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Abstract

Power control is important in interference-limited cediylad-hoc, and cognitive un-
derlay networks, when the objective is to ensure a certaalitgof service to each
connection. Power control has been extensively studiekisncontext, including dis-
tributed algorithms that are particularly appealing intext-and cognitive settings. A
long-standing issue is that the power control problem maypteasible, thus requiring
appropriate admission control. The power and admissiotralgparts of the problem
are tightly coupled, but the joint optimization problem i®fard. We begin with a
convenient reformulation which enables a disciplined exrapproximation approach.
This leads to a centralized approximate solution that isemigally shown to outper-
form the prior art, and even yield close to optimal resultsdrtain cases - at affordable
complexity. The issue of imperfect channel state infororais also considered. A
distributed implementation is then developed, which alitgs between distributed ap-
proximation and distributed deflation - reaching consermsus user to drop, when
needed. Both phases require only local communication amgbatation, yielding a
relatively lightweight distributed algorithm with the sarperformance as its central-
ized counterpart.



Chapter 1

Introduction

Power control has been extensively studied in the contexelhfilar networks, as a
way of mitigating intra-cell and inter-cell interferenc29] 10]. Power control is also
important in infrastructure-less ad-hoc wireless netwpihere multiple co-channel
links operate simultaneously, causing interference tcamaher. Originally motivated
by the need to support circuit-switched-quality voice ga¥s (now voice-over-1P and
other applications requiring guaranteed rate), the pliagaiormulation of power con-
trol aims to ensure a certain quality of service, measurddrins of a link’s signal to
interference plus noise ratio (SINR), to every user in thevoek. A key difficulty that
has long been recognized is that the problem is often irtfesasit is not possible to
simultaneously satisfy all user demands in the same timeequéncy slot. This brings
up the issue of admission control, and a natural objective irmaximize the number
(or weighted sum) of admitted users. The joint admission@owler control problem
is NP-hard, but important in practice [1, 7, 3].

The work to date on joint admission and power control has geduongradual
removals(e.g., [1, 7, 3]) until the problem becomes feasiblegmdual admissions
(e.g., [28, 25, 2, 22, 23, 24]) when possible. In both casesigsue is whether or not
to remove or admit a single user, and adjust transmissiorepoif necessary. Dis-
tributed admission control algorithms that accept or teg@dancoming call in a power-
controlled cellular network can be found in [28] and [25]inl@dmission and power
control strategies offering active user protection havenbievestigated in a series of
papers [2, 22, 23, 24]. Active user protection makes seiose & customer experience
point of view (e.g., few dropped calls). On the other handait be far from optimal in
terms of accommodating the maximum possible number of yseosher ‘social’ met-
rics; and it limits agility, which can be crucial in certaioenarios. Admission control
for maximal throughput in power-controlled networks hasrbeonsidered in [15].

Efficient utilization of the wireless spectrum has been avirg concern lately, ow-
ing to the inherent scarcity of the resource and the pletbbeaerging mobile devices
and services competing for bandwidth. It has become apptranstatic regulatory
allocations of parts of the spectrum to services/users rig wefficient. Cognitive
radio has thus emerged as an adaptive cohabitation parddigwireless communi-
cation. Cognitive radio nodes sense their environment aagbtatheir transmission
mode to enable efficient spectrum sharing. The idea is tolersgizondary spectrum
usage while avoiding or limiting interference to licenseihyary users, in a way that is
fair to other peers. Building upon the functionality offérey (then nascent) software
radio, cognitive radio was conceived in the late '90’s [20he concept started gain-



ing momentum a few years later, after a U.S. Federal Commatiaits Commission
(FCC) Spectrum Policy Task Force report [8] highlighted the typical utilization of
licensed bands is under 20%. There is plenty of idle spectrumost places, most
of the time; the issue is how to discover it in a timely fashéomd use it in an efficient
manner. This realization sparked considerable reseaghlatory, and standardization
activity, starting in 2003 and growing fast nowadays.

Two basic modes of operation of cognitive radio have emesgefdr [32, 31, 16]:
spectrum overlayin which secondary users seek idle time-frequency sloasgmis-
sion opportunities) and try to avoid colliding with the pamy users (e.g., see [33]); and
spectrum underlayin which secondary users try to limit the amount of intezfeze
they cause to the primary users, but otherwise forego actigtection and may trans-
mit ‘at will’ - even in the same time-frequency slot(s) as gngnary users. Both modes
require some level of situational awareness - spectrumrsgasd activity detection
for spectrum overlay, interference channel gain estiméto spectrum underlay - but
at different accuracy and time scales. Overlay systemsdllision-limited, but may
transmit at relatively high power when transmission opytities arise. Underlay sys-
tems require proper power control, but afford relativelgraéess coexistence without
stringent sensing requirements.

Taking advantage of spatial reuse, secondary spectrunrlapde closer in spirit
to the traditional point of view of interference-limited neless networks. This has fa-
cilitated migration of research results on power contn@nsmit beamforming, and
scheduling from the cellular to the cognitive regime [12, 3@]. An uplink beam-
forming and power control scenario where the objective im#ximize the sum rate
of the secondary users under interference constraintseprimary users has been
considered in [30]. Explicit user admission is not needed sum-rate context. A
downlink beamforming scenario for the secondary usersiisidered in [12], under
SINR constraints on the primary and secondary users. libigsand user selection
issues were not dealt with in [12]. In the same context, a gtilmal user selection
strategy was recently proposed in [11], based on pairwigegonality of the channel
vectors.

