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Preface 

Breast cancer constitutes one of the most frequent types of cancer among 

women, yet it can be efficiently treated and cured when it is diagnosed in the first 

stages. Over the last years, medical advances have led to the identification of 

numerous tumor biomarkers facilitating the understanding of the molecular basis of 

tumor progression and treatment response. Prognostic markers aim to objectively 

estimate the patient’s overall outcome, while predictive markers focus on the 

objective evaluation of the possible benefits from a specific clinical intervention.  

The HER2/neu oncogene is notable both for its role in the pathogenesis of 

breast cancer and for its selection as a target of treatment. It is considered to be 

overexpressed in tumors with much higher level than the relatively low degree in 

normal tissue. Overexpression of this receptor in breast cancer is associated with 

increased disease recurrence, poorer relapse-free survival and worse prognosis. 

Because of its prognostic role as well as its ability to predict response to 

trastuzumamb , breast tumors are routinely checked for overexpression of HER2/neu. 

In this thesis we study the process of tissue characterization from both a macro 

and micro point of view. In particular, we study polarimetric imaging of tissue at 

macroscopic level and microscope imaging of stained cells at molecular level. An 

emerging area of tissue discrimination at macroscopic level employs multispectral 

polarization imaging technology. Diffused polarimetric reflection and backscattering 

provides unique, discriminatory material signatures based on the depolarization of the 

impinging waves from different materials, which maximize the sensitivity and 

discrimination power of object imaging and identification techniques. Fusing 

statistical analysis with polarimetric principles can be proved a powerful tool for 

analyzing the different properties of operational modalities and/or materials depicted 

in digital images. The efficiency of imaging techniques in discriminating material 

structures can be further improved via contrast measurement and enhancement in 

digital images. 

Qualitative and quantitative Her2 protein evaluation has been achieved using 

immunohistochemistry (IHC) on frozen and archival tissues, a widely adopted 

technique due to the standardization of the internal procedural steps and its easy and 

low-cost applicability to any laboratory. Immunohistochemistry is a method for 

detecting specific antigens in tissues or cells based on an antigen-antibody reaction 
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and facilitates the identification of a large number of proteins, enzymes and tissue 

structures, thus it has become a powerful and widely used tool in many medical 

research laboratories as well as clinical diagnostics. We focus on, and try to exploit, 

the fact that IHC “stains” the membranes of HER2 overexpressed cells, monitoring 

them with a characteristic color in the extracted microscope images. When reporting 

results, the degree of HER2 protein overexpression measured is scored according to 

the intensity of membrane staining and the percentage of tumor cells stained. The 

evaluation procedure is usually performed qualitatively by a pathologist, who 

carefully observes the IHC samples via microscopy and manually calculates the 

presence of cancer cells in the breast tissue, assigning scores according to appropriate 

criteria. Yet, the interpretation of such results is subjective and causes certain 

inconsistencies upon the diagnosis, as the result is highly dependent on the experience 

of the specialist and the quality of the tissue preparation stage.  

Both of these areas are treated via analytic tools in this thesis, as follows. 

Aiming at a concrete procedure of quantifying the contrast effects of the Stokes 

parameter polarimetric imaging technique, we considered a statistical modeling of the 

digitally recorded images. The experimental setup was guided by the idea of using 

simple objects with optical properties similar to more complex compounds (such as 

biological tissues) in order to emulate a biological scenario that would be optically 

homogeneous and absorbing medium. Typically, micro calcifications depending upon 

their shape, geometry and composition can be classified as precursors of malignancies 

in breast mammography. The simulation performed through the experiments could act 

as a simulating, pre-clinical procedure in order to expand the proposed methodology 

to biomedical applications.   

 More precisely, we apply robust fitting of the intensity distributions of the 

various materials depicted in the acquired images using mixture models and associate 

the image contrast with the separability of model distributions. The proposed 

approach based on histogram modeling as the sum of Gaussian-like distributions 

provides a simple, yet effective means of pixel labeling and object segmentation, 

based on the statistical structure of the intensity distribution within the region of 

interest. In order to determine how well the estimated model approximates the initial 

distribution, the mean squared error (MSE) is used for revealing the “goodness of fit”. 

Finally, as an attempt to measure and verify the detection rates of our experimental 
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result we adopt the accuracy, as well as specificity and sensitivity of the object 

discrimination procedure. The values of the quantitative evaluation metrics confirm 

the accuracy of the presented technique, giving rise to its direct application to 

biomedicine. 

On a similar goal to make immunohistochemical studies for molecular 

analysis more objective, quantitative techniques based on computer-assisted 

microscopy and image analysis must be developed. Our research in this area is 

focused on the automated detection of Her-2 neu protein in tissues, an indication of 

probable cancer existence, in order to diagnose breast cancer at its earlier stages and 

help the patience cure the disease with higher probability. The goal of this thesis is an 

attempt to process the extracted IHC microscope images of breast tissues and 

automatically determine/define the impact of cancer on the specific female organism. 

Advanced image analysis techniques are adopted in order to accurately segment the 

cells within the sample images and precisely extract their membrane contour and 

degree of staining. We exploit a variety of algorithms in a modular way, in order to 

achieve specific tasks. Color deconvolution through model conversion and 

thresholding enhances the pixel intensity differences between the regions of interest in 

the test images, while mean-shift clustering reveals the key segments for the 

evaluation procedure. Edge following and linking via the watershed and active 

contours algorithms is performed in order to extract the complete border of the cell 

membranes. Finally the percentage and intensity of their staining is calculated, 

yielding the tissue characterization according to the IHC scoring system. The 

comparison of results generated by the proposed algorithm with the classification 

performed by the specialist who evaluated the same tissue samples confirms the 

efficiency and prospect of the presented work.    

The chapters in this Thesis present the theoretical study and experimental tests 

in the previous two areas of tissue characterization at different levels, along with the 

results obtained and the conclusions generated.  
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1. Introduction 

1.1. Breast cancer 

Cancer is considered the abnormal growth of cells that results in the 

formation of tumors in different section of the body. This abnormality should not 

be confused with two basic and natural functions of the human organism:  

 Tissue regeneration, taking place when tissue sections are rebuilt due to 

injury, malfunctions or surgery 

 Hyperplasia, taking place when the organism intends to build up normal 

tissue in order to balance its functionality (e.g. a nephron grows up when 

the other has been removed) 

Cancer is a disease that arises in molecular level. The irregular and excessive cell 

proliferation and growth mutates physiological cells into cancerous, leading to 

tissue destruction and system organ malfunction. In order to comprehend the 

cancer generation mechanism, a deep study of the endocellular functions and 

extracellular interactions is necessary.  

During the cell division stage (mitosis), the basic procedure for the 

survival and conservation of an organism, unnecessary daughterly cells, due to 

gene disorder, may be generated, while the old cells do not complete their life 

circle. Thus, the balance between normal cell division rate and normal cell death 

has been unsettled. This redundant amount of cells form abnormal lumps 

(tumors), utilize the physical and chemical environment needed for normal cells to 

remain functional, eliminating their “resources” and decelerating the function their 

role implies. The human organism is not able to recognize the cancerous cells due 

to their similarity to the physiological ones and does not activate the immune 

system, facilitating their growth and invasion. Over the time, these tumors may 

metastasize to other parts of the body, affecting other organs as well. The cancer 

generation is mainly controlled by two classes of genes: a) oncogenes, which 

deregulate the control point of cell replication, leading to irregular and unbounded 

cell proliferation and b) tumor-suppressive, which intercept the uncontrolled 

action of oncogenes. Carcinogenesis includes the following stages: 

 Provocation phase, normally lasting 15-30 years or less in case of long-

lasting exposure to cancerous environmental factors, when abnormal cells 

are generated 

  In situ phase, when progressive dysplasia turns to carcinoma in local 

tissue sections   

 Percolation phase, when cells with malignant characteristics are 

proliferated with rapid rate and are capable of penetrating the cell 

membrane and invade to neighboring tissue or reach until the blood or 

node vessels 

 Dispersion phase, when cancer cells overcome the initial growth area and 

are transferred, alone or in groups, to other regions via blood or lymphatic 

system affecting other organs or systems too [1].   

Cancer is not infectious and “selective”, it can affect every person, at every 

period of his/her life. Sometimes cells are genetically predisposed to mutate to 

cancerous and the exposure to different aggravating factors, such us radiation, 

chemical substances, venomous infections, environment, age, poor diet and day 
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life style might activate this mutation. In addition, this genetic cancerous 

predisposition might be inherited from generation to generation.  

There exist over 200 types of cancer, each one needing its own treatment 

and cure scheme, having different response and tolerance to therapy [2]. All 

tumors are not cancerous, yet potentially dangerous for human health. Cancerous 

disease is mainly described with the terms carcinoma, neoplasm or malignant 

tumor and constitutes the second most frequent cause of death in developed 

countries after the cardiovascular diseases. Yet, the majority of cancers can be 

treated, especially if diagnosed in early stage. 

Cancer diagnosis aims at identifying its type and position within the 

human body in order to predict the tumor evolution rate and schedule the 

appropriate treatment procedures. This is not easy, especially in the primary steps 

of the disease, as the asymptomatic period endures months or even years. As a 

result, the diagnosis might take place when the tumor has been widely grown, 

locally or peripherally. Symptoms such as palpable tumors, insistent cough and 

hematuria must activate the patient. The specialist is offered numerous means in 

his/her way to cancer diagnosis; these include hematological analysis, cytological 

and histological examination or imaging modalities. Thanks to the progress of 

medicine, the enrichment and development of the laboratory equipment, almost 

half of the diagnosed cancer types are cured, even with total absence of 

recrudescence. In the case of practically incurable cancer types/stages, the 

appropriate treatment offers months or even years of a generally qualitative life 

for the patient, eliminating symptoms such as a cough, pain or catatonia. Yet, as 

always claimed, prevention is the best prognosis and treatment.  

A typical cancer identification tool is biopsy, a process where a tissue 

sample from the candidate pathogenic section is received in order to be examined 

under the microscope. Tissue samples are prepared surgically or via the fine 

needle procedure. Microscopic examination will reveal the extent of tumor 

malignancy and determine the follow-up of the patient. The most standard of 

tumor classification is the TNM system, where the expert assigns a score on each 

of the three system parameters: 

 T (Tumor) – tumor size and growth extent 

 N (Nodes) – extent to which the tumor has spread in the neighboring nodes 

 M (Metastasis)– extent of metastasis to remote regions of the body 

Thus, the disease stage is characterized as in situ (locally generated), aggressive 

(invasion to neighboring tissue sections) or metastatic (metastasis to other 

organs). As regards cancer treatment, this includes the classical approaches of 

surgery, radiation, chemotherapy, immunotherapy and the newly developed 

biological therapy and hormone therapy, reinforced by research studies and 

programs targeting at the understanding of the genetic mechanism of cancer cells. 

Breast cancer constitutes one of the most frequent types of cancer among 

women. It is estimated that almost half a million new incidences of breast cancer 

are diagnosed in Europe, while in America, based on incidence rates, a woman has 

a one in nine chance to develop breast cancer a time period within her life [3]. 

Over the last years, the survival percentage has been raised significantly, although 

it differs not only among countries but also among health centers, emphasizing 
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that breast cancer can be efficiently treated and cured when it is diagnosed in the 

first stages.  

The majority of breast tumors are not malignant. They are usually vesicas 

(sacs containing liquids) or fiber-nodes (solid masses of fibers and nodes) and are 

easily and effectively treated via surgical removal. Although the mechanisms that 

activate breast cancer are not known, factors such as inheritance, age, menopause 

(late menopause or early beginning of catamenia decrease the breast cancer risk), 

childbearing, contraception treatment (women under treatment have limited risk),  

hormone therapy and fat consumption determine the appearance risk of the 

disease [4]. 

Symptoms such as touchable nubbins, changes in the size, shape, color and 

texture of breast or nipple or armpit swelling should alarm the person for 

examination. Annual mammography examination for women over fifty years old 

and monthly mirror self-examination of breast are routine examinations that can 

facilitate the early diagnosis of the disease, which is essential for the effective 

treatment of cancer. Clinical diagnostic methods include: 

 Mammography, where X-ray radiation efficiently reveals abnormalities 

in tissue physiology, even in very preliminary stages, which overcomes the 

instantaneous pain felt due to the pressure exercised on the breast 

 Sonography, where echo sounds emitted by the breast are received by a 

microphone, leading to further determination of any possible abnormality 

(e.g. if the tumor is in solid or liquid phase) 

 Color Doppler, where color imaging of the tumor area takes place and its 

malignancy or not is determined 

 Magnetic Tomography, where the magnetic radiation absorbed by the 

breast tissue is measured and depicted in a slide revealing any suspicious 

finding within the examined body section 

 Needle aspiration/biopsy, where cells are received from the tumor via the 

needle and are sent to a cytological/histopathological laboratory for further 

examination, having the drawback of limited efficiency due to the 

possibility of not precisely targeting the tumor  

 Surgical removal, where the tumor is invasively removed from the body 

section after total anesthesia and is then sent for biopsy evaluation. 

Current therapy approaches have significantly increased the survival 

period of the patient; the selection of the treatment methods depends on the type 

of cancer (ductal carcinoma, lobular carcinoma, angiosarcoma), the stage of the 

disease, the patient’s age and medical history, the size of the tumor and its 

classification under the microscope. For the early stages surgical removal of the 

tumor or even the whole breast is recommended, supplemented by radiotherapy in 

the affected tissue in order to exscind the remaining malignant cells and/or 

possible hormone or drug therapy for more efficient prolepsis and control of the 

spawning of cancer. For the latter stages, hormone therapy or chemotherapy are 

adopted among a wide variety of drugs that can meet the needs and specificity of 

each individual organism along with radiotherapy which targets on possible 

metastasis to other organs or systems. The lymph nodes in the axillary area are 

also carefully examined as they are considered the most important and probable 

“carrier mean” to transfer cancerous cells to other sections of the organism.      
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1.2. The HER2/neu oncogene 

The mutation of cells to cancerous is considered as a destabilization of the 

factors that control their natural growth or the augmentation of their receptors, 

which leads to auto-stimulation of their growth. Early clinical cancer diagnosis is 

almost impossible, as the common procedures are incapable of detecting cell 

masses/tumors of size over 1-2 cm. When cancer is evolved in the human 

organism, tumor cells or body tissues may produce substances that can be detected 

in blood, tissues or urea via monoclonal antibodies and are characterized as tumor 

markers. Sometimes tumor biomarkers, also known as oncoproteins, are present 

during the physiological growth of tissue. The need for detecting such markers 

arises in the period prior to diagnosis, when the specialist suspects the presence of 

cancer and during the treatment period, after diagnosing the disease, in order to 

attend and control its evolution. Recent medical advances have led to the 

identification of numerous tumor biomarkers facilitating the understanding of the 

molecular basis of tumor progression and treatment response. Prognostic markers 

aim to objectively estimate the patient’s overall outcome, while predictive 

markers focus on the objective evaluation of the possible benefits from a specific 

clinical intervention. Although a wide variety of biomarkers have been tested and 

achieved promising outcomes, a limited number of these have been adopted in 

standard clinical practice over the past decades [1, 5]. 

The HER-2 gene (also called HER2/neu, c-erB2, ERBB2 or neu) is 

notable for its role in the pathogenesis of breast cancer and as a target of 

treatment. It derived its name from a neuroglioblastoma cell line in rat (called 

“neu”), where it was discovered more than 25 years ago and encodes a cell 

membrane surface-bound receptor tyrosine kinase, forming a proto-oncogene 

located at the long arm of human chromosome 17 [6]. It is named HER2 because 

it has similar structure to human epidermal growth factor receptor, or HER1. In 

human cancers, c-erB2 is activated via gene amplification, which is a genomic 

mutation where a small fragment at chromosome band 17q12-q21 is multiplied in 

a cell up to 100 folds. HER2 is co-localized, and thus most of the time co-

amplified with the gene GRB7, which is, as well, a proto-oncogene (active in e.g. 

breast cancer, testicular germ cell tumor, gastric cancer, and esophageal cancer).  

This gene amplification leads to overexpression of its protein product, which 

disturbs the HER-receptor family signaling networks and forms heterodimers with 

EGFR, HER-3 and HER-4 upon binding of their ligands [7]. In addition, 

overexpressed HER-2 proteins form HER2-HER2 homodimers, the major 

oncogenic activation mechanism.  Findings in the early 1990’s revealed that 

antibodies to the extracellular domain of HER-2 inhibit growth of HER-2 positive 

cell lines, which gave rise to test the most promising growth inhibitory antibody as 

an anti-cancer drug.  

One of DNA's major functions is to serve as the blueprint for the 

manufacturing of the proteins that are used to keep cells alive. Like all proteins, 

the HER2 protein is the result of certain patterns of DNA. The segment of DNA 

that codes for HER2/neu is called an "oncogene" and it is the HER2/neu oncogene 

that produces the HER2/neu protein. All normal epithelial cells contain 2 copies 

of the HER2 gene and express low levels of HER2 receptor on the cell surface. In 

some cases, during oncogenic transformation, this segment of DNA becomes 

damaged as the cells reproduce and the number of gene copies per cell is 

increased, leading to an increase in mRNA transcription and a 10- to 100-fold 

http://en.wikipedia.org/wiki/Pathogenesis
http://en.wikipedia.org/wiki/Breast_cancer
http://en.wikipedia.org/w/index.php?title=Neuroglioblastoma&action=edit&redlink=1
http://en.wikipedia.org/wiki/Receptor_tyrosine_kinase
http://en.wikipedia.org/wiki/Proto-oncogene
http://en.wikipedia.org/wiki/Epidermal_growth_factor_receptor
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increase in the number of HER2 receptors on the cell's surface, called 

overexpression. This process is illustrated in Figure 2.1.  

 
        Figure 2.1: Indicators of HER2 status: gene or DNA amplification and mRNA or protein   

        overexpression (Source: Medscape) 

In vitro and animal studies indicate that HER2 gene amplification and protein 

overexpression play a key role in oncogenic transformation, tumorigenesis and 

metastasis [8]. It is pointed out that the growth of tumors and cancer cell lines that 

overexpress the HER2 receptor is inhibited by anti-HER2 monoclonal antibodies, 

further indicating the role of HER2 gene amplification/receptor overexpression in 

oncogenesis. Gene amplification/receptor overexpression has been demonstrated 

in breast, ovarian, bladder, gastric, and pancreatic tumors. Gene amplification is 

associated with aggressive cell behavior and poor prognosis, as depicted in Figure 

2.2. 

 

        Figure 2.2: Disease-specific survival and HER2 expression (Source: Medscape) 
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Some tumors show receptor overexpression without gene amplification and have a 

more favorable prognosis, yet the biologic significance of this variant is less 

certain. In general, the presence of HER2 amplification/overexpression appears to 

be a key factor in malignant transformation and is predictive of a poor prognosis 

in breast cancer.  

The prognostic role of HER-2/neu amplification or overexpression lies on 

the weak unfavorable prognosis in untreated breast cancer patients while its 

predictive implications include resistance to hormonal therapy [9], resistance to 

chemotherapy [10, 11], responsiveness to doxorubicin [12] and, mainly, 

responsiveness to Trastuzumamb (Herceptin) therapies [13,14].  Approximately 

15-20 percent of breast cancers appear an amplification of the HER2/neu gene or 

overexpression of its protein product. Overexpression of this receptor in breast 

cancer (also met in other types of cancer too) is associated with increased disease 

recurrence and worse prognosis. Because of its prognostic role as well as its 

ability to predict response to trastuzumamb, breast tumors are routinely checked 

for overexpression of HER2/neu. Herceptin is a monoclonal antibody that was 

developed specifically to target the HER2/neu protein expressed only in the 

cancer cells while leaving normal cells (which don't overexpress the protein) 

unaffected. This makes Herceptin different from chemotherapy, which kills all 

rapidly dividing cells, both healthy and cancerous, but sort of like tamoxifen, 

which only work in hormone-responsive tumors.  

