figure 4.6 presents the formations generated, when the ball is located in areas D and G.

Note that the formation ensures that no roles, other than the goalkeeper, are positioned

inside the own goal area, according to the SPL rules about illegal defenders.
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Figure 4.5: Defensive formation when the ball in area A (back) and in area A (forth)

4.2.3 Multiple Positions Formation

Moreover, in order to be able to evaluate formations with a larger set of candidate

positions and search a larger space of mappings of robots to a subset of these positions, we

enabled the formation generator to generate multiple positions in a simple way. Given

a requested number n of positions greater than five (n > 5), after the five standard

positions are generated using the update equations described in the above sections, the

remaining ones are divided into groups for each possible role, except the goalkeeper whose
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Figure 4.6: Defensive formation when the ball in area D (left) and in area G (right)

mapping is predetermined. These additional positions for each role are placed around

the nominal role position (on a circle of fixed radius), therefore creating small clouds of

positions around each role. Figure 4.7 presents formations of 12 and 20 positions.
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Figure 4.7: Formation generation with 12 (left) and 20 (right) positions
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4.3 Utility Function

Given a formation, an appropriate mapping of robots to roles in the formation is re-

quired. Therefore, in order for our team robots to be able to quantify the desirability

of any possible mapping, we developed a multi-attribute utility function (Section 2.3.2),

combining many features to represent preferences related to the desired team strategy.

More formally, a mapping map is defined as a function from the currently active robots

to positions/roles in the formation:

map : Robots 7→ Positions

where Robots = {r1, r2, . . . , rk} and Positions = {p1, p2, . . . , pn}. Each robot carries

information about its pose and each position carries information about its location in the

field. Therefore, a mapping can be viewed as follows:

map(ri) = pj or ri → pj, where ri = (xri , y
r
i , θ

r
i ) and pj = (xpj , y

p
j )

The features used in the utility function to score each possible mapping are the following:

1. Distance Cd - This cost feature represents the distance between the current and

the target position of robot i. Robots try to minimize this feature to be able to

reach their target positions as soon as possible.

Cd(ri → pj) =

√
(xri − x

p
j)

2 + (yri − y
p
j )2√

min(Xfield)2 + max(Xfield)2 + min(Yfield)2 + max(Yfield)2

2. Rotation Angle Cr - This cost feature represents the minimum angle the robot i

must rotate to face the target position (Figure 4.8). Robots try to minimize this

feature to be able to reach their target positions as soon as possible.

Cr(ri → pi) =
∣∣∣φ
π

∣∣∣, φ ∈ [−π,+π]

3. Potential Collisions Cc - Approximating the route of each robot as a straight

line between its current and its target position, we are able to check if that route

intersects with the routes of other robots. For any pair of routes, if there is no inter-

section, the cost is 0 (infinitesimal probability of collision). If there is intersection
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Figure 4.8: Minimum rotation angle feature in the utility function
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Figure 4.9: Collision detection feature in the utility function

and the intersection point is approximately equidistant (the absolute difference is

less than 1.5 meters) from the current positions of the corresponding robots, the

cost is 1 (high probability of collision). Finally, if there is intersection, but the in-

tersection point is not equidistant from the current positions, the cost is 0.4 (small

probability of collision). Figure 4.9 shows the key idea behind the detection of

a possible collision between two robots; if |d1 − d2| ≤ 1.5m, a collision is highly

possible. Robots try to minimize this feature to avoid collisions.