The joint power and admission control problem is consideénetthis paper, for a
cognitive underlay scenario where:

e Primary users must be guaranteed a premium service ratesuneglaby their
signal to interference plus noise ratio (SINR);

e Secondary users, if admitted, should be provided with attlaabasic service
rate;

e The number of admitted secondary users should be maximareti the total
power required to serve them should be minimized.

The ad-hoc setting can be viewed as a special case wheraisea§ are peers, and
there are no primary interference constraints. A discgaiconvex approximation ap-
proachis adopted in this paper. Instead of aiming for the harddbegtimal solution

or directly trying to approximate it, the idea is to approzim the problenper seby a

suitable convex problem that is “close” to the original ofike solution of the convex
problem is then used to guide the search for a good feasihiéi®o of the original

problem. In our particular context, linear programmingaration is used for convex
approximation, and the final approximate solution is olgdithrough a sequence of
linear programs. The issue of imperfect channel staterimdition (CSI) is also consid-
ered. Assuming bounded CSI errors, and insisting that th&kRSQlonstraints be met in



the worst case, a robust reformulation of the joint power athahission control prob-
lem is obtained. This admits a second order cone program{8@¢P) relaxation, and
approximate solution through a sequence of SOCP programsilaion results are in-
cluded to illustrate the merits of the approach. Two scesaaie considered: with or
without a primary user. In the latter, several good hewrigljorithms are available in
the literature, and the prevailing one is used as a baselirute-force enumeration
algorithm is used in both cases to assess the gap from theal@dlution.

An appealing feature of classical power control solutia¢hat they lend them-
selves to distributed implementation. When the power coptablem is feasible, the
global optimum can be reached using only local updates. Hakhuses local inter-
ference plus noise measurements at the receiver to updatptresponding power
at the transmitter. Distributed implementation is impottior a number of reasons,
including scalability, agility (the ability to track chaag in the operational environ-
ment), and reduced vulnerability to node failures. Depegain the kind of feedback
required, distributed implementation can also be morawerght in terms of signaling
overhead. These considerations motivate distributedeémehtation of the proposed
algorithm. This is the subject of the last part of the papdre Tesulting implementa-
tion alternates between distributed approximation anttidiged deflation - reaching
consensus on a user to drop, when needed. The approximdiase pises dual de-
composition - each node updates its local primal variabédle subgradient iterations
are used to update the dual variables. The deflation phaskysrg consensus-on-
the-max algorithm to reach agreement on which user to dfoeeded. Both phases
require only local communication and computation, yietdanrelatively lightweight
distributed algorithm that converges to the same appraesalution as its centralized
counterpart.

This body of work is the expansion of my undergraduate digldh@sis under the
supervision of Prof. Sidiropoulos. In that thesis, the wandsented in [18], we focused
on the centralized algorithm. Additions in this thesis irt®: a proof of NP-hardness
for the original problem, a distributed implementationpbust version of the problem
and algorithm and comprehensive simulations.



Chapter 2

Problem Formulation

Consider a channel that is used by a single primary Ugeand K secondary users

U :={1,...,K}. By ‘user here we mean a transmitter - receiver pair (d@ddink).

A single primary user is considered for brevity of expositidt is straightforward to
include additional constraints to account for more primasgrs; this does not change
the structure of the problem in any way. Ugdransmits with powep;, < PM4X . The
primary user’s transmission powgy is fixed, because cooperation cannot be assumed.
For each linkk we definec,, as the SINR threshold that must be attained for the link to
meet its QoS requirement. Lef denote the thermal noise power at the reviver of link
k andG;; the link gain from the transmitter of linkto the receiver of linkj.

Our purpose is to allow secondary users to use the chanr@uwtitisrupting the
primary user's communication. One way to achieve this isdntiolling the secondary
user transmission powers. When there are many secondasyclimipeting for service
and/or the SINR constraints are tighter than can be satjgfaeder control alone cannot
solve the problem. In this case we need to employ some forndimission control.
Admission control should be optimized together with powkcation, because the
two are intertwined.

The problem of interest can be described in two stages: magithe number of
secondary users that can be admitted, and then minimizethlepower required to
serve them. Mathematically, the first stage can be expresstallows.

So =argmaxc (1 gy (p,er, i |5 (2.1)

stp, < PMAX Vee{l,... K} 2.2)

S Gt o, Vkes (2.3)
>o1=1, 126 Guepr + Gokpo + 0

Coolo 5 ¢, (2.4)

K -
>im1 Guope + 03

Here (2.3) is the SINR constraint for the secondary userd,(2@) is the SINR
constraint for the primary user. Notice that the te&®).po in the denominator of (2.3)
accounts for the interference caused by the primary useseioiu

Once a maximal admissible subset of secondary users is fadrat remains is to
adjust their powers to minimize the total transmitted powéis can be written as



min Dk (2.5)
{pr ER+}{:(:1 kes,

st.p, < PMAX VEkeS, (2.6)
Griprk
>cr, VkeS, 2.7
Zl;ﬁk’,leso Gupr + Gogpo + 0}% ¥ ( )
G
poPo > o (2.8)

EZESO GlOpl + )

Remark 1 There may be multiple equivalent (in terms of cardinalitgjusons of
(2.1)-(2.4), which may lead to different sum-power in (ZA8). If multiple solutions
do exist, one may wish to solve (2.5)-(2.8) for each candidatution of (2.1)-(2.4),
and pick the one that yields the overall smallest sum powénerend. In the sequel,
we will reformulate the overall problem in a way that will ks directly to the global
minimum power solution through a single optimization pesbl

The power control problem in the second stage (2.5)-(2 8)isear Program (LP)
and thus easily solved - there even exist specialized solsithat are far more efficient
than generic LP solvers for the particular problem in (Z58). The challenge lies in
the first (subset selection) stage:

Claim 1 The subset selection problem in (2.1)-(2.4) is NP-hard.

