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Abstract

Statistical Language Models (LMs) are widely used in many applications such
as speech recognition systems, automatic translation systems etc.

However every statistical model is based to the domain of the training data and
thus it can not perform well when tested in out-of-domain data. Moreover collect-
ing and processing data in order to train a new statistical model is always a time
consuming and expensive procedure given the large amounts required. Hence adap-
tation techniques have been developed in order to adapt an existing LM to a new
domain, using significantly smaller amount of data.

N-grams, which is the dominant technology for language modeling, are very diffi-
cult to be adapted due to the large amounts of parameters. Thus LMs in Continuous-
Space have been implemented in order to make language models more robust and
easier to be adapted.

This study is an initial approach to continuous LM adaptation. We take advan-
tage of some widely used algorithms from the field of speech recognition and we try
to adapt an initial LM ,trained in a corpus from Wall Street Journal, with data from
Air Travel Information System. We examined different approaches and techniques
and came up to some useful conclusions which can feed many future works.
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Thesis Outline

In the first section we introduce the part of Artificial Intelligence science, known
as Natural Language Processing. We explain what is a statistical model in general,
how such a model can be used in NLP and why nowadays investigating adaptation
techniques for such models is thought to be a necessity. At the end of the chapter
we report the most widely known adaptation techniques and we present the purpose
of this work.

In section two, the differences between discrete and continuous language models
are described. We analyze each approach and focalize on their benefits and draw-
backs. Additionally the mechanism on which our work is based is being explained in
detail. At the end of the section we describe how we evaluate our model, introducing
terminologies from information theory, such as entropy and perplexity.

In section three we introduce the main adaptation algorithms. We explain why
these techniques are so widely known and we decompose their mechanisms and their
theoretical background.

In chapter four the results of our experimental work are illustrated. We describe
our baseline experiments and the complete reasoning course until we reached our
final goal. All the experimental tries are presented in great detail and supported
with the appropriate charts and tables.

In the final chapter we summarize our best results, we make some crucial com-
parisons and we reach a final conclusion. At last we propose some suggestions for
future work which I believe they worth experimenting on.
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Chapter 1

Introducing Language Modeling
and Statistical Model
Adaptation

1.1 Introduction

Developing a speech recognition system for a new domain is costly, primarily
due to the collection and preparation of the data required to train the system. Gen-
erally speaking, fairly large amounts of manually annotated data (tens of hours of
data at a minimum for a large vocabulary system) are needed, which are very labor
intensive to obtain.

Language model (LM) and acoustic model (AM) adaptation attempt to obtain
models for a new domain with little training data, by leveraging existing (out-
of-domain) models. AM adaptation in particular has been studied extensively,
with many related researches and the achieved performances are already extremely
high.In contrary to AM adaptation, LM adaptation has received much less attention
and the potentials to improve our results are still great.

In this study we try to adapt a LM structured with continuous distributions by
using well known adapting algorithms which are widely used in speech recognition.
We use an initial LM trained in Wall Street Journal (WSJ) domain and we pro-
pose some adaptation approaches in order to construct an efficient LM on Airline
Travel Information System (ATIS) domain using a small amount of adaptation data.
Global and clustering methods have been tried and all our results are compared with
baseline experiments made with discrete and continuous LMs as well.
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1.2 Natural Language Processing (NLP)

Natural language processing is the technology for dealing with our most ubiqui-
tous product: human language, as it appears in emails, web pages, tweets, product
descriptions, newspaper stories, social media, and scientific articles, in thousands of
languages and varieties. In the past decade, successful natural language processing
applications have become part of our everyday experience, from spelling and gram-
mar correction in word processors to machine translation on the web, from email
spam detection to automatic question answering, from detecting people’s opinions
about products or services to extracting appointments from your email.

The development of NLP applications is challenging because computers tradi-
tionally require humans to speak to them in a programming language that is precise,
unambiguous and highly structured or, perhaps through a limited number of clearly-
enunciated voice commands. Human speech, however, is not always precise – it is
often ambiguous and the linguistic structure can depend on many complex variables,
including slang, regional dialects and social context.

Current approaches to NLP are based on machine learning, a type of artificial
intelligence that examines and uses patterns in data to improve a program’s own
understanding. Most of the research being done on natural language processing
revolves around search, especially enterprise search.

Figure 1.1: Language Processing

1.3 Statistical Modeling

A statistical model is a probability distribution constructed to enable inferences
to be drawn or decisions made from data. This idea is the basis of most tools in the
statistical workshop, in which it plays a central role by providing economical and
insightful summaries of the information available.
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The key feature of a statistical model is that variability is represented using
probability distributions, which form the building-blocks from which the model is
constructed. Typically it must accommodate both random and systematic variation.
The randomness inherent in the probability distribution accounts for apparently
haphazard scatter in the data, and systematic pattern is supposed to be generated
by structure in the model. The art of modelling lies in nding a balance that en-
ables the questions at hand to be answered or new ones posed. The complexity of
the model will depend on the problem at hand and the answer required, so dierent
models and analyses may be appropriate for a single set of data.

Statistical modeling can be applied in many applications. Language Modeling
is exclusively based in statistical models and pattern matching. The fundamental
idea is that Language Models assign probabilities to words of a word sequence using
stochastic models.

1.3.1 Statistical Language Modeling

The goal of Statistical Language Modeling is to estimate the distribution of
natural language as accurate as possible. A statistical language model (SLM) is a
probability distribution P(s) over strings S that attempts to reflect how frequently
a string S occurs as a sentence.

By expressing various language phenomena in terms of simple parameters in a
statistical model, SLMs provide an easy way to deal with complex natural language
in computer.

The original (and is still the most important) application of SLMs is speech
recognition, but SLMs also play a vital role in various other natural language appli-
cations as diverse as machine translation, part-of-speech tagging, intelligent input
method and Text To Speech system.

N-gram model is the most widely used SLM today. Without loss of generality
we can express the probability of a string S , P(S) , as:

P (S) = P (w1, w2, · · · , wn) (1.1)

P (w1)P (w2|w1)P (w3|w1, w2) · · ·P (wk|w1, w2 · · · , wk−1) = (1.2)

k∏
i=1

P (wi|w1, w2, · · · , wi−1) (1.3)
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In bigram models, we make the approximation that the probability of a word
only depends on the identity of the immediately preceding word, hence we can
approximate P(S) as:

P (S) =
k∏
i

p(wi|wi−1) (1.4)

If the word depends on more, than the previous two words, we can have a
trigram: P (wi|wi−1, wi−2) , a fourgram P (wi|wi−1, wi−2, wi−3) etc. Similarly, we
can have a unigram: P (wi) if the word does not depend on history words.

The parameters in a traditional N-gram model can be estimated with Maximum
Likelihood Estimation (MLE) technique:

P (wi|wi−1) =
Count(wi−1, wi)

Count(wi−1)
(1.5)

1.4 Adaptation Of Statistical Model

The generalization properties of most current statistical learning techniques are
predicated on the assumption that the training data and test data come from the
same underlying probability distribution.

Unfortunately, in many applications, this assumption is inaccurate. It is often
the case that plentiful labeled data exists in one domain (or coming from one distri-
bution), but one desires a statistical model that performs well on another related,
but not identical domain. As every statistical model is being tuned to the domain of
the training data and hand labeling data in the new domain is a costly procedure,
adaptation techniques should be used before the model can be used to recognize
data in a different domain.

For that reason statistical model adaptation techniques are becoming indispens-
able by helping us fit the distributions of training ”in-domain” data to the ”out-
of-domain” test data using only a small amount of information from the new domain.
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Figure 1.2: Statistical Model Adaptation

1.4.1 Adaptation Of Statistical Language Model

Regarding a SLM the definition of adaptation follows the same guidelines as
mentioned before. Given a LM which is well trained in a specific domain (usually
with more than 50.000 sentences) we try to reestimate the model’s distribution in
order to match the ”out-of-domain” test data. The key here is that usually a much
smaller amount of adaptation data is needed in order to achieve high efficiency (usu-
ally less than 20.000 sentences)

Figure 1.3: Statistical Language Model Adaptation [12]
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The most widely techniques for adapting an N-Gram Language Model are the following [12]:

1. Model Interpolation

In interpolation-based approaches, the corpus is used to drive a task-specific
SLM, which is then combined with the background SLM.

Model interpolation can be divided into three kinds:

(a) Model Merging

Because of the limited amount of adaptation data involved the adapted
SLM tends to be poorly trained, most of the time resulting in a rather
inaccurate estimate
However for certain word sequences,particulary frequent in the current
task, may the new SLM outperform the initial estimate SLM.

The simplest way to apply Model Merging is via linear interpolation

(b) Dynamic Cache Models

A special case of linear interpolation, broadly used for within-domain
adaptation, is commonly knows as: Dynamic Cache Memory Adaptation

The underlying idea of this method is that a language model exploited
short-term shifts in word-use frequencies might perform significantly.