Cc(ri1 → pj1 , ri2 → pj2) =


0 no intersection
1 intersection and |di1 − di2| ≤ 1.5m
0.4 otherwise
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4. Field Scoring Fs - In order to include preferences over the set of candidate po-

sitions, we had to define a simple, yet functional, way to give a value to every

spot of the soccer field. Thus, we constructed a feature consisting of a sum of

Gaussian distributions on the two-dimensional space, each one having as a center

one of the candidate positions generated. The key idea is that the value is spread

proportionally around each position and we can define a preference for any posi-

tion by changing its distribution amplitude A and variance σ2. For example, the

positions around the ball will impose higher values in contrast to defending posi-

tions and thus robots will be encouraged to undertake the on ball (OB) role. Each

robot computes the field scoring feature at its assigned position taking into account

the value contribution of all positions in the formation. Figure 4.10 presents the

above field scoring function over the entire soccer field for the formation outcome

presented in Figure 4.4 (left), whose analytical form for this specific case is:

Fs(ri → pj) = Aonball exp

(
−
(

(xpj − xonball)2

2σ2
x

+
(ypj − yonball)2

2σ2
y

))
+Alsupporter exp

(
−
(

(xpj − xlsupporter)2

2σ2
x

+
(ypj − ylsupporter)2

2σ2
y

))
+Arsupporter exp

(
−
(

(xpj − xrsupporter)2

2σ2
x

+
(ypj − yrsupporter)2

2σ2
y

))
+Adefender exp

(
−
(

(xpj − xdefender)2

2σ2
x

+
(ypj − ydefender)2

2σ2
y

))
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Figure 4.10: Field scoring function with four positions: side (left) and top (right) view
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5. Sparse Targets Cst - This cost represents the sum of distances between the target

positions of all robots. Robots try to maximize this feature to give preference to

targets that are not too close (less than 0.7 meters) to targets of other robots. The

purpose of the this feature is to discourage congestion in small areas of the field.

Cst(ri1 → pj1 , ri2 → pj2) =

{
100

√
(xpj1 − x

p
j2

)2 + (ypj1 − y
p
j2

)2 ≤ 0.7m

0 otherwise

6. Robot Stability Cs - This cost represents the attacker robot stability/health. The

key idea behind this feature is to keep a count ci of the times robot i has fallen or

has been penalized and give a higher cost as this number increases. The analytical

form of this function is shown below:

Cs(ri → pj) =


0.1ci if pj = ponball and ci ≤ 10
1 if pj = ponball and ci > 10
0 if pj 6= ponball

, ci ∈ N0

The features described above are computed for each of the robots, are weighted, and are

summed to form the final utility function of a mapping map:

U(map) =
k−1∑
i=1

(
wuFs(ri → pj)− wdCd(ri → pj)− wrCr(ri → pj)− wsCs(ri → pj)

)
+

k−1∑
i1=1

k−1∑
i2=1
i2 6=i1

(
− wcCc(ri1 → pj1 , ri2 → pj2)− wstCst(ri1 → pj1 , ri2 → pj2)

)

where (wu, wd, wr, wc, wst, ws) are the weights of the features, currently set at 1, and k−1

is the number of robots excluding the goalkeeper (rk) whose mapping is predetermined.

4.4 Role Assignment

Eventually, a role assignment algorithm is required to search for the best possible map-

ping. In this section, we describe the algorithms we used in our coordination mechanism

to perform this search over mappings in order for the team robots to be able to assume a

role and undertake the corresponding behavior. Specifically, the algorithm is responsible
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to generate mappings, evaluate them using the utility function described above (Sec-

tion 4.3) and compute a good, or optimal in some cases, mapping. Note that the candi-

date positions/roles may be more than the number of active robots, therefore the number

of possible mappings may be extremely large. More formally, if Robots = {r1, r2, . . . , rk}
and Positions = {p1, p2, . . . , pn} with k ≤ n, the number of possible mappings is:

M =

(
n− 1

k − 1

)
(k − 1)! =

(n− 1)!

(k − 1)!(n− k)!
(k − 1)! =

(n− 1)!

(n− k)!

Essentially, we choose k−1 out of n−1 positions and we take all their permutations before

assigning them to the k − 1 robots. Note that the goalkeeper role and the goalkeeper

player are excluded from the role assignment process. Clearly, the search space becomes

huge even for small values of k and n. To cope with this problem, we introduce a pair

of algorithms; one that performs exhaustive search and guarantees optimal solution, but

is extremely expensive, and another one that performs only local search and guarantees

only a good solution, but its complexity is independent of n.