Proof 1 Consider the following special case of (2.1)-(2.4):
So =argmaxsc 11 ky, (prefo.)yi, 15| (2.9)

St >1, VkeS (2.10)
21:17 £k Guepr +1

We will show that it contains the maximal independent seblpra, which is known to
be NP-hard [9]. Letl’ = (V, E) be an undirected graph, witfV'| = K vertices, one
for each user, and edges;, € E. A subset of verticeS C V of I is independent
when no two vertices i$' are connected by an edge M. Given anyl' = (V, E),
define a corresponding instance of (2.9)-(2.10) by setting

- 1, ek € )
G, = { 0, otherwise (2.11)

LetS; be a maximal independent setlin Setting

1, kesS;
Pk = { 0, otherwise (2.12)

will satisfy
Pk

K
21:1, 12 Guepr +1

—1, Vkes, (2.13)



because, by definition of independent set &gl the nodes irb; do not interfere with
one another, and the power of any remaining nodes has beechgdioff. It follows
that|S,| > |S;|. Conversely, lefp;, < [0, 1]};11 be such that

1 >1, Vkes (2.14)
D=1, 1k Gt +1

for someS C {1,..., K}. The only way for this to hold is to haye = 1, Vk € S,
hence it must be that;, = 0 for all pairs ! € S, k € S. By definition ofGyy,
this implies thatS is an independent set in. This is true in particular forS,, hence
|Si] > 1S5]. =

Note that NP-hardness of joint admission and power contral ¢ellular context has
been considered in [1], but the proof there is incomplete

1[1] does not show that aarbitrary instance of the chosen NP-hard problem can be posed as andest
of (2.1)-(2.4).



Chapter 3

Convex Approximation

3.1 Step 1: Single-stage Reformulation

We next reformulate the two-stage problem in (2.1)-(2.4) @n5)-(2.8) into arequiv-
alent single-stage optimizatiqeroblem. This is in the spirit of the approach in [17],
albeit it does not follow as a special case. Let us considefaliowing problem:

K K
min €Y pr+(1—€)) M(sp+1)2 (3.1)
{PkeR+75k€{717+1}}kK:1 ; ;
stpy < PMAX vke{l,... K} (3.2)
Gupk + 0, (e 1 ik (3.3)
Z{;_’ 12k Guept + Gogpo + 0~
Goopo > o (3.4)

Yisi Gopr + 03

We have introduced binary scheduling variabigsvhich take the value -1 for an
admitted user and 1 for a dropped one. Notice that variaplalso appears in the
SINR constraint of uset. For sufficiently smalb;, ands; = 1, the SINR constraint of
userk becomes inactive; whereas fgr = —1 the constraint remains active. The cost
function (3.1) accounts for both admission and power cénirbe admission control
component of the cost is discrete-valued, whereas the pmweponent is bounded. By
choosinge small enough, we can ensure that admission control hasiabgmiiority
over power control: dropping any user costs more than casilgde saved in terms of
transmission power for the rest. A ruler analogy in whichdkeimal ticks correspond
to the discrete admission cost and the intervals betweks die (partially) spanned by
the power cost can be helpful to intuitively appreciate thikoWing result:

Clam2 For A\, =1,k e {1,--- ,K},and
4
S PUAY 44
4
Ck (Z;Iil 1k G PMAX 4 Gorpo + U%)

0<e< (3.5

ok < (3.6)

7



the single-stage reformulation in (3.1)-(3.4) is equivdk® solving the two-stage prob-
lem in (2.1)-(2.4) and (2.5)-(2.8). In fact, if there are tiple solutions to (2.1)-(2.4),
solving (3.1)-(3.4) will yield the one of minimum sum power.

The proof is by contradiction, similar to the line of argurham[17]. We skip it here
for space considerations.

The reason for introducing the weightg is that these can be used to promote
‘social welfare’ or ‘fairness’. For example, settirdg. proportional to theith user’'s
gueue length will optimize system throughput; setting iteirsely proportional to a
running average estimate of the user’s service rate wilberage fairness. Do note,
however, that the equivalence to (2.1)-(2.4) and (2.53)(.lost when the weights are
not equal, as this differentiates the users.