(c) MAP Adaptation

In this approach, the MAP-optimal model M∗ is computed as:

M∗ = argmaxMP (A|M)P (M) (1.6)

where P(M) is prior distribution over all models

This framework leads to a solution of the following form:

P (wq|hq) =
ε · CountA(hqwq) + CountB(hqwq)

ε · CountA(hq) + CountB(hq)
(1.7)

where ε is a constant factor which is estimated empirically

2. Constraint Specification

In such approaches, the corpus is used to extract features that the adapted
SLM is constrained to satisfy. This framework is thought to be more efficient
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as a different weight is likely to be assigned separately for each feature.
Constraint Specification adaptation technique can be divided into three sub-
categories:

(a) Exponential Model

In this approach we train exponential models using the maximum entropy
criterion.
Despite computing the conditional probability P (w|h) directly we assume
the associated event of the joint distribution and we consider that this
joint distribution is constrained by K linearly independent constraints.
Finally we reach to a solution for the joint distribution P (w|h) which has
an exponential parametric form as shown bellow.

P (w|h) =
1

Z(h,w)
exp{λkIk(h,w)} (1.8)

(b) MDI Adaptation

MDI (Minimum discrimination information estimation) considers the fea-
tures extracted from the adaptation corpus as important properties.
The solution has to be close to the joint initial distribution PB(h,w),
taken as prior distribution. This is achieved by minimizing the Kullback-
Leibler distance from the joint background distribution.

The final model has the following form:

P (h,w) =
PB(h,w)

Z(h,w)

K∏
k=1

exp{λkIk(h,w)} (1.9)

(c) Unigram Constraints

MDI adaptation is widely used with unigram constraints. Given a small
amount of adaptation data we can use only unigram features to estimate
a reliable adaptation model on corpus A.
The resulting solution reduces to the close form:

P (h,w) = PB(h,w)
aA(w)

PB(w)
(1.10)

where aA(w) represent the empirical unigram probability

3. Mixture Model

The simplest approach of Mixture modeling is based on a generalisation of
linear interpolation to include several pre-defined domain
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Assuming that the initial n-gram model is composed of a collection of K sub-
models, each trained on a seperate topic, then a mixture LM linearly inter-
polates these K n-grams in such way that the resulting mixture best matches
the adptation data.
The final probability has the form:

P (wq|hq) =

K∑
k=1

λA,k · PB,k(wq|hq) (1.11)

where λA,k refers to the interpolation coefficients and reflects the fact that
they are estimated on corpus A.

We will focus in more detail on Mixture Language Models in the next chapters
as they are the key tool in this search.

4. Semantic Knowledge

Approaches taking advantage of semantic knowledge usually purpose to ex-
ploit the entire semantic fabric of the adaptation corpus.
This approach is much more difficult to be specified as the semantic relation
between two words is a very questionable subject and a lot of conflicting views
can be found.

5. Syntactic Infrastructure

Approaches leveraging syntactic knowledge make the implicit assumption that
the initial and the recognition tasks share a common grammatical infrastruc-
ture. The background SLM is then used for initial syntactic modeling, and
the adaptation corpus to re-estimate the associated parameters.

6. Multiple Sources

Of course very popular is to combine more than one of the above techniques
in order to achieve higher efficiency. The corpus is used to extract informa-
tion about different aspects of the mismatch between training and recognition
conditions.
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1.4.2 Purpose Of the Thesis

In this work we tried to adapt a continuous-space Language Model into a new
domain. This LM was created by Mr. Konstantinos Tsiakas (PhD Candidate at
Demokritos - Greek Center For Scientific Research) as his Bachelor Thesis.

The initial models are trained with samples from Wall Street Journal (WSJ)
domain, on a vocabulary of the 2700 most frequent words. Each in-vocabulary word
has a corresponding trained Gaussian Mixture Model which represents the signifi-
cance and the relation of this word with the others.

Our task is to re-estimate these background models by using a significantly
smaller amount of adaptation data from Air Travel Information Service (ATIS) do-
main in order to match our new testing conditions.

In order to achieve our goal we exploited some widely used adaptation algo-
rithms from speech recognition, such as MAP, MLLR and MLLR’s implementation,
Constrained MLLR. We examined each adaptation technique alone by applying var-
ious transformations to the background models and we worked with combinatory
adaptation approaches as well.

Furthermore as we worked in continuous space, data reduction techniques needed
to be used in order to save computational cost and to make data management easier
without the loss of useful information. Hence we took advantage of techniques and
methods for mapping and dimensionality reduction from the field of linear algebra
and Pattern Recognition such as Singular Value Decomposition (SVD) and Linear
Discriminant Analysis (LDA).

As this work is the first which targets to adapt a Continuous Language Model,
we examined plenty of baseline experiments by trying to train both discrete and
continuous models, with the same data used for adaptation but without performing
adaptation techniques.

Finally we present the tools which were used to implement our baseline experi-
ments, the word clustering and the GMMs parameters estimation which are SRILM
tool and HTK toolkit.

17



Chapter 2

Building a Language Model in
Continuous Space

2.1 Discrete Statistical Language Models

As mentioned before, statistical language models use statistical techniques to
estimate models from text data sets by assigning probabilities in each word of the
data. One of the most dominant technologies is N-gram models. N-gram models
regard each word as a discrete variable. They are significant for many applications
such as speech recognition, optical character recognition, machine translation, even
dictation correction. Generally, the N-gram model has good results, when there is
a satisfying set of data for a specific task.

2.1.1 Disadvantages

As covered before, N-gram models are the dominant technology in Language
Modeling. In spite of their success, discrete N-gram models suffer from two basic
drawbacks. We can refer to them as generalization and adaptability. These two
problems refer to the N-grams with zero probability and to the parameters of N-
gram model. Usually, an N-gram model has a huge number of parameters. Thus, it
is very difficult to adapt it using a relatively small amount of data.

18



2.2 From Discrete To Continuous Language Models

Aiming to overcome the problems mentioned before and to make the adaptation
of the final model easier and more efficient we prefer to build a Language Model
using continuous-space distributions. Continuous representation of our training fea-
tures needs an incredibly lower number of parameters to be estimated and that
makes it much easier to adapt these parameters to fit to another-new distribution.

Moreover we overtake the need of having a trained model for every new word se-
quence we meet while testing. It is possible to ascribe the new-untrained word
sequence in a class which concludes a variety of words which are for example seman-
tically common and share the same distribution.

In the upcoming paragraphs we will discuss step by step how we manage to move
from discrete word sequences to continuous space representation of each word and
its history vectors. The following analysis is based on Mr.Tsiakas implementation
and is the basis for the adaptation data editing as well.

2.2.1 Word Mapping

Figure 2.1: Mapping to another value do-
main

As is understood when talking about
words means that we are dealing with
discrete entities. Our purpose is to
project each word of our data in a new
continuous space. Due to the large
number of words and the difficulty to
process parameters in a high- dimen-
sional space, we try to represent the
V-1 most frequent words from our train
data. Adding to these words the <
unk > tag which represents all the ”out-
of-vocabulary” words we create a model
vocabulary with the V most frequent
words.
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Figure 2.2: Word Mapping

2.2.2 Word Co-occurrences

The first step in order to achieve a reliable mapping for each word is to see how
each word correlates with the rest. For that reason we build a co-occurrence matrix
E that depicts this relation between words. Each element eij is the number of times
that word i follows word j, in the training data. Each row is the word’s vector and
the columns represent the histories.

Figure 2.3: Co-occurrence Matrix

20



As it can easily be observed this matrix consists of V 2 elements. This means
that as the size of the vocabulary rises, the size of the matrix rises exponentially.
Especially, in our initial model, where the vocabulary comprises 2700 words, the
matrix E contains 2700x27000 = 729 · 104 elements. In order to save computing
power and make our problem more easily manageable we try to map each vector
to a lower dimension, concerning the word’s frequency and how each word behaves
with the others.

2.2.3 Singular Value Decomposition (SVD)

Singular value decomposition (SVD) can be looked at from three mutually com-
patible points of view. On the one hand, we can see it as a method for transforming
correlated variables into a set of uncorrelated ones that better expose the various
relationships among the original data items. At the same time, SVD is a method for
identifying and ordering the dimensions along which data points exhibit the most
variation. This ties in to the third way of viewing SVD, which is that once we have
identified where the most variation is, it’s possible to find the best approximation
of the original data points using fewer dimensions. Hence, SVD can be seen as a
method for data reduction.

The underlying idea is that performing SVD on a matrix A mxn lead us to
decomposed form of A where:

A = UΣV T (2.1)

Figure 2.4: Singular Value Decomposition

U: mxm matrix with the eigenvalues of AAT as its columns

V: nxn matrix with the eigenvectors of ATA as its columns

Σ: mxn diagonal matrix consisting of the square roots of the eigenvalues of AAT

and ATA (both matrices have the same eigenvalues but different eigenvectors)
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Now notice matrix Σ, which contains the singular values. These singular values
multiply only certain columns of U and V. The singular values determine how these
columns of U and V influence the matrix. If a value is small enough then its column
or row is not added to the new matrix. Many of the values are zero. That means
that the corresponding columns and rows have not useful information. So we can
transform the matrix to another one that has the valuable information.

Often, singular values are sorted by the significance of their rows and columns.
That is the reason that SVD is used for matrix decomposition and data reduction.
If we want to maintain the basic information of a matrix by reducing its dimen-
sionality, we can keep the M greatest singular values and build another matrix ΣT ,
containing only these M singular values. So we can obtain a transformation matrix
Mxn.