    Breast cancer was the first tumor type in which abnormalities of HER2 

gene copy number and/or expression were associated with reduced disease-free 

and overall survival. Scientists have focused on HER2 over the past 25 years and 

have succeeded in confirming overexpression. Patricia Rovelon, a nurse from the 

Institut Gustav Roussy in Villejuif, France, pointed out that HER2 is universally 

accepted as a new prognostic marker and predictor of therapeutic response. But 

she and other speakers cautioned that the prognostic value of HER2 varies, 

depending on the assay method used. Leaders in the field of HER2 have stressed 

the importance of developing a simple and accurate method of determining HER2, 

one that is both inexpensive and reproducible. If breast cancer is tested for HER2 

status, the results will be graded as positive or negative. If the results are graded as 

HER2 positive, that means that the HER2 genes are over-producing the HER2 

protein and that those cells are growing rapidly and creating the cancer. Tumors 

are faster growing, more aggressive and less sensitive to chemotherapy and 

hormone therapy. If the results are graded as HER2 negative, then the HER2 

protein is not causing the cancer. There is also a middle situation, generally 

considered as healthy but needing attention every few months, where there is a 

controlled augmentation of the HER2 protein. The main methods for testing 

HER2 breast cancer are [15]:  

 IHC: ImmunoHistoChemistry - this test measures the production of the 

HER2 protein by the tumor. The test results are ranked as 0, 1+, 2+, or 3+. If 

the results are 3+, the cancer is HER2-positive.  

 FISH: Fluorescence In Situ Hybridization - this test uses fluorescent probes 

to look at the number of HER2 gene copies in a tumor cell. If there are more 

than 2 copies of the HER2 gene, then the cancer is HER2 positive.  

http://en.wikipedia.org/wiki/Trastuzumab
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The 2 techniques currently used to measure HER2 gene copies are quantitative 

polymerase chain reaction (PCR) and fluorescence in situ hybridization (FISH). The 

process for PCR is fully automated and requires only minimal amounts of tumor 

tissue. This method will allow retrospective studies to be performed with archival 

tissue. FISH also only requires small tissue samples and has extreme sensitivity to 

detect amplification from a histologic section. However, FISH is not widely available 

in hospital laboratories. The result of this method can vary considerably if the assay is 

not standardized and is thereby dependent on the skill of the pathologist. A more 

widely used test is immunohistochemistry (IHC), which measures HER2 protein 

expression. IHC has been specifically adapted for detection of HER2 protein using 

specific antibodies. The advantages of this method are that it can be used on fresh and 

archival tissue and that it utilizes technical and human resources readily available in 

pathology laboratories. Unfortunately, there are some disadvantages of this method. 

IHC uses different antibodies with different binding affinities and different epitope 

specificities, thereby creating differences in HER2 overexpression rates. In addition, 

HER2 overexpression scoring systems differ and often rely on subjective measures of 

staining intensity and pattern. When IHC staining techniques that are too sensitive are 

employed, it becomes problematic to differentiate between normal versus the high 

HER2 protein levels that are associated with gene amplification. The enzyme-linked 

immunosorbent assay (ELISA) is another method of testing HER2 protein in serum 

samples. While the technology is simple and well suited to automation, it may 

produce significantly different results to those obtained with IHC and FISH. While 

IHC and FISH measure HER2 receptor protein (mostly intracellular) and gene 

amplification respectively, ELISA specifically measures levels of the extracellular 

HER2 receptor proteins released into the plasma from HER2 overexpressing tumors. 

It is widely acknowledged that the ideal test for HER2 status is one that is 

simple to perform, specific, sensitive, standardized, stable over time, and allows 

archival tissue to be assayed. At present, the test that best meets these criteria is IHC. 

A detailed analysis of Immunohistochemistry will be given in section 2.2.2. With 

standardization of laboratory testing and appropriate quality control in place, the 

reliability of IHC will be improved further. It is expected that FISH will become more 

widely used in the future as well. Figure 2.3 illustrates the standardized diagnosis – 

treatment scheme followed by pathologists for Her2/neu evaluation. It is noted that in 

ambiguous Her2/neu status estimation a combination of the two methodologies is 

adopted for assessing a valid and robustly interpreted result. 

 

Figure 2.3: Standardized Her2/neu cancer diagnosis-treatment scheme  
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Standard management in the treatment of many solid tumors has improved in 

recent years, yet many metastatic solid tumors remain incurable. Factors that limit the 

success of treatment include drug resistance and lack of tumor selectivity. Although 

progress has occurred in cytotoxic therapy for breast cancer, interest in new 

interventions continues. Because of the ability of the immune system to target specific 

responses, the area of immunotherapy has great potential in future management of 

cancer. 

Many patients who are currently being tested for HER2 status are women with 

metastatic breast cancer who have been heavily pretreated. Therefore, it is important 

to gather information about the patient's health history, performance status, all prior 

treatments, emotional well being, as well as the understanding of the disease status, 

the meaning of HER2 testing and its possible implications. Nurses may collaborate 

with other practitioners in obtaining any or all of this information. It is also critically 

important to involve family members in the process of gathering accurate and 

thorough information. 

It is also useful for oncology nurses who counsel patients to be fully aware of 

the advantages and disadvantages of the various testing methods and the impact that 

these test methods and results may have in terms of prognosis and treatment for the 

patient. This may require detailed communication with the pathologist about how the 

test sample was obtained, clarification with the laboratory about the test method 

employed (and its potential variability) and discussion with the oncologist to interpret 

the results. Knowledge of testing methods and a determination of the accuracy of 

results is critical to appropriately identify patients that may benefit from anti-HER2 

therapies.  

 

Problem Setup and Thesis Overview 

The main contribution of the present master thesis covers fields of tissue 

evaluation. The objective is to thoroughly analyze tissue-imaging modalities that 

enable tissue characterization. We explore two main modalities, one in exploratory 

phase based on polarimetry and the other based on IHC and microscopy. The former 

concept enables a rough but fast exploration of tissue matter at macroscopic level, 

while the second enables the more detailed analysis of microscope images of tissue 

obtained through the procedure of immunohistochemistry (IHC). IHC is the 

localization of antigens in tissue sections by the use of labeled antibody as specific 

reagents through antigen-antibody interactions that are visualized by a marker such as 

fluorescent dye, enzyme, radioactive element or colloidal gold [16].  

Our contribution in polarimetric image analysis is based on the modelling of 

intensity distributions for different materials. Alternatively, our research on IHC 

microscopy is focused on the automated detection of Her-2 neu (also known as Cerb-

2) protein overexpression in tissues in order to diagnose breast cancer at its earlier 

stages and help the patient cure the disease with higher probability. The preparation 

and the processing of tissues is a purely medical, so complicated, issue and is not the 

main chapter of our thesis, however it is of substantial importance. A well prepared 

tissue will secure a clear and informative image. We are interested in automatically 

extracting the degree of protein overexpression on the cell membranes through image 

processing based on the characteristic identities the diseased tissues reveal after the 

application of immunochemistry. 



“Analysis of microscope images”                                                      

Page 15  

 

There is limited literature and very few techniques developed for this research 

area. The usual procedure is the visualization of these IHC samples by a specialist (a 

pathological anatomy specialist), who carefully observes the extracted images under 

the microscope and manually calculates the number of affected cells within the breast 

tissue. Unfortunately, characterizing a tissue as diseased, healthy, semi-healthy or 

little-diseased cannot always be done subjectively. Two doctors may extract different 

results and conclusions for the same patient. Thus, the automation of this procedure 

becomes very critical, though very intriguing.  

In order to formulate our analysis we need to explore the technical concepts of 

polarimetry and IHC microscopy. This is done in Section 2, where we present the 

fundamentals of these modalities, analyze the technological state of the art and 

present the novelties of our thesis in relation to these technical concepts. The image 

processing background that will form the analysis basis for the detailed form of IHC 

images is presented in Section 3. We discuss the state of art techniques used in 

histological images and discuss their advantages and limitations. The proposed 

methodology analysis is introduced in Section 4. We present the state of the art in 

segmentation methods related to IHC also addressing Her2 overexpression. Overall 

we deal with cell segmentation, membrane staining evaluation and tissue 

classification. Related work has been performed in cell segmentation; we discuss and 

compare our methodology with other techniques. The other two issues are rather new 

and have been developed partially and rather sporadically. Our study forms a 

systematic evaluation methodology and explores the potential of tissue classification 

based on a “ground truth” evaluation from an experienced doctor.  Finally, the 

conclusions of our study are presented in Section 5 along with issues of further 

research.  
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2. Imaging Modalities 

The contribution of this thesis relates to the effective identification of 

biological characteristics depicted in biomedical images derived using two 

fundamental imaging modalities: a) polarimetric imaging and b) optical microscopy. 

Image processing for feature extraction and statistical analysis for evaluation are 

utilized, aiming at diagnostic metrics for evaluating human tissue, which is crucial for 

cancer status diagnosis, characterization and treatment. In the following sections we 

present a detailed analysis of the fundamental aspects of each imaging approach along 

with the evaluation algorithms implemented. These algorithms are tested and 

evaluated on a number of images. By utilizing polarimetric imaging we extract 

characteristics of the tissue in a macroscopic level of analysis based on the optical 

identities of the tissue elements, studying their interaction with polarized light. 

Information about the shape, size and physical state (solid or liquid) of such tissue 

elements can be extracted. By utilizing microscope imaging of tissue slides we are 

capable of studying tissue at a cellular level, obtaining information about its 

morphology, shape characteristics (shape, perimeter, area) of cells and the distinct 

composite segments of each cell (cell nuclei, cell membranes, connective tissue)    

2.1.  Polarimetric Imaging 

Diffused polarimetric reflection and backscattering provides unique, 

discriminatory material signatures, based on the depolarization of the impinging 

waves from different materials, which maximize the sensitivity and discrimination 

power of object imaging and identification techniques. With the development of 

multispectral polarization imaging technology, it is becoming more and more 

important to integrate polarimetric, spatial and spectral information so as to improve 

target discrimination based on optical contrast, which is essentially based on the 

physical properties of the materials involved.  

Polarimetry is a technique that measures the extent to which a substance 

interacts with plane polarized light. It relies on the properties of polarization of 

backscattered light and results in distinct signatures related to surface smoothness, 

orientation and target composition [16, 17]. Further contrast enhancement of the 

target can be achieved by modulating the background of the target through doping 

with polar and high-index-of-refraction molecules [18, 19]. When linearly polarized 

light is passed through a substance containing optically active molecules (chiral 

molecules) or nonchiral molecules arranged asymmetrically, a rotation of the 

polarization vector take place. This phenomenon is called optical rotation or optical 

activity. Glucose molecules and most of the biological molecules such as proteins or 

enzymes are optically active molecules. Utilizing the rotation of the polarization 

vector enforced by optically active (chiral) molecules, together with efficient 

polarimetric interrogation techniques, yields both optical clearing and enhanced 

contrast capabilities, as initially reported in [20-22].  In fact, the use of active dopants 

aims at minimizing the refractive index differences between the target and the 

surrounding medium, resulting to an increase of both the degree of polarization 

(DOP) and the degree of linear polarization (DOLP). On the other hand, Stokes-

parameter (polarimetric) imaging can capture such differences of the refractive index 

and leads to enhanced image contrast in the acquired images due to its potential to 

detect weakly backscattered linearly polarized radiation, in the presence of highly 

backscattered depolarized radiation. In fact, using optically active dopants in 

conjunction with polarimetric imaging yields an efficient recognition and 

http://www.chem-online.org/wiki/Light
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representation of specific molecular signatures for disease characterization and 

molecular imaging.  

Recently [22], backscattered laser beam contributions from biological fluids 

doped with optically active molecules were reported utilizing single-detection auto-

balanced polarimetric detection principles. The outcome of that study indicates that 

both Detective Quantum Efficiency (DQE) and DOLP of backscattered optical signals 

increase with increasing the concentrations of molecular optically active dopants. This 

translates to enhanced signal-to-noise ratio and contrast. The efficiency of imaging 

techniques in discriminating material structures can be further improved via contrast 

measurement and enhancement in digital images. In essence, the acquired images can 

be algorithmically enhanced so as to increase the perceived contrast of different 

materials, thus facilitating the discrimination and the study of material properties. One 

of the goals of this thesis was to supplement the above assumptions and support 

qualitatively and quantitatively the efficiency of detecting modalities in polarimetric 

data through statistical analysis and histogram modeling approaches. 

 

2.1.1. Polarimetric imaging fundamentals 

Image samples processed in this work were captured utilizing the 

Multifunctional Polarimeter System of the University of Akron, depicted in 

Figure 2.4. This is a highly reconfigurable and scalable in-house designed 

optical system, equipped with a combination of the objective and tube lenses, 

with enhanced multispectral, polarimetric, macroscopic, and microscopic 

imaging capabilities. Prior to any measurements, multiple calibration 

procedures of the optical system were undertaken to ensure optimal optical 

system alignment and control of the polarization systematic errors. The 

calibration procedures along with the intensity of the finally incident beam in 

the CCD camera is controlled by the relevant position and rotation of the 

polarizers and the retarders.  
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                  Figure 2.4 The Multifunctional Polarimeter Imaging System of the   

                  University of Akron 

 

A target phantom is stimulated by a laser beam and the backscattered light is 

captured through a carefully designed and calibrated “detection line”. The 

optical transceiver geometry consisted of a transmitter generator and a receiver 

analyzer. The imaging system contained two arms; a polarization generating 

branch and a polarization analyzing branch.  Light from the laser source was 

sent through the polarization generating branch that consists of a neutral 

density filter (attenuator) determining the wavelength of the emitted light, a 

linear polarizer P1, a quarter-wave retarder R1 and a beam expander. The light 

from the laser was passed through a neutral density filter onto a linear 

polarizer P1. The linearly polarized light then passed through a quarter-wave 

retarder R1 which converted it to circularly polarized light. The circularly 

polarized light was then allowed to illuminate the phantom. The polarization 

analyzing branch contained a quarter-wave retarder R2 followed by a linear 

polarizer P2 (parallel to P1) which was placed in front of a CCD camera in 

backscattering geometry as shown in Figure 2.4. The retarder R2 was used to 

convert the circularly polarized light remitted by the phantom to linearly 

polarized light and this light was sent to the CCD camera through a linear 

polarizer P2 .  The polarizer P2 was always kept fixed parallel to P1 to account 

for the polarization sensitivity of the detector. The retarder R2 was rotated 

from 0
o
 to 180

o
 in steps of 22.5

o
 such that the backscattered light intensity 

contributions by the phantom in the direction of the analyzing branch were 

acquired by the CCD camera. When both the polarizers P1 and P2 are oriented 

for maximum transmission, they are said to be co-polarized or parallel to each 

other and when P1 is oriented for maximum transmission and P2 is oriented 

for minimum transmission, they are said to be cross-polarized or perpendicular 

to each other. Therefore, eight intensity images were obtained. The Degree of 

Polarization (DOP) and Degree of Linear Polarization (DOLP) was estimated 

by measuring the Stokes parameters of backscattered signals, relating the 

detected backscattered signal intensities to the Stokes parameters, through the 

Mueller matrices of the analyzer optics, by means of the “Fourier Analysis 

using a Rotating Quarter-Wave Retarder Method” [23].  

The transmitter generator system consisted of a laser beam of desired 

wavelength coupled to a Melles Griot FPG 001 linear polarizer and to a /4 

Rotating retarder 

Linear Polarizer 

Rotating retarder 
Linear Polarizer 

R2 

P2 
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retardation plate. Specifically, a New Focus Berek polarization compensator, 

operating between 200 nm and 1600nm was used as a variable quarter wave. 

On the other side, the receiver analyzer geometry consisted of a high 

performance Mitutoyo objective lens and a tube lens coupled both to a /4 

phase retarder. The light output from the phase retarder was directed into the 

input of a charge coupled device (CCD) after passing through a Melles Griot 

FPG 001 linear polarizer. The polarimetric imaging system was utilized to 

image a specific ROI of the target, with a 50-60X total magnification, taking 

into account the magnification of the objective lens of the CCD camera, 

achieving optical performance of a microscope. An electrically cooled 1401E 

Photometrics Sensys/Roper Scientific digital (CCD) camera has been used 

throughout these experiments consisting of a Kodak KAF1401E, scientific 

grade 1317x 1035 electronic image array, with an active imaging area of 

9.0mm x 7.0mm. This camera offers 6.8 x 6.8 μm pitch resolution, high-

quantum efficiency, and 12 bit digitization. Experiments were performed 

under backscattered light geometry. The polarization interaction with the 

scattering medium, displayed as a transformation of the polarization state, is 

captured by a CCD camera, producing the polarimetric images. 

The states of polarization of a target can be characterized through its 

four Stokes parameters (S0, S1, S2, and S3).  These Stokes parameters can be 

written as a column matrix form, called Stokes vector, according to: 

     

S=     (2.1) 

 

For a partially polarized light, the total light intensity, S0, is offered in terms of 

the three polarization states S1, S2, and S3 as [24] 

 

                                                                     (2.2) 

 

where S0 is the total detected light intensity, of which S1 expresses the 

difference between linear horizontal and vertical polarization states, S2 

expresses the difference between the linear +45◦ and −45◦ polarization states, 

and S3 expresses the difference between the right and left circular polarization 

states. For the needs of this study, we mention that the polarimetric 

arrangement of the “Rotating Retarder Polarimeter Method” [25] was 

combined with the “Polarimetric Measurement Matrix Method” [26], in order 

to obtain enhanced DOLP and DOP images. The proposed methodology 

allows one to estimate the four Stokes parameters of the target based on the 

Mueller Matrix of the optical system. The Stokes vector out
S ,  at the input of 

the detector, is related to the incident Stokes vector inc
S at the input of the 

analyzer through the Mueller matrix M,  where M describes the elements of  

the analyzer polarization of the phase retarder and the polarizer in front of the 
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detector, including instrumental polarization and polarization sensitivity of the 

detector, defined as: 

 

                                                   M=Mp·Mr          (2.3) 

 

where Mr and Mp are the Mueller matrices of the analyzer retarder and 

polarizer elements, respectively. Yet, the Stokes vector at the input of the 

detector will be approximated following the next formula:  

                                      out inc
S MS                    (2.4) 

where  0 1 2 3

T

inc
S s s s s is the Stokes vector incident on the polarization 

state analyzer.  The Mueller matrix for an optical system is a 4x4 array that 

maps the transformation between the Stokes vector Sinc incident on an object 

and the vector Sout that is transmitted or deflected or scattered from the object. 

The Mueller matrix also captures information about all the optical components 

that are present in the system between the incident and the transformed vector. 

This means that each of the components can be individually characterized by 

its own Mueller matrix Mi and the resulting matrix M can be expressed as a 

product of all the individual Mueller matrices. There are numerous ways of 

measuring the Stokes parameters of a beam of light and the most common is 

the Fourier analysis method that uses a rotating quarter-wave retarder to obtain 

the Fourier coefficients having the advantage that the Stokes vector can be 

directly obtained from the Fourier coefficients. To obtain the coefficients, the 

total Mueller matrix must be derived from the various components of the 

system. The experimental setup of the system shows that the Stokes vector of 

the beam scattered from the sample is affected by the rotating retarder and the 

linear -45
o 
polarizer.  