3.2 Step 2: Isolating Non-convexity
The problem in (3.1)-(3.4) is of course also NP-Haamd not directly amenable to

convex approximation. The followingquivalentreformulation explicitly reveals the
non-convex part of the problem, thus getting us closer ton@&oone:

K K
min €Y pr+(1—¢) A Tr(1ox2Sk 3.7)
{pk€R+,SkeR2X2}f:1 ’; ( ,; 2x2 )
stpy < PMAX vke{l,... K} (3.8)
Gk 61 Tr(15508
- kkPr + O Tr(Lax2 ) >, Vee{l,... K} (3.9)
21:1, 14k Gupr + Gogpo + 0,
Goopo > ¢ (3.10)

S, Gopr + 03

S > 0,rank(S) = 1, S(1,1) = Sp(2,2) = 1Vk € {1,..., K} (3.11)

whereS; > 0 means that matri$, is positive semidefinite. Its diagonal elements are
1's and its off-diagonal elements hold the original schetplrariables,. Matrix 155
is the2 x 2 matrix of all1's.
The rank-one constraint restricts the scheduling var&ibléhe sef{ —1, +1}. This
is the only source of non-convexity in (3.7)-(3.11).

3.3 Step 3: Semidefinite Programming Relaxation

Dropping the rank-one constraints (which is equivalentlmnang the s;’s to take any
value in[—1 + 1]) leaves us with a Semidefinite Programing (SDP) [5] problem:

K K
min € pr+(1—e€ M Tr(1ay2Sk (312)
e e ’; ( )}; (12x25k)

170 see this, sek;, = 1, Vk, and send — 0 to recover (2.1)-(2.4). A formal proof can be constructed
to show that it contains the maximal independent set probleeiathe proof of Claim 1



stp, < PMAX vke{l,...,K} (3.13)

Gripr + 05, "Tr(12525k)

>, Vke{l,... K} (3.14)
Zfil, 12 Guept + Gorpo + o?
- Goopo = >0 (3.15)
211 Gopr + 0§
Sk >0,5:(1,1) = Sk(2,2) =1Vk e {1,...,K} (3.16)

In [26], it is shown that this rank relaxation yields the Lagge bi-dual problem,
which is the closest convex problem to (3.7)-(3.11) in aaimrsense, thus motivating
rank relaxation; see also [13] and [14] for further insigutsl motivation.

In our case, the relaxed problem (3.12)-(3.16) can be eslsdwn to be equivalent
to the following linear program.

K K
min € pr+(1—e¢ YR (3.17)
{preRy treRL I, ; );
stp, < PMAX Vke{l,..., K} (3.18)

Gripr + 05, ' tx

>cp, Vke{l,... K} (3.19)
Zfil’ 12k Guept + Goxpo + f
- Goopo > ¢ (3.20)
2121 Gopr + 03
0<ty<4, Vke{l,... K} (3.21)

which further simplifies computation. The solution of (313.21) yields a lower
bound on the objective of (3.7)-(3.11), and thus a way tosastee quality of subop-
timal solutions to (3.7)-(3.11). Still, solving the relakproblem in (3.17)-(3.21) is
certainlynot equivalent to solving the original problem in (3.7)-(3.1Hpow to obtain

a good approximate solution of (3.7)-(3.11) using (3.1 2{) is addressed in the next
section.

3.4 Step 4: Approximation Algorithm

The main idea is to emplogieflationover (3.17)-(3.21). That is, solve (3.17)-(3.21),
and check if all the original constraints are satisfied. If wboose a user to drop and
repeat until the problem becomes feasible.

Algorithm 1 Linear ProgrammingDeflation (LPD):
1L.U+{1,.,K}
2. Solve (3.17)-(3.21) for the userstifonly.

3. If all links in i/ attain target SINR go to Step 4. Else use a heuristic (see text
below) to choose a link, remove it frdshand go to Step 2.



A quite important factor for the performance of this alganitis the heuristic em-
ployed to drop links at each iteration. We tried many, andnttost promising one is
as follows. At each step, after solving (3.17)-(3.21), wiulate a metric for each
link. Let p; be the excess transmission power needed for firtk attain its target
SINR, assuming all other link powers are as calculated frdrh7)-(3.21). This ex-
cess transmission power for link causes excess interference to all other links. Let
i =Dy, Z#k G, be the sum of excess interference powers caused to all atksr |
due top;. Lety; = >, Gupj be the excess interference caused to fintiue to
the excess transmission powers of all other links. The lighrim used for choosing
the link to drop ismy, := z§ + y5. The link that has the largest,, is dropped, and
the process continues by solving again (3.17)-(3.21) ferrémaining links, until a
feasible solution (requiring no excess power for any liskfoiund.

10



Chapter 4

Imperfect Channel State
Information

An important issue in practice is what happens when the aiayains are not known
exactly, but only estimates are available. Assuming thatektimation errors are
bounded, it is possible to extend the basic approach topacate uncertainty, as ex-
plained next. The key is the LP relaxation in (3.17)-(3.24) robust LP with bounded
uncertainty in the constraint parameters is SOCP (seg¢segion [4.4.2] in [5]).