2.2.4 History Mapping

Based on N-gram models, each word’s history consists of the previous N − 1
words (1.3.1) . Choosing the value of N depends on the model designer. If N = 1,
each word is considered as an independent entity. For N = 2, each word depends
on the previous one and if N = 3, each word depends on the previous 2 words. In
natural language, it seems that each word has strong dependence on its previous
two, so trigram models are trained in our case, for N = 3.

Following this approach we try to collect for each word in our vocabulary its
N−1 previous. Replacing every history word with its SVD vector lead us to history
vectors which are considered as the concatenation of the N−1 SVD history vectors.

Figure 2.5: History Mapping

After having the history vectors col-
lected, we are able to model our param-
eters by training one Gaussian Mixture
Model (GMM) for each word. However,
as mentioned before, modeling becomes
difficult in large dimensions. Assume
that we have a trigram model (N = 3),
a vocabulary of size V = 3K and we
perform SVD for M = 100 singular
values. That means that each history
consists of a 100 · (N − 1) = 200 el-
ements.This is still a high-dimensional
space to handle.
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Aiming to make our history vectors
even smaller we decide to apply to them
a linear transformation of the form:

yi = B · hi (2.2)

where yi is the projection of the history vector hi in the new- dimensional space.
The estimation of the transformation matrix B is described right below.

2.2.5 Linear Discriminant Analysis (LDA)

Feature reduction uses statistical methods to reduce the dimension of the fea-
tures, while maximizing the information that is preserved in the reduced feature
space. Mathematically we can express this by applying the linear transformation
yi = B · hi which we already defined. The goal of all feature reduction techniques is
to find the optimal B with respect to some optimization criterion. Linear Discrimi-
nant Analysis (LDA) is, according to the bibliography, one of the most reliable and
effective methods.[7]

LDA seeks to reduce dimensionality while preserving as much of the class dis-
criminatory information as possible. Because we deal with multiple classes we need
to have our data labeled according to the class they belong. We associate words
with class labels and assign each observed history vector to the corresponding class.
LDA estimates the between and within class scatters in order to find the optimal
transformation matrix.

Firstly in order to apply LDA to our history vectors, the mean vectors and the
co-variances of each class need to be estimated.

mv =
1

Nv

Nv∑
i=1

xi (2.3)

Σv =
1

Nv

Nv∑
i=1

(xi −mv)(xi −mv)
T (2.4)

23



The corresponding values for all the classes (complete data set) :

m =
1

N

Nv∑
i=1

xi (2.5)

Σ =
1

N

N∑
i=1

(xi −m)(xi −m)T (2.6)

,where N denotes the total number of training tokens and Nv stands for the number
of training tokens in class v. Naturally (there are V classes), and thus:

V∑
v=1

Nv = N (2.7)

According to the above definitions the optimization criterion can be formulated
as:

B̂ = argmaxBL

|BT
LΣBL|

|BT
LWBL|

(2.8)

,where

W =
1

N

V∑
v=1

NvΣv (2.9)

Decomposing equation 2.8 we note that the numerator represents the co-variance
of the pooled training data in the transformed feature space, while the denomina-
tor represents the average co-variance within each class in the transformed feature
space. Hence, the criterion really tries to maximize the ”distance” between classes
while minimizing the ”size” of each of the classes simultaneously. This is exactly
what we want to achieve because this criterion guarantees that we preserve most of
the discriminant information in the transformed feature space.

In order to estimate the projection matrix B, we estimate the statistics that LDA
uses to compute the scatter matrices. We need to estimate between-class scatter SB
and within-class scatter SW . At first, we estimate two sufficient statistics for the
matrices computation which are:

t1i =
∑
n∈i

xn (2.10)

t2i =
∑
n∈i

xnx
T
n (2.11)
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, where i is the word/class i.e. i = 1, · · · , c and xn is the history vector.
After estimating t1i and t2i for all history vectors, we compute the mean vector for
each word/class.

mi =
1

ni

∑
n∈i

xn =
1

ni
t1i (2.12)

, where ni is the amount of history vectors in each class.

Now we are finally ready to estimate the between-scatter matrix as:

SB =
C∑
i=1

ni(mi −m)(mi −m)T (2.13)

where, m =
1

n

C∑
i=1

nimi (2.14)

and the within-class scatter as:

Si =
∑

(x−mi)(x−mi)
T = (2.15)

=
∑

[xxT − xmT
i −mix

T +mim
T
i ] = (2.16)

=
∑

xxT − (
∑

x)mT
i −mi

∑
xT + nimim

T
i = (2.17)

=
∑

xxT − nimim
T
i (2.18)

for each word/class i.
The within-class scatter for the total amount of class is given as:

SW =

C∑
i=1

Si (2.19)

By estimating the projection matrix B we are able to project each history vector to
the new-dimensional space. In our initial model history vectors are projected in the
reduced feature space y ∈ RL for L = 50.
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2.3 Model Training

After having our training data converted to continuous space vectors it is time
to choose a model training method. In this work Gaussian Mixture Models were
selected. GMMs and their variations are the most widely known technology for
statistical model training.

GMMs are often used in biometric systems, most notably in speaker recognition
systems, due to their capability of representing a large class of sample distributions.
One of the powerful attributes of the GMM is its ability to form smooth approx-
imations to arbitrarily shaped densities. The classical uni-modal Gaussian model
represents feature distributions by a position (mean vector) and a elliptic shape (co-
variance matrix) and a vector quantizer (VQ) or nearest neighbor model represents
a distribution by a discrete set of characteristic templates. A GMM acts as a hybrid
between these two models by using a discrete set of Gaussian functions, each with
their own mean and covariance matrix, to allow a better modeling capability. So the
GMM not only provides a smooth overall distribution t, its components also clearly
detail the multi-modal nature of the density.

A GMM can also be viewed as a single-state HMM with a Gaussian mixture ob-
servation density, or an ergodic Gaussian observation HMM with fixed, equal tran-
sition probabilities. Assuming independent feature vectors, the observation density
of feature vectors drawn from these hidden classes is a Gaussian mixture

In the upcoming paragraphs we discuss the structural elements of a GMM and
a TGMM and we explain how we can use these structures in order to achieve our
aim.

2.3.1 Multivariate Gaussian distribution & Multivariate Gaussian
LM

In probability theory and statistics, the multivariate normal distribution or mul-
tivariate Gaussian distribution, is a generalization of the one-dimensional (univari-
ate) normal distribution to higher dimensions. The univariate distribution is de-
scribed by the know density function:

f(x) =
1√
2πσ

exp

{
−(x− µ)2

2σ2

}
(2.20)

where, −∞ < x <∞
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, µ is the mean of distribution and σ2 is the variance.

One possible definition is that a random vector is said to be p-variate normally
distributed if every linear combination of its p components has a univariate normal
distribution. Thus the multivariate normal distribution can be formulated as:

f(x) =
1√

(2π)
p
2 Σ−1

exp

{
−1

2
(x− µ)TΣ−1(x− µ)

}
(2.21)

Figure 2.6: Multivariate Gaussian

Within the mean vector µ there are
p (independent) parameters and within
the symmetric co-variance matrix Σ
there are 1

2p(p+ 1) independent param-
eters. 1

2p(p+3) independent parameters
in total.

However, its importance derives
mainly from the Multivariate central
limit theorem. The multivariate normal
distribution is often used to describe, at
least approximately, any set of (possi-
bly) correlated real-valued random vari-
ables each of which clusters around a
mean value.

The multivariate normal distribution of a k-dimensional random vector X =
[X1, X2, . . . , Xk] can be written in the following notation:

X ∼ N(µ,Σ) (2.22)

where, µ = [E[X1, X2, . . . , Xk]] and Σ = [cov[Xi, Xj ]] , with i, j ∈ [1, k]

Multivariate normal distribution describes variables that tend to cluster around
their mean value. Based on the Multivariate central limit theorem, any random
variable can be described by the normal distribution if it has a large set of obser-
vations. That is why Gaussian distributions are often used for statistical modeling
and language modeling.

In such LMs first we assume that each word is described by one distribution and
we calculate each word’s mean vector and co-variance matrix. With this distribution
we evaluate the probability of each history given the word. With our model we want
to evaluate the probability of the word given its history. Using Bays rule we have:
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P (w|y) =
P (w)p(y|w)

p(y)
=

P (w)p(y|w)∑V
u=1 P (u)p(y|u)

(2.23)

, where P (w) is the unigram probability of the word.

We must consider that P (w|y) must sum up to 1 for each w ∈ V .