In order to get familiar with the concepts above, an example of Stokes 

parameter calculation is presented in the following lines. Let the Mueller 

matrix of a rotating quarter –wave retarder of angle θ be: 

 

             Mr=  

    
                      
                       
            

        (2.5) 

 

In addition, let the Mueller matrix of the linear horizontal linear polarizer be: 

 

                                      Mp=  

    
    
    
    

                   (2.6) 

 

 

The polarimetric system acquires q-optical polarimetric images (q is 

determined by the different values of rotating angle θ), obtained through 

optical interrogation of the target. The Mueller calculus equation is: 
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The Stokes parameter in the front of the detector, after passing through the 

retarder-polarizer configuration, is: 
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                              (2.8) 

 

But  Sout0=I(θq)= output I at the detector, proportional to the incident intensity 

is given as:  
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            (2.9) 

Rewriting the intensity expression I(θq) in terms of its trigonometric half-angle 

formula reduces it to the standard form of the truncated Fourier series given in 

Equation 2.10. It is seen from this expression that the output intensity is 

described by four Fourier coefficients namely A (the DC component), B, C 

and D (the frequency harmonics): 
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                      (2.10) 

where ωt=2θq and θq is the step size of the rotation of the analyzer retarder. It  

is seen that the Stokes parameters can be obtained from coefficients A, B, C, 

D combing equations 2.9 and 2.10, resulting in : 

 

              S0= A-B,   S1= 2B,   S2= 2D and S3= C                     (2.11) 

            where    A= S0-S1/2,   B=S1/2 ,   C=S3  and D=S2/2 
 

The degree of polarization (DOP) and linear polarization (DOLP), can be then 

estimated in terms of Stokes parameters, S0, S1, S2, S3 as:  
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2.1.2. Extraction of material properties 

An attempt was made to further expand the detection principles of [22] 

by fusing active-dopant polarimetric modalities with digital imaging concepts, 

for effectively exploring and quantifying physical properties of materials. The 

contribution of this thesis to polarimetric imaging is to further explore the 

impact of optically active and high-index of refraction molecules on the image 

quality, by doping the surrounding background of the target. All the Stokes 

parameters images were quantified based on established image metrics and 

statistically analyzed. The dual hypothesis was that: a) the polarized (DOLP 

and DOP) images are superior to the total intensity (S0) images; and b) 

polarimetric images acquired through doping of the background would be of 

superior image quality from both polarimetric only and non-polarimetric 

images.  Specifically, three different experiments are analyzed, where the 

reference images include a structure (“target” or “phantom”) immersed into 

aqueous solution surrounded by optically active substances (“dopants”) in 

various concentrations. The experiments at the material level consider the 

impact of optically active molecules on the image quality, by doping the 

surrounding background of the target. The experimental setup is illustrated in 

Figure 2.5. In all experiments presented, the simple experimental dopants are 

used with the aim of imitating the behaviour of more complex materials (such 

as biological tissues), acting as a simulating, pre-clinical procedure in order to 

expand the proposed methodology to biomedical applications. The idea of the 

phantom design is to emulate a biological scenario that would be optically 

homogeneous and absorbing medium.  

In the first set of experiments, DOP images with a 40 x magnification 

factor at different concentrations of the enzyme L-Phenylalanine in aqueous 

solution are extracted using a broadband light source at wavelength of 830 nm. 

A twisted plastic wire phantom with a refractive index of 1.46, similar to 

hydrated collagen (n=1.47) and diameter 1mm, attached to a glass test tube 

was used as the phantom for this set of experiments.  

In the second set of experiments, the testing phantom consists of a 

plastic hollow cylindrical structure (index of refraction 1.55) immersed into 11 

ml of water. The DOLP images for different concentrations of alcohol and salt 

aqueous solution using broadband light source at 633nm were obtained. The 

polarimetric imaging system was utilized to image a specific ROI of the target, 

with a 50-60X total magnification, taking into account the magnification of the 

objective lens of the CCD camera. 

In the third set of experiments the biological phantom consisted of a 

cluster of polypropylene spheres (refractive index n=1.49) with diameter 2mm 

and high-density polyethylene spheres (refractive index n=1.54) with diameter 

3.5mm bonded with epoxy adhesive (refractive index n=1.65) immersed in 
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water solution. Six DOLP images with a 40X magnification were obtained for 

different concentrations of glucose aqueous solution using broadband light 

source at 655nm. This set of experiments was performed following the above 

experimental properties so that to emulate biological compounds, namely, 

calcified structures (n=1.53), hydrated collagen (n=1.47) and highly calcified 

mineralized structures (n=1.65). Typically, micro calcifications depending 

upon their shape, geometry and composition can be classified as precursors of 

malignancies in breast mammography. Systematic differences between 

hydrated collagen in the intensities between the collagen of malignant, benign 

and normal tissue groups appear to be due to a significantly lower structural 

order within the malignant tissues [27]. 

            Figure 2.5 Experimental setup 
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Aiming at a concrete procedure of quantifying the contrast effects of 

the tested imaging technique, we consider a statistical modeling of the 

digitally recorded DOLP images. More precisely, we apply robust fitting of 

the intensity distributions of the various materials depicted in the acquired 

images using mixture models and associate the image contrast with the 

separability of model distributions. Of course, several methods could have 

been tested for the purpose of digital image segmentation and object 

discrimination. Clustering methods could have been used instead based on 

either discriminant functions or distance metrics [28]. Such methods mostly 

aim at data driven partitioning of the image space. Nevertheless, the modeling 

approach proposed can exploit and test multiple stochastic fitting models and 

provides further flexibility in setting up histogram thresholds between fitted 

histogram models, for effective object separation. In a different direction, the 

overall histogram distribution may be directly decomposed into object 

components through principal component analysis [28], but such approaches 

require an extensive database of images from multiple experiments, which is 

difficult to obtain. The proposed approach based on histogram modeling 

provides a simple, yet effective means of pixel labeling and object 

segmentation, based on the statistical structure of intensity distribution within 

the region of interest. 

A thorough analysis of the digital image distribution is performed, 

based on fitting the intensity histogram of the acquired images using mixture 

models, revealing additional characteristics of the polarized object structures 

[29]. Overall, the novelty of the proposed methodology combining polarimetry 

with digital image enhancement is twofold; (1) it can quantify the efficiency of 

polarimetric imaging modalities in discriminating materials of interest and (2) 

enables improved segmentation and discrimination of materials through the 

enhancement of fitted-model differences. The proposed methodology is tested 

with different histogram forms of DOLP and DOP images on the three sets of 

experiments. The physical purpose of these experiments is examining the 

effect of different chiral or high index of refraction molecules (glucose, salt, 

alcohol and L-Phenylalanine) when used as molecular contrast agents, in the 

image quality of a detected target immersed in an aqueous solution. The 

tangible outcome of our study is that enhanced DOLP and DOP is achieved 

with increasing the concentration of the optically active molecules, providing 

both optical clearing and enhanced contrast capabilities. 

The model description of a histogram from a particular object can be 

used to effectively assign local pixels to the region of that object through the 

corresponding probability implied by the fitted statistical distribution. 

Normally, there is a variety of possible distributions that may serve as basis 

functions for the fitted model, which can be evaluated through theoretical or 

computational means. For instance, the histogram of a compact intensity 

region may be well fitted by a Gaussian distribution. According to Zhuang et 

al. [30], a smoothed gray-level histogram, convolved with a low-pass filter, is 

identical to a mixture of Gaussian distributions. That is, each object of an 

image can be represented as a Gaussian-like distribution in the entire gray 

level histogram with different mean, variance and magnitude values. This 

assumption transforms the histogram decomposition problem to that of 

estimating the parameters of a mixture distribution. This estimation process is 
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based on statistical, heuristic and iterative approaches, as well as on decision 

based criteria. For the estimation of parameters the authors of [31] have 

adopted the trust-region reflective Newton method as an iterative optimization 

tool in order to find the optimal parameters of their model. The expectation 

maximization algorithm is another iterative technique used for parameter 

estimation, which converges toward the maximal solution of the likelihood 

function [32].  

In order to determine how well the estimated model approximates the 

initial distribution, several criteria have been successfully used for revealing 

the “goodness of fit”. As such a metric for our model we use the mean squared 

error (MSE), quantifying the amount by which the estimated curve X


 differs 

from the original one X , as: 
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                             (2.15) 

where n is the number of samples i. We also consider the dB gain in the 

Signal-to-Noise-Ratio (SNR), defined as:  
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Depending on the properties of the imaging modality, the regions of 

different materials in the recorded image can be modeled and discriminated by 

means of the intensity or the texture of the corresponding region. For instance, 

two materials that absorb different portions of the incident radiation would be 

recorded as image regions of quite different intensities. In this case, the use of 

mixture models applied directly on the intensity of a smoothed intensity 

histogram could enable the separation of two distinct models, one for each 

material region. Alternatively, if the imaging modality favors the dispersion 

and extensive diffuse of light at grain levels, then the texture of different 

material regions would be preferred as a discriminant factor. In such cases, the 

modeling of the distribution of variance as an expression of texture would be 

most appropriate for characterizing the structure of material regions [33]. 

Furthermore, in the case of imaging modalities operating at quite low 

wavelengths, the combination of intensity and texture attributes could be 

appropriate for characterizing the contrast among different regions.  

In order to suppress possible noise contamination in the intensity 

distribution, we process the local mean images obtained from 5x5 moving 

average filtering. In a similar way, the local variance images are acquired 

through the application of a 5x5 moving variance window shifted along the 

pixels of the entire image. The discrimination of image regions based on 

mean-intensity differences suggests the use of Gaussian-like distributions, 

while the discrimination based on texture measures such as variance 

necessitates the use of the Chi-Square distribution according to the theoretical 

analysis of variance. In essence, the Gaussian model for mean-intensity 

distribution is justified by either the assumption of a compact region for each 



“Analysis of microscope images”                                                      

Page 26  

 

material, as in [33], or the central-limit theorem guiding the distribution of the 

local mean operator. Furthermore, the Gaussian assumption by itself enforces 

the chi-square distribution on the local variance estimates [34]. 

Using the Gaussian and the Chi-Square distributions as basis functions 

we can define the mixture of Gaussian and the mixture of Chi-Squared 

distributions for the mean intensity and variance, respectively. The input 

images to be processed include a structure of interest (or “target”) and a 

surrounding region (or “background”). Due to the camera lens, the recorded 

image involves a circular region of interest (ROI), as depicted in Figure 2.6 

and a supplementary area at the corners of the rectangular image, which is an 

irrelevant area. Thus, the mixture of Gaussians can be represented as a sum of 

three distributions; one that represents the target, one that represents its 

surrounding medium and one that represents the remaining region of non-

interest, according to the following form:  
22 2
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1 2 3i 2 2 2
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where A1, A2, A3 are the amplitude factors, μ1, μ2, μ3 are the means and 
2 2 2

1 2 3σ ,σ ,σ
are the variances of the distributions of the target, surrounding 

medium and remaining area, respectively. If we model the circular ROI only, 

then the last function in the model can be eliminated. Similarly, the mixture of 

(two) Chi-Square functions of interest can be represented as  
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                                                                                                             (2.18)  

where Γ(.) is the Gamma function, A1, A2 are the amplitude factors, and n1, n2 

are the degrees of freedom of the distributions of the target and the 

surrounding medium, respectively. The term “degrees of freedom” is defined 

as the number of terms in the final calculation of a statistic, herein the chi-

squared distribution that vary freely. The distribution of the local variance 

image of the remaining area has no significant contribution, as this region 

appears homogenous, thus its variance equals to values near zero. The mean of 

the χ
2
 distribution is n, its variance is 2n and its mode equals to n-2 [34]. As 

the degrees of freedom increase, the Chi-Square function approximates the 

Gaussian one. 

Having accurately defined the model of our hypothesis, the estimation 

of its optimal parameters is then performed in the least square sense. Thus, we 

need to find parameters vector p that best fits the equation (minimize the least 

square error): 

    

1 12 2
( ; ) ( ) ( ( ; ) ( ))min min2 12 2

m
f x p y x f x p y xi i

ip p
  


              (2.19) 

where x is the input data vector of size m (in our case m=255, which is the 

number of the different gray intensity levels), y is the observed histogram of x, 
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f(.) is the hypothetical model function and p is the parameters vector to be 

optimized. When we perform comparisons of different material types or 

concentrations under the same experimental setup, then we might need to scale 

the mixture models under comparison, so that the background mean remains 

fixed. In such cases a scaling procedure is also implemented, which aligns the 

background means but otherwise preserves the shapes of model distributions.  

Each imaging system is characterized by its own spatial, spectral and 

intensity resolution, expressing its ability to sense and detect even small 

differentiations within regions of the image. Overall, the better the contrast 

achieved the better the effectiveness in correctly segmenting the regions 

associated with different materials in the image. The acquired contrast is an 

attribute of the imaging modality used and can be quantified by metrics 

applied on the recorded image. Furthermore, histogram processing of the 

digital image can further contribute to contrast enhancement. Thus, the 

selection of appropriate models for the different areas of the histogram not 

only enables the quantification of contrast but can also facilitate the process of 

contrast enhancement. 

In order to quantify robust contrast metrics, we employed the statistical 

modeling schemes of the polarimetric input images. We have already analyzed 

the modeling of the distribution of intensities of the various materials depicted 

in the acquired image. Here, we associate the image contrast with the 

separability of model distributions. The distance of the distribution centers 

reflects the structural differences of the two regions (target and surrounding 

medium). Thus, we propose to use the Difference of Modes (DoM) as a 

contrast measure of images [29]. The larger the difference the better the two 

regions are discriminated, which reveals contrast enhancement. For the 

mixture of Gaussians model, the contrast metrics is defined as the difference 

of the distribution means (equivalent to modes). Alternatively, for the mixture 

of Chi-Square functions, the contrast measure is computed as the difference of 

the modes of the foreground and the background distributions.   

In order to compare the effects of the optically active molecules at 

different concentration levels, we model the distributions of the acquired 

images. In the first set of experiments, within the area of interest, marked by a 

circle, we find low-intensity water segments mixed with the optical dopant at 

higher intensity levels. Due to the high magnification of the detection system, 

however, these regions are heavily contaminated by noise, which masks the 

intensity distributions of individual materials. In order to partially alleviate 

this problem, we process the local mean images obtained from 5x5 moving 

average filtering. This filtering fulfils the required condition analyzed in [33] 

about the smoothing of the gray level histogram in order to perform 

distribution modeling via Gaussian-like distributions. The resulting image is 

depicted in the upper middle part of Figure 2.6. The corresponding histogram 

in the lower middle part of Figure 2.6, can be approximated as a mixture of 

three Gaussian distributions: one distribution representing the 

target/foreground (the plastic twisted wire), one distribution representing the 

surrounding medium/background (L-Phenylalanine molecules in the glass test 

tube containing water) and one distribution for the remaining area outside the 

circle, according to equation (2.17).This modeling scheme using the mixture 

of Gaussians is essential under the assumption of Gaussian noise 
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contamination in the original image. Indicative optimal parameters of the 

estimated mixture model are shown in Table 2.1. The distance of distribution 

means reflects the structural differences of the two regions. Thus, we use the 

difference of model means as a contrast measure of images at different 

concentrations.  

 

Figure 2.6. First experiment: Original, mean and variance images (first row) 

along with their corresponding histogram distributions (second row) for a 

certain concentration of phenylalanine in aqueous solution  

 

Furthermore, we also consider the local variance image (upper right 

part of  Figure 2.6) in an attempt to exploit the texture differences between the 

(smooth) aqueous solution and (more active) the twisted wire area. For the 

variance image, the appropriate distributions characterizing the two regions 

become chi-square (χ
2
)
 
distributions. From both the form of the image and its 

histogram in Figure 2.6 we can verify that the distribution of the background 

(surrounding medium) imposes fewer degrees of freedom (smaller variance 

values) than the distribution of the foreground (target), which is spread over 

the upper part of the dynamic range, at high values. This tendency is verified 

by the estimated model parameters n1 and n2 in Table 2.1.  We model the 

entire image distribution through a mixture of two χ
2 

 functions estimated by 

best fit on the histogram through least squares optimization and use their 

modes in the proposed contrast measure. The difference of model modes in the 

variance image is used as an additional contrast measure at different 

concentrations. 
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The two contrast measures for the different concentrations of 

phenylalanine are depicted in Figure 2.7 indicating a clear contrast increase 

with concentration. The difference of modes for either the mean or the 

variance images has been considered with respect to the scaled range of [0, 

255]. 

Table 2.1: Optimal parameters of the mixture model 
Mean image parameters μ1 σ1 μ2 σ2 μ3 σ3 

Optimal parameters 

 

45 35 6 5 4 0,01 

Variance image parameters n1 n2 

Optimal parameters 

 

3 11 

 

The original and the model-estimated histograms are shown in the first 

row of Figure 2.8, for the local mean and variance images at the left and right 

parts, respectively. The proximity of the two curves, as well as the 

effectiveness of our approximation, is supported by the “goodness of fit 

metrics”, reflecting a MSE value of order 5x10
-3

 and a SNR value at the order 

of 10dB. By decomposing the estimated mixture models, we can easily derive 

the image regions being modeled by each individual distribution. The 

corresponding target and background regions using the mean and variance 

signals are illustrated in the second and third rows of Figure 2.8, respectively. 

The mean image appears more robust in segmenting the target regions of 

interest, whereas the variance image segments better the surrounding medium 

regions. Thus, the two forms of images can be used complementary in order to 

best segment all regions of interest. At this point we should notice that by 

further modifying the fitted models we can obtain enhanced separation of 

materials and better discrimination of the regions of interest. 

The adopted goodness of fit tests reflect a MSE value of order 5x10
-3

 

and a SNR value at the order of 10dB for the second set of experiments and a 

MSE of 2x10
-3

 and a SNR db gain value of order 10dB for the third set of 

experments, demonstrating a capability of accurately detecting both the 

solution and the target area, confirming the encouraging results of the 

proposed methodology. Further results and analysis can be found in [29] . The 

experimental results of this study emphasize the potential of the DOLP-

polarimetric modality in biomedical applications, since the experimental setup 

and calibration of the structures can simulate the function and behavior of 

human body molecules and substances.  
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Figure 2.7 First experiment:   Difference of modes (DoM) for the mean and    

     variance images versus concentration of aqueous L-Phenylalanine  

 

 
 

Figure 2.8 First experiment: Original and fitted curves for mean and variance images 

(first row), along with discriminated image regions for the mean and variance images 

(second and third rows, respectively) 
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2.1.3. Tissue characterization utilizing polarimetry 

The primary goal in molecular imaging is to obtain the highest signal, 

accurately localized with high temporal resolution, using the least amount of 

molecular probe as possible. Optical imaging on the molecular scale provides 

a safe, accurate, and low-cost alternative to other methods described.  The 

sensitivity offered is excellent, possibly up to 10
-17 

mole/L, thereby decreasing 

the need for large probe amounts.  Another advantage is the option of injecting 

multiple probe types for multichannel imaging. Optical techniques span spatial 

scales from subcellular to organ level, yet rely on a disease specific source of 

contrast as it affects a measurable property of light. Contrast enhancement of 

optical images has been an active area of research recently, as decoupling 

diagnostic information from nonspecific background proves to be a 

challenging problem.   

Imaging systems have provided clinicians and researchers noninvasive 

methods for observation of internal bodily structures, determination of 

functional tissue characteristics, and identification of diseases and conditions. 

As technology advances, short data acquisition time, reduced cost, high spatial 

resolution, high contrast resolution, and high specificity images, at a decreased 

radiation dose are realized, offering patients efficient diagnosis and decreased 

morbidity. 