The SINR constraints in (3.19) can be compactly written as

671
gip— F-ti < —of, vk e {1,... K} (4.1)
k
where .
i = [GOk' Gig ... G(kfl)k - Cikkk G(k+1)k . GKk]T (4.2)

and the augmented power vector (note fhails not an optimization variable)

p=1[popi... pr]" (4.3)

Likewise, the primary user’s SINR constraint in (3.20) caelzpressed as

glp< o, Vke{l,....K} (4.4)
where o
go = [_% G Gao ... Gro)T (4.5)

Now, assume that the true vectgrs and vectorg,, lie inside ellipsoid<t;, and&
with centers the respective estimated valggaindg,:

g1, € & = {gx + Epu | |lulla <1}, Vk € {0,..., K} (4.6)

where matrixk;,, € RE+1xK+1 determines the size, shape and orientation of ellipsoid
&x.. The robust counterpart of (4.1) is

5
gkp— -tk < —of, Vg, € &, k€ {1,... K} 4.7)
k

11



or equivalently, for each,

—1

sup {gl‘fp - %tk lgi € 51«} < -0
671

sup {gip | gi € Ex} — Ckftk < —o}
5_161

gip+sup {u"Elp||lull; <1} - CLtk < —oj
§f1

gip+ B pll2 - gfktk < -0} (4.8)

To ensure that the inequality holds when libks not admitted, we have to pickd
that satisfies it fop, = PMAX VI # k, p, = 0 andt, = 4. For diagonalEy, 6y
should satisfy

4
or (X0, ot GuPMAX + || BFPYAY |5 + 02

Ok

IN

where Pﬁ”,cAX is the vector of maximum link powers, including the primarseq
with a zero in elemenkt. Note that the primary user transmits with a fixed power
po = PMAX_ In the same manner, the robust counterpart of the primamysuSINR
constraint (4.4) is

gop < —a3, Vgo € & (4.9)

which can be reduced to
gop+ 1B pll2 < —0p (4.10)

Replacing inequalities (4.1), (4.4) with their robust vens (4.8), (4.10) yields a
SOCP problem. The overall approximation algorithm remainslar to LPD for the
case of perfect CSl, except that the SOCP formulation is nropl@yed in lieu of LP
as the basic deflation step, and the robust constraints (4.8)0) are used to check
whether links attain their target SINR in the worst case.

In scenarios with severe uncertainty, we found that inteirtyian additional step
(see below) helps prevent overestimating interferencenguhe course of deflation,
thus yielding significantly better results. The completeust algorithm is as follows.

Algorithm 2 SecondOrder ConeDeflation (SOCD):
UL, K}
. Solve (3.17),(3.18),(4.8),(4.10),(3.21) for the useig only.

. If all links in/ attain target SINR terminate.

A W N P

. Solve again only for the links that attained their SINRy&rand update their
powers in the previous solution.

5. Use the heuristic on the full solution (resulting powectee) to choose a link,
remove it fronl/ and go to Step 2.

12



Chapter 5

Distributed Implementation

The first obstacle in designing a distributed algorithm ®47)-(3.21) is that the con-
straints in (3.19)-(3.20) are coupled across users. keatt would like each user
to optimize its own variablespf, andt;), relying on low-rate feedback from other
users to ensure that the solution converges to the globahopt. Towards this end,
we will employ a dual decomposition approach [21, 34]. bet [p1,po,.. .pK]T,

t = [t1,t2,...tx]" denote the primal variables, apd= [uq, su1, . .. ux]” the vector
of dual variables (bear in mind that thg's are link weights defined in the original
problem formulation; for this reason, the dual variables @enoted by:y.). Let us
form the partial Lagrangian

K K
Lip,t,p) =€y pe+(1—€)> Ml
k=1 k=1

K K
+> e e Y Gupr+ cop — Grepr — 0 't
k=1 1=0,1#k

K
+Ho (Co > Gupi + coop — Goopo)

=1

_ezpk+ (1—¢) Z)\ktk+2uk0k Z Gurpr

1=0,l£k

K K
+ > kckor — > ukGrrpr — Z 10y,
k=0 k=0 k=1

All terms in this expression are separated (sums of indalidser contributions), ex-
cept for the third one. Notice, however, that this term mayeveritten as

K K
Zukck Z Gup =Y, Y. mckGup

1=0,1k k=0 1=0,1%k
K K
:Z Z urcrGupr = sz Z prcr G
1=0 k=0 k£ —0  k=0k#l

13



This is a key step towards distributing the computation. [$pireg variablest and!
and substituting back in the Lagrangian, we obtain

L(p.t,p) —GZpk-i- 1—e¢ ZMU;-&-ZM Z G

k=0 =0,k
K K K
+> pkeror — > kGrrpr — Y 0y
k=0 k=0 k=1
K K
=Y i | e+ D> maGu — G
k=0 1=0,1#k
K K
Jrztk ((1 — ) — uk(;];l) + Zukckaﬁ
k=1 =

K

Z k(Phs Ths 1)

where fork € {1,..., K}

Li(prste, ) = pr | €+ Z wiciGry — G

1=0,i4k
+ti (1 — €)M — pidy ') + prcrop (5.1)
and
K
Lo(p) = po (6 + Z werGor — ﬂoG00> + HoCoo] (5.2)
=1

Notice thatL, is a function of justu sincepq is constant and not included mand
there is nat, - the primary user is always admitted. Dual variabjeis the cost users
have to pay to interfere with usér We have rewritten the Lagrangian as the sum of
K + 1 individual Lagrangians involving only local variables atiee dual variables.
The dual function can be split as well,

K K
d(p) lanLk Protio ) = > di(p)
k=0 k=0
where we have suppressed the box constraings ofor brevity, and fork € {1,..., K}

di(p) = inf py | e+ Z G — Gk

Pk>lk

1=0,1k
+tx (1= M — b, 1) + prcroi (5.3)
whereas
K
do(pt) = po (6 + Z miciGor — H0G00> + Hocoog (5.4)
=1
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As expectedl; is constant ovep andt. This is a consequence of the fact that the
primary user has no local (i.e. primary) variables to opteni The resulting dual
problem is

it o8 d(p) (5.5)
which can be solved in a distributed fashion using the ptegesubgradient method.
The overall approach iterates between computing miniraie€k5.3) inclosed form
using them to calculate subgradientsipnd updating costg.