4.4.1 Exhaustive Search

The exhaustive search algorithm is a simple search method, which enumerates all possible

mappings, evaluates them, and keeps the best one found. Although, this method is very

simple, fast for a small set of positions, and always finds the optimal solution, it is very

slow when the position set grows above a certain threshold. Given that in our SPL

coordination problem the number of robots is at most five (k ≤ 5), using formations

with only five positions (n = 5) leads up to only M = 24 mappings at most, which

can be easily evaluated. By simply using three times as many positions (n = 15) in the

formation, the number of possible mappings rises to M = 24024! The exhaustive search

algorithm is summarized in Algorithm 1.

4.4.2 Particle Swarm Optimization

In order to overcome the high complexity of the exhaustive search algorithm, when the

space of mappings grows large, we also introduce a different approach which enables the

robots to compute a suboptimal, although fairly good, solution independently of the num-

ber of mappings. This alternative algorithm is based on the Particle Swarm Optimization
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Algorithm 1 Exhaustive Search

Input: Positions = {p1, . . . , pn−1}, Robots = {r1, . . . , rk−1}, Utility function U

Output: best mapping mapbest

1: M = (n−1)!
(n−k)!

2: Mappings =
{
mapi : i = 1, . . . ,M, mapi is a valid mapping Robots 7→ Positions

}
3: maxU = −∞
4: for all mapi ∈Mappings do

5: mapCost = U(mapi)

6: if (mapCost > maxU) then

7: maxU = mapCost

8: mapbest = mapi

9: end if

10: end for

11: return mapbest

(PSO) algorithm (Section 2.4) adjusted to our problem. Specifically, the algorithm uses

particles to represent mappings, thus each particle assigns target position coordinates

to each robot. More formally, we define as particle a tuple xi = (x1, y1, . . . , xk−1, yk−1),

where k − 1 is the number of team robots and (xi, yi) are the coordinates of the target

position of robot i, and therefore 2(k − 1) is the dimension of the search space. Note

that the goalkeeper is not participating in the role assignment process. The algorithm

initializes the set of particles randomly by choosing random target positions from the

set of candidate positions for each robot and then iteratively updates their velocity and

moves them in the search space in order to discover the best possible solution. As an

evaluation function we use the utility function described in Section 4.3.

Let S be the number of particles in the swarm, each having a position xi ∈ R2(k−1) in

the search space and a velocity vi ∈ R2(k−1). Additionally, let x∗i ∈ R2(k−1) be the best

known position of particle i and let g∗ ∈ R2(k−1) be the best known position of the entire

swarm. Given these definitions, we summarize the PSO algorithm for role assignment

in Algorithm 2. In our implementation, we chose a constant value of 2 for the learning

parameters (acceleration constants) α and β and a constant-valued inertia function θ

equal to 0.5.

As you probably noticed, the PSO algorithm is using randomness to discover new,
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Algorithm 2 Particle Swarm Optimization

Input: Positions = {p1, . . . , pn−1}, Robots = {r1, . . . , rk−1}, Utility function U ,

Number of particles S, Number of iterations I

Output: global best mapping g∗ of the entire swarm

1: g∗ = ~0

2: for i = 1 to S do

3: Initialize particle xi using a randomly selected set of positions from Positions

4: x∗i ← xi

5: if
(
U(x∗i ) > U(g∗)

)
then

6: g∗ ← x∗i
7: end if

8: vi = ~0

9: end for

10: for iteration = 1 to I do

11: for i = 1 to S do

12: for d = 1 to 2(k − 1) do

13: ε1 ∼ U(0, 1), ε2 ∼ U(0, 1)

14: vi,d ← θvi,d + αε1
(
g∗d − xi,d

)
+ βε2

(
x∗i,d − xi,d

)
15: end for

16: Update: xi ← xi + vi

17: if
(
U(xi) > U(x∗i )