Optical imaging provides a detailed description of biological tissues 

[19, 22]. For instance, it allows the characterization of a variety of diseases, 

such as breast cancer, skin cancer, lung cancer, cancer of the bladder and the 

analysis of molecular pathways leading to diseases. In addition, optical 

polarimetry provides enhanced imaging and spectral polarimetric information 

regarding the metabolic information of the tissue, as well as the molecular 

mechanism of a biological function advertising its non-invasive nature. Image 

formation through detection of the polarization states of light offers distinct 

advantages for a wide range of detection and classification problems and has 

been explored by a number of authors, due to the intrinsic potential of the 

optical polarimetry to offer high-contrast, high-specificity images under low-

light conditions. Backscattered optical polarimetric signatures from a target 

contain information not only related to the target composition, structure, 

texture, geometry but also to chemistry, biological functions and metabolism. 

Typically, cancerous cells exhibit structural, biochemical and metabolic 

anomalies [35]. Different tissues exhibit different indices of refraction and 

offer unique polarimetric, scattering and absorption characteristics [36]. For 

instance, precancerous lung epithelial tissues exhibit higher reflectance, 

increased DOP and larger retardance characteristics than healthy tissue [37], 

unlike other types of lung cancers of invasive nature. Similarly, different lung 

cancer types and subtypes appear distinct optical differences. 

Having introduced the polarimetric system of the University of Akron 

in the previous sections along with the preliminary findings of the application 

of polarimetry to simulating materials, lung tissue samples are utilized within 

the experimental procedure, directly connecting Stokes parameter imaging to 

biomedicine. Specifically, combining polarimetric analysis with exploratory 

statistical analysis and modeling would offer the opportunity to relate a 

physical procedure to discriminant signatures by separating different parts of 
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the histograms and applying curve fitting to different statistical distributions. 

An attempt for complete characterization of the tissue sample in terms of 

contrast, dynamic range (DR), discrimination and specificity could prove 

beneficial, leading to discrimination of healthy, precancerous and cancerous 

lung pathologies that could possibly facilitate accurate diagnosis of lung 

cancer. Appendix contains a number of relevant publications of the author on 

this extremely promising area for a more detailed investigation.  

In [37], Giakos et al evaluated backscattered signal contributions from 

healthy tissue, precancerous tissue (carcinoma in situ) and stage I cancerous 

tissue from lung under co-polarized and cross-polarized geometry. The 

findings indicate that backscattered intensities from stage I lung 

adenocarcinoma are higher than those of normal tissue, stage I lung 

adenocarcinoma depolarizes incident photons less than normal tissue and 

backscattered photons maintain their original linear polarization state at a 

higher degree with respect to the normal tissue. A characteristic difference of 

optical parameters between normal lung tissue and stage I carcinoma is 

illustrated in Figure 2.9, revealing the potential of tissue discrimination 

through the proposed polarimetric imaging scheme. 

Figure 2.9 Normal versus stage I lung tissue signal-to-background under co-

polarized and cross-polarized geometries 

 

The key objective and hot prospect of our study is to determine how lung 

anatomy and pathology relate to the optical parameters of lung cancer. A 

preliminary finding is that the formation of clustered large-size cells in 

precancerous cancer stages prevents light from penetrating the tissue as deeply 

as it would in normal tissue, giving rise to high photon backscattering. In 

addition, because of the reduced amount in collagen, the early-stage cancerous 

epithelial structure tends to depolarize the light less than normal tissues. 

Further validation with repeated experiments and expansion to other types of 

cancer is necessary in order to make the conclusions derived more robust and 

internationally acceptable, yet the first step of the innovation has taken place. 
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2.2. Histology and microscopy fundamentals 

Histology is the branch of medicine that studies the texture of 

biological material, namely the elements it consists of and the way these are 

connected with each other, structurally and functionally. The knowledge of 

physiological histology is fundamental in order to identify the nature and the 

origin of each disease, to estimate the degree an ailment is caused by an 

alteration in the tissue structure or by a malfunction of the tissue biochemistry. 

Using simple medical techniques, mostly painless for the patient, tissue 

sections are obtained (biopsy) and examined under a microscope. Such 

procedures include: 

 Lancet incision in directly accessed tissues, such as skin, mouth 

e.t.c. 

 Needles, in the case of compact organs (FNA) 

 Endoscopic tubes in body hollows (gastrointestinal system) 

 Flexible catheters in blood vessels  

The structure and function of all live organisms are based on cells. The cells of 

a multicellular organism vary significantly among each other. Although they 

originate from one milted ovum, each of the cells eventually builds up the 

morphology that is appropriate for its operation through the process of 

differentiation. This procedure results in the grouping of cells with common 

functional properties and their adaptation to the needs of a continuously 

varying environment (e.g. the replacement of a heart muscle by a potent 

fibrous connective tissue). Depending on the main function they perform, cells 

are classified into groups. Frequently, though, a cell may participate in various 

operations, thus it can belong to more than one group. The most important 

categories of cells are: 

 Epithelial ones, having as their common role  to form barriers, absorb 

and exude 

 Connective tissue ones, having as their common role to brace and 

organize the body 

 Systole ones, having as their common role the movement 

 Nerve ones, having as their common role the communication between 

the cells 

 Genital ones, having as their common role the reproduction 

 Blood cells, having as their common role the transfer of oxygen and 

the defense 

 Immunization system cells, forming the defense mechanism of the 

organism 

 Hormone producing cells, aiming at the indirect communication of the 

cells 

A tissue constitutes a union of cells ordered in a specific mode. When 

the cells forming the tissue follow the same structure (morphology-

construction) the tissue is characterized as “simple tissue” (e.g. lipoid tissue), 
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while the tissue that consists of mixed cellular population, extracellular 

substance and cellular products (e.g. nerve tissue) is named as “composite 

tissue”. An anatomically distinct cluster of tissues, of different kind yet 

presenting common special functionality, forms an organ, while as a system 

we consider a group of organs having common functional roles or related with 

each other. 

The simplest method to study cells and tissues is the use of photon 

microscope. Thin slices of tissues are laid on glass tiles, stained with the 

appropriate pigment, lighten by common light and observed in the microscope. 

The use of electron microscope improves discrimination ability, overcoming 

the drawback of photon microscope to visualize thin and small structures 

inside the cell. Immunohistochemistry (IHC) and fluorescence in situ 

hybridization (FISH) are techniques that have proved extremely useful tools 

for improving the visual result of microscopy. IHC utilizes antibodies against 

specific cellular elements, while FISH aids in the study of DNA or RNA [39], 

extracting significant information in molecular level. In this way, structures 

that couldn’t be visible with other techniques are now observable in the photon 

and electron microscope. 

Prior to their observation and analysis in microscope, tissues need to be 

appropriately prepared [40]. This procedure is the key part of the entire 

histological analysis process and directly affects the final optical result and the 

applicability of microscopy and image processing methods for extracting 

accurate conclusions. The scientific training of the laboratory staff that 

performs the tissue preparation, the precise execution of the intermediate steps 

and the strict compliance with the time intervals of tissue handling are 

prerequisites for the validation and analysis of the results. The preparation 

process can be analyzed into the following basic steps: 

1. Stabilization (fixation): This step aims at preserving the tissue as 

well as possible in order to stabilize its elements, as if it was live, 

increasing its stiffness so as to be cut in thin slices and killing all the 

bacteria and virulent factors present on the tissue. Among a variety of 

stabilization materials we emphasize on formalin (the most common 

and inexpensive stabilization material), alcohol (not pure alcohol as it 

causes abrupt dehydration and crimping of the tissue) and dichloride 

mercury (it stabilizes quickly but reposes salts in the tissue). Having 

been stabilized, the tissue is sliced into small pieces using a common 

lancet. Slices containing ossified tissue or bone pieces need to be 

desalinated in order to soften and be sliced in the microtome. The 

slighter the bone pieces, the easier they are demineralized. The 

duration of this procedure depends on the tissue stiffness and the size 

of the slice and varies from a few hours until 1-3 days. Continuing, the 

slice is washed in regulative solution and is entirely stained. 

2. Dehydration: This procedure is automatically performed with the aim 

of a dehydrating/ embedding system and endures 24 hours. Tissue 

slices are gradually dehydrated using alcohol solutions of increasing 

concentration (60%, 70%, 90% and 100%) until all water (endogenous 

tissue water and stabilization liquid water) is removed. The 

dehydration procedure must be executed cautiously and precisely, 

aiming at both stiffing the tissue and removing all of its components 
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that are diluted in alcohol. Numerous technical errors can take place 

during this process, such as breaking or shrinking the tissue, thus 

processing times must be accurately followed. Continuing, the 

procedure of clarification takes place, where alcohol is replaced by an 

organic solvent (xylene or toluene), which can be mixed with both 

alcohol and paraffin in liquid form. Finally, the tissue is enclosed in 

melted paraffin (paraffin confinement or impregnation in paraffin, 

lasting 8-10 hours) and left until it’s cooled down so as the paraffin 

gets solid. 

3.  Skinosis (paraffin embedding): Once the material is cooled and the 

paraffin is fixated, the structure is placed in fixative fluid (paraffin in 

liquid form) in order to mold a tissue-paraffin “block”, which will be 

able to be sliced in thin incisions (2-7μm) without causing 

deformation of the cellular structure and the tissue architecture. The 

precise and correct placement of the tissue sections in the paraffin 

block is of fundamental importance as this will define the slice that 

will be mounted on the tile.    

4. Slicing on the microtome: The tissue-paraffin block is placed on the 

microtome, where it is cut in slices 5-8μm thick. These slices are 

inspected for their completeness in a special “cool water bath” and 

spread on glass tiles (slides) using leucoma, made up by albumen, 

whipped up with distilled water and glycerin, adding crystals of 

carbolic acid in order to prevent growth of funguses. A drop of this 

solution (well preserved in a bottle to be protected from dust) is spread 

on the slide surface by finger, smoothly, without plaiting and 

sheathing of the slice so as to eliminate errors inserted by artifacts for 

the observation under the microscope. Slides must dry before 

pigmentation (desiccation procedure), usually by being passed in a 

furnace under 37
o
-40

o 
C for 30-45 minutes. Higher temperatures insert 

the risk of tissue damage.  

5.  Hydration: After the plating of the slices on the tiles, the procedure 

of deparaffinization takes place, where paraffin is removed with the 

aid of an organic solvent (e.g. xylene). Consequently, the hydration of 

the slices in successive solutions of increasing dilution of alcohol in 

water is performed and the incisions are stained using the appropriate 

pigments. Generally, in a routine laboratory, the preparation of a 

paraffin section for histological analysis requires a whole day to be 

completed. 

6. Staining: Staining of the tissue sections can be performed in two 

ways: 

 The tissue section remains in the pigment as long as needed 

for the staining of the special element that occludes the 

substance in the desirable degree. 

 The tissue section remains in the pigment for a longer time 

interval. In this way, both the special element and the rest 

tissue ones are overstained and the surplus of the pigment is 

removed using another liquid. This stage of the staining 

procedure, which is the most commonly adopted, is called 

differentiation and the liquid used is named differential liquid 

(usually acidized alcohol of appropriate concentration as a 
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weak solution does not discolor the slice and a strong one 

completely discolors the tissue sections). It is advised that the 

differentiation procedure be performed by immersing the 

sections into the differential liquid (and not continuously 

leaving them in it) and be terminated by rinsing with plentiful 

common water. Advanced staining techniques (such as 

immunohistochemistry) can be further adopted depending on 

the quality of the extracted results required and the nature of 

the special element to be detected and analyzed by the 

specialist.   

7. Dehydration – clarification – covering: Dehydration, already 

mentioned in previous stages, is performed in the same manner as in 

the paraffin-embedding procedure using a series of alcohol solutions 

of increasing concentration (70
o
-100

o
). Clarification of the sections is 

achieved by immersing them into two xylene baths for two and five 

minutes respectively. The precision and quality of the dehydration 

procedure is fundamental for the future analysis procedure, as poor 

dehydration results in blurring effects on the slides under microscope 

observation. After the clarification in xylene, slices are caped with a 

special coverslip that is attached with the aid of a drop of Canadian 

balsam, natural or artificial, paying high attention to the complete 

removal of the air bubbles between the coverslim surface and the 

slice. Finally, the slide is cleaned with a xylene immersed wipe.     

The discriminating ability of the photon microscope can be further 

increased utilizing thinner slices of paraffin (0.5-2μm), which is achieved with 

the consolidation of the tissue in acrylic or epoxy resin. Most acrylic resins are 

widely used as a consolidation medium, being stiffer substances than paraffin 

and better prop means for the tissue. Comparing with paraffin they offer 

thinner incisions, thus better discriminating ability under the microscope and 

produce more qualitative slices taken from highly dour tissues, such as 

calcified bone.  

Epoxy resins constitute the toughest prop consolidation mediums. The 

utilization of specialized microtomes may extract very thin incisions (0.5-

1μm) of advanced optical quality and compound specific, fine slices, proper 

for electron microscopy, since they are resistant to the destructive action of the 

electron beam emitted by the microscope, contrary to other substances. 

Another characteristic of the epoxy resins is their ability to prevent pigments 

from penetrating into the tissue section, leading to the adoption of another 

substance, toluidine blue, which stains the various biological elements in 

different tones of blue.     

Electron microscope facilitates the discrimination of detailed 

subcellular structures. Tissue processing necessitates specially 

stabilized/fixated, thin sections (<2mm) within particular fixation liquids, such 

as gluteal and bromium tetroxide, in order to avoid electron dispersion. The 

stains utilized contain a heavy metal (usually uranium or lead).   
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2.2.1. Immunohistochemistry fundamentals 

Immunohistochemistry (IHC) is the localization of antigens in tissue 

sections by the use of labeled antibody as specific reagents through antigen-

antibody interactions that are visualized by a marker such as fluorescent dye, 

enzyme, radioactive element or colloidal gold [41]. It is a method for detecting 

specific antigens in tissues or cells based on an antigen-antibody reaction. The 

initial technique was developed in 1940s using immunofluorescence on frozen 

tissue. Enzyme-based IHC was introduced in 1970s. A series of advancements 

in the technology, particularly during late 1980s and 1990s, led to the 

development of antigen retrieval techniques to make IHC possible on nearly 

all archival tissue. This, coupled with sensitive detection systems, and better 

antibodies has made this technique routine in surgical pathology and research. 

With the expansion and development of immunohistochemistry technique, 

enzyme labels have been introduced. Other labels include radioactive 

elements, and the immunoreaction can be visualized by autoradiography. 

Since immunohistochemistry involves specific antigen-antibody 

reaction, it has apparent advantage over traditionally used special enzyme 

staining techniques that identify only a limited number of proteins, enzymes 

and tissue structures. Therefore, immunohistochemistry has become a crucial 

technique and widely used in many medical research laboratories as well as 

clinical diagnostics [42]. 

There are numerous immunohistochemistry methods that may be used 

to localize antigens. The selection of a suitable method should be based on 

parameters such as the type of specimen under investigation and the degree of 

sensitivity required. Electron microscopic (EM) immunohistichemical 

techniques can be divided into two groups: Those where the immunostaining 

takes place prior to resin embedding are referred to as pre-embedding. Those 

methods where the immunolabeling is undertaken after resin embedding are 

known as post-embedding. The choice of whether to apply pre- or post-

embedding method to the detection of an antigen in any particular location 

depends on a large extent upon the distribution and liability of the antigen and 

the characteristics of the primary antibody. Before starting immuno-EM 

labeling, a test for the characteristics and dilution of the primary antibody 

should be performed at light microcopy level. Several recently developed 

methods rely on labeling with colloidal gold particles. These methods were 

originally introduced for electron microscopy as the gold particles are easily 

visible under the electron microscope, but they are also useful for light 

microscopy. Since gold particles can be made in different size from 5 to 30 

nm, it is possible to carry out multiple staining at the electron microscopic 

level, most easily by direct labeling of several first layer antibodies with 

different sized particles. The indirect techniques can also be used in double or 

triple labeling by parallel approach if the primary antibodies are from different 

species and by sequential approach if the primary antibodies are from same 

species [43]. 

    Tissue preparation is the cornerstone of immunohistochemistry. To 

ensure the preservation of tissue architecture and cell morphology, prompt and 

adequate fixation is essential. However, inappropriate or prolonged fixation 

may significantly diminish the antibody binding capability. There is no 
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universal fixative that is ideal for the demonstration of all antigens. However, 

in general, many antigens can be successfully demonstrated in formalin-fixed 

paraffin-embedded tissue sections. The discovery and development of antigen 

retrieval techniques further enhanced the use of formalin as routine fixative for 

immunohistochemistry in many research laboratories.  

The Her-2/neu gene can be screened by using molecular and 

immunological probes that vary in their complexity, sensitivity and specificity. 

In the beginning, Her-2 amplification was evaluated by Southern blotting, 

which was supplanted by a sensitive and rapid quantitative polymerase chain 

reaction method [39]. Fluorescence in situ hybridization (FISH) is a more 

recent technique that enables Her-2/neu amplified cells to be visualized within 

a tumor slice. In addition, Her-2/neu overexpression can be detected with 

various methods, including Northern blot and in situ hybridization for Her-

2 RNA, Western blot and immunoassays for Her-2 protein, but he most 

widely used method is immunohistochemistry (IHC). FISH is a more 

recently developed method that can visualize the number of gene copies 

present in tumor cells and provide a sensitive and accurate measure of Her-

2/neu gene amplification while IHC can be easily carried out on formalin-

fixed, paraffin-embedded tissue, is more familiar, less expensive and simpler 

compared with FISH. FISH measures Her-2/neu amplification in DNA level 

while IHC measures gene overexpression in protein level and identifies cases 

in which the gene product is overexpressed even without being amplified. Yet, 

the results produced cannot be fully objectively accepted by all researchers 

and are complex and subject to considerable variations in the hands of 

different teams and laboratories. The advantage of FISH versus IHC is the 

ability to analyze gene integrity and protein expression on two consecutive 

tumor sections, thus manipulating the same cells [39]. IHC has the drawback 

that produces results that are conflicting due to different sensitivity and 

specificity of the primary antibodies used, there is variability in IHC 

interpretation and technical artifacts can be introduced [44]. 

In immunohistochemistry, positive reactions with DAB 

(diaminobenzidine) are identified as a dark brown reaction product on the cell 

membrane and the specimens are graded as negative, low, medium, and high 

positive, based on both the percentage of positively stained cells and the 

staining intensity according to a scoring protocol. The specimens with high or 

medium IHC positivity are considered to have Her-2/neu overexpression, 

compatible with FDA approved criteria for Herceptin treatment. An arbitrary 

scoring system needs to be assigned for Her-2/neu protein levels, which in 

reality cover a continuous spectrum. In fact, different scoring systems have 

been used. Recent pilot studies use graded values, including high, medium, 

and low positive and negative, whereas HercepTest uses 3+, 2+, 1+, and 

negative score. Another scoring approach is mentioned in [45]: categorization 

as 3+, 2+,1+ or 0+. When membrane staining, whether incomplete, complete, 

strong or weak, is absent in less than 10% of the cells, the score is negative or 

0. Staining is scored as 3+ when the surface of the tumor cell has strong 

intensity, 2+ when it has moderate intensity and 1+ when the membrane has 

weak intensity and is incompletely stained. However, other studies have used 

strong positive (2+), weak positive (1+), and absent (0),or a positive versus 

negative system, where “positive” was defined as the relative difference in 
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cytoplasmic membrane staining between tumour cells and normal epithelial 

cells. Therefore, it is inevitable that some interlaboratory discrepancies may 

exist for at least some of the cases, especially medium or low positive ones. 