In order to recover the solution of (3.17)-(3.21) (i.e., tpimal primal variables)
from the dual problem, the objective of the primal problerowdtl be strictly convex.
The linear objective in (3.17) is convex, but not strictlyngex. We may bypass this
difficulty by approximating the objective in (3.17) with

Zp1+9 (1—e Z )\kt1+9 (5.6)

wheref is a small positive constant which can be chosen to ensur¢hiaaolution of
the modified problem is within specified tolerance from thiathe original problem.
With this modification, (5.1) becomes

K
Li(prstrsp) =i | bl + D maGr — mGi
1=0,1#k
+ 1% ((l — E))\ktz — uké,;l) + ,ukaU]% (5.7)
whereas (5.3) becomes
dy(p) = lnf Pk epy + Z iclGrr — peGrr
1=0,lk
+ e (L= )Mty — 6y, ') + prcror (5.8)

and both are strictly convex. Note that (py, ¢, i) contains a term depending only on
i, another depending only @R, and separate interval constraintspant;. It follows
that minimization ofLy (pk, tx, ) With respect tqpy, ¢, amounts to two separate 1-
D strictly convex subproblems. Taking partial derivativeh respect tqpy, ¢, and
equating to zero, we obtain

1/6
oG = S G (5.9)
b = € (1 + 9) |
and 1/6
i} Py
(b A
t ((1 W 9>) o

followed by projection of;, onto[0 PM4X], andt; onto[0 4]. In each iteration, user
k updategy, andt, as above, then updatgg using a projected subgradient step

e = [ — aprl+ (5.11)
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where[-]+ denotes projection onto the positive half-spacés a suitable step size;,
is the positive slack from the SINR constraints, which#og {1, ..., K} is given by

pr(Prs tr) = Grrpr + 0 't — o Y Gupr — cxoy (5.12)
17k
and
po = Goopo — o Y, Giopi — oo (5.13)
170

It has been shown (e.g., section 6.3 in [4], and [34]) tharifevery k and givenu,

pj andt; are minimizers ofL, the vector of slackgy(p;,t;) makes up a subgradi-
ent of the negative dual functiond at u. Using the update rule in (5.11) results in
minimizing —d or, equivalently, solving our dual problem.

The convergence properties of the algorithm are dependetiteochoice of step
sizea. There are various strategies for the step size choice iliténature. We chose
a; = ap/iwherei is the iteration number ang, is the initial step size (this sequence is
square summable but not summable). This ensures convergetite optimal solution
(e.g., Proposition 6.3.4 in [4]), however the speed of cay@ece depends heavily on
the choice ofay. Fig. 6.8 illustrates convergence of the primglvariables in an
infeasible scenario witk" = 3 nodes.

5.1 Distributed Deflation and Feedback Requirements

The algorithm used in the distributed setting is essegtib# LPD algorithm described
in Section 3.4, where the primal-dual method describedisgéction is used instead
of a centralized LP solver for step 2. In each iteration of ghrimal-dual method, user
k € {1,..., K} updates its local variables using (5.9), (5.10), (5.121,1p[or (5.13),
(5.11) fork = 0]. The update in (5.9) requires that noklés aware ofc;, Gy; and the
current pricey, for each neighboring nodeaffected by interference from nodg(i.e.,
for which G; # 0). A separate low-rate control channel can be used to pass@ro
this information to neighboring nodes. The update in (5.12)11), [or (5.13), (5.11)
for k = 0] is lighter in terms of feedback, as it only requires measythe received
interference plus noise (i.e., the quan@ik Gup + 03).

After convergence of the primal-dual method (end of steptBénalgorithm), each
link checks if its SINR constraint is satisfied. If not, a distited consensus process to
select a link to drop is initiated by any link, via the contotlannel. In order for the
link dropping heuristic described in 3.4 to be used, agaitagequantities need to be
communicated over the control channel.

Let p;, be the excess power needed for lihko attain its target SINR, assum-
ing all other link powers are those obtained upon convergencink & computes
the sum ofexcesdnterference caused to and received from neighboring Jlinks,
my == pg Z#k Gu + E#k Guxp§. This requires that link also knowsG, p§ for
the links it receives interference from. This informati@nde locally shared using the
control channel. A distributed consensus-on-the-maxrilgo can then be employed
over the control channel to reach agreement on the indexeofirik with maximum
my, and drop that link.