)
then

18: x∗i ← xi

19: if
(
U(x∗i ) > U(g∗)

)
then

20: g∗ ← x∗i
21: end if

22: end if

23: end for

24: end for

25: return g∗
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probably better, solutions. Therefore, because each robot in the team is running the

algorithm locally, there is a high probability for the individual solutions to differ. To

enforce consistency, after the PSO algorithm has run, each robot broadcasts the best

mapping found along with its utility value to the other robots. All robots gather these

mappings and adopt the one with the highest utility value to ensure that role assignment

is consistent within the team.
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Chapter 5

Implementation

5.1 Matlab Simulation

Before integrating our coordination mechanism on our Monas software architecture for

execution on the real robots, we implemented a simulation in Matlab to test the feasibility

and the effectiveness of our approach.

We initially implemented the formation generator in a graphical user interface, so

that the formation is plotted dynamically on a depiction of the actual SPL 2013 field

(Figure 4.2), as the user moves the ball at different locations around the field. This simu-

lation enabled us to visualize our ideas, evaluate the outcome, and tune the parameters,

constants, and percentages used in the algorithm. Thereafter, we implemented the utility

function and both role assignment algorithms (Exhaustive Search and PSO) to observe

and evaluate their behavior. The graphical user interface was enhanced with the option

of executing one of the two role assignment algorithms and visualizing their outcome.

This Matlab simulation is certainly not fully representative of the actual implementation

on the real robots, since it assumes an ideal environment without noise and makes use of

ample computational resources, when in fact this is not true. Nonetheless, it proved to

be sufficient to get a first glimpse of whether our coordination approach would work.

Figure 5.1 (left) shows the visual output of a generated formation. In this test sce-

nario, four robots displayed in blue, plus the goalkeeper who is not participating in the

coordination process, are about to coordinate using the exhaustive search algorithm. In

Figure 5.1 (right) the robots have found the optimal role assignment, which is marked

with blue lines on the graphical user interface. Additionally, in Figure 5.2 (left) the
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resulting formation with more candidate positions for the four robots having the same

initial poses is shown. In Figure 5.2 (right) the robots have run the PSO algorithm and

the resulting role assignment is marked again with blue lines. The careful observer can

easily notice through this simulation and graphical user interface that the outcome of our

approach yields reasonable results.

−5 0 5

−3

−2

−1

0

1

2

3

Ball Position: (1.78,2.45)

x

y

OB

LS/DLRS/S
D/DR

GK

−5 0 5

−3

−2

−1

0

1

2

3

Ball Position: (1.78,2.45)

x

y

OB

LS/DLRS/S
D/DR

GK

Figure 5.1: Formation (left) and role assignment (right) using Exhaustive Search
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Figure 5.2: Formation (left) and role assignment (right) using PSO
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5.2 The Behavior Monas Activity

In order to implement our approach on the real NAO robots, we developed our coordi-

nation mechanism and integrated it on the Monas Behavior activity. This activity is

responsible for the high-level behavior of our robots, it operates on the outputs of lower-

level activities and decides which one is the most appropriate action to be executed next.

The Behavior activity is currently executed on the KVision agent and is specified inside

our agents.xml configuration file that determines which activities will be running on the

robot and at what frequency. Currently is being executed at a frequency of 25Hz (25

times per second).

The high frequency of execution implies that coordination must take place in less

than 40 milliseconds. To understand the significance of this constraint we must take into

account the limited processing power available on the robot. We need to keep in mind

that we are developing software for an embedded platform with limited computational

resources, which are shared among all programmed operations, as well as middleware

operations. Hence, the workload of each activity must be in accordance with the total

workload on the robot. Given these constraints, we paid attention to the real-time

performance of our implementation. It turns out that the execution of exhaustive search

was within limits for formations up to five positions/roles and up to five active robots.