  In general, the HercepTest scoring is adopted. According to this, 

negative results are 0 and 1+ intensity (no or barely perceptible membrane 

staining in >10% of tumor cells) and positive results are 2+ (moderate 

complete membrane staining in >10% of tumor cells) and 3+ (strong complete 

membrane staining in >10% of tumor cells) respectively. The description is 

summarized in the following tables, where the adopted scoring system is 

described in Table 2.2 and summarized in a standardized form in Table 2.3 

according to practical measurements, keeping up with the majority of 

bibliography. 

                            Table 2.2 Generalization of IHC score 

 

Scoring of IHC staining 

 

 

0 

 

No slides returned. 

 

1&2 

Considerably less invasive tumor nuclei staining than expected, when 

compared to the test slides stained by the organizing laboratory. 

 

3 

Demonstration of less invasive tumor nuclei staining than expected to 

stain or/and the intensity of staining is considerably weaker than 

expected. 

 

4&5 

Demonstration of the proportion of nuclei of invasive tumors 

expected to stain, with roughly the expected staining intensity. 

 

 

Table 2.3 Standardized IHC score based on practical measurements 

 

Score HER2 Status Staining Pattern 

 

0 

 

Negative: No staining observed, or membrane staining in less than 

10% of tumor cells. 

 

+1 

Negative: A faint/barely perceptible membrane staining detected in 

more 

than 10% of tumor cells. The cells are only stained in part of the 

membrane. 

 

+2 

Borderline: A weak to moderate complete membrane staining 

observed in more than 10% of tumor cells. 

 

+3 

Positive: A strong complete membrane staining observed in more 

than 

10% of the tumor cells. 

 

It is not known if there is a real difference between 10% and 100% staining 

from a clinical point of view. Studies on HER2 do not address the percentage 

of positive staining in detail. In this regard, it is difficult to compare different 

studies, because of different definitions of positivity. 

    Immunohistochemistry is a purely medical issue of deep theoretical 

background and the detailed explanation of its rules and procedures is not of 
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our main interest.  Our goal is to attempt to process the extracted IHC images 

of breast tissues and automatically determine/define the extent of HER-2 

overexpression on the examined breast tissue. This is not an easy part, as very 

few image analysis methods have been developed and, most of all, there is not 

a totally and, generally accepted, subjective method to define the degree of 

malignancy. In addition, the visual processing of the prepared tissue is directly 

dependent on the quality of the laboratorial technique. The tissue evaluation is 

achieved by counting, through a standardized procedure, the total percentage 

of staining of the membranes of the cells forming the tissue section. If the 

percentage exceeds a specific value, defined according to a “scoring method”, 

we consider this tissue part as “affected”, so the “patient” has to proceed to the 

next step, which is targeting the HER2 antibody with anti-HER2 therapy. 

We focus on, and try to exploit, the fact that IHC “stains” the 

membranes of HER2 overexpressed cells, which monitors them with a 

characteristic brown color (adopting the DAB staining protocol) or red color 

(adopting the PAP staining protocol) in the extracted microscope images, 

while the cell nuclei are highlighted with a pure blue coloring. The percentage 

of staining along each membrane contour, the percentage of “stained” cells 

with respect to all cells and the “darkness” (the intensity of brown/red color) at 

each membrane are factors that reveal if a tissue is healthy or not. The difficult 

part is to accurately define these factors and safely interpret them according a 

well-established scoring system. We have to be very careful within this 

procedure. Determining a healthy tissue as “containing malignant cells” would 

saddle the patient with the heavy load of carrying the disease and introduce 

him/her to unnecessary, extremely costly and potentially dangerous targeted 

treatment with Herceptin, which has been found suspicious of causing 

cardiovascular abnormalities. Considering a defected tissue as healthy would 

prevent the patient from following an instantly needed therapy, thus putting 

his/her own life in danger!  

The effect of IHC testing on the tissue sample is to stain the 

membranes of tumor cells, partially or completely. The percentage of tumor 

cells that have completely-stained membranes and the intensity of that staining 

were used, so far, by an experienced pathologist to derive a score. Our goal is 

to develop an algorithm/procedure to contribute to the specialist’s evaluation 

by segmenting the input IHC image to regions forming the tissue cells, count 

their number, define their contour borders associated to the cytoplasmic 

membrane and deliver quantitative measurements on the distribution of 

membrane staining values that are relevant to deriving a score. 

    Generally, the membranes are assumed to be stained brown or red, 

according to the staining protocol implied by the utilized antibodies while the 

nuclei are assumed to be stained blue. An important feature of the developed 

algorithm is to be able to logically connect membranes that are not completely 

stained. This is necessary in order to determine the completeness (percentage) 

of membrane staining for each and every tumor cell. There should be a high 

degree of concordance between algorithm cell boundaries and biological 

membranes (it is generally accepted that no algorithm will perfectly perform 

this task). 
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    A continuous and qualitative co-operation with a medical specialist 

is needed in order to accurately define the parameters of the problem and 

insert them, step-by-step, into the image processing procedure. It is also 

important to mention the undoubtedly essential contribution of the anatomy 

expert to the tissue evaluation, recognizing that no automated or semi-

automated algorithmic procedure can totally substitute the expert’s tutoring 

and observation. 

Closing this introductory section and before entering in the pure 

immunohistochemical image processing theory and segmentation, an optical 

demonstration of nature of IHC microscope samples is depicted in Figure 

2.10. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.10 Upper left - IHC score 0 image (totally normal and healthy tissue, no 

HER2 overexpression), Upper right - IHC score+1 image (healthy tissue with 

controlled HER2 overexpression), Down left - IHC score+2 image (healthy but 

potentially suspicious tissue, augmented HER2 overexpression), Down right - IHC 

score +3 image (affected tissue)  
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3. Image processing background 

Image segmentation aims at extracting attributes of interest from an image 

considering its common properties, such as discontinuities and similarities, within the 

different object classes forming the captured scene. Points, lines, regions, boundaries 

are among the key features to be evaluated through this procedure. Several 

approaches have been introduced in international bibliography; point and line 

detection techniques where the detected edges are linked in order to accurately 

represent the shape of each object, thresholding methods (histogram, adaptive, multi-

level) which divide the image into segments according to distinct bands of pixel 

intensities and region growing/splitting methodologies which iteratively classify 

neighboring pixels of "seed-points" into a region through appropriately selected 

similarity criteria [46]. The efficiency of a segmentation method highly depends on 

the properties of the processed image (colors, size, contrast, texture, presence of 

noise), the possible prior knowledge on it (number of key objects, region overlapping) 

and the expedient feature to be extracted (contours, regions, edges). Edge 

segmentation methodologies appear very sensitive to noise, thresholding techniques 

lead to ambiguous boundaries and prerequisite homogenous, few and non intersecting 

regions, while region based segmentation approaches introduce computational 

complexity and are sensitive to the initialization of seed-points. Thus, key image 

feature extraction can be characterized as a complex, application-dependent yet 

challenging scientific area. 

3.1. Color models 

The RGB color model is an additive color model in which red, green and 

blue light are added together in various ways to reproduce a broad array of colors 

and is widely used in screening application. The name of the model comes from 

the initials of the three additive primary colors, red, green, and blue. Pure color 

information is described as a linear combination of all the three components. The 

term RGBA is also used to mean Red, Green, Blue, Alpha. This is not a different 

color model, but a representation, where Alpha is an additional channel (not 

component) used for transparency. For an 8-bit image, each component value 

ranges from 0-255, defining the extent of the basic color it contains. It is 

represented as a cube in the Cartesian space with each axis representing each color 

component. 

In the HSV (Hue, Saturation, Value) model, also called HSB (Hue, 

Saturation, Brightness) or HIS (Hue, Saturation, Intensity), color is represented by 

three components; a) Hue (H), defining the pure color type (such as red, green) 

and ranging from 0 to 360 degrees (with red at 0 degrees, green at 120 degrees, 

blue at 240 degree etc), b) Saturation (S) or “purity” ranging from 0 to 100% and  

defining the amount of white color present (the lower the saturation of a color the 

more faded the color will appear) and c) Value (V) or Brightness (B) or Intensity 

(I), ranging from 0 to 100%.  It is a nonlinear transformation of the RGB color 

space. In order to process images aiming at extracting color information and 

features, it is preferable to use the HSV color model over alternative models such 

as RGB, because of its advantage to emulate the human color perception system. 

In addition, pure color features are independent on the intensity channel, which 

plays a key role in color segmentation as only the Hue channel is processed for 

color determination. RGB is an additive color space, modeling the way that 

primary color lights combine to form new colors when mixed. 
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In the Lab color space, also known as CIE or CIELAB, color is 

represented by dimension L standing for lightness and the a, b channels for the 

color-opponent dimensions, having the color variable independent of the color 

intensity. Lab color is designed to approximate human vision and its L component 

closely matches human perception of lightness. Thus, it can be used to make 

accurate color balance corrections by modifying only the a and b components, or 

to adjust the lightness contrast using only the L component. The L*a*b* color 

space includes all perceivable colors, exceeding the capabilities of the RGB color 

model. One of the most important attributes of the L*a*b*-model is device 

independence, meaning that the colors are defined independent of the nature of 

their creation or the device they are displayed on.  

The representation of the three color spaces is depicted in Figure 3.1 

        

       

     Figure 3.1 Representation of RGB, HSV and LAB color model    

     [www.mathworks.com] 

 

The conversion from the RGB model to the HSV is achieved using the following 

formula: 
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   (3.1) 

 

 

 

 

 

  

http://en.wikipedia.org/wiki/Opponent_process
http://en.wikipedia.org/wiki/Opponent_process
http://en.wikipedia.org/wiki/Lightness_%28color%29
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3.2. Image clustering 

Cluster analysis or clustering is the process of grouping a set of objects 

into classes (clusters) according to a matching criterion (distance function) in such 

a way that the inter-cluster similarity between the elements along with the extra-

cluster separability are increased. It is a common technique for statistical data 

analysis with numerical application including machine learning, pattern 

recognition, image analysis, information retrieval and bioinformatics. 

Clustering can be achieved by various algorithms that differ significantly 

in their notion of what constitutes a cluster and how to efficiently represent and 

find classes, making feature extraction and definition a key part of the whole 

process. Popular representation of clusters include groups with small distances 

among the cluster members, dense areas of the data space, intervals or particular 

statistical distributions. The appropriate clustering algorithm and parameter 

settings (including values such as the distance function to use, a density threshold 

or the number of expected clusters) depend on the distinct input data set and 

expected use of the results. Cluster analysis is not an automatic task but an 

iterative process of information searching and extraction through an interactive 

optimization procedure that involves initialization, random in the majority of the 

cases, trial and failure. Data preprocessing is also needed along with model 

parameters determination and convergence criteria in order the result to achieve 

the desired properties. 

Clustering has been widely used in computer vision for partitioning a 

digital image into multiple segments (sets of pixels) with common characteristics 

such as color, intensity or texture or even locate objects and boundaries (lines and 

curves). The objective is to assign a label to every pixel in an image such that 

pixels with the same label share certain visual characteristics. The classic K-

means algorithm and the recently re-emerged and promising Mean-Shift algorithm 

are two representative methodologies for image clustering segmentation.  

K-means clustering [47] is an iterative technique that is used to partition an 

image into K clusters and constitutes one of the simplest, quickest, yet 

representative unsupervised learning algorithms that solve classification problems. 

The main idea is to define K centroids, one for each cluster, having the limitation 

that the classes must be known a priori. Different location of centers causes 

different results, thus the algorithm suffers from initialization. The better choice is 

to position them as far from each other as possible. The next step is to take each 

point belonging to a given data set and associate it to the nearest centroid, 

according to a well defined criterion. Squared Euclidean distance, where each 

centroid is the mean of the points in that cluster and Cityblock Distance where 

each centroid is the component-wise median of the points in that cluster are the 

two dominant distance metrics, defined in the following equations: 

 

Squared Euclidean Distance          2

1

( )
n

ij i j

i

E X C


                             (3.2) 

Cityblock distance             
1

| |
n

Cij i j

i

E X C


               (3.3) 

where n is the total number of points, Xi  and Cj represent the candidate point i and 

centroid of cluster j resprectively.  

http://en.wikipedia.org/wiki/Statistics
http://en.wikipedia.org/wiki/Data_analysis
http://en.wikipedia.org/wiki/Data_analysis
http://en.wikipedia.org/wiki/Machine_learning
http://en.wikipedia.org/wiki/Image_analysis
http://en.wikipedia.org/wiki/Information_retrieval
http://en.wikipedia.org/wiki/Bioinformatics
http://en.wikipedia.org/wiki/Distance_function
http://en.wikipedia.org/wiki/Statistical_distribution
http://en.wikipedia.org/wiki/Metric_%28mathematics%29
http://en.wikipedia.org/wiki/Knowledge_discovery
http://en.wikipedia.org/wiki/Iterative
http://en.wikipedia.org/wiki/Cluster_analysis
http://en.wikipedia.org/wiki/Cluster_analysis
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When all points have been connected with a cluster center , the first step 

has been completed and a preliminary classifications has been achieved. At this 

point k new centroids as barycenters of the clusters resulting from the previous 

step need to be re-calculated. After this update of the k centroids, a new binding 

has to be done between the same data set points and the nearest new centroid, 

forming an iterative procedure. As a result of this loop we may notice that the k 

centroids change their location step by step until no more changes take place. In 

other words centroids do not move any more. 

      The basic algorithmic steps are summarized in the following scheme: 

1. Pick K cluster centers, either randomly or based on some heuristic 

2. Assign each pixel in the image to the cluster that minimizes the distance 

between the pixel and the cluster center according to a selected distance 

function 

3. Re-compute and update the cluster centers by averaging all of the pixels in 

the cluster 

4. Repeat steps 2 and 3 until convergence is attained (i.e. no change in pixel 

classification is observed) 

In this case, distance is the squared or absolute difference between a pixel and a 

cluster center. The difference is typically based on pixel color, intensity, texture, 

and location, or a weighted combination of these factors. K can be selected 

manually, randomly, or by a heuristic. This algorithm is guaranteed to converge, 

but it may not return the optimal solution as the quality of the solution highly 

depends on the initial set of clusters and the value of K. The way to initialize the 

centroids is not specified and it frequently happens that suboptimal partitions are 

found.  This poor initialization can be improved by multiple runs of the algorithm 

or the clustering of one or more samples first for "training" the algorithm. Another 

drawback is the handling of empty partitions and the productions of outliers, 

especially in the cases of different size of the regions to be segmented. The 

prerequisite of the algorithm for known number of classes is particularly 

troublesome, since in most application there is not such knowledge. A 

segmentation example applying k-means clustering to a immunohistochemical 

image sample is illustrated in Figure 3.2. The nature of the biomedical input 

image and the objective to segment cell nuclei implies the existence of three color 

classes within the image (yet the selection of K=3): a) the "blue" area of the cell 

nuclei, b) the "brown" area of the membrane staining and c) the remaining tissue 

area. Selecting as a feature input the color information derived from the S and V 

channels of the converted RGB image to the HSV color space and the Euclidean 

distance as a similarity criterion, the segmented color components are extracted. 

The basic limitation of k-means clustering for a priori knowledge on the 

number of candidate classes and the shape of their distribution is overcome 

utilizing the Mean-Shift clustering algorithm. Mean Shift (MSH) is a robust 

technique which has been applied in many computer vision tasks, including image 

segmentation and visual tracking. It was proposed in the middle 70’s [48] but was 

not widely used till Cheng [49] and Comaniciu [50] applied the algorithm to 

Computer Vision and woke up the interest on it. In essence, MSH is an iterative 

mode detection algorithm in the density distribution space based on the moving to 

a kernel-weighted average of the observations within a smoothing window. This 

computation is repeated until convergence is obtained at a local density mode. The 

http://en.wikipedia.org/wiki/Random
http://en.wikipedia.org/wiki/Heuristic
http://en.wikipedia.org/wiki/Distance
http://en.wikipedia.org/wiki/Distance
http://en.wikipedia.org/wiki/Hue
http://en.wikipedia.org/wiki/Brightness
http://en.wikipedia.org/wiki/Texture_%28computer_graphics%29
http://en.wikipedia.org/wiki/Random
http://en.wikipedia.org/wiki/Heuristic
http://en.wikipedia.org/wiki/Global_optimum
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steps are: (1) estimate the density, (2) find the modes of the density and (3) 

associate each data point to one mode.  

 
       Figure 3.2 Example of immunohistochemical image segmentation applying the  

       k-means clustering algorithm 

 

The main idea beyond mean shift is to treat the points in the d-dimensional 

feature space as an empirical probability density function where dense regions in 

the feature space correspond to the local maxima or modes of the underlying 

distribution. For each data point in the examined sample, a gradient ascent 

procedure is performed on the local estimated density until convergence. The 

stationary points of this process represent the modes of the distribution. Thus, the 

data points associated with the same stationary point are considered members of 

the same cluster. This procedure is schematically represented in Figure 3.3. 
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Figure 3.3 Schematic representation of mean-shift algorithm 

 

Each data point is associated with the nearby peak of the dataset’s 

probability density function. Mean shift defines a window around each point and 

computes its mean. Then it shifts the center of the window to the mean and repeats 

the algorithm till it converges. After each iteration, the window shifts to a denser 

region of the dataset. Yet, the algorithmic steps include: 

1. Fix a window around each data point 

2. Compute the mean of data within the window 

3. Shift the window to the mean and repeat till convergence. 

A summary of the basic mathematical background of the algorithm takes 

place in the following lines. A kernel φ(x) is a function that satisfies the following 

requirements: 

( ) 1   and  φ(x) 0
d

R
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Kernel density estimation is a non parametric way to estimate the density function 

of a random variable. This is usually called as the Parzen window technique. 

Given a kernel K, n data points {x1, x2,…, xn}and a bandwidth parameter h 

representing the window size, the Kernel density estimator for a given set of d-

dimensional points is given as  
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Mean shift can be considered to be based on gradient ascent on the density 

contour. Applying gradient to the kernel density estimator we obtain 
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 Using the kernel form  

2

i

i

x-x
K(x-x )=ck( )

h                                                                                (3.8) 

, where c is a constant, the gradient of the density estimator becomes 
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Setting g(x) = - K’(x) we have 
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Finally, we obtain the formulas-definitions: 
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              (3.11) 

Equation (3.11) indicates that the mean shift is proportional to the local gradient 

estimate, yet it can define a path leading to a stationary point of the estimated 

density, the mode of the distribution (the cluster centroid). It is also noticed that 

the mean shift step is large for low density regions corresponding to valleys and 

decreases as x approaches a mode (becomes zero if the point identifies with the 

mode).  

It is remarkable that the only parameter of the algorithm is the bandwidth 

h. The number of classes is internally evaluated as the mean shift vector 

determines if the newly calculated centers will merged with the existing ones or 

will be the barycenter of a new cluster. The basic drawback of the algorithm is the 
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low speed of convergence but there exists a lot of research regarding 

implementation for speed-ups and improvements. In addition, a limitation of the 

standard mean shift procedure is that the value of the bandwidth parameter is 

unspecified and application dependent [51]. An example of Mean Shift clustering 

segmentation performed on the Hue color band of an immunohistochemical image 

sample is illustrated in Figure 3.4.    

 

 

 
Figure 3.4 Example of immunohistochemical image segmentation applying the 

Mean-Shift clustering algorithm 
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3.3. Watershed transform 

Watershed transform constitutes one of the reference methodologies 

regarding image segmentation. The major idea beyond watershed transformation 

is based on the concept of topographic representation of image intensity, fused 

with other principal image segmentation methods including discontinuity 

detection, thresholding and region processing. Because of these factors, watershed 

segmentation displays more effectiveness and stableness than other segmentation 

algorithms, producing closed contours and separating intersecting regions. 