2.3.2 Gaussian Mixture Language Model (GMLM)

A Gaussian Mixture Model (GMM) is a parametric probability density func-
tion represented as a weighted sum of Gaussian component densities. GMMs are
commonly used as a parametric model of the probability distribution of continuous
measurements or features in a biometric system, such as vocal-tract related spec-
tral features in a speaker recognition system. GMM parameters are estimated from
training data using the iterative Expectation-Maximization (EM) algorithm. [2]

A Gaussian mixture model is a weighted sum of M component Gaussian densities
as given by the equation:

p(x|λ) =

M∑
i=1

wig(x|µi,Σi) (2.24)

where x is a D-dimensional continuous-valued data vector (i.e. measurement or
features), wi , i = 1, . . . ,M , are the mixture weights, and g(x|µi, i), i = 1, . . . ,M , are
the component Gaussian densities. Each component density is a D-variate Gaussian
function of the form:

g(x|µi,Σi) =
1

(2π)
D
2

√
|Σi|

exp

{
−1

2
(x− µi)TΣ−1i (x− µi)

}
(2.25)

, with mean vector µi and co-variance matrix Σi . The mixture weights satisfy
the constraint that their sum is 1. The complete Gaussian mixture model is pa-
rameterized by the mean vectors, co-variance matrices and mixture weights from all
component densities. These parameters are collectively represented by the notation:

λ = wi, µi,Σi (2.26)

,with i ∈ [1,M ]
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Figure 2.7: Gaussian Mixture Model

The co-variance matrices, Σi, can be full rank or constrained to be diagonal. Ad-
ditionally, parameters can be shared, or tied, among the Gaussian components, such
as having a common co-variance matrix for all components. The choice of model
configuration (number of components, full or diagonal co-variance matrices, and pa-
rameter tying) is often determined by the amount of data available for estimating
the GMM parameters and how the GMM is used in a language model application. It
is also important to note that because the Gaussian components are acting together
to model the overall feature density, full co-variance matrices are not necessary even
if the features are not statistically independent. The linear combination of diag-
onal co-variance basis Gaussians is capable of modeling the correlations between
feature vector elements. The effect of using a set of M full co-variance matrix Gaus-
sians can be equally obtained by using a larger set of diagonal co-variance Gaussians.

Regarding our LM the model parameters for GMLM are the SVD output ma-
trix A of the co-occurrence matrix, the LDA projection matrix B and the mixture
parameters, mean vectors and covariances matrices for each word and the priors for
each mixture.

2.3.3 Tied Mixture Language Model (TMLM)

After trying a variety of different experiments on simple Gaussian Mixture Mod-
els (GMMs) with various components the best results for our initial model came after
training a Tied Gaussian Mixture Model (TMLM) with 64 Gaussians per GMM.[5]

Tied GMM is a specialization of GMMs that instead of having separate sets of
Gaussian distributions for each word, a common set of distributions can be used for
all words with different weights.
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Figure 2.8: Tied GMM

Assume that we have a set of dis-
tributions, we may refer to it as a
Gaussian pool, which is common for all
words. Tied Gaussian mixture model is
a weighted sum of J component Gaus-
sian densities as given by the equation,

P (y|w) =
K∑
k

cw,jN(µj ,Σj) (2.27)

T-GMM is been used in pattern
recognition and statistical modeling ap-
plications, such as acoustic modeling.
Their advantage is that they use a
small set of parameters for large amount
of data, and, consequently, the model
training is more efficient.

Working with TMLMs helps us overcome not only N-gram problems such as
generalizability and adaptability but GMLM’s disadvantages as well by avoiding
the big amount of parameters that a GMLM requires. TMLM provides a great
deal of parameter tying across words, hence achieves robust parameter estimation.
TMLM can theoretically estimate the probability of any word that has as few as two
occurrences in the training data (however the probability estimation of such words
is not always reliable). Moreover by tying our GMM parameters we accomplice to
avoid data-over-fitting problem which rise from the small variances between some
history data.

Figure 2.9: Parameter Tying
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In our initial model we have tied the variance vector for each word, in order to
train our model. So, all the words use the same variance vector for each distribution
and different weights for each mixture.

The model parameters for TMLM are the SVD output of the co-occurrence
matrix, the LDA projection matrix B and the mixture parameters, mean vectors
and covariances matrices for the common set of distributions and the weights for
each word.

2.4 Estimating a Model

Statistical Model Estimation deals with the estimation of parameters for a sta-
tistical model and the supply of informative model summary statistics. In our case
we take as a measure the test data logarithmic probability and perplexity using the
Bayes rule. Both definitions are part of Information Theory and they are the most
common measures for estimating a Statistical Language Model.

Language models are used to estimate word-sequence probabilities. For a word
sequence of N words, P (W ) has information about the sequence’s probability and
accuracy. Our task is using the above notions to decide on the quality of a model
according to P (W ) of each data sequence.

Language can be thought of as an information source whose outputs are words
wi belonging to the vocabulary of the language. The most common metric for
evaluating a language model is the word recognition error rate, which requires the
participation of a speech recognition system. Alternatively, we can measure the
probability that the language model assigns to test word strings without involving
speech recognition systems. This is the derivative measure of cross-entropy known
as test-set perplexity.

2.4.1 Information Theory

Information theory is a branch of mathematics that overlaps into communica-
tions engineering, biology, medical science, sociology, and psychology. The theory
is devoted to the discovery and exploration of mathematical laws that govern the
behavior of data as it is transferred, stored, or retrieved. In this work we use infor-
mation theory in order to estimate the accuracy of a Statistical Language Model.
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2.4.2 Entropy

Given a language model that assigns probability P (W ) to a word sequence W,
we can derive a compression algorithm that encodes the text W using − log2 P (W )
bits. The cross-entropy H(W ) of a model P (wi|wi− n+ 1, · · · , wi− 1) on data W,
with a sufficiently long word sequence, can be simply approximated as:

H(W ) = − 1

NW
log2 P (W ) (2.28)

,where NW is the length of the text W measured in words.

2.4.3 Perplexity

The perplexity Perplexity{P (W )} of a language model P (W ) is defined as the re-
ciprocal of the (geometric) average probability assigned by the model to each word
in the test set W. This is a measure, related to cross-entropy, known as test-set
perplexity.

Perplexity{P (W )} = 2H(W ) (2.29)

The perplexity can be roughly interpreted as the geometric mean of the branch-
ing factor of the text when presented to the language model. The perplexity defined
has two key parameters: a language model and a word sequence. The test-set per-
plexity evaluates the generalization capability of the language model. The training-
set perplexity measures how the language model fits the training data, like the
likelihood. It is generally true that lower perplexity correlates with better language
modeling. This is because the perplexity is essentially a statistically weighted word
branching measure on the test set.

For each language model, it is possible to calculate the perplexity for test data.
Perplexity minimum value is 1 that would mean that all words of a sequence have
probability equal to 1. On the other hand, if a word has zero probability, then the
probability of the whole sentence will be zero and perplexity will be infinite. So, we
can assume that the challenge of a language model is to avoid zero probabilities. A
well- built model should assign small perplexity for large test data sets. Perplexity
value is a quality measure of different models for common test data.

In our occasion after the training of the models , we estimated the test data set
perplexity for each language model as:

logP (test data) = log[P (S1) · P (S2) · · ·P (ST )] (2.30)
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For each test data sentence, we estimate its log-probability as:

logP (Sk) = log[P (w1| < s >< s >) ·P (w2| < s > w1) · · ·P (wn|wn−2wn−1)] (2.31)

= log[P (w1| < s >< s >)] + log[P (w2| < s > w1)] + · · ·+ log[P (wn|wn−2wn−1)]
(2.32)

Using the Bayes rule we estimate each trigram log- probability as:

log[P (wk|wk−2wk−1)] = log
P (wk) · P (wk−2wk−1)∑
V ·P (u) · P (wk−2wk−1|u)

(2.33)

,where V is the vocabulary length and u is every possible history bigram.

Then, we estimate the test data perplexity as:

PPL = exp

{
−logprob

T +W −OOV S

}
(2.34)

, where T is the number of test data sentences, W the number of the words and
OOVS the number of outof–vocabulary words.
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Chapter 3

Continuous Language Model
Adaptation

3.1 Speech Recognition

Speech recognition is the ability of a machine or program to identify words and
phrases in spoken language and convert them to a machine-readable format. Rudi-
mentary speech recognition software has a limited vocabulary of words and phrases
and may only identify these if they are spoken very clearly. More sophisticated
software has the ability to accept natural speech. Speech recognition applications
include call routing, speech-to-text, voice dialing and voice search.

The signal of our voice is by nature a signal in continuous space. In speech
recognition in order to examine the spoken signal more easily we try to model dis-
crete parts of the signal by cutting it into ”pieces”. Now each sub-part of the signal
contains significantly less information than the original one and is much easier to
train an efficient model for each one of these sub-parts.

After having discriminate our parts of speech the collected training-data have
to be parameterized. After the parameterization is implemented we have a set of
speech vectors which are now ready to use for recognizing new test-data.
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Figure 3.1: Speech recognition process [6]

However speech recognition models are not very robust. A speech recognition
system will work perfectly for a single speaker but its efficiency sinks when it is
tested on alternative speakers with different accents. This is exactly where the need
of statistical adaptation algorithms rises. Collecting training data either in written
or in spoken form, is a very uneconomic and time consuming procedure. So the best
idea is to be able to modify an already trained model without the need of a huge
amount of adaptation data.

Relying on this approach we assume a Statistical Language Model trained in
continuous space as an alternate speech recognition model. We introduce the most
known adaptation algorithms for speech recognition and we test how these algo-
rithms work on a SLM.

3.2 Using Speech Recognition Techniques for Language
Model Adaptation

Assume we are given some initial continuous density hidden Markov models
(HMMs) (in our case trained in WSJ domain). We try to improve the modeling of
a new domain (ATIS) by updating the HMM parameters. Statistics are gathered
from the available adaptation data and used to calculate either a linear regression-
based or a maximum a-posterior transformation for the mean vectors. By tying the
transformations among a number of distributions, adaptation can be performed for
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distributions which are not represented in the training data. It is very important
to note that the arbitrary adaptation data can can be easily used and no special-
enrollment sentences are needed.