On the other hand, the execution of the PSO algorithm is independent from the number

of positions/roles and its real-time performance essentially depends on the number of

iterations and the number of particles, assuming up to five active robots. Thus, to meet

the real-time requirements stated above we had to limit the number of iterations to 10

and the number of particles to 10. Larger numbers would increase the effectiveness of

the PSO algorithm, however at the cost of increasing the computational load and thus

the overhead of the whole robot, resulting on under-activity of the other activities.

Despite the real-time performance of our coordination mechanism, it is clear that

coordination needs not take place at such a high frequency. Re-coordination is really

necessary only when there is significant change in the game state. Therefore, our coordi-

nation mechanism executes, if at least one of the following two conditions is met:

• the estimated global ball location has changed significantly (by more than 70cm)

since the latest coordination.
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• a significant time interval (currently 10 seconds) since the latest coordination has

passed.

The change in the estimated global ball position is computed from the information in

the shared world model. Since this information is shared among all robots, they will

simultaneously (more or less) notice the change in ball location and coordinate (almost)

in sync. For the second condition the robots monitor the global game timer provided by

the SPL game controller. In case some robot cannot listen to the network, and thus to

the game controller, or some message is lost, then it also checks a local timer to be able

to figure out when the specified time interval has passed. Using the global game timer

ensures that the robots will coordinate (more or less) in sync.
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Chapter 6

Results

In this chapter we present the results of our work and show how it benefits the rest of

our RoboCup team. The best approach to show that a framework, like the one proposed,

works well would be to compare the functionality and effectiveness of a team using our

coordination mechanism to a team which has no sophisticated coordination and record

the results. For example, in a number of games between the two teams, one can record

how many times each team has won. Unfortunately, in our case this comparison cannot

be performed, because we do not have the means to conduct such large-scale experiments,

i.e. enough functional robots to form two teams and sufficient time (and patience) to run

a large number of games. Thus, we could not provide such quantitative results, yet we

will provide qualitative results by presenting certain scenarios that could occur during

a robotic soccer game and compare them to our Matlab simulation output on the same

scenarios. This way we can show that our approach can be really useful and works well

even in the real, noisy world.

6.1 Coordination Performance

The first step in our evaluation was to compare the two coordination algorithms and

show the actual difference in computational overhead. To this end, we measured the

actual execution time of each algorithm for producing a solution given a certain number

of positions and a fixed number of robots (k = 5) across all the runs. In Figure 6.1

we can see the results of this experiment both in terms of execution time and solution

quality. The results clearly indicate that the PSO algorithm is much faster after a specific
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Figure 6.1: Execution time (left) and utility of mapping found (right) against positions

threshold, yet without compromising the quality of solutions compared to the optimal

ones.

We currently perform role assignment using the exhaustive search algorithm in our

software architecture, because we are generating formations with up to five positions/roles,

thus it is fast and always finds the optimal solution, yet we may switch to the PSO al-

gorithm in the future to perform role assignment on complex formations which may be

produced in a more sophisticated way.

Figure 6.2: Scenario I: Setup for role assignment using the exhaustive search algorithm
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Figure 6.3: Scenario I: true state (top), formation and role assignment (bottom)

6.2 Scenario I: Coordination using Exhaustive Search

Our first goal is to check the functionality of our coordination mechanism on a simple

scenario generating five candidate positions and performing role assignment using the

exhaustive search algorithm. In this scenario (Figure 6.2) there are three stationary

robots in the field facing at different directions. One is placed at the bottom right corner

of the own field side near the middle and the side lines; the other robot is placed close to

the opposite side line almost aligned with the penalty mark; the last one is placed near

the own goal area aligned to the right goalpost. During this scenario, the ball is placed

to a number of different locations in the field, so that each time at least one robot can
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Figure 6.4: Scenario I: Formation and role assignment using the Matlab simulation

see it (to maintain a local estimate and update the shared world model). We used our

graphical tool KMonitor [17] in order to check the formation generated as well as the role

assignment that was decided by the robots each time the ball was moved.