When reporting on watershed transform, three fundamental notions arise; 

minima, catchment basins and watershed lines. These definitions are illustrated in 

Figure 3.5. If we imagine that bright areas of an image have “peaks” and dark 

areas have “valleys’, then it might look like the topographic surface illustrated 

above. We may observe three types of points: (1) minima, points belonging to the 

different minima; (2) catchment basins, points at which water would certainly fall 

in a single minimum; and (3) watershed lines, the highest intensity level points at 

which water would have equal probability to fall in more than one minimum. The 

goal of this segmentation scheme is to detect all of the watershed lines (the highest 

gray level).  

 
 

Figure 3.5 Fundamental definitions of the Watershed transform 

(www.mathworks.com) 

 

The scenario underlying this method comes from geography: it is that of a 

landscape or topographic relief which is flooded by water, with watersheds being 

the separation lines of the domains of attraction of rain falling over the region. 

Alternatively, we may imagine the landscape being immersed in a lake, with holes 

pierced in local minima. Basins will form the water tanks filled up with water 

starting at these local minima, and, at points where water originated from different 

basins is crossed, dams are built. When the water level has reached the highest 

peak in the landscape and only the watershed lines are obvious, the process is 

stopped, yet the landscape has been partitioned into clearly separated water tank 

regions [52]. This procedure is illustrated in the Figure 3.6: 
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Figure 3.6 Initial grayscale image, topographic surface and finally       

segmented watershed image (http://cmm.ensmp.fr/~beucher/wtshed.html) 

 

In order to apply this scenario to image segmentation, two approaches may 

be used: either one starts from locating the basins and then finds the watersheds by 

taking a set complement of them or one computes a complete partition of the 

image into basins, and subsequently extracts the watersheds by boundary 

detection. The segmentation procedure also includes an appropriate labeling of the 

resulting regions, implying that all points belonging to a given catchment basin 

have the same unique label, which is distinct from all the other assigned labels of 

the catchment basins. Sometimes the watershed transform is not applied directly 

to the original image, but to its (morphological) gradient [53], producing 

watersheds at the points of grey value discontinuity (edges). The watershed 

algorithms can be generally divided into two classes, one based on alterations of a 

recursive algorithm by Vincent & Soille [54], and another based on distance 

functions by Meyer [55]. 

Assume that the image f is an element of the space C(D) of real twice 

continuously differentiable functions on a connected domain D with only isolated 

critical points. Then the topographical distance between points p and q in D is 

defined by:  

( , ) inf ( ( ))
f

T p q f s ds




                                                   (3.12) 

where the infinum is over all paths (smooth curves) inside.  

Let have f∈C(D) have k minima{mk∈I} (roots of its gradient producing 

positive second gradient) for some index set I. The catchment basin CB(mi) of a 

minimum mi (i=1,2,…,k)) is defined as the set of points which are topographically 

closer to mi than to any other regional minimum mj:  

 i f j f
( ) D| j I\{i}|: f(m )+T ( , ) f(m )+T ( , )

i i j
CB m x x m x m        (3.13) 

The watershed of f is the set of points which do not belong to any catchment 

basin:  

 ( ) ( )
i

i I

Wshed f D CB m


 
                                     (3.14) 
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So the watershed transform of f assigns labels to the points of D, such that 

different catchment basins are uniquely labeled and a special label W is assigned 

to all points of the watershed of f. Thus the Meyer’s flooding algorithm is 

summarized as 

 

There exist a lot open issues concerning the watershed transform. A 

detailed and thorough analysis and review of the existing watershed transform 

approaches can be found in [52]. Firstly, there is the question of accuracy of 

watershed lines. In general, the result should be a closed contour, so the distance 

metrics adopted in the watershed calculation should approximate the Euclidean 

distance. The main drawback of the watershed method in its original form is that it 

produces a severe oversegmentation of the image, many small regions are 

extracted due to calculation of numerous local minima in the input image. The 

most appropriate solution is the use of markers, key sub-regions or single points 

within each basin that significantly differ from the remaining basin region (e.g. the 

brightest points derived by the h-maxima transform), resulting to the so-called 

marked-watershed transform [56]. Each initial marker has a one-to-one 

relationship to a specific watershed region, thus the number of markers will equal 

the final number of watershed regions. The markers can be manually or 

automatically selected, saving computational time and improving segmentation 

accuracy.  

An example of application of the watershed transform is illustrated in the 

following scheme. Detailed analysis of the implementation steps will be given in 

the next section. In the first application of the transform (upper image) the input 

image was directly the blue color channel of the original image. We can notice 

that the result is not accurate as oversegmentation has taken place. Extracting 

markers applying the h-domes (see Section 4) and using as an input the difference 

of markers from the blue channel of the original image the segmentation accuracy 

is significantly increased. 

Label the regional minima with different colors 

 

1. Select a pixel p, not colored, not watershed, adjacent to 

some colored pixels, and having the lowest possible gray 

level  

2. If p is adjacent to exactly one color then label p with this 

color  

3. If p is adjacent to more than one color then label p as 

watershed  

4. Repeat steps 1-3 until all pixels have been processed 
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Figure 3.7 Application of watershed transform and the marked-watershed 

transform to an immunohistochemical image 

  



“Analysis of microscope images”                                                      

Page 54  

 

3.4. Active contours model 

Contour-based techniques are well established in international 

bibliography, providing accurate and robust results even in noisy environment, 

having the drawback of suffering from initialization, local minima and stopping 

criteria problems. The principle of these techniques lies on the linking of edge 

points extracted via an edge detection scheme, attempting to exploit curvilinear 

continuity in order to iteratively approximate the object borders starting from an 

initialized closed curve [57]. Global minimum energy searching methods have 

been proved generally effective in overcoming local minima problems due to the 

presence of artefacts introduced within the image, leading to robust convergence 

regarding the final contour extraction. 

Chan and Vese [58] proposed a powerful and flexible methodology for 

active contours object detection combining curve evolution techniques, level sets 

and the Mumford-Shah functional, accomplishing to detect corners and any 

topological change.  The model begins with a contour in the image plane defining 

an initial segmentation and then this contour gradually evolves according to a 

level set method until it meets the boundaries of the foreground region.  

According to the model, a curve C is represented via a function φ (the level-set 

function) as C={(x, y)|φ(x, y)=0},  where (x, y) are coordinates in the image plane 

while the evolution of the curve is given by the zero level curve at time t of 

function φ(x, y, t) . Negative values of φ denote points outside the curve while 

positive values of φ originate from points belonging to the internal area of the 

curve, as depicted in the following scheme: 

 

 

 

 

 

 

 

 

 

 

          

           

        

At any given time, the level set function simultaneously defines an edge 

contour (φ=0) and a segment of the image (φ≠0) and is being evolved according to 

the partial differential equation (3.15), iteratively converging to a meaningful 

segmentation of the image. 

0,   φ(x,y,0)=φ ( , )F x y
t





 

 ,              (3.15)  

where F denotes the speed of the curve evolution and φ0(x,y) defines the initial 

contour the algorithm started to be generated from.  

A particular case is the motion by mean curvature, when F becomes the 

curvature of the level-curve of φ passing through (x,y) according to the formula: 

φ=0 curve point 

curve 

 evolution direction 

curve 

 evolution direction 

curve 

 evolution direction 

φ<0 

External area 

φ<0 

External area 

φ>0 

Internal area 
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F div
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




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
                                                            (3.16) 

The speed of the evolving curve becomes zero on the points with highest 

gradients, therefore the curve stops on the desired boundary, which appears strong 

gradients. 

Chan and Vese updated the classic snake model described above, 

introducing the energy functional term. Assuming that the image I consists of two 

regions of approximately constant distinct intensities I
1
 and I

2 
and that the object 

of interest is represented by the region of value I
1
 (inside curve C), the “fitting 

energy functional” is denoted according to equation (3.17):  

2 2

1 1 2 2 1 2 1 1 2 2
( , , ) ( , , ) ( , ) ( , )

                                     ( ) (  )

insideC outsideC
F c c C F c c C I x y c dxdy I x y c dxdy

Length C v Area inside C

 



      

   

       (3.17) 

where C is any variable curve except for the object boundary C0, constants c1 , c2, 

are the averages of I inside and outside C respectively, and  μ,ν,λ1,λ2 are non-

negative fixed user defined parameters. If F1(C)>0 and F2(C)≈0 the curve is 

outside the object, if F1(C)≈0 and F2(C)>0 the curve C is inside the object and if 

F1(C)>0 and F2(C)>0 then the curve is both inside and outside the object, 

intersecting with its boundary. The contour of the foreground region is the 

solution of the minimization problem infC (F(c1, c2, C)) ≈0≈F(c1, c2, C0). Using the 

Heaviside function H and the one –dimensional Dirac measure δ0 , defined, 

respectively by 

0

1,   z 0
( ) ,    δ ( ) ( )

0,  if z<0

if d
H z z H z

dz


 


                                                   (3.18) 

we can calculate component Length, Area and the means c1, c2 of equation (3.17) 

following the formulas: 

 
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    (3.19) 

A detailed description of the complete mathematical background can be 

found in [59]. Chan and Vese proposed the fixed values λ1=λ2=1 and ν=0. 

Parameter μ defines the update weight factor for curve evolution owing to the 

perimeter size of the already evaluated regions, while λ1, λ2 are the update weight 

factors owing to the variations of the image in the external and internal area, 

respectively, of the curve. 
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In order to reveal the efficiency of the Chen and Vese Active Contours 

scheme, an illustration of the application of our contour based segmentation 

technique to an immunohistochemical image sample follows. Further analysis of 

our implemented algorithm along with enriched results will be presented in the 

following section of the thesis.  

The algorithm was fed with the image sample in the LAB color space 

(upper left corner), marked with the cell area contours derived from the watershed 

transform, as an input. The initial contour φ0(x,y) (upper right corner) was 

extracted via mean-shift clustering. The curve calculated after the convergence of 

the algorithm and the segmentation result after 969 iterations are depicted in the 

second row of figure 3.8, in its left and right part respectively. 

 

            

      Figure 3.8 Application of active to an immunohistochemical image 
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4. Tissue evaluation algorithm 

4.1. State of the art 

In international bibliography, there are few references for individually 

developed, pure image processing algorithms for microscopic slides derived from 

immunohistochemistry (IHC). In laboratories, where a serious, precise and secure 

study must be worked out as the results of immunohistochemistry are directly 

related to disease treatment issues and health survival, the extraction of the results 

and the interpretation of the results are made by experts. One approach is the 

interpretation by a group of pathologists in order to score the 

immunohistochemical result by their experience and by their visual ability. Of 

course, this approach is fully subjective and dependent on the specialist’s ability. 

The common approach is to use commercial software. This approach, based on 

automation and fully commercially developed programs, extracts more objective 

results with the cost of increased demands for hardware, software and calculation 

time. Yet, this algorithmic procedure is not open for further analysis. Another 

approach is the pure image processing algorithmic approach, where individual 

researchers suggest their own methodology, implementation and study for the 

analysis of immunohistochemical slides. The drawback of this approach is that it 

cannot be generally adopted and accepted as it is based on intuition and needs a 

great number of trials, tests, data processing and further investigation to correlate 

the results and evaluate their efficiency. Unfortunately, there is very limited 

bibliography in this section. The third and most common approach is a 

combination of the two approaches above: algorithmic implementation based on 

researcher’s proposals implemented by simple, low-cost software, “the semi-

automated approach”. Most publications are based on this approach. 

     Pure image processing techniques can be classified in three main 

categories: a) thresholding techniques, b) color transformation techniques and c) 

histogram based techniques. Comparing these three main categories, we could 

mention that they are simple, in general, as they process data at their raw form. 

This has the cost of potentially high computational load depending on the amount 

of data processed. Thresholding techniques have the drawback of 

“subjectiveness”, as the success of the method is highly dependent on the 

selection of the appropriate threshold. This process is not an easy and fixed part, 

as the selection can be made by automated techniques/programs or manually, by 

the test and reject procedure, which may not converge quickly and accurately. 

Color transformation requires a respectable computational time, especially for 

large images but can accurately estimate the characteristic “brown” membrane 

staining of IHC, surely knowing that red and yellow colored pixels correspond to 

brown shades of immunohistochemical reaction. Finally, histogram based 

techniques provide information about the distribution on intensities in the whole 

image or in specific regions but require a somehow pre-knowledge of the 

information illustrated.            

Computer assisted methods of assessing immunohistochemical staining 

have been available for some time but, due to their expense and requirement for 

significant computer skills, have not gained widespread usage. In [60], the authors 

attempted to assess oestrogen receptor positivity by using digital image analysis. 

One hundred and fifty six sections were studied of which only forty one were ER 
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negative. The results showed a close correlation between the digital method (H-

score), the optical result (median optical density of the nuclear mask) and the 

manually assessed oestrogen positivity. In [61], an attempt to quantitatively 

evaluate Her-2/neu expression using Photoshop was made. Forty breast cancer 

cases were examined and statistical analysis was performed. The results showed 

high correlation between the proposed method and the semi-quantitative HER-

2/neu immunostaining score. 

Pure image processing techniques is the main and desired category of IHC 

image processing techniques, an open research process. The existed methods in 

international bibliography are very limited. This category offers flexibility in 

implementation, yet needs a great number of validation tests to approve the 

extracted results. In [62], a respectable and complete implementation of specific 

algorithms was introduced. Unfortunately, the presentation contains only visual 

and non-comparable results.  

In [63] an application of automatic thresholding in image analysis scoring 

of cells in human solid tumors was introduced. Thresholding is a common, 

computationally efficient segmentation technique. Interactive thresholding may be 

subjected to errors due to investigator bias and inconsistencies, while automatic 

thresholding may be subjected to errors due to computer failure to judge the 

accuracy of the selected threshold. The success of a particular method is 

dependent on the detail and complexity of the image and on the uniformity in the 

classifying pixel property among objects. The first goal was to distinguish nuclei 

from non-nuclear objects and cellular debris. According to the results, the gray-

level threshold algorithm achieved to distinguish the nuclei that were darkly 

stained brown or blue and therefore had low gray-level values from the lightly 

stained background material and cytoplasm with high gray-level values. 

Overlapping nuclei were not recognized. The results also showed that the 

automatic selection of the threshold required less time than selecting it 

individually for both gray-level threshold and hue threshold. In addition, the 

automatically selected thresholds remained identical between days while 

investigator-selected thresholds were subjected to human error. Three 

investigators extracted results, which showed a high correlation between 

automatically and individually selected GLT but significant differences in the HT 

selection. The authors propose both the automated GLT and HT selection method 

because the image routine results were indistinguishable from their visual 

counterparts, had less variation than that of visual analysis and had supremacy 

against the corresponding individually defined ones. Errors due to automatic 

thresholding altered the size and shape of objects but had little impact on the 

selection of objects for analysis, thus the number of objects determined will not be 

affected. Instead, object properties (e.g. optical density, size) might be altered, 

thus automatic thresholding should be carefully used for purposes such as 

morphometry or DNA ploidy measurements. Finally, optimal sample preparation 

for accurate image analysis results is critical.        

    Semi-automated approach to IHC image processing relies on 

commercially available software, of varying capabilities and cost, which generally 

provides a simple and complete interface and a variety of implemented routines in 

order to extract numerical data (e.g. histogram extraction, thresholding, pixel 

counting, contrast and brightness manipulation). The IHC interpretation is then 

supplemented by other numerical calculations, dependent on the researcher. This 
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approach is a simple, flexible and secure method as the results of the software are 

precise, reliable and quick. The flexibility of the various proposed methods 

depends on the researcher’s intuition and the availability offered by the software 

(usually Matlab and Photoshop).  

Currently available algorithms are best suited to counting pixel number or 

to measuring area. Although these approaches are adequate for comparative 

assessments, they do not allow quantification of the absolute amount of 

chromogen present in an image or a portion of an image. Because pixels have 

dimension, algorithms based on pixel counting generate information concerning 

area. Therefore, the area occupied by any particular color range can be specified 

and compared in a relative manner, but it is not possible to determine the absolute 

amount of chromogen present. On the other hand, algorithms based on color 

thresholding or counting pixel number within a color/brightness range preassume 

the presence of information within a specific range. In general, the DAB-

generated “brown” color in IHC must be calculated. This has the limitation that 

coefficients in the basic equation must be determined, the range of the brown 

color is not known to the viewer and needs to be determined and finally that this 

approach counts only for systems generating chromogen of identical brown color 

and not of any other color. 

In [64], a method of segmentation and classification of nuclei is presented. 

As regards the segmentation part, the key point is the window size selected in 

order to recognize all nuclei. A small window size will not recognize large nuclei 

with the benefit of quicker segmentation result extraction. As regards the 

classification part, the visual determination of the result is highly subjective so the 

statistical pattern recognition scheme used must have a well defined training set in 

order to exactly recognize the nuclei. 

 In [65], a brightness-area-product-based-protocol was introduced in order 

to quantitatively assess the brightness of a single channel immunofluorescent 

histological image. The results revealed a very close correlation between 

individual observer interpretation of Β-gal expression intensity scored as 0-3 and 

the interpretation of the brightness calculated by the proposed procedure. As 

regards the pure image processing part, adequate control for background is a vital 

consideration. There are several ways to report the brightness of an image, such as 

optical density and mean pixel intensity or average grey level in fluorescence and 

chromogen stained images. To detect the most abundant of epitopes, the vast 

majority of pixels within a region of interest will be of low pixel intensity 

swamping the averaging process and giving a low mean intensity. Thus, 

thresholding is critical but once a threshold is introduced and a mean pixel 

intensity is calculated, information about brightness abundance is lost. Integrated 

optical density is more sensitive to abundance, however the inclusion of 

background.into the number calculated means that differences between regions 

cannot be eliminated because the majority of pixels will generally be of lower 

intensity. Concluding, the technique cannot give absolute quantitative information 

as to the amount of antigen present in an area but can provide a simple means to 

objectively compare the intensity of staining in identical anatomical regions. A 

threshold BAP provides a simple intuitive measure of the relative brightness of an 

image which correlates well with human observation.   
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4.2. Proposed algorithmic scheme 

 

Aiming at accurately segmenting microscope images depicting breast 

cancer tissue samples, which are prepared by the laboratory method of 

immunohistochemistry, for the fulfillments of this thesis we developed a novel 

methodology fusing appropriate image processing techniques, the fundamental 

aspects of which was analyzed in the third chapter. The proposed algorithm, 

contrary to the majority of existing approaches, takes minimal amount of prior 

knowledge on the characteristics of the image and necessitates minimal user 

intervention in order to guide or train it by manually selecting a point or region of 

interest. The only calibration needed is the determination of the cell size 

parameters depended on the magnification used during the image capture via 

microscopy. In addition, the presented method is capable of segmenting cells 

stained either utilizing the DAB or the PAP protocol, which was analyzed in 

section 2.2.2. As a further step, after achieving the relatively accurate 

segmentation of the cells and contour extraction of their membrane, we attempted 

to produce quantitative results for evaluating HER2 overexpression according to 

the internationally established scoring method by measuring the completeness and 

the intensity of the staining applying thresholding. The classification results 

produced give rise to further investigation of our proposal, with the prospect of 

transforming it to an assisting tool for pathologists, contributing to tissue 

evaluation and cancer diagnosis and treatment. 