Such adaptation techniques can be used in various different modes. If the true
transcription of the adaptation data is known then it is termed supervised adap-
tation, whereas if the adaptation data is unlabelled then it is termed unsupervised
adaptation. In the case where all the adaptation data is available in one block, e.g.
from a speaker enrollment session, then this termed static adaptation. Alternatively
adaptation can proceed incrementally as adaptation data becomes available, and
this is termed incremental adaptation. In this work we tried only supervised adap-
tation.

As these technologies were initially tested on speech recognition systems, today
there are many relevant applications which have specific tools for applying the trans-
formations mentioned above in a trained model. We used HTK tool, which is an
application developed on Cambridge University, for speech recognition and model
training. As we worked with words and not with recordings we had to modify our
data properly in order to make them readable from HTK. We used the HERest tool
which provides us with a variant of linear and non-linear transformation adaptation
techniques.

3.3 Model Adaptation using Linear Transformations

The transformation matrices are all obtained by solving a maximisation prob-
lem using the Expectation-Maximisation (EM) technique. Using EM results in the
maximisation of a standard auxiliary function.[6]

The basic idea of the EM algorithm is, beginning with an initial model λ, to
estimate a new model λ, such that p(X|λ) ≥ p(X|λ). The new model then becomes
the initial model for the next iteration and the process is repeated until some con-
vergence threshold is reached.

To enable robust transformations to be trained, the transform matrices are tied
across a number of Gaussians. The set of Gaussians which share a transform is re-
ferred to as a regression class. For a particular transform case Wr, the Mr Gaussian
components {m1,m2, . . . ,mMr} will be tied together, as determined by the regres-
sion class tree. The standard auxiliary function shown below is used to estimate the
transforms:
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Q(M, M̂) = −1

2

R∑
r=1

Mr∑
mr=1

T∑
t=1

Lmr(t)
[
K(m) + log(|Σ̂mr |) + (o(t)− µ̂mr)T Σ̂−1mr

(o(t)− µ̂mr)
]

(3.1)
,where

• M is the model set.

• M̂ is the adapted model set.

• T is the number of observations.

• m is the number of component.

• O is a sequence of d-dimensional observations.

• o(t) is the observation at time t.

• µmr is the mean vector for the mixture component mr.

• Σmr is the co-variance matrix for the mixture component mr.

• Lmr(t) is the the occupancy probability for the mixture component mr at time t.

• K(m) subsumes all constants.

and Lmr(t), the occupation likelihood, is defined as,

Lmr(t) = p(qmr(t)|M,QT ) (3.2)

and qmr(t) indicates the Gaussian componentmr at time t, andOT = {o(1), . . . , o(T )}
is the adaptation data. The occupation likelihood is obtained from the forward-
backward process.

3.3.1 Maximum Likelihood Linear Regression

Maximum likelihood linear regression or MLLR computes a set of transforma-
tions that will reduce the mismatch between an initial model set and the adaptation
data.[6]

More specifically MLLR is a model adaptation technique that estimates a set of
linear transformations for the mean and variance parameters of a Gaussian mixture
HMM system. The effect of these transformations is to shift the component means
and alter the variances in the initial system so that each state in the HMM system
is more likely to generate the adaptation data. The transformation matrix used to
give a new estimate of the adapted mean is given by:

µ̂ = Wξ (3.3)
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where W is the nx(n+1) transformation matrix (where n is the dimensionality of
the data) and ξ is the extended mean vector,

ξ = [w µ1 µ2 . . . µn]T (3.4)

where w represents a bias offset whose value is fixed at 1.
Hence W can be decomposed into:

W = [bA] (3.5)

,where A represents an nxn transformation matrix and b represents a bias vector.
This form of transform is referred to in the code as MLLRMEAN

3.3.2 Mean Transformation Matrix (MLLRMEAN)

Substituting the for expressions for MLLR mean adaptation

µ̂mr = Wrξmr (3.6)

Σ̂mr = Σmr (3.7)

into the auxiliary function, and using the fact that the covariance matrices are
diagonal, yields

Q(M, M̂) = K − 1

2

R∑
r=1

d∑
j=1

(
wrjG

(j)
r wTrj − 2wrjk

(j)T
r

)
(3.8)

,where Wrj is the jth row of Wr and

G(i)
r =

Mr∑
mr=1

1

σ2mri

ξmrξ
T
mr

T∑
t=1

Lmr(t) (3.9)

k(i)r =

Mr∑
mr=1

T∑
t=1

Lmr(t)
1

σ2mri

oi(t)ξ
T
mr

(3.10)

Differentiating the auxiliary function with respect to the transform Wr , and then
maximising it with respect to the transformed mean yields the following update:

wri = k(i)r G(i)−1
r (3.11)

The above expressions assume that each base regression class r has a separate trans-
form. [6]
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3.3.3 Co-variance Transformation Matrix (MLLRCOV)

There are two standard forms of linear adaptation of the variances. The first is
of the form:

Σ̂ = BTHB (3.12)

,where H is the linear transformation to be estimated and B denotes the inverse
of the Choleski factor of Σ−1. Thus :

Σ−1 = CCT (3.13)

B = C−1 (3.14)

This form of transform results in an effective full co-variance matrix if the trans-
form matrix H is full. This makes likelihood calculations highly inefficient. This
form of transform is only available with a diagonal transform and in conjunction
with estimating an MLLR transform. The MLLR transform is used as a parent
transform for estimating H.

An alternative more efficient form of variance transformation is also available.
Here, the transformation of the covariance matrix is of the form:

Σ̂ = HΣHT (3.15)

,where H is the nxn co-variance transformation matrix. This form of transfor-
mation can be efficiently implemented as a transformation of the means and the
features.

N(o;µ,HΣH) =
1

|H|
N(H−1o;H−1µ,Σ) = |A|N(Ao;Aµ,Σ) (3.16)

,where A = H−1. Using this form it is possible to estimate and efficiently apply
full transformations. [6]

3.3.4 Constrained MLLR Transformation Matrix (CMLLR)

Constrained MLLR forces the transform to be the same for both mean and
variance parameters. If we assume the for expressions for CMLLR adaptation

µ̂mr = µmr (3.17)

Σ̂mr = HrµmrH
T
r (3.18)
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and we substitute them into the auxiliary function, with respect to the fact that
the co-variance matrices are diagonal yields:

Q(M,M̂) = K +

R∑
r=1

β log(priw
T
ri)−

1

2

d∑
j=1

(wrjG
(j)
r wTrj − 2wrjk

(j)
r )

 (3.19)

,where Wr = [−Ar b̂rH−1r ] = [bA]

wir is ith row of Wr, the 1xn row vector pri is the zero extended vector of co-factors

of Ar and G
(i)
r and k

(i)
r are defined as:

G(i)
r =

Mr∑
mr=1

1

σ2mri

T∑
t=1

Lmr(t)ζ(t)ζ(t)T (3.20)

k(i)r =

Mr∑
mr=1

µmri

σ2mri

T∑
t=1

Lmr(t)ζ(t)T (3.21)

Differentiating the auxiliary function with respect to the transform Wr , and then
maximising it with respect to the transformed mean yields the following update:

wri = (apri + k(i)r )G(i)−1
r (3.22)

,where a satisfies the following quadratic equation:

a2priG
(i)−1
r pTri + apriG

(i)−1
r k(i)Tr − β = 0 (3.23)

There are thus two possible solutions for a. The solutions that yields the maxi-
mum increase in the auxiliary function (obtained by simply substituting in the two
options) is used. This is an iterative optimization scheme as the co-factors mean
the estimate of row i is dependent on all the other rows.[6][1]

3.3.5 Adaptation Procedure for MLLR adaptation using Baum-
Welch Algorithm

1. Initialization of Ao(g) = I, bo(g) = 0, g = 1, · · · , Ng for all transformation

2. E-step: Perform one iteration of the forward-backward algorithm using Gaus-
sians transformed with the current value of the transformations Wk(g) =
[Ak(g), bk(g)]. For all components and all GMMs collect the sufficient statis-
tics:
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(a) µi(g)

(b) Σi(g)

(c) ni(g) =
∑

x p($i|Ao, bo, x)

The re-estimation formulae and the sufficient statistics which are calculated
difference according to the type of MLLR adaptation.

3. M-step: Compute the new transformation parameters [Ak+1(g), bk + 1(g)]

4. If another iteration, goto (2)

[1]

3.4 Model Adaptation using Maximum A-Posteriori Prob-
ability (MAP)

Model adaptation can also be accomplished using a maximum a-posteriori (MAP)
approach. This adaptation process is sometimes referred to as Bayesian adaptation.
MAP adaptation involves the use of prior knowledge about the model parameter
distribution. Hence, if we know what the parameters of the model are likely to be
(before observing any adaptation data) using the prior knowledge, we might well
be able to make good use of the limited adaptation data, to obtain a decent MAP
estimate. This type of prior is often termed an informative prior. Note that if the
prior distribution indicates no preference as to what the model parameters are likely
to be (a non-informative prior), then the MAP estimate obtained will be identical
to that obtained using a maximum likelihood approach.

For MAP adaptation purposes, the informative priors that are generally used
are the speaker independent model parameters. For mathematical tractability con-
jugate priors are used, which results in a simple adaptation formula.