In Figure 6.3 and Figure 6.4 we present formation and role assignment output of our

coordination mechanism for the different ball locations of this scenario on real robots and

simulation respectively. As shown by these figures, the formations and role assignments

are almost the same in all cases. This is highly important because, it indicates that our

coordination mechanism performs robustly even in a noisy real environment.

6.3 Scenario II: Coordination using PSO

Our second goal is to test the functionality of our coordination mechanism on a scenario

generating multiple candidate positions in the formation (12 in this scenario) and per-

forming role assignment using the PSO algorithm. In this scenario, we placed the robots

on the same positions as in Scenario I (Figure 6.5). Then, we placed the ball to a number

of different locations in the field, so that each time at least one robot can see it, as we did

in Scenario I. Again, we used KMonitor [17] in order to check the formation generated
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Figure 6.5: Scenario II: Setup for role assignment using the PSO algorithm

as well as the role assignment decided by the robots each time the ball was moved. As

shown in Figure 6.6, the outcome of the PSO algorithm is fairly good and reasonable

for each formation generated, even though it is in general suboptimal. Unfortunately, in

this scenario their is no point in presenting the corresponding Matlab simulation results,

since the PSO algorithm uses randomness and outcomes typically vary on each run.

Evangelos Michelioudakis 55 September 2013



6. RESULTS

Figure 6.6: Scenario II: true state (top), formation and role assignment (bottom)
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

This thesis summarizes the coordination mechanism implemented and incorporated into

the software architecture and repository of the RoboCup team Kouretes. As explained

in Chapter 4, the end result of our work is a high-level coordination mechanism, which

takes the output of global state estimation and performs dynamic positioning and role

assignment. The outcome of our algorithm is a mapping of robots to positions/roles of a

certain formation. As shown in Chapter 6, our work proves useful in common scenarios

during RoboCup games and provides the opportunity of building extra features that

require our work as a prerequisite. Our coordination mechanism also creates room for

further development of new features. Some of them are briefly discussed below.

7.2 Future Work

7.2.1 Machine Learning

One of the most important features that could be implemented is a machine learning

approach to inferring values for the scaling constants of the multi-attribute utility func-

tion presented in Section 2.3, which are currently set to 1. Scaling constants reflect a

preference on the attributes. Thus, it could possibly improve the role assignment output

and team’s overall performance, if there was a way to learn a set of values which are

expected to behave better in choosing assignments which lead to winning games.
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Since such a learning approach requires carrying out a large number of games, it

is relatively difficult to infer such a set of scaling constants in practice. Therefore, an

alternative solution would be to simulate robotic soccer games on a simulator for the

purposes of learning. The simulation is certainly not fully representative of the actual

implementation on the robots, because it assumes an ideal environment without noise,

when in fact this is not true. Nonetheless, the constants learned in the simulation maybe

used as baseline for further training on the actual robots.

7.2.2 Action-Level Coordination

This thesis approached the coordination process at the level of dynamic positioning and

role assignment. Other coordination methods operate at the action level and allow the

players to directly coordinate their individual actions. However, such methods depend on

existing roles, formations, and complex action skills, such as passing, dribbling, strategic

movements, and even opponent recognition and modeling. Therefore, our mechanism

could be extended to incorporate such types of coordination, provided there exist cor-

responding skills at a lower level. For example, after the robotic team has generated

a formation and assumed roles using our approach, it could execute a process of team

planning to coordinate individual actions between certain team players to come closer to

real human strategies.

7.2.3 Opponent Modeling

Currently, our team does not have the ability to visually recognize opponent robots.

However, when this feature is implemented and opponent positions are added to global

state estimation, our approach could modified to include evaluation features for position-

ing, which would take advantage of this additional information for generating even more

strategic formations. This could lead to making even better and more strategic team

planning during the game, such as generating formations which would favor the team

to score, avoiding passing the ball to a robot blocked by opponents, blocking opponent

players from scoring, choosing a kicking direction towards the opponent goal that clears

all players (opponents and teammates), or avoiding collisions with and obstructions by

opponent robots.
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