Distributed consensus algorithms have attracted coraitleinterest in signal pro-
cessing lately, sparked by the work of Xiao and Boyd [27], aghothers. Distributed
consensus has a longer history though, including the casengensus-on-the-max
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and general functions; see [6] and references therein. thilmiged flow that achieves
consensus-on-the-max in finite time for strongly connegiegbhs is given in [6]. A
conceptually simpler discrete-time approach is to let este compute a local maxi-
mum at each time-step. If the graph is strongly connectésititi yield consensus on
the global maximum in at moststeps, where is the radius of the graph. This assumes
that interim estimates are exchanged between neighboaslatiene step, however it is
easy to relax this requirement and still guarantee convergainder mild assumptions.
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Chapter 6

Simulations

We carried out three sets of experiments: centralized vétfept CSlI, distributed with
perfect CSI and robust centralized with CSI uncertainty.edch case we examined
scenarios with and without a primary user, to cover cogaitadio and ad-hoc settings,
respectively. In all our simulations we tested the abilifyeach algorithm to admit
a close to optimal (as given by enumeration) number of usarsdrying K (user
population), target SINR, or channel gain uncertainty mribbust case.

In the sequel, each figure reports Monte-Carlo (MC) averagelts for at leasi00
MC runs. For each MC run, transmitter locations are unifgrdrawn on & Km x 2
Km square. For each transmitter location, a receiver lond drawn uniformly in a
disc of radiust00 meters, excluding a radius o6 meters. The power budget for any
link % is given byPMAX = pPMIN 'wherePM!¥ is the minimum power required for
the link to satisfy its SINR constraint in the absence of artgriference. The primary
user’s power is fixed t&}’4X. Link gains are calculated by;; = 1/d}; whered;; is
the Euclidean distance between transmiti@nd receiveyj, and receiver noise is set to
—60 dBm. For our relaxation-based algorithms, theare kept close to the respective
bounds (specifically dt.999 times the value given by (3.6)) amds set to one order of
magnitude smaller than the upper bound given by (3.5).

6.1 Centralized Algorithm under Perfect CSI

Results for this set of experiments are summarized in Figgéreto 6.5. As a baseline
for our LPD algorithm, we implemented the gradual removaRNaDCPC algorithm
of [1]. This algorithm was not developed for a cognitive mdcenario (it does not
account for interference to the primary user). Despite gis, &1] still represents the
state-of-art in the case when no primary users are consid@ifee heuristic used was
'SMART’ as described in [1]. In the course of implementingsthlgorithm, we came
up with an improved variant, which we also included in ourdmtions under the name
'GRN-DCPC SMART Modified?.

In order to include the ultimate upper bound in our compassave also developed
a carefully optimized stack-based enumeration algorithethalways finds the optimum
solution for modest problem sizes (up to 20 secondary uséitsis works by either

1The modification consists of normalizing cross gains by thesimitter’s self link gain, instead of the
receiver’s self link gain. Using the notation in [1] (bewarfethe reversed role of indices) this translates to
Q5 = Gij /gjj instead of the originadxij = gij/gii (for 5 # 1).
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growing or pruning the candidate set of users. In growing enahce an infeasible
set has been detected, its supersets are not tested; imgpmnoide, once a feasible set
has been found, its subsets are not tested. The code wasderifainst brute-force
enumeration in extensive Monte-Carlo experiments for uptasers.

In all experiments in this section, except for figure 6.3 wetke power budget
coefficient tob = 5. A comparison of LPD, the two flavors of GRN-DCPC, and the
optimal solution (via enumeration) in terms of the averagmber of admitted users
versus the user populatioR;, is provided in Figure 6.1 fof, = 0 dB andc;, = 8 dB.
Our modification of'GRN-DCPC SMART’ performs better thartbriginal and LPD
performs very close to optimal for the range considereduréi®.2 shows the average
number of admitted users versus a larger number of candidates, illustrating the
increasing gap of LPD relative to both flavors of GRN-DCPC.

The transition from the power limited to the interferenaaited regime is illus-
trated in Figure 6.3, as the average number of admitted wsersthe power budget
coefficientb. There we can see a 'law of diminishing returns’-type bebtiawvhere
gains from power are only reaped in the early stages of isorgahe power budget.

Figures 6.4 and 6.5 depict results in a cognitive radiorsgttiThe primary trans-
mitter and receiver, when present, are located on an edgedfm x 2 Km square,

1 Km apart and symmetrically with respect to the edge midpokdr Figure 6.4, a
single primary user is present with = 2d B, and for the secondary usefs = 2dB,

or ¢, = 5dB. Figure 6.5 shows the average number of admitted userss/graisec-
ondary user’s SINR target, with or without a primary usemryes markedP = 1 or

P = 0, respectively) withey = 2dB. In this case, the number of admitted users de-
creases roughly linearly with respect to the SINR targe8nld both figures we notice
that our LPD algorithm performs close to optimal in the sc&rsaconsidered.

6.2 Centralized Algorithm with Imperfect CSI

In order to assess the performance of our robust SOCD diguritve use the same
simulation setup as in our previous experiments. The nemai¢lies in our modeling

of channel gain uncertainty. As already described in Seatidor any given receiver,

the receiving gains are assumed to be lying in an ellipsaitered on the nominal gain
values. Furthermore, for the purpose of these simulatiaasgsume diagonal ellipsoid
matrices and perfect self link gain knowledge. Specificdfig entries of the ellipsoid
matrix E;, are given by:

LN nkGika i:jandz’;«ék
Ey(i,j) = { 0, otherwise’

wheren, € [0,1) represents the level of uncertainty for the receiving gastamated
by receiverk. The amount of this uncertainty is a fraction of the actuaigiamodeling
an additive uncertainty for an estimate in dB.