The update formula for a single stream system for state j and mixture component
m is:

µ̂jm =
Njm

Njm + τ
· µjm +

τ

Njm + τ
µjm (3.24)

where τ is a weighting of the a priori knowledge to the adaptation speech data
and N is the occupation likelihood of the adaptation data, defined as,

Njm =
R∑
r=1

Tr∑
t=1

Lrjm(t) (3.25)
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,where µjm is the speaker independent mean and µjm is the mean of the observed
adaptation data and is defined as,

µjm =

∑R
r=1

∑Tr
t=1 L

r
jm(t)oTt∑R

r=1

∑Tr
t=1 L

r
jm(t)

(3.26)

As can be seen, if the occupation likelihood of a Gaussian component (Njm) is
small, then the mean MAP estimate will remain close to the speaker independent
component mean. With MAP adaptation, every single mean component in the sys-
tem is updated with a MAP estimate, based on the prior mean, the weighting and
the adaptation data. Hence, MAP adaptation requires a new speaker-dependent
model set to be saved.

One obvious drawback to MAP adaptation is that it requires more adaptation
data to be effective when compared to MLLR, because MAP adaptation is specifi-
cally defined at the component level.

When larger amounts of adaptation training data become available, MAP be-
gins to perform better than MLLR, due to this detailed update of each component
(rather than the pooled Gaussian transformation approach of MLLR).

In fact the two adaptation processes can be combined to improve performance
still further, by using the MLLR transformed means as the priors for MAP adapta-
tion (by replacing µjm in equation 3.6 with the transformed mean of equation 3.3).
In this case components that have a low occupation likelihood in the adaptation
data, (and hence would not change much using MAP alone) have been adapted
using a regression class transform in MLLR.
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Chapter 4

Experiments & Model
Evaluation Results

4.1 Introduction

During this work we tried a big variation of different adaptation approaches.
We performed six baseline experiments in total. Half of them were made with a
discrete LM, built by SRILM toolkit [4] and the rest with a continuous LM. As
Continuous LM adaptation has never been tried before and thus we had no other
similar mechanism to compare our work, our baseline experiments were focused on
training a LM with the same data we used for adaptation.

Regarding our adaptation experiments we tried both MLLR and MAP adapta-
tion techniques. Initially we experimented on global/domain HMM transformations
and afterwards we tried to adapt our models by organizing the adaptation data into
clusters and applying a different transformation to each background model. At last
we combined linearly our best experimental tries and we examined which combina-
tion improved our results most.

All the experiments were made with various amounts of adaptation data and
with a constant vocabulary of 782 words. As covered before, these words are the
common words from the WSJ initial model’s vocabulary and the ATIS domain. In
this section we will refer to it as common vocabulary.

All the experiments were performed on GMMs with tied variances as, as proved
experimentally, they are capable of modeling language much better than the com-
mon GMMs.
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4.2 Baseline Experiments

We examined three different baseline experiments both in discrete and continu-
ous LM. We trained each LM by combining data both from WSJ and ATIS domain
with respect to the adaptation vocabulary.

The training and test data information of the two domains is presented in the
following two tables:

Table 4.1: Training Data Statistics from WSJ and ATIS

Number of Sentences Number of Words Number Different Words

ATIS 18688 224566 782

WSJ 150000 4447740 2700

Table 4.2: Test Data Statistics from ATIS

Number of Sentences Number of Words Number Different Words

ATIS 4000 50424 492

4.2.1 Discrete Language Model

To create the discrete Lm we used,as we said before the SRILM toolkit. SRILM
is a collection of C++ libraries, executable programs, and helper scripts designed
to allow both production of and experimentation with statistical language models
for speech recognition and other applications. The toolkit supports creation and
evaluation of a variety of language model types based on N-gram statistics, as well
as several related tasks, such as smoothing and class-based models.

At first it generates the n-gram count file from the corpus, then it trains the
language model from the n-gram count file and it calculates the test data perplexity
using the trained language model. Also it can perform word clustering.

In particular we give an example of how SRILM works:
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Figure 4.1: SRILM toolkit

This command generates and manipulates N-gram counts, and estimates N-gram
language models from them.

• ngram -count
-vocab Lexicon.file -text train.txt -order 3 -write train 3gram -unk

,where:

• -vocab file: reads a vocabulary from file.

• -text filename: train data set

• -order: sets the maximal length of N-grams

• -write filename: output file that contains N-gram counts

• -unk: sets any unknown words with oov (out-of-vocabulary)

The output file has the following format and it presents the N-gram counts:

vestavia 1
vestavia suburb 1
vestavia suburb comma 1
...
fortys line 1
fortys line twenty 1

The next step is to create the language model file. To do so we have to execute
the bellow command:
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• ngram -count
-vocab Lexicon.file -read train 3gram -order 3 -lm langmod.lm

,where:

• -vocab file: vocabulary file.

• -read countfile: N-gram counts file

• -order: N-gram length

• -lm langmod.lm: language model file

The output file has the following format:

/data/
ngram 1=57789
ngram 2=849565
ngram 3=375899
/1-grams:
-6.604123 1 -0.1859108
-6.604123 2 -0.1859108
-1.428032 < /s >
...
/2-grams:
-0.4572527 1 rightparen
-0.4572527 2 rightparen
...
/3-grams:
...
-0.893048 mr zyman said -0.893048 mr zyman says
/end/

At last we have to evaluate our model. To do so we execute the the command:

• ngram -ppl test.txt
-order 3 -lm langmod.lm

,where:

• -ppl file: test data perplexity file.
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• -order: N-gram length

• -lm langmod.lm: language model file

The output file contains the logarithmic probability of each sentence and its per-
plexity. It also evaluates the perplexity of the whole test data, the number of words
and the out-of-vocabulary words.

p( banks — < unk > ...) = [1gram] 0.000475788 [ -3.32259 ]
p( need — banks ...) = [1gram] 7.3968e-05 [ -4.13096 ]
p( more — need ...) = [2gram] 0.0191286 [ -1.71832 ]
p( period — < unk > ...) = [1gram] 0.0436764 [ -1.35975 ]
p( < /s > — period ...) = [2gram] 0.925196 [ -0.0337663 ]
1 sentences, 6 words, 2 OOVs
0 zeroprobs, logprob= -10.5654 ppl= 129.741
ppl1= 437.869
file test.txt: 4000 sentences, 50424 words, 350 OOVs
0 zeroprobs, logprob= -127767 ppl= 589.524 ppl1= 1080.5

The final SRILM results for all the experiments are presented in the
table bellow:

Table 4.3: SRILM baseline experiments

TRAIN DATA TEST DATA NUM OF TRAINING DATA VOCABULARY FROM PERPLEXITY

ATIS ATIS 18688 common vocabulary 15

WSJ ATIS 150000 common vocabulary 589

WSJ+ATIS ATIS 168688 common vocabulary 29

4.2.2 Continuous Language Model

We tried the same baseline experiments with the continuous LM. To do so we
had to modify the code of Mr.Tsiakas. The main problem was that the only option
was to extract the vocabulary from the given training corpus. We wrote a Perl script
which gives us the option to train a Language Model with a given vocabulary and
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modifies the training corpus according to it.

Moreover we checked all the given programming code parts in order to make it
more parametric. Our target was to make it work with every possible amount of
training data and vocabulary.

Finally we modified the model estimation code which was written in Matlab
aiming to make it faster. The initial code needed almost 9 days in order to estimate
the perplexity for 4000 sentences of test data. After our editing we managed to take
results for each experiment after 8 hours.

As covered before, on model training chapter, we edit our training sentences by
transforming them into indecies. We split them into train and test sets. Then, we
construct the co-occurrence matrix. We perform Singular Value Decomposition for
dimensionality reduction. Using this word mapping, we collect our history vectors
for each word and map them to a lower dimension using Linear Discriminant Anal-
ysis. The projection matrix B, is used for the projection of each history matrix to
our new continuous space, with lower dimension.

The EM algorithm is used to train mixture parameters, such as mean, variance
vectors and mixture weights. Language model parameters are estimated and we can
use the test data to evaluate the test set perplexity.

The perplexity estimation for each test sentence was computed as mentioned in
paragraph 2.4.3

The final Continuous LM results for all the experiments are presented
in the table bellow:

Table 4.4: Continuous LM baseline experiments

TRAIN DATA TEST DATA NUM OF TRAINING DATA VOCABULARY FROM PERPLEXITY

ATIS ATIS 18688 common vocabulary 750

WSJ ATIS 150000 common vocabulary 1543

WSJ+ATIS ATIS 168688 common vocabulary 825
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4.3 Adaptation Experiments

As already mentioned we performed various adaptation techniques. We applied
MLLR-MEAN, Constrained MLLR and MAP adaptation to all models and we ex-
perimented with various collections of history vectors for adaptation.

Before applying the adaptation techniques, we had to carry our adaptation data
exactly in the same form as the training data were before the training of the initial
model.

This is necessary for two main reasons. The first one is that we deal with
NLP problem in continuous space. Hence the initial word and history vectors that
Singular Value Decomposition confers us (1x100) suffer from the problem of dimen-
sionality. Practically that means that the memory and computational cost is very
high to achieve the desired results. The second reason is that our results have to
be completely comparable with our baseline experiments which were made with the
initial continuous LM.