The presented cell segmentation and tissue evaluation methodology is a 

procedure resulted from the fusion of three key, successive processes:  

 Image enhancement, where the sample images are filtered from noise, 

transformed from the RGB to the HSV and LAB space model and 

contrast enhanced via histogram equalization 

 Nuclear area estimation, where the cell nuclei are separated from the 

whole tissue area via mean-shift clustering of the Hue channel of the 

enhanced HSV image, taking into account that the areas of interest will 

be uniquely assigned a characteristic blue color, emerged during the 

tissue preparation procedure 

 Membrane contour evaluation, where the membranes of the cells are 

extracted via the active contours model (snake model), which is, 

innovatively, initialized by the initial contours derived from the 

clustering procedure performed in the previous step. The convergence 

of the cell boundary calculation is controlled by the lines resulted from 

the watershed transform, securing that the snake evolution will stop to 

a boundary and will not spread to the whole image area  

The schematic representation of the algorithmic steps is illustrated in Figure 4.1. 

and includes the following basic stages: 

1. Image enhancement, where the image is converted to the HSV and LAB 

color spaces in order to enhance the color differences between distinct 

areas. We noticed that the distance between the blue (nuclei) and 

brown/red (stained membranes) color is larger in these models than the 

RGB one. In addition, histogram equalization takes place in order to 

improve the image contrast 
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2. Meanshift clustering, where the key color regions within the image are 

extracted processing the pure chromatically informative color band Hue. 

We focus on the cell nuclei (blue image components) in order to count 

the cells in a latter stage and feed the segmentation algorithm followed 

with the appropriate information 

3. Watershed transform with h-domes markers, where the marked 

watershed transform, with markers derived applying the h-domes 

transform, leads to a first estimate of the cell membranes producing 

closed boundaries that will be used to control the convergence of the 

segmentation algorithm in the next stage 

4. Active contours segmentation, which forms the basic segmentation 

procedure and produces the cell regions and their boundaries. The 

algorithm is initialized by the result of the clustering method and its 

convergence is controled by setting borders to the snake evolution 

originated from the watershed transform   

 
Figure 4.1 Schematic representation of the proposed tissue evaluation algorithm 

as a fusion of procedures 

 

Having introduced the medical background of breast cancer, the technical 

aspects of immunohistochemistry and the tissue preparation procedure, the 

theoretical background of the utilized image processing techniques, we can 

proceed to the qualitative and quantitative results produced in every intermediate 

step of our approach.  

Forty immunohistochemical tissue slides (33 stained using the DAB 

protocol and 7 using the PAP protocol), prepared in two different pathological 

anatomy laboratories, were processed The algorithm was implemented in the 

Matlab R14 platform and its runnings were performed on a Dell Precision T1600 

computer machine, equipped with 8GB of RAM memory, an Intel (R) Xeon (R) 

CPU E31270 operating at 3.4GHz and NVIDIA Quattro 600 graphics card.   

In the following sections, the successive stages of our methodology are 

analyzed, the contribution of each independent technique is revealed and 

representative and informative results are presented. 

 

Tissue evaluation 

Membrane 
contour 

evaluation 

Nuclei area 
estimation 

Image 
enhancement 
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A more detailed representation along with the intermediate images 

produced in each step of our implementation is depicted in Figure 4.2 

Figure 4.2 Input, output and intermediate steps of the proposed technique 

 

4.3. Color model conversion  

As mention in section 3.1, the RGB model is not appropriate for color 

image segmentation, thus the HSV and LAB color spaces are preferred. In order 

to improve the quality of the input immunohistochemical images, which suffer 

from noise and low contrast due to the microscope lens and artifacts due to errors 

during the tissue preparation, we apply histogram equalization on each color band 

of the models. In the resulted enhanced images, the key features for image 

segmentation (cell nuclei and membrane) are more clearly detected through 

human visualization, an advantage the specialist does not have under the 

microscope. Color bands before and after contrast enhancement are depicted in 

Figures 4.3 and 4.4 respectively. As it can be noticed, the Hue and B channels, of 

Finally segmented and 

cell marked image 
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the HSV and LAB space respectively, contain the pure color information 

necessary for the discrimination of the regions of interest within the segmentation 

procedure. Value and L channels provide information about the intensity levels of 

the images, while the Saturation and A bands depict the extracellular area. 

 

 Figure 4.3  Original immunohistochemical image and the three color bands in the 

RGB (first row), HSV (second row) and LAB (third row) space 

  

RGB image Red image Green image Blue image

HSV image Hue image Saturation image Value image

LAB
i
mage L image A image B image
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Figure 4.4  Equalized input image in the three color spaces 

Equalized RGB image

Equalized Red image Equalized Green image Equalized Blue image

Equalized HSV image

Equalized Hue image Equalized Saturation image Equalized Value image

Equalized LAB image

Equalized L image Equalized A image Equalized B image
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4.4. Key regions extraction 

In this stage of the algorithm, the key regions of the histological image are 

extracted, namely the cell nuclei and an approximation of their membrane 

boundary. Assuming that each nucleus is assigned to a cell, the number of 

candidate cells forming the tissue can be evaluated by isolating the “blue” regions 

within the image, as implied by the staining protocol. This numbering is the 

prerequisite for the HER2 positive score evaluation and the tissue classification 

that will be performed on the final step of our methodology. Since only color 

information is required to fulfill the nuclei detection, mean-shift clustering of the 

Hue channel of the contrast enhanced image is performed. The HSV model 

representation was selected, as only one channel has to be processed, the Hue 

band, in order to discriminate the different color segments, leading to significantly 

decreased computational complexity. Color region extraction via clustering 

facilitates the detection of any color without any prior knowledge on the staining 

protocol followed, yet brown (DAB protocol) or red (PAP protocol) membrane 

staining can equally be recognized. In addition, the selection of mean-shift as the 

clustering method does not require the determination of the known color classes 

present in the tissue, yet it can detect distinct intermediate zones too. The result of 

the clustering scheme application is depicted in Figure 4.5. Five clusters were 

calculated, one representing the candidate cell nuclei, one representing the 

cytoplasm within the cell regions, one assigned to the candidate cell membrane 

boundaries and two classes representing the intermediate tissue sections. The 

bandwidth parameter h of the algorithm was set to 0.15.  

        
        

        Figure 4.5 Results after applying mean-shift clustering to the IHC image sample  
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We can observe that the blue regions representing the candidate nuclei areas are 

accurately determined, as illustrated in Figure 4.6. By utilizing mathematical 

morphology large regions can be easily eliminated, increasing the detection 

accuracy of existing nuclei within the tissue. Yet, membrane boundaries cannot be 

accurately calculated, as many open or semi-closed areas are extracted when the 

membrane staining is not complete, thus a better technique must be adopted. 

 

 
Figure 4.6 Segmented nuclei areas derived from the Hue channel after clustering 

application along with the equalized original RGB image.   

 

In order to approximate cell membranes, closed boundaries must be 

produced, implying the use of the watershed transform, which produces segments 

with complete and non intersecting contours. Direct application of the watershed 

transform results in oversegmentation, yet the combination of the transform with 

markers and distance transforms is necessary. In our methodology, the extraction 

of markers for cell nuclei is achieved utilizing the h-domes transform [66]. The 

selection of this transform is done as it better enhances the intensity differences 

between the internal area and its surrounding. In addition, the morphology 

operators it performs may split marginally intersecting cell nuclei blue areas due 

the refinement of their size maintaining their original shape.his technique reveals 

bright structures (maxima) without involving any size or shape criterion. These 

structures fulfill the following criteria: a) every pixel in the dome has a gray value 

greater than any of the pixels surrounding it and b) the maximum gray level 

difference between two pixels in the dome is smaller than or equal to a threshold 

value h. The h-domes transformation, illustrated in Figure 4.7, can be defined by 

the formula: 

 ( ) ( )
h

M I I I h


                                                   (4.1) 

where I is the original image, I-h represents the result of subtracting a constant 

value h from the original image, and ρΙ is the morphological reconstruction of the 

original image from I-h . The choice of h turns out not to be a critical operation, 

since a wide range of values yields correct results. For the needs of our 

implementation it was selected as 80. Since we intend to define markers for the 

blue regions of cell nuclei, the Blue channel of the enhanced RGB image is 

selected as the input image I of the transform. Applying the h-domes transform to 

the Blue color band image we produce the cell nuclei markers. As the nuclei are 

stained blue, they represent the high intensity regions of the image, yet its regional 

maxima are revealed via the h-domes transform. By reversing the Blue channel 

image and subtracting the cell nuclei markers, we produce an image with reversed 

Blue nuclei derived from HSV space Original image
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minima regions, creating candidate boundaries to surround the nuclei area. This 

reversed image becomes the input of the watershed transform and acts as a guide 

for the extraction of the watershed lines, which will form the cell membrane 

contours. In this way, the transform has enough and useful information to define 

borders surrounding catchment basins as it can detect intensity differences 

between compact regions (cells) and their surroundings (membranes). The cell 

contour extraction result is illustrated in Figure 4.8. The watershed lines 

superimposed on the original enhanced RGB immunohistochemical image is 

depicted in Figure 4.9, clearly demonstrated a surprisingly accurate approximation 

of the cell membranes.    

 
Figure 4.7 Illustration of the h-domes transform of an image I (Reference 

Halkiotis et al) 

 
Figure 4.8 Segmentation result after applying the watershed transform to the 

image after enhancing its minima by reversing its h-domes transform 
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Figure 4.9 Watershed lines superimposed on the enhanced RGB image 

immunohistochemical image 

 

We may notice that these estimates, in some cell regions, constitute an extension 

of their real boundary. Keeping the segmentation result of this stage, we may 

proceed to a more advanced level of evaluation, which is the refinement of the 

extracted boundaries to an internal area even closer to the exact perimeter of the 

cells. 

  

Output image applying the watershed transform
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4.5. Cell boundary specification  

Having already a qualitative estimation of the cell boundaries, we intend to 

improve the accuracy of the segmentation result. This will be achieved adopting 

the active contours approach (also known as snakes), which, starting from an 

initial point or boundary, it repetitively updates and transforms it, forming an 

evolving contour with the goal of “hugging” all the key objects within the image 

and being adjusted to their perimeter. The selection of this approach for the last 

algorithmic stage of our proposed segmentation methodology was based on its 

advantage to produce closed boundaries, essential prerequisite for cell membrane 

evaluation and its ability to detect objects irregularly shaped and sized. 

The main drawback of the snakes technique is the control of their 

algorithmic convergence due to pointless initialization (random in most cases), the 

size and the complexity of the processed image. The innovation of our approach is 

that the contour evolution is efficiently initialized and a possible terminal of it is 

supplied as a means of convergence control. More specifically, the initial contour 

provided originates from the clustering stage, where the cell nuclei have been 

detected. This selection for the initialization is ideal for accurate cell segmentation 

as the snakes curve will evolve from the internal area of the cell (each cell always 

has a nuclei), which has already been found via the Mean Shift algorithm, to its 

surroundings. Apart from the contribution to improved segmentation accuracy, 

our proposal significantly reduces the computational cost of the final boundary 

evaluation, cleverly overcoming the other basic limitation of active contours 

model, as the “snake” already has the information about the number of regions it 

will search for. As a further innovative step, we thought of providing the active 

contours algorithm with an estimate of the final result, in order to secure its 

convergence. This estimate comes from the result of h-domes marked watershed 

transform of the previous step of our methodology. By marking the input image of 

the snakes segmentation procedure with the watershed lines already calculated we 

prevent the snake from continuously evolving if no obvious border is met. In the 

immunohistochemical image, this could take place if the staining was too strong 

and had passed in the cytoplasm of the cell or in the intermediate tissue area. As 

regards the input image of the active contours algorithm, we selected the channels 

A and B of the equalized sample image in the LAB color space, since they provide 

all and only the color information needed for color segmentation. 

In Section 3.4, the fundamental aspects of the active contours model were 

presented along with the Chen and Vese proposing approach. We recall the model 

description as represented with equation 3.17 
2 2

1 1 2 2 1 2 1 1 2 2
( , , ) ( , , ) ( , ) ( , )

                                     ( ) (  )

insideC outsideC
F c c C F c c C I x y c dxdy I x y c dxdy

Length C v Area inside C

 



      

   

 
 

As already stated, the contour C that will minimize the energy functional 

will define the boundaries of the regions within the image and its internal area will 

form the segments detected. In our approach, the parameter ν is set to zero, while 

the parameter μ, representing the factor that determines the length size update of 

the contour within the iterative procedure is set to 0.8, as we want a smooth and 

secure evolution and the regions of interest are not characterized big. In [58] Chen 

and Vese have processed the images setting parameters λ1 , λ2 equal to 1. We 

differentiate from this consideration and set λ1=1.5, proposing to change the 
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weight contribution of the external area to the energy functional, thus the curve 

evolution step. Since we have started the snake evolution from the compact and 

intensity smoothed cell nuclei areas, we aim at evolving the curve to the external 

area of the nuclei and detect the intensity differences of the image from the almost 

constant mean value intensity within the cell area until we meet the membrane, 

which differentiates from remaining cell area or its surrounding.  

Having determined our active contour model, we proceed to the 

segmentation of the cells. Convergence is achieved in significantly short time 

regarding the complexity of the immunohistochemical image, where numerous 

and irregular regions exist. The segmentation result is refined applying 

mathematical morphology, rejecting unwanted areas such as segments without 

nuclei, non circular and non ellipsoidal regions and regions with extremely long or 

short perimeter and area. These characteristics cannot be assigned to real cells, yet 

we are able to filter the extracted results and reject incorrectly recognized 

segments. Threshold values equal to 100, 10000, 0.96 and 4500 were set for small 

areas, big areas, eccentricity and perimeter respectively. 

 Figure 4.10 illustrates the input of the active contours algorithm and 

Figure 4.11 the segmentation result after the application of morphological 

operators. The first stage of filtering regards the rejection of areas that cannot 

represent a cell as they do not have a cell nuclei, thus blue areas extracted from 

clustering are not included in the corresponding initially segmented regions. The 

second stage of filtering, successive and not in parallel to the first one, refers to 

the rejection of areas that do not possess the shape characteristics to represent a 

cell, which means that candidate cell segments are too small, too big, too long and 

non circular or non elliptical. 

      

Figure 4.10 Input for the active contours segmentation: IHC image in LAB space    

marked with watershed lines (left) and initialization of snake with the boundary of 

the cell nuclei derived from Mean Shift Clustering 
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Figure 4.11 Segmentation result after application of active contours and 

mathematical morphology 

 

Figure 4.12 Segmentation of the immunohistochemical image sample applying 

our proposed algorithm with the cell boundaries superimposed on the equalized 

RGB image 

Final output image applying the watershed transform
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The final result of our proposed segmentation algorithm is depicted in 

Figure 4.12. Despite of the limitations originated from the image quality and the 

high degree of complexity, even for a pathology expert, the accuracy of the 

segmentation is remarkable. The extended percentage of the areas have been 

accurately segmented while a qualitatively rejection of non cell regions is noticed, 

which very important as oversegmentation is restricted in cell segmentation 

applications.  

4.6. Experimental results on Segmentation  

We followed the same algorithmic procedure for all the 40 IHC image 

samples of our dataset. Figure 4.13 depicts the processing time needed for the 

segmentation of each image, revealing that despite of the complexity within the 

image regions the technique performed very fast. The slower performance in the 

last samples was due to the different staining protocol utilized in the second 

laboratory, indicating the well known variability in tissue sample preparation in 

immunohistochemistry. It is important to mention that the classic active contours 

technique with random initialization did not manage to converge on time and did 

not produce meaningful regions. As an attempt to quantitatively measure the 

quality of the segmentation procedure we calculated the precision, recall and the 

F-measure of the process [67], based on the ground truth produced by the expert. 

Yet, precision indicates the percentage of correctly segmented cells among all the 

final segments the algorithm extracted, while recall represents the percentage of 

truly recognized cells among the true cells present in the tissue sample, as 

measured by the expert. The F-measure, defined as 2*precision*recall/(precision 

and recall), is the only approximation of the statistical term “accuracy” we may 

have in image segmentation quality evaluation, as the term true negative in region 

extraction is not easily defined. Precision, recall and the F-measure are depicted in 

Figures 4.14, 4.15, 4.16 respectively, indicating the efficiency of the algorithm 

even in the difficult cases.        

 

      Figure 4.13 Processing time for each of the 40 IHC images of our dataset  
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      Figure 4.14 Performance the segmentation algorithm based on precision 

 

   Figure 4.15 Performance the segmentation algorithm based on recall 

   Figure 4.16 Performance the segmentation algorithm based on F-measure 
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Considering the above, the contribution of the presented methodology 

regarding the segmentation procedure is twofold: accurate segmentation of 

existing cells within the image and qualitative discrimination of regions of interest 

(cells) and good filtering of the irrelevant image areas. The high Recall value 

significantly reveals the power of the proposed technique to automatically detect 

the cells within a tissue sample, emulating the evaluation methodology of the 

expert.   

The vast majority of the techniques present in international bibliography 

regarding cell segmentation terminate the implementation and evaluation 

procedure when the image is segmented, focused on the visual estimation of the 

segmentation quality. Continuing the evaluation of our approach and in order to 

quantitatively estimate the results extracted, we compare our algorithm with two 

other indicative methods: the marked watershed transform, a representative and 

classic method in segmentation fields and a very specialized one [68], targeting on 

membrane staining evaluation through color deconvolution and a customized 

algorithm for cell segmentation. In order to perform comparative evaluation, two 

indicative immunohistochemical image samples were selected, including a very 

difficult case and a common one, having being manually segmented by a 

pathology expert. The specialist has marked the candidate cell regions among 

which she finally selected the true cell areas. Apart from the visual segmentation 

results produced by the three testing techniques, our methodology and the two 

indicative other ones, the precision, recall, specificity, accuracy, false positive rate 

and F-measure metrics [67] were measured, as these indicator metrics are 

commonly used for evaluating classification quality. As a ground truth we accept 

the manual segmentation originated from the doctor. True positive instances arise 

when a region has been accurately recognized, true negative instances mean that 

the algorithm has not detected them, yet successfully not considered them as cells 

being regions that the doctor also rejected, false positive instances are measured 

when regions have been wrongly considered as cells and false negatives hits are 

measured for the number of cell regions (as defined by the specialist) that have not 

been detected. The marked segmented images from the three techniques along 

with the manually marked segmentation produced by the expert and considered as 

ground truth are depicted in Figure 4.17. The produced values for the statistical 

metrics are summarized in Table 4.1. The results indicate the efficiency and the 

robustness of our methodology. The marked watershed transform using regional 

maxima and distance transforms as input images, commonly used in image 

segmentation fields, does not perform well if the image content is complex, as 

clearly indicated in the second sample image paradigm. In addition, its main 

drawback regarding oversegmentation is present in this cell segmentation 

application.  The low scores of precision and recall reveal that too many irrelevant 

regions are selected. The color deconvolution scheme [68] targeted to IHC image 

segmentation performs well in both image tested examples but it tends to detect 

irrelevant and incomplete regions, considering only the color staining of the 

membrane, yet detecting regions in the intermediate tissue, introducing errors in 
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the tissue evaluation procedure. Our technique outperforms the other methods in 

almost all statistical metrics. The main characteristic, which was confirmed in all 

the sample images as previous statistical analysis revealed, is its robustness in 

detecting the existing cells with high scores of probability. Eliminating the 

“missing” cells is of paramount importance for the tissue evaluation procedure 

following the cell areas extraction stage, yet the prospect of our technique in real 

medical and laboratory applications as an assisting tool is high.   