The deflation algorithm employed here is the robust SOCDridexst in section
4. Only enumeration is available for comparison in the rolmase. This is similar
to the enumeration algorithm used in our earlier simulatjamly this time using the
SOCP formulation of Section 4 to test user subsets for adoiigs Figure 6.6 shows
the average number of admitted users versus the total nuofihesers fore, = 2,
no primary user present, and uncertainty coefficiepts= 0.1 or n, = 0.9. Figure
6.7 shows the average number of admitted userd @ocandidate users, versus the
uncertainty coefficienty,. For this figurec, = 0, one set of curves is without a primary
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user and the other set includes a primary user with= 2 and higher estimation
uncertainty than the more versatile secondary usgys< 2n;). Again our SOCD
algorithm performs very close to optimal.

6.3 Distributed Algorithm

To assess the performance of our distributed LPD algoritlemwill again compare to
the two flavors of GRN-DCPC and enumeration, described iti@e6.1. We present
indicative simulation results for both an ad-hoc scenarithout a primary user (to
enable comparison with [1]), and a cognitive radio scenaiti a primary user present.
In all experiments in this section we set the power budgefficent to b = 2.

For the distributed-algorithm-specific parameters disedsn Section 5 we sét=
0.2, and the initial step-size was empirically setdgp = 1. The dual variables were
initialized asuy ~ 1/Gy, and the slackg;, were normalized by?kké,;l to bring
the different links to scale and ensure approximately ecatals of convergence. A
maximum of 5K iterations were allowed for the primal-duatdbuted solver of the
relaxed problem, followed by a final phase that linearly ¢sin; to 0 in 500 iterations,
thus damping any residual oscillation.

Figure 6.9 reports the average number of users admitteds/ére total number of
users forc,, = 2, for enumeration, the two flavors of GRN-DCPC, the centealizPD
algorithm, and its distributed counterpart, with or withaLprimary user witfey = 2.
Since the GRN-DCPC algorithms are not applicable in scesavith primary users,
they are omitted in the second set of curves. Finally, figui® 8hows the average
number of users admitted versus the secondary users’ Sligettior 12 users and
Co — 2.

We notice that our distributed LPD performs the same as tmralzed LPD,
which is a significant improvement over 'GRN-DCPC SMART'. IQuodification of
'"GRN-DCPC SMART’ performs close to LPD in this simulatiomvever we would
like to point again to the results in figure 6.2, which demumatstthe clear superiority
of LPD for a large number of users.

For the purpose of discussing the communication requirésraerd solution speed
of our distributed algorithm, let us give an example. Assameé Mbps control chan-
nel. At every iteration, every user has to broadcast its daiahbley,.. A conservative
estimate of the message size including coding and user > gis a packet of 50 bits.
Assuming a total of 10 users this translates to 20K iteratimnapproximatelyt link
removals per second. Compared to this, simpler algoritlikesGRN-DCPC [1] (or
its improved variant proposed herein) take only a smalltioacof the time, making
the use of distributed deflation worth when we do admissiarirobinfrequently (for
relatively longer transmission rounds) and/or in difficetenarios where we need to
squeeze-in the maximum possible number of users.
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Figure 6.1: Mean number of admitted users vs. total numbeantiidate users, for
c, =0 andck = 8 dB.
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Figure 6.2: Mean number of admitted vs. total number of ydersa large candidate
population and;, = 2.
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Figure 6.3: Mean number of admitted users vs. power budgdticients, for ¢, = 2
and 50 users.
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Figure 6.4: Mean number of admitted secondary users vd. totaber of secondary
users, for a single primary link wittyy = 2 dB and secondary SINB, = 2 or ¢, = 5.
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Figure 6.5: Mean number of admitted users vs. secondarySibsit constraint for 2
secondary users, witi= 1) / without (P = 0) a primary user witleg = 2.
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Figure 6.6: Robust case: Mean number of admitted users.fer 2, andn, = 0.1 or
Nk = 0.9.
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Figure 6.7: Robust case: Mean number of admitted users vertamtyr,, for 10
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primary usercy = 2, gain uncertainty set tgy = 2n;.
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Figure 6.8: Distributed implementation: Convergence ahpi ¢; (infeasible scenario
of 3 users).
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Chapter 7

Discussion and Conclusions

Our results suggest that the proposed LPD algorithm is vesynjsing. It indeed
comes close to attaining the performance of the optimatisol@at the cost of solving
O(K) LP problems in the worst case. This requires a fraction otarse on a current
personal computer, as opposed to several minutes needelforeration for = 20,
which is modest. LPD clearly outperforms the state-of-dremwno primary users are
considered. This is already important, because the joimisgion and power control
problem has been under scrutiny for many years. Interdgtiogr robust solution (the
SOCD algorithm) appears to have an even smaller gap relatitlee optimal robust
solution.

We have also developed a distributed implementation of dfré pdmission and
power control algorithm. The new implementation alteredtetween a distributed
approximation phase and a distributed deflation phase. &tter Employs consensus-
on-the-max to select alink to drop, if needed. Both phasgsirelocal communication
and computation. Still, communication and computatiomiegments are considerably
higher than those of simpler heuristic solutions, makirgfriiuted deflation worth
its cost in relatively challenging scenarios, or when weesktie for (and costs are
amortized over) longer horizons.
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