4.3.1 Preparation of the Adaptation Data

Until now we have explained how these adaptation methods are being applied
to our initial models. However in order to adapt our models the adaptation data
need a curious pre-processing.

Firstly we have to clean our adaptation data from all punctuation. Thus we re-
placed every punctuation with its periphrastic description. For example ”.” became
”period”, ”,” became ”comma” , ”’” became ”quote” etc.

Secondly we had to clean the data from empty lines , trash undefined/incorrect
words and special tags (ex. @fragment-reject@ or @noise-reject@ ). Moreover we
replaced every abbreviation with the real word sequence (ex. ”what’s” to ”what is” )

After that we had to turn all data into lowercase and replace every digit or num-
ber with its alphabetic synonym (ex. ”1” to ”one”).

In the next step we inserted < s > and < /s > symbols at the beginning and
the end of each sentence, consequently.

At last we had to define our vocabulary. The background model was trained
with a vocabulary of 2700 most frequent words. In our approach we decided to
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define our vocabulary as the collection of the common words from the two domains.
According to this assumption we concluded to a vocabulary consisting 782 words.
Every word from the adaptation data which was not in the vocabulary was replaced
by the tag < unk >. This tag was considered as one (and the most frequent) of the
vocabulary words.

After the pre-editing mentioned above a training sentence would be transformed
as shown below:

Initial Sentence

What’s the seating capacity for US air flight 975

Final Sentence

< s > what is the < unk > capacity for us air flight nine seven five < /s >

The next step was to turn our data into index sequences. Each index shows the
position of each word in the vocabulary. The vocabulary words are listed in de-
scending order according to their occurrences. For example the tag < unk > which
is the most frequent word in our adaptation data is represented by the number 1.

So the above sentence was transformed to a sequence of numbers separated with
a space char.

Indexed Sentence

3 8 12 6 1 247 27 46 50 88 7 61 190 34 2

After pre-editing was completed we had to separate a sub-part of the adaptation
data in order to test our re-estimated models. We had in total 22.800 adaptation
sentences. We kept 4000 sentences for testing and the other 18800 (or sub-parts of
them) were used as training data.

The complete information about adaptation data is summarized in the table
bellow:
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ATIS Training Data Test data

Num of Sentences 18688 4000

Num of Words 224566 50424

Num of different words 782 492

Table 4.5: Adaptation Data Information

4.3.2 Before Adapting the Background HMMs

To apply the adaptation algorithms we used the HTK speech recognition toolkit.
However HTK is by default a tool for speech modeling. In order to work with written
entities an extra modification of our data was needed. Fortunately HTK provides
us an option to write our data in an HTK readable format.

Another problem we had to solve was to match the words from the adaptation
vocabulary with the initially trained models. For each word in adaptation data we
had to find its corresponding background model in order to perform adaptation.
Thus we wrote a Perl script which made the word matchmaking and saved the re-
sults in a file. This file informs us that the ith word from ATIS vocabulary is related
with the jth word/HMM from the initial WSJ model.

In all experiments we re-estimated only the mean vector of each GMM’s compo-
nent. All the variances where tied between the Gaussians and we used only diagonal
variance matrices.

4.3.3 Initial Adaptation Approaches

As covered before the adaptation data had to be transformed in the same way
as the training data before re-estimating the background HMMs.

Therefore, in our first tries, targeting to make adaptation data to fit the back-
ground model’s training data we found the co-occurrences between words in our
corpus. Hence we created an (782x782) co-occurrence matrix which comprises the
above information as explained in detail in paragraph 2.2.2 .

After the co-occurrence vectors had been collected we applied on them the SVD
algorithm (2.2.3) and create an 1x100 vector for each word. As already mentioned
with SVD we manage simultaneously to reduce the vectors dimensions and to ex-
pose better the various relationships among the adaptation data.

51



Moving to the next step we collected for each word the previous two history
vectors and we concatenated them. Hence we had an 1x200 vector for each word’s
history bigram (2.2.4).

The last step before model adaptation was to reduce even more the vectors di-
mensions. Thus we performed the LDA algorithm 2.2.5. LDA algorithm manages
to reduce vectors dimensionality (from 200 to 50 ) while preserving as much of the
class discriminatory information as possible. We estimate a projection matrix B
(200x50) which gives us the ability to project each history vector (equation 2.2) to
the new-dimensional space.

Unfortunately, because of lack of adaptation data for many in-vocabulary words
the final results were quite disappointing . The main problem was that the major-
ity of the extracted SVD vectors were quite small and hence unable to represent
an efficient and reliable model. The training samples were influencing our models
efficiency and we were observing huge differences between the perplexity according
to the collection of the adaptation data.

In the following charts we illustrate some characteristic results of this approach.

Figure 4.2: Initial experiments-Global MLLR with 2000 Adaptation data
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Figure 4.3: Initial experiments-Global MLLR

As it can be easily observed not only our model is fully depended from the
adaptation data but despite the theoretical definitions the perplexity varies while
increasing the adaptation sentences.
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Non-square co-occurrence matrix

In a try to overtake the above problem we tried to work with non-square co-
occurrence matrices.

More specifically we handled only the words which had more than N occurrences
in our adaptation data and we extracted the SVD vectors only for these words. For
the rest in-vocabulary words we used the SVD vector of the < unk > tag when
needed.

We examined the same experiments again however with no significant improve-
ment. Conversely the dependence between the collection of adaptation data and the
models efficiency was strengthen.

Figure 4.4: Non-Square co-occurrence matrix-Global MLLR
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SVD vectors from initial model

Finally we managed to secure our model’s stability by taking advantage of the
SVD vectors of the initial WSJ LMs. As covered before our initial LM is consisted of
2700 words. None of these words had less than 10 occurrences in the WSJ training
corpus and thus the SVD vectors could represent efficiently the required information.

In contrast to the previous tries we started our adaptation procedure by col-
lecting the history bi-grams for each word. In spite of extracting the SVD vectors
from the adaptation data we made the word-mapping by assigning each word to its
related SVD vector from the initial model. As covered our vocabulary is practically
a sub-part of the initial vocabulary as we worked with the common words of the
two domains.

It is very important to mention that the prior probabilities for each GMM ini-
tially were extracted by modifying the WSJ training corpus with respect to the adap-
tation vocabulary. Eventually the prior probabilities were not accurate to represent
efficiently the frequency of the in-vocabulary words from ATIS domain. However we
had manage to build a stable model regarding the collection of adaptation sentences.

The chart bellow illustrates the differentiation of the perplexity as the number
of adaptation data rises.

Figure 4.5: Adaptation with SVD vectors and prior probabilities from WSJ initial
model
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Modifying GMMs prior probabilities

It is obvious however that the perplexities in the previous chart are extremely
high. In comparison to our baseline experiments with the Continuous LM we have
achieved a small improvement unable though to make our system usable.

The solution came after scaling the words prior probabilities according to the
adaptation data.

More specifically, we extracted the prior word probabilities from the adaptation
data. For each adaptation data-set we counted the number of occurrences for each
word and we divided this amount with the total number of words. When we used a
subset of the total adaptation data (500,1000 adaptation sentences etc), where not
all the in-vocabulary words occurred, we assumed that the missing words had at
least one occurrence.

Through this assumption we managed to weight our models significance with
respect to the ATIS vocabulary. As it is shown in the following sections the results
were impressively improved.

4.3.4 Adaptation using MLLR Decision Rule

To apply MLLR adaptation with HTK we used the HERest tool with the op-
tion -u set to a. By typing: HADAPT:TRANSKIND = MLLRMEAN or
HADAPT:TRANSKIND = CMLLR to the command’s configuration file we let the
tool know which type of linear adaptation we want.

The HTK command HERest which was used is the following:

,where hmmdefs is the path to background models, scpfilename includes the
path to the appropriate adaptation data, configall is the commands configuration
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file and adapt models is the path where the adapted models are saved. All the other
input files are there to secure the correct choice of the adaptation data. They are
mandatory by HTK but they include no useful information to be reported.

Global Adaptation Experiments

In global adaptation experiments we collect all the history vectors ,from all the
vocabulary’s words, and we adapt each initial model with the same adaptation data.
We perform in total 782 transformations ,one for each word/model.

We made 6 experiments in total. The difference between the experiments is that
each time we work with a different number of adaptation data. For each experiment
the adaptation data were chosen randomly from the total amount of adaptation
sentences.

The Global MLLR adaptation results are presented in the following
matrices

Table 4.6: MLLRMEAN Global Adaptation

NUM OF ATIS ADAPTATION SENTENCES PERPLEXITY

500 144

2000 135

6000 135

10000 134

14000 133

18688 132
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We examined the same experiments again but this time instead of using the
LDA projection matrix from the adaptation data we used the LDA matrix from the
initial LM.