Table 4.1 Comparison of our methodology to other techniques 

Quantitative comparison of our methodology to other representative techniques 

  Precision Recall Specificity Accuracy FP rate F measure 

Mean 
case 

Our 
methodology 74,56% 93,41% 80,54% 85,42% 19,46% 82,93% 

Color 
deconvolution 63,97% 95,60% 67,11% 77,92% 32,89% 76,65% 

Marked 
watershed 38,39% 47,25% 53,69% 51,25% 46,31% 42,36% 

  

Difficult 
case 

Our 
methodology 69,37% 82,80% 53,42% 69,88% 46,58% 75,49% 

Color 
deconvolution 66,39% 84,95% 45,21% 67,47% 54,79% 74,53% 

Marked 
watershed 20,31% 14,29% 32,00% 22,29% 69,86% 16,77% 

 

 Figure 4.17 Comparison of the segmentation results from three testing techniques 

along with the ground truth image derived from the pathologist   
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4.7. Membrane staining evaluation and IHC score classification 

As a final stage of our methodology and proceeding towards the step of 

tissue characterization, we attempted to score the HER2 overexpression having 

already detected the cells forming the tissue and determined their complete 

boundaries. For this study, tissue evaluation will rely on the pathogenesis of the 

tested sample (yes or no), yet we encode the internationally standard IHC scores 

to YES (complete and strong staining - HER2 score +3) or NO (score 0, +1,+2). 

As a future work, we intend to further improve the capabilities of our approach for 

assigning different kinds of scores through a classification formulation. In order to 

assign a score, it is essential to calculate the percentage of cells overexpressing the 

protein among all the existing cells, in terms of the completeness and intensity of 

their membrane staining. The first prerequisite has already been achieved through 

the segmentation process, having accomplished to calculate complete and linked 

(not broken) boundaries. The intensity of staining is determined by the value of 

each membrane pixel within the equalized grayscale image. Having labeled each 

cell region through the segmentation stage, we can fully specify the location of 

individual cells and the pixels forming their internal area and boundary (cell 

membranes). By simply thresholding the intensity to strong (dark region or low 

intensity value), moderate (intensity of intermediate value) and weak (light or high 

intensity value) we can determine the staining intensity of a point belonging to the 

region boundary. In addition, a check if the tested pixel has blue color is 

performed, rejecting probable segmentation errors having assigned a nuclei pixel 

as a point belonging to the membrane of the cell; this is a possible case that there 

is no cytoplasm area within the cell. Having determined the number of points 

forming the contour (membrane) and the number of stained cells, we can evaluate 

the completeness of membrane staining of a single cell and all cells located in the 

image. If the percentage of the stained pixels among their total number within the 

boundary is over a threshold (90% for the needs of our methodology) then the cell 

is marked as stained. This is done sequentially for all the cells detected within the 

image sample. The percentage of stained cells within the entire tissue can now be 

compared with the corresponding score derived from the standardized scoring 

system used by the pathologists. Percentage of cell staining over 10% is 

considered as HER2 positive in our consideration. We recall that the 10% 

threshold is arbitrary, but clinically approved. 

All images in our dataset were processed during the classification stage of 

our algorithm. The tissue slides have already been evaluated and scored by the 

pathology specialist, resulting in 35 pathogenic and 5 healthy characterized tissue 

samples. In order to estimate the classification accuracy of our technique, 

performance statistics were extracted in terms of precision, recall, false positive 

rate, accuracy, specificity and F-measure. Measuring the specificity and sensitivity 

metrics for distinct values of threshold T, which represented the reference 

percentage of completely stained cells within the image above which the tissue is 

characterized as pathogenic, we construct the corresponding Receiver Operating 

Curve (ROC curve) for the implemented classifier, producing an Area Under the 

Curve value (AUC) of 0.93, implying that the classification accuracy is very high. 

The ROC Curve is illustrated in Figure 4.18. The operation point was selected at 

the threshold value of 10% (confirming the gold standard in IHC scoring) as other 

points operated in regions of possible suspicious or misleading outcomes as any 

tissue was classified as pathogenic, which seems to be a problematic situation 

during the processing of random samples and datasets. Of course this constitutes a 
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preliminary but strong evidence that the proposed approach to tissue 

characterization has the potential of producing valuable and meaningful results. 

The same set of images was processed by the tool the authors developed in [67], 

incorporated in the reference segmentation method we compared our 

segmentation performance findings with. This is a representative method from the 

bibliography targeting at the same scientific field as the proposed algorithm. The 

performance metrics of both techniques are summarized in Table 2.  

Table 2. Performance evaluation of the proposed tissue evaluation stage vs 

the reference method 

 
Performance metrics of the implemented classification procedure and 

the reference methodology 

 
Method 

Precision Recall FP rate Accuracy  Specificity F-measure 

Our 
method 

96,97% 91,43% 20,00% 90% 80,00% 80,00% 

Reference 
method 

87,5% 100% 100% 87,5% 0,00% 93,33% 

 

The reference method derives zero specificity and its extreme false positive 

rate reveal a problematic classifier tending to classify test samples as only HER2 

positive; all five instances of healthy tissue were assigned as pathogenic. Our 

classifier appears robust, indicating its potential for applicability to laboratory 

assessments of tissue evaluation. 

 

 
Figure 4.18  ROC analysis our implemented classifier 
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5. Conclusions 

In this master thesis we study feature extraction from two imaging modalities, 

namely polarimetry and microscopy. Polarimetry is based on the fact that intrinsic 

qualities of materials have an effect on the way light interacts with them, whether in 

transmission or reflection.  Originating from a biological scenario and utilizing 

materials that dispose similar optical parameters to biological components, we 

developed a statistical modeling of the intensity distributions of polarimetric images 

depicting target components. This modeling contributed in the discrimination of the 

target from the background, giving rise to object detection and characterization. After 

the preliminary results of this consideration, testing was performed on real biological 

data from lung cancer tissue. Statistical metrics confirm that different kinds of tissue 

pathogenesis can be discriminated using polarimetry, as differentially affected tissue 

samples absorb, transmit and depolarize light in a different manner.  

On the other hand, microscope imaging provides histological information on a 

microscopic level, regarding the structure, coloring and shape characteristics of cells. 

We developed an innovative cell segmentation algorithm to accurately determine cell 

regions and their boundaries within an immunohistochemical image. Proceeding 

further, we implemented a technique for the assessment of oncoprotein HER2 over 

expression and the characterization of cancer tissue according to an internationally 

established scoring system. Breast cancer cell-nuclei segmentation and membrane 

border extraction was achieved by fusing information derived from image processing 

approaches aiming at intensity and color characteristics. The results from the analysis 

of immunohistochemical images confirm the prospects of the proposed methodology 

for accurate qualitative and quantitative evaluation of oncogene overexpression that 

compromises with the specialists' diagnosis. Performance metrics reveal the 

efficiency of both  area segmentation and tissue (sample) classification stages, 

encouraging its use on laboratory assessments as a supporting, easy and promising 

tool for the clinician. It is worth mentioning that the algorithmic setup remained 

unchanged for all image samples processed, supporting the robust performance of the 

method. The innovation of the proposed scheme lies on the appropriate 

parameterization of sub modules (especially the watershed and active contours) and 

the fusion of information from intensity and color, which increase the accuracy of 

final results and the computational efficiency of implementation.  Performance 

metrics reveale that the segmentation algorithm is capable of detecting the existing 

cell areas within the tissue sample with high probability and provides good filtering of 

irrelevant segments based on mathematical morphology.    

Challenges on the proposed segmentation scheme include the introduction of 

additional information originating from texture analysis and its fusion with the color 

information already used.  A possible training of the algorithm via neural networks is 

expected to improve the classification results, as this direction would lead to a more 

suitable estimation of the parameters used in the internal stages of the segmentation 

algorithm. A closer cooperation with pathology experts is intended in order to provide 

more and different datasets of histological images, which will contribute to more 

detailed validation of the effectiveness and robustness of both the segmentation and 

classification results. To this direction, one improvement of the proposed approach w 

would be the incorporation of a user friendly interface to the overall procedure, giving 

the potential of serving as a supplementary tool in everyday laboratory tissue 

evaluation procedures. Additional challenges may include: 
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1) Experiments with a larger number of images and extensive comparisons with 

existing tools 

2) Evaluations of the same images from different doctors as to consider possible 

improvement of cross-expert evaluation! 

3) Studies from many laboratories as to consider the influences of multicenter 

studies 
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Appendix 

 

Conference and journal publications referring to the presented work: 

 

 Analysis of Immunohistochemical Images 
 

1. International Society for Analytical Cytology    Impact factor 0.939 
  

Cytometry Part A 71A:439–450 (2007) 
"Automated Analysis of FISH and Immunohistochemistry 

Images: A Review" 
Zenonas Theodosiou,1 Ioannis N. Kasampalidis,1 George Livanos,2 Michalis Zervakis,2 

Ioannis Pitas,1* and Kleoniki Lyroudia3 

1Department of Informatics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece 

2Department of Electronic and Computer Engineering, Technical University of Crete, University Campus, 

Kounoupidiana, 73100 Chania, Greece 

3Department of Endodontology, School of Dentistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, 

Greece 
 

Fluorescent in-situ hybridization (FISH) and immunohistochemistry (IHC) constitute a pair of 

complimentary techniques for detecting gene amplification and overexpression, respectively. The advantages 

of IHC include relatively cheap materials and high sample durability, while FISH is the more accurate and 

reproducible method. Evaluation of FISH and IHC images is still largely performed manually, with 

automated or semi-automated techniques increasing in popularity.Here, we provide a comprehensive review 

of a number of (semi-) automated FISH and IHC image processing systems, focusing on the algorithmic 

aspects of each technique. Our review verifies the increasingly important role of such methods in FISH and 

IHC; however, manual intervention is still necessary in order to resolve particularly challenging or 

ambiguous cases. In addition, large-scale validation is required in order for these systems to enter standard 

clinical practice. 
 

2. IST 2013, IEEE International conference 21-23 October 2013  

 

"Automated analysis of immunohistochemical images 

based on curve evolution approaches" 
G. Livanos, M. Zervakis 

Department of Electronics and Computer Engineering 

Technical University of Crete 

Chania, P.C. 73100, Crete, Greece 

G. C. Giakos 
Department of Electrical and Computer Engineering 

The University of Akron 

Akron Ohio, 44325, USA 

Abstract— The HER2/neu oncogene is notable both for its role in the pathogenesis of breast cancer and its 

role as a target of treatment. Qualitative or quantitative protein evaluation has been achieved using 

immunohistochemistry (IHC) on frozen and archival tissues, a widely adopted technique due to the 

standardization of the internal procedural steps and its easy and low-cost applicability to any laboratory. The 

goal of the present study is to introduce an efficient tool for the automated detection of HER2 protein 

overexpression in tissues, providing accurate, instant, yet objective interpretation outcomes through a 

formalized procedure. The comparison of results with classifications by specialists who evaluated the same 

tissue samples dataset confirms the efficiency and prospect of the methodology.   
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 Polarimetric imaging 

 

Journals 
 

3. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 

VOL. 59, NO. 11, NOVEMBER 2010   Impact factor 1.106 

 

"Efficient Molecular Imaging Techniques Using 

Optically Active Molecules" 

 
G. C. Giakos, Fellow, IEEE, S. Atreya Paturi, K. Valluru, P. Bathini, V. Adya, S. Sukumar, 

K. Ambadipudi, B. Mandadi, M. Becker, S. Athawale, P. Farajipour, S. Marotta, 

D. Sheffer, George Livanos, and Michael Zervakis 

 
Abstract—Efficient imaging techniques aimed at the increasing of the image contrast of a structure, 

surrounded by a scattering medium, using optically active and high index of refraction molecules as 

molecular contrast agents, are presented. Specifically, an enhanced degree of linear polarization (DOLP) 

target detection and imaging is obtained by doping the surrounding medium with molecular contrast agents 

consisting of aqueous glucose, aqueous alcohol, and salt molecules, in conjunction with advanced 

polarimetric imaging techniques. The outcome of this paper opens new horizons in the areas of imaging, 

with emphasis on medical arena, industry, and detection technology. 

 

4. IOP PUBLISHING MEASUREMENT SCIENCE AND TECHNOLOGY  

Meas. Sci. Technol. 20 (2009) 104003 (12pp)   Impact factor 1.317 

 

 

"Stokes parameter imaging of multi-index 

of refraction biological phantoms utilizing 

optically active molecular contrast agents" 
 

G C Giakos
1,2

, K Valluru
2
, V Adya

2
, K Ambadipudi

2
, S Paturi

2
, 

P Bathini
2
, M Becker

2
, P Farajipour

2
, S Marotta

2
, J Paxitzis

2
, 

B Mandadi
2
, M Zervakis

3
 and G Livanos

3
 

1
 Department of Electrical and Computer Engineering, The University of Akron, Akron, OH 

44325, USA 
2
 Department of Biomedical Engineering, The University of Akron, Akron, OH 44325, USA 

3
 Department of Electronic and Computer Engineering, Technical University of Crete, Chania 

73100,Greece 

 
Abstract 

The purpose of this study is to assess the potential of novel molecular polarimetric imaging techniques 

utilizing multi-index of refraction targets, i.e. composite targets made from optically different media, 

immersed into biological fluids doped with optically active molecules and enzymes. The outcome of this 

study indicates that the application of Stokes parameter detection principles with concominant administration 

of fluids containing suitable optically active molecular contrast agents and high index of refraction 

molecules could enhance the detection and imaging process of internal structures by providing enhanced 

penetration depth, high contrast and high depolarized scatter rejection. 
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5. MEASUREMENT SCIENCE AND TECHNOLOGY  

Meas. Sci. Technol. 22 (2011) 114018 (12pp)   Impact factor 1.494 
 

 

"Polarimetric phenomenology of photons 

with lung cancer tissue" 
G C Giakos

1,2
, S Marotta

2
, C Narayan

2
, J Petermann

1
, S Shrestha

1
, 

J Baluch
1
, D Pingili

1
, D B Sheffer

1
, L Zhang

3
, M Zervakis

4
, G Livanos

4
 

and M Kounelakis
4 

 

1
 Department of Electrical and Computer Engineering, The University of Akron, Akron, OH 

44325, USA 
2
 Department of Biomedical Engineering, The University of Akron, Akron, OH 44325, USA 

3
 Department of Chemistry, Cleveland State University, Cleveland, OH 44114, USA 

4
 Department of Electronic and Computer Engineering, Technical University of Crete, Chania 

3100,Greece 

 
Abstract 
The objective of this study is to explore the polarimetric phenomenology of light interaction with healthy 

and early-stage lung cancer tissue samples by applying efficient polarimetric backscattering detection 

techniques combined with polarimetric exploratory data analysis. Preliminary results indicate that enhanced 

discrimination signatures can be obtained for certain types of early-stage lung cancers based on their 

depolarization, backscattered intensity and retardance characteristics. 

 

6. Image Processing, IET, August 2011, Volume: 5, Issue: 5, page(s): 429 – 439 
Impact factor 0.639 

 

 

"Modeling the characteristics of material distributions  
in polarimetric images" 

 

G. Livanos 
(1)

, M. Zervakis 
(1)

, G.C. Giakos 
(2)-(3)

,  K. Valluru 
(3)

, S. Paturi
(3)

, and S. 

Marotta 
(3)

 
 

(1)
Department of Electronic and Computer Engineering 

Technical University of Crete 

Chania 73100, Greece 
(2)

 Department of Electrical and Computer Engineering 
(3)

 Department of Biomedical Engineering 

The University of Akron 

Akron, OH, 44325, USA 

 

Abstract – Contrast measurements become of increasing importance in digital imaging, where region of 

interest (ROI) differences can be effectively identified, processed and segmented. The image contrast among 

different structures varies with the material properties, material composition, and geometrical parameters, 

and it is difficult to be determined only from its physical, electrical, or optical parameters. The novelty of 

this study consists in fusing statistical analysis with polarimetric principles. As a result, quantification of 

image contrast in terms of Stokes parameters together with the modeling of intensity distribution for the 

corresponding target areas can be proved a powerful tool for analyzing the different properties of operational 

modalities and/or materials depicted in digital images. By fusing the above concepts, we explored the 

intrinsic potential of an efficient molecular imaging technique aimed at increasing the optical contrast of a 

structure surrounded by a scattering medium.  
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Conferences 
 

7. IST 2010, IEEE International Conference, Thessaloniki, 1-2 July 2010 

 

" BACKSCATTERED POLARIMETRIC DETECTION FROM 

BIOLOGICAL TISSUE" 
G.C. Giakos 

(1)
,  S. Marotta 

(2)
, K. Ambadipudi 

(2)
, K. Valluru 

(2)
, J. Petermann 

(1
), C. 

Narayan 
(2)

 , D. Natarajamani 
(2)

, D. Pingili 
(1)

 
(1)

 Department of Electrical and Computer Engineering 
(2)

Department of Biomedical Engineering 

M.G. Kounelakis, G. Livanos, M.E. Zervakis 

Dept. of Electronic & Computers Engineering 

Technical University of Crete 

Chania, Crete, Greece 

 

Abstract—In this study, backscattering optical measurements from high scattering media and 

biological tissue were performed using different polarimetric detection techniques. The 

outcome of this study may facilitate the early diagnosis, monitoring, and assessment of 

disease progress, with high sensitivity and specificity. 

 

8. www.springerlink.com : 5th European IFMBE Conference, IFMBE Proceedings 37, pp. 

381–384, 2011. 
 

"Histogram modeling of polarimetric images for analysis of 

material properties" 

G. Livanos 
1
, M. Zervakis 

1
 and G.C. Giakos 

2-3 

1
 Department of Electronic and Computer Engineering, Technical University of Crete, Chania 73100, 

Greece 
2
 Department of Electrical and Computer Engineering 

3
 Department of Biomedical Engineering, The University of Akron, Akron, OH, 44325, USA 

 

Abstract— Contrast measurements become of increasing importance in digital imaging, 

where region of interest (ROI) differences can be effectively identified, processed and 

segmented. The image contrast among different structures varies with the material properties, 

material composition, and geometrical parameters, and it is difficult to be determined only 

from its physical, electrical, or optical parameters. The novelty of this study consists in fusing 

statistical analysis with polarimetric principles. As a result, quantification of image contrast in 

terms of Stokes parameters together with the modeling of intensity distribution for the 

corresponding target areas can be proved a powerful tool for analyzing the different properties 

of operational modalities and/or materials depicted in digital images. By fusing the above 

concepts, we explored the intrinsic potential of an efficient molecular imaging technique 

aimed at increasing the optical contrast of a structure surrounded by a scattering medium.  
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9. IST 2011, IEEE International Conference, Batu Ferringhi, Penang, Malaysia 

17-18 May 2011 

 

"Near Infrared Light Interaction with Lung Cancer 

Cells" 
G.C. Giakos [1]-[2], S. Marotta [2], C. Narayan [2], J.Petermann [1], S. Sestra, D. Pingili [1], 

S. A.Tsokaktsidis [1], D.B. Sheffer [1], and W. Xu [1] 
[1] Department of Electrical and Computer Engineering 

[2] Department of Biomedical Engineering, The University of Akron, Akron, Ohio 

M. Zervakis [3], G. Livanos [3], M. Kounelakis [3] 
Department of Electronic and Computer Engineering, Technical University of Crete, 

Chania 73100, Greece 

 

 

Abstract— The objective of this study is to explore the phenomenology of near infrared 

(NIR) light interaction with healthy and early-lung cancer by combining efficient polarimetric 

backscattering detection techniques with Polarimetric Exploratory Data Analysis (pEDA). 

Preliminary results indicate that enhanced discrimination signatures can be obtained for 

certain types of lung cancers.  

 
 

 