Table 4.7: MLLRMEAN Global Adaptation - LDA matrix from initial model

NUM OF ATIS ADAPTATION SENTENCES PERPLEXITY

500 144

2000 136

6000 134

10000 134

14000 134

18688 134

Figure 4.6: (1)Global MLLR

As we can see there are no significant differences between the two approaches.
For that reason we continued experimenting by extracting the LDA matrix from the
adaptation data.
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Table 4.8: CMLLR Global Adaptation

NUM OF ATIS ADAPTATION SENTENCES PERPLEXITY

500 204

2000 174

6000 171

10000 165

14000 158

18688 153

Figure 4.7: MLLRMEAN vs CMLLR
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4.3.5 Adaptation using MAP Decision Rule

In MAP adaptation we tried two different types of experiments. The first one is
known as domain MAP adaptation and the second one as word-class MAP adapta-
tion. The difference is again on the set of history vectors that we use to adapt each
word/model.

To apply MAP adaptation with HTK we used again the HERest tool but now
with the option -u set to p. By setting -u to mp we ask HTK to update only the
mean vectors.

The HTK command HERest which was used is the following:

,regarding the input files applies the same as in MLLR adaptation.

Domain MAP

In Domain Map adaptation we approach the problem in the same way as we did
with Global MLLR. We collect all the history vectors from all the words and we
practice the same adaptation to all initial models.

Again we practiced our experiments two times. In the first try we worked with
the LDA projection matrix which was extracted from the adaptation data and in
the second one we use the LDA matrix which was extracted from the history vectors
of the initial model.

The experimental results are shown in the following two tables:
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Table 4.9: Domain MAP Adaptation

NUM OF ATIS ADAPTATION SENTENCES PERPLEXITY

500 154

2000 139

6000 136

10000 135

14000 134

18688 133

Table 4.10: Domain MAP Adaptation - LDA matrix from initial model

NUM OF ATIS ADAPTATION SENTENCES PERPLEXITY

500 145

2000 136

6000 134

10000 134

14000 134

18688 134

Figure 4.8: Domain MAP
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4.3.6 Clustering Adaptation Experiments

To examine a different approach, we tried to adapt each initial LM with a differ-
ent subset of history vectors. To do so we organized our words in classes. When we
wanted to adapt a word/model we only considered the histories of words belonging
to the same class with the word for adaptation.

The class-creation was made by the SRILM toolkit. SRILM accepts as input a
data-set and a vocabulary and creates as many classes as asked. The SRILM places
the words in clusters according to their co-occurrences.

Each word belonged strictly only in one class. We tried in total 11 different
clustering experiments by alternating the number of clusters at each one. We per-
formed the same experiments both on WSJ background models and on already,
globally adapted models.

As before, for each experiment, we computed 782 transformations in total, one
for each word. However each word was adapted with a different collection of history
vectors.

MLLR Clustering on WSJ initial models

Table 4.11: (1)MLLR Clustering-500 adaptation sentences

NUM OF WORD-CLASSES PERPLEXITY

10 175

20 162

30 162

40 162

50 162

60 162

70 162

80 162

90 162

100 162

782 168
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Table 4.12: (1)MLLR Clustering-1000 adaptation sentences

NUM OF WORD-CLASSES PERPLEXITY

10 156

20 168

30 169

40 169

50 169

60 169

70 169

80 169

90 169

100 169

782 172

Table 4.13: (1)MLLR Clustering-18688 adaptation sentences

NUM OF WORD-CLASSES PERPLEXITY

10 114

20 104

30 99

40 95

50 93

60 93

70 96

80 99

90 100

100 105

782 117

It is obvious that as the adaptation data increase our clustering approach deliv-
ers better results. When using all the adaptation data we are able to create up to
60 classes and the results are significantly better than applying a global adaptation.
However when less data used clustering does not affect our model the same way. No
more than 20 classes can be made and the perplexity is higher than applying global
adaptation with the same adaptation data.
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MLLR Clustering on globally adapted models

Table 4.14: (2)MLLR Clustering-500 adaptation sentences

NUM OF WORD-CLASSES PERPLEXITY

10 144

20 144

30 144

40 144

50 144

60 144

70 144

80 144

90 144

100 144

782 144

Table 4.15: (2)MLLR Clustering-1000 adaptation sentences

NUM OF WORD-CLASSES PERPLEXITY

10 135

20 138

30 138

40 138

50 138

60 138

70 138

80 138

90 138

100 138

782 138
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Table 4.16: (2)MLLR Clustering-18688 adaptation sentences

NUM OF WORD-CLASSES PERPLEXITY

10 114

20 105

30 99

40 95

50 93

60 92

70 95

80 95

90 96

100 98

782 103

These results come with no surprise. As our models are already close enough
to the ATIS domain when we apply this clustering approach no great changes are
observed. When dealing with a small amount of data we see that the affect of the
transform is almost unobserved. However when we use the total amount of data the
perplexity falls significantly in contrast to its initial model.
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MAP Clustering on WSJ initial models

Table 4.17: (1)MAP Clustering-18688 adaptation sentences

NUM OF WORD-CLASSES PERPLEXITY

10 117

20 110

30 106

40 104

50 102

60 102

70 101

80 101

90 101

100 101

782 106

MAP Clustering on domain adapted models

Table 4.18: (2)MAP Clustering-18688 adaptation sentences

NUM OF WORD-CLASSES PERPLEXITY

10 114

20 106

30 101

40 99

50 97

60 96

70 95

80 95

90 95

100 95

782 97
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As we already know from the theory, when we have to handle a small amount
of adaptation data MLLR reacts better than MAP. From the above charts we can
observe that when we use all the adaptation data almost always MLLR performs
better than MAP. Thus we decided not to repeat these experiments with less sen-
tences. However when we considered each word as a single class MAP performed
better than MLLR.

4.3.7 Combinatory Experiments

After experimenting with MLLR and MAP separately we tried to combine se-
quentially the best adaptation approaches in order to improve the performance of
our LM. We tried a great variety of combinations and right bellow we illustrate the
best results.

Table 4.19: Combinatory Experiments

EXPERIMENT PERPLEXITY

Domain MAP 133

Domain MAP/ 60 classes MLLR 92

Domain MAP/ 60 classes MLLR/ 70 classes MAP 90

Domain MAP/ 60 classes MLLR/ 70 classes MAP/Word-Class MAP 88
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Figure 4.9: Combinatory Experiments

Figure 4.10: Continuous LM Adaptation vs Baseline Experiments
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Chapter 5

Conclusion

5.1 Summary of Results & Personal Observations

According to the experimental results, it becomes obvious that adapting a Con-
tinuous LM leads to surprisingly better results than training a completely new model
with the same amount of data, especially if the available data are extremely limited.

Moreover, as revealed, it is very important that the background model is a sta-
ble, well trained model with a sufficient amount of training data. In this case we
may be able to overtake possible adaptation problems due to lack of adaptation data
by taking advantage of its statistical information.

Regarding the adaptation mechanisms, MLLR revealed as the most appropriate
adaptation algorithm as it can provide high efficiency even if we have less than 1000
adaptation sentences. As the adaptation data increase MLLR and MAP tend to
coincide (Figure 5.1).
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Figure 5.1: Global MLLR vs Domain MAP

As we already knew Tied GMMs model written language more effectively than
common GMMs. Thus reestimating only the means of the components and tying the
variances together leads to higher efficiency and guarantees extremely faster adap-
tation as the parameters to be estimated are significantly fewer (Figures 5.2,5.3).
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Figure 5.2: (1)CMLLR vs MLLRMEAN - 500 sentences

Figure 5.3: (2)CMLLR vs MLLRMEAN - 500 sentences
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When the adaptation data are extremely limited the use of the initial model
statistics should be favored. Especially if MAP adaptation is preferred. As the
amount of adaptation data rises the valuable information that can be extracted
from them increases. This keeps happening until a threshold is reached (according
to the adaptation domain this threshold has to be found empirically) where the use
of the adaptation data statistics favors the adapted model more (Figure 4.8).

Applying different transformations to each GMM proved that can give a great
boost to the final models. Especially if each transformation is concentrated to the
current word/model. The only condition is that the history vectors which are used
for adaptation are plenty enough to improve the model parameters. Performing
these separate transformations after applying a global adaptation to all models can
lead to even higher efficiency according to the adaptation data available (Figure 5.4).

Figure 5.4: Clustering on different initial models

Finally ,as expected , applying serial transformations on a GMM and targeting
each time to specify the transformation on the current word/model leads to the best
possible results (Figure 4.9).
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5.2 Future Work

Unfortunately we did not manage to overtake the efficiency of N-grams which is
the dominant technology for language modeling. However we accomplished a great
improvement in comparison to the baseline experiments with the Continuous LM.

As already mentioned, this work is an initial approach on this topic. My personal
opinion is that higher efficiency can be attained by combining our experimental con-
clusions with external research.

More specifically I believe that the reliability of the adapted models could be
increased by applying the adaptation techniques proposed in this study on alterna-
tively trained initial models.

By organizing the initial models into clusters it is possible to save great compu-
tational cost as the transformations needed will be reduced. Under that assumption
we could achieve more effective adaptation even for a very small amount of adapta-
tion data as the required parameters to be estimated will be considerably fewer.

Furthermore if we set as first priority the independence between the background
and the adapted models, model merging could be a possible solution. By merging
the final models we reduce simultaneously the essential parameters. Thus more in-
formation can be gathered in less models.

Finally a very interesting scenario is to extend the adaptation vocabulary. This
will not cause the increase of the model’s efficiency. However it will focalize the final
models more to the adaptation domain as there are plenty of words which are very
popular in ATIS but do not exist in WSJ and thus in this study they are considered
as out-of-vocabulary.
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